* configure.ac (ENABLE_GOLD): Consider *-*-nacl* targets ELF.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247 const Layout::Section_list& sections,
248 const Layout::Data_list& special_outputs)
249 {
250 for(Layout::Section_list::const_iterator p = sections.begin();
251 p != sections.end();
252 ++p)
253 gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255 for(Layout::Data_list::const_iterator p = special_outputs.begin();
256 p != special_outputs.end();
257 ++p)
258 gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265 const Layout::Section_list& sections)
266 {
267 for(Layout::Section_list::const_iterator p = sections.begin();
268 p != sections.end();
269 ++p)
270 {
271 Output_section* os = *p;
272 Section_info info;
273 info.output_section = os;
274 info.address = os->is_address_valid() ? os->address() : 0;
275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 info.offset = os->is_offset_valid()? os->offset() : -1 ;
277 this->section_infos_.push_back(info);
278 }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285 const Layout::Section_list& sections)
286 {
287 size_t i = 0;
288 for(Layout::Section_list::const_iterator p = sections.begin();
289 p != sections.end();
290 ++p, ++i)
291 {
292 Output_section* os = *p;
293 uint64_t address = os->is_address_valid() ? os->address() : 0;
294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297 if (i >= this->section_infos_.size())
298 {
299 gold_fatal("Section_info of %s missing.\n", os->name());
300 }
301 const Section_info& info = this->section_infos_[i];
302 if (os != info.output_section)
303 gold_fatal("Section order changed. Expecting %s but see %s\n",
304 info.output_section->name(), os->name());
305 if (address != info.address
306 || data_size != info.data_size
307 || offset != info.offset)
308 gold_fatal("Section %s changed.\n", os->name());
309 }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections. This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320 Layout* layout = this->layout_;
321 off_t file_size = layout->finalize(this->input_objects_,
322 this->symtab_,
323 this->target_,
324 task);
325
326 // Now we know the final size of the output file and we know where
327 // each piece of information goes.
328
329 if (this->mapfile_ != NULL)
330 {
331 this->mapfile_->print_discarded_sections(this->input_objects_);
332 layout->print_to_mapfile(this->mapfile_);
333 }
334
335 Output_file* of;
336 if (layout->incremental_base() == NULL)
337 {
338 of = new Output_file(parameters->options().output_file_name());
339 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340 of->set_is_temporary();
341 of->open(file_size);
342 }
343 else
344 {
345 of = layout->incremental_base()->output_file();
346
347 // Apply the incremental relocations for symbols whose values
348 // have changed. We do this before we resize the file and start
349 // writing anything else to it, so that we can read the old
350 // incremental information from the file before (possibly)
351 // overwriting it.
352 if (parameters->incremental_update())
353 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354 this->layout_,
355 of);
356
357 of->resize(file_size);
358 }
359
360 // Queue up the final set of tasks.
361 gold::queue_final_tasks(this->options_, this->input_objects_,
362 this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368 : number_of_input_files_(number_of_input_files),
369 script_options_(script_options),
370 namepool_(),
371 sympool_(),
372 dynpool_(),
373 signatures_(),
374 section_name_map_(),
375 segment_list_(),
376 section_list_(),
377 unattached_section_list_(),
378 special_output_list_(),
379 section_headers_(NULL),
380 tls_segment_(NULL),
381 relro_segment_(NULL),
382 interp_segment_(NULL),
383 increase_relro_(0),
384 symtab_section_(NULL),
385 symtab_xindex_(NULL),
386 dynsym_section_(NULL),
387 dynsym_xindex_(NULL),
388 dynamic_section_(NULL),
389 dynamic_symbol_(NULL),
390 dynamic_data_(NULL),
391 eh_frame_section_(NULL),
392 eh_frame_data_(NULL),
393 added_eh_frame_data_(false),
394 eh_frame_hdr_section_(NULL),
395 gdb_index_data_(NULL),
396 build_id_note_(NULL),
397 debug_abbrev_(NULL),
398 debug_info_(NULL),
399 group_signatures_(),
400 output_file_size_(-1),
401 have_added_input_section_(false),
402 sections_are_attached_(false),
403 input_requires_executable_stack_(false),
404 input_with_gnu_stack_note_(false),
405 input_without_gnu_stack_note_(false),
406 has_static_tls_(false),
407 any_postprocessing_sections_(false),
408 resized_signatures_(false),
409 have_stabstr_section_(false),
410 section_ordering_specified_(false),
411 incremental_inputs_(NULL),
412 record_output_section_data_from_script_(false),
413 script_output_section_data_list_(),
414 segment_states_(NULL),
415 relaxation_debug_check_(NULL),
416 section_order_map_(),
417 input_section_position_(),
418 input_section_glob_(),
419 incremental_base_(NULL),
420 free_list_()
421 {
422 // Make space for more than enough segments for a typical file.
423 // This is just for efficiency--it's OK if we wind up needing more.
424 this->segment_list_.reserve(12);
425
426 // We expect two unattached Output_data objects: the file header and
427 // the segment headers.
428 this->special_output_list_.reserve(2);
429
430 // Initialize structure needed for an incremental build.
431 if (parameters->incremental())
432 this->incremental_inputs_ = new Incremental_inputs;
433
434 // The section name pool is worth optimizing in all cases, because
435 // it is small, but there are often overlaps due to .rel sections.
436 this->namepool_.set_optimize();
437 }
438
439 // For incremental links, record the base file to be modified.
440
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444 this->incremental_base_ = base;
445 this->free_list_.init(base->output_file()->filesize(), true);
446 }
447
448 // Hash a key we use to look up an output section mapping.
449
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453 return k.first + k.second.first + k.second.second;
454 }
455
456 // Returns whether the given section is in the list of
457 // debug-sections-used-by-some-version-of-gdb. Currently,
458 // we've checked versions of gdb up to and including 6.7.1.
459
460 static const char* gdb_sections[] =
461 { ".debug_abbrev",
462 // ".debug_aranges", // not used by gdb as of 6.7.1
463 ".debug_frame",
464 ".debug_info",
465 ".debug_types",
466 ".debug_line",
467 ".debug_loc",
468 ".debug_macinfo",
469 // ".debug_pubnames", // not used by gdb as of 6.7.1
470 ".debug_ranges",
471 ".debug_str",
472 };
473
474 static const char* lines_only_debug_sections[] =
475 { ".debug_abbrev",
476 // ".debug_aranges", // not used by gdb as of 6.7.1
477 // ".debug_frame",
478 ".debug_info",
479 // ".debug_types",
480 ".debug_line",
481 // ".debug_loc",
482 // ".debug_macinfo",
483 // ".debug_pubnames", // not used by gdb as of 6.7.1
484 // ".debug_ranges",
485 ".debug_str",
486 };
487
488 static inline bool
489 is_gdb_debug_section(const char* str)
490 {
491 // We can do this faster: binary search or a hashtable. But why bother?
492 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
493 if (strcmp(str, gdb_sections[i]) == 0)
494 return true;
495 return false;
496 }
497
498 static inline bool
499 is_lines_only_debug_section(const char* str)
500 {
501 // We can do this faster: binary search or a hashtable. But why bother?
502 for (size_t i = 0;
503 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
504 ++i)
505 if (strcmp(str, lines_only_debug_sections[i]) == 0)
506 return true;
507 return false;
508 }
509
510 // Sometimes we compress sections. This is typically done for
511 // sections that are not part of normal program execution (such as
512 // .debug_* sections), and where the readers of these sections know
513 // how to deal with compressed sections. This routine doesn't say for
514 // certain whether we'll compress -- it depends on commandline options
515 // as well -- just whether this section is a candidate for compression.
516 // (The Output_compressed_section class decides whether to compress
517 // a given section, and picks the name of the compressed section.)
518
519 static bool
520 is_compressible_debug_section(const char* secname)
521 {
522 return (is_prefix_of(".debug", secname));
523 }
524
525 // We may see compressed debug sections in input files. Return TRUE
526 // if this is the name of a compressed debug section.
527
528 bool
529 is_compressed_debug_section(const char* secname)
530 {
531 return (is_prefix_of(".zdebug", secname));
532 }
533
534 // Whether to include this section in the link.
535
536 template<int size, bool big_endian>
537 bool
538 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
539 const elfcpp::Shdr<size, big_endian>& shdr)
540 {
541 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
542 return false;
543
544 switch (shdr.get_sh_type())
545 {
546 case elfcpp::SHT_NULL:
547 case elfcpp::SHT_SYMTAB:
548 case elfcpp::SHT_DYNSYM:
549 case elfcpp::SHT_HASH:
550 case elfcpp::SHT_DYNAMIC:
551 case elfcpp::SHT_SYMTAB_SHNDX:
552 return false;
553
554 case elfcpp::SHT_STRTAB:
555 // Discard the sections which have special meanings in the ELF
556 // ABI. Keep others (e.g., .stabstr). We could also do this by
557 // checking the sh_link fields of the appropriate sections.
558 return (strcmp(name, ".dynstr") != 0
559 && strcmp(name, ".strtab") != 0
560 && strcmp(name, ".shstrtab") != 0);
561
562 case elfcpp::SHT_RELA:
563 case elfcpp::SHT_REL:
564 case elfcpp::SHT_GROUP:
565 // If we are emitting relocations these should be handled
566 // elsewhere.
567 gold_assert(!parameters->options().relocatable()
568 && !parameters->options().emit_relocs());
569 return false;
570
571 case elfcpp::SHT_PROGBITS:
572 if (parameters->options().strip_debug()
573 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
574 {
575 if (is_debug_info_section(name))
576 return false;
577 }
578 if (parameters->options().strip_debug_non_line()
579 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
580 {
581 // Debugging sections can only be recognized by name.
582 if (is_prefix_of(".debug", name)
583 && !is_lines_only_debug_section(name))
584 return false;
585 }
586 if (parameters->options().strip_debug_gdb()
587 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
588 {
589 // Debugging sections can only be recognized by name.
590 if (is_prefix_of(".debug", name)
591 && !is_gdb_debug_section(name))
592 return false;
593 }
594 if (parameters->options().strip_lto_sections()
595 && !parameters->options().relocatable()
596 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
597 {
598 // Ignore LTO sections containing intermediate code.
599 if (is_prefix_of(".gnu.lto_", name))
600 return false;
601 }
602 // The GNU linker strips .gnu_debuglink sections, so we do too.
603 // This is a feature used to keep debugging information in
604 // separate files.
605 if (strcmp(name, ".gnu_debuglink") == 0)
606 return false;
607 return true;
608
609 default:
610 return true;
611 }
612 }
613
614 // Return an output section named NAME, or NULL if there is none.
615
616 Output_section*
617 Layout::find_output_section(const char* name) const
618 {
619 for (Section_list::const_iterator p = this->section_list_.begin();
620 p != this->section_list_.end();
621 ++p)
622 if (strcmp((*p)->name(), name) == 0)
623 return *p;
624 return NULL;
625 }
626
627 // Return an output segment of type TYPE, with segment flags SET set
628 // and segment flags CLEAR clear. Return NULL if there is none.
629
630 Output_segment*
631 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
632 elfcpp::Elf_Word clear) const
633 {
634 for (Segment_list::const_iterator p = this->segment_list_.begin();
635 p != this->segment_list_.end();
636 ++p)
637 if (static_cast<elfcpp::PT>((*p)->type()) == type
638 && ((*p)->flags() & set) == set
639 && ((*p)->flags() & clear) == 0)
640 return *p;
641 return NULL;
642 }
643
644 // When we put a .ctors or .dtors section with more than one word into
645 // a .init_array or .fini_array section, we need to reverse the words
646 // in the .ctors/.dtors section. This is because .init_array executes
647 // constructors front to back, where .ctors executes them back to
648 // front, and vice-versa for .fini_array/.dtors. Although we do want
649 // to remap .ctors/.dtors into .init_array/.fini_array because it can
650 // be more efficient, we don't want to change the order in which
651 // constructors/destructors are run. This set just keeps track of
652 // these sections which need to be reversed. It is only changed by
653 // Layout::layout. It should be a private member of Layout, but that
654 // would require layout.h to #include object.h to get the definition
655 // of Section_id.
656 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
657
658 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
659 // .init_array/.fini_array section.
660
661 bool
662 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
663 {
664 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
665 != ctors_sections_in_init_array.end());
666 }
667
668 // Return the output section to use for section NAME with type TYPE
669 // and section flags FLAGS. NAME must be canonicalized in the string
670 // pool, and NAME_KEY is the key. ORDER is where this should appear
671 // in the output sections. IS_RELRO is true for a relro section.
672
673 Output_section*
674 Layout::get_output_section(const char* name, Stringpool::Key name_key,
675 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
676 Output_section_order order, bool is_relro)
677 {
678 elfcpp::Elf_Word lookup_type = type;
679
680 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
681 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
682 // .init_array, .fini_array, and .preinit_array sections by name
683 // whatever their type in the input file. We do this because the
684 // types are not always right in the input files.
685 if (lookup_type == elfcpp::SHT_INIT_ARRAY
686 || lookup_type == elfcpp::SHT_FINI_ARRAY
687 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
688 lookup_type = elfcpp::SHT_PROGBITS;
689
690 elfcpp::Elf_Xword lookup_flags = flags;
691
692 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
693 // read-write with read-only sections. Some other ELF linkers do
694 // not do this. FIXME: Perhaps there should be an option
695 // controlling this.
696 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
697
698 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
699 const std::pair<Key, Output_section*> v(key, NULL);
700 std::pair<Section_name_map::iterator, bool> ins(
701 this->section_name_map_.insert(v));
702
703 if (!ins.second)
704 return ins.first->second;
705 else
706 {
707 // This is the first time we've seen this name/type/flags
708 // combination. For compatibility with the GNU linker, we
709 // combine sections with contents and zero flags with sections
710 // with non-zero flags. This is a workaround for cases where
711 // assembler code forgets to set section flags. FIXME: Perhaps
712 // there should be an option to control this.
713 Output_section* os = NULL;
714
715 if (lookup_type == elfcpp::SHT_PROGBITS)
716 {
717 if (flags == 0)
718 {
719 Output_section* same_name = this->find_output_section(name);
720 if (same_name != NULL
721 && (same_name->type() == elfcpp::SHT_PROGBITS
722 || same_name->type() == elfcpp::SHT_INIT_ARRAY
723 || same_name->type() == elfcpp::SHT_FINI_ARRAY
724 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
725 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
726 os = same_name;
727 }
728 else if ((flags & elfcpp::SHF_TLS) == 0)
729 {
730 elfcpp::Elf_Xword zero_flags = 0;
731 const Key zero_key(name_key, std::make_pair(lookup_type,
732 zero_flags));
733 Section_name_map::iterator p =
734 this->section_name_map_.find(zero_key);
735 if (p != this->section_name_map_.end())
736 os = p->second;
737 }
738 }
739
740 if (os == NULL)
741 os = this->make_output_section(name, type, flags, order, is_relro);
742
743 ins.first->second = os;
744 return os;
745 }
746 }
747
748 // Pick the output section to use for section NAME, in input file
749 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
750 // linker created section. IS_INPUT_SECTION is true if we are
751 // choosing an output section for an input section found in a input
752 // file. ORDER is where this section should appear in the output
753 // sections. IS_RELRO is true for a relro section. This will return
754 // NULL if the input section should be discarded.
755
756 Output_section*
757 Layout::choose_output_section(const Relobj* relobj, const char* name,
758 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
759 bool is_input_section, Output_section_order order,
760 bool is_relro)
761 {
762 // We should not see any input sections after we have attached
763 // sections to segments.
764 gold_assert(!is_input_section || !this->sections_are_attached_);
765
766 // Some flags in the input section should not be automatically
767 // copied to the output section.
768 flags &= ~ (elfcpp::SHF_INFO_LINK
769 | elfcpp::SHF_GROUP
770 | elfcpp::SHF_MERGE
771 | elfcpp::SHF_STRINGS);
772
773 // We only clear the SHF_LINK_ORDER flag in for
774 // a non-relocatable link.
775 if (!parameters->options().relocatable())
776 flags &= ~elfcpp::SHF_LINK_ORDER;
777
778 if (this->script_options_->saw_sections_clause())
779 {
780 // We are using a SECTIONS clause, so the output section is
781 // chosen based only on the name.
782
783 Script_sections* ss = this->script_options_->script_sections();
784 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
785 Output_section** output_section_slot;
786 Script_sections::Section_type script_section_type;
787 const char* orig_name = name;
788 name = ss->output_section_name(file_name, name, &output_section_slot,
789 &script_section_type);
790 if (name == NULL)
791 {
792 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
793 "because it is not allowed by the "
794 "SECTIONS clause of the linker script"),
795 orig_name);
796 // The SECTIONS clause says to discard this input section.
797 return NULL;
798 }
799
800 // We can only handle script section types ST_NONE and ST_NOLOAD.
801 switch (script_section_type)
802 {
803 case Script_sections::ST_NONE:
804 break;
805 case Script_sections::ST_NOLOAD:
806 flags &= elfcpp::SHF_ALLOC;
807 break;
808 default:
809 gold_unreachable();
810 }
811
812 // If this is an orphan section--one not mentioned in the linker
813 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
814 // default processing below.
815
816 if (output_section_slot != NULL)
817 {
818 if (*output_section_slot != NULL)
819 {
820 (*output_section_slot)->update_flags_for_input_section(flags);
821 return *output_section_slot;
822 }
823
824 // We don't put sections found in the linker script into
825 // SECTION_NAME_MAP_. That keeps us from getting confused
826 // if an orphan section is mapped to a section with the same
827 // name as one in the linker script.
828
829 name = this->namepool_.add(name, false, NULL);
830
831 Output_section* os = this->make_output_section(name, type, flags,
832 order, is_relro);
833
834 os->set_found_in_sections_clause();
835
836 // Special handling for NOLOAD sections.
837 if (script_section_type == Script_sections::ST_NOLOAD)
838 {
839 os->set_is_noload();
840
841 // The constructor of Output_section sets addresses of non-ALLOC
842 // sections to 0 by default. We don't want that for NOLOAD
843 // sections even if they have no SHF_ALLOC flag.
844 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
845 && os->is_address_valid())
846 {
847 gold_assert(os->address() == 0
848 && !os->is_offset_valid()
849 && !os->is_data_size_valid());
850 os->reset_address_and_file_offset();
851 }
852 }
853
854 *output_section_slot = os;
855 return os;
856 }
857 }
858
859 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
860
861 size_t len = strlen(name);
862 char* uncompressed_name = NULL;
863
864 // Compressed debug sections should be mapped to the corresponding
865 // uncompressed section.
866 if (is_compressed_debug_section(name))
867 {
868 uncompressed_name = new char[len];
869 uncompressed_name[0] = '.';
870 gold_assert(name[0] == '.' && name[1] == 'z');
871 strncpy(&uncompressed_name[1], &name[2], len - 2);
872 uncompressed_name[len - 1] = '\0';
873 len -= 1;
874 name = uncompressed_name;
875 }
876
877 // Turn NAME from the name of the input section into the name of the
878 // output section.
879 if (is_input_section
880 && !this->script_options_->saw_sections_clause()
881 && !parameters->options().relocatable())
882 name = Layout::output_section_name(relobj, name, &len);
883
884 Stringpool::Key name_key;
885 name = this->namepool_.add_with_length(name, len, true, &name_key);
886
887 if (uncompressed_name != NULL)
888 delete[] uncompressed_name;
889
890 // Find or make the output section. The output section is selected
891 // based on the section name, type, and flags.
892 return this->get_output_section(name, name_key, type, flags, order, is_relro);
893 }
894
895 // For incremental links, record the initial fixed layout of a section
896 // from the base file, and return a pointer to the Output_section.
897
898 template<int size, bool big_endian>
899 Output_section*
900 Layout::init_fixed_output_section(const char* name,
901 elfcpp::Shdr<size, big_endian>& shdr)
902 {
903 unsigned int sh_type = shdr.get_sh_type();
904
905 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
906 // PRE_INIT_ARRAY, and NOTE sections.
907 // All others will be created from scratch and reallocated.
908 if (!can_incremental_update(sh_type))
909 return NULL;
910
911 // If we're generating a .gdb_index section, we need to regenerate
912 // it from scratch.
913 if (parameters->options().gdb_index()
914 && sh_type == elfcpp::SHT_PROGBITS
915 && strcmp(name, ".gdb_index") == 0)
916 return NULL;
917
918 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
919 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
920 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
921 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
922 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
923 shdr.get_sh_addralign();
924
925 // Make the output section.
926 Stringpool::Key name_key;
927 name = this->namepool_.add(name, true, &name_key);
928 Output_section* os = this->get_output_section(name, name_key, sh_type,
929 sh_flags, ORDER_INVALID, false);
930 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
931 if (sh_type != elfcpp::SHT_NOBITS)
932 this->free_list_.remove(sh_offset, sh_offset + sh_size);
933 return os;
934 }
935
936 // Return the output section to use for input section SHNDX, with name
937 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
938 // index of a relocation section which applies to this section, or 0
939 // if none, or -1U if more than one. RELOC_TYPE is the type of the
940 // relocation section if there is one. Set *OFF to the offset of this
941 // input section without the output section. Return NULL if the
942 // section should be discarded. Set *OFF to -1 if the section
943 // contents should not be written directly to the output file, but
944 // will instead receive special handling.
945
946 template<int size, bool big_endian>
947 Output_section*
948 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
949 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
950 unsigned int reloc_shndx, unsigned int, off_t* off)
951 {
952 *off = 0;
953
954 if (!this->include_section(object, name, shdr))
955 return NULL;
956
957 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
958
959 // In a relocatable link a grouped section must not be combined with
960 // any other sections.
961 Output_section* os;
962 if (parameters->options().relocatable()
963 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
964 {
965 name = this->namepool_.add(name, true, NULL);
966 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
967 ORDER_INVALID, false);
968 }
969 else
970 {
971 os = this->choose_output_section(object, name, sh_type,
972 shdr.get_sh_flags(), true,
973 ORDER_INVALID, false);
974 if (os == NULL)
975 return NULL;
976 }
977
978 // By default the GNU linker sorts input sections whose names match
979 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
980 // sections are sorted by name. This is used to implement
981 // constructor priority ordering. We are compatible. When we put
982 // .ctor sections in .init_array and .dtor sections in .fini_array,
983 // we must also sort plain .ctor and .dtor sections.
984 if (!this->script_options_->saw_sections_clause()
985 && !parameters->options().relocatable()
986 && (is_prefix_of(".ctors.", name)
987 || is_prefix_of(".dtors.", name)
988 || is_prefix_of(".init_array.", name)
989 || is_prefix_of(".fini_array.", name)
990 || (parameters->options().ctors_in_init_array()
991 && (strcmp(name, ".ctors") == 0
992 || strcmp(name, ".dtors") == 0))))
993 os->set_must_sort_attached_input_sections();
994
995 // If this is a .ctors or .ctors.* section being mapped to a
996 // .init_array section, or a .dtors or .dtors.* section being mapped
997 // to a .fini_array section, we will need to reverse the words if
998 // there is more than one. Record this section for later. See
999 // ctors_sections_in_init_array above.
1000 if (!this->script_options_->saw_sections_clause()
1001 && !parameters->options().relocatable()
1002 && shdr.get_sh_size() > size / 8
1003 && (((strcmp(name, ".ctors") == 0
1004 || is_prefix_of(".ctors.", name))
1005 && strcmp(os->name(), ".init_array") == 0)
1006 || ((strcmp(name, ".dtors") == 0
1007 || is_prefix_of(".dtors.", name))
1008 && strcmp(os->name(), ".fini_array") == 0)))
1009 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1010
1011 // FIXME: Handle SHF_LINK_ORDER somewhere.
1012
1013 elfcpp::Elf_Xword orig_flags = os->flags();
1014
1015 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1016 this->script_options_->saw_sections_clause());
1017
1018 // If the flags changed, we may have to change the order.
1019 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1020 {
1021 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1022 elfcpp::Elf_Xword new_flags =
1023 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1024 if (orig_flags != new_flags)
1025 os->set_order(this->default_section_order(os, false));
1026 }
1027
1028 this->have_added_input_section_ = true;
1029
1030 return os;
1031 }
1032
1033 // Handle a relocation section when doing a relocatable link.
1034
1035 template<int size, bool big_endian>
1036 Output_section*
1037 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1038 unsigned int,
1039 const elfcpp::Shdr<size, big_endian>& shdr,
1040 Output_section* data_section,
1041 Relocatable_relocs* rr)
1042 {
1043 gold_assert(parameters->options().relocatable()
1044 || parameters->options().emit_relocs());
1045
1046 int sh_type = shdr.get_sh_type();
1047
1048 std::string name;
1049 if (sh_type == elfcpp::SHT_REL)
1050 name = ".rel";
1051 else if (sh_type == elfcpp::SHT_RELA)
1052 name = ".rela";
1053 else
1054 gold_unreachable();
1055 name += data_section->name();
1056
1057 // In a relocatable link relocs for a grouped section must not be
1058 // combined with other reloc sections.
1059 Output_section* os;
1060 if (!parameters->options().relocatable()
1061 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1062 os = this->choose_output_section(object, name.c_str(), sh_type,
1063 shdr.get_sh_flags(), false,
1064 ORDER_INVALID, false);
1065 else
1066 {
1067 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1068 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1069 ORDER_INVALID, false);
1070 }
1071
1072 os->set_should_link_to_symtab();
1073 os->set_info_section(data_section);
1074
1075 Output_section_data* posd;
1076 if (sh_type == elfcpp::SHT_REL)
1077 {
1078 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1079 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1080 size,
1081 big_endian>(rr);
1082 }
1083 else if (sh_type == elfcpp::SHT_RELA)
1084 {
1085 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1086 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1087 size,
1088 big_endian>(rr);
1089 }
1090 else
1091 gold_unreachable();
1092
1093 os->add_output_section_data(posd);
1094 rr->set_output_data(posd);
1095
1096 return os;
1097 }
1098
1099 // Handle a group section when doing a relocatable link.
1100
1101 template<int size, bool big_endian>
1102 void
1103 Layout::layout_group(Symbol_table* symtab,
1104 Sized_relobj_file<size, big_endian>* object,
1105 unsigned int,
1106 const char* group_section_name,
1107 const char* signature,
1108 const elfcpp::Shdr<size, big_endian>& shdr,
1109 elfcpp::Elf_Word flags,
1110 std::vector<unsigned int>* shndxes)
1111 {
1112 gold_assert(parameters->options().relocatable());
1113 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1114 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1115 Output_section* os = this->make_output_section(group_section_name,
1116 elfcpp::SHT_GROUP,
1117 shdr.get_sh_flags(),
1118 ORDER_INVALID, false);
1119
1120 // We need to find a symbol with the signature in the symbol table.
1121 // If we don't find one now, we need to look again later.
1122 Symbol* sym = symtab->lookup(signature, NULL);
1123 if (sym != NULL)
1124 os->set_info_symndx(sym);
1125 else
1126 {
1127 // Reserve some space to minimize reallocations.
1128 if (this->group_signatures_.empty())
1129 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1130
1131 // We will wind up using a symbol whose name is the signature.
1132 // So just put the signature in the symbol name pool to save it.
1133 signature = symtab->canonicalize_name(signature);
1134 this->group_signatures_.push_back(Group_signature(os, signature));
1135 }
1136
1137 os->set_should_link_to_symtab();
1138 os->set_entsize(4);
1139
1140 section_size_type entry_count =
1141 convert_to_section_size_type(shdr.get_sh_size() / 4);
1142 Output_section_data* posd =
1143 new Output_data_group<size, big_endian>(object, entry_count, flags,
1144 shndxes);
1145 os->add_output_section_data(posd);
1146 }
1147
1148 // Special GNU handling of sections name .eh_frame. They will
1149 // normally hold exception frame data as defined by the C++ ABI
1150 // (http://codesourcery.com/cxx-abi/).
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1155 const unsigned char* symbols,
1156 off_t symbols_size,
1157 const unsigned char* symbol_names,
1158 off_t symbol_names_size,
1159 unsigned int shndx,
1160 const elfcpp::Shdr<size, big_endian>& shdr,
1161 unsigned int reloc_shndx, unsigned int reloc_type,
1162 off_t* off)
1163 {
1164 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1165 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1166 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1167
1168 Output_section* os = this->make_eh_frame_section(object);
1169 if (os == NULL)
1170 return NULL;
1171
1172 gold_assert(this->eh_frame_section_ == os);
1173
1174 elfcpp::Elf_Xword orig_flags = os->flags();
1175
1176 if (!parameters->incremental()
1177 && this->eh_frame_data_->add_ehframe_input_section(object,
1178 symbols,
1179 symbols_size,
1180 symbol_names,
1181 symbol_names_size,
1182 shndx,
1183 reloc_shndx,
1184 reloc_type))
1185 {
1186 os->update_flags_for_input_section(shdr.get_sh_flags());
1187
1188 // A writable .eh_frame section is a RELRO section.
1189 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1190 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1191 {
1192 os->set_is_relro();
1193 os->set_order(ORDER_RELRO);
1194 }
1195
1196 // We found a .eh_frame section we are going to optimize, so now
1197 // we can add the set of optimized sections to the output
1198 // section. We need to postpone adding this until we've found a
1199 // section we can optimize so that the .eh_frame section in
1200 // crtbegin.o winds up at the start of the output section.
1201 if (!this->added_eh_frame_data_)
1202 {
1203 os->add_output_section_data(this->eh_frame_data_);
1204 this->added_eh_frame_data_ = true;
1205 }
1206 *off = -1;
1207 }
1208 else
1209 {
1210 // We couldn't handle this .eh_frame section for some reason.
1211 // Add it as a normal section.
1212 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1213 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1214 reloc_shndx, saw_sections_clause);
1215 this->have_added_input_section_ = true;
1216
1217 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1218 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1219 os->set_order(this->default_section_order(os, false));
1220 }
1221
1222 return os;
1223 }
1224
1225 // Create and return the magic .eh_frame section. Create
1226 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1227 // input .eh_frame section; it may be NULL.
1228
1229 Output_section*
1230 Layout::make_eh_frame_section(const Relobj* object)
1231 {
1232 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1233 // SHT_PROGBITS.
1234 Output_section* os = this->choose_output_section(object, ".eh_frame",
1235 elfcpp::SHT_PROGBITS,
1236 elfcpp::SHF_ALLOC, false,
1237 ORDER_EHFRAME, false);
1238 if (os == NULL)
1239 return NULL;
1240
1241 if (this->eh_frame_section_ == NULL)
1242 {
1243 this->eh_frame_section_ = os;
1244 this->eh_frame_data_ = new Eh_frame();
1245
1246 // For incremental linking, we do not optimize .eh_frame sections
1247 // or create a .eh_frame_hdr section.
1248 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1249 {
1250 Output_section* hdr_os =
1251 this->choose_output_section(NULL, ".eh_frame_hdr",
1252 elfcpp::SHT_PROGBITS,
1253 elfcpp::SHF_ALLOC, false,
1254 ORDER_EHFRAME, false);
1255
1256 if (hdr_os != NULL)
1257 {
1258 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1259 this->eh_frame_data_);
1260 hdr_os->add_output_section_data(hdr_posd);
1261
1262 hdr_os->set_after_input_sections();
1263
1264 if (!this->script_options_->saw_phdrs_clause())
1265 {
1266 Output_segment* hdr_oseg;
1267 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1268 elfcpp::PF_R);
1269 hdr_oseg->add_output_section_to_nonload(hdr_os,
1270 elfcpp::PF_R);
1271 }
1272
1273 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1274 }
1275 }
1276 }
1277
1278 return os;
1279 }
1280
1281 // Add an exception frame for a PLT. This is called from target code.
1282
1283 void
1284 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1285 size_t cie_length, const unsigned char* fde_data,
1286 size_t fde_length)
1287 {
1288 if (parameters->incremental())
1289 {
1290 // FIXME: Maybe this could work some day....
1291 return;
1292 }
1293 Output_section* os = this->make_eh_frame_section(NULL);
1294 if (os == NULL)
1295 return;
1296 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1297 fde_data, fde_length);
1298 if (!this->added_eh_frame_data_)
1299 {
1300 os->add_output_section_data(this->eh_frame_data_);
1301 this->added_eh_frame_data_ = true;
1302 }
1303 }
1304
1305 // Scan a .debug_info or .debug_types section, and add summary
1306 // information to the .gdb_index section.
1307
1308 template<int size, bool big_endian>
1309 void
1310 Layout::add_to_gdb_index(bool is_type_unit,
1311 Sized_relobj<size, big_endian>* object,
1312 const unsigned char* symbols,
1313 off_t symbols_size,
1314 unsigned int shndx,
1315 unsigned int reloc_shndx,
1316 unsigned int reloc_type)
1317 {
1318 if (this->gdb_index_data_ == NULL)
1319 {
1320 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1321 elfcpp::SHT_PROGBITS, 0,
1322 false, ORDER_INVALID,
1323 false);
1324 if (os == NULL)
1325 return;
1326
1327 this->gdb_index_data_ = new Gdb_index(os);
1328 os->add_output_section_data(this->gdb_index_data_);
1329 os->set_after_input_sections();
1330 }
1331
1332 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1333 symbols_size, shndx, reloc_shndx,
1334 reloc_type);
1335 }
1336
1337 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1338 // the output section.
1339
1340 Output_section*
1341 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1342 elfcpp::Elf_Xword flags,
1343 Output_section_data* posd,
1344 Output_section_order order, bool is_relro)
1345 {
1346 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1347 false, order, is_relro);
1348 if (os != NULL)
1349 os->add_output_section_data(posd);
1350 return os;
1351 }
1352
1353 // Map section flags to segment flags.
1354
1355 elfcpp::Elf_Word
1356 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1357 {
1358 elfcpp::Elf_Word ret = elfcpp::PF_R;
1359 if ((flags & elfcpp::SHF_WRITE) != 0)
1360 ret |= elfcpp::PF_W;
1361 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1362 ret |= elfcpp::PF_X;
1363 return ret;
1364 }
1365
1366 // Make a new Output_section, and attach it to segments as
1367 // appropriate. ORDER is the order in which this section should
1368 // appear in the output segment. IS_RELRO is true if this is a relro
1369 // (read-only after relocations) section.
1370
1371 Output_section*
1372 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1373 elfcpp::Elf_Xword flags,
1374 Output_section_order order, bool is_relro)
1375 {
1376 Output_section* os;
1377 if ((flags & elfcpp::SHF_ALLOC) == 0
1378 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1379 && is_compressible_debug_section(name))
1380 os = new Output_compressed_section(&parameters->options(), name, type,
1381 flags);
1382 else if ((flags & elfcpp::SHF_ALLOC) == 0
1383 && parameters->options().strip_debug_non_line()
1384 && strcmp(".debug_abbrev", name) == 0)
1385 {
1386 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1387 name, type, flags);
1388 if (this->debug_info_)
1389 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1390 }
1391 else if ((flags & elfcpp::SHF_ALLOC) == 0
1392 && parameters->options().strip_debug_non_line()
1393 && strcmp(".debug_info", name) == 0)
1394 {
1395 os = this->debug_info_ = new Output_reduced_debug_info_section(
1396 name, type, flags);
1397 if (this->debug_abbrev_)
1398 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1399 }
1400 else
1401 {
1402 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1403 // not have correct section types. Force them here.
1404 if (type == elfcpp::SHT_PROGBITS)
1405 {
1406 if (is_prefix_of(".init_array", name))
1407 type = elfcpp::SHT_INIT_ARRAY;
1408 else if (is_prefix_of(".preinit_array", name))
1409 type = elfcpp::SHT_PREINIT_ARRAY;
1410 else if (is_prefix_of(".fini_array", name))
1411 type = elfcpp::SHT_FINI_ARRAY;
1412 }
1413
1414 // FIXME: const_cast is ugly.
1415 Target* target = const_cast<Target*>(&parameters->target());
1416 os = target->make_output_section(name, type, flags);
1417 }
1418
1419 // With -z relro, we have to recognize the special sections by name.
1420 // There is no other way.
1421 bool is_relro_local = false;
1422 if (!this->script_options_->saw_sections_clause()
1423 && parameters->options().relro()
1424 && (flags & elfcpp::SHF_ALLOC) != 0
1425 && (flags & elfcpp::SHF_WRITE) != 0)
1426 {
1427 if (type == elfcpp::SHT_PROGBITS)
1428 {
1429 if (strcmp(name, ".data.rel.ro") == 0)
1430 is_relro = true;
1431 else if (strcmp(name, ".data.rel.ro.local") == 0)
1432 {
1433 is_relro = true;
1434 is_relro_local = true;
1435 }
1436 else if (strcmp(name, ".ctors") == 0
1437 || strcmp(name, ".dtors") == 0
1438 || strcmp(name, ".jcr") == 0)
1439 is_relro = true;
1440 }
1441 else if (type == elfcpp::SHT_INIT_ARRAY
1442 || type == elfcpp::SHT_FINI_ARRAY
1443 || type == elfcpp::SHT_PREINIT_ARRAY)
1444 is_relro = true;
1445 }
1446
1447 if (is_relro)
1448 os->set_is_relro();
1449
1450 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1451 order = this->default_section_order(os, is_relro_local);
1452
1453 os->set_order(order);
1454
1455 parameters->target().new_output_section(os);
1456
1457 this->section_list_.push_back(os);
1458
1459 // The GNU linker by default sorts some sections by priority, so we
1460 // do the same. We need to know that this might happen before we
1461 // attach any input sections.
1462 if (!this->script_options_->saw_sections_clause()
1463 && !parameters->options().relocatable()
1464 && (strcmp(name, ".init_array") == 0
1465 || strcmp(name, ".fini_array") == 0
1466 || (!parameters->options().ctors_in_init_array()
1467 && (strcmp(name, ".ctors") == 0
1468 || strcmp(name, ".dtors") == 0))))
1469 os->set_may_sort_attached_input_sections();
1470
1471 // Check for .stab*str sections, as .stab* sections need to link to
1472 // them.
1473 if (type == elfcpp::SHT_STRTAB
1474 && !this->have_stabstr_section_
1475 && strncmp(name, ".stab", 5) == 0
1476 && strcmp(name + strlen(name) - 3, "str") == 0)
1477 this->have_stabstr_section_ = true;
1478
1479 // During a full incremental link, we add patch space to most
1480 // PROGBITS and NOBITS sections. Flag those that may be
1481 // arbitrarily padded.
1482 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1483 && order != ORDER_INTERP
1484 && order != ORDER_INIT
1485 && order != ORDER_PLT
1486 && order != ORDER_FINI
1487 && order != ORDER_RELRO_LAST
1488 && order != ORDER_NON_RELRO_FIRST
1489 && strcmp(name, ".eh_frame") != 0
1490 && strcmp(name, ".ctors") != 0
1491 && strcmp(name, ".dtors") != 0
1492 && strcmp(name, ".jcr") != 0)
1493 {
1494 os->set_is_patch_space_allowed();
1495
1496 // Certain sections require "holes" to be filled with
1497 // specific fill patterns. These fill patterns may have
1498 // a minimum size, so we must prevent allocations from the
1499 // free list that leave a hole smaller than the minimum.
1500 if (strcmp(name, ".debug_info") == 0)
1501 os->set_free_space_fill(new Output_fill_debug_info(false));
1502 else if (strcmp(name, ".debug_types") == 0)
1503 os->set_free_space_fill(new Output_fill_debug_info(true));
1504 else if (strcmp(name, ".debug_line") == 0)
1505 os->set_free_space_fill(new Output_fill_debug_line());
1506 }
1507
1508 // If we have already attached the sections to segments, then we
1509 // need to attach this one now. This happens for sections created
1510 // directly by the linker.
1511 if (this->sections_are_attached_)
1512 this->attach_section_to_segment(&parameters->target(), os);
1513
1514 return os;
1515 }
1516
1517 // Return the default order in which a section should be placed in an
1518 // output segment. This function captures a lot of the ideas in
1519 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1520 // linker created section is normally set when the section is created;
1521 // this function is used for input sections.
1522
1523 Output_section_order
1524 Layout::default_section_order(Output_section* os, bool is_relro_local)
1525 {
1526 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1527 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1528 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1529 bool is_bss = false;
1530
1531 switch (os->type())
1532 {
1533 default:
1534 case elfcpp::SHT_PROGBITS:
1535 break;
1536 case elfcpp::SHT_NOBITS:
1537 is_bss = true;
1538 break;
1539 case elfcpp::SHT_RELA:
1540 case elfcpp::SHT_REL:
1541 if (!is_write)
1542 return ORDER_DYNAMIC_RELOCS;
1543 break;
1544 case elfcpp::SHT_HASH:
1545 case elfcpp::SHT_DYNAMIC:
1546 case elfcpp::SHT_SHLIB:
1547 case elfcpp::SHT_DYNSYM:
1548 case elfcpp::SHT_GNU_HASH:
1549 case elfcpp::SHT_GNU_verdef:
1550 case elfcpp::SHT_GNU_verneed:
1551 case elfcpp::SHT_GNU_versym:
1552 if (!is_write)
1553 return ORDER_DYNAMIC_LINKER;
1554 break;
1555 case elfcpp::SHT_NOTE:
1556 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1557 }
1558
1559 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1560 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1561
1562 if (!is_bss && !is_write)
1563 {
1564 if (is_execinstr)
1565 {
1566 if (strcmp(os->name(), ".init") == 0)
1567 return ORDER_INIT;
1568 else if (strcmp(os->name(), ".fini") == 0)
1569 return ORDER_FINI;
1570 }
1571 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1572 }
1573
1574 if (os->is_relro())
1575 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1576
1577 if (os->is_small_section())
1578 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1579 if (os->is_large_section())
1580 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1581
1582 return is_bss ? ORDER_BSS : ORDER_DATA;
1583 }
1584
1585 // Attach output sections to segments. This is called after we have
1586 // seen all the input sections.
1587
1588 void
1589 Layout::attach_sections_to_segments(const Target* target)
1590 {
1591 for (Section_list::iterator p = this->section_list_.begin();
1592 p != this->section_list_.end();
1593 ++p)
1594 this->attach_section_to_segment(target, *p);
1595
1596 this->sections_are_attached_ = true;
1597 }
1598
1599 // Attach an output section to a segment.
1600
1601 void
1602 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1603 {
1604 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1605 this->unattached_section_list_.push_back(os);
1606 else
1607 this->attach_allocated_section_to_segment(target, os);
1608 }
1609
1610 // Attach an allocated output section to a segment.
1611
1612 void
1613 Layout::attach_allocated_section_to_segment(const Target* target,
1614 Output_section* os)
1615 {
1616 elfcpp::Elf_Xword flags = os->flags();
1617 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1618
1619 if (parameters->options().relocatable())
1620 return;
1621
1622 // If we have a SECTIONS clause, we can't handle the attachment to
1623 // segments until after we've seen all the sections.
1624 if (this->script_options_->saw_sections_clause())
1625 return;
1626
1627 gold_assert(!this->script_options_->saw_phdrs_clause());
1628
1629 // This output section goes into a PT_LOAD segment.
1630
1631 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1632
1633 // Check for --section-start.
1634 uint64_t addr;
1635 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1636
1637 // In general the only thing we really care about for PT_LOAD
1638 // segments is whether or not they are writable or executable,
1639 // so that is how we search for them.
1640 // Large data sections also go into their own PT_LOAD segment.
1641 // People who need segments sorted on some other basis will
1642 // have to use a linker script.
1643
1644 Segment_list::const_iterator p;
1645 for (p = this->segment_list_.begin();
1646 p != this->segment_list_.end();
1647 ++p)
1648 {
1649 if ((*p)->type() != elfcpp::PT_LOAD)
1650 continue;
1651 if (!parameters->options().omagic()
1652 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1653 continue;
1654 if ((target->isolate_execinstr() || parameters->options().rosegment())
1655 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1656 continue;
1657 // If -Tbss was specified, we need to separate the data and BSS
1658 // segments.
1659 if (parameters->options().user_set_Tbss())
1660 {
1661 if ((os->type() == elfcpp::SHT_NOBITS)
1662 == (*p)->has_any_data_sections())
1663 continue;
1664 }
1665 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1666 continue;
1667
1668 if (is_address_set)
1669 {
1670 if ((*p)->are_addresses_set())
1671 continue;
1672
1673 (*p)->add_initial_output_data(os);
1674 (*p)->update_flags_for_output_section(seg_flags);
1675 (*p)->set_addresses(addr, addr);
1676 break;
1677 }
1678
1679 (*p)->add_output_section_to_load(this, os, seg_flags);
1680 break;
1681 }
1682
1683 if (p == this->segment_list_.end())
1684 {
1685 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1686 seg_flags);
1687 if (os->is_large_data_section())
1688 oseg->set_is_large_data_segment();
1689 oseg->add_output_section_to_load(this, os, seg_flags);
1690 if (is_address_set)
1691 oseg->set_addresses(addr, addr);
1692 }
1693
1694 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1695 // segment.
1696 if (os->type() == elfcpp::SHT_NOTE)
1697 {
1698 // See if we already have an equivalent PT_NOTE segment.
1699 for (p = this->segment_list_.begin();
1700 p != segment_list_.end();
1701 ++p)
1702 {
1703 if ((*p)->type() == elfcpp::PT_NOTE
1704 && (((*p)->flags() & elfcpp::PF_W)
1705 == (seg_flags & elfcpp::PF_W)))
1706 {
1707 (*p)->add_output_section_to_nonload(os, seg_flags);
1708 break;
1709 }
1710 }
1711
1712 if (p == this->segment_list_.end())
1713 {
1714 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1715 seg_flags);
1716 oseg->add_output_section_to_nonload(os, seg_flags);
1717 }
1718 }
1719
1720 // If we see a loadable SHF_TLS section, we create a PT_TLS
1721 // segment. There can only be one such segment.
1722 if ((flags & elfcpp::SHF_TLS) != 0)
1723 {
1724 if (this->tls_segment_ == NULL)
1725 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1726 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1727 }
1728
1729 // If -z relro is in effect, and we see a relro section, we create a
1730 // PT_GNU_RELRO segment. There can only be one such segment.
1731 if (os->is_relro() && parameters->options().relro())
1732 {
1733 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1734 if (this->relro_segment_ == NULL)
1735 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1736 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1737 }
1738
1739 // If we see a section named .interp, put it into a PT_INTERP
1740 // segment. This seems broken to me, but this is what GNU ld does,
1741 // and glibc expects it.
1742 if (strcmp(os->name(), ".interp") == 0
1743 && !this->script_options_->saw_phdrs_clause())
1744 {
1745 if (this->interp_segment_ == NULL)
1746 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1747 else
1748 gold_warning(_("multiple '.interp' sections in input files "
1749 "may cause confusing PT_INTERP segment"));
1750 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1751 }
1752 }
1753
1754 // Make an output section for a script.
1755
1756 Output_section*
1757 Layout::make_output_section_for_script(
1758 const char* name,
1759 Script_sections::Section_type section_type)
1760 {
1761 name = this->namepool_.add(name, false, NULL);
1762 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1763 if (section_type == Script_sections::ST_NOLOAD)
1764 sh_flags = 0;
1765 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1766 sh_flags, ORDER_INVALID,
1767 false);
1768 os->set_found_in_sections_clause();
1769 if (section_type == Script_sections::ST_NOLOAD)
1770 os->set_is_noload();
1771 return os;
1772 }
1773
1774 // Return the number of segments we expect to see.
1775
1776 size_t
1777 Layout::expected_segment_count() const
1778 {
1779 size_t ret = this->segment_list_.size();
1780
1781 // If we didn't see a SECTIONS clause in a linker script, we should
1782 // already have the complete list of segments. Otherwise we ask the
1783 // SECTIONS clause how many segments it expects, and add in the ones
1784 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1785
1786 if (!this->script_options_->saw_sections_clause())
1787 return ret;
1788 else
1789 {
1790 const Script_sections* ss = this->script_options_->script_sections();
1791 return ret + ss->expected_segment_count(this);
1792 }
1793 }
1794
1795 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1796 // is whether we saw a .note.GNU-stack section in the object file.
1797 // GNU_STACK_FLAGS is the section flags. The flags give the
1798 // protection required for stack memory. We record this in an
1799 // executable as a PT_GNU_STACK segment. If an object file does not
1800 // have a .note.GNU-stack segment, we must assume that it is an old
1801 // object. On some targets that will force an executable stack.
1802
1803 void
1804 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1805 const Object* obj)
1806 {
1807 if (!seen_gnu_stack)
1808 {
1809 this->input_without_gnu_stack_note_ = true;
1810 if (parameters->options().warn_execstack()
1811 && parameters->target().is_default_stack_executable())
1812 gold_warning(_("%s: missing .note.GNU-stack section"
1813 " implies executable stack"),
1814 obj->name().c_str());
1815 }
1816 else
1817 {
1818 this->input_with_gnu_stack_note_ = true;
1819 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1820 {
1821 this->input_requires_executable_stack_ = true;
1822 if (parameters->options().warn_execstack()
1823 || parameters->options().is_stack_executable())
1824 gold_warning(_("%s: requires executable stack"),
1825 obj->name().c_str());
1826 }
1827 }
1828 }
1829
1830 // Create automatic note sections.
1831
1832 void
1833 Layout::create_notes()
1834 {
1835 this->create_gold_note();
1836 this->create_executable_stack_info();
1837 this->create_build_id();
1838 }
1839
1840 // Create the dynamic sections which are needed before we read the
1841 // relocs.
1842
1843 void
1844 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1845 {
1846 if (parameters->doing_static_link())
1847 return;
1848
1849 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1850 elfcpp::SHT_DYNAMIC,
1851 (elfcpp::SHF_ALLOC
1852 | elfcpp::SHF_WRITE),
1853 false, ORDER_RELRO,
1854 true);
1855
1856 // A linker script may discard .dynamic, so check for NULL.
1857 if (this->dynamic_section_ != NULL)
1858 {
1859 this->dynamic_symbol_ =
1860 symtab->define_in_output_data("_DYNAMIC", NULL,
1861 Symbol_table::PREDEFINED,
1862 this->dynamic_section_, 0, 0,
1863 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1864 elfcpp::STV_HIDDEN, 0, false, false);
1865
1866 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1867
1868 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1869 }
1870 }
1871
1872 // For each output section whose name can be represented as C symbol,
1873 // define __start and __stop symbols for the section. This is a GNU
1874 // extension.
1875
1876 void
1877 Layout::define_section_symbols(Symbol_table* symtab)
1878 {
1879 for (Section_list::const_iterator p = this->section_list_.begin();
1880 p != this->section_list_.end();
1881 ++p)
1882 {
1883 const char* const name = (*p)->name();
1884 if (is_cident(name))
1885 {
1886 const std::string name_string(name);
1887 const std::string start_name(cident_section_start_prefix
1888 + name_string);
1889 const std::string stop_name(cident_section_stop_prefix
1890 + name_string);
1891
1892 symtab->define_in_output_data(start_name.c_str(),
1893 NULL, // version
1894 Symbol_table::PREDEFINED,
1895 *p,
1896 0, // value
1897 0, // symsize
1898 elfcpp::STT_NOTYPE,
1899 elfcpp::STB_GLOBAL,
1900 elfcpp::STV_DEFAULT,
1901 0, // nonvis
1902 false, // offset_is_from_end
1903 true); // only_if_ref
1904
1905 symtab->define_in_output_data(stop_name.c_str(),
1906 NULL, // version
1907 Symbol_table::PREDEFINED,
1908 *p,
1909 0, // value
1910 0, // symsize
1911 elfcpp::STT_NOTYPE,
1912 elfcpp::STB_GLOBAL,
1913 elfcpp::STV_DEFAULT,
1914 0, // nonvis
1915 true, // offset_is_from_end
1916 true); // only_if_ref
1917 }
1918 }
1919 }
1920
1921 // Define symbols for group signatures.
1922
1923 void
1924 Layout::define_group_signatures(Symbol_table* symtab)
1925 {
1926 for (Group_signatures::iterator p = this->group_signatures_.begin();
1927 p != this->group_signatures_.end();
1928 ++p)
1929 {
1930 Symbol* sym = symtab->lookup(p->signature, NULL);
1931 if (sym != NULL)
1932 p->section->set_info_symndx(sym);
1933 else
1934 {
1935 // Force the name of the group section to the group
1936 // signature, and use the group's section symbol as the
1937 // signature symbol.
1938 if (strcmp(p->section->name(), p->signature) != 0)
1939 {
1940 const char* name = this->namepool_.add(p->signature,
1941 true, NULL);
1942 p->section->set_name(name);
1943 }
1944 p->section->set_needs_symtab_index();
1945 p->section->set_info_section_symndx(p->section);
1946 }
1947 }
1948
1949 this->group_signatures_.clear();
1950 }
1951
1952 // Find the first read-only PT_LOAD segment, creating one if
1953 // necessary.
1954
1955 Output_segment*
1956 Layout::find_first_load_seg(const Target* target)
1957 {
1958 Output_segment* best = NULL;
1959 for (Segment_list::const_iterator p = this->segment_list_.begin();
1960 p != this->segment_list_.end();
1961 ++p)
1962 {
1963 if ((*p)->type() == elfcpp::PT_LOAD
1964 && ((*p)->flags() & elfcpp::PF_R) != 0
1965 && (parameters->options().omagic()
1966 || ((*p)->flags() & elfcpp::PF_W) == 0)
1967 && (!target->isolate_execinstr()
1968 || ((*p)->flags() & elfcpp::PF_X) == 0))
1969 {
1970 if (best == NULL || this->segment_precedes(*p, best))
1971 best = *p;
1972 }
1973 }
1974 if (best != NULL)
1975 return best;
1976
1977 gold_assert(!this->script_options_->saw_phdrs_clause());
1978
1979 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1980 elfcpp::PF_R);
1981 return load_seg;
1982 }
1983
1984 // Save states of all current output segments. Store saved states
1985 // in SEGMENT_STATES.
1986
1987 void
1988 Layout::save_segments(Segment_states* segment_states)
1989 {
1990 for (Segment_list::const_iterator p = this->segment_list_.begin();
1991 p != this->segment_list_.end();
1992 ++p)
1993 {
1994 Output_segment* segment = *p;
1995 // Shallow copy.
1996 Output_segment* copy = new Output_segment(*segment);
1997 (*segment_states)[segment] = copy;
1998 }
1999 }
2000
2001 // Restore states of output segments and delete any segment not found in
2002 // SEGMENT_STATES.
2003
2004 void
2005 Layout::restore_segments(const Segment_states* segment_states)
2006 {
2007 // Go through the segment list and remove any segment added in the
2008 // relaxation loop.
2009 this->tls_segment_ = NULL;
2010 this->relro_segment_ = NULL;
2011 Segment_list::iterator list_iter = this->segment_list_.begin();
2012 while (list_iter != this->segment_list_.end())
2013 {
2014 Output_segment* segment = *list_iter;
2015 Segment_states::const_iterator states_iter =
2016 segment_states->find(segment);
2017 if (states_iter != segment_states->end())
2018 {
2019 const Output_segment* copy = states_iter->second;
2020 // Shallow copy to restore states.
2021 *segment = *copy;
2022
2023 // Also fix up TLS and RELRO segment pointers as appropriate.
2024 if (segment->type() == elfcpp::PT_TLS)
2025 this->tls_segment_ = segment;
2026 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2027 this->relro_segment_ = segment;
2028
2029 ++list_iter;
2030 }
2031 else
2032 {
2033 list_iter = this->segment_list_.erase(list_iter);
2034 // This is a segment created during section layout. It should be
2035 // safe to remove it since we should have removed all pointers to it.
2036 delete segment;
2037 }
2038 }
2039 }
2040
2041 // Clean up after relaxation so that sections can be laid out again.
2042
2043 void
2044 Layout::clean_up_after_relaxation()
2045 {
2046 // Restore the segments to point state just prior to the relaxation loop.
2047 Script_sections* script_section = this->script_options_->script_sections();
2048 script_section->release_segments();
2049 this->restore_segments(this->segment_states_);
2050
2051 // Reset section addresses and file offsets
2052 for (Section_list::iterator p = this->section_list_.begin();
2053 p != this->section_list_.end();
2054 ++p)
2055 {
2056 (*p)->restore_states();
2057
2058 // If an input section changes size because of relaxation,
2059 // we need to adjust the section offsets of all input sections.
2060 // after such a section.
2061 if ((*p)->section_offsets_need_adjustment())
2062 (*p)->adjust_section_offsets();
2063
2064 (*p)->reset_address_and_file_offset();
2065 }
2066
2067 // Reset special output object address and file offsets.
2068 for (Data_list::iterator p = this->special_output_list_.begin();
2069 p != this->special_output_list_.end();
2070 ++p)
2071 (*p)->reset_address_and_file_offset();
2072
2073 // A linker script may have created some output section data objects.
2074 // They are useless now.
2075 for (Output_section_data_list::const_iterator p =
2076 this->script_output_section_data_list_.begin();
2077 p != this->script_output_section_data_list_.end();
2078 ++p)
2079 delete *p;
2080 this->script_output_section_data_list_.clear();
2081 }
2082
2083 // Prepare for relaxation.
2084
2085 void
2086 Layout::prepare_for_relaxation()
2087 {
2088 // Create an relaxation debug check if in debugging mode.
2089 if (is_debugging_enabled(DEBUG_RELAXATION))
2090 this->relaxation_debug_check_ = new Relaxation_debug_check();
2091
2092 // Save segment states.
2093 this->segment_states_ = new Segment_states();
2094 this->save_segments(this->segment_states_);
2095
2096 for(Section_list::const_iterator p = this->section_list_.begin();
2097 p != this->section_list_.end();
2098 ++p)
2099 (*p)->save_states();
2100
2101 if (is_debugging_enabled(DEBUG_RELAXATION))
2102 this->relaxation_debug_check_->check_output_data_for_reset_values(
2103 this->section_list_, this->special_output_list_);
2104
2105 // Also enable recording of output section data from scripts.
2106 this->record_output_section_data_from_script_ = true;
2107 }
2108
2109 // Relaxation loop body: If target has no relaxation, this runs only once
2110 // Otherwise, the target relaxation hook is called at the end of
2111 // each iteration. If the hook returns true, it means re-layout of
2112 // section is required.
2113 //
2114 // The number of segments created by a linking script without a PHDRS
2115 // clause may be affected by section sizes and alignments. There is
2116 // a remote chance that relaxation causes different number of PT_LOAD
2117 // segments are created and sections are attached to different segments.
2118 // Therefore, we always throw away all segments created during section
2119 // layout. In order to be able to restart the section layout, we keep
2120 // a copy of the segment list right before the relaxation loop and use
2121 // that to restore the segments.
2122 //
2123 // PASS is the current relaxation pass number.
2124 // SYMTAB is a symbol table.
2125 // PLOAD_SEG is the address of a pointer for the load segment.
2126 // PHDR_SEG is a pointer to the PHDR segment.
2127 // SEGMENT_HEADERS points to the output segment header.
2128 // FILE_HEADER points to the output file header.
2129 // PSHNDX is the address to store the output section index.
2130
2131 off_t inline
2132 Layout::relaxation_loop_body(
2133 int pass,
2134 Target* target,
2135 Symbol_table* symtab,
2136 Output_segment** pload_seg,
2137 Output_segment* phdr_seg,
2138 Output_segment_headers* segment_headers,
2139 Output_file_header* file_header,
2140 unsigned int* pshndx)
2141 {
2142 // If this is not the first iteration, we need to clean up after
2143 // relaxation so that we can lay out the sections again.
2144 if (pass != 0)
2145 this->clean_up_after_relaxation();
2146
2147 // If there is a SECTIONS clause, put all the input sections into
2148 // the required order.
2149 Output_segment* load_seg;
2150 if (this->script_options_->saw_sections_clause())
2151 load_seg = this->set_section_addresses_from_script(symtab);
2152 else if (parameters->options().relocatable())
2153 load_seg = NULL;
2154 else
2155 load_seg = this->find_first_load_seg(target);
2156
2157 if (parameters->options().oformat_enum()
2158 != General_options::OBJECT_FORMAT_ELF)
2159 load_seg = NULL;
2160
2161 // If the user set the address of the text segment, that may not be
2162 // compatible with putting the segment headers and file headers into
2163 // that segment.
2164 if (parameters->options().user_set_Ttext()
2165 && parameters->options().Ttext() % target->common_pagesize() != 0)
2166 {
2167 load_seg = NULL;
2168 phdr_seg = NULL;
2169 }
2170
2171 gold_assert(phdr_seg == NULL
2172 || load_seg != NULL
2173 || this->script_options_->saw_sections_clause());
2174
2175 // If the address of the load segment we found has been set by
2176 // --section-start rather than by a script, then adjust the VMA and
2177 // LMA downward if possible to include the file and section headers.
2178 uint64_t header_gap = 0;
2179 if (load_seg != NULL
2180 && load_seg->are_addresses_set()
2181 && !this->script_options_->saw_sections_clause()
2182 && !parameters->options().relocatable())
2183 {
2184 file_header->finalize_data_size();
2185 segment_headers->finalize_data_size();
2186 size_t sizeof_headers = (file_header->data_size()
2187 + segment_headers->data_size());
2188 const uint64_t abi_pagesize = target->abi_pagesize();
2189 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2190 hdr_paddr &= ~(abi_pagesize - 1);
2191 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2192 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2193 load_seg = NULL;
2194 else
2195 {
2196 load_seg->set_addresses(load_seg->vaddr() - subtract,
2197 load_seg->paddr() - subtract);
2198 header_gap = subtract - sizeof_headers;
2199 }
2200 }
2201
2202 // Lay out the segment headers.
2203 if (!parameters->options().relocatable())
2204 {
2205 gold_assert(segment_headers != NULL);
2206 if (header_gap != 0 && load_seg != NULL)
2207 {
2208 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2209 load_seg->add_initial_output_data(z);
2210 }
2211 if (load_seg != NULL)
2212 load_seg->add_initial_output_data(segment_headers);
2213 if (phdr_seg != NULL)
2214 phdr_seg->add_initial_output_data(segment_headers);
2215 }
2216
2217 // Lay out the file header.
2218 if (load_seg != NULL)
2219 load_seg->add_initial_output_data(file_header);
2220
2221 if (this->script_options_->saw_phdrs_clause()
2222 && !parameters->options().relocatable())
2223 {
2224 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2225 // clause in a linker script.
2226 Script_sections* ss = this->script_options_->script_sections();
2227 ss->put_headers_in_phdrs(file_header, segment_headers);
2228 }
2229
2230 // We set the output section indexes in set_segment_offsets and
2231 // set_section_indexes.
2232 *pshndx = 1;
2233
2234 // Set the file offsets of all the segments, and all the sections
2235 // they contain.
2236 off_t off;
2237 if (!parameters->options().relocatable())
2238 off = this->set_segment_offsets(target, load_seg, pshndx);
2239 else
2240 off = this->set_relocatable_section_offsets(file_header, pshndx);
2241
2242 // Verify that the dummy relaxation does not change anything.
2243 if (is_debugging_enabled(DEBUG_RELAXATION))
2244 {
2245 if (pass == 0)
2246 this->relaxation_debug_check_->read_sections(this->section_list_);
2247 else
2248 this->relaxation_debug_check_->verify_sections(this->section_list_);
2249 }
2250
2251 *pload_seg = load_seg;
2252 return off;
2253 }
2254
2255 // Search the list of patterns and find the postion of the given section
2256 // name in the output section. If the section name matches a glob
2257 // pattern and a non-glob name, then the non-glob position takes
2258 // precedence. Return 0 if no match is found.
2259
2260 unsigned int
2261 Layout::find_section_order_index(const std::string& section_name)
2262 {
2263 Unordered_map<std::string, unsigned int>::iterator map_it;
2264 map_it = this->input_section_position_.find(section_name);
2265 if (map_it != this->input_section_position_.end())
2266 return map_it->second;
2267
2268 // Absolute match failed. Linear search the glob patterns.
2269 std::vector<std::string>::iterator it;
2270 for (it = this->input_section_glob_.begin();
2271 it != this->input_section_glob_.end();
2272 ++it)
2273 {
2274 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2275 {
2276 map_it = this->input_section_position_.find(*it);
2277 gold_assert(map_it != this->input_section_position_.end());
2278 return map_it->second;
2279 }
2280 }
2281 return 0;
2282 }
2283
2284 // Read the sequence of input sections from the file specified with
2285 // option --section-ordering-file.
2286
2287 void
2288 Layout::read_layout_from_file()
2289 {
2290 const char* filename = parameters->options().section_ordering_file();
2291 std::ifstream in;
2292 std::string line;
2293
2294 in.open(filename);
2295 if (!in)
2296 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2297 filename, strerror(errno));
2298
2299 std::getline(in, line); // this chops off the trailing \n, if any
2300 unsigned int position = 1;
2301 this->set_section_ordering_specified();
2302
2303 while (in)
2304 {
2305 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2306 line.resize(line.length() - 1);
2307 // Ignore comments, beginning with '#'
2308 if (line[0] == '#')
2309 {
2310 std::getline(in, line);
2311 continue;
2312 }
2313 this->input_section_position_[line] = position;
2314 // Store all glob patterns in a vector.
2315 if (is_wildcard_string(line.c_str()))
2316 this->input_section_glob_.push_back(line);
2317 position++;
2318 std::getline(in, line);
2319 }
2320 }
2321
2322 // Finalize the layout. When this is called, we have created all the
2323 // output sections and all the output segments which are based on
2324 // input sections. We have several things to do, and we have to do
2325 // them in the right order, so that we get the right results correctly
2326 // and efficiently.
2327
2328 // 1) Finalize the list of output segments and create the segment
2329 // table header.
2330
2331 // 2) Finalize the dynamic symbol table and associated sections.
2332
2333 // 3) Determine the final file offset of all the output segments.
2334
2335 // 4) Determine the final file offset of all the SHF_ALLOC output
2336 // sections.
2337
2338 // 5) Create the symbol table sections and the section name table
2339 // section.
2340
2341 // 6) Finalize the symbol table: set symbol values to their final
2342 // value and make a final determination of which symbols are going
2343 // into the output symbol table.
2344
2345 // 7) Create the section table header.
2346
2347 // 8) Determine the final file offset of all the output sections which
2348 // are not SHF_ALLOC, including the section table header.
2349
2350 // 9) Finalize the ELF file header.
2351
2352 // This function returns the size of the output file.
2353
2354 off_t
2355 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2356 Target* target, const Task* task)
2357 {
2358 target->finalize_sections(this, input_objects, symtab);
2359
2360 this->count_local_symbols(task, input_objects);
2361
2362 this->link_stabs_sections();
2363
2364 Output_segment* phdr_seg = NULL;
2365 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2366 {
2367 // There was a dynamic object in the link. We need to create
2368 // some information for the dynamic linker.
2369
2370 // Create the PT_PHDR segment which will hold the program
2371 // headers.
2372 if (!this->script_options_->saw_phdrs_clause())
2373 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2374
2375 // Create the dynamic symbol table, including the hash table.
2376 Output_section* dynstr;
2377 std::vector<Symbol*> dynamic_symbols;
2378 unsigned int local_dynamic_count;
2379 Versions versions(*this->script_options()->version_script_info(),
2380 &this->dynpool_);
2381 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2382 &local_dynamic_count, &dynamic_symbols,
2383 &versions);
2384
2385 // Create the .interp section to hold the name of the
2386 // interpreter, and put it in a PT_INTERP segment. Don't do it
2387 // if we saw a .interp section in an input file.
2388 if ((!parameters->options().shared()
2389 || parameters->options().dynamic_linker() != NULL)
2390 && this->interp_segment_ == NULL)
2391 this->create_interp(target);
2392
2393 // Finish the .dynamic section to hold the dynamic data, and put
2394 // it in a PT_DYNAMIC segment.
2395 this->finish_dynamic_section(input_objects, symtab);
2396
2397 // We should have added everything we need to the dynamic string
2398 // table.
2399 this->dynpool_.set_string_offsets();
2400
2401 // Create the version sections. We can't do this until the
2402 // dynamic string table is complete.
2403 this->create_version_sections(&versions, symtab, local_dynamic_count,
2404 dynamic_symbols, dynstr);
2405
2406 // Set the size of the _DYNAMIC symbol. We can't do this until
2407 // after we call create_version_sections.
2408 this->set_dynamic_symbol_size(symtab);
2409 }
2410
2411 // Create segment headers.
2412 Output_segment_headers* segment_headers =
2413 (parameters->options().relocatable()
2414 ? NULL
2415 : new Output_segment_headers(this->segment_list_));
2416
2417 // Lay out the file header.
2418 Output_file_header* file_header = new Output_file_header(target, symtab,
2419 segment_headers);
2420
2421 this->special_output_list_.push_back(file_header);
2422 if (segment_headers != NULL)
2423 this->special_output_list_.push_back(segment_headers);
2424
2425 // Find approriate places for orphan output sections if we are using
2426 // a linker script.
2427 if (this->script_options_->saw_sections_clause())
2428 this->place_orphan_sections_in_script();
2429
2430 Output_segment* load_seg;
2431 off_t off;
2432 unsigned int shndx;
2433 int pass = 0;
2434
2435 // Take a snapshot of the section layout as needed.
2436 if (target->may_relax())
2437 this->prepare_for_relaxation();
2438
2439 // Run the relaxation loop to lay out sections.
2440 do
2441 {
2442 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2443 phdr_seg, segment_headers, file_header,
2444 &shndx);
2445 pass++;
2446 }
2447 while (target->may_relax()
2448 && target->relax(pass, input_objects, symtab, this, task));
2449
2450 // Set the file offsets of all the non-data sections we've seen so
2451 // far which don't have to wait for the input sections. We need
2452 // this in order to finalize local symbols in non-allocated
2453 // sections.
2454 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2455
2456 // Set the section indexes of all unallocated sections seen so far,
2457 // in case any of them are somehow referenced by a symbol.
2458 shndx = this->set_section_indexes(shndx);
2459
2460 // Create the symbol table sections.
2461 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2462 if (!parameters->doing_static_link())
2463 this->assign_local_dynsym_offsets(input_objects);
2464
2465 // Process any symbol assignments from a linker script. This must
2466 // be called after the symbol table has been finalized.
2467 this->script_options_->finalize_symbols(symtab, this);
2468
2469 // Create the incremental inputs sections.
2470 if (this->incremental_inputs_)
2471 {
2472 this->incremental_inputs_->finalize();
2473 this->create_incremental_info_sections(symtab);
2474 }
2475
2476 // Create the .shstrtab section.
2477 Output_section* shstrtab_section = this->create_shstrtab();
2478
2479 // Set the file offsets of the rest of the non-data sections which
2480 // don't have to wait for the input sections.
2481 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2482
2483 // Now that all sections have been created, set the section indexes
2484 // for any sections which haven't been done yet.
2485 shndx = this->set_section_indexes(shndx);
2486
2487 // Create the section table header.
2488 this->create_shdrs(shstrtab_section, &off);
2489
2490 // If there are no sections which require postprocessing, we can
2491 // handle the section names now, and avoid a resize later.
2492 if (!this->any_postprocessing_sections_)
2493 {
2494 off = this->set_section_offsets(off,
2495 POSTPROCESSING_SECTIONS_PASS);
2496 off =
2497 this->set_section_offsets(off,
2498 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2499 }
2500
2501 file_header->set_section_info(this->section_headers_, shstrtab_section);
2502
2503 // Now we know exactly where everything goes in the output file
2504 // (except for non-allocated sections which require postprocessing).
2505 Output_data::layout_complete();
2506
2507 this->output_file_size_ = off;
2508
2509 return off;
2510 }
2511
2512 // Create a note header following the format defined in the ELF ABI.
2513 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2514 // of the section to create, DESCSZ is the size of the descriptor.
2515 // ALLOCATE is true if the section should be allocated in memory.
2516 // This returns the new note section. It sets *TRAILING_PADDING to
2517 // the number of trailing zero bytes required.
2518
2519 Output_section*
2520 Layout::create_note(const char* name, int note_type,
2521 const char* section_name, size_t descsz,
2522 bool allocate, size_t* trailing_padding)
2523 {
2524 // Authorities all agree that the values in a .note field should
2525 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2526 // they differ on what the alignment is for 64-bit binaries.
2527 // The GABI says unambiguously they take 8-byte alignment:
2528 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2529 // Other documentation says alignment should always be 4 bytes:
2530 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2531 // GNU ld and GNU readelf both support the latter (at least as of
2532 // version 2.16.91), and glibc always generates the latter for
2533 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2534 // here.
2535 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2536 const int size = parameters->target().get_size();
2537 #else
2538 const int size = 32;
2539 #endif
2540
2541 // The contents of the .note section.
2542 size_t namesz = strlen(name) + 1;
2543 size_t aligned_namesz = align_address(namesz, size / 8);
2544 size_t aligned_descsz = align_address(descsz, size / 8);
2545
2546 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2547
2548 unsigned char* buffer = new unsigned char[notehdrsz];
2549 memset(buffer, 0, notehdrsz);
2550
2551 bool is_big_endian = parameters->target().is_big_endian();
2552
2553 if (size == 32)
2554 {
2555 if (!is_big_endian)
2556 {
2557 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2558 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2559 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2560 }
2561 else
2562 {
2563 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2564 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2565 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2566 }
2567 }
2568 else if (size == 64)
2569 {
2570 if (!is_big_endian)
2571 {
2572 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2573 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2574 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2575 }
2576 else
2577 {
2578 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2579 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2580 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2581 }
2582 }
2583 else
2584 gold_unreachable();
2585
2586 memcpy(buffer + 3 * (size / 8), name, namesz);
2587
2588 elfcpp::Elf_Xword flags = 0;
2589 Output_section_order order = ORDER_INVALID;
2590 if (allocate)
2591 {
2592 flags = elfcpp::SHF_ALLOC;
2593 order = ORDER_RO_NOTE;
2594 }
2595 Output_section* os = this->choose_output_section(NULL, section_name,
2596 elfcpp::SHT_NOTE,
2597 flags, false, order, false);
2598 if (os == NULL)
2599 return NULL;
2600
2601 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2602 size / 8,
2603 "** note header");
2604 os->add_output_section_data(posd);
2605
2606 *trailing_padding = aligned_descsz - descsz;
2607
2608 return os;
2609 }
2610
2611 // For an executable or shared library, create a note to record the
2612 // version of gold used to create the binary.
2613
2614 void
2615 Layout::create_gold_note()
2616 {
2617 if (parameters->options().relocatable()
2618 || parameters->incremental_update())
2619 return;
2620
2621 std::string desc = std::string("gold ") + gold::get_version_string();
2622
2623 size_t trailing_padding;
2624 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2625 ".note.gnu.gold-version", desc.size(),
2626 false, &trailing_padding);
2627 if (os == NULL)
2628 return;
2629
2630 Output_section_data* posd = new Output_data_const(desc, 4);
2631 os->add_output_section_data(posd);
2632
2633 if (trailing_padding > 0)
2634 {
2635 posd = new Output_data_zero_fill(trailing_padding, 0);
2636 os->add_output_section_data(posd);
2637 }
2638 }
2639
2640 // Record whether the stack should be executable. This can be set
2641 // from the command line using the -z execstack or -z noexecstack
2642 // options. Otherwise, if any input file has a .note.GNU-stack
2643 // section with the SHF_EXECINSTR flag set, the stack should be
2644 // executable. Otherwise, if at least one input file a
2645 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2646 // section, we use the target default for whether the stack should be
2647 // executable. Otherwise, we don't generate a stack note. When
2648 // generating a object file, we create a .note.GNU-stack section with
2649 // the appropriate marking. When generating an executable or shared
2650 // library, we create a PT_GNU_STACK segment.
2651
2652 void
2653 Layout::create_executable_stack_info()
2654 {
2655 bool is_stack_executable;
2656 if (parameters->options().is_execstack_set())
2657 is_stack_executable = parameters->options().is_stack_executable();
2658 else if (!this->input_with_gnu_stack_note_)
2659 return;
2660 else
2661 {
2662 if (this->input_requires_executable_stack_)
2663 is_stack_executable = true;
2664 else if (this->input_without_gnu_stack_note_)
2665 is_stack_executable =
2666 parameters->target().is_default_stack_executable();
2667 else
2668 is_stack_executable = false;
2669 }
2670
2671 if (parameters->options().relocatable())
2672 {
2673 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2674 elfcpp::Elf_Xword flags = 0;
2675 if (is_stack_executable)
2676 flags |= elfcpp::SHF_EXECINSTR;
2677 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2678 ORDER_INVALID, false);
2679 }
2680 else
2681 {
2682 if (this->script_options_->saw_phdrs_clause())
2683 return;
2684 int flags = elfcpp::PF_R | elfcpp::PF_W;
2685 if (is_stack_executable)
2686 flags |= elfcpp::PF_X;
2687 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2688 }
2689 }
2690
2691 // If --build-id was used, set up the build ID note.
2692
2693 void
2694 Layout::create_build_id()
2695 {
2696 if (!parameters->options().user_set_build_id())
2697 return;
2698
2699 const char* style = parameters->options().build_id();
2700 if (strcmp(style, "none") == 0)
2701 return;
2702
2703 // Set DESCSZ to the size of the note descriptor. When possible,
2704 // set DESC to the note descriptor contents.
2705 size_t descsz;
2706 std::string desc;
2707 if (strcmp(style, "md5") == 0)
2708 descsz = 128 / 8;
2709 else if (strcmp(style, "sha1") == 0)
2710 descsz = 160 / 8;
2711 else if (strcmp(style, "uuid") == 0)
2712 {
2713 const size_t uuidsz = 128 / 8;
2714
2715 char buffer[uuidsz];
2716 memset(buffer, 0, uuidsz);
2717
2718 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2719 if (descriptor < 0)
2720 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2721 strerror(errno));
2722 else
2723 {
2724 ssize_t got = ::read(descriptor, buffer, uuidsz);
2725 release_descriptor(descriptor, true);
2726 if (got < 0)
2727 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2728 else if (static_cast<size_t>(got) != uuidsz)
2729 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2730 uuidsz, got);
2731 }
2732
2733 desc.assign(buffer, uuidsz);
2734 descsz = uuidsz;
2735 }
2736 else if (strncmp(style, "0x", 2) == 0)
2737 {
2738 hex_init();
2739 const char* p = style + 2;
2740 while (*p != '\0')
2741 {
2742 if (hex_p(p[0]) && hex_p(p[1]))
2743 {
2744 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2745 desc += c;
2746 p += 2;
2747 }
2748 else if (*p == '-' || *p == ':')
2749 ++p;
2750 else
2751 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2752 style);
2753 }
2754 descsz = desc.size();
2755 }
2756 else
2757 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2758
2759 // Create the note.
2760 size_t trailing_padding;
2761 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2762 ".note.gnu.build-id", descsz, true,
2763 &trailing_padding);
2764 if (os == NULL)
2765 return;
2766
2767 if (!desc.empty())
2768 {
2769 // We know the value already, so we fill it in now.
2770 gold_assert(desc.size() == descsz);
2771
2772 Output_section_data* posd = new Output_data_const(desc, 4);
2773 os->add_output_section_data(posd);
2774
2775 if (trailing_padding != 0)
2776 {
2777 posd = new Output_data_zero_fill(trailing_padding, 0);
2778 os->add_output_section_data(posd);
2779 }
2780 }
2781 else
2782 {
2783 // We need to compute a checksum after we have completed the
2784 // link.
2785 gold_assert(trailing_padding == 0);
2786 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2787 os->add_output_section_data(this->build_id_note_);
2788 }
2789 }
2790
2791 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2792 // field of the former should point to the latter. I'm not sure who
2793 // started this, but the GNU linker does it, and some tools depend
2794 // upon it.
2795
2796 void
2797 Layout::link_stabs_sections()
2798 {
2799 if (!this->have_stabstr_section_)
2800 return;
2801
2802 for (Section_list::iterator p = this->section_list_.begin();
2803 p != this->section_list_.end();
2804 ++p)
2805 {
2806 if ((*p)->type() != elfcpp::SHT_STRTAB)
2807 continue;
2808
2809 const char* name = (*p)->name();
2810 if (strncmp(name, ".stab", 5) != 0)
2811 continue;
2812
2813 size_t len = strlen(name);
2814 if (strcmp(name + len - 3, "str") != 0)
2815 continue;
2816
2817 std::string stab_name(name, len - 3);
2818 Output_section* stab_sec;
2819 stab_sec = this->find_output_section(stab_name.c_str());
2820 if (stab_sec != NULL)
2821 stab_sec->set_link_section(*p);
2822 }
2823 }
2824
2825 // Create .gnu_incremental_inputs and related sections needed
2826 // for the next run of incremental linking to check what has changed.
2827
2828 void
2829 Layout::create_incremental_info_sections(Symbol_table* symtab)
2830 {
2831 Incremental_inputs* incr = this->incremental_inputs_;
2832
2833 gold_assert(incr != NULL);
2834
2835 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2836 incr->create_data_sections(symtab);
2837
2838 // Add the .gnu_incremental_inputs section.
2839 const char* incremental_inputs_name =
2840 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2841 Output_section* incremental_inputs_os =
2842 this->make_output_section(incremental_inputs_name,
2843 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2844 ORDER_INVALID, false);
2845 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2846
2847 // Add the .gnu_incremental_symtab section.
2848 const char* incremental_symtab_name =
2849 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2850 Output_section* incremental_symtab_os =
2851 this->make_output_section(incremental_symtab_name,
2852 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2853 ORDER_INVALID, false);
2854 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2855 incremental_symtab_os->set_entsize(4);
2856
2857 // Add the .gnu_incremental_relocs section.
2858 const char* incremental_relocs_name =
2859 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2860 Output_section* incremental_relocs_os =
2861 this->make_output_section(incremental_relocs_name,
2862 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2863 ORDER_INVALID, false);
2864 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2865 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2866
2867 // Add the .gnu_incremental_got_plt section.
2868 const char* incremental_got_plt_name =
2869 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2870 Output_section* incremental_got_plt_os =
2871 this->make_output_section(incremental_got_plt_name,
2872 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2873 ORDER_INVALID, false);
2874 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2875
2876 // Add the .gnu_incremental_strtab section.
2877 const char* incremental_strtab_name =
2878 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2879 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2880 elfcpp::SHT_STRTAB, 0,
2881 ORDER_INVALID, false);
2882 Output_data_strtab* strtab_data =
2883 new Output_data_strtab(incr->get_stringpool());
2884 incremental_strtab_os->add_output_section_data(strtab_data);
2885
2886 incremental_inputs_os->set_after_input_sections();
2887 incremental_symtab_os->set_after_input_sections();
2888 incremental_relocs_os->set_after_input_sections();
2889 incremental_got_plt_os->set_after_input_sections();
2890
2891 incremental_inputs_os->set_link_section(incremental_strtab_os);
2892 incremental_symtab_os->set_link_section(incremental_inputs_os);
2893 incremental_relocs_os->set_link_section(incremental_inputs_os);
2894 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2895 }
2896
2897 // Return whether SEG1 should be before SEG2 in the output file. This
2898 // is based entirely on the segment type and flags. When this is
2899 // called the segment addresses have normally not yet been set.
2900
2901 bool
2902 Layout::segment_precedes(const Output_segment* seg1,
2903 const Output_segment* seg2)
2904 {
2905 elfcpp::Elf_Word type1 = seg1->type();
2906 elfcpp::Elf_Word type2 = seg2->type();
2907
2908 // The single PT_PHDR segment is required to precede any loadable
2909 // segment. We simply make it always first.
2910 if (type1 == elfcpp::PT_PHDR)
2911 {
2912 gold_assert(type2 != elfcpp::PT_PHDR);
2913 return true;
2914 }
2915 if (type2 == elfcpp::PT_PHDR)
2916 return false;
2917
2918 // The single PT_INTERP segment is required to precede any loadable
2919 // segment. We simply make it always second.
2920 if (type1 == elfcpp::PT_INTERP)
2921 {
2922 gold_assert(type2 != elfcpp::PT_INTERP);
2923 return true;
2924 }
2925 if (type2 == elfcpp::PT_INTERP)
2926 return false;
2927
2928 // We then put PT_LOAD segments before any other segments.
2929 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2930 return true;
2931 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2932 return false;
2933
2934 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2935 // segment, because that is where the dynamic linker expects to find
2936 // it (this is just for efficiency; other positions would also work
2937 // correctly).
2938 if (type1 == elfcpp::PT_TLS
2939 && type2 != elfcpp::PT_TLS
2940 && type2 != elfcpp::PT_GNU_RELRO)
2941 return false;
2942 if (type2 == elfcpp::PT_TLS
2943 && type1 != elfcpp::PT_TLS
2944 && type1 != elfcpp::PT_GNU_RELRO)
2945 return true;
2946
2947 // We put the PT_GNU_RELRO segment last, because that is where the
2948 // dynamic linker expects to find it (as with PT_TLS, this is just
2949 // for efficiency).
2950 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2951 return false;
2952 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2953 return true;
2954
2955 const elfcpp::Elf_Word flags1 = seg1->flags();
2956 const elfcpp::Elf_Word flags2 = seg2->flags();
2957
2958 // The order of non-PT_LOAD segments is unimportant. We simply sort
2959 // by the numeric segment type and flags values. There should not
2960 // be more than one segment with the same type and flags.
2961 if (type1 != elfcpp::PT_LOAD)
2962 {
2963 if (type1 != type2)
2964 return type1 < type2;
2965 gold_assert(flags1 != flags2);
2966 return flags1 < flags2;
2967 }
2968
2969 // If the addresses are set already, sort by load address.
2970 if (seg1->are_addresses_set())
2971 {
2972 if (!seg2->are_addresses_set())
2973 return true;
2974
2975 unsigned int section_count1 = seg1->output_section_count();
2976 unsigned int section_count2 = seg2->output_section_count();
2977 if (section_count1 == 0 && section_count2 > 0)
2978 return true;
2979 if (section_count1 > 0 && section_count2 == 0)
2980 return false;
2981
2982 uint64_t paddr1 = (seg1->are_addresses_set()
2983 ? seg1->paddr()
2984 : seg1->first_section_load_address());
2985 uint64_t paddr2 = (seg2->are_addresses_set()
2986 ? seg2->paddr()
2987 : seg2->first_section_load_address());
2988
2989 if (paddr1 != paddr2)
2990 return paddr1 < paddr2;
2991 }
2992 else if (seg2->are_addresses_set())
2993 return false;
2994
2995 // A segment which holds large data comes after a segment which does
2996 // not hold large data.
2997 if (seg1->is_large_data_segment())
2998 {
2999 if (!seg2->is_large_data_segment())
3000 return false;
3001 }
3002 else if (seg2->is_large_data_segment())
3003 return true;
3004
3005 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3006 // segments come before writable segments. Then writable segments
3007 // with data come before writable segments without data. Then
3008 // executable segments come before non-executable segments. Then
3009 // the unlikely case of a non-readable segment comes before the
3010 // normal case of a readable segment. If there are multiple
3011 // segments with the same type and flags, we require that the
3012 // address be set, and we sort by virtual address and then physical
3013 // address.
3014 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3015 return (flags1 & elfcpp::PF_W) == 0;
3016 if ((flags1 & elfcpp::PF_W) != 0
3017 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3018 return seg1->has_any_data_sections();
3019 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3020 return (flags1 & elfcpp::PF_X) != 0;
3021 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3022 return (flags1 & elfcpp::PF_R) == 0;
3023
3024 // We shouldn't get here--we shouldn't create segments which we
3025 // can't distinguish. Unless of course we are using a weird linker
3026 // script or overlapping --section-start options.
3027 gold_assert(this->script_options_->saw_phdrs_clause()
3028 || parameters->options().any_section_start());
3029 return false;
3030 }
3031
3032 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3033
3034 static off_t
3035 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3036 {
3037 uint64_t unsigned_off = off;
3038 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3039 | (addr & (abi_pagesize - 1)));
3040 if (aligned_off < unsigned_off)
3041 aligned_off += abi_pagesize;
3042 return aligned_off;
3043 }
3044
3045 // Set the file offsets of all the segments, and all the sections they
3046 // contain. They have all been created. LOAD_SEG must be be laid out
3047 // first. Return the offset of the data to follow.
3048
3049 off_t
3050 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3051 unsigned int* pshndx)
3052 {
3053 // Sort them into the final order. We use a stable sort so that we
3054 // don't randomize the order of indistinguishable segments created
3055 // by linker scripts.
3056 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3057 Layout::Compare_segments(this));
3058
3059 // Find the PT_LOAD segments, and set their addresses and offsets
3060 // and their section's addresses and offsets.
3061 uint64_t start_addr;
3062 if (parameters->options().user_set_Ttext())
3063 start_addr = parameters->options().Ttext();
3064 else if (parameters->options().output_is_position_independent())
3065 start_addr = 0;
3066 else
3067 start_addr = target->default_text_segment_address();
3068
3069 uint64_t addr = start_addr;
3070 off_t off = 0;
3071
3072 // If LOAD_SEG is NULL, then the file header and segment headers
3073 // will not be loadable. But they still need to be at offset 0 in
3074 // the file. Set their offsets now.
3075 if (load_seg == NULL)
3076 {
3077 for (Data_list::iterator p = this->special_output_list_.begin();
3078 p != this->special_output_list_.end();
3079 ++p)
3080 {
3081 off = align_address(off, (*p)->addralign());
3082 (*p)->set_address_and_file_offset(0, off);
3083 off += (*p)->data_size();
3084 }
3085 }
3086
3087 unsigned int increase_relro = this->increase_relro_;
3088 if (this->script_options_->saw_sections_clause())
3089 increase_relro = 0;
3090
3091 const bool check_sections = parameters->options().check_sections();
3092 Output_segment* last_load_segment = NULL;
3093
3094 unsigned int shndx_begin = *pshndx;
3095 unsigned int shndx_load_seg = *pshndx;
3096
3097 for (Segment_list::iterator p = this->segment_list_.begin();
3098 p != this->segment_list_.end();
3099 ++p)
3100 {
3101 if ((*p)->type() == elfcpp::PT_LOAD)
3102 {
3103 if (target->isolate_execinstr())
3104 {
3105 // When we hit the segment that should contain the
3106 // file headers, reset the file offset so we place
3107 // it and subsequent segments appropriately.
3108 // We'll fix up the preceding segments below.
3109 if (load_seg == *p)
3110 {
3111 if (off == 0)
3112 load_seg = NULL;
3113 else
3114 {
3115 off = 0;
3116 shndx_load_seg = *pshndx;
3117 }
3118 }
3119 }
3120 else
3121 {
3122 // Verify that the file headers fall into the first segment.
3123 if (load_seg != NULL && load_seg != *p)
3124 gold_unreachable();
3125 load_seg = NULL;
3126 }
3127
3128 bool are_addresses_set = (*p)->are_addresses_set();
3129 if (are_addresses_set)
3130 {
3131 // When it comes to setting file offsets, we care about
3132 // the physical address.
3133 addr = (*p)->paddr();
3134 }
3135 else if (parameters->options().user_set_Ttext()
3136 && ((*p)->flags() & elfcpp::PF_W) == 0)
3137 {
3138 are_addresses_set = true;
3139 }
3140 else if (parameters->options().user_set_Tdata()
3141 && ((*p)->flags() & elfcpp::PF_W) != 0
3142 && (!parameters->options().user_set_Tbss()
3143 || (*p)->has_any_data_sections()))
3144 {
3145 addr = parameters->options().Tdata();
3146 are_addresses_set = true;
3147 }
3148 else if (parameters->options().user_set_Tbss()
3149 && ((*p)->flags() & elfcpp::PF_W) != 0
3150 && !(*p)->has_any_data_sections())
3151 {
3152 addr = parameters->options().Tbss();
3153 are_addresses_set = true;
3154 }
3155
3156 uint64_t orig_addr = addr;
3157 uint64_t orig_off = off;
3158
3159 uint64_t aligned_addr = 0;
3160 uint64_t abi_pagesize = target->abi_pagesize();
3161 uint64_t common_pagesize = target->common_pagesize();
3162
3163 if (!parameters->options().nmagic()
3164 && !parameters->options().omagic())
3165 (*p)->set_minimum_p_align(common_pagesize);
3166
3167 if (!are_addresses_set)
3168 {
3169 // Skip the address forward one page, maintaining the same
3170 // position within the page. This lets us store both segments
3171 // overlapping on a single page in the file, but the loader will
3172 // put them on different pages in memory. We will revisit this
3173 // decision once we know the size of the segment.
3174
3175 addr = align_address(addr, (*p)->maximum_alignment());
3176 aligned_addr = addr;
3177
3178 if (load_seg == *p)
3179 {
3180 // This is the segment that will contain the file
3181 // headers, so its offset will have to be exactly zero.
3182 gold_assert(orig_off == 0);
3183
3184 // If the target wants a fixed minimum distance from the
3185 // text segment to the read-only segment, move up now.
3186 uint64_t min_addr = start_addr + target->rosegment_gap();
3187 if (addr < min_addr)
3188 addr = min_addr;
3189
3190 // But this is not the first segment! To make its
3191 // address congruent with its offset, that address better
3192 // be aligned to the ABI-mandated page size.
3193 addr = align_address(addr, abi_pagesize);
3194 aligned_addr = addr;
3195 }
3196 else
3197 {
3198 if ((addr & (abi_pagesize - 1)) != 0)
3199 addr = addr + abi_pagesize;
3200
3201 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3202 }
3203 }
3204
3205 if (!parameters->options().nmagic()
3206 && !parameters->options().omagic())
3207 off = align_file_offset(off, addr, abi_pagesize);
3208 else
3209 {
3210 // This is -N or -n with a section script which prevents
3211 // us from using a load segment. We need to ensure that
3212 // the file offset is aligned to the alignment of the
3213 // segment. This is because the linker script
3214 // implicitly assumed a zero offset. If we don't align
3215 // here, then the alignment of the sections in the
3216 // linker script may not match the alignment of the
3217 // sections in the set_section_addresses call below,
3218 // causing an error about dot moving backward.
3219 off = align_address(off, (*p)->maximum_alignment());
3220 }
3221
3222 unsigned int shndx_hold = *pshndx;
3223 bool has_relro = false;
3224 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3225 &increase_relro,
3226 &has_relro,
3227 &off, pshndx);
3228
3229 // Now that we know the size of this segment, we may be able
3230 // to save a page in memory, at the cost of wasting some
3231 // file space, by instead aligning to the start of a new
3232 // page. Here we use the real machine page size rather than
3233 // the ABI mandated page size. If the segment has been
3234 // aligned so that the relro data ends at a page boundary,
3235 // we do not try to realign it.
3236
3237 if (!are_addresses_set
3238 && !has_relro
3239 && aligned_addr != addr
3240 && !parameters->incremental())
3241 {
3242 uint64_t first_off = (common_pagesize
3243 - (aligned_addr
3244 & (common_pagesize - 1)));
3245 uint64_t last_off = new_addr & (common_pagesize - 1);
3246 if (first_off > 0
3247 && last_off > 0
3248 && ((aligned_addr & ~ (common_pagesize - 1))
3249 != (new_addr & ~ (common_pagesize - 1)))
3250 && first_off + last_off <= common_pagesize)
3251 {
3252 *pshndx = shndx_hold;
3253 addr = align_address(aligned_addr, common_pagesize);
3254 addr = align_address(addr, (*p)->maximum_alignment());
3255 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3256 off = align_file_offset(off, addr, abi_pagesize);
3257
3258 increase_relro = this->increase_relro_;
3259 if (this->script_options_->saw_sections_clause())
3260 increase_relro = 0;
3261 has_relro = false;
3262
3263 new_addr = (*p)->set_section_addresses(this, true, addr,
3264 &increase_relro,
3265 &has_relro,
3266 &off, pshndx);
3267 }
3268 }
3269
3270 addr = new_addr;
3271
3272 // Implement --check-sections. We know that the segments
3273 // are sorted by LMA.
3274 if (check_sections && last_load_segment != NULL)
3275 {
3276 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3277 if (last_load_segment->paddr() + last_load_segment->memsz()
3278 > (*p)->paddr())
3279 {
3280 unsigned long long lb1 = last_load_segment->paddr();
3281 unsigned long long le1 = lb1 + last_load_segment->memsz();
3282 unsigned long long lb2 = (*p)->paddr();
3283 unsigned long long le2 = lb2 + (*p)->memsz();
3284 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3285 "[0x%llx -> 0x%llx]"),
3286 lb1, le1, lb2, le2);
3287 }
3288 }
3289 last_load_segment = *p;
3290 }
3291 }
3292
3293 if (load_seg != NULL && target->isolate_execinstr())
3294 {
3295 // Process the early segments again, setting their file offsets
3296 // so they land after the segments starting at LOAD_SEG.
3297 off = align_file_offset(off, 0, target->abi_pagesize());
3298
3299 for (Segment_list::iterator p = this->segment_list_.begin();
3300 *p != load_seg;
3301 ++p)
3302 {
3303 if ((*p)->type() == elfcpp::PT_LOAD)
3304 {
3305 // We repeat the whole job of assigning addresses and
3306 // offsets, but we really only want to change the offsets and
3307 // must ensure that the addresses all come out the same as
3308 // they did the first time through.
3309 bool has_relro = false;
3310 const uint64_t old_addr = (*p)->vaddr();
3311 const uint64_t old_end = old_addr + (*p)->memsz();
3312 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3313 old_addr,
3314 &increase_relro,
3315 &has_relro,
3316 &off,
3317 &shndx_begin);
3318 gold_assert(new_addr == old_end);
3319 }
3320 }
3321
3322 gold_assert(shndx_begin == shndx_load_seg);
3323 }
3324
3325 // Handle the non-PT_LOAD segments, setting their offsets from their
3326 // section's offsets.
3327 for (Segment_list::iterator p = this->segment_list_.begin();
3328 p != this->segment_list_.end();
3329 ++p)
3330 {
3331 if ((*p)->type() != elfcpp::PT_LOAD)
3332 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3333 ? increase_relro
3334 : 0);
3335 }
3336
3337 // Set the TLS offsets for each section in the PT_TLS segment.
3338 if (this->tls_segment_ != NULL)
3339 this->tls_segment_->set_tls_offsets();
3340
3341 return off;
3342 }
3343
3344 // Set the offsets of all the allocated sections when doing a
3345 // relocatable link. This does the same jobs as set_segment_offsets,
3346 // only for a relocatable link.
3347
3348 off_t
3349 Layout::set_relocatable_section_offsets(Output_data* file_header,
3350 unsigned int* pshndx)
3351 {
3352 off_t off = 0;
3353
3354 file_header->set_address_and_file_offset(0, 0);
3355 off += file_header->data_size();
3356
3357 for (Section_list::iterator p = this->section_list_.begin();
3358 p != this->section_list_.end();
3359 ++p)
3360 {
3361 // We skip unallocated sections here, except that group sections
3362 // have to come first.
3363 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3364 && (*p)->type() != elfcpp::SHT_GROUP)
3365 continue;
3366
3367 off = align_address(off, (*p)->addralign());
3368
3369 // The linker script might have set the address.
3370 if (!(*p)->is_address_valid())
3371 (*p)->set_address(0);
3372 (*p)->set_file_offset(off);
3373 (*p)->finalize_data_size();
3374 off += (*p)->data_size();
3375
3376 (*p)->set_out_shndx(*pshndx);
3377 ++*pshndx;
3378 }
3379
3380 return off;
3381 }
3382
3383 // Set the file offset of all the sections not associated with a
3384 // segment.
3385
3386 off_t
3387 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3388 {
3389 off_t startoff = off;
3390 off_t maxoff = off;
3391
3392 for (Section_list::iterator p = this->unattached_section_list_.begin();
3393 p != this->unattached_section_list_.end();
3394 ++p)
3395 {
3396 // The symtab section is handled in create_symtab_sections.
3397 if (*p == this->symtab_section_)
3398 continue;
3399
3400 // If we've already set the data size, don't set it again.
3401 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3402 continue;
3403
3404 if (pass == BEFORE_INPUT_SECTIONS_PASS
3405 && (*p)->requires_postprocessing())
3406 {
3407 (*p)->create_postprocessing_buffer();
3408 this->any_postprocessing_sections_ = true;
3409 }
3410
3411 if (pass == BEFORE_INPUT_SECTIONS_PASS
3412 && (*p)->after_input_sections())
3413 continue;
3414 else if (pass == POSTPROCESSING_SECTIONS_PASS
3415 && (!(*p)->after_input_sections()
3416 || (*p)->type() == elfcpp::SHT_STRTAB))
3417 continue;
3418 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3419 && (!(*p)->after_input_sections()
3420 || (*p)->type() != elfcpp::SHT_STRTAB))
3421 continue;
3422
3423 if (!parameters->incremental_update())
3424 {
3425 off = align_address(off, (*p)->addralign());
3426 (*p)->set_file_offset(off);
3427 (*p)->finalize_data_size();
3428 }
3429 else
3430 {
3431 // Incremental update: allocate file space from free list.
3432 (*p)->pre_finalize_data_size();
3433 off_t current_size = (*p)->current_data_size();
3434 off = this->allocate(current_size, (*p)->addralign(), startoff);
3435 if (off == -1)
3436 {
3437 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3438 this->free_list_.dump();
3439 gold_assert((*p)->output_section() != NULL);
3440 gold_fallback(_("out of patch space for section %s; "
3441 "relink with --incremental-full"),
3442 (*p)->output_section()->name());
3443 }
3444 (*p)->set_file_offset(off);
3445 (*p)->finalize_data_size();
3446 if ((*p)->data_size() > current_size)
3447 {
3448 gold_assert((*p)->output_section() != NULL);
3449 gold_fallback(_("%s: section changed size; "
3450 "relink with --incremental-full"),
3451 (*p)->output_section()->name());
3452 }
3453 gold_debug(DEBUG_INCREMENTAL,
3454 "set_section_offsets: %08lx %08lx %s",
3455 static_cast<long>(off),
3456 static_cast<long>((*p)->data_size()),
3457 ((*p)->output_section() != NULL
3458 ? (*p)->output_section()->name() : "(special)"));
3459 }
3460
3461 off += (*p)->data_size();
3462 if (off > maxoff)
3463 maxoff = off;
3464
3465 // At this point the name must be set.
3466 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3467 this->namepool_.add((*p)->name(), false, NULL);
3468 }
3469 return maxoff;
3470 }
3471
3472 // Set the section indexes of all the sections not associated with a
3473 // segment.
3474
3475 unsigned int
3476 Layout::set_section_indexes(unsigned int shndx)
3477 {
3478 for (Section_list::iterator p = this->unattached_section_list_.begin();
3479 p != this->unattached_section_list_.end();
3480 ++p)
3481 {
3482 if (!(*p)->has_out_shndx())
3483 {
3484 (*p)->set_out_shndx(shndx);
3485 ++shndx;
3486 }
3487 }
3488 return shndx;
3489 }
3490
3491 // Set the section addresses according to the linker script. This is
3492 // only called when we see a SECTIONS clause. This returns the
3493 // program segment which should hold the file header and segment
3494 // headers, if any. It will return NULL if they should not be in a
3495 // segment.
3496
3497 Output_segment*
3498 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3499 {
3500 Script_sections* ss = this->script_options_->script_sections();
3501 gold_assert(ss->saw_sections_clause());
3502 return this->script_options_->set_section_addresses(symtab, this);
3503 }
3504
3505 // Place the orphan sections in the linker script.
3506
3507 void
3508 Layout::place_orphan_sections_in_script()
3509 {
3510 Script_sections* ss = this->script_options_->script_sections();
3511 gold_assert(ss->saw_sections_clause());
3512
3513 // Place each orphaned output section in the script.
3514 for (Section_list::iterator p = this->section_list_.begin();
3515 p != this->section_list_.end();
3516 ++p)
3517 {
3518 if (!(*p)->found_in_sections_clause())
3519 ss->place_orphan(*p);
3520 }
3521 }
3522
3523 // Count the local symbols in the regular symbol table and the dynamic
3524 // symbol table, and build the respective string pools.
3525
3526 void
3527 Layout::count_local_symbols(const Task* task,
3528 const Input_objects* input_objects)
3529 {
3530 // First, figure out an upper bound on the number of symbols we'll
3531 // be inserting into each pool. This helps us create the pools with
3532 // the right size, to avoid unnecessary hashtable resizing.
3533 unsigned int symbol_count = 0;
3534 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3535 p != input_objects->relobj_end();
3536 ++p)
3537 symbol_count += (*p)->local_symbol_count();
3538
3539 // Go from "upper bound" to "estimate." We overcount for two
3540 // reasons: we double-count symbols that occur in more than one
3541 // object file, and we count symbols that are dropped from the
3542 // output. Add it all together and assume we overcount by 100%.
3543 symbol_count /= 2;
3544
3545 // We assume all symbols will go into both the sympool and dynpool.
3546 this->sympool_.reserve(symbol_count);
3547 this->dynpool_.reserve(symbol_count);
3548
3549 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3550 p != input_objects->relobj_end();
3551 ++p)
3552 {
3553 Task_lock_obj<Object> tlo(task, *p);
3554 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3555 }
3556 }
3557
3558 // Create the symbol table sections. Here we also set the final
3559 // values of the symbols. At this point all the loadable sections are
3560 // fully laid out. SHNUM is the number of sections so far.
3561
3562 void
3563 Layout::create_symtab_sections(const Input_objects* input_objects,
3564 Symbol_table* symtab,
3565 unsigned int shnum,
3566 off_t* poff)
3567 {
3568 int symsize;
3569 unsigned int align;
3570 if (parameters->target().get_size() == 32)
3571 {
3572 symsize = elfcpp::Elf_sizes<32>::sym_size;
3573 align = 4;
3574 }
3575 else if (parameters->target().get_size() == 64)
3576 {
3577 symsize = elfcpp::Elf_sizes<64>::sym_size;
3578 align = 8;
3579 }
3580 else
3581 gold_unreachable();
3582
3583 // Compute file offsets relative to the start of the symtab section.
3584 off_t off = 0;
3585
3586 // Save space for the dummy symbol at the start of the section. We
3587 // never bother to write this out--it will just be left as zero.
3588 off += symsize;
3589 unsigned int local_symbol_index = 1;
3590
3591 // Add STT_SECTION symbols for each Output section which needs one.
3592 for (Section_list::iterator p = this->section_list_.begin();
3593 p != this->section_list_.end();
3594 ++p)
3595 {
3596 if (!(*p)->needs_symtab_index())
3597 (*p)->set_symtab_index(-1U);
3598 else
3599 {
3600 (*p)->set_symtab_index(local_symbol_index);
3601 ++local_symbol_index;
3602 off += symsize;
3603 }
3604 }
3605
3606 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3607 p != input_objects->relobj_end();
3608 ++p)
3609 {
3610 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3611 off, symtab);
3612 off += (index - local_symbol_index) * symsize;
3613 local_symbol_index = index;
3614 }
3615
3616 unsigned int local_symcount = local_symbol_index;
3617 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3618
3619 off_t dynoff;
3620 size_t dyn_global_index;
3621 size_t dyncount;
3622 if (this->dynsym_section_ == NULL)
3623 {
3624 dynoff = 0;
3625 dyn_global_index = 0;
3626 dyncount = 0;
3627 }
3628 else
3629 {
3630 dyn_global_index = this->dynsym_section_->info();
3631 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3632 dynoff = this->dynsym_section_->offset() + locsize;
3633 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3634 gold_assert(static_cast<off_t>(dyncount * symsize)
3635 == this->dynsym_section_->data_size() - locsize);
3636 }
3637
3638 off_t global_off = off;
3639 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3640 &this->sympool_, &local_symcount);
3641
3642 if (!parameters->options().strip_all())
3643 {
3644 this->sympool_.set_string_offsets();
3645
3646 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3647 Output_section* osymtab = this->make_output_section(symtab_name,
3648 elfcpp::SHT_SYMTAB,
3649 0, ORDER_INVALID,
3650 false);
3651 this->symtab_section_ = osymtab;
3652
3653 Output_section_data* pos = new Output_data_fixed_space(off, align,
3654 "** symtab");
3655 osymtab->add_output_section_data(pos);
3656
3657 // We generate a .symtab_shndx section if we have more than
3658 // SHN_LORESERVE sections. Technically it is possible that we
3659 // don't need one, because it is possible that there are no
3660 // symbols in any of sections with indexes larger than
3661 // SHN_LORESERVE. That is probably unusual, though, and it is
3662 // easier to always create one than to compute section indexes
3663 // twice (once here, once when writing out the symbols).
3664 if (shnum >= elfcpp::SHN_LORESERVE)
3665 {
3666 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3667 false, NULL);
3668 Output_section* osymtab_xindex =
3669 this->make_output_section(symtab_xindex_name,
3670 elfcpp::SHT_SYMTAB_SHNDX, 0,
3671 ORDER_INVALID, false);
3672
3673 size_t symcount = off / symsize;
3674 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3675
3676 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3677
3678 osymtab_xindex->set_link_section(osymtab);
3679 osymtab_xindex->set_addralign(4);
3680 osymtab_xindex->set_entsize(4);
3681
3682 osymtab_xindex->set_after_input_sections();
3683
3684 // This tells the driver code to wait until the symbol table
3685 // has written out before writing out the postprocessing
3686 // sections, including the .symtab_shndx section.
3687 this->any_postprocessing_sections_ = true;
3688 }
3689
3690 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3691 Output_section* ostrtab = this->make_output_section(strtab_name,
3692 elfcpp::SHT_STRTAB,
3693 0, ORDER_INVALID,
3694 false);
3695
3696 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3697 ostrtab->add_output_section_data(pstr);
3698
3699 off_t symtab_off;
3700 if (!parameters->incremental_update())
3701 symtab_off = align_address(*poff, align);
3702 else
3703 {
3704 symtab_off = this->allocate(off, align, *poff);
3705 if (off == -1)
3706 gold_fallback(_("out of patch space for symbol table; "
3707 "relink with --incremental-full"));
3708 gold_debug(DEBUG_INCREMENTAL,
3709 "create_symtab_sections: %08lx %08lx .symtab",
3710 static_cast<long>(symtab_off),
3711 static_cast<long>(off));
3712 }
3713
3714 symtab->set_file_offset(symtab_off + global_off);
3715 osymtab->set_file_offset(symtab_off);
3716 osymtab->finalize_data_size();
3717 osymtab->set_link_section(ostrtab);
3718 osymtab->set_info(local_symcount);
3719 osymtab->set_entsize(symsize);
3720
3721 if (symtab_off + off > *poff)
3722 *poff = symtab_off + off;
3723 }
3724 }
3725
3726 // Create the .shstrtab section, which holds the names of the
3727 // sections. At the time this is called, we have created all the
3728 // output sections except .shstrtab itself.
3729
3730 Output_section*
3731 Layout::create_shstrtab()
3732 {
3733 // FIXME: We don't need to create a .shstrtab section if we are
3734 // stripping everything.
3735
3736 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3737
3738 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3739 ORDER_INVALID, false);
3740
3741 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3742 {
3743 // We can't write out this section until we've set all the
3744 // section names, and we don't set the names of compressed
3745 // output sections until relocations are complete. FIXME: With
3746 // the current names we use, this is unnecessary.
3747 os->set_after_input_sections();
3748 }
3749
3750 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3751 os->add_output_section_data(posd);
3752
3753 return os;
3754 }
3755
3756 // Create the section headers. SIZE is 32 or 64. OFF is the file
3757 // offset.
3758
3759 void
3760 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3761 {
3762 Output_section_headers* oshdrs;
3763 oshdrs = new Output_section_headers(this,
3764 &this->segment_list_,
3765 &this->section_list_,
3766 &this->unattached_section_list_,
3767 &this->namepool_,
3768 shstrtab_section);
3769 off_t off;
3770 if (!parameters->incremental_update())
3771 off = align_address(*poff, oshdrs->addralign());
3772 else
3773 {
3774 oshdrs->pre_finalize_data_size();
3775 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3776 if (off == -1)
3777 gold_fallback(_("out of patch space for section header table; "
3778 "relink with --incremental-full"));
3779 gold_debug(DEBUG_INCREMENTAL,
3780 "create_shdrs: %08lx %08lx (section header table)",
3781 static_cast<long>(off),
3782 static_cast<long>(off + oshdrs->data_size()));
3783 }
3784 oshdrs->set_address_and_file_offset(0, off);
3785 off += oshdrs->data_size();
3786 if (off > *poff)
3787 *poff = off;
3788 this->section_headers_ = oshdrs;
3789 }
3790
3791 // Count the allocated sections.
3792
3793 size_t
3794 Layout::allocated_output_section_count() const
3795 {
3796 size_t section_count = 0;
3797 for (Segment_list::const_iterator p = this->segment_list_.begin();
3798 p != this->segment_list_.end();
3799 ++p)
3800 section_count += (*p)->output_section_count();
3801 return section_count;
3802 }
3803
3804 // Create the dynamic symbol table.
3805
3806 void
3807 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3808 Symbol_table* symtab,
3809 Output_section** pdynstr,
3810 unsigned int* plocal_dynamic_count,
3811 std::vector<Symbol*>* pdynamic_symbols,
3812 Versions* pversions)
3813 {
3814 // Count all the symbols in the dynamic symbol table, and set the
3815 // dynamic symbol indexes.
3816
3817 // Skip symbol 0, which is always all zeroes.
3818 unsigned int index = 1;
3819
3820 // Add STT_SECTION symbols for each Output section which needs one.
3821 for (Section_list::iterator p = this->section_list_.begin();
3822 p != this->section_list_.end();
3823 ++p)
3824 {
3825 if (!(*p)->needs_dynsym_index())
3826 (*p)->set_dynsym_index(-1U);
3827 else
3828 {
3829 (*p)->set_dynsym_index(index);
3830 ++index;
3831 }
3832 }
3833
3834 // Count the local symbols that need to go in the dynamic symbol table,
3835 // and set the dynamic symbol indexes.
3836 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3837 p != input_objects->relobj_end();
3838 ++p)
3839 {
3840 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3841 index = new_index;
3842 }
3843
3844 unsigned int local_symcount = index;
3845 *plocal_dynamic_count = local_symcount;
3846
3847 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3848 &this->dynpool_, pversions);
3849
3850 int symsize;
3851 unsigned int align;
3852 const int size = parameters->target().get_size();
3853 if (size == 32)
3854 {
3855 symsize = elfcpp::Elf_sizes<32>::sym_size;
3856 align = 4;
3857 }
3858 else if (size == 64)
3859 {
3860 symsize = elfcpp::Elf_sizes<64>::sym_size;
3861 align = 8;
3862 }
3863 else
3864 gold_unreachable();
3865
3866 // Create the dynamic symbol table section.
3867
3868 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3869 elfcpp::SHT_DYNSYM,
3870 elfcpp::SHF_ALLOC,
3871 false,
3872 ORDER_DYNAMIC_LINKER,
3873 false);
3874
3875 // Check for NULL as a linker script may discard .dynsym.
3876 if (dynsym != NULL)
3877 {
3878 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3879 align,
3880 "** dynsym");
3881 dynsym->add_output_section_data(odata);
3882
3883 dynsym->set_info(local_symcount);
3884 dynsym->set_entsize(symsize);
3885 dynsym->set_addralign(align);
3886
3887 this->dynsym_section_ = dynsym;
3888 }
3889
3890 Output_data_dynamic* const odyn = this->dynamic_data_;
3891 if (odyn != NULL)
3892 {
3893 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3894 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3895 }
3896
3897 // If there are more than SHN_LORESERVE allocated sections, we
3898 // create a .dynsym_shndx section. It is possible that we don't
3899 // need one, because it is possible that there are no dynamic
3900 // symbols in any of the sections with indexes larger than
3901 // SHN_LORESERVE. This is probably unusual, though, and at this
3902 // time we don't know the actual section indexes so it is
3903 // inconvenient to check.
3904 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3905 {
3906 Output_section* dynsym_xindex =
3907 this->choose_output_section(NULL, ".dynsym_shndx",
3908 elfcpp::SHT_SYMTAB_SHNDX,
3909 elfcpp::SHF_ALLOC,
3910 false, ORDER_DYNAMIC_LINKER, false);
3911
3912 if (dynsym_xindex != NULL)
3913 {
3914 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3915
3916 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3917
3918 dynsym_xindex->set_link_section(dynsym);
3919 dynsym_xindex->set_addralign(4);
3920 dynsym_xindex->set_entsize(4);
3921
3922 dynsym_xindex->set_after_input_sections();
3923
3924 // This tells the driver code to wait until the symbol table
3925 // has written out before writing out the postprocessing
3926 // sections, including the .dynsym_shndx section.
3927 this->any_postprocessing_sections_ = true;
3928 }
3929 }
3930
3931 // Create the dynamic string table section.
3932
3933 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3934 elfcpp::SHT_STRTAB,
3935 elfcpp::SHF_ALLOC,
3936 false,
3937 ORDER_DYNAMIC_LINKER,
3938 false);
3939
3940 if (dynstr != NULL)
3941 {
3942 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3943 dynstr->add_output_section_data(strdata);
3944
3945 if (dynsym != NULL)
3946 dynsym->set_link_section(dynstr);
3947 if (this->dynamic_section_ != NULL)
3948 this->dynamic_section_->set_link_section(dynstr);
3949
3950 if (odyn != NULL)
3951 {
3952 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3953 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3954 }
3955
3956 *pdynstr = dynstr;
3957 }
3958
3959 // Create the hash tables.
3960
3961 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3962 || strcmp(parameters->options().hash_style(), "both") == 0)
3963 {
3964 unsigned char* phash;
3965 unsigned int hashlen;
3966 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3967 &phash, &hashlen);
3968
3969 Output_section* hashsec =
3970 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3971 elfcpp::SHF_ALLOC, false,
3972 ORDER_DYNAMIC_LINKER, false);
3973
3974 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3975 hashlen,
3976 align,
3977 "** hash");
3978 if (hashsec != NULL && hashdata != NULL)
3979 hashsec->add_output_section_data(hashdata);
3980
3981 if (hashsec != NULL)
3982 {
3983 if (dynsym != NULL)
3984 hashsec->set_link_section(dynsym);
3985 hashsec->set_entsize(4);
3986 }
3987
3988 if (odyn != NULL)
3989 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3990 }
3991
3992 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3993 || strcmp(parameters->options().hash_style(), "both") == 0)
3994 {
3995 unsigned char* phash;
3996 unsigned int hashlen;
3997 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3998 &phash, &hashlen);
3999
4000 Output_section* hashsec =
4001 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4002 elfcpp::SHF_ALLOC, false,
4003 ORDER_DYNAMIC_LINKER, false);
4004
4005 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4006 hashlen,
4007 align,
4008 "** hash");
4009 if (hashsec != NULL && hashdata != NULL)
4010 hashsec->add_output_section_data(hashdata);
4011
4012 if (hashsec != NULL)
4013 {
4014 if (dynsym != NULL)
4015 hashsec->set_link_section(dynsym);
4016
4017 // For a 64-bit target, the entries in .gnu.hash do not have
4018 // a uniform size, so we only set the entry size for a
4019 // 32-bit target.
4020 if (parameters->target().get_size() == 32)
4021 hashsec->set_entsize(4);
4022
4023 if (odyn != NULL)
4024 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4025 }
4026 }
4027 }
4028
4029 // Assign offsets to each local portion of the dynamic symbol table.
4030
4031 void
4032 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4033 {
4034 Output_section* dynsym = this->dynsym_section_;
4035 if (dynsym == NULL)
4036 return;
4037
4038 off_t off = dynsym->offset();
4039
4040 // Skip the dummy symbol at the start of the section.
4041 off += dynsym->entsize();
4042
4043 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4044 p != input_objects->relobj_end();
4045 ++p)
4046 {
4047 unsigned int count = (*p)->set_local_dynsym_offset(off);
4048 off += count * dynsym->entsize();
4049 }
4050 }
4051
4052 // Create the version sections.
4053
4054 void
4055 Layout::create_version_sections(const Versions* versions,
4056 const Symbol_table* symtab,
4057 unsigned int local_symcount,
4058 const std::vector<Symbol*>& dynamic_symbols,
4059 const Output_section* dynstr)
4060 {
4061 if (!versions->any_defs() && !versions->any_needs())
4062 return;
4063
4064 switch (parameters->size_and_endianness())
4065 {
4066 #ifdef HAVE_TARGET_32_LITTLE
4067 case Parameters::TARGET_32_LITTLE:
4068 this->sized_create_version_sections<32, false>(versions, symtab,
4069 local_symcount,
4070 dynamic_symbols, dynstr);
4071 break;
4072 #endif
4073 #ifdef HAVE_TARGET_32_BIG
4074 case Parameters::TARGET_32_BIG:
4075 this->sized_create_version_sections<32, true>(versions, symtab,
4076 local_symcount,
4077 dynamic_symbols, dynstr);
4078 break;
4079 #endif
4080 #ifdef HAVE_TARGET_64_LITTLE
4081 case Parameters::TARGET_64_LITTLE:
4082 this->sized_create_version_sections<64, false>(versions, symtab,
4083 local_symcount,
4084 dynamic_symbols, dynstr);
4085 break;
4086 #endif
4087 #ifdef HAVE_TARGET_64_BIG
4088 case Parameters::TARGET_64_BIG:
4089 this->sized_create_version_sections<64, true>(versions, symtab,
4090 local_symcount,
4091 dynamic_symbols, dynstr);
4092 break;
4093 #endif
4094 default:
4095 gold_unreachable();
4096 }
4097 }
4098
4099 // Create the version sections, sized version.
4100
4101 template<int size, bool big_endian>
4102 void
4103 Layout::sized_create_version_sections(
4104 const Versions* versions,
4105 const Symbol_table* symtab,
4106 unsigned int local_symcount,
4107 const std::vector<Symbol*>& dynamic_symbols,
4108 const Output_section* dynstr)
4109 {
4110 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4111 elfcpp::SHT_GNU_versym,
4112 elfcpp::SHF_ALLOC,
4113 false,
4114 ORDER_DYNAMIC_LINKER,
4115 false);
4116
4117 // Check for NULL since a linker script may discard this section.
4118 if (vsec != NULL)
4119 {
4120 unsigned char* vbuf;
4121 unsigned int vsize;
4122 versions->symbol_section_contents<size, big_endian>(symtab,
4123 &this->dynpool_,
4124 local_symcount,
4125 dynamic_symbols,
4126 &vbuf, &vsize);
4127
4128 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4129 "** versions");
4130
4131 vsec->add_output_section_data(vdata);
4132 vsec->set_entsize(2);
4133 vsec->set_link_section(this->dynsym_section_);
4134 }
4135
4136 Output_data_dynamic* const odyn = this->dynamic_data_;
4137 if (odyn != NULL && vsec != NULL)
4138 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4139
4140 if (versions->any_defs())
4141 {
4142 Output_section* vdsec;
4143 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4144 elfcpp::SHT_GNU_verdef,
4145 elfcpp::SHF_ALLOC,
4146 false, ORDER_DYNAMIC_LINKER, false);
4147
4148 if (vdsec != NULL)
4149 {
4150 unsigned char* vdbuf;
4151 unsigned int vdsize;
4152 unsigned int vdentries;
4153 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4154 &vdbuf, &vdsize,
4155 &vdentries);
4156
4157 Output_section_data* vddata =
4158 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4159
4160 vdsec->add_output_section_data(vddata);
4161 vdsec->set_link_section(dynstr);
4162 vdsec->set_info(vdentries);
4163
4164 if (odyn != NULL)
4165 {
4166 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4167 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4168 }
4169 }
4170 }
4171
4172 if (versions->any_needs())
4173 {
4174 Output_section* vnsec;
4175 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4176 elfcpp::SHT_GNU_verneed,
4177 elfcpp::SHF_ALLOC,
4178 false, ORDER_DYNAMIC_LINKER, false);
4179
4180 if (vnsec != NULL)
4181 {
4182 unsigned char* vnbuf;
4183 unsigned int vnsize;
4184 unsigned int vnentries;
4185 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4186 &vnbuf, &vnsize,
4187 &vnentries);
4188
4189 Output_section_data* vndata =
4190 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4191
4192 vnsec->add_output_section_data(vndata);
4193 vnsec->set_link_section(dynstr);
4194 vnsec->set_info(vnentries);
4195
4196 if (odyn != NULL)
4197 {
4198 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4199 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4200 }
4201 }
4202 }
4203 }
4204
4205 // Create the .interp section and PT_INTERP segment.
4206
4207 void
4208 Layout::create_interp(const Target* target)
4209 {
4210 gold_assert(this->interp_segment_ == NULL);
4211
4212 const char* interp = parameters->options().dynamic_linker();
4213 if (interp == NULL)
4214 {
4215 interp = target->dynamic_linker();
4216 gold_assert(interp != NULL);
4217 }
4218
4219 size_t len = strlen(interp) + 1;
4220
4221 Output_section_data* odata = new Output_data_const(interp, len, 1);
4222
4223 Output_section* osec = this->choose_output_section(NULL, ".interp",
4224 elfcpp::SHT_PROGBITS,
4225 elfcpp::SHF_ALLOC,
4226 false, ORDER_INTERP,
4227 false);
4228 if (osec != NULL)
4229 osec->add_output_section_data(odata);
4230 }
4231
4232 // Add dynamic tags for the PLT and the dynamic relocs. This is
4233 // called by the target-specific code. This does nothing if not doing
4234 // a dynamic link.
4235
4236 // USE_REL is true for REL relocs rather than RELA relocs.
4237
4238 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4239
4240 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4241 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4242 // some targets have multiple reloc sections in PLT_REL.
4243
4244 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4245 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4246 // section.
4247
4248 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4249 // executable.
4250
4251 void
4252 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4253 const Output_data* plt_rel,
4254 const Output_data_reloc_generic* dyn_rel,
4255 bool add_debug, bool dynrel_includes_plt)
4256 {
4257 Output_data_dynamic* odyn = this->dynamic_data_;
4258 if (odyn == NULL)
4259 return;
4260
4261 if (plt_got != NULL && plt_got->output_section() != NULL)
4262 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4263
4264 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4265 {
4266 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4267 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4268 odyn->add_constant(elfcpp::DT_PLTREL,
4269 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4270 }
4271
4272 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4273 {
4274 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4275 dyn_rel->output_section());
4276 if (plt_rel != NULL
4277 && plt_rel->output_section() != NULL
4278 && dynrel_includes_plt)
4279 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4280 dyn_rel->output_section(),
4281 plt_rel->output_section());
4282 else
4283 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4284 dyn_rel->output_section());
4285 const int size = parameters->target().get_size();
4286 elfcpp::DT rel_tag;
4287 int rel_size;
4288 if (use_rel)
4289 {
4290 rel_tag = elfcpp::DT_RELENT;
4291 if (size == 32)
4292 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4293 else if (size == 64)
4294 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4295 else
4296 gold_unreachable();
4297 }
4298 else
4299 {
4300 rel_tag = elfcpp::DT_RELAENT;
4301 if (size == 32)
4302 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4303 else if (size == 64)
4304 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4305 else
4306 gold_unreachable();
4307 }
4308 odyn->add_constant(rel_tag, rel_size);
4309
4310 if (parameters->options().combreloc())
4311 {
4312 size_t c = dyn_rel->relative_reloc_count();
4313 if (c > 0)
4314 odyn->add_constant((use_rel
4315 ? elfcpp::DT_RELCOUNT
4316 : elfcpp::DT_RELACOUNT),
4317 c);
4318 }
4319 }
4320
4321 if (add_debug && !parameters->options().shared())
4322 {
4323 // The value of the DT_DEBUG tag is filled in by the dynamic
4324 // linker at run time, and used by the debugger.
4325 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4326 }
4327 }
4328
4329 // Finish the .dynamic section and PT_DYNAMIC segment.
4330
4331 void
4332 Layout::finish_dynamic_section(const Input_objects* input_objects,
4333 const Symbol_table* symtab)
4334 {
4335 if (!this->script_options_->saw_phdrs_clause()
4336 && this->dynamic_section_ != NULL)
4337 {
4338 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4339 (elfcpp::PF_R
4340 | elfcpp::PF_W));
4341 oseg->add_output_section_to_nonload(this->dynamic_section_,
4342 elfcpp::PF_R | elfcpp::PF_W);
4343 }
4344
4345 Output_data_dynamic* const odyn = this->dynamic_data_;
4346 if (odyn == NULL)
4347 return;
4348
4349 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4350 p != input_objects->dynobj_end();
4351 ++p)
4352 {
4353 if (!(*p)->is_needed() && (*p)->as_needed())
4354 {
4355 // This dynamic object was linked with --as-needed, but it
4356 // is not needed.
4357 continue;
4358 }
4359
4360 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4361 }
4362
4363 if (parameters->options().shared())
4364 {
4365 const char* soname = parameters->options().soname();
4366 if (soname != NULL)
4367 odyn->add_string(elfcpp::DT_SONAME, soname);
4368 }
4369
4370 Symbol* sym = symtab->lookup(parameters->options().init());
4371 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4372 odyn->add_symbol(elfcpp::DT_INIT, sym);
4373
4374 sym = symtab->lookup(parameters->options().fini());
4375 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4376 odyn->add_symbol(elfcpp::DT_FINI, sym);
4377
4378 // Look for .init_array, .preinit_array and .fini_array by checking
4379 // section types.
4380 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4381 p != this->section_list_.end();
4382 ++p)
4383 switch((*p)->type())
4384 {
4385 case elfcpp::SHT_FINI_ARRAY:
4386 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4387 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4388 break;
4389 case elfcpp::SHT_INIT_ARRAY:
4390 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4391 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4392 break;
4393 case elfcpp::SHT_PREINIT_ARRAY:
4394 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4395 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4396 break;
4397 default:
4398 break;
4399 }
4400
4401 // Add a DT_RPATH entry if needed.
4402 const General_options::Dir_list& rpath(parameters->options().rpath());
4403 if (!rpath.empty())
4404 {
4405 std::string rpath_val;
4406 for (General_options::Dir_list::const_iterator p = rpath.begin();
4407 p != rpath.end();
4408 ++p)
4409 {
4410 if (rpath_val.empty())
4411 rpath_val = p->name();
4412 else
4413 {
4414 // Eliminate duplicates.
4415 General_options::Dir_list::const_iterator q;
4416 for (q = rpath.begin(); q != p; ++q)
4417 if (q->name() == p->name())
4418 break;
4419 if (q == p)
4420 {
4421 rpath_val += ':';
4422 rpath_val += p->name();
4423 }
4424 }
4425 }
4426
4427 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4428 if (parameters->options().enable_new_dtags())
4429 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4430 }
4431
4432 // Look for text segments that have dynamic relocations.
4433 bool have_textrel = false;
4434 if (!this->script_options_->saw_sections_clause())
4435 {
4436 for (Segment_list::const_iterator p = this->segment_list_.begin();
4437 p != this->segment_list_.end();
4438 ++p)
4439 {
4440 if ((*p)->type() == elfcpp::PT_LOAD
4441 && ((*p)->flags() & elfcpp::PF_W) == 0
4442 && (*p)->has_dynamic_reloc())
4443 {
4444 have_textrel = true;
4445 break;
4446 }
4447 }
4448 }
4449 else
4450 {
4451 // We don't know the section -> segment mapping, so we are
4452 // conservative and just look for readonly sections with
4453 // relocations. If those sections wind up in writable segments,
4454 // then we have created an unnecessary DT_TEXTREL entry.
4455 for (Section_list::const_iterator p = this->section_list_.begin();
4456 p != this->section_list_.end();
4457 ++p)
4458 {
4459 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4460 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4461 && (*p)->has_dynamic_reloc())
4462 {
4463 have_textrel = true;
4464 break;
4465 }
4466 }
4467 }
4468
4469 if (parameters->options().filter() != NULL)
4470 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4471 if (parameters->options().any_auxiliary())
4472 {
4473 for (options::String_set::const_iterator p =
4474 parameters->options().auxiliary_begin();
4475 p != parameters->options().auxiliary_end();
4476 ++p)
4477 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4478 }
4479
4480 // Add a DT_FLAGS entry if necessary.
4481 unsigned int flags = 0;
4482 if (have_textrel)
4483 {
4484 // Add a DT_TEXTREL for compatibility with older loaders.
4485 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4486 flags |= elfcpp::DF_TEXTREL;
4487
4488 if (parameters->options().text())
4489 gold_error(_("read-only segment has dynamic relocations"));
4490 else if (parameters->options().warn_shared_textrel()
4491 && parameters->options().shared())
4492 gold_warning(_("shared library text segment is not shareable"));
4493 }
4494 if (parameters->options().shared() && this->has_static_tls())
4495 flags |= elfcpp::DF_STATIC_TLS;
4496 if (parameters->options().origin())
4497 flags |= elfcpp::DF_ORIGIN;
4498 if (parameters->options().Bsymbolic())
4499 {
4500 flags |= elfcpp::DF_SYMBOLIC;
4501 // Add DT_SYMBOLIC for compatibility with older loaders.
4502 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4503 }
4504 if (parameters->options().now())
4505 flags |= elfcpp::DF_BIND_NOW;
4506 if (flags != 0)
4507 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4508
4509 flags = 0;
4510 if (parameters->options().initfirst())
4511 flags |= elfcpp::DF_1_INITFIRST;
4512 if (parameters->options().interpose())
4513 flags |= elfcpp::DF_1_INTERPOSE;
4514 if (parameters->options().loadfltr())
4515 flags |= elfcpp::DF_1_LOADFLTR;
4516 if (parameters->options().nodefaultlib())
4517 flags |= elfcpp::DF_1_NODEFLIB;
4518 if (parameters->options().nodelete())
4519 flags |= elfcpp::DF_1_NODELETE;
4520 if (parameters->options().nodlopen())
4521 flags |= elfcpp::DF_1_NOOPEN;
4522 if (parameters->options().nodump())
4523 flags |= elfcpp::DF_1_NODUMP;
4524 if (!parameters->options().shared())
4525 flags &= ~(elfcpp::DF_1_INITFIRST
4526 | elfcpp::DF_1_NODELETE
4527 | elfcpp::DF_1_NOOPEN);
4528 if (parameters->options().origin())
4529 flags |= elfcpp::DF_1_ORIGIN;
4530 if (parameters->options().now())
4531 flags |= elfcpp::DF_1_NOW;
4532 if (parameters->options().Bgroup())
4533 flags |= elfcpp::DF_1_GROUP;
4534 if (flags != 0)
4535 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4536 }
4537
4538 // Set the size of the _DYNAMIC symbol table to be the size of the
4539 // dynamic data.
4540
4541 void
4542 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4543 {
4544 Output_data_dynamic* const odyn = this->dynamic_data_;
4545 if (odyn == NULL)
4546 return;
4547 odyn->finalize_data_size();
4548 if (this->dynamic_symbol_ == NULL)
4549 return;
4550 off_t data_size = odyn->data_size();
4551 const int size = parameters->target().get_size();
4552 if (size == 32)
4553 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4554 else if (size == 64)
4555 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4556 else
4557 gold_unreachable();
4558 }
4559
4560 // The mapping of input section name prefixes to output section names.
4561 // In some cases one prefix is itself a prefix of another prefix; in
4562 // such a case the longer prefix must come first. These prefixes are
4563 // based on the GNU linker default ELF linker script.
4564
4565 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4566 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4567 {
4568 MAPPING_INIT(".text.", ".text"),
4569 MAPPING_INIT(".rodata.", ".rodata"),
4570 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4571 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4572 MAPPING_INIT(".data.", ".data"),
4573 MAPPING_INIT(".bss.", ".bss"),
4574 MAPPING_INIT(".tdata.", ".tdata"),
4575 MAPPING_INIT(".tbss.", ".tbss"),
4576 MAPPING_INIT(".init_array.", ".init_array"),
4577 MAPPING_INIT(".fini_array.", ".fini_array"),
4578 MAPPING_INIT(".sdata.", ".sdata"),
4579 MAPPING_INIT(".sbss.", ".sbss"),
4580 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4581 // differently depending on whether it is creating a shared library.
4582 MAPPING_INIT(".sdata2.", ".sdata"),
4583 MAPPING_INIT(".sbss2.", ".sbss"),
4584 MAPPING_INIT(".lrodata.", ".lrodata"),
4585 MAPPING_INIT(".ldata.", ".ldata"),
4586 MAPPING_INIT(".lbss.", ".lbss"),
4587 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4588 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4589 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4590 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4591 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4592 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4593 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4594 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4595 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4596 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4597 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4598 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4599 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4600 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4601 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4602 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4603 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4604 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4605 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4606 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4607 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4608 };
4609 #undef MAPPING_INIT
4610
4611 const int Layout::section_name_mapping_count =
4612 (sizeof(Layout::section_name_mapping)
4613 / sizeof(Layout::section_name_mapping[0]));
4614
4615 // Choose the output section name to use given an input section name.
4616 // Set *PLEN to the length of the name. *PLEN is initialized to the
4617 // length of NAME.
4618
4619 const char*
4620 Layout::output_section_name(const Relobj* relobj, const char* name,
4621 size_t* plen)
4622 {
4623 // gcc 4.3 generates the following sorts of section names when it
4624 // needs a section name specific to a function:
4625 // .text.FN
4626 // .rodata.FN
4627 // .sdata2.FN
4628 // .data.FN
4629 // .data.rel.FN
4630 // .data.rel.local.FN
4631 // .data.rel.ro.FN
4632 // .data.rel.ro.local.FN
4633 // .sdata.FN
4634 // .bss.FN
4635 // .sbss.FN
4636 // .tdata.FN
4637 // .tbss.FN
4638
4639 // The GNU linker maps all of those to the part before the .FN,
4640 // except that .data.rel.local.FN is mapped to .data, and
4641 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4642 // beginning with .data.rel.ro.local are grouped together.
4643
4644 // For an anonymous namespace, the string FN can contain a '.'.
4645
4646 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4647 // GNU linker maps to .rodata.
4648
4649 // The .data.rel.ro sections are used with -z relro. The sections
4650 // are recognized by name. We use the same names that the GNU
4651 // linker does for these sections.
4652
4653 // It is hard to handle this in a principled way, so we don't even
4654 // try. We use a table of mappings. If the input section name is
4655 // not found in the table, we simply use it as the output section
4656 // name.
4657
4658 const Section_name_mapping* psnm = section_name_mapping;
4659 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4660 {
4661 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4662 {
4663 *plen = psnm->tolen;
4664 return psnm->to;
4665 }
4666 }
4667
4668 // As an additional complication, .ctors sections are output in
4669 // either .ctors or .init_array sections, and .dtors sections are
4670 // output in either .dtors or .fini_array sections.
4671 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4672 {
4673 if (parameters->options().ctors_in_init_array())
4674 {
4675 *plen = 11;
4676 return name[1] == 'c' ? ".init_array" : ".fini_array";
4677 }
4678 else
4679 {
4680 *plen = 6;
4681 return name[1] == 'c' ? ".ctors" : ".dtors";
4682 }
4683 }
4684 if (parameters->options().ctors_in_init_array()
4685 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4686 {
4687 // To make .init_array/.fini_array work with gcc we must exclude
4688 // .ctors and .dtors sections from the crtbegin and crtend
4689 // files.
4690 if (relobj == NULL
4691 || (!Layout::match_file_name(relobj, "crtbegin")
4692 && !Layout::match_file_name(relobj, "crtend")))
4693 {
4694 *plen = 11;
4695 return name[1] == 'c' ? ".init_array" : ".fini_array";
4696 }
4697 }
4698
4699 return name;
4700 }
4701
4702 // Return true if RELOBJ is an input file whose base name matches
4703 // FILE_NAME. The base name must have an extension of ".o", and must
4704 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4705 // to match crtbegin.o as well as crtbeginS.o without getting confused
4706 // by other possibilities. Overall matching the file name this way is
4707 // a dreadful hack, but the GNU linker does it in order to better
4708 // support gcc, and we need to be compatible.
4709
4710 bool
4711 Layout::match_file_name(const Relobj* relobj, const char* match)
4712 {
4713 const std::string& file_name(relobj->name());
4714 const char* base_name = lbasename(file_name.c_str());
4715 size_t match_len = strlen(match);
4716 if (strncmp(base_name, match, match_len) != 0)
4717 return false;
4718 size_t base_len = strlen(base_name);
4719 if (base_len != match_len + 2 && base_len != match_len + 3)
4720 return false;
4721 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4722 }
4723
4724 // Check if a comdat group or .gnu.linkonce section with the given
4725 // NAME is selected for the link. If there is already a section,
4726 // *KEPT_SECTION is set to point to the existing section and the
4727 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4728 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4729 // *KEPT_SECTION is set to the internal copy and the function returns
4730 // true.
4731
4732 bool
4733 Layout::find_or_add_kept_section(const std::string& name,
4734 Relobj* object,
4735 unsigned int shndx,
4736 bool is_comdat,
4737 bool is_group_name,
4738 Kept_section** kept_section)
4739 {
4740 // It's normal to see a couple of entries here, for the x86 thunk
4741 // sections. If we see more than a few, we're linking a C++
4742 // program, and we resize to get more space to minimize rehashing.
4743 if (this->signatures_.size() > 4
4744 && !this->resized_signatures_)
4745 {
4746 reserve_unordered_map(&this->signatures_,
4747 this->number_of_input_files_ * 64);
4748 this->resized_signatures_ = true;
4749 }
4750
4751 Kept_section candidate;
4752 std::pair<Signatures::iterator, bool> ins =
4753 this->signatures_.insert(std::make_pair(name, candidate));
4754
4755 if (kept_section != NULL)
4756 *kept_section = &ins.first->second;
4757 if (ins.second)
4758 {
4759 // This is the first time we've seen this signature.
4760 ins.first->second.set_object(object);
4761 ins.first->second.set_shndx(shndx);
4762 if (is_comdat)
4763 ins.first->second.set_is_comdat();
4764 if (is_group_name)
4765 ins.first->second.set_is_group_name();
4766 return true;
4767 }
4768
4769 // We have already seen this signature.
4770
4771 if (ins.first->second.is_group_name())
4772 {
4773 // We've already seen a real section group with this signature.
4774 // If the kept group is from a plugin object, and we're in the
4775 // replacement phase, accept the new one as a replacement.
4776 if (ins.first->second.object() == NULL
4777 && parameters->options().plugins()->in_replacement_phase())
4778 {
4779 ins.first->second.set_object(object);
4780 ins.first->second.set_shndx(shndx);
4781 return true;
4782 }
4783 return false;
4784 }
4785 else if (is_group_name)
4786 {
4787 // This is a real section group, and we've already seen a
4788 // linkonce section with this signature. Record that we've seen
4789 // a section group, and don't include this section group.
4790 ins.first->second.set_is_group_name();
4791 return false;
4792 }
4793 else
4794 {
4795 // We've already seen a linkonce section and this is a linkonce
4796 // section. These don't block each other--this may be the same
4797 // symbol name with different section types.
4798 return true;
4799 }
4800 }
4801
4802 // Store the allocated sections into the section list.
4803
4804 void
4805 Layout::get_allocated_sections(Section_list* section_list) const
4806 {
4807 for (Section_list::const_iterator p = this->section_list_.begin();
4808 p != this->section_list_.end();
4809 ++p)
4810 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4811 section_list->push_back(*p);
4812 }
4813
4814 // Create an output segment.
4815
4816 Output_segment*
4817 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4818 {
4819 gold_assert(!parameters->options().relocatable());
4820 Output_segment* oseg = new Output_segment(type, flags);
4821 this->segment_list_.push_back(oseg);
4822
4823 if (type == elfcpp::PT_TLS)
4824 this->tls_segment_ = oseg;
4825 else if (type == elfcpp::PT_GNU_RELRO)
4826 this->relro_segment_ = oseg;
4827 else if (type == elfcpp::PT_INTERP)
4828 this->interp_segment_ = oseg;
4829
4830 return oseg;
4831 }
4832
4833 // Return the file offset of the normal symbol table.
4834
4835 off_t
4836 Layout::symtab_section_offset() const
4837 {
4838 if (this->symtab_section_ != NULL)
4839 return this->symtab_section_->offset();
4840 return 0;
4841 }
4842
4843 // Return the section index of the normal symbol table. It may have
4844 // been stripped by the -s/--strip-all option.
4845
4846 unsigned int
4847 Layout::symtab_section_shndx() const
4848 {
4849 if (this->symtab_section_ != NULL)
4850 return this->symtab_section_->out_shndx();
4851 return 0;
4852 }
4853
4854 // Write out the Output_sections. Most won't have anything to write,
4855 // since most of the data will come from input sections which are
4856 // handled elsewhere. But some Output_sections do have Output_data.
4857
4858 void
4859 Layout::write_output_sections(Output_file* of) const
4860 {
4861 for (Section_list::const_iterator p = this->section_list_.begin();
4862 p != this->section_list_.end();
4863 ++p)
4864 {
4865 if (!(*p)->after_input_sections())
4866 (*p)->write(of);
4867 }
4868 }
4869
4870 // Write out data not associated with a section or the symbol table.
4871
4872 void
4873 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4874 {
4875 if (!parameters->options().strip_all())
4876 {
4877 const Output_section* symtab_section = this->symtab_section_;
4878 for (Section_list::const_iterator p = this->section_list_.begin();
4879 p != this->section_list_.end();
4880 ++p)
4881 {
4882 if ((*p)->needs_symtab_index())
4883 {
4884 gold_assert(symtab_section != NULL);
4885 unsigned int index = (*p)->symtab_index();
4886 gold_assert(index > 0 && index != -1U);
4887 off_t off = (symtab_section->offset()
4888 + index * symtab_section->entsize());
4889 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4890 }
4891 }
4892 }
4893
4894 const Output_section* dynsym_section = this->dynsym_section_;
4895 for (Section_list::const_iterator p = this->section_list_.begin();
4896 p != this->section_list_.end();
4897 ++p)
4898 {
4899 if ((*p)->needs_dynsym_index())
4900 {
4901 gold_assert(dynsym_section != NULL);
4902 unsigned int index = (*p)->dynsym_index();
4903 gold_assert(index > 0 && index != -1U);
4904 off_t off = (dynsym_section->offset()
4905 + index * dynsym_section->entsize());
4906 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4907 }
4908 }
4909
4910 // Write out the Output_data which are not in an Output_section.
4911 for (Data_list::const_iterator p = this->special_output_list_.begin();
4912 p != this->special_output_list_.end();
4913 ++p)
4914 (*p)->write(of);
4915 }
4916
4917 // Write out the Output_sections which can only be written after the
4918 // input sections are complete.
4919
4920 void
4921 Layout::write_sections_after_input_sections(Output_file* of)
4922 {
4923 // Determine the final section offsets, and thus the final output
4924 // file size. Note we finalize the .shstrab last, to allow the
4925 // after_input_section sections to modify their section-names before
4926 // writing.
4927 if (this->any_postprocessing_sections_)
4928 {
4929 off_t off = this->output_file_size_;
4930 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4931
4932 // Now that we've finalized the names, we can finalize the shstrab.
4933 off =
4934 this->set_section_offsets(off,
4935 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4936
4937 if (off > this->output_file_size_)
4938 {
4939 of->resize(off);
4940 this->output_file_size_ = off;
4941 }
4942 }
4943
4944 for (Section_list::const_iterator p = this->section_list_.begin();
4945 p != this->section_list_.end();
4946 ++p)
4947 {
4948 if ((*p)->after_input_sections())
4949 (*p)->write(of);
4950 }
4951
4952 this->section_headers_->write(of);
4953 }
4954
4955 // If the build ID requires computing a checksum, do so here, and
4956 // write it out. We compute a checksum over the entire file because
4957 // that is simplest.
4958
4959 void
4960 Layout::write_build_id(Output_file* of) const
4961 {
4962 if (this->build_id_note_ == NULL)
4963 return;
4964
4965 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4966
4967 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4968 this->build_id_note_->data_size());
4969
4970 const char* style = parameters->options().build_id();
4971 if (strcmp(style, "sha1") == 0)
4972 {
4973 sha1_ctx ctx;
4974 sha1_init_ctx(&ctx);
4975 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4976 sha1_finish_ctx(&ctx, ov);
4977 }
4978 else if (strcmp(style, "md5") == 0)
4979 {
4980 md5_ctx ctx;
4981 md5_init_ctx(&ctx);
4982 md5_process_bytes(iv, this->output_file_size_, &ctx);
4983 md5_finish_ctx(&ctx, ov);
4984 }
4985 else
4986 gold_unreachable();
4987
4988 of->write_output_view(this->build_id_note_->offset(),
4989 this->build_id_note_->data_size(),
4990 ov);
4991
4992 of->free_input_view(0, this->output_file_size_, iv);
4993 }
4994
4995 // Write out a binary file. This is called after the link is
4996 // complete. IN is the temporary output file we used to generate the
4997 // ELF code. We simply walk through the segments, read them from
4998 // their file offset in IN, and write them to their load address in
4999 // the output file. FIXME: with a bit more work, we could support
5000 // S-records and/or Intel hex format here.
5001
5002 void
5003 Layout::write_binary(Output_file* in) const
5004 {
5005 gold_assert(parameters->options().oformat_enum()
5006 == General_options::OBJECT_FORMAT_BINARY);
5007
5008 // Get the size of the binary file.
5009 uint64_t max_load_address = 0;
5010 for (Segment_list::const_iterator p = this->segment_list_.begin();
5011 p != this->segment_list_.end();
5012 ++p)
5013 {
5014 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5015 {
5016 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5017 if (max_paddr > max_load_address)
5018 max_load_address = max_paddr;
5019 }
5020 }
5021
5022 Output_file out(parameters->options().output_file_name());
5023 out.open(max_load_address);
5024
5025 for (Segment_list::const_iterator p = this->segment_list_.begin();
5026 p != this->segment_list_.end();
5027 ++p)
5028 {
5029 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5030 {
5031 const unsigned char* vin = in->get_input_view((*p)->offset(),
5032 (*p)->filesz());
5033 unsigned char* vout = out.get_output_view((*p)->paddr(),
5034 (*p)->filesz());
5035 memcpy(vout, vin, (*p)->filesz());
5036 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5037 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5038 }
5039 }
5040
5041 out.close();
5042 }
5043
5044 // Print the output sections to the map file.
5045
5046 void
5047 Layout::print_to_mapfile(Mapfile* mapfile) const
5048 {
5049 for (Segment_list::const_iterator p = this->segment_list_.begin();
5050 p != this->segment_list_.end();
5051 ++p)
5052 (*p)->print_sections_to_mapfile(mapfile);
5053 }
5054
5055 // Print statistical information to stderr. This is used for --stats.
5056
5057 void
5058 Layout::print_stats() const
5059 {
5060 this->namepool_.print_stats("section name pool");
5061 this->sympool_.print_stats("output symbol name pool");
5062 this->dynpool_.print_stats("dynamic name pool");
5063
5064 for (Section_list::const_iterator p = this->section_list_.begin();
5065 p != this->section_list_.end();
5066 ++p)
5067 (*p)->print_merge_stats();
5068 }
5069
5070 // Write_sections_task methods.
5071
5072 // We can always run this task.
5073
5074 Task_token*
5075 Write_sections_task::is_runnable()
5076 {
5077 return NULL;
5078 }
5079
5080 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5081 // when finished.
5082
5083 void
5084 Write_sections_task::locks(Task_locker* tl)
5085 {
5086 tl->add(this, this->output_sections_blocker_);
5087 tl->add(this, this->final_blocker_);
5088 }
5089
5090 // Run the task--write out the data.
5091
5092 void
5093 Write_sections_task::run(Workqueue*)
5094 {
5095 this->layout_->write_output_sections(this->of_);
5096 }
5097
5098 // Write_data_task methods.
5099
5100 // We can always run this task.
5101
5102 Task_token*
5103 Write_data_task::is_runnable()
5104 {
5105 return NULL;
5106 }
5107
5108 // We need to unlock FINAL_BLOCKER when finished.
5109
5110 void
5111 Write_data_task::locks(Task_locker* tl)
5112 {
5113 tl->add(this, this->final_blocker_);
5114 }
5115
5116 // Run the task--write out the data.
5117
5118 void
5119 Write_data_task::run(Workqueue*)
5120 {
5121 this->layout_->write_data(this->symtab_, this->of_);
5122 }
5123
5124 // Write_symbols_task methods.
5125
5126 // We can always run this task.
5127
5128 Task_token*
5129 Write_symbols_task::is_runnable()
5130 {
5131 return NULL;
5132 }
5133
5134 // We need to unlock FINAL_BLOCKER when finished.
5135
5136 void
5137 Write_symbols_task::locks(Task_locker* tl)
5138 {
5139 tl->add(this, this->final_blocker_);
5140 }
5141
5142 // Run the task--write out the symbols.
5143
5144 void
5145 Write_symbols_task::run(Workqueue*)
5146 {
5147 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5148 this->layout_->symtab_xindex(),
5149 this->layout_->dynsym_xindex(), this->of_);
5150 }
5151
5152 // Write_after_input_sections_task methods.
5153
5154 // We can only run this task after the input sections have completed.
5155
5156 Task_token*
5157 Write_after_input_sections_task::is_runnable()
5158 {
5159 if (this->input_sections_blocker_->is_blocked())
5160 return this->input_sections_blocker_;
5161 return NULL;
5162 }
5163
5164 // We need to unlock FINAL_BLOCKER when finished.
5165
5166 void
5167 Write_after_input_sections_task::locks(Task_locker* tl)
5168 {
5169 tl->add(this, this->final_blocker_);
5170 }
5171
5172 // Run the task.
5173
5174 void
5175 Write_after_input_sections_task::run(Workqueue*)
5176 {
5177 this->layout_->write_sections_after_input_sections(this->of_);
5178 }
5179
5180 // Close_task_runner methods.
5181
5182 // Run the task--close the file.
5183
5184 void
5185 Close_task_runner::run(Workqueue*, const Task*)
5186 {
5187 // If we need to compute a checksum for the BUILD if, we do so here.
5188 this->layout_->write_build_id(this->of_);
5189
5190 // If we've been asked to create a binary file, we do so here.
5191 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5192 this->layout_->write_binary(this->of_);
5193
5194 this->of_->close();
5195 }
5196
5197 // Instantiate the templates we need. We could use the configure
5198 // script to restrict this to only the ones for implemented targets.
5199
5200 #ifdef HAVE_TARGET_32_LITTLE
5201 template
5202 Output_section*
5203 Layout::init_fixed_output_section<32, false>(
5204 const char* name,
5205 elfcpp::Shdr<32, false>& shdr);
5206 #endif
5207
5208 #ifdef HAVE_TARGET_32_BIG
5209 template
5210 Output_section*
5211 Layout::init_fixed_output_section<32, true>(
5212 const char* name,
5213 elfcpp::Shdr<32, true>& shdr);
5214 #endif
5215
5216 #ifdef HAVE_TARGET_64_LITTLE
5217 template
5218 Output_section*
5219 Layout::init_fixed_output_section<64, false>(
5220 const char* name,
5221 elfcpp::Shdr<64, false>& shdr);
5222 #endif
5223
5224 #ifdef HAVE_TARGET_64_BIG
5225 template
5226 Output_section*
5227 Layout::init_fixed_output_section<64, true>(
5228 const char* name,
5229 elfcpp::Shdr<64, true>& shdr);
5230 #endif
5231
5232 #ifdef HAVE_TARGET_32_LITTLE
5233 template
5234 Output_section*
5235 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5236 unsigned int shndx,
5237 const char* name,
5238 const elfcpp::Shdr<32, false>& shdr,
5239 unsigned int, unsigned int, off_t*);
5240 #endif
5241
5242 #ifdef HAVE_TARGET_32_BIG
5243 template
5244 Output_section*
5245 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5246 unsigned int shndx,
5247 const char* name,
5248 const elfcpp::Shdr<32, true>& shdr,
5249 unsigned int, unsigned int, off_t*);
5250 #endif
5251
5252 #ifdef HAVE_TARGET_64_LITTLE
5253 template
5254 Output_section*
5255 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5256 unsigned int shndx,
5257 const char* name,
5258 const elfcpp::Shdr<64, false>& shdr,
5259 unsigned int, unsigned int, off_t*);
5260 #endif
5261
5262 #ifdef HAVE_TARGET_64_BIG
5263 template
5264 Output_section*
5265 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5266 unsigned int shndx,
5267 const char* name,
5268 const elfcpp::Shdr<64, true>& shdr,
5269 unsigned int, unsigned int, off_t*);
5270 #endif
5271
5272 #ifdef HAVE_TARGET_32_LITTLE
5273 template
5274 Output_section*
5275 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5276 unsigned int reloc_shndx,
5277 const elfcpp::Shdr<32, false>& shdr,
5278 Output_section* data_section,
5279 Relocatable_relocs* rr);
5280 #endif
5281
5282 #ifdef HAVE_TARGET_32_BIG
5283 template
5284 Output_section*
5285 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5286 unsigned int reloc_shndx,
5287 const elfcpp::Shdr<32, true>& shdr,
5288 Output_section* data_section,
5289 Relocatable_relocs* rr);
5290 #endif
5291
5292 #ifdef HAVE_TARGET_64_LITTLE
5293 template
5294 Output_section*
5295 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5296 unsigned int reloc_shndx,
5297 const elfcpp::Shdr<64, false>& shdr,
5298 Output_section* data_section,
5299 Relocatable_relocs* rr);
5300 #endif
5301
5302 #ifdef HAVE_TARGET_64_BIG
5303 template
5304 Output_section*
5305 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5306 unsigned int reloc_shndx,
5307 const elfcpp::Shdr<64, true>& shdr,
5308 Output_section* data_section,
5309 Relocatable_relocs* rr);
5310 #endif
5311
5312 #ifdef HAVE_TARGET_32_LITTLE
5313 template
5314 void
5315 Layout::layout_group<32, false>(Symbol_table* symtab,
5316 Sized_relobj_file<32, false>* object,
5317 unsigned int,
5318 const char* group_section_name,
5319 const char* signature,
5320 const elfcpp::Shdr<32, false>& shdr,
5321 elfcpp::Elf_Word flags,
5322 std::vector<unsigned int>* shndxes);
5323 #endif
5324
5325 #ifdef HAVE_TARGET_32_BIG
5326 template
5327 void
5328 Layout::layout_group<32, true>(Symbol_table* symtab,
5329 Sized_relobj_file<32, true>* object,
5330 unsigned int,
5331 const char* group_section_name,
5332 const char* signature,
5333 const elfcpp::Shdr<32, true>& shdr,
5334 elfcpp::Elf_Word flags,
5335 std::vector<unsigned int>* shndxes);
5336 #endif
5337
5338 #ifdef HAVE_TARGET_64_LITTLE
5339 template
5340 void
5341 Layout::layout_group<64, false>(Symbol_table* symtab,
5342 Sized_relobj_file<64, false>* object,
5343 unsigned int,
5344 const char* group_section_name,
5345 const char* signature,
5346 const elfcpp::Shdr<64, false>& shdr,
5347 elfcpp::Elf_Word flags,
5348 std::vector<unsigned int>* shndxes);
5349 #endif
5350
5351 #ifdef HAVE_TARGET_64_BIG
5352 template
5353 void
5354 Layout::layout_group<64, true>(Symbol_table* symtab,
5355 Sized_relobj_file<64, true>* object,
5356 unsigned int,
5357 const char* group_section_name,
5358 const char* signature,
5359 const elfcpp::Shdr<64, true>& shdr,
5360 elfcpp::Elf_Word flags,
5361 std::vector<unsigned int>* shndxes);
5362 #endif
5363
5364 #ifdef HAVE_TARGET_32_LITTLE
5365 template
5366 Output_section*
5367 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5368 const unsigned char* symbols,
5369 off_t symbols_size,
5370 const unsigned char* symbol_names,
5371 off_t symbol_names_size,
5372 unsigned int shndx,
5373 const elfcpp::Shdr<32, false>& shdr,
5374 unsigned int reloc_shndx,
5375 unsigned int reloc_type,
5376 off_t* off);
5377 #endif
5378
5379 #ifdef HAVE_TARGET_32_BIG
5380 template
5381 Output_section*
5382 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5383 const unsigned char* symbols,
5384 off_t symbols_size,
5385 const unsigned char* symbol_names,
5386 off_t symbol_names_size,
5387 unsigned int shndx,
5388 const elfcpp::Shdr<32, true>& shdr,
5389 unsigned int reloc_shndx,
5390 unsigned int reloc_type,
5391 off_t* off);
5392 #endif
5393
5394 #ifdef HAVE_TARGET_64_LITTLE
5395 template
5396 Output_section*
5397 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5398 const unsigned char* symbols,
5399 off_t symbols_size,
5400 const unsigned char* symbol_names,
5401 off_t symbol_names_size,
5402 unsigned int shndx,
5403 const elfcpp::Shdr<64, false>& shdr,
5404 unsigned int reloc_shndx,
5405 unsigned int reloc_type,
5406 off_t* off);
5407 #endif
5408
5409 #ifdef HAVE_TARGET_64_BIG
5410 template
5411 Output_section*
5412 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5413 const unsigned char* symbols,
5414 off_t symbols_size,
5415 const unsigned char* symbol_names,
5416 off_t symbol_names_size,
5417 unsigned int shndx,
5418 const elfcpp::Shdr<64, true>& shdr,
5419 unsigned int reloc_shndx,
5420 unsigned int reloc_type,
5421 off_t* off);
5422 #endif
5423
5424 #ifdef HAVE_TARGET_32_LITTLE
5425 template
5426 void
5427 Layout::add_to_gdb_index(bool is_type_unit,
5428 Sized_relobj<32, false>* object,
5429 const unsigned char* symbols,
5430 off_t symbols_size,
5431 unsigned int shndx,
5432 unsigned int reloc_shndx,
5433 unsigned int reloc_type);
5434 #endif
5435
5436 #ifdef HAVE_TARGET_32_BIG
5437 template
5438 void
5439 Layout::add_to_gdb_index(bool is_type_unit,
5440 Sized_relobj<32, true>* object,
5441 const unsigned char* symbols,
5442 off_t symbols_size,
5443 unsigned int shndx,
5444 unsigned int reloc_shndx,
5445 unsigned int reloc_type);
5446 #endif
5447
5448 #ifdef HAVE_TARGET_64_LITTLE
5449 template
5450 void
5451 Layout::add_to_gdb_index(bool is_type_unit,
5452 Sized_relobj<64, false>* object,
5453 const unsigned char* symbols,
5454 off_t symbols_size,
5455 unsigned int shndx,
5456 unsigned int reloc_shndx,
5457 unsigned int reloc_type);
5458 #endif
5459
5460 #ifdef HAVE_TARGET_64_BIG
5461 template
5462 void
5463 Layout::add_to_gdb_index(bool is_type_unit,
5464 Sized_relobj<64, true>* object,
5465 const unsigned char* symbols,
5466 off_t symbols_size,
5467 unsigned int shndx,
5468 unsigned int reloc_shndx,
5469 unsigned int reloc_type);
5470 #endif
5471
5472 } // End namespace gold.
This page took 0.221905 seconds and 4 git commands to generate.