PR22978, TLS local-dynamic incorrectly linked on hppa-linux
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87 this->list_.push_front(Free_list_node(0, len));
88 this->last_remove_ = this->list_.begin();
89 this->extend_ = extend;
90 this->length_ = len;
91 ++Free_list::num_lists;
92 ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107 if (start == end)
108 return;
109 gold_assert(start < end);
110
111 ++Free_list::num_removes;
112
113 Iterator p = this->last_remove_;
114 if (p->start_ > start)
115 p = this->list_.begin();
116
117 for (; p != this->list_.end(); ++p)
118 {
119 ++Free_list::num_remove_visits;
120 // Find a node that wholly contains the indicated region.
121 if (p->start_ <= start && p->end_ >= end)
122 {
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 p = this->list_.erase(p);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p->start_ + 3 >= start)
129 p->start_ = end;
130 // Case 3: remove a chunk from the end of the node.
131 else if (p->end_ <= end + 3)
132 p->end_ = start;
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
135 else
136 {
137 Free_list_node newnode(p->start_, start);
138 p->start_ = end;
139 this->list_.insert(p, newnode);
140 ++Free_list::num_nodes;
141 }
142 this->last_remove_ = p;
143 return;
144 }
145 }
146
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161 gold_debug(DEBUG_INCREMENTAL,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len), static_cast<int>(align),
164 static_cast<long>(minoff));
165 if (len == 0)
166 return align_address(minoff, align);
167
168 ++Free_list::num_allocates;
169
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176 {
177 ++Free_list::num_allocate_visits;
178 off_t start = p->start_ > minoff ? p->start_ : minoff;
179 start = align_address(start, align);
180 off_t end = start + len;
181 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 {
183 this->length_ = end;
184 p->end_ = end;
185 }
186 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 {
188 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 this->list_.erase(p);
190 else if (p->start_ + fuzz >= start)
191 p->start_ = end;
192 else if (p->end_ <= end + fuzz)
193 p->end_ = start;
194 else
195 {
196 Free_list_node newnode(p->start_, start);
197 p->start_ = end;
198 this->list_.insert(p, newnode);
199 ++Free_list::num_nodes;
200 }
201 return start;
202 }
203 }
204 if (this->extend_)
205 {
206 off_t start = align_address(this->length_, align);
207 this->length_ = start + len;
208 return start;
209 }
210 return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
220 static_cast<long>(p->end_),
221 static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228 fprintf(stderr, _("%s: total free lists: %u\n"),
229 program_name, Free_list::num_lists);
230 fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 program_name, Free_list::num_nodes);
232 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 program_name, Free_list::num_removes);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_remove_visits);
236 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name, Free_list::num_allocates);
238 fprintf(stderr, _("%s: nodes visited: %u\n"),
239 program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246 public:
247 Hash_task(Output_file* of,
248 size_t offset,
249 size_t size,
250 unsigned char* dst,
251 Task_token* final_blocker)
252 : of_(of), offset_(offset), size_(size), dst_(dst),
253 final_blocker_(final_blocker)
254 { }
255
256 void
257 run(Workqueue*)
258 {
259 const unsigned char* iv =
260 this->of_->get_input_view(this->offset_, this->size_);
261 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262 this->of_->free_input_view(this->offset_, this->size_, iv);
263 }
264
265 Task_token*
266 is_runnable()
267 { return NULL; }
268
269 // Unblock FINAL_BLOCKER_ when done.
270 void
271 locks(Task_locker* tl)
272 { tl->add(this, this->final_blocker_); }
273
274 std::string
275 get_name() const
276 { return "Hash_task"; }
277
278 private:
279 Output_file* of_;
280 const size_t offset_;
281 const size_t size_;
282 unsigned char* const dst_;
283 Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 script_output_section_data_list_(),
470 segment_states_(NULL),
471 relaxation_debug_check_(NULL),
472 section_order_map_(),
473 section_segment_map_(),
474 input_section_position_(),
475 input_section_glob_(),
476 incremental_base_(NULL),
477 free_list_()
478 {
479 // Make space for more than enough segments for a typical file.
480 // This is just for efficiency--it's OK if we wind up needing more.
481 this->segment_list_.reserve(12);
482
483 // We expect two unattached Output_data objects: the file header and
484 // the segment headers.
485 this->special_output_list_.reserve(2);
486
487 // Initialize structure needed for an incremental build.
488 if (parameters->incremental())
489 this->incremental_inputs_ = new Incremental_inputs;
490
491 // The section name pool is worth optimizing in all cases, because
492 // it is small, but there are often overlaps due to .rel sections.
493 this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501 this->incremental_base_ = base;
502 this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510 return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520 "abbrev",
521 "addr", // Fission extension
522 // "aranges", // not used by gdb as of 7.4
523 "frame",
524 "gdb_scripts",
525 "info",
526 "types",
527 "line",
528 "loc",
529 "macinfo",
530 "macro",
531 // "pubnames", // not used by gdb as of 7.4
532 // "pubtypes", // not used by gdb as of 7.4
533 // "gnu_pubnames", // Fission extension
534 // "gnu_pubtypes", // Fission extension
535 "ranges",
536 "str",
537 "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544 "abbrev",
545 // "addr", // Fission extension
546 // "aranges", // not used by gdb as of 7.4
547 // "frame",
548 // "gdb_scripts",
549 "info",
550 // "types",
551 "line",
552 // "loc",
553 // "macinfo",
554 // "macro",
555 // "pubnames", // not used by gdb as of 7.4
556 // "pubtypes", // not used by gdb as of 7.4
557 // "gnu_pubnames", // Fission extension
558 // "gnu_pubtypes", // Fission extension
559 // "ranges",
560 "str",
561 "str_offsets", // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569 "aranges",
570 "pubnames",
571 "gnu_pubnames",
572 "pubtypes",
573 "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583 // We can do this faster: binary search or a hashtable. But why bother?
584 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585 if (strcmp(suffix, gdb_sections[i]) == 0)
586 return true;
587 return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595 // We can do this faster: binary search or a hashtable. But why bother?
596 for (size_t i = 0;
597 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598 ++i)
599 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600 return true;
601 return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610 // We can do this faster: binary search or a hashtable. But why bother?
611 for (size_t i = 0;
612 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613 ++i)
614 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615 return true;
616 return false;
617 }
618
619 // Sometimes we compress sections. This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections. This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631 return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files. Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640 return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646 gold_assert(secname[0] == '.' && secname[1] == 'z');
647 std::string ret(".");
648 ret.append(secname, 2, std::string::npos);
649 return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657 const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659 if (!parameters->options().relocatable()
660 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661 return false;
662
663 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667 return parameters->target().should_include_section(sh_type);
668
669 switch (sh_type)
670 {
671 case elfcpp::SHT_NULL:
672 case elfcpp::SHT_SYMTAB:
673 case elfcpp::SHT_DYNSYM:
674 case elfcpp::SHT_HASH:
675 case elfcpp::SHT_DYNAMIC:
676 case elfcpp::SHT_SYMTAB_SHNDX:
677 return false;
678
679 case elfcpp::SHT_STRTAB:
680 // Discard the sections which have special meanings in the ELF
681 // ABI. Keep others (e.g., .stabstr). We could also do this by
682 // checking the sh_link fields of the appropriate sections.
683 return (strcmp(name, ".dynstr") != 0
684 && strcmp(name, ".strtab") != 0
685 && strcmp(name, ".shstrtab") != 0);
686
687 case elfcpp::SHT_RELA:
688 case elfcpp::SHT_REL:
689 case elfcpp::SHT_GROUP:
690 // If we are emitting relocations these should be handled
691 // elsewhere.
692 gold_assert(!parameters->options().relocatable());
693 return false;
694
695 case elfcpp::SHT_PROGBITS:
696 if (parameters->options().strip_debug()
697 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698 {
699 if (is_debug_info_section(name))
700 return false;
701 }
702 if (parameters->options().strip_debug_non_line()
703 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704 {
705 // Debugging sections can only be recognized by name.
706 if (is_prefix_of(".debug_", name)
707 && !is_lines_only_debug_section(name + 7))
708 return false;
709 if (is_prefix_of(".zdebug_", name)
710 && !is_lines_only_debug_section(name + 8))
711 return false;
712 }
713 if (parameters->options().strip_debug_gdb()
714 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715 {
716 // Debugging sections can only be recognized by name.
717 if (is_prefix_of(".debug_", name)
718 && !is_gdb_debug_section(name + 7))
719 return false;
720 if (is_prefix_of(".zdebug_", name)
721 && !is_gdb_debug_section(name + 8))
722 return false;
723 }
724 if (parameters->options().gdb_index()
725 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726 {
727 // When building .gdb_index, we can strip .debug_pubnames,
728 // .debug_pubtypes, and .debug_aranges sections.
729 if (is_prefix_of(".debug_", name)
730 && is_gdb_fast_lookup_section(name + 7))
731 return false;
732 if (is_prefix_of(".zdebug_", name)
733 && is_gdb_fast_lookup_section(name + 8))
734 return false;
735 }
736 if (parameters->options().strip_lto_sections()
737 && !parameters->options().relocatable()
738 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739 {
740 // Ignore LTO sections containing intermediate code.
741 if (is_prefix_of(".gnu.lto_", name))
742 return false;
743 }
744 // The GNU linker strips .gnu_debuglink sections, so we do too.
745 // This is a feature used to keep debugging information in
746 // separate files.
747 if (strcmp(name, ".gnu_debuglink") == 0)
748 return false;
749 return true;
750
751 default:
752 return true;
753 }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761 for (Section_list::const_iterator p = this->section_list_.begin();
762 p != this->section_list_.end();
763 ++p)
764 if (strcmp((*p)->name(), name) == 0)
765 return *p;
766 return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear. Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774 elfcpp::Elf_Word clear) const
775 {
776 for (Segment_list::const_iterator p = this->segment_list_.begin();
777 p != this->segment_list_.end();
778 ++p)
779 if (static_cast<elfcpp::PT>((*p)->type()) == type
780 && ((*p)->flags() & set) == set
781 && ((*p)->flags() & clear) == 0)
782 return *p;
783 return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section. This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors. Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run. This set just keeps track of
794 // these sections which need to be reversed. It is only changed by
795 // Layout::layout. It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807 != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS. NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key. ORDER is where this should appear
813 // in the output sections. IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818 Output_section_order order, bool is_relro)
819 {
820 elfcpp::Elf_Word lookup_type = type;
821
822 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
824 // .init_array, .fini_array, and .preinit_array sections by name
825 // whatever their type in the input file. We do this because the
826 // types are not always right in the input files.
827 if (lookup_type == elfcpp::SHT_INIT_ARRAY
828 || lookup_type == elfcpp::SHT_FINI_ARRAY
829 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830 lookup_type = elfcpp::SHT_PROGBITS;
831
832 elfcpp::Elf_Xword lookup_flags = flags;
833
834 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835 // read-write with read-only sections. Some other ELF linkers do
836 // not do this. FIXME: Perhaps there should be an option
837 // controlling this.
838 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841 const std::pair<Key, Output_section*> v(key, NULL);
842 std::pair<Section_name_map::iterator, bool> ins(
843 this->section_name_map_.insert(v));
844
845 if (!ins.second)
846 return ins.first->second;
847 else
848 {
849 // This is the first time we've seen this name/type/flags
850 // combination. For compatibility with the GNU linker, we
851 // combine sections with contents and zero flags with sections
852 // with non-zero flags. This is a workaround for cases where
853 // assembler code forgets to set section flags. FIXME: Perhaps
854 // there should be an option to control this.
855 Output_section* os = NULL;
856
857 if (lookup_type == elfcpp::SHT_PROGBITS)
858 {
859 if (flags == 0)
860 {
861 Output_section* same_name = this->find_output_section(name);
862 if (same_name != NULL
863 && (same_name->type() == elfcpp::SHT_PROGBITS
864 || same_name->type() == elfcpp::SHT_INIT_ARRAY
865 || same_name->type() == elfcpp::SHT_FINI_ARRAY
866 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868 os = same_name;
869 }
870 else if ((flags & elfcpp::SHF_TLS) == 0)
871 {
872 elfcpp::Elf_Xword zero_flags = 0;
873 const Key zero_key(name_key, std::make_pair(lookup_type,
874 zero_flags));
875 Section_name_map::iterator p =
876 this->section_name_map_.find(zero_key);
877 if (p != this->section_name_map_.end())
878 os = p->second;
879 }
880 }
881
882 if (os == NULL)
883 os = this->make_output_section(name, type, flags, order, is_relro);
884
885 ins.first->second = os;
886 return os;
887 }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896 if (! this->script_options_->saw_sections_clause())
897 return false;
898
899 Script_sections* ss = this->script_options_->script_sections();
900 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901 Output_section** output_section_slot;
902 Script_sections::Section_type script_section_type;
903 bool keep;
904
905 name = ss->output_section_name(file_name, name, &output_section_slot,
906 &script_section_type, &keep, true);
907 return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916 // Some flags in the input section should not be automatically
917 // copied to the output section.
918 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919 | elfcpp::SHF_GROUP
920 | elfcpp::SHF_COMPRESSED
921 | elfcpp::SHF_MERGE
922 | elfcpp::SHF_STRINGS);
923
924 // We only clear the SHF_LINK_ORDER flag in for
925 // a non-relocatable link.
926 if (!parameters->options().relocatable())
927 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929 return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
934 // linker created section. IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file. ORDER is where this section should appear in the output
937 // sections. IS_RELRO is true for a relro section. This will return
938 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
939 // is true if the section name should be matched against input specs
940 // in a linker script.
941
942 Output_section*
943 Layout::choose_output_section(const Relobj* relobj, const char* name,
944 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
945 bool is_input_section, Output_section_order order,
946 bool is_relro, bool is_reloc,
947 bool match_input_spec)
948 {
949 // We should not see any input sections after we have attached
950 // sections to segments.
951 gold_assert(!is_input_section || !this->sections_are_attached_);
952
953 flags = this->get_output_section_flags(flags);
954
955 if (this->script_options_->saw_sections_clause() && !is_reloc)
956 {
957 // We are using a SECTIONS clause, so the output section is
958 // chosen based only on the name.
959
960 Script_sections* ss = this->script_options_->script_sections();
961 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
962 Output_section** output_section_slot;
963 Script_sections::Section_type script_section_type;
964 const char* orig_name = name;
965 bool keep;
966 name = ss->output_section_name(file_name, name, &output_section_slot,
967 &script_section_type, &keep,
968 match_input_spec);
969
970 if (name == NULL)
971 {
972 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
973 "because it is not allowed by the "
974 "SECTIONS clause of the linker script"),
975 orig_name);
976 // The SECTIONS clause says to discard this input section.
977 return NULL;
978 }
979
980 // We can only handle script section types ST_NONE and ST_NOLOAD.
981 switch (script_section_type)
982 {
983 case Script_sections::ST_NONE:
984 break;
985 case Script_sections::ST_NOLOAD:
986 flags &= elfcpp::SHF_ALLOC;
987 break;
988 default:
989 gold_unreachable();
990 }
991
992 // If this is an orphan section--one not mentioned in the linker
993 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
994 // default processing below.
995
996 if (output_section_slot != NULL)
997 {
998 if (*output_section_slot != NULL)
999 {
1000 (*output_section_slot)->update_flags_for_input_section(flags);
1001 return *output_section_slot;
1002 }
1003
1004 // We don't put sections found in the linker script into
1005 // SECTION_NAME_MAP_. That keeps us from getting confused
1006 // if an orphan section is mapped to a section with the same
1007 // name as one in the linker script.
1008
1009 name = this->namepool_.add(name, false, NULL);
1010
1011 Output_section* os = this->make_output_section(name, type, flags,
1012 order, is_relro);
1013
1014 os->set_found_in_sections_clause();
1015
1016 // Special handling for NOLOAD sections.
1017 if (script_section_type == Script_sections::ST_NOLOAD)
1018 {
1019 os->set_is_noload();
1020
1021 // The constructor of Output_section sets addresses of non-ALLOC
1022 // sections to 0 by default. We don't want that for NOLOAD
1023 // sections even if they have no SHF_ALLOC flag.
1024 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1025 && os->is_address_valid())
1026 {
1027 gold_assert(os->address() == 0
1028 && !os->is_offset_valid()
1029 && !os->is_data_size_valid());
1030 os->reset_address_and_file_offset();
1031 }
1032 }
1033
1034 *output_section_slot = os;
1035 return os;
1036 }
1037 }
1038
1039 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1040
1041 size_t len = strlen(name);
1042 std::string uncompressed_name;
1043
1044 // Compressed debug sections should be mapped to the corresponding
1045 // uncompressed section.
1046 if (is_compressed_debug_section(name))
1047 {
1048 uncompressed_name =
1049 corresponding_uncompressed_section_name(std::string(name, len));
1050 name = uncompressed_name.c_str();
1051 len = uncompressed_name.length();
1052 }
1053
1054 // Turn NAME from the name of the input section into the name of the
1055 // output section.
1056 if (is_input_section
1057 && !this->script_options_->saw_sections_clause()
1058 && !parameters->options().relocatable())
1059 {
1060 const char *orig_name = name;
1061 name = parameters->target().output_section_name(relobj, name, &len);
1062 if (name == NULL)
1063 name = Layout::output_section_name(relobj, orig_name, &len);
1064 }
1065
1066 Stringpool::Key name_key;
1067 name = this->namepool_.add_with_length(name, len, true, &name_key);
1068
1069 // Find or make the output section. The output section is selected
1070 // based on the section name, type, and flags.
1071 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1072 }
1073
1074 // For incremental links, record the initial fixed layout of a section
1075 // from the base file, and return a pointer to the Output_section.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::init_fixed_output_section(const char* name,
1080 elfcpp::Shdr<size, big_endian>& shdr)
1081 {
1082 unsigned int sh_type = shdr.get_sh_type();
1083
1084 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1085 // PRE_INIT_ARRAY, and NOTE sections.
1086 // All others will be created from scratch and reallocated.
1087 if (!can_incremental_update(sh_type))
1088 return NULL;
1089
1090 // If we're generating a .gdb_index section, we need to regenerate
1091 // it from scratch.
1092 if (parameters->options().gdb_index()
1093 && sh_type == elfcpp::SHT_PROGBITS
1094 && strcmp(name, ".gdb_index") == 0)
1095 return NULL;
1096
1097 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1098 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1099 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1100 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1101 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1102 shdr.get_sh_addralign();
1103
1104 // Make the output section.
1105 Stringpool::Key name_key;
1106 name = this->namepool_.add(name, true, &name_key);
1107 Output_section* os = this->get_output_section(name, name_key, sh_type,
1108 sh_flags, ORDER_INVALID, false);
1109 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1110 if (sh_type != elfcpp::SHT_NOBITS)
1111 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1112 return os;
1113 }
1114
1115 // Return the index by which an input section should be ordered. This
1116 // is used to sort some .text sections, for compatibility with GNU ld.
1117
1118 int
1119 Layout::special_ordering_of_input_section(const char* name)
1120 {
1121 // The GNU linker has some special handling for some sections that
1122 // wind up in the .text section. Sections that start with these
1123 // prefixes must appear first, and must appear in the order listed
1124 // here.
1125 static const char* const text_section_sort[] =
1126 {
1127 ".text.unlikely",
1128 ".text.exit",
1129 ".text.startup",
1130 ".text.hot"
1131 };
1132
1133 for (size_t i = 0;
1134 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1135 i++)
1136 if (is_prefix_of(text_section_sort[i], name))
1137 return i;
1138
1139 return -1;
1140 }
1141
1142 // Return the output section to use for input section SHNDX, with name
1143 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1144 // index of a relocation section which applies to this section, or 0
1145 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1146 // relocation section if there is one. Set *OFF to the offset of this
1147 // input section without the output section. Return NULL if the
1148 // section should be discarded. Set *OFF to -1 if the section
1149 // contents should not be written directly to the output file, but
1150 // will instead receive special handling.
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1155 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1156 unsigned int sh_type, unsigned int reloc_shndx,
1157 unsigned int, off_t* off)
1158 {
1159 *off = 0;
1160
1161 if (!this->include_section(object, name, shdr))
1162 return NULL;
1163
1164 // In a relocatable link a grouped section must not be combined with
1165 // any other sections.
1166 Output_section* os;
1167 if (parameters->options().relocatable()
1168 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1169 {
1170 // Some flags in the input section should not be automatically
1171 // copied to the output section.
1172 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1173 & ~ elfcpp::SHF_COMPRESSED);
1174 name = this->namepool_.add(name, true, NULL);
1175 os = this->make_output_section(name, sh_type, flags,
1176 ORDER_INVALID, false);
1177 }
1178 else
1179 {
1180 // All ".text.unlikely.*" sections can be moved to a unique
1181 // segment with --text-unlikely-segment option.
1182 bool text_unlikely_segment
1183 = (parameters->options().text_unlikely_segment()
1184 && is_prefix_of(".text.unlikely",
1185 object->section_name(shndx).c_str()));
1186 if (text_unlikely_segment)
1187 {
1188 elfcpp::Elf_Xword flags
1189 = this->get_output_section_flags(shdr.get_sh_flags());
1190
1191 Stringpool::Key name_key;
1192 const char* os_name = this->namepool_.add(".text.unlikely", true,
1193 &name_key);
1194 os = this->get_output_section(os_name, name_key, sh_type, flags,
1195 ORDER_INVALID, false);
1196 // Map this output section to a unique segment. This is done to
1197 // separate "text" that is not likely to be executed from "text"
1198 // that is likely executed.
1199 os->set_is_unique_segment();
1200 }
1201 else
1202 {
1203 // Plugins can choose to place one or more subsets of sections in
1204 // unique segments and this is done by mapping these section subsets
1205 // to unique output sections. Check if this section needs to be
1206 // remapped to a unique output section.
1207 Section_segment_map::iterator it
1208 = this->section_segment_map_.find(Const_section_id(object, shndx));
1209 if (it == this->section_segment_map_.end())
1210 {
1211 os = this->choose_output_section(object, name, sh_type,
1212 shdr.get_sh_flags(), true,
1213 ORDER_INVALID, false, false,
1214 true);
1215 }
1216 else
1217 {
1218 // We know the name of the output section, directly call
1219 // get_output_section here by-passing choose_output_section.
1220 elfcpp::Elf_Xword flags
1221 = this->get_output_section_flags(shdr.get_sh_flags());
1222
1223 const char* os_name = it->second->name;
1224 Stringpool::Key name_key;
1225 os_name = this->namepool_.add(os_name, true, &name_key);
1226 os = this->get_output_section(os_name, name_key, sh_type, flags,
1227 ORDER_INVALID, false);
1228 if (!os->is_unique_segment())
1229 {
1230 os->set_is_unique_segment();
1231 os->set_extra_segment_flags(it->second->flags);
1232 os->set_segment_alignment(it->second->align);
1233 }
1234 }
1235 }
1236 if (os == NULL)
1237 return NULL;
1238 }
1239
1240 // By default the GNU linker sorts input sections whose names match
1241 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1242 // sections are sorted by name. This is used to implement
1243 // constructor priority ordering. We are compatible. When we put
1244 // .ctor sections in .init_array and .dtor sections in .fini_array,
1245 // we must also sort plain .ctor and .dtor sections.
1246 if (!this->script_options_->saw_sections_clause()
1247 && !parameters->options().relocatable()
1248 && (is_prefix_of(".ctors.", name)
1249 || is_prefix_of(".dtors.", name)
1250 || is_prefix_of(".init_array.", name)
1251 || is_prefix_of(".fini_array.", name)
1252 || (parameters->options().ctors_in_init_array()
1253 && (strcmp(name, ".ctors") == 0
1254 || strcmp(name, ".dtors") == 0))))
1255 os->set_must_sort_attached_input_sections();
1256
1257 // By default the GNU linker sorts some special text sections ahead
1258 // of others. We are compatible.
1259 if (parameters->options().text_reorder()
1260 && !this->script_options_->saw_sections_clause()
1261 && !this->is_section_ordering_specified()
1262 && !parameters->options().relocatable()
1263 && Layout::special_ordering_of_input_section(name) >= 0)
1264 os->set_must_sort_attached_input_sections();
1265
1266 // If this is a .ctors or .ctors.* section being mapped to a
1267 // .init_array section, or a .dtors or .dtors.* section being mapped
1268 // to a .fini_array section, we will need to reverse the words if
1269 // there is more than one. Record this section for later. See
1270 // ctors_sections_in_init_array above.
1271 if (!this->script_options_->saw_sections_clause()
1272 && !parameters->options().relocatable()
1273 && shdr.get_sh_size() > size / 8
1274 && (((strcmp(name, ".ctors") == 0
1275 || is_prefix_of(".ctors.", name))
1276 && strcmp(os->name(), ".init_array") == 0)
1277 || ((strcmp(name, ".dtors") == 0
1278 || is_prefix_of(".dtors.", name))
1279 && strcmp(os->name(), ".fini_array") == 0)))
1280 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1281
1282 // FIXME: Handle SHF_LINK_ORDER somewhere.
1283
1284 elfcpp::Elf_Xword orig_flags = os->flags();
1285
1286 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1287 this->script_options_->saw_sections_clause());
1288
1289 // If the flags changed, we may have to change the order.
1290 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1291 {
1292 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1293 elfcpp::Elf_Xword new_flags =
1294 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1295 if (orig_flags != new_flags)
1296 os->set_order(this->default_section_order(os, false));
1297 }
1298
1299 this->have_added_input_section_ = true;
1300
1301 return os;
1302 }
1303
1304 // Maps section SECN to SEGMENT s.
1305 void
1306 Layout::insert_section_segment_map(Const_section_id secn,
1307 Unique_segment_info *s)
1308 {
1309 gold_assert(this->unique_segment_for_sections_specified_);
1310 this->section_segment_map_[secn] = s;
1311 }
1312
1313 // Handle a relocation section when doing a relocatable link.
1314
1315 template<int size, bool big_endian>
1316 Output_section*
1317 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1318 unsigned int,
1319 const elfcpp::Shdr<size, big_endian>& shdr,
1320 Output_section* data_section,
1321 Relocatable_relocs* rr)
1322 {
1323 gold_assert(parameters->options().relocatable()
1324 || parameters->options().emit_relocs());
1325
1326 int sh_type = shdr.get_sh_type();
1327
1328 std::string name;
1329 if (sh_type == elfcpp::SHT_REL)
1330 name = ".rel";
1331 else if (sh_type == elfcpp::SHT_RELA)
1332 name = ".rela";
1333 else
1334 gold_unreachable();
1335 name += data_section->name();
1336
1337 // If the output data section already has a reloc section, use that;
1338 // otherwise, make a new one.
1339 Output_section* os = data_section->reloc_section();
1340 if (os == NULL)
1341 {
1342 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1343 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1344 ORDER_INVALID, false);
1345 os->set_should_link_to_symtab();
1346 os->set_info_section(data_section);
1347 data_section->set_reloc_section(os);
1348 }
1349
1350 Output_section_data* posd;
1351 if (sh_type == elfcpp::SHT_REL)
1352 {
1353 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1354 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1355 size,
1356 big_endian>(rr);
1357 }
1358 else if (sh_type == elfcpp::SHT_RELA)
1359 {
1360 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1361 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1362 size,
1363 big_endian>(rr);
1364 }
1365 else
1366 gold_unreachable();
1367
1368 os->add_output_section_data(posd);
1369 rr->set_output_data(posd);
1370
1371 return os;
1372 }
1373
1374 // Handle a group section when doing a relocatable link.
1375
1376 template<int size, bool big_endian>
1377 void
1378 Layout::layout_group(Symbol_table* symtab,
1379 Sized_relobj_file<size, big_endian>* object,
1380 unsigned int,
1381 const char* group_section_name,
1382 const char* signature,
1383 const elfcpp::Shdr<size, big_endian>& shdr,
1384 elfcpp::Elf_Word flags,
1385 std::vector<unsigned int>* shndxes)
1386 {
1387 gold_assert(parameters->options().relocatable());
1388 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1389 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1390 Output_section* os = this->make_output_section(group_section_name,
1391 elfcpp::SHT_GROUP,
1392 shdr.get_sh_flags(),
1393 ORDER_INVALID, false);
1394
1395 // We need to find a symbol with the signature in the symbol table.
1396 // If we don't find one now, we need to look again later.
1397 Symbol* sym = symtab->lookup(signature, NULL);
1398 if (sym != NULL)
1399 os->set_info_symndx(sym);
1400 else
1401 {
1402 // Reserve some space to minimize reallocations.
1403 if (this->group_signatures_.empty())
1404 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1405
1406 // We will wind up using a symbol whose name is the signature.
1407 // So just put the signature in the symbol name pool to save it.
1408 signature = symtab->canonicalize_name(signature);
1409 this->group_signatures_.push_back(Group_signature(os, signature));
1410 }
1411
1412 os->set_should_link_to_symtab();
1413 os->set_entsize(4);
1414
1415 section_size_type entry_count =
1416 convert_to_section_size_type(shdr.get_sh_size() / 4);
1417 Output_section_data* posd =
1418 new Output_data_group<size, big_endian>(object, entry_count, flags,
1419 shndxes);
1420 os->add_output_section_data(posd);
1421 }
1422
1423 // Special GNU handling of sections name .eh_frame. They will
1424 // normally hold exception frame data as defined by the C++ ABI
1425 // (http://codesourcery.com/cxx-abi/).
1426
1427 template<int size, bool big_endian>
1428 Output_section*
1429 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1430 const unsigned char* symbols,
1431 off_t symbols_size,
1432 const unsigned char* symbol_names,
1433 off_t symbol_names_size,
1434 unsigned int shndx,
1435 const elfcpp::Shdr<size, big_endian>& shdr,
1436 unsigned int reloc_shndx, unsigned int reloc_type,
1437 off_t* off)
1438 {
1439 const unsigned int unwind_section_type =
1440 parameters->target().unwind_section_type();
1441
1442 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1443 || shdr.get_sh_type() == unwind_section_type);
1444 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1445
1446 Output_section* os = this->make_eh_frame_section(object);
1447 if (os == NULL)
1448 return NULL;
1449
1450 gold_assert(this->eh_frame_section_ == os);
1451
1452 elfcpp::Elf_Xword orig_flags = os->flags();
1453
1454 Eh_frame::Eh_frame_section_disposition disp =
1455 Eh_frame::EH_UNRECOGNIZED_SECTION;
1456 if (!parameters->incremental())
1457 {
1458 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1459 symbols,
1460 symbols_size,
1461 symbol_names,
1462 symbol_names_size,
1463 shndx,
1464 reloc_shndx,
1465 reloc_type);
1466 }
1467
1468 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1469 {
1470 os->update_flags_for_input_section(shdr.get_sh_flags());
1471
1472 // A writable .eh_frame section is a RELRO section.
1473 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1474 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1475 {
1476 os->set_is_relro();
1477 os->set_order(ORDER_RELRO);
1478 }
1479
1480 *off = -1;
1481 return os;
1482 }
1483
1484 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1485 {
1486 // We found the end marker section, so now we can add the set of
1487 // optimized sections to the output section. We need to postpone
1488 // adding this until we've found a section we can optimize so that
1489 // the .eh_frame section in crtbeginT.o winds up at the start of
1490 // the output section.
1491 os->add_output_section_data(this->eh_frame_data_);
1492 this->added_eh_frame_data_ = true;
1493 }
1494
1495 // We couldn't handle this .eh_frame section for some reason.
1496 // Add it as a normal section.
1497 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1498 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1499 reloc_shndx, saw_sections_clause);
1500 this->have_added_input_section_ = true;
1501
1502 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1503 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1504 os->set_order(this->default_section_order(os, false));
1505
1506 return os;
1507 }
1508
1509 void
1510 Layout::finalize_eh_frame_section()
1511 {
1512 // If we never found an end marker section, we need to add the
1513 // optimized eh sections to the output section now.
1514 if (!parameters->incremental()
1515 && this->eh_frame_section_ != NULL
1516 && !this->added_eh_frame_data_)
1517 {
1518 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1519 this->added_eh_frame_data_ = true;
1520 }
1521 }
1522
1523 // Create and return the magic .eh_frame section. Create
1524 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1525 // input .eh_frame section; it may be NULL.
1526
1527 Output_section*
1528 Layout::make_eh_frame_section(const Relobj* object)
1529 {
1530 const unsigned int unwind_section_type =
1531 parameters->target().unwind_section_type();
1532
1533 Output_section* os = this->choose_output_section(object, ".eh_frame",
1534 unwind_section_type,
1535 elfcpp::SHF_ALLOC, false,
1536 ORDER_EHFRAME, false, false,
1537 false);
1538 if (os == NULL)
1539 return NULL;
1540
1541 if (this->eh_frame_section_ == NULL)
1542 {
1543 this->eh_frame_section_ = os;
1544 this->eh_frame_data_ = new Eh_frame();
1545
1546 // For incremental linking, we do not optimize .eh_frame sections
1547 // or create a .eh_frame_hdr section.
1548 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1549 {
1550 Output_section* hdr_os =
1551 this->choose_output_section(NULL, ".eh_frame_hdr",
1552 unwind_section_type,
1553 elfcpp::SHF_ALLOC, false,
1554 ORDER_EHFRAME, false, false,
1555 false);
1556
1557 if (hdr_os != NULL)
1558 {
1559 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1560 this->eh_frame_data_);
1561 hdr_os->add_output_section_data(hdr_posd);
1562
1563 hdr_os->set_after_input_sections();
1564
1565 if (!this->script_options_->saw_phdrs_clause())
1566 {
1567 Output_segment* hdr_oseg;
1568 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1569 elfcpp::PF_R);
1570 hdr_oseg->add_output_section_to_nonload(hdr_os,
1571 elfcpp::PF_R);
1572 }
1573
1574 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1575 }
1576 }
1577 }
1578
1579 return os;
1580 }
1581
1582 // Add an exception frame for a PLT. This is called from target code.
1583
1584 void
1585 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1586 size_t cie_length, const unsigned char* fde_data,
1587 size_t fde_length)
1588 {
1589 if (parameters->incremental())
1590 {
1591 // FIXME: Maybe this could work some day....
1592 return;
1593 }
1594 Output_section* os = this->make_eh_frame_section(NULL);
1595 if (os == NULL)
1596 return;
1597 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1598 fde_data, fde_length);
1599 if (!this->added_eh_frame_data_)
1600 {
1601 os->add_output_section_data(this->eh_frame_data_);
1602 this->added_eh_frame_data_ = true;
1603 }
1604 }
1605
1606 // Remove .eh_frame information for a PLT. FDEs using the CIE must
1607 // be removed in reverse order to the order they were added.
1608
1609 void
1610 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1611 size_t cie_length, const unsigned char* fde_data,
1612 size_t fde_length)
1613 {
1614 if (parameters->incremental())
1615 {
1616 // FIXME: Maybe this could work some day....
1617 return;
1618 }
1619 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length,
1620 fde_data, fde_length);
1621 }
1622
1623 // Scan a .debug_info or .debug_types section, and add summary
1624 // information to the .gdb_index section.
1625
1626 template<int size, bool big_endian>
1627 void
1628 Layout::add_to_gdb_index(bool is_type_unit,
1629 Sized_relobj<size, big_endian>* object,
1630 const unsigned char* symbols,
1631 off_t symbols_size,
1632 unsigned int shndx,
1633 unsigned int reloc_shndx,
1634 unsigned int reloc_type)
1635 {
1636 if (this->gdb_index_data_ == NULL)
1637 {
1638 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1639 elfcpp::SHT_PROGBITS, 0,
1640 false, ORDER_INVALID,
1641 false, false, false);
1642 if (os == NULL)
1643 return;
1644
1645 this->gdb_index_data_ = new Gdb_index(os);
1646 os->add_output_section_data(this->gdb_index_data_);
1647 os->set_after_input_sections();
1648 }
1649
1650 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1651 symbols_size, shndx, reloc_shndx,
1652 reloc_type);
1653 }
1654
1655 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1656 // the output section.
1657
1658 Output_section*
1659 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1660 elfcpp::Elf_Xword flags,
1661 Output_section_data* posd,
1662 Output_section_order order, bool is_relro)
1663 {
1664 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1665 false, order, is_relro,
1666 false, false);
1667 if (os != NULL)
1668 os->add_output_section_data(posd);
1669 return os;
1670 }
1671
1672 // Map section flags to segment flags.
1673
1674 elfcpp::Elf_Word
1675 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1676 {
1677 elfcpp::Elf_Word ret = elfcpp::PF_R;
1678 if ((flags & elfcpp::SHF_WRITE) != 0)
1679 ret |= elfcpp::PF_W;
1680 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1681 ret |= elfcpp::PF_X;
1682 return ret;
1683 }
1684
1685 // Make a new Output_section, and attach it to segments as
1686 // appropriate. ORDER is the order in which this section should
1687 // appear in the output segment. IS_RELRO is true if this is a relro
1688 // (read-only after relocations) section.
1689
1690 Output_section*
1691 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1692 elfcpp::Elf_Xword flags,
1693 Output_section_order order, bool is_relro)
1694 {
1695 Output_section* os;
1696 if ((flags & elfcpp::SHF_ALLOC) == 0
1697 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1698 && is_compressible_debug_section(name))
1699 os = new Output_compressed_section(&parameters->options(), name, type,
1700 flags);
1701 else if ((flags & elfcpp::SHF_ALLOC) == 0
1702 && parameters->options().strip_debug_non_line()
1703 && strcmp(".debug_abbrev", name) == 0)
1704 {
1705 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1706 name, type, flags);
1707 if (this->debug_info_)
1708 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1709 }
1710 else if ((flags & elfcpp::SHF_ALLOC) == 0
1711 && parameters->options().strip_debug_non_line()
1712 && strcmp(".debug_info", name) == 0)
1713 {
1714 os = this->debug_info_ = new Output_reduced_debug_info_section(
1715 name, type, flags);
1716 if (this->debug_abbrev_)
1717 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1718 }
1719 else
1720 {
1721 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1722 // not have correct section types. Force them here.
1723 if (type == elfcpp::SHT_PROGBITS)
1724 {
1725 if (is_prefix_of(".init_array", name))
1726 type = elfcpp::SHT_INIT_ARRAY;
1727 else if (is_prefix_of(".preinit_array", name))
1728 type = elfcpp::SHT_PREINIT_ARRAY;
1729 else if (is_prefix_of(".fini_array", name))
1730 type = elfcpp::SHT_FINI_ARRAY;
1731 }
1732
1733 // FIXME: const_cast is ugly.
1734 Target* target = const_cast<Target*>(&parameters->target());
1735 os = target->make_output_section(name, type, flags);
1736 }
1737
1738 // With -z relro, we have to recognize the special sections by name.
1739 // There is no other way.
1740 bool is_relro_local = false;
1741 if (!this->script_options_->saw_sections_clause()
1742 && parameters->options().relro()
1743 && (flags & elfcpp::SHF_ALLOC) != 0
1744 && (flags & elfcpp::SHF_WRITE) != 0)
1745 {
1746 if (type == elfcpp::SHT_PROGBITS)
1747 {
1748 if ((flags & elfcpp::SHF_TLS) != 0)
1749 is_relro = true;
1750 else if (strcmp(name, ".data.rel.ro") == 0)
1751 is_relro = true;
1752 else if (strcmp(name, ".data.rel.ro.local") == 0)
1753 {
1754 is_relro = true;
1755 is_relro_local = true;
1756 }
1757 else if (strcmp(name, ".ctors") == 0
1758 || strcmp(name, ".dtors") == 0
1759 || strcmp(name, ".jcr") == 0)
1760 is_relro = true;
1761 }
1762 else if (type == elfcpp::SHT_INIT_ARRAY
1763 || type == elfcpp::SHT_FINI_ARRAY
1764 || type == elfcpp::SHT_PREINIT_ARRAY)
1765 is_relro = true;
1766 }
1767
1768 if (is_relro)
1769 os->set_is_relro();
1770
1771 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1772 order = this->default_section_order(os, is_relro_local);
1773
1774 os->set_order(order);
1775
1776 parameters->target().new_output_section(os);
1777
1778 this->section_list_.push_back(os);
1779
1780 // The GNU linker by default sorts some sections by priority, so we
1781 // do the same. We need to know that this might happen before we
1782 // attach any input sections.
1783 if (!this->script_options_->saw_sections_clause()
1784 && !parameters->options().relocatable()
1785 && (strcmp(name, ".init_array") == 0
1786 || strcmp(name, ".fini_array") == 0
1787 || (!parameters->options().ctors_in_init_array()
1788 && (strcmp(name, ".ctors") == 0
1789 || strcmp(name, ".dtors") == 0))))
1790 os->set_may_sort_attached_input_sections();
1791
1792 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1793 // sections before other .text sections. We are compatible. We
1794 // need to know that this might happen before we attach any input
1795 // sections.
1796 if (parameters->options().text_reorder()
1797 && !this->script_options_->saw_sections_clause()
1798 && !this->is_section_ordering_specified()
1799 && !parameters->options().relocatable()
1800 && strcmp(name, ".text") == 0)
1801 os->set_may_sort_attached_input_sections();
1802
1803 // GNU linker sorts section by name with --sort-section=name.
1804 if (strcmp(parameters->options().sort_section(), "name") == 0)
1805 os->set_must_sort_attached_input_sections();
1806
1807 // Check for .stab*str sections, as .stab* sections need to link to
1808 // them.
1809 if (type == elfcpp::SHT_STRTAB
1810 && !this->have_stabstr_section_
1811 && strncmp(name, ".stab", 5) == 0
1812 && strcmp(name + strlen(name) - 3, "str") == 0)
1813 this->have_stabstr_section_ = true;
1814
1815 // During a full incremental link, we add patch space to most
1816 // PROGBITS and NOBITS sections. Flag those that may be
1817 // arbitrarily padded.
1818 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1819 && order != ORDER_INTERP
1820 && order != ORDER_INIT
1821 && order != ORDER_PLT
1822 && order != ORDER_FINI
1823 && order != ORDER_RELRO_LAST
1824 && order != ORDER_NON_RELRO_FIRST
1825 && strcmp(name, ".eh_frame") != 0
1826 && strcmp(name, ".ctors") != 0
1827 && strcmp(name, ".dtors") != 0
1828 && strcmp(name, ".jcr") != 0)
1829 {
1830 os->set_is_patch_space_allowed();
1831
1832 // Certain sections require "holes" to be filled with
1833 // specific fill patterns. These fill patterns may have
1834 // a minimum size, so we must prevent allocations from the
1835 // free list that leave a hole smaller than the minimum.
1836 if (strcmp(name, ".debug_info") == 0)
1837 os->set_free_space_fill(new Output_fill_debug_info(false));
1838 else if (strcmp(name, ".debug_types") == 0)
1839 os->set_free_space_fill(new Output_fill_debug_info(true));
1840 else if (strcmp(name, ".debug_line") == 0)
1841 os->set_free_space_fill(new Output_fill_debug_line());
1842 }
1843
1844 // If we have already attached the sections to segments, then we
1845 // need to attach this one now. This happens for sections created
1846 // directly by the linker.
1847 if (this->sections_are_attached_)
1848 this->attach_section_to_segment(&parameters->target(), os);
1849
1850 return os;
1851 }
1852
1853 // Return the default order in which a section should be placed in an
1854 // output segment. This function captures a lot of the ideas in
1855 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1856 // linker created section is normally set when the section is created;
1857 // this function is used for input sections.
1858
1859 Output_section_order
1860 Layout::default_section_order(Output_section* os, bool is_relro_local)
1861 {
1862 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1863 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1864 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1865 bool is_bss = false;
1866
1867 switch (os->type())
1868 {
1869 default:
1870 case elfcpp::SHT_PROGBITS:
1871 break;
1872 case elfcpp::SHT_NOBITS:
1873 is_bss = true;
1874 break;
1875 case elfcpp::SHT_RELA:
1876 case elfcpp::SHT_REL:
1877 if (!is_write)
1878 return ORDER_DYNAMIC_RELOCS;
1879 break;
1880 case elfcpp::SHT_HASH:
1881 case elfcpp::SHT_DYNAMIC:
1882 case elfcpp::SHT_SHLIB:
1883 case elfcpp::SHT_DYNSYM:
1884 case elfcpp::SHT_GNU_HASH:
1885 case elfcpp::SHT_GNU_verdef:
1886 case elfcpp::SHT_GNU_verneed:
1887 case elfcpp::SHT_GNU_versym:
1888 if (!is_write)
1889 return ORDER_DYNAMIC_LINKER;
1890 break;
1891 case elfcpp::SHT_NOTE:
1892 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1893 }
1894
1895 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1896 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1897
1898 if (!is_bss && !is_write)
1899 {
1900 if (is_execinstr)
1901 {
1902 if (strcmp(os->name(), ".init") == 0)
1903 return ORDER_INIT;
1904 else if (strcmp(os->name(), ".fini") == 0)
1905 return ORDER_FINI;
1906 else if (parameters->options().keep_text_section_prefix())
1907 {
1908 // -z,keep-text-section-prefix introduces additional
1909 // output sections.
1910 if (strcmp(os->name(), ".text.hot") == 0)
1911 return ORDER_TEXT_HOT;
1912 else if (strcmp(os->name(), ".text.startup") == 0)
1913 return ORDER_TEXT_STARTUP;
1914 else if (strcmp(os->name(), ".text.exit") == 0)
1915 return ORDER_TEXT_EXIT;
1916 else if (strcmp(os->name(), ".text.unlikely") == 0)
1917 return ORDER_TEXT_UNLIKELY;
1918 }
1919 }
1920 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1921 }
1922
1923 if (os->is_relro())
1924 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1925
1926 if (os->is_small_section())
1927 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1928 if (os->is_large_section())
1929 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1930
1931 return is_bss ? ORDER_BSS : ORDER_DATA;
1932 }
1933
1934 // Attach output sections to segments. This is called after we have
1935 // seen all the input sections.
1936
1937 void
1938 Layout::attach_sections_to_segments(const Target* target)
1939 {
1940 for (Section_list::iterator p = this->section_list_.begin();
1941 p != this->section_list_.end();
1942 ++p)
1943 this->attach_section_to_segment(target, *p);
1944
1945 this->sections_are_attached_ = true;
1946 }
1947
1948 // Attach an output section to a segment.
1949
1950 void
1951 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1952 {
1953 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1954 this->unattached_section_list_.push_back(os);
1955 else
1956 this->attach_allocated_section_to_segment(target, os);
1957 }
1958
1959 // Attach an allocated output section to a segment.
1960
1961 void
1962 Layout::attach_allocated_section_to_segment(const Target* target,
1963 Output_section* os)
1964 {
1965 elfcpp::Elf_Xword flags = os->flags();
1966 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1967
1968 if (parameters->options().relocatable())
1969 return;
1970
1971 // If we have a SECTIONS clause, we can't handle the attachment to
1972 // segments until after we've seen all the sections.
1973 if (this->script_options_->saw_sections_clause())
1974 return;
1975
1976 gold_assert(!this->script_options_->saw_phdrs_clause());
1977
1978 // This output section goes into a PT_LOAD segment.
1979
1980 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1981
1982 // If this output section's segment has extra flags that need to be set,
1983 // coming from a linker plugin, do that.
1984 seg_flags |= os->extra_segment_flags();
1985
1986 // Check for --section-start.
1987 uint64_t addr;
1988 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1989
1990 // In general the only thing we really care about for PT_LOAD
1991 // segments is whether or not they are writable or executable,
1992 // so that is how we search for them.
1993 // Large data sections also go into their own PT_LOAD segment.
1994 // People who need segments sorted on some other basis will
1995 // have to use a linker script.
1996
1997 Segment_list::const_iterator p;
1998 if (!os->is_unique_segment())
1999 {
2000 for (p = this->segment_list_.begin();
2001 p != this->segment_list_.end();
2002 ++p)
2003 {
2004 if ((*p)->type() != elfcpp::PT_LOAD)
2005 continue;
2006 if ((*p)->is_unique_segment())
2007 continue;
2008 if (!parameters->options().omagic()
2009 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2010 continue;
2011 if ((target->isolate_execinstr() || parameters->options().rosegment())
2012 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2013 continue;
2014 // If -Tbss was specified, we need to separate the data and BSS
2015 // segments.
2016 if (parameters->options().user_set_Tbss())
2017 {
2018 if ((os->type() == elfcpp::SHT_NOBITS)
2019 == (*p)->has_any_data_sections())
2020 continue;
2021 }
2022 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2023 continue;
2024
2025 if (is_address_set)
2026 {
2027 if ((*p)->are_addresses_set())
2028 continue;
2029
2030 (*p)->add_initial_output_data(os);
2031 (*p)->update_flags_for_output_section(seg_flags);
2032 (*p)->set_addresses(addr, addr);
2033 break;
2034 }
2035
2036 (*p)->add_output_section_to_load(this, os, seg_flags);
2037 break;
2038 }
2039 }
2040
2041 if (p == this->segment_list_.end()
2042 || os->is_unique_segment())
2043 {
2044 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2045 seg_flags);
2046 if (os->is_large_data_section())
2047 oseg->set_is_large_data_segment();
2048 oseg->add_output_section_to_load(this, os, seg_flags);
2049 if (is_address_set)
2050 oseg->set_addresses(addr, addr);
2051 // Check if segment should be marked unique. For segments marked
2052 // unique by linker plugins, set the new alignment if specified.
2053 if (os->is_unique_segment())
2054 {
2055 oseg->set_is_unique_segment();
2056 if (os->segment_alignment() != 0)
2057 oseg->set_minimum_p_align(os->segment_alignment());
2058 }
2059 }
2060
2061 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2062 // segment.
2063 if (os->type() == elfcpp::SHT_NOTE)
2064 {
2065 // See if we already have an equivalent PT_NOTE segment.
2066 for (p = this->segment_list_.begin();
2067 p != segment_list_.end();
2068 ++p)
2069 {
2070 if ((*p)->type() == elfcpp::PT_NOTE
2071 && (((*p)->flags() & elfcpp::PF_W)
2072 == (seg_flags & elfcpp::PF_W)))
2073 {
2074 (*p)->add_output_section_to_nonload(os, seg_flags);
2075 break;
2076 }
2077 }
2078
2079 if (p == this->segment_list_.end())
2080 {
2081 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2082 seg_flags);
2083 oseg->add_output_section_to_nonload(os, seg_flags);
2084 }
2085 }
2086
2087 // If we see a loadable SHF_TLS section, we create a PT_TLS
2088 // segment. There can only be one such segment.
2089 if ((flags & elfcpp::SHF_TLS) != 0)
2090 {
2091 if (this->tls_segment_ == NULL)
2092 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2093 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2094 }
2095
2096 // If -z relro is in effect, and we see a relro section, we create a
2097 // PT_GNU_RELRO segment. There can only be one such segment.
2098 if (os->is_relro() && parameters->options().relro())
2099 {
2100 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2101 if (this->relro_segment_ == NULL)
2102 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2103 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2104 }
2105
2106 // If we see a section named .interp, put it into a PT_INTERP
2107 // segment. This seems broken to me, but this is what GNU ld does,
2108 // and glibc expects it.
2109 if (strcmp(os->name(), ".interp") == 0
2110 && !this->script_options_->saw_phdrs_clause())
2111 {
2112 if (this->interp_segment_ == NULL)
2113 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2114 else
2115 gold_warning(_("multiple '.interp' sections in input files "
2116 "may cause confusing PT_INTERP segment"));
2117 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2118 }
2119 }
2120
2121 // Make an output section for a script.
2122
2123 Output_section*
2124 Layout::make_output_section_for_script(
2125 const char* name,
2126 Script_sections::Section_type section_type)
2127 {
2128 name = this->namepool_.add(name, false, NULL);
2129 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2130 if (section_type == Script_sections::ST_NOLOAD)
2131 sh_flags = 0;
2132 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2133 sh_flags, ORDER_INVALID,
2134 false);
2135 os->set_found_in_sections_clause();
2136 if (section_type == Script_sections::ST_NOLOAD)
2137 os->set_is_noload();
2138 return os;
2139 }
2140
2141 // Return the number of segments we expect to see.
2142
2143 size_t
2144 Layout::expected_segment_count() const
2145 {
2146 size_t ret = this->segment_list_.size();
2147
2148 // If we didn't see a SECTIONS clause in a linker script, we should
2149 // already have the complete list of segments. Otherwise we ask the
2150 // SECTIONS clause how many segments it expects, and add in the ones
2151 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2152
2153 if (!this->script_options_->saw_sections_clause())
2154 return ret;
2155 else
2156 {
2157 const Script_sections* ss = this->script_options_->script_sections();
2158 return ret + ss->expected_segment_count(this);
2159 }
2160 }
2161
2162 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2163 // is whether we saw a .note.GNU-stack section in the object file.
2164 // GNU_STACK_FLAGS is the section flags. The flags give the
2165 // protection required for stack memory. We record this in an
2166 // executable as a PT_GNU_STACK segment. If an object file does not
2167 // have a .note.GNU-stack segment, we must assume that it is an old
2168 // object. On some targets that will force an executable stack.
2169
2170 void
2171 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2172 const Object* obj)
2173 {
2174 if (!seen_gnu_stack)
2175 {
2176 this->input_without_gnu_stack_note_ = true;
2177 if (parameters->options().warn_execstack()
2178 && parameters->target().is_default_stack_executable())
2179 gold_warning(_("%s: missing .note.GNU-stack section"
2180 " implies executable stack"),
2181 obj->name().c_str());
2182 }
2183 else
2184 {
2185 this->input_with_gnu_stack_note_ = true;
2186 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2187 {
2188 this->input_requires_executable_stack_ = true;
2189 if (parameters->options().warn_execstack())
2190 gold_warning(_("%s: requires executable stack"),
2191 obj->name().c_str());
2192 }
2193 }
2194 }
2195
2196 // Create automatic note sections.
2197
2198 void
2199 Layout::create_notes()
2200 {
2201 this->create_gold_note();
2202 this->create_stack_segment();
2203 this->create_build_id();
2204 }
2205
2206 // Create the dynamic sections which are needed before we read the
2207 // relocs.
2208
2209 void
2210 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2211 {
2212 if (parameters->doing_static_link())
2213 return;
2214
2215 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2216 elfcpp::SHT_DYNAMIC,
2217 (elfcpp::SHF_ALLOC
2218 | elfcpp::SHF_WRITE),
2219 false, ORDER_RELRO,
2220 true, false, false);
2221
2222 // A linker script may discard .dynamic, so check for NULL.
2223 if (this->dynamic_section_ != NULL)
2224 {
2225 this->dynamic_symbol_ =
2226 symtab->define_in_output_data("_DYNAMIC", NULL,
2227 Symbol_table::PREDEFINED,
2228 this->dynamic_section_, 0, 0,
2229 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2230 elfcpp::STV_HIDDEN, 0, false, false);
2231
2232 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2233
2234 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2235 }
2236 }
2237
2238 // For each output section whose name can be represented as C symbol,
2239 // define __start and __stop symbols for the section. This is a GNU
2240 // extension.
2241
2242 void
2243 Layout::define_section_symbols(Symbol_table* symtab)
2244 {
2245 for (Section_list::const_iterator p = this->section_list_.begin();
2246 p != this->section_list_.end();
2247 ++p)
2248 {
2249 const char* const name = (*p)->name();
2250 if (is_cident(name))
2251 {
2252 const std::string name_string(name);
2253 const std::string start_name(cident_section_start_prefix
2254 + name_string);
2255 const std::string stop_name(cident_section_stop_prefix
2256 + name_string);
2257
2258 symtab->define_in_output_data(start_name.c_str(),
2259 NULL, // version
2260 Symbol_table::PREDEFINED,
2261 *p,
2262 0, // value
2263 0, // symsize
2264 elfcpp::STT_NOTYPE,
2265 elfcpp::STB_GLOBAL,
2266 elfcpp::STV_PROTECTED,
2267 0, // nonvis
2268 false, // offset_is_from_end
2269 true); // only_if_ref
2270
2271 symtab->define_in_output_data(stop_name.c_str(),
2272 NULL, // version
2273 Symbol_table::PREDEFINED,
2274 *p,
2275 0, // value
2276 0, // symsize
2277 elfcpp::STT_NOTYPE,
2278 elfcpp::STB_GLOBAL,
2279 elfcpp::STV_PROTECTED,
2280 0, // nonvis
2281 true, // offset_is_from_end
2282 true); // only_if_ref
2283 }
2284 }
2285 }
2286
2287 // Define symbols for group signatures.
2288
2289 void
2290 Layout::define_group_signatures(Symbol_table* symtab)
2291 {
2292 for (Group_signatures::iterator p = this->group_signatures_.begin();
2293 p != this->group_signatures_.end();
2294 ++p)
2295 {
2296 Symbol* sym = symtab->lookup(p->signature, NULL);
2297 if (sym != NULL)
2298 p->section->set_info_symndx(sym);
2299 else
2300 {
2301 // Force the name of the group section to the group
2302 // signature, and use the group's section symbol as the
2303 // signature symbol.
2304 if (strcmp(p->section->name(), p->signature) != 0)
2305 {
2306 const char* name = this->namepool_.add(p->signature,
2307 true, NULL);
2308 p->section->set_name(name);
2309 }
2310 p->section->set_needs_symtab_index();
2311 p->section->set_info_section_symndx(p->section);
2312 }
2313 }
2314
2315 this->group_signatures_.clear();
2316 }
2317
2318 // Find the first read-only PT_LOAD segment, creating one if
2319 // necessary.
2320
2321 Output_segment*
2322 Layout::find_first_load_seg(const Target* target)
2323 {
2324 Output_segment* best = NULL;
2325 for (Segment_list::const_iterator p = this->segment_list_.begin();
2326 p != this->segment_list_.end();
2327 ++p)
2328 {
2329 if ((*p)->type() == elfcpp::PT_LOAD
2330 && ((*p)->flags() & elfcpp::PF_R) != 0
2331 && (parameters->options().omagic()
2332 || ((*p)->flags() & elfcpp::PF_W) == 0)
2333 && (!target->isolate_execinstr()
2334 || ((*p)->flags() & elfcpp::PF_X) == 0))
2335 {
2336 if (best == NULL || this->segment_precedes(*p, best))
2337 best = *p;
2338 }
2339 }
2340 if (best != NULL)
2341 return best;
2342
2343 gold_assert(!this->script_options_->saw_phdrs_clause());
2344
2345 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2346 elfcpp::PF_R);
2347 return load_seg;
2348 }
2349
2350 // Save states of all current output segments. Store saved states
2351 // in SEGMENT_STATES.
2352
2353 void
2354 Layout::save_segments(Segment_states* segment_states)
2355 {
2356 for (Segment_list::const_iterator p = this->segment_list_.begin();
2357 p != this->segment_list_.end();
2358 ++p)
2359 {
2360 Output_segment* segment = *p;
2361 // Shallow copy.
2362 Output_segment* copy = new Output_segment(*segment);
2363 (*segment_states)[segment] = copy;
2364 }
2365 }
2366
2367 // Restore states of output segments and delete any segment not found in
2368 // SEGMENT_STATES.
2369
2370 void
2371 Layout::restore_segments(const Segment_states* segment_states)
2372 {
2373 // Go through the segment list and remove any segment added in the
2374 // relaxation loop.
2375 this->tls_segment_ = NULL;
2376 this->relro_segment_ = NULL;
2377 Segment_list::iterator list_iter = this->segment_list_.begin();
2378 while (list_iter != this->segment_list_.end())
2379 {
2380 Output_segment* segment = *list_iter;
2381 Segment_states::const_iterator states_iter =
2382 segment_states->find(segment);
2383 if (states_iter != segment_states->end())
2384 {
2385 const Output_segment* copy = states_iter->second;
2386 // Shallow copy to restore states.
2387 *segment = *copy;
2388
2389 // Also fix up TLS and RELRO segment pointers as appropriate.
2390 if (segment->type() == elfcpp::PT_TLS)
2391 this->tls_segment_ = segment;
2392 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2393 this->relro_segment_ = segment;
2394
2395 ++list_iter;
2396 }
2397 else
2398 {
2399 list_iter = this->segment_list_.erase(list_iter);
2400 // This is a segment created during section layout. It should be
2401 // safe to remove it since we should have removed all pointers to it.
2402 delete segment;
2403 }
2404 }
2405 }
2406
2407 // Clean up after relaxation so that sections can be laid out again.
2408
2409 void
2410 Layout::clean_up_after_relaxation()
2411 {
2412 // Restore the segments to point state just prior to the relaxation loop.
2413 Script_sections* script_section = this->script_options_->script_sections();
2414 script_section->release_segments();
2415 this->restore_segments(this->segment_states_);
2416
2417 // Reset section addresses and file offsets
2418 for (Section_list::iterator p = this->section_list_.begin();
2419 p != this->section_list_.end();
2420 ++p)
2421 {
2422 (*p)->restore_states();
2423
2424 // If an input section changes size because of relaxation,
2425 // we need to adjust the section offsets of all input sections.
2426 // after such a section.
2427 if ((*p)->section_offsets_need_adjustment())
2428 (*p)->adjust_section_offsets();
2429
2430 (*p)->reset_address_and_file_offset();
2431 }
2432
2433 // Reset special output object address and file offsets.
2434 for (Data_list::iterator p = this->special_output_list_.begin();
2435 p != this->special_output_list_.end();
2436 ++p)
2437 (*p)->reset_address_and_file_offset();
2438
2439 // A linker script may have created some output section data objects.
2440 // They are useless now.
2441 for (Output_section_data_list::const_iterator p =
2442 this->script_output_section_data_list_.begin();
2443 p != this->script_output_section_data_list_.end();
2444 ++p)
2445 delete *p;
2446 this->script_output_section_data_list_.clear();
2447
2448 // Special-case fill output objects are recreated each time through
2449 // the relaxation loop.
2450 this->reset_relax_output();
2451 }
2452
2453 void
2454 Layout::reset_relax_output()
2455 {
2456 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2457 p != this->relax_output_list_.end();
2458 ++p)
2459 delete *p;
2460 this->relax_output_list_.clear();
2461 }
2462
2463 // Prepare for relaxation.
2464
2465 void
2466 Layout::prepare_for_relaxation()
2467 {
2468 // Create an relaxation debug check if in debugging mode.
2469 if (is_debugging_enabled(DEBUG_RELAXATION))
2470 this->relaxation_debug_check_ = new Relaxation_debug_check();
2471
2472 // Save segment states.
2473 this->segment_states_ = new Segment_states();
2474 this->save_segments(this->segment_states_);
2475
2476 for(Section_list::const_iterator p = this->section_list_.begin();
2477 p != this->section_list_.end();
2478 ++p)
2479 (*p)->save_states();
2480
2481 if (is_debugging_enabled(DEBUG_RELAXATION))
2482 this->relaxation_debug_check_->check_output_data_for_reset_values(
2483 this->section_list_, this->special_output_list_,
2484 this->relax_output_list_);
2485
2486 // Also enable recording of output section data from scripts.
2487 this->record_output_section_data_from_script_ = true;
2488 }
2489
2490 // If the user set the address of the text segment, that may not be
2491 // compatible with putting the segment headers and file headers into
2492 // that segment. For isolate_execinstr() targets, it's the rodata
2493 // segment rather than text where we might put the headers.
2494 static inline bool
2495 load_seg_unusable_for_headers(const Target* target)
2496 {
2497 const General_options& options = parameters->options();
2498 if (target->isolate_execinstr())
2499 return (options.user_set_Trodata_segment()
2500 && options.Trodata_segment() % target->abi_pagesize() != 0);
2501 else
2502 return (options.user_set_Ttext()
2503 && options.Ttext() % target->abi_pagesize() != 0);
2504 }
2505
2506 // Relaxation loop body: If target has no relaxation, this runs only once
2507 // Otherwise, the target relaxation hook is called at the end of
2508 // each iteration. If the hook returns true, it means re-layout of
2509 // section is required.
2510 //
2511 // The number of segments created by a linking script without a PHDRS
2512 // clause may be affected by section sizes and alignments. There is
2513 // a remote chance that relaxation causes different number of PT_LOAD
2514 // segments are created and sections are attached to different segments.
2515 // Therefore, we always throw away all segments created during section
2516 // layout. In order to be able to restart the section layout, we keep
2517 // a copy of the segment list right before the relaxation loop and use
2518 // that to restore the segments.
2519 //
2520 // PASS is the current relaxation pass number.
2521 // SYMTAB is a symbol table.
2522 // PLOAD_SEG is the address of a pointer for the load segment.
2523 // PHDR_SEG is a pointer to the PHDR segment.
2524 // SEGMENT_HEADERS points to the output segment header.
2525 // FILE_HEADER points to the output file header.
2526 // PSHNDX is the address to store the output section index.
2527
2528 off_t inline
2529 Layout::relaxation_loop_body(
2530 int pass,
2531 Target* target,
2532 Symbol_table* symtab,
2533 Output_segment** pload_seg,
2534 Output_segment* phdr_seg,
2535 Output_segment_headers* segment_headers,
2536 Output_file_header* file_header,
2537 unsigned int* pshndx)
2538 {
2539 // If this is not the first iteration, we need to clean up after
2540 // relaxation so that we can lay out the sections again.
2541 if (pass != 0)
2542 this->clean_up_after_relaxation();
2543
2544 // If there is a SECTIONS clause, put all the input sections into
2545 // the required order.
2546 Output_segment* load_seg;
2547 if (this->script_options_->saw_sections_clause())
2548 load_seg = this->set_section_addresses_from_script(symtab);
2549 else if (parameters->options().relocatable())
2550 load_seg = NULL;
2551 else
2552 load_seg = this->find_first_load_seg(target);
2553
2554 if (parameters->options().oformat_enum()
2555 != General_options::OBJECT_FORMAT_ELF)
2556 load_seg = NULL;
2557
2558 if (load_seg_unusable_for_headers(target))
2559 {
2560 load_seg = NULL;
2561 phdr_seg = NULL;
2562 }
2563
2564 gold_assert(phdr_seg == NULL
2565 || load_seg != NULL
2566 || this->script_options_->saw_sections_clause());
2567
2568 // If the address of the load segment we found has been set by
2569 // --section-start rather than by a script, then adjust the VMA and
2570 // LMA downward if possible to include the file and section headers.
2571 uint64_t header_gap = 0;
2572 if (load_seg != NULL
2573 && load_seg->are_addresses_set()
2574 && !this->script_options_->saw_sections_clause()
2575 && !parameters->options().relocatable())
2576 {
2577 file_header->finalize_data_size();
2578 segment_headers->finalize_data_size();
2579 size_t sizeof_headers = (file_header->data_size()
2580 + segment_headers->data_size());
2581 const uint64_t abi_pagesize = target->abi_pagesize();
2582 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2583 hdr_paddr &= ~(abi_pagesize - 1);
2584 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2585 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2586 load_seg = NULL;
2587 else
2588 {
2589 load_seg->set_addresses(load_seg->vaddr() - subtract,
2590 load_seg->paddr() - subtract);
2591 header_gap = subtract - sizeof_headers;
2592 }
2593 }
2594
2595 // Lay out the segment headers.
2596 if (!parameters->options().relocatable())
2597 {
2598 gold_assert(segment_headers != NULL);
2599 if (header_gap != 0 && load_seg != NULL)
2600 {
2601 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2602 load_seg->add_initial_output_data(z);
2603 }
2604 if (load_seg != NULL)
2605 load_seg->add_initial_output_data(segment_headers);
2606 if (phdr_seg != NULL)
2607 phdr_seg->add_initial_output_data(segment_headers);
2608 }
2609
2610 // Lay out the file header.
2611 if (load_seg != NULL)
2612 load_seg->add_initial_output_data(file_header);
2613
2614 if (this->script_options_->saw_phdrs_clause()
2615 && !parameters->options().relocatable())
2616 {
2617 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2618 // clause in a linker script.
2619 Script_sections* ss = this->script_options_->script_sections();
2620 ss->put_headers_in_phdrs(file_header, segment_headers);
2621 }
2622
2623 // We set the output section indexes in set_segment_offsets and
2624 // set_section_indexes.
2625 *pshndx = 1;
2626
2627 // Set the file offsets of all the segments, and all the sections
2628 // they contain.
2629 off_t off;
2630 if (!parameters->options().relocatable())
2631 off = this->set_segment_offsets(target, load_seg, pshndx);
2632 else
2633 off = this->set_relocatable_section_offsets(file_header, pshndx);
2634
2635 // Verify that the dummy relaxation does not change anything.
2636 if (is_debugging_enabled(DEBUG_RELAXATION))
2637 {
2638 if (pass == 0)
2639 this->relaxation_debug_check_->read_sections(this->section_list_);
2640 else
2641 this->relaxation_debug_check_->verify_sections(this->section_list_);
2642 }
2643
2644 *pload_seg = load_seg;
2645 return off;
2646 }
2647
2648 // Search the list of patterns and find the position of the given section
2649 // name in the output section. If the section name matches a glob
2650 // pattern and a non-glob name, then the non-glob position takes
2651 // precedence. Return 0 if no match is found.
2652
2653 unsigned int
2654 Layout::find_section_order_index(const std::string& section_name)
2655 {
2656 Unordered_map<std::string, unsigned int>::iterator map_it;
2657 map_it = this->input_section_position_.find(section_name);
2658 if (map_it != this->input_section_position_.end())
2659 return map_it->second;
2660
2661 // Absolute match failed. Linear search the glob patterns.
2662 std::vector<std::string>::iterator it;
2663 for (it = this->input_section_glob_.begin();
2664 it != this->input_section_glob_.end();
2665 ++it)
2666 {
2667 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2668 {
2669 map_it = this->input_section_position_.find(*it);
2670 gold_assert(map_it != this->input_section_position_.end());
2671 return map_it->second;
2672 }
2673 }
2674 return 0;
2675 }
2676
2677 // Read the sequence of input sections from the file specified with
2678 // option --section-ordering-file.
2679
2680 void
2681 Layout::read_layout_from_file()
2682 {
2683 const char* filename = parameters->options().section_ordering_file();
2684 std::ifstream in;
2685 std::string line;
2686
2687 in.open(filename);
2688 if (!in)
2689 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2690 filename, strerror(errno));
2691
2692 std::getline(in, line); // this chops off the trailing \n, if any
2693 unsigned int position = 1;
2694 this->set_section_ordering_specified();
2695
2696 while (in)
2697 {
2698 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2699 line.resize(line.length() - 1);
2700 // Ignore comments, beginning with '#'
2701 if (line[0] == '#')
2702 {
2703 std::getline(in, line);
2704 continue;
2705 }
2706 this->input_section_position_[line] = position;
2707 // Store all glob patterns in a vector.
2708 if (is_wildcard_string(line.c_str()))
2709 this->input_section_glob_.push_back(line);
2710 position++;
2711 std::getline(in, line);
2712 }
2713 }
2714
2715 // Finalize the layout. When this is called, we have created all the
2716 // output sections and all the output segments which are based on
2717 // input sections. We have several things to do, and we have to do
2718 // them in the right order, so that we get the right results correctly
2719 // and efficiently.
2720
2721 // 1) Finalize the list of output segments and create the segment
2722 // table header.
2723
2724 // 2) Finalize the dynamic symbol table and associated sections.
2725
2726 // 3) Determine the final file offset of all the output segments.
2727
2728 // 4) Determine the final file offset of all the SHF_ALLOC output
2729 // sections.
2730
2731 // 5) Create the symbol table sections and the section name table
2732 // section.
2733
2734 // 6) Finalize the symbol table: set symbol values to their final
2735 // value and make a final determination of which symbols are going
2736 // into the output symbol table.
2737
2738 // 7) Create the section table header.
2739
2740 // 8) Determine the final file offset of all the output sections which
2741 // are not SHF_ALLOC, including the section table header.
2742
2743 // 9) Finalize the ELF file header.
2744
2745 // This function returns the size of the output file.
2746
2747 off_t
2748 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2749 Target* target, const Task* task)
2750 {
2751 unsigned int local_dynamic_count = 0;
2752 unsigned int forced_local_dynamic_count = 0;
2753
2754 target->finalize_sections(this, input_objects, symtab);
2755
2756 this->count_local_symbols(task, input_objects);
2757
2758 this->link_stabs_sections();
2759
2760 Output_segment* phdr_seg = NULL;
2761 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2762 {
2763 // There was a dynamic object in the link. We need to create
2764 // some information for the dynamic linker.
2765
2766 // Create the PT_PHDR segment which will hold the program
2767 // headers.
2768 if (!this->script_options_->saw_phdrs_clause())
2769 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2770
2771 // Create the dynamic symbol table, including the hash table.
2772 Output_section* dynstr;
2773 std::vector<Symbol*> dynamic_symbols;
2774 Versions versions(*this->script_options()->version_script_info(),
2775 &this->dynpool_);
2776 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2777 &local_dynamic_count,
2778 &forced_local_dynamic_count,
2779 &dynamic_symbols,
2780 &versions);
2781
2782 // Create the .interp section to hold the name of the
2783 // interpreter, and put it in a PT_INTERP segment. Don't do it
2784 // if we saw a .interp section in an input file.
2785 if ((!parameters->options().shared()
2786 || parameters->options().dynamic_linker() != NULL)
2787 && this->interp_segment_ == NULL)
2788 this->create_interp(target);
2789
2790 // Finish the .dynamic section to hold the dynamic data, and put
2791 // it in a PT_DYNAMIC segment.
2792 this->finish_dynamic_section(input_objects, symtab);
2793
2794 // We should have added everything we need to the dynamic string
2795 // table.
2796 this->dynpool_.set_string_offsets();
2797
2798 // Create the version sections. We can't do this until the
2799 // dynamic string table is complete.
2800 this->create_version_sections(&versions, symtab,
2801 (local_dynamic_count
2802 + forced_local_dynamic_count),
2803 dynamic_symbols, dynstr);
2804
2805 // Set the size of the _DYNAMIC symbol. We can't do this until
2806 // after we call create_version_sections.
2807 this->set_dynamic_symbol_size(symtab);
2808 }
2809
2810 // Create segment headers.
2811 Output_segment_headers* segment_headers =
2812 (parameters->options().relocatable()
2813 ? NULL
2814 : new Output_segment_headers(this->segment_list_));
2815
2816 // Lay out the file header.
2817 Output_file_header* file_header = new Output_file_header(target, symtab,
2818 segment_headers);
2819
2820 this->special_output_list_.push_back(file_header);
2821 if (segment_headers != NULL)
2822 this->special_output_list_.push_back(segment_headers);
2823
2824 // Find approriate places for orphan output sections if we are using
2825 // a linker script.
2826 if (this->script_options_->saw_sections_clause())
2827 this->place_orphan_sections_in_script();
2828
2829 Output_segment* load_seg;
2830 off_t off;
2831 unsigned int shndx;
2832 int pass = 0;
2833
2834 // Take a snapshot of the section layout as needed.
2835 if (target->may_relax())
2836 this->prepare_for_relaxation();
2837
2838 // Run the relaxation loop to lay out sections.
2839 do
2840 {
2841 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2842 phdr_seg, segment_headers, file_header,
2843 &shndx);
2844 pass++;
2845 }
2846 while (target->may_relax()
2847 && target->relax(pass, input_objects, symtab, this, task));
2848
2849 // If there is a load segment that contains the file and program headers,
2850 // provide a symbol __ehdr_start pointing there.
2851 // A program can use this to examine itself robustly.
2852 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2853 if (ehdr_start != NULL && ehdr_start->is_predefined())
2854 {
2855 if (load_seg != NULL)
2856 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2857 else
2858 ehdr_start->set_undefined();
2859 }
2860
2861 // Set the file offsets of all the non-data sections we've seen so
2862 // far which don't have to wait for the input sections. We need
2863 // this in order to finalize local symbols in non-allocated
2864 // sections.
2865 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2866
2867 // Set the section indexes of all unallocated sections seen so far,
2868 // in case any of them are somehow referenced by a symbol.
2869 shndx = this->set_section_indexes(shndx);
2870
2871 // Create the symbol table sections.
2872 this->create_symtab_sections(input_objects, symtab, shndx, &off,
2873 local_dynamic_count);
2874 if (!parameters->doing_static_link())
2875 this->assign_local_dynsym_offsets(input_objects);
2876
2877 // Process any symbol assignments from a linker script. This must
2878 // be called after the symbol table has been finalized.
2879 this->script_options_->finalize_symbols(symtab, this);
2880
2881 // Create the incremental inputs sections.
2882 if (this->incremental_inputs_)
2883 {
2884 this->incremental_inputs_->finalize();
2885 this->create_incremental_info_sections(symtab);
2886 }
2887
2888 // Create the .shstrtab section.
2889 Output_section* shstrtab_section = this->create_shstrtab();
2890
2891 // Set the file offsets of the rest of the non-data sections which
2892 // don't have to wait for the input sections.
2893 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2894
2895 // Now that all sections have been created, set the section indexes
2896 // for any sections which haven't been done yet.
2897 shndx = this->set_section_indexes(shndx);
2898
2899 // Create the section table header.
2900 this->create_shdrs(shstrtab_section, &off);
2901
2902 // If there are no sections which require postprocessing, we can
2903 // handle the section names now, and avoid a resize later.
2904 if (!this->any_postprocessing_sections_)
2905 {
2906 off = this->set_section_offsets(off,
2907 POSTPROCESSING_SECTIONS_PASS);
2908 off =
2909 this->set_section_offsets(off,
2910 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2911 }
2912
2913 file_header->set_section_info(this->section_headers_, shstrtab_section);
2914
2915 // Now we know exactly where everything goes in the output file
2916 // (except for non-allocated sections which require postprocessing).
2917 Output_data::layout_complete();
2918
2919 this->output_file_size_ = off;
2920
2921 return off;
2922 }
2923
2924 // Create a note header following the format defined in the ELF ABI.
2925 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2926 // of the section to create, DESCSZ is the size of the descriptor.
2927 // ALLOCATE is true if the section should be allocated in memory.
2928 // This returns the new note section. It sets *TRAILING_PADDING to
2929 // the number of trailing zero bytes required.
2930
2931 Output_section*
2932 Layout::create_note(const char* name, int note_type,
2933 const char* section_name, size_t descsz,
2934 bool allocate, size_t* trailing_padding)
2935 {
2936 // Authorities all agree that the values in a .note field should
2937 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2938 // they differ on what the alignment is for 64-bit binaries.
2939 // The GABI says unambiguously they take 8-byte alignment:
2940 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2941 // Other documentation says alignment should always be 4 bytes:
2942 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2943 // GNU ld and GNU readelf both support the latter (at least as of
2944 // version 2.16.91), and glibc always generates the latter for
2945 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2946 // here.
2947 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2948 const int size = parameters->target().get_size();
2949 #else
2950 const int size = 32;
2951 #endif
2952
2953 // The contents of the .note section.
2954 size_t namesz = strlen(name) + 1;
2955 size_t aligned_namesz = align_address(namesz, size / 8);
2956 size_t aligned_descsz = align_address(descsz, size / 8);
2957
2958 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2959
2960 unsigned char* buffer = new unsigned char[notehdrsz];
2961 memset(buffer, 0, notehdrsz);
2962
2963 bool is_big_endian = parameters->target().is_big_endian();
2964
2965 if (size == 32)
2966 {
2967 if (!is_big_endian)
2968 {
2969 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2970 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2971 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2972 }
2973 else
2974 {
2975 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2976 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2977 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2978 }
2979 }
2980 else if (size == 64)
2981 {
2982 if (!is_big_endian)
2983 {
2984 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2985 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2986 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2987 }
2988 else
2989 {
2990 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2991 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2992 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2993 }
2994 }
2995 else
2996 gold_unreachable();
2997
2998 memcpy(buffer + 3 * (size / 8), name, namesz);
2999
3000 elfcpp::Elf_Xword flags = 0;
3001 Output_section_order order = ORDER_INVALID;
3002 if (allocate)
3003 {
3004 flags = elfcpp::SHF_ALLOC;
3005 order = ORDER_RO_NOTE;
3006 }
3007 Output_section* os = this->choose_output_section(NULL, section_name,
3008 elfcpp::SHT_NOTE,
3009 flags, false, order, false,
3010 false, true);
3011 if (os == NULL)
3012 return NULL;
3013
3014 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3015 size / 8,
3016 "** note header");
3017 os->add_output_section_data(posd);
3018
3019 *trailing_padding = aligned_descsz - descsz;
3020
3021 return os;
3022 }
3023
3024 // For an executable or shared library, create a note to record the
3025 // version of gold used to create the binary.
3026
3027 void
3028 Layout::create_gold_note()
3029 {
3030 if (parameters->options().relocatable()
3031 || parameters->incremental_update())
3032 return;
3033
3034 std::string desc = std::string("gold ") + gold::get_version_string();
3035
3036 size_t trailing_padding;
3037 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3038 ".note.gnu.gold-version", desc.size(),
3039 false, &trailing_padding);
3040 if (os == NULL)
3041 return;
3042
3043 Output_section_data* posd = new Output_data_const(desc, 4);
3044 os->add_output_section_data(posd);
3045
3046 if (trailing_padding > 0)
3047 {
3048 posd = new Output_data_zero_fill(trailing_padding, 0);
3049 os->add_output_section_data(posd);
3050 }
3051 }
3052
3053 // Record whether the stack should be executable. This can be set
3054 // from the command line using the -z execstack or -z noexecstack
3055 // options. Otherwise, if any input file has a .note.GNU-stack
3056 // section with the SHF_EXECINSTR flag set, the stack should be
3057 // executable. Otherwise, if at least one input file a
3058 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3059 // section, we use the target default for whether the stack should be
3060 // executable. If -z stack-size was used to set a p_memsz value for
3061 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3062 // don't generate a stack note. When generating a object file, we
3063 // create a .note.GNU-stack section with the appropriate marking.
3064 // When generating an executable or shared library, we create a
3065 // PT_GNU_STACK segment.
3066
3067 void
3068 Layout::create_stack_segment()
3069 {
3070 bool is_stack_executable;
3071 if (parameters->options().is_execstack_set())
3072 {
3073 is_stack_executable = parameters->options().is_stack_executable();
3074 if (!is_stack_executable
3075 && this->input_requires_executable_stack_
3076 && parameters->options().warn_execstack())
3077 gold_warning(_("one or more inputs require executable stack, "
3078 "but -z noexecstack was given"));
3079 }
3080 else if (!this->input_with_gnu_stack_note_
3081 && (!parameters->options().user_set_stack_size()
3082 || parameters->options().relocatable()))
3083 return;
3084 else
3085 {
3086 if (this->input_requires_executable_stack_)
3087 is_stack_executable = true;
3088 else if (this->input_without_gnu_stack_note_)
3089 is_stack_executable =
3090 parameters->target().is_default_stack_executable();
3091 else
3092 is_stack_executable = false;
3093 }
3094
3095 if (parameters->options().relocatable())
3096 {
3097 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3098 elfcpp::Elf_Xword flags = 0;
3099 if (is_stack_executable)
3100 flags |= elfcpp::SHF_EXECINSTR;
3101 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3102 ORDER_INVALID, false);
3103 }
3104 else
3105 {
3106 if (this->script_options_->saw_phdrs_clause())
3107 return;
3108 int flags = elfcpp::PF_R | elfcpp::PF_W;
3109 if (is_stack_executable)
3110 flags |= elfcpp::PF_X;
3111 Output_segment* seg =
3112 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3113 seg->set_size(parameters->options().stack_size());
3114 // BFD lets targets override this default alignment, but the only
3115 // targets that do so are ones that Gold does not support so far.
3116 seg->set_minimum_p_align(16);
3117 }
3118 }
3119
3120 // If --build-id was used, set up the build ID note.
3121
3122 void
3123 Layout::create_build_id()
3124 {
3125 if (!parameters->options().user_set_build_id())
3126 return;
3127
3128 const char* style = parameters->options().build_id();
3129 if (strcmp(style, "none") == 0)
3130 return;
3131
3132 // Set DESCSZ to the size of the note descriptor. When possible,
3133 // set DESC to the note descriptor contents.
3134 size_t descsz;
3135 std::string desc;
3136 if (strcmp(style, "md5") == 0)
3137 descsz = 128 / 8;
3138 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3139 descsz = 160 / 8;
3140 else if (strcmp(style, "uuid") == 0)
3141 {
3142 #ifndef __MINGW32__
3143 const size_t uuidsz = 128 / 8;
3144
3145 char buffer[uuidsz];
3146 memset(buffer, 0, uuidsz);
3147
3148 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3149 if (descriptor < 0)
3150 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3151 strerror(errno));
3152 else
3153 {
3154 ssize_t got = ::read(descriptor, buffer, uuidsz);
3155 release_descriptor(descriptor, true);
3156 if (got < 0)
3157 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3158 else if (static_cast<size_t>(got) != uuidsz)
3159 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3160 uuidsz, got);
3161 }
3162
3163 desc.assign(buffer, uuidsz);
3164 descsz = uuidsz;
3165 #else // __MINGW32__
3166 UUID uuid;
3167 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3168
3169 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3170 if (!rpc_library)
3171 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3172 else
3173 {
3174 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3175 GetProcAddress(rpc_library, "UuidCreate"));
3176 if (!uuid_create)
3177 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3178 else if (uuid_create(&uuid) != RPC_S_OK)
3179 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3180 FreeLibrary(rpc_library);
3181 }
3182 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3183 descsz = sizeof(UUID);
3184 #endif // __MINGW32__
3185 }
3186 else if (strncmp(style, "0x", 2) == 0)
3187 {
3188 hex_init();
3189 const char* p = style + 2;
3190 while (*p != '\0')
3191 {
3192 if (hex_p(p[0]) && hex_p(p[1]))
3193 {
3194 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3195 desc += c;
3196 p += 2;
3197 }
3198 else if (*p == '-' || *p == ':')
3199 ++p;
3200 else
3201 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3202 style);
3203 }
3204 descsz = desc.size();
3205 }
3206 else
3207 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3208
3209 // Create the note.
3210 size_t trailing_padding;
3211 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3212 ".note.gnu.build-id", descsz, true,
3213 &trailing_padding);
3214 if (os == NULL)
3215 return;
3216
3217 if (!desc.empty())
3218 {
3219 // We know the value already, so we fill it in now.
3220 gold_assert(desc.size() == descsz);
3221
3222 Output_section_data* posd = new Output_data_const(desc, 4);
3223 os->add_output_section_data(posd);
3224
3225 if (trailing_padding != 0)
3226 {
3227 posd = new Output_data_zero_fill(trailing_padding, 0);
3228 os->add_output_section_data(posd);
3229 }
3230 }
3231 else
3232 {
3233 // We need to compute a checksum after we have completed the
3234 // link.
3235 gold_assert(trailing_padding == 0);
3236 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3237 os->add_output_section_data(this->build_id_note_);
3238 }
3239 }
3240
3241 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3242 // field of the former should point to the latter. I'm not sure who
3243 // started this, but the GNU linker does it, and some tools depend
3244 // upon it.
3245
3246 void
3247 Layout::link_stabs_sections()
3248 {
3249 if (!this->have_stabstr_section_)
3250 return;
3251
3252 for (Section_list::iterator p = this->section_list_.begin();
3253 p != this->section_list_.end();
3254 ++p)
3255 {
3256 if ((*p)->type() != elfcpp::SHT_STRTAB)
3257 continue;
3258
3259 const char* name = (*p)->name();
3260 if (strncmp(name, ".stab", 5) != 0)
3261 continue;
3262
3263 size_t len = strlen(name);
3264 if (strcmp(name + len - 3, "str") != 0)
3265 continue;
3266
3267 std::string stab_name(name, len - 3);
3268 Output_section* stab_sec;
3269 stab_sec = this->find_output_section(stab_name.c_str());
3270 if (stab_sec != NULL)
3271 stab_sec->set_link_section(*p);
3272 }
3273 }
3274
3275 // Create .gnu_incremental_inputs and related sections needed
3276 // for the next run of incremental linking to check what has changed.
3277
3278 void
3279 Layout::create_incremental_info_sections(Symbol_table* symtab)
3280 {
3281 Incremental_inputs* incr = this->incremental_inputs_;
3282
3283 gold_assert(incr != NULL);
3284
3285 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3286 incr->create_data_sections(symtab);
3287
3288 // Add the .gnu_incremental_inputs section.
3289 const char* incremental_inputs_name =
3290 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3291 Output_section* incremental_inputs_os =
3292 this->make_output_section(incremental_inputs_name,
3293 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3294 ORDER_INVALID, false);
3295 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3296
3297 // Add the .gnu_incremental_symtab section.
3298 const char* incremental_symtab_name =
3299 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3300 Output_section* incremental_symtab_os =
3301 this->make_output_section(incremental_symtab_name,
3302 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3303 ORDER_INVALID, false);
3304 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3305 incremental_symtab_os->set_entsize(4);
3306
3307 // Add the .gnu_incremental_relocs section.
3308 const char* incremental_relocs_name =
3309 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3310 Output_section* incremental_relocs_os =
3311 this->make_output_section(incremental_relocs_name,
3312 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3313 ORDER_INVALID, false);
3314 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3315 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3316
3317 // Add the .gnu_incremental_got_plt section.
3318 const char* incremental_got_plt_name =
3319 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3320 Output_section* incremental_got_plt_os =
3321 this->make_output_section(incremental_got_plt_name,
3322 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3323 ORDER_INVALID, false);
3324 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3325
3326 // Add the .gnu_incremental_strtab section.
3327 const char* incremental_strtab_name =
3328 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3329 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3330 elfcpp::SHT_STRTAB, 0,
3331 ORDER_INVALID, false);
3332 Output_data_strtab* strtab_data =
3333 new Output_data_strtab(incr->get_stringpool());
3334 incremental_strtab_os->add_output_section_data(strtab_data);
3335
3336 incremental_inputs_os->set_after_input_sections();
3337 incremental_symtab_os->set_after_input_sections();
3338 incremental_relocs_os->set_after_input_sections();
3339 incremental_got_plt_os->set_after_input_sections();
3340
3341 incremental_inputs_os->set_link_section(incremental_strtab_os);
3342 incremental_symtab_os->set_link_section(incremental_inputs_os);
3343 incremental_relocs_os->set_link_section(incremental_inputs_os);
3344 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3345 }
3346
3347 // Return whether SEG1 should be before SEG2 in the output file. This
3348 // is based entirely on the segment type and flags. When this is
3349 // called the segment addresses have normally not yet been set.
3350
3351 bool
3352 Layout::segment_precedes(const Output_segment* seg1,
3353 const Output_segment* seg2)
3354 {
3355 // In order to produce a stable ordering if we're called with the same pointer
3356 // return false.
3357 if (seg1 == seg2)
3358 return false;
3359
3360 elfcpp::Elf_Word type1 = seg1->type();
3361 elfcpp::Elf_Word type2 = seg2->type();
3362
3363 // The single PT_PHDR segment is required to precede any loadable
3364 // segment. We simply make it always first.
3365 if (type1 == elfcpp::PT_PHDR)
3366 {
3367 gold_assert(type2 != elfcpp::PT_PHDR);
3368 return true;
3369 }
3370 if (type2 == elfcpp::PT_PHDR)
3371 return false;
3372
3373 // The single PT_INTERP segment is required to precede any loadable
3374 // segment. We simply make it always second.
3375 if (type1 == elfcpp::PT_INTERP)
3376 {
3377 gold_assert(type2 != elfcpp::PT_INTERP);
3378 return true;
3379 }
3380 if (type2 == elfcpp::PT_INTERP)
3381 return false;
3382
3383 // We then put PT_LOAD segments before any other segments.
3384 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3385 return true;
3386 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3387 return false;
3388
3389 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3390 // segment, because that is where the dynamic linker expects to find
3391 // it (this is just for efficiency; other positions would also work
3392 // correctly).
3393 if (type1 == elfcpp::PT_TLS
3394 && type2 != elfcpp::PT_TLS
3395 && type2 != elfcpp::PT_GNU_RELRO)
3396 return false;
3397 if (type2 == elfcpp::PT_TLS
3398 && type1 != elfcpp::PT_TLS
3399 && type1 != elfcpp::PT_GNU_RELRO)
3400 return true;
3401
3402 // We put the PT_GNU_RELRO segment last, because that is where the
3403 // dynamic linker expects to find it (as with PT_TLS, this is just
3404 // for efficiency).
3405 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3406 return false;
3407 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3408 return true;
3409
3410 const elfcpp::Elf_Word flags1 = seg1->flags();
3411 const elfcpp::Elf_Word flags2 = seg2->flags();
3412
3413 // The order of non-PT_LOAD segments is unimportant. We simply sort
3414 // by the numeric segment type and flags values. There should not
3415 // be more than one segment with the same type and flags, except
3416 // when a linker script specifies such.
3417 if (type1 != elfcpp::PT_LOAD)
3418 {
3419 if (type1 != type2)
3420 return type1 < type2;
3421 gold_assert(flags1 != flags2
3422 || this->script_options_->saw_phdrs_clause());
3423 return flags1 < flags2;
3424 }
3425
3426 // If the addresses are set already, sort by load address.
3427 if (seg1->are_addresses_set())
3428 {
3429 if (!seg2->are_addresses_set())
3430 return true;
3431
3432 unsigned int section_count1 = seg1->output_section_count();
3433 unsigned int section_count2 = seg2->output_section_count();
3434 if (section_count1 == 0 && section_count2 > 0)
3435 return true;
3436 if (section_count1 > 0 && section_count2 == 0)
3437 return false;
3438
3439 uint64_t paddr1 = (seg1->are_addresses_set()
3440 ? seg1->paddr()
3441 : seg1->first_section_load_address());
3442 uint64_t paddr2 = (seg2->are_addresses_set()
3443 ? seg2->paddr()
3444 : seg2->first_section_load_address());
3445
3446 if (paddr1 != paddr2)
3447 return paddr1 < paddr2;
3448 }
3449 else if (seg2->are_addresses_set())
3450 return false;
3451
3452 // A segment which holds large data comes after a segment which does
3453 // not hold large data.
3454 if (seg1->is_large_data_segment())
3455 {
3456 if (!seg2->is_large_data_segment())
3457 return false;
3458 }
3459 else if (seg2->is_large_data_segment())
3460 return true;
3461
3462 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3463 // segments come before writable segments. Then writable segments
3464 // with data come before writable segments without data. Then
3465 // executable segments come before non-executable segments. Then
3466 // the unlikely case of a non-readable segment comes before the
3467 // normal case of a readable segment. If there are multiple
3468 // segments with the same type and flags, we require that the
3469 // address be set, and we sort by virtual address and then physical
3470 // address.
3471 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3472 return (flags1 & elfcpp::PF_W) == 0;
3473 if ((flags1 & elfcpp::PF_W) != 0
3474 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3475 return seg1->has_any_data_sections();
3476 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3477 return (flags1 & elfcpp::PF_X) != 0;
3478 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3479 return (flags1 & elfcpp::PF_R) == 0;
3480
3481 // We shouldn't get here--we shouldn't create segments which we
3482 // can't distinguish. Unless of course we are using a weird linker
3483 // script or overlapping --section-start options. We could also get
3484 // here if plugins want unique segments for subsets of sections.
3485 gold_assert(this->script_options_->saw_phdrs_clause()
3486 || parameters->options().any_section_start()
3487 || this->is_unique_segment_for_sections_specified()
3488 || parameters->options().text_unlikely_segment());
3489 return false;
3490 }
3491
3492 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3493
3494 static off_t
3495 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3496 {
3497 uint64_t unsigned_off = off;
3498 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3499 | (addr & (abi_pagesize - 1)));
3500 if (aligned_off < unsigned_off)
3501 aligned_off += abi_pagesize;
3502 return aligned_off;
3503 }
3504
3505 // On targets where the text segment contains only executable code,
3506 // a non-executable segment is never the text segment.
3507
3508 static inline bool
3509 is_text_segment(const Target* target, const Output_segment* seg)
3510 {
3511 elfcpp::Elf_Xword flags = seg->flags();
3512 if ((flags & elfcpp::PF_W) != 0)
3513 return false;
3514 if ((flags & elfcpp::PF_X) == 0)
3515 return !target->isolate_execinstr();
3516 return true;
3517 }
3518
3519 // Set the file offsets of all the segments, and all the sections they
3520 // contain. They have all been created. LOAD_SEG must be laid out
3521 // first. Return the offset of the data to follow.
3522
3523 off_t
3524 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3525 unsigned int* pshndx)
3526 {
3527 // Sort them into the final order. We use a stable sort so that we
3528 // don't randomize the order of indistinguishable segments created
3529 // by linker scripts.
3530 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3531 Layout::Compare_segments(this));
3532
3533 // Find the PT_LOAD segments, and set their addresses and offsets
3534 // and their section's addresses and offsets.
3535 uint64_t start_addr;
3536 if (parameters->options().user_set_Ttext())
3537 start_addr = parameters->options().Ttext();
3538 else if (parameters->options().output_is_position_independent())
3539 start_addr = 0;
3540 else
3541 start_addr = target->default_text_segment_address();
3542
3543 uint64_t addr = start_addr;
3544 off_t off = 0;
3545
3546 // If LOAD_SEG is NULL, then the file header and segment headers
3547 // will not be loadable. But they still need to be at offset 0 in
3548 // the file. Set their offsets now.
3549 if (load_seg == NULL)
3550 {
3551 for (Data_list::iterator p = this->special_output_list_.begin();
3552 p != this->special_output_list_.end();
3553 ++p)
3554 {
3555 off = align_address(off, (*p)->addralign());
3556 (*p)->set_address_and_file_offset(0, off);
3557 off += (*p)->data_size();
3558 }
3559 }
3560
3561 unsigned int increase_relro = this->increase_relro_;
3562 if (this->script_options_->saw_sections_clause())
3563 increase_relro = 0;
3564
3565 const bool check_sections = parameters->options().check_sections();
3566 Output_segment* last_load_segment = NULL;
3567
3568 unsigned int shndx_begin = *pshndx;
3569 unsigned int shndx_load_seg = *pshndx;
3570
3571 for (Segment_list::iterator p = this->segment_list_.begin();
3572 p != this->segment_list_.end();
3573 ++p)
3574 {
3575 if ((*p)->type() == elfcpp::PT_LOAD)
3576 {
3577 if (target->isolate_execinstr())
3578 {
3579 // When we hit the segment that should contain the
3580 // file headers, reset the file offset so we place
3581 // it and subsequent segments appropriately.
3582 // We'll fix up the preceding segments below.
3583 if (load_seg == *p)
3584 {
3585 if (off == 0)
3586 load_seg = NULL;
3587 else
3588 {
3589 off = 0;
3590 shndx_load_seg = *pshndx;
3591 }
3592 }
3593 }
3594 else
3595 {
3596 // Verify that the file headers fall into the first segment.
3597 if (load_seg != NULL && load_seg != *p)
3598 gold_unreachable();
3599 load_seg = NULL;
3600 }
3601
3602 bool are_addresses_set = (*p)->are_addresses_set();
3603 if (are_addresses_set)
3604 {
3605 // When it comes to setting file offsets, we care about
3606 // the physical address.
3607 addr = (*p)->paddr();
3608 }
3609 else if (parameters->options().user_set_Ttext()
3610 && (parameters->options().omagic()
3611 || is_text_segment(target, *p)))
3612 {
3613 are_addresses_set = true;
3614 }
3615 else if (parameters->options().user_set_Trodata_segment()
3616 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3617 {
3618 addr = parameters->options().Trodata_segment();
3619 are_addresses_set = true;
3620 }
3621 else if (parameters->options().user_set_Tdata()
3622 && ((*p)->flags() & elfcpp::PF_W) != 0
3623 && (!parameters->options().user_set_Tbss()
3624 || (*p)->has_any_data_sections()))
3625 {
3626 addr = parameters->options().Tdata();
3627 are_addresses_set = true;
3628 }
3629 else if (parameters->options().user_set_Tbss()
3630 && ((*p)->flags() & elfcpp::PF_W) != 0
3631 && !(*p)->has_any_data_sections())
3632 {
3633 addr = parameters->options().Tbss();
3634 are_addresses_set = true;
3635 }
3636
3637 uint64_t orig_addr = addr;
3638 uint64_t orig_off = off;
3639
3640 uint64_t aligned_addr = 0;
3641 uint64_t abi_pagesize = target->abi_pagesize();
3642 uint64_t common_pagesize = target->common_pagesize();
3643
3644 if (!parameters->options().nmagic()
3645 && !parameters->options().omagic())
3646 (*p)->set_minimum_p_align(abi_pagesize);
3647
3648 if (!are_addresses_set)
3649 {
3650 // Skip the address forward one page, maintaining the same
3651 // position within the page. This lets us store both segments
3652 // overlapping on a single page in the file, but the loader will
3653 // put them on different pages in memory. We will revisit this
3654 // decision once we know the size of the segment.
3655
3656 uint64_t max_align = (*p)->maximum_alignment();
3657 if (max_align > abi_pagesize)
3658 addr = align_address(addr, max_align);
3659 aligned_addr = addr;
3660
3661 if (load_seg == *p)
3662 {
3663 // This is the segment that will contain the file
3664 // headers, so its offset will have to be exactly zero.
3665 gold_assert(orig_off == 0);
3666
3667 // If the target wants a fixed minimum distance from the
3668 // text segment to the read-only segment, move up now.
3669 uint64_t min_addr =
3670 start_addr + (parameters->options().user_set_rosegment_gap()
3671 ? parameters->options().rosegment_gap()
3672 : target->rosegment_gap());
3673 if (addr < min_addr)
3674 addr = min_addr;
3675
3676 // But this is not the first segment! To make its
3677 // address congruent with its offset, that address better
3678 // be aligned to the ABI-mandated page size.
3679 addr = align_address(addr, abi_pagesize);
3680 aligned_addr = addr;
3681 }
3682 else
3683 {
3684 if ((addr & (abi_pagesize - 1)) != 0)
3685 addr = addr + abi_pagesize;
3686
3687 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3688 }
3689 }
3690
3691 if (!parameters->options().nmagic()
3692 && !parameters->options().omagic())
3693 {
3694 // Here we are also taking care of the case when
3695 // the maximum segment alignment is larger than the page size.
3696 off = align_file_offset(off, addr,
3697 std::max(abi_pagesize,
3698 (*p)->maximum_alignment()));
3699 }
3700 else
3701 {
3702 // This is -N or -n with a section script which prevents
3703 // us from using a load segment. We need to ensure that
3704 // the file offset is aligned to the alignment of the
3705 // segment. This is because the linker script
3706 // implicitly assumed a zero offset. If we don't align
3707 // here, then the alignment of the sections in the
3708 // linker script may not match the alignment of the
3709 // sections in the set_section_addresses call below,
3710 // causing an error about dot moving backward.
3711 off = align_address(off, (*p)->maximum_alignment());
3712 }
3713
3714 unsigned int shndx_hold = *pshndx;
3715 bool has_relro = false;
3716 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3717 false, addr,
3718 &increase_relro,
3719 &has_relro,
3720 &off, pshndx);
3721
3722 // Now that we know the size of this segment, we may be able
3723 // to save a page in memory, at the cost of wasting some
3724 // file space, by instead aligning to the start of a new
3725 // page. Here we use the real machine page size rather than
3726 // the ABI mandated page size. If the segment has been
3727 // aligned so that the relro data ends at a page boundary,
3728 // we do not try to realign it.
3729
3730 if (!are_addresses_set
3731 && !has_relro
3732 && aligned_addr != addr
3733 && !parameters->incremental())
3734 {
3735 uint64_t first_off = (common_pagesize
3736 - (aligned_addr
3737 & (common_pagesize - 1)));
3738 uint64_t last_off = new_addr & (common_pagesize - 1);
3739 if (first_off > 0
3740 && last_off > 0
3741 && ((aligned_addr & ~ (common_pagesize - 1))
3742 != (new_addr & ~ (common_pagesize - 1)))
3743 && first_off + last_off <= common_pagesize)
3744 {
3745 *pshndx = shndx_hold;
3746 addr = align_address(aligned_addr, common_pagesize);
3747 addr = align_address(addr, (*p)->maximum_alignment());
3748 if ((addr & (abi_pagesize - 1)) != 0)
3749 addr = addr + abi_pagesize;
3750 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3751 off = align_file_offset(off, addr, abi_pagesize);
3752
3753 increase_relro = this->increase_relro_;
3754 if (this->script_options_->saw_sections_clause())
3755 increase_relro = 0;
3756 has_relro = false;
3757
3758 new_addr = (*p)->set_section_addresses(target, this,
3759 true, addr,
3760 &increase_relro,
3761 &has_relro,
3762 &off, pshndx);
3763 }
3764 }
3765
3766 addr = new_addr;
3767
3768 // Implement --check-sections. We know that the segments
3769 // are sorted by LMA.
3770 if (check_sections && last_load_segment != NULL)
3771 {
3772 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3773 if (last_load_segment->paddr() + last_load_segment->memsz()
3774 > (*p)->paddr())
3775 {
3776 unsigned long long lb1 = last_load_segment->paddr();
3777 unsigned long long le1 = lb1 + last_load_segment->memsz();
3778 unsigned long long lb2 = (*p)->paddr();
3779 unsigned long long le2 = lb2 + (*p)->memsz();
3780 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3781 "[0x%llx -> 0x%llx]"),
3782 lb1, le1, lb2, le2);
3783 }
3784 }
3785 last_load_segment = *p;
3786 }
3787 }
3788
3789 if (load_seg != NULL && target->isolate_execinstr())
3790 {
3791 // Process the early segments again, setting their file offsets
3792 // so they land after the segments starting at LOAD_SEG.
3793 off = align_file_offset(off, 0, target->abi_pagesize());
3794
3795 this->reset_relax_output();
3796
3797 for (Segment_list::iterator p = this->segment_list_.begin();
3798 *p != load_seg;
3799 ++p)
3800 {
3801 if ((*p)->type() == elfcpp::PT_LOAD)
3802 {
3803 // We repeat the whole job of assigning addresses and
3804 // offsets, but we really only want to change the offsets and
3805 // must ensure that the addresses all come out the same as
3806 // they did the first time through.
3807 bool has_relro = false;
3808 const uint64_t old_addr = (*p)->vaddr();
3809 const uint64_t old_end = old_addr + (*p)->memsz();
3810 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3811 true, old_addr,
3812 &increase_relro,
3813 &has_relro,
3814 &off,
3815 &shndx_begin);
3816 gold_assert(new_addr == old_end);
3817 }
3818 }
3819
3820 gold_assert(shndx_begin == shndx_load_seg);
3821 }
3822
3823 // Handle the non-PT_LOAD segments, setting their offsets from their
3824 // section's offsets.
3825 for (Segment_list::iterator p = this->segment_list_.begin();
3826 p != this->segment_list_.end();
3827 ++p)
3828 {
3829 // PT_GNU_STACK was set up correctly when it was created.
3830 if ((*p)->type() != elfcpp::PT_LOAD
3831 && (*p)->type() != elfcpp::PT_GNU_STACK)
3832 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3833 ? increase_relro
3834 : 0);
3835 }
3836
3837 // Set the TLS offsets for each section in the PT_TLS segment.
3838 if (this->tls_segment_ != NULL)
3839 this->tls_segment_->set_tls_offsets();
3840
3841 return off;
3842 }
3843
3844 // Set the offsets of all the allocated sections when doing a
3845 // relocatable link. This does the same jobs as set_segment_offsets,
3846 // only for a relocatable link.
3847
3848 off_t
3849 Layout::set_relocatable_section_offsets(Output_data* file_header,
3850 unsigned int* pshndx)
3851 {
3852 off_t off = 0;
3853
3854 file_header->set_address_and_file_offset(0, 0);
3855 off += file_header->data_size();
3856
3857 for (Section_list::iterator p = this->section_list_.begin();
3858 p != this->section_list_.end();
3859 ++p)
3860 {
3861 // We skip unallocated sections here, except that group sections
3862 // have to come first.
3863 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3864 && (*p)->type() != elfcpp::SHT_GROUP)
3865 continue;
3866
3867 off = align_address(off, (*p)->addralign());
3868
3869 // The linker script might have set the address.
3870 if (!(*p)->is_address_valid())
3871 (*p)->set_address(0);
3872 (*p)->set_file_offset(off);
3873 (*p)->finalize_data_size();
3874 if ((*p)->type() != elfcpp::SHT_NOBITS)
3875 off += (*p)->data_size();
3876
3877 (*p)->set_out_shndx(*pshndx);
3878 ++*pshndx;
3879 }
3880
3881 return off;
3882 }
3883
3884 // Set the file offset of all the sections not associated with a
3885 // segment.
3886
3887 off_t
3888 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3889 {
3890 off_t startoff = off;
3891 off_t maxoff = off;
3892
3893 for (Section_list::iterator p = this->unattached_section_list_.begin();
3894 p != this->unattached_section_list_.end();
3895 ++p)
3896 {
3897 // The symtab section is handled in create_symtab_sections.
3898 if (*p == this->symtab_section_)
3899 continue;
3900
3901 // If we've already set the data size, don't set it again.
3902 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3903 continue;
3904
3905 if (pass == BEFORE_INPUT_SECTIONS_PASS
3906 && (*p)->requires_postprocessing())
3907 {
3908 (*p)->create_postprocessing_buffer();
3909 this->any_postprocessing_sections_ = true;
3910 }
3911
3912 if (pass == BEFORE_INPUT_SECTIONS_PASS
3913 && (*p)->after_input_sections())
3914 continue;
3915 else if (pass == POSTPROCESSING_SECTIONS_PASS
3916 && (!(*p)->after_input_sections()
3917 || (*p)->type() == elfcpp::SHT_STRTAB))
3918 continue;
3919 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3920 && (!(*p)->after_input_sections()
3921 || (*p)->type() != elfcpp::SHT_STRTAB))
3922 continue;
3923
3924 if (!parameters->incremental_update())
3925 {
3926 off = align_address(off, (*p)->addralign());
3927 (*p)->set_file_offset(off);
3928 (*p)->finalize_data_size();
3929 }
3930 else
3931 {
3932 // Incremental update: allocate file space from free list.
3933 (*p)->pre_finalize_data_size();
3934 off_t current_size = (*p)->current_data_size();
3935 off = this->allocate(current_size, (*p)->addralign(), startoff);
3936 if (off == -1)
3937 {
3938 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3939 this->free_list_.dump();
3940 gold_assert((*p)->output_section() != NULL);
3941 gold_fallback(_("out of patch space for section %s; "
3942 "relink with --incremental-full"),
3943 (*p)->output_section()->name());
3944 }
3945 (*p)->set_file_offset(off);
3946 (*p)->finalize_data_size();
3947 if ((*p)->data_size() > current_size)
3948 {
3949 gold_assert((*p)->output_section() != NULL);
3950 gold_fallback(_("%s: section changed size; "
3951 "relink with --incremental-full"),
3952 (*p)->output_section()->name());
3953 }
3954 gold_debug(DEBUG_INCREMENTAL,
3955 "set_section_offsets: %08lx %08lx %s",
3956 static_cast<long>(off),
3957 static_cast<long>((*p)->data_size()),
3958 ((*p)->output_section() != NULL
3959 ? (*p)->output_section()->name() : "(special)"));
3960 }
3961
3962 off += (*p)->data_size();
3963 if (off > maxoff)
3964 maxoff = off;
3965
3966 // At this point the name must be set.
3967 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3968 this->namepool_.add((*p)->name(), false, NULL);
3969 }
3970 return maxoff;
3971 }
3972
3973 // Set the section indexes of all the sections not associated with a
3974 // segment.
3975
3976 unsigned int
3977 Layout::set_section_indexes(unsigned int shndx)
3978 {
3979 for (Section_list::iterator p = this->unattached_section_list_.begin();
3980 p != this->unattached_section_list_.end();
3981 ++p)
3982 {
3983 if (!(*p)->has_out_shndx())
3984 {
3985 (*p)->set_out_shndx(shndx);
3986 ++shndx;
3987 }
3988 }
3989 return shndx;
3990 }
3991
3992 // Set the section addresses according to the linker script. This is
3993 // only called when we see a SECTIONS clause. This returns the
3994 // program segment which should hold the file header and segment
3995 // headers, if any. It will return NULL if they should not be in a
3996 // segment.
3997
3998 Output_segment*
3999 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4000 {
4001 Script_sections* ss = this->script_options_->script_sections();
4002 gold_assert(ss->saw_sections_clause());
4003 return this->script_options_->set_section_addresses(symtab, this);
4004 }
4005
4006 // Place the orphan sections in the linker script.
4007
4008 void
4009 Layout::place_orphan_sections_in_script()
4010 {
4011 Script_sections* ss = this->script_options_->script_sections();
4012 gold_assert(ss->saw_sections_clause());
4013
4014 // Place each orphaned output section in the script.
4015 for (Section_list::iterator p = this->section_list_.begin();
4016 p != this->section_list_.end();
4017 ++p)
4018 {
4019 if (!(*p)->found_in_sections_clause())
4020 ss->place_orphan(*p);
4021 }
4022 }
4023
4024 // Count the local symbols in the regular symbol table and the dynamic
4025 // symbol table, and build the respective string pools.
4026
4027 void
4028 Layout::count_local_symbols(const Task* task,
4029 const Input_objects* input_objects)
4030 {
4031 // First, figure out an upper bound on the number of symbols we'll
4032 // be inserting into each pool. This helps us create the pools with
4033 // the right size, to avoid unnecessary hashtable resizing.
4034 unsigned int symbol_count = 0;
4035 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4036 p != input_objects->relobj_end();
4037 ++p)
4038 symbol_count += (*p)->local_symbol_count();
4039
4040 // Go from "upper bound" to "estimate." We overcount for two
4041 // reasons: we double-count symbols that occur in more than one
4042 // object file, and we count symbols that are dropped from the
4043 // output. Add it all together and assume we overcount by 100%.
4044 symbol_count /= 2;
4045
4046 // We assume all symbols will go into both the sympool and dynpool.
4047 this->sympool_.reserve(symbol_count);
4048 this->dynpool_.reserve(symbol_count);
4049
4050 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4051 p != input_objects->relobj_end();
4052 ++p)
4053 {
4054 Task_lock_obj<Object> tlo(task, *p);
4055 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4056 }
4057 }
4058
4059 // Create the symbol table sections. Here we also set the final
4060 // values of the symbols. At this point all the loadable sections are
4061 // fully laid out. SHNUM is the number of sections so far.
4062
4063 void
4064 Layout::create_symtab_sections(const Input_objects* input_objects,
4065 Symbol_table* symtab,
4066 unsigned int shnum,
4067 off_t* poff,
4068 unsigned int local_dynamic_count)
4069 {
4070 int symsize;
4071 unsigned int align;
4072 if (parameters->target().get_size() == 32)
4073 {
4074 symsize = elfcpp::Elf_sizes<32>::sym_size;
4075 align = 4;
4076 }
4077 else if (parameters->target().get_size() == 64)
4078 {
4079 symsize = elfcpp::Elf_sizes<64>::sym_size;
4080 align = 8;
4081 }
4082 else
4083 gold_unreachable();
4084
4085 // Compute file offsets relative to the start of the symtab section.
4086 off_t off = 0;
4087
4088 // Save space for the dummy symbol at the start of the section. We
4089 // never bother to write this out--it will just be left as zero.
4090 off += symsize;
4091 unsigned int local_symbol_index = 1;
4092
4093 // Add STT_SECTION symbols for each Output section which needs one.
4094 for (Section_list::iterator p = this->section_list_.begin();
4095 p != this->section_list_.end();
4096 ++p)
4097 {
4098 if (!(*p)->needs_symtab_index())
4099 (*p)->set_symtab_index(-1U);
4100 else
4101 {
4102 (*p)->set_symtab_index(local_symbol_index);
4103 ++local_symbol_index;
4104 off += symsize;
4105 }
4106 }
4107
4108 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4109 p != input_objects->relobj_end();
4110 ++p)
4111 {
4112 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4113 off, symtab);
4114 off += (index - local_symbol_index) * symsize;
4115 local_symbol_index = index;
4116 }
4117
4118 unsigned int local_symcount = local_symbol_index;
4119 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4120
4121 off_t dynoff;
4122 size_t dyncount;
4123 if (this->dynsym_section_ == NULL)
4124 {
4125 dynoff = 0;
4126 dyncount = 0;
4127 }
4128 else
4129 {
4130 off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4131 dynoff = this->dynsym_section_->offset() + locsize;
4132 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4133 gold_assert(static_cast<off_t>(dyncount * symsize)
4134 == this->dynsym_section_->data_size() - locsize);
4135 }
4136
4137 off_t global_off = off;
4138 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4139 &this->sympool_, &local_symcount);
4140
4141 if (!parameters->options().strip_all())
4142 {
4143 this->sympool_.set_string_offsets();
4144
4145 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4146 Output_section* osymtab = this->make_output_section(symtab_name,
4147 elfcpp::SHT_SYMTAB,
4148 0, ORDER_INVALID,
4149 false);
4150 this->symtab_section_ = osymtab;
4151
4152 Output_section_data* pos = new Output_data_fixed_space(off, align,
4153 "** symtab");
4154 osymtab->add_output_section_data(pos);
4155
4156 // We generate a .symtab_shndx section if we have more than
4157 // SHN_LORESERVE sections. Technically it is possible that we
4158 // don't need one, because it is possible that there are no
4159 // symbols in any of sections with indexes larger than
4160 // SHN_LORESERVE. That is probably unusual, though, and it is
4161 // easier to always create one than to compute section indexes
4162 // twice (once here, once when writing out the symbols).
4163 if (shnum >= elfcpp::SHN_LORESERVE)
4164 {
4165 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4166 false, NULL);
4167 Output_section* osymtab_xindex =
4168 this->make_output_section(symtab_xindex_name,
4169 elfcpp::SHT_SYMTAB_SHNDX, 0,
4170 ORDER_INVALID, false);
4171
4172 size_t symcount = off / symsize;
4173 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4174
4175 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4176
4177 osymtab_xindex->set_link_section(osymtab);
4178 osymtab_xindex->set_addralign(4);
4179 osymtab_xindex->set_entsize(4);
4180
4181 osymtab_xindex->set_after_input_sections();
4182
4183 // This tells the driver code to wait until the symbol table
4184 // has written out before writing out the postprocessing
4185 // sections, including the .symtab_shndx section.
4186 this->any_postprocessing_sections_ = true;
4187 }
4188
4189 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4190 Output_section* ostrtab = this->make_output_section(strtab_name,
4191 elfcpp::SHT_STRTAB,
4192 0, ORDER_INVALID,
4193 false);
4194
4195 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4196 ostrtab->add_output_section_data(pstr);
4197
4198 off_t symtab_off;
4199 if (!parameters->incremental_update())
4200 symtab_off = align_address(*poff, align);
4201 else
4202 {
4203 symtab_off = this->allocate(off, align, *poff);
4204 if (off == -1)
4205 gold_fallback(_("out of patch space for symbol table; "
4206 "relink with --incremental-full"));
4207 gold_debug(DEBUG_INCREMENTAL,
4208 "create_symtab_sections: %08lx %08lx .symtab",
4209 static_cast<long>(symtab_off),
4210 static_cast<long>(off));
4211 }
4212
4213 symtab->set_file_offset(symtab_off + global_off);
4214 osymtab->set_file_offset(symtab_off);
4215 osymtab->finalize_data_size();
4216 osymtab->set_link_section(ostrtab);
4217 osymtab->set_info(local_symcount);
4218 osymtab->set_entsize(symsize);
4219
4220 if (symtab_off + off > *poff)
4221 *poff = symtab_off + off;
4222 }
4223 }
4224
4225 // Create the .shstrtab section, which holds the names of the
4226 // sections. At the time this is called, we have created all the
4227 // output sections except .shstrtab itself.
4228
4229 Output_section*
4230 Layout::create_shstrtab()
4231 {
4232 // FIXME: We don't need to create a .shstrtab section if we are
4233 // stripping everything.
4234
4235 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4236
4237 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4238 ORDER_INVALID, false);
4239
4240 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4241 {
4242 // We can't write out this section until we've set all the
4243 // section names, and we don't set the names of compressed
4244 // output sections until relocations are complete. FIXME: With
4245 // the current names we use, this is unnecessary.
4246 os->set_after_input_sections();
4247 }
4248
4249 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4250 os->add_output_section_data(posd);
4251
4252 return os;
4253 }
4254
4255 // Create the section headers. SIZE is 32 or 64. OFF is the file
4256 // offset.
4257
4258 void
4259 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4260 {
4261 Output_section_headers* oshdrs;
4262 oshdrs = new Output_section_headers(this,
4263 &this->segment_list_,
4264 &this->section_list_,
4265 &this->unattached_section_list_,
4266 &this->namepool_,
4267 shstrtab_section);
4268 off_t off;
4269 if (!parameters->incremental_update())
4270 off = align_address(*poff, oshdrs->addralign());
4271 else
4272 {
4273 oshdrs->pre_finalize_data_size();
4274 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4275 if (off == -1)
4276 gold_fallback(_("out of patch space for section header table; "
4277 "relink with --incremental-full"));
4278 gold_debug(DEBUG_INCREMENTAL,
4279 "create_shdrs: %08lx %08lx (section header table)",
4280 static_cast<long>(off),
4281 static_cast<long>(off + oshdrs->data_size()));
4282 }
4283 oshdrs->set_address_and_file_offset(0, off);
4284 off += oshdrs->data_size();
4285 if (off > *poff)
4286 *poff = off;
4287 this->section_headers_ = oshdrs;
4288 }
4289
4290 // Count the allocated sections.
4291
4292 size_t
4293 Layout::allocated_output_section_count() const
4294 {
4295 size_t section_count = 0;
4296 for (Segment_list::const_iterator p = this->segment_list_.begin();
4297 p != this->segment_list_.end();
4298 ++p)
4299 section_count += (*p)->output_section_count();
4300 return section_count;
4301 }
4302
4303 // Create the dynamic symbol table.
4304 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4305 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4306 // to the number of global symbols that have been forced local.
4307 // We need to remember the former because the forced-local symbols are
4308 // written along with the global symbols in Symtab::write_globals().
4309
4310 void
4311 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4312 Symbol_table* symtab,
4313 Output_section** pdynstr,
4314 unsigned int* plocal_dynamic_count,
4315 unsigned int* pforced_local_dynamic_count,
4316 std::vector<Symbol*>* pdynamic_symbols,
4317 Versions* pversions)
4318 {
4319 // Count all the symbols in the dynamic symbol table, and set the
4320 // dynamic symbol indexes.
4321
4322 // Skip symbol 0, which is always all zeroes.
4323 unsigned int index = 1;
4324
4325 // Add STT_SECTION symbols for each Output section which needs one.
4326 for (Section_list::iterator p = this->section_list_.begin();
4327 p != this->section_list_.end();
4328 ++p)
4329 {
4330 if (!(*p)->needs_dynsym_index())
4331 (*p)->set_dynsym_index(-1U);
4332 else
4333 {
4334 (*p)->set_dynsym_index(index);
4335 ++index;
4336 }
4337 }
4338
4339 // Count the local symbols that need to go in the dynamic symbol table,
4340 // and set the dynamic symbol indexes.
4341 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4342 p != input_objects->relobj_end();
4343 ++p)
4344 {
4345 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4346 index = new_index;
4347 }
4348
4349 unsigned int local_symcount = index;
4350 unsigned int forced_local_count = 0;
4351
4352 index = symtab->set_dynsym_indexes(index, &forced_local_count,
4353 pdynamic_symbols, &this->dynpool_,
4354 pversions);
4355
4356 *plocal_dynamic_count = local_symcount;
4357 *pforced_local_dynamic_count = forced_local_count;
4358
4359 int symsize;
4360 unsigned int align;
4361 const int size = parameters->target().get_size();
4362 if (size == 32)
4363 {
4364 symsize = elfcpp::Elf_sizes<32>::sym_size;
4365 align = 4;
4366 }
4367 else if (size == 64)
4368 {
4369 symsize = elfcpp::Elf_sizes<64>::sym_size;
4370 align = 8;
4371 }
4372 else
4373 gold_unreachable();
4374
4375 // Create the dynamic symbol table section.
4376
4377 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4378 elfcpp::SHT_DYNSYM,
4379 elfcpp::SHF_ALLOC,
4380 false,
4381 ORDER_DYNAMIC_LINKER,
4382 false, false, false);
4383
4384 // Check for NULL as a linker script may discard .dynsym.
4385 if (dynsym != NULL)
4386 {
4387 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4388 align,
4389 "** dynsym");
4390 dynsym->add_output_section_data(odata);
4391
4392 dynsym->set_info(local_symcount + forced_local_count);
4393 dynsym->set_entsize(symsize);
4394 dynsym->set_addralign(align);
4395
4396 this->dynsym_section_ = dynsym;
4397 }
4398
4399 Output_data_dynamic* const odyn = this->dynamic_data_;
4400 if (odyn != NULL)
4401 {
4402 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4403 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4404 }
4405
4406 // If there are more than SHN_LORESERVE allocated sections, we
4407 // create a .dynsym_shndx section. It is possible that we don't
4408 // need one, because it is possible that there are no dynamic
4409 // symbols in any of the sections with indexes larger than
4410 // SHN_LORESERVE. This is probably unusual, though, and at this
4411 // time we don't know the actual section indexes so it is
4412 // inconvenient to check.
4413 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4414 {
4415 Output_section* dynsym_xindex =
4416 this->choose_output_section(NULL, ".dynsym_shndx",
4417 elfcpp::SHT_SYMTAB_SHNDX,
4418 elfcpp::SHF_ALLOC,
4419 false, ORDER_DYNAMIC_LINKER, false, false,
4420 false);
4421
4422 if (dynsym_xindex != NULL)
4423 {
4424 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4425
4426 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4427
4428 dynsym_xindex->set_link_section(dynsym);
4429 dynsym_xindex->set_addralign(4);
4430 dynsym_xindex->set_entsize(4);
4431
4432 dynsym_xindex->set_after_input_sections();
4433
4434 // This tells the driver code to wait until the symbol table
4435 // has written out before writing out the postprocessing
4436 // sections, including the .dynsym_shndx section.
4437 this->any_postprocessing_sections_ = true;
4438 }
4439 }
4440
4441 // Create the dynamic string table section.
4442
4443 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4444 elfcpp::SHT_STRTAB,
4445 elfcpp::SHF_ALLOC,
4446 false,
4447 ORDER_DYNAMIC_LINKER,
4448 false, false, false);
4449 *pdynstr = dynstr;
4450 if (dynstr != NULL)
4451 {
4452 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4453 dynstr->add_output_section_data(strdata);
4454
4455 if (dynsym != NULL)
4456 dynsym->set_link_section(dynstr);
4457 if (this->dynamic_section_ != NULL)
4458 this->dynamic_section_->set_link_section(dynstr);
4459
4460 if (odyn != NULL)
4461 {
4462 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4463 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4464 }
4465 }
4466
4467 // Create the hash tables. The Gnu-style hash table must be
4468 // built first, because it changes the order of the symbols
4469 // in the dynamic symbol table.
4470
4471 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4472 || strcmp(parameters->options().hash_style(), "both") == 0)
4473 {
4474 unsigned char* phash;
4475 unsigned int hashlen;
4476 Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4477 local_symcount + forced_local_count,
4478 &phash, &hashlen);
4479
4480 Output_section* hashsec =
4481 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4482 elfcpp::SHF_ALLOC, false,
4483 ORDER_DYNAMIC_LINKER, false, false,
4484 false);
4485
4486 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4487 hashlen,
4488 align,
4489 "** hash");
4490 if (hashsec != NULL && hashdata != NULL)
4491 hashsec->add_output_section_data(hashdata);
4492
4493 if (hashsec != NULL)
4494 {
4495 if (dynsym != NULL)
4496 hashsec->set_link_section(dynsym);
4497
4498 // For a 64-bit target, the entries in .gnu.hash do not have
4499 // a uniform size, so we only set the entry size for a
4500 // 32-bit target.
4501 if (parameters->target().get_size() == 32)
4502 hashsec->set_entsize(4);
4503
4504 if (odyn != NULL)
4505 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4506 }
4507 }
4508
4509 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4510 || strcmp(parameters->options().hash_style(), "both") == 0)
4511 {
4512 unsigned char* phash;
4513 unsigned int hashlen;
4514 Dynobj::create_elf_hash_table(*pdynamic_symbols,
4515 local_symcount + forced_local_count,
4516 &phash, &hashlen);
4517
4518 Output_section* hashsec =
4519 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4520 elfcpp::SHF_ALLOC, false,
4521 ORDER_DYNAMIC_LINKER, false, false,
4522 false);
4523
4524 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4525 hashlen,
4526 align,
4527 "** hash");
4528 if (hashsec != NULL && hashdata != NULL)
4529 hashsec->add_output_section_data(hashdata);
4530
4531 if (hashsec != NULL)
4532 {
4533 if (dynsym != NULL)
4534 hashsec->set_link_section(dynsym);
4535 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4536 }
4537
4538 if (odyn != NULL)
4539 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4540 }
4541 }
4542
4543 // Assign offsets to each local portion of the dynamic symbol table.
4544
4545 void
4546 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4547 {
4548 Output_section* dynsym = this->dynsym_section_;
4549 if (dynsym == NULL)
4550 return;
4551
4552 off_t off = dynsym->offset();
4553
4554 // Skip the dummy symbol at the start of the section.
4555 off += dynsym->entsize();
4556
4557 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4558 p != input_objects->relobj_end();
4559 ++p)
4560 {
4561 unsigned int count = (*p)->set_local_dynsym_offset(off);
4562 off += count * dynsym->entsize();
4563 }
4564 }
4565
4566 // Create the version sections.
4567
4568 void
4569 Layout::create_version_sections(const Versions* versions,
4570 const Symbol_table* symtab,
4571 unsigned int local_symcount,
4572 const std::vector<Symbol*>& dynamic_symbols,
4573 const Output_section* dynstr)
4574 {
4575 if (!versions->any_defs() && !versions->any_needs())
4576 return;
4577
4578 switch (parameters->size_and_endianness())
4579 {
4580 #ifdef HAVE_TARGET_32_LITTLE
4581 case Parameters::TARGET_32_LITTLE:
4582 this->sized_create_version_sections<32, false>(versions, symtab,
4583 local_symcount,
4584 dynamic_symbols, dynstr);
4585 break;
4586 #endif
4587 #ifdef HAVE_TARGET_32_BIG
4588 case Parameters::TARGET_32_BIG:
4589 this->sized_create_version_sections<32, true>(versions, symtab,
4590 local_symcount,
4591 dynamic_symbols, dynstr);
4592 break;
4593 #endif
4594 #ifdef HAVE_TARGET_64_LITTLE
4595 case Parameters::TARGET_64_LITTLE:
4596 this->sized_create_version_sections<64, false>(versions, symtab,
4597 local_symcount,
4598 dynamic_symbols, dynstr);
4599 break;
4600 #endif
4601 #ifdef HAVE_TARGET_64_BIG
4602 case Parameters::TARGET_64_BIG:
4603 this->sized_create_version_sections<64, true>(versions, symtab,
4604 local_symcount,
4605 dynamic_symbols, dynstr);
4606 break;
4607 #endif
4608 default:
4609 gold_unreachable();
4610 }
4611 }
4612
4613 // Create the version sections, sized version.
4614
4615 template<int size, bool big_endian>
4616 void
4617 Layout::sized_create_version_sections(
4618 const Versions* versions,
4619 const Symbol_table* symtab,
4620 unsigned int local_symcount,
4621 const std::vector<Symbol*>& dynamic_symbols,
4622 const Output_section* dynstr)
4623 {
4624 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4625 elfcpp::SHT_GNU_versym,
4626 elfcpp::SHF_ALLOC,
4627 false,
4628 ORDER_DYNAMIC_LINKER,
4629 false, false, false);
4630
4631 // Check for NULL since a linker script may discard this section.
4632 if (vsec != NULL)
4633 {
4634 unsigned char* vbuf;
4635 unsigned int vsize;
4636 versions->symbol_section_contents<size, big_endian>(symtab,
4637 &this->dynpool_,
4638 local_symcount,
4639 dynamic_symbols,
4640 &vbuf, &vsize);
4641
4642 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4643 "** versions");
4644
4645 vsec->add_output_section_data(vdata);
4646 vsec->set_entsize(2);
4647 vsec->set_link_section(this->dynsym_section_);
4648 }
4649
4650 Output_data_dynamic* const odyn = this->dynamic_data_;
4651 if (odyn != NULL && vsec != NULL)
4652 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4653
4654 if (versions->any_defs())
4655 {
4656 Output_section* vdsec;
4657 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4658 elfcpp::SHT_GNU_verdef,
4659 elfcpp::SHF_ALLOC,
4660 false, ORDER_DYNAMIC_LINKER, false,
4661 false, false);
4662
4663 if (vdsec != NULL)
4664 {
4665 unsigned char* vdbuf;
4666 unsigned int vdsize;
4667 unsigned int vdentries;
4668 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4669 &vdbuf, &vdsize,
4670 &vdentries);
4671
4672 Output_section_data* vddata =
4673 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4674
4675 vdsec->add_output_section_data(vddata);
4676 vdsec->set_link_section(dynstr);
4677 vdsec->set_info(vdentries);
4678
4679 if (odyn != NULL)
4680 {
4681 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4682 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4683 }
4684 }
4685 }
4686
4687 if (versions->any_needs())
4688 {
4689 Output_section* vnsec;
4690 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4691 elfcpp::SHT_GNU_verneed,
4692 elfcpp::SHF_ALLOC,
4693 false, ORDER_DYNAMIC_LINKER, false,
4694 false, false);
4695
4696 if (vnsec != NULL)
4697 {
4698 unsigned char* vnbuf;
4699 unsigned int vnsize;
4700 unsigned int vnentries;
4701 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4702 &vnbuf, &vnsize,
4703 &vnentries);
4704
4705 Output_section_data* vndata =
4706 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4707
4708 vnsec->add_output_section_data(vndata);
4709 vnsec->set_link_section(dynstr);
4710 vnsec->set_info(vnentries);
4711
4712 if (odyn != NULL)
4713 {
4714 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4715 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4716 }
4717 }
4718 }
4719 }
4720
4721 // Create the .interp section and PT_INTERP segment.
4722
4723 void
4724 Layout::create_interp(const Target* target)
4725 {
4726 gold_assert(this->interp_segment_ == NULL);
4727
4728 const char* interp = parameters->options().dynamic_linker();
4729 if (interp == NULL)
4730 {
4731 interp = target->dynamic_linker();
4732 gold_assert(interp != NULL);
4733 }
4734
4735 size_t len = strlen(interp) + 1;
4736
4737 Output_section_data* odata = new Output_data_const(interp, len, 1);
4738
4739 Output_section* osec = this->choose_output_section(NULL, ".interp",
4740 elfcpp::SHT_PROGBITS,
4741 elfcpp::SHF_ALLOC,
4742 false, ORDER_INTERP,
4743 false, false, false);
4744 if (osec != NULL)
4745 osec->add_output_section_data(odata);
4746 }
4747
4748 // Add dynamic tags for the PLT and the dynamic relocs. This is
4749 // called by the target-specific code. This does nothing if not doing
4750 // a dynamic link.
4751
4752 // USE_REL is true for REL relocs rather than RELA relocs.
4753
4754 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4755
4756 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4757 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4758 // some targets have multiple reloc sections in PLT_REL.
4759
4760 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4761 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4762 // section.
4763
4764 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4765 // executable.
4766
4767 void
4768 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4769 const Output_data* plt_rel,
4770 const Output_data_reloc_generic* dyn_rel,
4771 bool add_debug, bool dynrel_includes_plt)
4772 {
4773 Output_data_dynamic* odyn = this->dynamic_data_;
4774 if (odyn == NULL)
4775 return;
4776
4777 if (plt_got != NULL && plt_got->output_section() != NULL)
4778 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4779
4780 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4781 {
4782 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4783 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4784 odyn->add_constant(elfcpp::DT_PLTREL,
4785 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4786 }
4787
4788 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4789 || (dynrel_includes_plt
4790 && plt_rel != NULL
4791 && plt_rel->output_section() != NULL))
4792 {
4793 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4794 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4795 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4796 (have_dyn_rel
4797 ? dyn_rel->output_section()
4798 : plt_rel->output_section()));
4799 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4800 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4801 odyn->add_section_size(size_tag,
4802 dyn_rel->output_section(),
4803 plt_rel->output_section());
4804 else if (have_dyn_rel)
4805 odyn->add_section_size(size_tag, dyn_rel->output_section());
4806 else
4807 odyn->add_section_size(size_tag, plt_rel->output_section());
4808 const int size = parameters->target().get_size();
4809 elfcpp::DT rel_tag;
4810 int rel_size;
4811 if (use_rel)
4812 {
4813 rel_tag = elfcpp::DT_RELENT;
4814 if (size == 32)
4815 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4816 else if (size == 64)
4817 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4818 else
4819 gold_unreachable();
4820 }
4821 else
4822 {
4823 rel_tag = elfcpp::DT_RELAENT;
4824 if (size == 32)
4825 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4826 else if (size == 64)
4827 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4828 else
4829 gold_unreachable();
4830 }
4831 odyn->add_constant(rel_tag, rel_size);
4832
4833 if (parameters->options().combreloc() && have_dyn_rel)
4834 {
4835 size_t c = dyn_rel->relative_reloc_count();
4836 if (c > 0)
4837 odyn->add_constant((use_rel
4838 ? elfcpp::DT_RELCOUNT
4839 : elfcpp::DT_RELACOUNT),
4840 c);
4841 }
4842 }
4843
4844 if (add_debug && !parameters->options().shared())
4845 {
4846 // The value of the DT_DEBUG tag is filled in by the dynamic
4847 // linker at run time, and used by the debugger.
4848 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4849 }
4850 }
4851
4852 void
4853 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4854 {
4855 Output_data_dynamic* odyn = this->dynamic_data_;
4856 if (odyn == NULL)
4857 return;
4858 odyn->add_constant(tag, val);
4859 }
4860
4861 // Finish the .dynamic section and PT_DYNAMIC segment.
4862
4863 void
4864 Layout::finish_dynamic_section(const Input_objects* input_objects,
4865 const Symbol_table* symtab)
4866 {
4867 if (!this->script_options_->saw_phdrs_clause()
4868 && this->dynamic_section_ != NULL)
4869 {
4870 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4871 (elfcpp::PF_R
4872 | elfcpp::PF_W));
4873 oseg->add_output_section_to_nonload(this->dynamic_section_,
4874 elfcpp::PF_R | elfcpp::PF_W);
4875 }
4876
4877 Output_data_dynamic* const odyn = this->dynamic_data_;
4878 if (odyn == NULL)
4879 return;
4880
4881 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4882 p != input_objects->dynobj_end();
4883 ++p)
4884 {
4885 if (!(*p)->is_needed() && (*p)->as_needed())
4886 {
4887 // This dynamic object was linked with --as-needed, but it
4888 // is not needed.
4889 continue;
4890 }
4891
4892 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4893 }
4894
4895 if (parameters->options().shared())
4896 {
4897 const char* soname = parameters->options().soname();
4898 if (soname != NULL)
4899 odyn->add_string(elfcpp::DT_SONAME, soname);
4900 }
4901
4902 Symbol* sym = symtab->lookup(parameters->options().init());
4903 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4904 odyn->add_symbol(elfcpp::DT_INIT, sym);
4905
4906 sym = symtab->lookup(parameters->options().fini());
4907 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4908 odyn->add_symbol(elfcpp::DT_FINI, sym);
4909
4910 // Look for .init_array, .preinit_array and .fini_array by checking
4911 // section types.
4912 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4913 p != this->section_list_.end();
4914 ++p)
4915 switch((*p)->type())
4916 {
4917 case elfcpp::SHT_FINI_ARRAY:
4918 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4919 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4920 break;
4921 case elfcpp::SHT_INIT_ARRAY:
4922 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4923 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4924 break;
4925 case elfcpp::SHT_PREINIT_ARRAY:
4926 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4927 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4928 break;
4929 default:
4930 break;
4931 }
4932
4933 // Add a DT_RPATH entry if needed.
4934 const General_options::Dir_list& rpath(parameters->options().rpath());
4935 if (!rpath.empty())
4936 {
4937 std::string rpath_val;
4938 for (General_options::Dir_list::const_iterator p = rpath.begin();
4939 p != rpath.end();
4940 ++p)
4941 {
4942 if (rpath_val.empty())
4943 rpath_val = p->name();
4944 else
4945 {
4946 // Eliminate duplicates.
4947 General_options::Dir_list::const_iterator q;
4948 for (q = rpath.begin(); q != p; ++q)
4949 if (q->name() == p->name())
4950 break;
4951 if (q == p)
4952 {
4953 rpath_val += ':';
4954 rpath_val += p->name();
4955 }
4956 }
4957 }
4958
4959 if (!parameters->options().enable_new_dtags())
4960 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4961 else
4962 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4963 }
4964
4965 // Look for text segments that have dynamic relocations.
4966 bool have_textrel = false;
4967 if (!this->script_options_->saw_sections_clause())
4968 {
4969 for (Segment_list::const_iterator p = this->segment_list_.begin();
4970 p != this->segment_list_.end();
4971 ++p)
4972 {
4973 if ((*p)->type() == elfcpp::PT_LOAD
4974 && ((*p)->flags() & elfcpp::PF_W) == 0
4975 && (*p)->has_dynamic_reloc())
4976 {
4977 have_textrel = true;
4978 break;
4979 }
4980 }
4981 }
4982 else
4983 {
4984 // We don't know the section -> segment mapping, so we are
4985 // conservative and just look for readonly sections with
4986 // relocations. If those sections wind up in writable segments,
4987 // then we have created an unnecessary DT_TEXTREL entry.
4988 for (Section_list::const_iterator p = this->section_list_.begin();
4989 p != this->section_list_.end();
4990 ++p)
4991 {
4992 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4993 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4994 && (*p)->has_dynamic_reloc())
4995 {
4996 have_textrel = true;
4997 break;
4998 }
4999 }
5000 }
5001
5002 if (parameters->options().filter() != NULL)
5003 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5004 if (parameters->options().any_auxiliary())
5005 {
5006 for (options::String_set::const_iterator p =
5007 parameters->options().auxiliary_begin();
5008 p != parameters->options().auxiliary_end();
5009 ++p)
5010 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5011 }
5012
5013 // Add a DT_FLAGS entry if necessary.
5014 unsigned int flags = 0;
5015 if (have_textrel)
5016 {
5017 // Add a DT_TEXTREL for compatibility with older loaders.
5018 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5019 flags |= elfcpp::DF_TEXTREL;
5020
5021 if (parameters->options().text())
5022 gold_error(_("read-only segment has dynamic relocations"));
5023 else if (parameters->options().warn_shared_textrel()
5024 && parameters->options().shared())
5025 gold_warning(_("shared library text segment is not shareable"));
5026 }
5027 if (parameters->options().shared() && this->has_static_tls())
5028 flags |= elfcpp::DF_STATIC_TLS;
5029 if (parameters->options().origin())
5030 flags |= elfcpp::DF_ORIGIN;
5031 if (parameters->options().Bsymbolic()
5032 && !parameters->options().have_dynamic_list())
5033 {
5034 flags |= elfcpp::DF_SYMBOLIC;
5035 // Add DT_SYMBOLIC for compatibility with older loaders.
5036 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5037 }
5038 if (parameters->options().now())
5039 flags |= elfcpp::DF_BIND_NOW;
5040 if (flags != 0)
5041 odyn->add_constant(elfcpp::DT_FLAGS, flags);
5042
5043 flags = 0;
5044 if (parameters->options().global())
5045 flags |= elfcpp::DF_1_GLOBAL;
5046 if (parameters->options().initfirst())
5047 flags |= elfcpp::DF_1_INITFIRST;
5048 if (parameters->options().interpose())
5049 flags |= elfcpp::DF_1_INTERPOSE;
5050 if (parameters->options().loadfltr())
5051 flags |= elfcpp::DF_1_LOADFLTR;
5052 if (parameters->options().nodefaultlib())
5053 flags |= elfcpp::DF_1_NODEFLIB;
5054 if (parameters->options().nodelete())
5055 flags |= elfcpp::DF_1_NODELETE;
5056 if (parameters->options().nodlopen())
5057 flags |= elfcpp::DF_1_NOOPEN;
5058 if (parameters->options().nodump())
5059 flags |= elfcpp::DF_1_NODUMP;
5060 if (!parameters->options().shared())
5061 flags &= ~(elfcpp::DF_1_INITFIRST
5062 | elfcpp::DF_1_NODELETE
5063 | elfcpp::DF_1_NOOPEN);
5064 if (parameters->options().origin())
5065 flags |= elfcpp::DF_1_ORIGIN;
5066 if (parameters->options().now())
5067 flags |= elfcpp::DF_1_NOW;
5068 if (parameters->options().Bgroup())
5069 flags |= elfcpp::DF_1_GROUP;
5070 if (flags != 0)
5071 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5072 }
5073
5074 // Set the size of the _DYNAMIC symbol table to be the size of the
5075 // dynamic data.
5076
5077 void
5078 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5079 {
5080 Output_data_dynamic* const odyn = this->dynamic_data_;
5081 if (odyn == NULL)
5082 return;
5083 odyn->finalize_data_size();
5084 if (this->dynamic_symbol_ == NULL)
5085 return;
5086 off_t data_size = odyn->data_size();
5087 const int size = parameters->target().get_size();
5088 if (size == 32)
5089 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5090 else if (size == 64)
5091 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5092 else
5093 gold_unreachable();
5094 }
5095
5096 // The mapping of input section name prefixes to output section names.
5097 // In some cases one prefix is itself a prefix of another prefix; in
5098 // such a case the longer prefix must come first. These prefixes are
5099 // based on the GNU linker default ELF linker script.
5100
5101 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5102 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5103 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5104 {
5105 MAPPING_INIT(".text.", ".text"),
5106 MAPPING_INIT(".rodata.", ".rodata"),
5107 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5108 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5109 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5110 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5111 MAPPING_INIT(".data.", ".data"),
5112 MAPPING_INIT(".bss.", ".bss"),
5113 MAPPING_INIT(".tdata.", ".tdata"),
5114 MAPPING_INIT(".tbss.", ".tbss"),
5115 MAPPING_INIT(".init_array.", ".init_array"),
5116 MAPPING_INIT(".fini_array.", ".fini_array"),
5117 MAPPING_INIT(".sdata.", ".sdata"),
5118 MAPPING_INIT(".sbss.", ".sbss"),
5119 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5120 // differently depending on whether it is creating a shared library.
5121 MAPPING_INIT(".sdata2.", ".sdata"),
5122 MAPPING_INIT(".sbss2.", ".sbss"),
5123 MAPPING_INIT(".lrodata.", ".lrodata"),
5124 MAPPING_INIT(".ldata.", ".ldata"),
5125 MAPPING_INIT(".lbss.", ".lbss"),
5126 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5127 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5128 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5129 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5130 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5131 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5132 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5133 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5134 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5135 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5136 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5137 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5138 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5139 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5140 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5141 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5142 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5143 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5144 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5145 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5146 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5147 };
5148
5149 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5150 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5151 {
5152 MAPPING_INIT(".text.hot.", ".text.hot"),
5153 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5154 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5155 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5156 MAPPING_INIT(".text.startup.", ".text.startup"),
5157 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5158 MAPPING_INIT(".text.exit.", ".text.exit"),
5159 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5160 MAPPING_INIT(".text.", ".text"),
5161 };
5162 #undef MAPPING_INIT
5163 #undef MAPPING_INIT_EXACT
5164
5165 const int Layout::section_name_mapping_count =
5166 (sizeof(Layout::section_name_mapping)
5167 / sizeof(Layout::section_name_mapping[0]));
5168
5169 const int Layout::text_section_name_mapping_count =
5170 (sizeof(Layout::text_section_name_mapping)
5171 / sizeof(Layout::text_section_name_mapping[0]));
5172
5173 // Find section name NAME in PSNM and return the mapped name if found
5174 // with the length set in PLEN.
5175 const char *
5176 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5177 const int count,
5178 const char* name, size_t* plen)
5179 {
5180 for (int i = 0; i < count; ++i, ++psnm)
5181 {
5182 if (psnm->fromlen > 0)
5183 {
5184 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5185 {
5186 *plen = psnm->tolen;
5187 return psnm->to;
5188 }
5189 }
5190 else
5191 {
5192 if (strcmp(name, psnm->from) == 0)
5193 {
5194 *plen = psnm->tolen;
5195 return psnm->to;
5196 }
5197 }
5198 }
5199 return NULL;
5200 }
5201
5202 // Choose the output section name to use given an input section name.
5203 // Set *PLEN to the length of the name. *PLEN is initialized to the
5204 // length of NAME.
5205
5206 const char*
5207 Layout::output_section_name(const Relobj* relobj, const char* name,
5208 size_t* plen)
5209 {
5210 // gcc 4.3 generates the following sorts of section names when it
5211 // needs a section name specific to a function:
5212 // .text.FN
5213 // .rodata.FN
5214 // .sdata2.FN
5215 // .data.FN
5216 // .data.rel.FN
5217 // .data.rel.local.FN
5218 // .data.rel.ro.FN
5219 // .data.rel.ro.local.FN
5220 // .sdata.FN
5221 // .bss.FN
5222 // .sbss.FN
5223 // .tdata.FN
5224 // .tbss.FN
5225
5226 // The GNU linker maps all of those to the part before the .FN,
5227 // except that .data.rel.local.FN is mapped to .data, and
5228 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5229 // beginning with .data.rel.ro.local are grouped together.
5230
5231 // For an anonymous namespace, the string FN can contain a '.'.
5232
5233 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5234 // GNU linker maps to .rodata.
5235
5236 // The .data.rel.ro sections are used with -z relro. The sections
5237 // are recognized by name. We use the same names that the GNU
5238 // linker does for these sections.
5239
5240 // It is hard to handle this in a principled way, so we don't even
5241 // try. We use a table of mappings. If the input section name is
5242 // not found in the table, we simply use it as the output section
5243 // name.
5244
5245 if (parameters->options().keep_text_section_prefix()
5246 && is_prefix_of(".text", name))
5247 {
5248 const char* match = match_section_name(text_section_name_mapping,
5249 text_section_name_mapping_count,
5250 name, plen);
5251 if (match != NULL)
5252 return match;
5253 }
5254
5255 const char* match = match_section_name(section_name_mapping,
5256 section_name_mapping_count, name, plen);
5257 if (match != NULL)
5258 return match;
5259
5260 // As an additional complication, .ctors sections are output in
5261 // either .ctors or .init_array sections, and .dtors sections are
5262 // output in either .dtors or .fini_array sections.
5263 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5264 {
5265 if (parameters->options().ctors_in_init_array())
5266 {
5267 *plen = 11;
5268 return name[1] == 'c' ? ".init_array" : ".fini_array";
5269 }
5270 else
5271 {
5272 *plen = 6;
5273 return name[1] == 'c' ? ".ctors" : ".dtors";
5274 }
5275 }
5276 if (parameters->options().ctors_in_init_array()
5277 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5278 {
5279 // To make .init_array/.fini_array work with gcc we must exclude
5280 // .ctors and .dtors sections from the crtbegin and crtend
5281 // files.
5282 if (relobj == NULL
5283 || (!Layout::match_file_name(relobj, "crtbegin")
5284 && !Layout::match_file_name(relobj, "crtend")))
5285 {
5286 *plen = 11;
5287 return name[1] == 'c' ? ".init_array" : ".fini_array";
5288 }
5289 }
5290
5291 return name;
5292 }
5293
5294 // Return true if RELOBJ is an input file whose base name matches
5295 // FILE_NAME. The base name must have an extension of ".o", and must
5296 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5297 // to match crtbegin.o as well as crtbeginS.o without getting confused
5298 // by other possibilities. Overall matching the file name this way is
5299 // a dreadful hack, but the GNU linker does it in order to better
5300 // support gcc, and we need to be compatible.
5301
5302 bool
5303 Layout::match_file_name(const Relobj* relobj, const char* match)
5304 {
5305 const std::string& file_name(relobj->name());
5306 const char* base_name = lbasename(file_name.c_str());
5307 size_t match_len = strlen(match);
5308 if (strncmp(base_name, match, match_len) != 0)
5309 return false;
5310 size_t base_len = strlen(base_name);
5311 if (base_len != match_len + 2 && base_len != match_len + 3)
5312 return false;
5313 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5314 }
5315
5316 // Check if a comdat group or .gnu.linkonce section with the given
5317 // NAME is selected for the link. If there is already a section,
5318 // *KEPT_SECTION is set to point to the existing section and the
5319 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5320 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5321 // *KEPT_SECTION is set to the internal copy and the function returns
5322 // true.
5323
5324 bool
5325 Layout::find_or_add_kept_section(const std::string& name,
5326 Relobj* object,
5327 unsigned int shndx,
5328 bool is_comdat,
5329 bool is_group_name,
5330 Kept_section** kept_section)
5331 {
5332 // It's normal to see a couple of entries here, for the x86 thunk
5333 // sections. If we see more than a few, we're linking a C++
5334 // program, and we resize to get more space to minimize rehashing.
5335 if (this->signatures_.size() > 4
5336 && !this->resized_signatures_)
5337 {
5338 reserve_unordered_map(&this->signatures_,
5339 this->number_of_input_files_ * 64);
5340 this->resized_signatures_ = true;
5341 }
5342
5343 Kept_section candidate;
5344 std::pair<Signatures::iterator, bool> ins =
5345 this->signatures_.insert(std::make_pair(name, candidate));
5346
5347 if (kept_section != NULL)
5348 *kept_section = &ins.first->second;
5349 if (ins.second)
5350 {
5351 // This is the first time we've seen this signature.
5352 ins.first->second.set_object(object);
5353 ins.first->second.set_shndx(shndx);
5354 if (is_comdat)
5355 ins.first->second.set_is_comdat();
5356 if (is_group_name)
5357 ins.first->second.set_is_group_name();
5358 return true;
5359 }
5360
5361 // We have already seen this signature.
5362
5363 if (ins.first->second.is_group_name())
5364 {
5365 // We've already seen a real section group with this signature.
5366 // If the kept group is from a plugin object, and we're in the
5367 // replacement phase, accept the new one as a replacement.
5368 if (ins.first->second.object() == NULL
5369 && parameters->options().plugins()->in_replacement_phase())
5370 {
5371 ins.first->second.set_object(object);
5372 ins.first->second.set_shndx(shndx);
5373 return true;
5374 }
5375 return false;
5376 }
5377 else if (is_group_name)
5378 {
5379 // This is a real section group, and we've already seen a
5380 // linkonce section with this signature. Record that we've seen
5381 // a section group, and don't include this section group.
5382 ins.first->second.set_is_group_name();
5383 return false;
5384 }
5385 else
5386 {
5387 // We've already seen a linkonce section and this is a linkonce
5388 // section. These don't block each other--this may be the same
5389 // symbol name with different section types.
5390 return true;
5391 }
5392 }
5393
5394 // Store the allocated sections into the section list.
5395
5396 void
5397 Layout::get_allocated_sections(Section_list* section_list) const
5398 {
5399 for (Section_list::const_iterator p = this->section_list_.begin();
5400 p != this->section_list_.end();
5401 ++p)
5402 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5403 section_list->push_back(*p);
5404 }
5405
5406 // Store the executable sections into the section list.
5407
5408 void
5409 Layout::get_executable_sections(Section_list* section_list) const
5410 {
5411 for (Section_list::const_iterator p = this->section_list_.begin();
5412 p != this->section_list_.end();
5413 ++p)
5414 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5415 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5416 section_list->push_back(*p);
5417 }
5418
5419 // Create an output segment.
5420
5421 Output_segment*
5422 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5423 {
5424 gold_assert(!parameters->options().relocatable());
5425 Output_segment* oseg = new Output_segment(type, flags);
5426 this->segment_list_.push_back(oseg);
5427
5428 if (type == elfcpp::PT_TLS)
5429 this->tls_segment_ = oseg;
5430 else if (type == elfcpp::PT_GNU_RELRO)
5431 this->relro_segment_ = oseg;
5432 else if (type == elfcpp::PT_INTERP)
5433 this->interp_segment_ = oseg;
5434
5435 return oseg;
5436 }
5437
5438 // Return the file offset of the normal symbol table.
5439
5440 off_t
5441 Layout::symtab_section_offset() const
5442 {
5443 if (this->symtab_section_ != NULL)
5444 return this->symtab_section_->offset();
5445 return 0;
5446 }
5447
5448 // Return the section index of the normal symbol table. It may have
5449 // been stripped by the -s/--strip-all option.
5450
5451 unsigned int
5452 Layout::symtab_section_shndx() const
5453 {
5454 if (this->symtab_section_ != NULL)
5455 return this->symtab_section_->out_shndx();
5456 return 0;
5457 }
5458
5459 // Write out the Output_sections. Most won't have anything to write,
5460 // since most of the data will come from input sections which are
5461 // handled elsewhere. But some Output_sections do have Output_data.
5462
5463 void
5464 Layout::write_output_sections(Output_file* of) const
5465 {
5466 for (Section_list::const_iterator p = this->section_list_.begin();
5467 p != this->section_list_.end();
5468 ++p)
5469 {
5470 if (!(*p)->after_input_sections())
5471 (*p)->write(of);
5472 }
5473 }
5474
5475 // Write out data not associated with a section or the symbol table.
5476
5477 void
5478 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5479 {
5480 if (!parameters->options().strip_all())
5481 {
5482 const Output_section* symtab_section = this->symtab_section_;
5483 for (Section_list::const_iterator p = this->section_list_.begin();
5484 p != this->section_list_.end();
5485 ++p)
5486 {
5487 if ((*p)->needs_symtab_index())
5488 {
5489 gold_assert(symtab_section != NULL);
5490 unsigned int index = (*p)->symtab_index();
5491 gold_assert(index > 0 && index != -1U);
5492 off_t off = (symtab_section->offset()
5493 + index * symtab_section->entsize());
5494 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5495 }
5496 }
5497 }
5498
5499 const Output_section* dynsym_section = this->dynsym_section_;
5500 for (Section_list::const_iterator p = this->section_list_.begin();
5501 p != this->section_list_.end();
5502 ++p)
5503 {
5504 if ((*p)->needs_dynsym_index())
5505 {
5506 gold_assert(dynsym_section != NULL);
5507 unsigned int index = (*p)->dynsym_index();
5508 gold_assert(index > 0 && index != -1U);
5509 off_t off = (dynsym_section->offset()
5510 + index * dynsym_section->entsize());
5511 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5512 }
5513 }
5514
5515 // Write out the Output_data which are not in an Output_section.
5516 for (Data_list::const_iterator p = this->special_output_list_.begin();
5517 p != this->special_output_list_.end();
5518 ++p)
5519 (*p)->write(of);
5520
5521 // Write out the Output_data which are not in an Output_section
5522 // and are regenerated in each iteration of relaxation.
5523 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5524 p != this->relax_output_list_.end();
5525 ++p)
5526 (*p)->write(of);
5527 }
5528
5529 // Write out the Output_sections which can only be written after the
5530 // input sections are complete.
5531
5532 void
5533 Layout::write_sections_after_input_sections(Output_file* of)
5534 {
5535 // Determine the final section offsets, and thus the final output
5536 // file size. Note we finalize the .shstrab last, to allow the
5537 // after_input_section sections to modify their section-names before
5538 // writing.
5539 if (this->any_postprocessing_sections_)
5540 {
5541 off_t off = this->output_file_size_;
5542 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5543
5544 // Now that we've finalized the names, we can finalize the shstrab.
5545 off =
5546 this->set_section_offsets(off,
5547 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5548
5549 if (off > this->output_file_size_)
5550 {
5551 of->resize(off);
5552 this->output_file_size_ = off;
5553 }
5554 }
5555
5556 for (Section_list::const_iterator p = this->section_list_.begin();
5557 p != this->section_list_.end();
5558 ++p)
5559 {
5560 if ((*p)->after_input_sections())
5561 (*p)->write(of);
5562 }
5563
5564 this->section_headers_->write(of);
5565 }
5566
5567 // If a tree-style build ID was requested, the parallel part of that computation
5568 // is already done, and the final hash-of-hashes is computed here. For other
5569 // types of build IDs, all the work is done here.
5570
5571 void
5572 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5573 size_t size_of_hashes) const
5574 {
5575 if (this->build_id_note_ == NULL)
5576 return;
5577
5578 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5579 this->build_id_note_->data_size());
5580
5581 if (array_of_hashes == NULL)
5582 {
5583 const size_t output_file_size = this->output_file_size();
5584 const unsigned char* iv = of->get_input_view(0, output_file_size);
5585 const char* style = parameters->options().build_id();
5586
5587 // If we get here with style == "tree" then the output must be
5588 // too small for chunking, and we use SHA-1 in that case.
5589 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5590 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5591 else if (strcmp(style, "md5") == 0)
5592 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5593 else
5594 gold_unreachable();
5595
5596 of->free_input_view(0, output_file_size, iv);
5597 }
5598 else
5599 {
5600 // Non-overlapping substrings of the output file have been hashed.
5601 // Compute SHA-1 hash of the hashes.
5602 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5603 size_of_hashes, ov);
5604 delete[] array_of_hashes;
5605 }
5606
5607 of->write_output_view(this->build_id_note_->offset(),
5608 this->build_id_note_->data_size(),
5609 ov);
5610 }
5611
5612 // Write out a binary file. This is called after the link is
5613 // complete. IN is the temporary output file we used to generate the
5614 // ELF code. We simply walk through the segments, read them from
5615 // their file offset in IN, and write them to their load address in
5616 // the output file. FIXME: with a bit more work, we could support
5617 // S-records and/or Intel hex format here.
5618
5619 void
5620 Layout::write_binary(Output_file* in) const
5621 {
5622 gold_assert(parameters->options().oformat_enum()
5623 == General_options::OBJECT_FORMAT_BINARY);
5624
5625 // Get the size of the binary file.
5626 uint64_t max_load_address = 0;
5627 for (Segment_list::const_iterator p = this->segment_list_.begin();
5628 p != this->segment_list_.end();
5629 ++p)
5630 {
5631 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5632 {
5633 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5634 if (max_paddr > max_load_address)
5635 max_load_address = max_paddr;
5636 }
5637 }
5638
5639 Output_file out(parameters->options().output_file_name());
5640 out.open(max_load_address);
5641
5642 for (Segment_list::const_iterator p = this->segment_list_.begin();
5643 p != this->segment_list_.end();
5644 ++p)
5645 {
5646 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5647 {
5648 const unsigned char* vin = in->get_input_view((*p)->offset(),
5649 (*p)->filesz());
5650 unsigned char* vout = out.get_output_view((*p)->paddr(),
5651 (*p)->filesz());
5652 memcpy(vout, vin, (*p)->filesz());
5653 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5654 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5655 }
5656 }
5657
5658 out.close();
5659 }
5660
5661 // Print the output sections to the map file.
5662
5663 void
5664 Layout::print_to_mapfile(Mapfile* mapfile) const
5665 {
5666 for (Segment_list::const_iterator p = this->segment_list_.begin();
5667 p != this->segment_list_.end();
5668 ++p)
5669 (*p)->print_sections_to_mapfile(mapfile);
5670 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5671 p != this->unattached_section_list_.end();
5672 ++p)
5673 (*p)->print_to_mapfile(mapfile);
5674 }
5675
5676 // Print statistical information to stderr. This is used for --stats.
5677
5678 void
5679 Layout::print_stats() const
5680 {
5681 this->namepool_.print_stats("section name pool");
5682 this->sympool_.print_stats("output symbol name pool");
5683 this->dynpool_.print_stats("dynamic name pool");
5684
5685 for (Section_list::const_iterator p = this->section_list_.begin();
5686 p != this->section_list_.end();
5687 ++p)
5688 (*p)->print_merge_stats();
5689 }
5690
5691 // Write_sections_task methods.
5692
5693 // We can always run this task.
5694
5695 Task_token*
5696 Write_sections_task::is_runnable()
5697 {
5698 return NULL;
5699 }
5700
5701 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5702 // when finished.
5703
5704 void
5705 Write_sections_task::locks(Task_locker* tl)
5706 {
5707 tl->add(this, this->output_sections_blocker_);
5708 if (this->input_sections_blocker_ != NULL)
5709 tl->add(this, this->input_sections_blocker_);
5710 tl->add(this, this->final_blocker_);
5711 }
5712
5713 // Run the task--write out the data.
5714
5715 void
5716 Write_sections_task::run(Workqueue*)
5717 {
5718 this->layout_->write_output_sections(this->of_);
5719 }
5720
5721 // Write_data_task methods.
5722
5723 // We can always run this task.
5724
5725 Task_token*
5726 Write_data_task::is_runnable()
5727 {
5728 return NULL;
5729 }
5730
5731 // We need to unlock FINAL_BLOCKER when finished.
5732
5733 void
5734 Write_data_task::locks(Task_locker* tl)
5735 {
5736 tl->add(this, this->final_blocker_);
5737 }
5738
5739 // Run the task--write out the data.
5740
5741 void
5742 Write_data_task::run(Workqueue*)
5743 {
5744 this->layout_->write_data(this->symtab_, this->of_);
5745 }
5746
5747 // Write_symbols_task methods.
5748
5749 // We can always run this task.
5750
5751 Task_token*
5752 Write_symbols_task::is_runnable()
5753 {
5754 return NULL;
5755 }
5756
5757 // We need to unlock FINAL_BLOCKER when finished.
5758
5759 void
5760 Write_symbols_task::locks(Task_locker* tl)
5761 {
5762 tl->add(this, this->final_blocker_);
5763 }
5764
5765 // Run the task--write out the symbols.
5766
5767 void
5768 Write_symbols_task::run(Workqueue*)
5769 {
5770 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5771 this->layout_->symtab_xindex(),
5772 this->layout_->dynsym_xindex(), this->of_);
5773 }
5774
5775 // Write_after_input_sections_task methods.
5776
5777 // We can only run this task after the input sections have completed.
5778
5779 Task_token*
5780 Write_after_input_sections_task::is_runnable()
5781 {
5782 if (this->input_sections_blocker_->is_blocked())
5783 return this->input_sections_blocker_;
5784 return NULL;
5785 }
5786
5787 // We need to unlock FINAL_BLOCKER when finished.
5788
5789 void
5790 Write_after_input_sections_task::locks(Task_locker* tl)
5791 {
5792 tl->add(this, this->final_blocker_);
5793 }
5794
5795 // Run the task.
5796
5797 void
5798 Write_after_input_sections_task::run(Workqueue*)
5799 {
5800 this->layout_->write_sections_after_input_sections(this->of_);
5801 }
5802
5803 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5804 // or as a "tree" where each chunk of the string is hashed and then those
5805 // hashes are put into a (much smaller) string which is hashed with sha1.
5806 // We compute a checksum over the entire file because that is simplest.
5807
5808 void
5809 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5810 {
5811 Task_token* post_hash_tasks_blocker = new Task_token(true);
5812 const Layout* layout = this->layout_;
5813 Output_file* of = this->of_;
5814 const size_t filesize = (layout->output_file_size() <= 0 ? 0
5815 : static_cast<size_t>(layout->output_file_size()));
5816 unsigned char* array_of_hashes = NULL;
5817 size_t size_of_hashes = 0;
5818
5819 if (strcmp(this->options_->build_id(), "tree") == 0
5820 && this->options_->build_id_chunk_size_for_treehash() > 0
5821 && filesize > 0
5822 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5823 {
5824 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5825 const size_t chunk_size =
5826 this->options_->build_id_chunk_size_for_treehash();
5827 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5828 post_hash_tasks_blocker->add_blockers(num_hashes);
5829 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5830 array_of_hashes = new unsigned char[size_of_hashes];
5831 unsigned char *dst = array_of_hashes;
5832 for (size_t i = 0, src_offset = 0; i < num_hashes;
5833 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5834 {
5835 size_t size = std::min(chunk_size, filesize - src_offset);
5836 workqueue->queue(new Hash_task(of,
5837 src_offset,
5838 size,
5839 dst,
5840 post_hash_tasks_blocker));
5841 }
5842 }
5843
5844 // Queue the final task to write the build id and close the output file.
5845 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5846 layout,
5847 of,
5848 array_of_hashes,
5849 size_of_hashes),
5850 post_hash_tasks_blocker,
5851 "Task_function Close_task_runner"));
5852 }
5853
5854 // Close_task_runner methods.
5855
5856 // Finish up the build ID computation, if necessary, and write a binary file,
5857 // if necessary. Then close the output file.
5858
5859 void
5860 Close_task_runner::run(Workqueue*, const Task*)
5861 {
5862 // At this point the multi-threaded part of the build ID computation,
5863 // if any, is done. See Build_id_task_runner.
5864 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5865 this->size_of_hashes_);
5866
5867 // If we've been asked to create a binary file, we do so here.
5868 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5869 this->layout_->write_binary(this->of_);
5870
5871 this->of_->close();
5872 }
5873
5874 // Instantiate the templates we need. We could use the configure
5875 // script to restrict this to only the ones for implemented targets.
5876
5877 #ifdef HAVE_TARGET_32_LITTLE
5878 template
5879 Output_section*
5880 Layout::init_fixed_output_section<32, false>(
5881 const char* name,
5882 elfcpp::Shdr<32, false>& shdr);
5883 #endif
5884
5885 #ifdef HAVE_TARGET_32_BIG
5886 template
5887 Output_section*
5888 Layout::init_fixed_output_section<32, true>(
5889 const char* name,
5890 elfcpp::Shdr<32, true>& shdr);
5891 #endif
5892
5893 #ifdef HAVE_TARGET_64_LITTLE
5894 template
5895 Output_section*
5896 Layout::init_fixed_output_section<64, false>(
5897 const char* name,
5898 elfcpp::Shdr<64, false>& shdr);
5899 #endif
5900
5901 #ifdef HAVE_TARGET_64_BIG
5902 template
5903 Output_section*
5904 Layout::init_fixed_output_section<64, true>(
5905 const char* name,
5906 elfcpp::Shdr<64, true>& shdr);
5907 #endif
5908
5909 #ifdef HAVE_TARGET_32_LITTLE
5910 template
5911 Output_section*
5912 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5913 unsigned int shndx,
5914 const char* name,
5915 const elfcpp::Shdr<32, false>& shdr,
5916 unsigned int, unsigned int, unsigned int, off_t*);
5917 #endif
5918
5919 #ifdef HAVE_TARGET_32_BIG
5920 template
5921 Output_section*
5922 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5923 unsigned int shndx,
5924 const char* name,
5925 const elfcpp::Shdr<32, true>& shdr,
5926 unsigned int, unsigned int, unsigned int, off_t*);
5927 #endif
5928
5929 #ifdef HAVE_TARGET_64_LITTLE
5930 template
5931 Output_section*
5932 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5933 unsigned int shndx,
5934 const char* name,
5935 const elfcpp::Shdr<64, false>& shdr,
5936 unsigned int, unsigned int, unsigned int, off_t*);
5937 #endif
5938
5939 #ifdef HAVE_TARGET_64_BIG
5940 template
5941 Output_section*
5942 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5943 unsigned int shndx,
5944 const char* name,
5945 const elfcpp::Shdr<64, true>& shdr,
5946 unsigned int, unsigned int, unsigned int, off_t*);
5947 #endif
5948
5949 #ifdef HAVE_TARGET_32_LITTLE
5950 template
5951 Output_section*
5952 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5953 unsigned int reloc_shndx,
5954 const elfcpp::Shdr<32, false>& shdr,
5955 Output_section* data_section,
5956 Relocatable_relocs* rr);
5957 #endif
5958
5959 #ifdef HAVE_TARGET_32_BIG
5960 template
5961 Output_section*
5962 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5963 unsigned int reloc_shndx,
5964 const elfcpp::Shdr<32, true>& shdr,
5965 Output_section* data_section,
5966 Relocatable_relocs* rr);
5967 #endif
5968
5969 #ifdef HAVE_TARGET_64_LITTLE
5970 template
5971 Output_section*
5972 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5973 unsigned int reloc_shndx,
5974 const elfcpp::Shdr<64, false>& shdr,
5975 Output_section* data_section,
5976 Relocatable_relocs* rr);
5977 #endif
5978
5979 #ifdef HAVE_TARGET_64_BIG
5980 template
5981 Output_section*
5982 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5983 unsigned int reloc_shndx,
5984 const elfcpp::Shdr<64, true>& shdr,
5985 Output_section* data_section,
5986 Relocatable_relocs* rr);
5987 #endif
5988
5989 #ifdef HAVE_TARGET_32_LITTLE
5990 template
5991 void
5992 Layout::layout_group<32, false>(Symbol_table* symtab,
5993 Sized_relobj_file<32, false>* object,
5994 unsigned int,
5995 const char* group_section_name,
5996 const char* signature,
5997 const elfcpp::Shdr<32, false>& shdr,
5998 elfcpp::Elf_Word flags,
5999 std::vector<unsigned int>* shndxes);
6000 #endif
6001
6002 #ifdef HAVE_TARGET_32_BIG
6003 template
6004 void
6005 Layout::layout_group<32, true>(Symbol_table* symtab,
6006 Sized_relobj_file<32, true>* object,
6007 unsigned int,
6008 const char* group_section_name,
6009 const char* signature,
6010 const elfcpp::Shdr<32, true>& shdr,
6011 elfcpp::Elf_Word flags,
6012 std::vector<unsigned int>* shndxes);
6013 #endif
6014
6015 #ifdef HAVE_TARGET_64_LITTLE
6016 template
6017 void
6018 Layout::layout_group<64, false>(Symbol_table* symtab,
6019 Sized_relobj_file<64, false>* object,
6020 unsigned int,
6021 const char* group_section_name,
6022 const char* signature,
6023 const elfcpp::Shdr<64, false>& shdr,
6024 elfcpp::Elf_Word flags,
6025 std::vector<unsigned int>* shndxes);
6026 #endif
6027
6028 #ifdef HAVE_TARGET_64_BIG
6029 template
6030 void
6031 Layout::layout_group<64, true>(Symbol_table* symtab,
6032 Sized_relobj_file<64, true>* object,
6033 unsigned int,
6034 const char* group_section_name,
6035 const char* signature,
6036 const elfcpp::Shdr<64, true>& shdr,
6037 elfcpp::Elf_Word flags,
6038 std::vector<unsigned int>* shndxes);
6039 #endif
6040
6041 #ifdef HAVE_TARGET_32_LITTLE
6042 template
6043 Output_section*
6044 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6045 const unsigned char* symbols,
6046 off_t symbols_size,
6047 const unsigned char* symbol_names,
6048 off_t symbol_names_size,
6049 unsigned int shndx,
6050 const elfcpp::Shdr<32, false>& shdr,
6051 unsigned int reloc_shndx,
6052 unsigned int reloc_type,
6053 off_t* off);
6054 #endif
6055
6056 #ifdef HAVE_TARGET_32_BIG
6057 template
6058 Output_section*
6059 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6060 const unsigned char* symbols,
6061 off_t symbols_size,
6062 const unsigned char* symbol_names,
6063 off_t symbol_names_size,
6064 unsigned int shndx,
6065 const elfcpp::Shdr<32, true>& shdr,
6066 unsigned int reloc_shndx,
6067 unsigned int reloc_type,
6068 off_t* off);
6069 #endif
6070
6071 #ifdef HAVE_TARGET_64_LITTLE
6072 template
6073 Output_section*
6074 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6075 const unsigned char* symbols,
6076 off_t symbols_size,
6077 const unsigned char* symbol_names,
6078 off_t symbol_names_size,
6079 unsigned int shndx,
6080 const elfcpp::Shdr<64, false>& shdr,
6081 unsigned int reloc_shndx,
6082 unsigned int reloc_type,
6083 off_t* off);
6084 #endif
6085
6086 #ifdef HAVE_TARGET_64_BIG
6087 template
6088 Output_section*
6089 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6090 const unsigned char* symbols,
6091 off_t symbols_size,
6092 const unsigned char* symbol_names,
6093 off_t symbol_names_size,
6094 unsigned int shndx,
6095 const elfcpp::Shdr<64, true>& shdr,
6096 unsigned int reloc_shndx,
6097 unsigned int reloc_type,
6098 off_t* off);
6099 #endif
6100
6101 #ifdef HAVE_TARGET_32_LITTLE
6102 template
6103 void
6104 Layout::add_to_gdb_index(bool is_type_unit,
6105 Sized_relobj<32, false>* object,
6106 const unsigned char* symbols,
6107 off_t symbols_size,
6108 unsigned int shndx,
6109 unsigned int reloc_shndx,
6110 unsigned int reloc_type);
6111 #endif
6112
6113 #ifdef HAVE_TARGET_32_BIG
6114 template
6115 void
6116 Layout::add_to_gdb_index(bool is_type_unit,
6117 Sized_relobj<32, true>* object,
6118 const unsigned char* symbols,
6119 off_t symbols_size,
6120 unsigned int shndx,
6121 unsigned int reloc_shndx,
6122 unsigned int reloc_type);
6123 #endif
6124
6125 #ifdef HAVE_TARGET_64_LITTLE
6126 template
6127 void
6128 Layout::add_to_gdb_index(bool is_type_unit,
6129 Sized_relobj<64, false>* object,
6130 const unsigned char* symbols,
6131 off_t symbols_size,
6132 unsigned int shndx,
6133 unsigned int reloc_shndx,
6134 unsigned int reloc_type);
6135 #endif
6136
6137 #ifdef HAVE_TARGET_64_BIG
6138 template
6139 void
6140 Layout::add_to_gdb_index(bool is_type_unit,
6141 Sized_relobj<64, true>* object,
6142 const unsigned char* symbols,
6143 off_t symbols_size,
6144 unsigned int shndx,
6145 unsigned int reloc_shndx,
6146 unsigned int reloc_type);
6147 #endif
6148
6149 } // End namespace gold.
This page took 0.257819 seconds and 4 git commands to generate.