Update from upstream Automake
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56
57 namespace gold
58 {
59
60 // Class Free_list.
61
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74
75 // Initialize the free list. Creates a single free list node that
76 // describes the entire region of length LEN. If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79
80 void
81 Free_list::init(off_t len, bool extend)
82 {
83 this->list_.push_front(Free_list_node(0, len));
84 this->last_remove_ = this->list_.begin();
85 this->extend_ = extend;
86 this->length_ = len;
87 ++Free_list::num_lists;
88 ++Free_list::num_nodes;
89 }
90
91 // Remove a chunk from the free list. Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node. We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99
100 void
101 Free_list::remove(off_t start, off_t end)
102 {
103 if (start == end)
104 return;
105 gold_assert(start < end);
106
107 ++Free_list::num_removes;
108
109 Iterator p = this->last_remove_;
110 if (p->start_ > start)
111 p = this->list_.begin();
112
113 for (; p != this->list_.end(); ++p)
114 {
115 ++Free_list::num_remove_visits;
116 // Find a node that wholly contains the indicated region.
117 if (p->start_ <= start && p->end_ >= end)
118 {
119 // Case 1: the indicated region spans the whole node.
120 // Add some fuzz to avoid creating tiny free chunks.
121 if (p->start_ + 3 >= start && p->end_ <= end + 3)
122 p = this->list_.erase(p);
123 // Case 2: remove a chunk from the start of the node.
124 else if (p->start_ + 3 >= start)
125 p->start_ = end;
126 // Case 3: remove a chunk from the end of the node.
127 else if (p->end_ <= end + 3)
128 p->end_ = start;
129 // Case 4: remove a chunk from the middle, and split
130 // the node into two.
131 else
132 {
133 Free_list_node newnode(p->start_, start);
134 p->start_ = end;
135 this->list_.insert(p, newnode);
136 ++Free_list::num_nodes;
137 }
138 this->last_remove_ = p;
139 return;
140 }
141 }
142
143 // Did not find a node containing the given chunk. This could happen
144 // because a small chunk was already removed due to the fuzz.
145 gold_debug(DEBUG_INCREMENTAL,
146 "Free_list::remove(%d,%d) not found",
147 static_cast<int>(start), static_cast<int>(end));
148 }
149
150 // Allocate a chunk of size LEN from the free list. Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153
154 off_t
155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157 gold_debug(DEBUG_INCREMENTAL,
158 "Free_list::allocate(%08lx, %d, %08lx)",
159 static_cast<long>(len), static_cast<int>(align),
160 static_cast<long>(minoff));
161 if (len == 0)
162 return align_address(minoff, align);
163
164 ++Free_list::num_allocates;
165
166 // We usually want to drop free chunks smaller than 4 bytes.
167 // If we need to guarantee a minimum hole size, though, we need
168 // to keep track of all free chunks.
169 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170
171 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172 {
173 ++Free_list::num_allocate_visits;
174 off_t start = p->start_ > minoff ? p->start_ : minoff;
175 start = align_address(start, align);
176 off_t end = start + len;
177 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178 {
179 this->length_ = end;
180 p->end_ = end;
181 }
182 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183 {
184 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185 this->list_.erase(p);
186 else if (p->start_ + fuzz >= start)
187 p->start_ = end;
188 else if (p->end_ <= end + fuzz)
189 p->end_ = start;
190 else
191 {
192 Free_list_node newnode(p->start_, start);
193 p->start_ = end;
194 this->list_.insert(p, newnode);
195 ++Free_list::num_nodes;
196 }
197 return start;
198 }
199 }
200 if (this->extend_)
201 {
202 off_t start = align_address(this->length_, align);
203 this->length_ = start + len;
204 return start;
205 }
206 return -1;
207 }
208
209 // Dump the free list (for debugging).
210 void
211 Free_list::dump()
212 {
213 gold_info("Free list:\n start end length\n");
214 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
216 static_cast<long>(p->end_),
217 static_cast<long>(p->end_ - p->start_));
218 }
219
220 // Print the statistics for the free lists.
221 void
222 Free_list::print_stats()
223 {
224 fprintf(stderr, _("%s: total free lists: %u\n"),
225 program_name, Free_list::num_lists);
226 fprintf(stderr, _("%s: total free list nodes: %u\n"),
227 program_name, Free_list::num_nodes);
228 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229 program_name, Free_list::num_removes);
230 fprintf(stderr, _("%s: nodes visited: %u\n"),
231 program_name, Free_list::num_remove_visits);
232 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233 program_name, Free_list::num_allocates);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_allocate_visits);
236 }
237
238 // A Hash_task computes the MD5 checksum of an array of char.
239 // It has a blocker on either side (i.e., the task cannot run until
240 // the first is unblocked, and it unblocks the second after running).
241
242 class Hash_task : public Task
243 {
244 public:
245 Hash_task(const unsigned char* src,
246 size_t size,
247 unsigned char* dst,
248 Task_token* build_id_blocker,
249 Task_token* final_blocker)
250 : src_(src), size_(size), dst_(dst), build_id_blocker_(build_id_blocker),
251 final_blocker_(final_blocker)
252 { }
253
254 void
255 run(Workqueue*)
256 { md5_buffer(reinterpret_cast<const char*>(src_), size_, dst_); }
257
258 Task_token*
259 is_runnable();
260
261 // Unblock FINAL_BLOCKER_ when done.
262 void
263 locks(Task_locker* tl)
264 { tl->add(this, this->final_blocker_); }
265
266 std::string
267 get_name() const
268 { return "Hash_task"; }
269
270 private:
271 const unsigned char* const src_;
272 const size_t size_;
273 unsigned char* const dst_;
274 Task_token* const build_id_blocker_;
275 Task_token* const final_blocker_;
276 };
277
278 Task_token*
279 Hash_task::is_runnable()
280 {
281 if (this->build_id_blocker_->is_blocked())
282 return this->build_id_blocker_;
283 return NULL;
284 }
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 array_of_hashes_(NULL),
453 size_of_array_of_hashes_(0),
454 input_view_(NULL),
455 debug_abbrev_(NULL),
456 debug_info_(NULL),
457 group_signatures_(),
458 output_file_size_(-1),
459 have_added_input_section_(false),
460 sections_are_attached_(false),
461 input_requires_executable_stack_(false),
462 input_with_gnu_stack_note_(false),
463 input_without_gnu_stack_note_(false),
464 has_static_tls_(false),
465 any_postprocessing_sections_(false),
466 resized_signatures_(false),
467 have_stabstr_section_(false),
468 section_ordering_specified_(false),
469 unique_segment_for_sections_specified_(false),
470 incremental_inputs_(NULL),
471 record_output_section_data_from_script_(false),
472 script_output_section_data_list_(),
473 segment_states_(NULL),
474 relaxation_debug_check_(NULL),
475 section_order_map_(),
476 section_segment_map_(),
477 input_section_position_(),
478 input_section_glob_(),
479 incremental_base_(NULL),
480 free_list_()
481 {
482 // Make space for more than enough segments for a typical file.
483 // This is just for efficiency--it's OK if we wind up needing more.
484 this->segment_list_.reserve(12);
485
486 // We expect two unattached Output_data objects: the file header and
487 // the segment headers.
488 this->special_output_list_.reserve(2);
489
490 // Initialize structure needed for an incremental build.
491 if (parameters->incremental())
492 this->incremental_inputs_ = new Incremental_inputs;
493
494 // The section name pool is worth optimizing in all cases, because
495 // it is small, but there are often overlaps due to .rel sections.
496 this->namepool_.set_optimize();
497 }
498
499 // For incremental links, record the base file to be modified.
500
501 void
502 Layout::set_incremental_base(Incremental_binary* base)
503 {
504 this->incremental_base_ = base;
505 this->free_list_.init(base->output_file()->filesize(), true);
506 }
507
508 // Hash a key we use to look up an output section mapping.
509
510 size_t
511 Layout::Hash_key::operator()(const Layout::Key& k) const
512 {
513 return k.first + k.second.first + k.second.second;
514 }
515
516 // These are the debug sections that are actually used by gdb.
517 // Currently, we've checked versions of gdb up to and including 7.4.
518 // We only check the part of the name that follows ".debug_" or
519 // ".zdebug_".
520
521 static const char* gdb_sections[] =
522 {
523 "abbrev",
524 "addr", // Fission extension
525 // "aranges", // not used by gdb as of 7.4
526 "frame",
527 "info",
528 "types",
529 "line",
530 "loc",
531 "macinfo",
532 "macro",
533 // "pubnames", // not used by gdb as of 7.4
534 // "pubtypes", // not used by gdb as of 7.4
535 "ranges",
536 "str",
537 };
538
539 // This is the minimum set of sections needed for line numbers.
540
541 static const char* lines_only_debug_sections[] =
542 {
543 "abbrev",
544 // "addr", // Fission extension
545 // "aranges", // not used by gdb as of 7.4
546 // "frame",
547 "info",
548 // "types",
549 "line",
550 // "loc",
551 // "macinfo",
552 // "macro",
553 // "pubnames", // not used by gdb as of 7.4
554 // "pubtypes", // not used by gdb as of 7.4
555 // "ranges",
556 "str",
557 };
558
559 // These sections are the DWARF fast-lookup tables, and are not needed
560 // when building a .gdb_index section.
561
562 static const char* gdb_fast_lookup_sections[] =
563 {
564 "aranges",
565 "pubnames",
566 "gnu_pubnames",
567 "pubtypes",
568 "gnu_pubtypes",
569 };
570
571 // Returns whether the given debug section is in the list of
572 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
573 // portion of the name following ".debug_" or ".zdebug_".
574
575 static inline bool
576 is_gdb_debug_section(const char* suffix)
577 {
578 // We can do this faster: binary search or a hashtable. But why bother?
579 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
580 if (strcmp(suffix, gdb_sections[i]) == 0)
581 return true;
582 return false;
583 }
584
585 // Returns whether the given section is needed for lines-only debugging.
586
587 static inline bool
588 is_lines_only_debug_section(const char* suffix)
589 {
590 // We can do this faster: binary search or a hashtable. But why bother?
591 for (size_t i = 0;
592 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
593 ++i)
594 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
595 return true;
596 return false;
597 }
598
599 // Returns whether the given section is a fast-lookup section that
600 // will not be needed when building a .gdb_index section.
601
602 static inline bool
603 is_gdb_fast_lookup_section(const char* suffix)
604 {
605 // We can do this faster: binary search or a hashtable. But why bother?
606 for (size_t i = 0;
607 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
608 ++i)
609 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
610 return true;
611 return false;
612 }
613
614 // Sometimes we compress sections. This is typically done for
615 // sections that are not part of normal program execution (such as
616 // .debug_* sections), and where the readers of these sections know
617 // how to deal with compressed sections. This routine doesn't say for
618 // certain whether we'll compress -- it depends on commandline options
619 // as well -- just whether this section is a candidate for compression.
620 // (The Output_compressed_section class decides whether to compress
621 // a given section, and picks the name of the compressed section.)
622
623 static bool
624 is_compressible_debug_section(const char* secname)
625 {
626 return (is_prefix_of(".debug", secname));
627 }
628
629 // We may see compressed debug sections in input files. Return TRUE
630 // if this is the name of a compressed debug section.
631
632 bool
633 is_compressed_debug_section(const char* secname)
634 {
635 return (is_prefix_of(".zdebug", secname));
636 }
637
638 // Whether to include this section in the link.
639
640 template<int size, bool big_endian>
641 bool
642 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
643 const elfcpp::Shdr<size, big_endian>& shdr)
644 {
645 if (!parameters->options().relocatable()
646 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
647 return false;
648
649 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
650
651 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
652 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
653 return parameters->target().should_include_section(sh_type);
654
655 switch (sh_type)
656 {
657 case elfcpp::SHT_NULL:
658 case elfcpp::SHT_SYMTAB:
659 case elfcpp::SHT_DYNSYM:
660 case elfcpp::SHT_HASH:
661 case elfcpp::SHT_DYNAMIC:
662 case elfcpp::SHT_SYMTAB_SHNDX:
663 return false;
664
665 case elfcpp::SHT_STRTAB:
666 // Discard the sections which have special meanings in the ELF
667 // ABI. Keep others (e.g., .stabstr). We could also do this by
668 // checking the sh_link fields of the appropriate sections.
669 return (strcmp(name, ".dynstr") != 0
670 && strcmp(name, ".strtab") != 0
671 && strcmp(name, ".shstrtab") != 0);
672
673 case elfcpp::SHT_RELA:
674 case elfcpp::SHT_REL:
675 case elfcpp::SHT_GROUP:
676 // If we are emitting relocations these should be handled
677 // elsewhere.
678 gold_assert(!parameters->options().relocatable());
679 return false;
680
681 case elfcpp::SHT_PROGBITS:
682 if (parameters->options().strip_debug()
683 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
684 {
685 if (is_debug_info_section(name))
686 return false;
687 }
688 if (parameters->options().strip_debug_non_line()
689 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
690 {
691 // Debugging sections can only be recognized by name.
692 if (is_prefix_of(".debug_", name)
693 && !is_lines_only_debug_section(name + 7))
694 return false;
695 if (is_prefix_of(".zdebug_", name)
696 && !is_lines_only_debug_section(name + 8))
697 return false;
698 }
699 if (parameters->options().strip_debug_gdb()
700 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
701 {
702 // Debugging sections can only be recognized by name.
703 if (is_prefix_of(".debug_", name)
704 && !is_gdb_debug_section(name + 7))
705 return false;
706 if (is_prefix_of(".zdebug_", name)
707 && !is_gdb_debug_section(name + 8))
708 return false;
709 }
710 if (parameters->options().gdb_index()
711 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
712 {
713 // When building .gdb_index, we can strip .debug_pubnames,
714 // .debug_pubtypes, and .debug_aranges sections.
715 if (is_prefix_of(".debug_", name)
716 && is_gdb_fast_lookup_section(name + 7))
717 return false;
718 if (is_prefix_of(".zdebug_", name)
719 && is_gdb_fast_lookup_section(name + 8))
720 return false;
721 }
722 if (parameters->options().strip_lto_sections()
723 && !parameters->options().relocatable()
724 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
725 {
726 // Ignore LTO sections containing intermediate code.
727 if (is_prefix_of(".gnu.lto_", name))
728 return false;
729 }
730 // The GNU linker strips .gnu_debuglink sections, so we do too.
731 // This is a feature used to keep debugging information in
732 // separate files.
733 if (strcmp(name, ".gnu_debuglink") == 0)
734 return false;
735 return true;
736
737 default:
738 return true;
739 }
740 }
741
742 // Return an output section named NAME, or NULL if there is none.
743
744 Output_section*
745 Layout::find_output_section(const char* name) const
746 {
747 for (Section_list::const_iterator p = this->section_list_.begin();
748 p != this->section_list_.end();
749 ++p)
750 if (strcmp((*p)->name(), name) == 0)
751 return *p;
752 return NULL;
753 }
754
755 // Return an output segment of type TYPE, with segment flags SET set
756 // and segment flags CLEAR clear. Return NULL if there is none.
757
758 Output_segment*
759 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
760 elfcpp::Elf_Word clear) const
761 {
762 for (Segment_list::const_iterator p = this->segment_list_.begin();
763 p != this->segment_list_.end();
764 ++p)
765 if (static_cast<elfcpp::PT>((*p)->type()) == type
766 && ((*p)->flags() & set) == set
767 && ((*p)->flags() & clear) == 0)
768 return *p;
769 return NULL;
770 }
771
772 // When we put a .ctors or .dtors section with more than one word into
773 // a .init_array or .fini_array section, we need to reverse the words
774 // in the .ctors/.dtors section. This is because .init_array executes
775 // constructors front to back, where .ctors executes them back to
776 // front, and vice-versa for .fini_array/.dtors. Although we do want
777 // to remap .ctors/.dtors into .init_array/.fini_array because it can
778 // be more efficient, we don't want to change the order in which
779 // constructors/destructors are run. This set just keeps track of
780 // these sections which need to be reversed. It is only changed by
781 // Layout::layout. It should be a private member of Layout, but that
782 // would require layout.h to #include object.h to get the definition
783 // of Section_id.
784 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
785
786 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
787 // .init_array/.fini_array section.
788
789 bool
790 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
791 {
792 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
793 != ctors_sections_in_init_array.end());
794 }
795
796 // Return the output section to use for section NAME with type TYPE
797 // and section flags FLAGS. NAME must be canonicalized in the string
798 // pool, and NAME_KEY is the key. ORDER is where this should appear
799 // in the output sections. IS_RELRO is true for a relro section.
800
801 Output_section*
802 Layout::get_output_section(const char* name, Stringpool::Key name_key,
803 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
804 Output_section_order order, bool is_relro)
805 {
806 elfcpp::Elf_Word lookup_type = type;
807
808 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
809 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
810 // .init_array, .fini_array, and .preinit_array sections by name
811 // whatever their type in the input file. We do this because the
812 // types are not always right in the input files.
813 if (lookup_type == elfcpp::SHT_INIT_ARRAY
814 || lookup_type == elfcpp::SHT_FINI_ARRAY
815 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
816 lookup_type = elfcpp::SHT_PROGBITS;
817
818 elfcpp::Elf_Xword lookup_flags = flags;
819
820 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
821 // read-write with read-only sections. Some other ELF linkers do
822 // not do this. FIXME: Perhaps there should be an option
823 // controlling this.
824 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
825
826 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
827 const std::pair<Key, Output_section*> v(key, NULL);
828 std::pair<Section_name_map::iterator, bool> ins(
829 this->section_name_map_.insert(v));
830
831 if (!ins.second)
832 return ins.first->second;
833 else
834 {
835 // This is the first time we've seen this name/type/flags
836 // combination. For compatibility with the GNU linker, we
837 // combine sections with contents and zero flags with sections
838 // with non-zero flags. This is a workaround for cases where
839 // assembler code forgets to set section flags. FIXME: Perhaps
840 // there should be an option to control this.
841 Output_section* os = NULL;
842
843 if (lookup_type == elfcpp::SHT_PROGBITS)
844 {
845 if (flags == 0)
846 {
847 Output_section* same_name = this->find_output_section(name);
848 if (same_name != NULL
849 && (same_name->type() == elfcpp::SHT_PROGBITS
850 || same_name->type() == elfcpp::SHT_INIT_ARRAY
851 || same_name->type() == elfcpp::SHT_FINI_ARRAY
852 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
853 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
854 os = same_name;
855 }
856 else if ((flags & elfcpp::SHF_TLS) == 0)
857 {
858 elfcpp::Elf_Xword zero_flags = 0;
859 const Key zero_key(name_key, std::make_pair(lookup_type,
860 zero_flags));
861 Section_name_map::iterator p =
862 this->section_name_map_.find(zero_key);
863 if (p != this->section_name_map_.end())
864 os = p->second;
865 }
866 }
867
868 if (os == NULL)
869 os = this->make_output_section(name, type, flags, order, is_relro);
870
871 ins.first->second = os;
872 return os;
873 }
874 }
875
876 // Returns TRUE iff NAME (an input section from RELOBJ) will
877 // be mapped to an output section that should be KEPT.
878
879 bool
880 Layout::keep_input_section(const Relobj* relobj, const char* name)
881 {
882 if (! this->script_options_->saw_sections_clause())
883 return false;
884
885 Script_sections* ss = this->script_options_->script_sections();
886 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
887 Output_section** output_section_slot;
888 Script_sections::Section_type script_section_type;
889 bool keep;
890
891 name = ss->output_section_name(file_name, name, &output_section_slot,
892 &script_section_type, &keep);
893 return name != NULL && keep;
894 }
895
896 // Clear the input section flags that should not be copied to the
897 // output section.
898
899 elfcpp::Elf_Xword
900 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
901 {
902 // Some flags in the input section should not be automatically
903 // copied to the output section.
904 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
905 | elfcpp::SHF_GROUP
906 | elfcpp::SHF_MERGE
907 | elfcpp::SHF_STRINGS);
908
909 // We only clear the SHF_LINK_ORDER flag in for
910 // a non-relocatable link.
911 if (!parameters->options().relocatable())
912 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
913
914 return input_section_flags;
915 }
916
917 // Pick the output section to use for section NAME, in input file
918 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
919 // linker created section. IS_INPUT_SECTION is true if we are
920 // choosing an output section for an input section found in a input
921 // file. ORDER is where this section should appear in the output
922 // sections. IS_RELRO is true for a relro section. This will return
923 // NULL if the input section should be discarded.
924
925 Output_section*
926 Layout::choose_output_section(const Relobj* relobj, const char* name,
927 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
928 bool is_input_section, Output_section_order order,
929 bool is_relro)
930 {
931 // We should not see any input sections after we have attached
932 // sections to segments.
933 gold_assert(!is_input_section || !this->sections_are_attached_);
934
935 flags = this->get_output_section_flags(flags);
936
937 if (this->script_options_->saw_sections_clause())
938 {
939 // We are using a SECTIONS clause, so the output section is
940 // chosen based only on the name.
941
942 Script_sections* ss = this->script_options_->script_sections();
943 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
944 Output_section** output_section_slot;
945 Script_sections::Section_type script_section_type;
946 const char* orig_name = name;
947 bool keep;
948 name = ss->output_section_name(file_name, name, &output_section_slot,
949 &script_section_type, &keep);
950
951 if (name == NULL)
952 {
953 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
954 "because it is not allowed by the "
955 "SECTIONS clause of the linker script"),
956 orig_name);
957 // The SECTIONS clause says to discard this input section.
958 return NULL;
959 }
960
961 // We can only handle script section types ST_NONE and ST_NOLOAD.
962 switch (script_section_type)
963 {
964 case Script_sections::ST_NONE:
965 break;
966 case Script_sections::ST_NOLOAD:
967 flags &= elfcpp::SHF_ALLOC;
968 break;
969 default:
970 gold_unreachable();
971 }
972
973 // If this is an orphan section--one not mentioned in the linker
974 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
975 // default processing below.
976
977 if (output_section_slot != NULL)
978 {
979 if (*output_section_slot != NULL)
980 {
981 (*output_section_slot)->update_flags_for_input_section(flags);
982 return *output_section_slot;
983 }
984
985 // We don't put sections found in the linker script into
986 // SECTION_NAME_MAP_. That keeps us from getting confused
987 // if an orphan section is mapped to a section with the same
988 // name as one in the linker script.
989
990 name = this->namepool_.add(name, false, NULL);
991
992 Output_section* os = this->make_output_section(name, type, flags,
993 order, is_relro);
994
995 os->set_found_in_sections_clause();
996
997 // Special handling for NOLOAD sections.
998 if (script_section_type == Script_sections::ST_NOLOAD)
999 {
1000 os->set_is_noload();
1001
1002 // The constructor of Output_section sets addresses of non-ALLOC
1003 // sections to 0 by default. We don't want that for NOLOAD
1004 // sections even if they have no SHF_ALLOC flag.
1005 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1006 && os->is_address_valid())
1007 {
1008 gold_assert(os->address() == 0
1009 && !os->is_offset_valid()
1010 && !os->is_data_size_valid());
1011 os->reset_address_and_file_offset();
1012 }
1013 }
1014
1015 *output_section_slot = os;
1016 return os;
1017 }
1018 }
1019
1020 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1021
1022 size_t len = strlen(name);
1023 char* uncompressed_name = NULL;
1024
1025 // Compressed debug sections should be mapped to the corresponding
1026 // uncompressed section.
1027 if (is_compressed_debug_section(name))
1028 {
1029 uncompressed_name = new char[len];
1030 uncompressed_name[0] = '.';
1031 gold_assert(name[0] == '.' && name[1] == 'z');
1032 strncpy(&uncompressed_name[1], &name[2], len - 2);
1033 uncompressed_name[len - 1] = '\0';
1034 len -= 1;
1035 name = uncompressed_name;
1036 }
1037
1038 // Turn NAME from the name of the input section into the name of the
1039 // output section.
1040 if (is_input_section
1041 && !this->script_options_->saw_sections_clause()
1042 && !parameters->options().relocatable())
1043 {
1044 const char *orig_name = name;
1045 name = parameters->target().output_section_name(relobj, name, &len);
1046 if (name == NULL)
1047 name = Layout::output_section_name(relobj, orig_name, &len);
1048 }
1049
1050 Stringpool::Key name_key;
1051 name = this->namepool_.add_with_length(name, len, true, &name_key);
1052
1053 if (uncompressed_name != NULL)
1054 delete[] uncompressed_name;
1055
1056 // Find or make the output section. The output section is selected
1057 // based on the section name, type, and flags.
1058 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1059 }
1060
1061 // For incremental links, record the initial fixed layout of a section
1062 // from the base file, and return a pointer to the Output_section.
1063
1064 template<int size, bool big_endian>
1065 Output_section*
1066 Layout::init_fixed_output_section(const char* name,
1067 elfcpp::Shdr<size, big_endian>& shdr)
1068 {
1069 unsigned int sh_type = shdr.get_sh_type();
1070
1071 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1072 // PRE_INIT_ARRAY, and NOTE sections.
1073 // All others will be created from scratch and reallocated.
1074 if (!can_incremental_update(sh_type))
1075 return NULL;
1076
1077 // If we're generating a .gdb_index section, we need to regenerate
1078 // it from scratch.
1079 if (parameters->options().gdb_index()
1080 && sh_type == elfcpp::SHT_PROGBITS
1081 && strcmp(name, ".gdb_index") == 0)
1082 return NULL;
1083
1084 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1085 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1086 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1087 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1088 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1089 shdr.get_sh_addralign();
1090
1091 // Make the output section.
1092 Stringpool::Key name_key;
1093 name = this->namepool_.add(name, true, &name_key);
1094 Output_section* os = this->get_output_section(name, name_key, sh_type,
1095 sh_flags, ORDER_INVALID, false);
1096 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1097 if (sh_type != elfcpp::SHT_NOBITS)
1098 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1099 return os;
1100 }
1101
1102 // Return the index by which an input section should be ordered. This
1103 // is used to sort some .text sections, for compatibility with GNU ld.
1104
1105 int
1106 Layout::special_ordering_of_input_section(const char* name)
1107 {
1108 // The GNU linker has some special handling for some sections that
1109 // wind up in the .text section. Sections that start with these
1110 // prefixes must appear first, and must appear in the order listed
1111 // here.
1112 static const char* const text_section_sort[] =
1113 {
1114 ".text.unlikely",
1115 ".text.exit",
1116 ".text.startup",
1117 ".text.hot"
1118 };
1119
1120 for (size_t i = 0;
1121 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1122 i++)
1123 if (is_prefix_of(text_section_sort[i], name))
1124 return i;
1125
1126 return -1;
1127 }
1128
1129 // Return the output section to use for input section SHNDX, with name
1130 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1131 // index of a relocation section which applies to this section, or 0
1132 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1133 // relocation section if there is one. Set *OFF to the offset of this
1134 // input section without the output section. Return NULL if the
1135 // section should be discarded. Set *OFF to -1 if the section
1136 // contents should not be written directly to the output file, but
1137 // will instead receive special handling.
1138
1139 template<int size, bool big_endian>
1140 Output_section*
1141 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1142 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1143 unsigned int reloc_shndx, unsigned int, off_t* off)
1144 {
1145 *off = 0;
1146
1147 if (!this->include_section(object, name, shdr))
1148 return NULL;
1149
1150 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1151
1152 // In a relocatable link a grouped section must not be combined with
1153 // any other sections.
1154 Output_section* os;
1155 if (parameters->options().relocatable()
1156 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1157 {
1158 name = this->namepool_.add(name, true, NULL);
1159 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1160 ORDER_INVALID, false);
1161 }
1162 else
1163 {
1164 // Plugins can choose to place one or more subsets of sections in
1165 // unique segments and this is done by mapping these section subsets
1166 // to unique output sections. Check if this section needs to be
1167 // remapped to a unique output section.
1168 Section_segment_map::iterator it
1169 = this->section_segment_map_.find(Const_section_id(object, shndx));
1170 if (it == this->section_segment_map_.end())
1171 {
1172 os = this->choose_output_section(object, name, sh_type,
1173 shdr.get_sh_flags(), true,
1174 ORDER_INVALID, false);
1175 }
1176 else
1177 {
1178 // We know the name of the output section, directly call
1179 // get_output_section here by-passing choose_output_section.
1180 elfcpp::Elf_Xword flags
1181 = this->get_output_section_flags(shdr.get_sh_flags());
1182
1183 const char* os_name = it->second->name;
1184 Stringpool::Key name_key;
1185 os_name = this->namepool_.add(os_name, true, &name_key);
1186 os = this->get_output_section(os_name, name_key, sh_type, flags,
1187 ORDER_INVALID, false);
1188 if (!os->is_unique_segment())
1189 {
1190 os->set_is_unique_segment();
1191 os->set_extra_segment_flags(it->second->flags);
1192 os->set_segment_alignment(it->second->align);
1193 }
1194 }
1195 if (os == NULL)
1196 return NULL;
1197 }
1198
1199 // By default the GNU linker sorts input sections whose names match
1200 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1201 // sections are sorted by name. This is used to implement
1202 // constructor priority ordering. We are compatible. When we put
1203 // .ctor sections in .init_array and .dtor sections in .fini_array,
1204 // we must also sort plain .ctor and .dtor sections.
1205 if (!this->script_options_->saw_sections_clause()
1206 && !parameters->options().relocatable()
1207 && (is_prefix_of(".ctors.", name)
1208 || is_prefix_of(".dtors.", name)
1209 || is_prefix_of(".init_array.", name)
1210 || is_prefix_of(".fini_array.", name)
1211 || (parameters->options().ctors_in_init_array()
1212 && (strcmp(name, ".ctors") == 0
1213 || strcmp(name, ".dtors") == 0))))
1214 os->set_must_sort_attached_input_sections();
1215
1216 // By default the GNU linker sorts some special text sections ahead
1217 // of others. We are compatible.
1218 if (parameters->options().text_reorder()
1219 && !this->script_options_->saw_sections_clause()
1220 && !this->is_section_ordering_specified()
1221 && !parameters->options().relocatable()
1222 && Layout::special_ordering_of_input_section(name) >= 0)
1223 os->set_must_sort_attached_input_sections();
1224
1225 // If this is a .ctors or .ctors.* section being mapped to a
1226 // .init_array section, or a .dtors or .dtors.* section being mapped
1227 // to a .fini_array section, we will need to reverse the words if
1228 // there is more than one. Record this section for later. See
1229 // ctors_sections_in_init_array above.
1230 if (!this->script_options_->saw_sections_clause()
1231 && !parameters->options().relocatable()
1232 && shdr.get_sh_size() > size / 8
1233 && (((strcmp(name, ".ctors") == 0
1234 || is_prefix_of(".ctors.", name))
1235 && strcmp(os->name(), ".init_array") == 0)
1236 || ((strcmp(name, ".dtors") == 0
1237 || is_prefix_of(".dtors.", name))
1238 && strcmp(os->name(), ".fini_array") == 0)))
1239 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1240
1241 // FIXME: Handle SHF_LINK_ORDER somewhere.
1242
1243 elfcpp::Elf_Xword orig_flags = os->flags();
1244
1245 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1246 this->script_options_->saw_sections_clause());
1247
1248 // If the flags changed, we may have to change the order.
1249 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1250 {
1251 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1252 elfcpp::Elf_Xword new_flags =
1253 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1254 if (orig_flags != new_flags)
1255 os->set_order(this->default_section_order(os, false));
1256 }
1257
1258 this->have_added_input_section_ = true;
1259
1260 return os;
1261 }
1262
1263 // Maps section SECN to SEGMENT s.
1264 void
1265 Layout::insert_section_segment_map(Const_section_id secn,
1266 Unique_segment_info *s)
1267 {
1268 gold_assert(this->unique_segment_for_sections_specified_);
1269 this->section_segment_map_[secn] = s;
1270 }
1271
1272 // Handle a relocation section when doing a relocatable link.
1273
1274 template<int size, bool big_endian>
1275 Output_section*
1276 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1277 unsigned int,
1278 const elfcpp::Shdr<size, big_endian>& shdr,
1279 Output_section* data_section,
1280 Relocatable_relocs* rr)
1281 {
1282 gold_assert(parameters->options().relocatable()
1283 || parameters->options().emit_relocs());
1284
1285 int sh_type = shdr.get_sh_type();
1286
1287 std::string name;
1288 if (sh_type == elfcpp::SHT_REL)
1289 name = ".rel";
1290 else if (sh_type == elfcpp::SHT_RELA)
1291 name = ".rela";
1292 else
1293 gold_unreachable();
1294 name += data_section->name();
1295
1296 // In a relocatable link relocs for a grouped section must not be
1297 // combined with other reloc sections.
1298 Output_section* os;
1299 if (!parameters->options().relocatable()
1300 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1301 os = this->choose_output_section(object, name.c_str(), sh_type,
1302 shdr.get_sh_flags(), false,
1303 ORDER_INVALID, false);
1304 else
1305 {
1306 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1307 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1308 ORDER_INVALID, false);
1309 }
1310
1311 os->set_should_link_to_symtab();
1312 os->set_info_section(data_section);
1313
1314 Output_section_data* posd;
1315 if (sh_type == elfcpp::SHT_REL)
1316 {
1317 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1318 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1319 size,
1320 big_endian>(rr);
1321 }
1322 else if (sh_type == elfcpp::SHT_RELA)
1323 {
1324 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1325 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1326 size,
1327 big_endian>(rr);
1328 }
1329 else
1330 gold_unreachable();
1331
1332 os->add_output_section_data(posd);
1333 rr->set_output_data(posd);
1334
1335 return os;
1336 }
1337
1338 // Handle a group section when doing a relocatable link.
1339
1340 template<int size, bool big_endian>
1341 void
1342 Layout::layout_group(Symbol_table* symtab,
1343 Sized_relobj_file<size, big_endian>* object,
1344 unsigned int,
1345 const char* group_section_name,
1346 const char* signature,
1347 const elfcpp::Shdr<size, big_endian>& shdr,
1348 elfcpp::Elf_Word flags,
1349 std::vector<unsigned int>* shndxes)
1350 {
1351 gold_assert(parameters->options().relocatable());
1352 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1353 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1354 Output_section* os = this->make_output_section(group_section_name,
1355 elfcpp::SHT_GROUP,
1356 shdr.get_sh_flags(),
1357 ORDER_INVALID, false);
1358
1359 // We need to find a symbol with the signature in the symbol table.
1360 // If we don't find one now, we need to look again later.
1361 Symbol* sym = symtab->lookup(signature, NULL);
1362 if (sym != NULL)
1363 os->set_info_symndx(sym);
1364 else
1365 {
1366 // Reserve some space to minimize reallocations.
1367 if (this->group_signatures_.empty())
1368 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1369
1370 // We will wind up using a symbol whose name is the signature.
1371 // So just put the signature in the symbol name pool to save it.
1372 signature = symtab->canonicalize_name(signature);
1373 this->group_signatures_.push_back(Group_signature(os, signature));
1374 }
1375
1376 os->set_should_link_to_symtab();
1377 os->set_entsize(4);
1378
1379 section_size_type entry_count =
1380 convert_to_section_size_type(shdr.get_sh_size() / 4);
1381 Output_section_data* posd =
1382 new Output_data_group<size, big_endian>(object, entry_count, flags,
1383 shndxes);
1384 os->add_output_section_data(posd);
1385 }
1386
1387 // Special GNU handling of sections name .eh_frame. They will
1388 // normally hold exception frame data as defined by the C++ ABI
1389 // (http://codesourcery.com/cxx-abi/).
1390
1391 template<int size, bool big_endian>
1392 Output_section*
1393 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1394 const unsigned char* symbols,
1395 off_t symbols_size,
1396 const unsigned char* symbol_names,
1397 off_t symbol_names_size,
1398 unsigned int shndx,
1399 const elfcpp::Shdr<size, big_endian>& shdr,
1400 unsigned int reloc_shndx, unsigned int reloc_type,
1401 off_t* off)
1402 {
1403 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1404 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1405 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1406
1407 Output_section* os = this->make_eh_frame_section(object);
1408 if (os == NULL)
1409 return NULL;
1410
1411 gold_assert(this->eh_frame_section_ == os);
1412
1413 elfcpp::Elf_Xword orig_flags = os->flags();
1414
1415 if (!parameters->incremental()
1416 && this->eh_frame_data_->add_ehframe_input_section(object,
1417 symbols,
1418 symbols_size,
1419 symbol_names,
1420 symbol_names_size,
1421 shndx,
1422 reloc_shndx,
1423 reloc_type))
1424 {
1425 os->update_flags_for_input_section(shdr.get_sh_flags());
1426
1427 // A writable .eh_frame section is a RELRO section.
1428 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1429 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1430 {
1431 os->set_is_relro();
1432 os->set_order(ORDER_RELRO);
1433 }
1434
1435 // We found a .eh_frame section we are going to optimize, so now
1436 // we can add the set of optimized sections to the output
1437 // section. We need to postpone adding this until we've found a
1438 // section we can optimize so that the .eh_frame section in
1439 // crtbegin.o winds up at the start of the output section.
1440 if (!this->added_eh_frame_data_)
1441 {
1442 os->add_output_section_data(this->eh_frame_data_);
1443 this->added_eh_frame_data_ = true;
1444 }
1445 *off = -1;
1446 }
1447 else
1448 {
1449 // We couldn't handle this .eh_frame section for some reason.
1450 // Add it as a normal section.
1451 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1452 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1453 reloc_shndx, saw_sections_clause);
1454 this->have_added_input_section_ = true;
1455
1456 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1457 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1458 os->set_order(this->default_section_order(os, false));
1459 }
1460
1461 return os;
1462 }
1463
1464 // Create and return the magic .eh_frame section. Create
1465 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1466 // input .eh_frame section; it may be NULL.
1467
1468 Output_section*
1469 Layout::make_eh_frame_section(const Relobj* object)
1470 {
1471 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1472 // SHT_PROGBITS.
1473 Output_section* os = this->choose_output_section(object, ".eh_frame",
1474 elfcpp::SHT_PROGBITS,
1475 elfcpp::SHF_ALLOC, false,
1476 ORDER_EHFRAME, false);
1477 if (os == NULL)
1478 return NULL;
1479
1480 if (this->eh_frame_section_ == NULL)
1481 {
1482 this->eh_frame_section_ = os;
1483 this->eh_frame_data_ = new Eh_frame();
1484
1485 // For incremental linking, we do not optimize .eh_frame sections
1486 // or create a .eh_frame_hdr section.
1487 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1488 {
1489 Output_section* hdr_os =
1490 this->choose_output_section(NULL, ".eh_frame_hdr",
1491 elfcpp::SHT_PROGBITS,
1492 elfcpp::SHF_ALLOC, false,
1493 ORDER_EHFRAME, false);
1494
1495 if (hdr_os != NULL)
1496 {
1497 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1498 this->eh_frame_data_);
1499 hdr_os->add_output_section_data(hdr_posd);
1500
1501 hdr_os->set_after_input_sections();
1502
1503 if (!this->script_options_->saw_phdrs_clause())
1504 {
1505 Output_segment* hdr_oseg;
1506 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1507 elfcpp::PF_R);
1508 hdr_oseg->add_output_section_to_nonload(hdr_os,
1509 elfcpp::PF_R);
1510 }
1511
1512 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1513 }
1514 }
1515 }
1516
1517 return os;
1518 }
1519
1520 // Add an exception frame for a PLT. This is called from target code.
1521
1522 void
1523 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1524 size_t cie_length, const unsigned char* fde_data,
1525 size_t fde_length)
1526 {
1527 if (parameters->incremental())
1528 {
1529 // FIXME: Maybe this could work some day....
1530 return;
1531 }
1532 Output_section* os = this->make_eh_frame_section(NULL);
1533 if (os == NULL)
1534 return;
1535 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1536 fde_data, fde_length);
1537 if (!this->added_eh_frame_data_)
1538 {
1539 os->add_output_section_data(this->eh_frame_data_);
1540 this->added_eh_frame_data_ = true;
1541 }
1542 }
1543
1544 // Scan a .debug_info or .debug_types section, and add summary
1545 // information to the .gdb_index section.
1546
1547 template<int size, bool big_endian>
1548 void
1549 Layout::add_to_gdb_index(bool is_type_unit,
1550 Sized_relobj<size, big_endian>* object,
1551 const unsigned char* symbols,
1552 off_t symbols_size,
1553 unsigned int shndx,
1554 unsigned int reloc_shndx,
1555 unsigned int reloc_type)
1556 {
1557 if (this->gdb_index_data_ == NULL)
1558 {
1559 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1560 elfcpp::SHT_PROGBITS, 0,
1561 false, ORDER_INVALID,
1562 false);
1563 if (os == NULL)
1564 return;
1565
1566 this->gdb_index_data_ = new Gdb_index(os);
1567 os->add_output_section_data(this->gdb_index_data_);
1568 os->set_after_input_sections();
1569 }
1570
1571 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1572 symbols_size, shndx, reloc_shndx,
1573 reloc_type);
1574 }
1575
1576 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1577 // the output section.
1578
1579 Output_section*
1580 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1581 elfcpp::Elf_Xword flags,
1582 Output_section_data* posd,
1583 Output_section_order order, bool is_relro)
1584 {
1585 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1586 false, order, is_relro);
1587 if (os != NULL)
1588 os->add_output_section_data(posd);
1589 return os;
1590 }
1591
1592 // Map section flags to segment flags.
1593
1594 elfcpp::Elf_Word
1595 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1596 {
1597 elfcpp::Elf_Word ret = elfcpp::PF_R;
1598 if ((flags & elfcpp::SHF_WRITE) != 0)
1599 ret |= elfcpp::PF_W;
1600 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1601 ret |= elfcpp::PF_X;
1602 return ret;
1603 }
1604
1605 // Make a new Output_section, and attach it to segments as
1606 // appropriate. ORDER is the order in which this section should
1607 // appear in the output segment. IS_RELRO is true if this is a relro
1608 // (read-only after relocations) section.
1609
1610 Output_section*
1611 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1612 elfcpp::Elf_Xword flags,
1613 Output_section_order order, bool is_relro)
1614 {
1615 Output_section* os;
1616 if ((flags & elfcpp::SHF_ALLOC) == 0
1617 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1618 && is_compressible_debug_section(name))
1619 os = new Output_compressed_section(&parameters->options(), name, type,
1620 flags);
1621 else if ((flags & elfcpp::SHF_ALLOC) == 0
1622 && parameters->options().strip_debug_non_line()
1623 && strcmp(".debug_abbrev", name) == 0)
1624 {
1625 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1626 name, type, flags);
1627 if (this->debug_info_)
1628 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1629 }
1630 else if ((flags & elfcpp::SHF_ALLOC) == 0
1631 && parameters->options().strip_debug_non_line()
1632 && strcmp(".debug_info", name) == 0)
1633 {
1634 os = this->debug_info_ = new Output_reduced_debug_info_section(
1635 name, type, flags);
1636 if (this->debug_abbrev_)
1637 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1638 }
1639 else
1640 {
1641 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1642 // not have correct section types. Force them here.
1643 if (type == elfcpp::SHT_PROGBITS)
1644 {
1645 if (is_prefix_of(".init_array", name))
1646 type = elfcpp::SHT_INIT_ARRAY;
1647 else if (is_prefix_of(".preinit_array", name))
1648 type = elfcpp::SHT_PREINIT_ARRAY;
1649 else if (is_prefix_of(".fini_array", name))
1650 type = elfcpp::SHT_FINI_ARRAY;
1651 }
1652
1653 // FIXME: const_cast is ugly.
1654 Target* target = const_cast<Target*>(&parameters->target());
1655 os = target->make_output_section(name, type, flags);
1656 }
1657
1658 // With -z relro, we have to recognize the special sections by name.
1659 // There is no other way.
1660 bool is_relro_local = false;
1661 if (!this->script_options_->saw_sections_clause()
1662 && parameters->options().relro()
1663 && (flags & elfcpp::SHF_ALLOC) != 0
1664 && (flags & elfcpp::SHF_WRITE) != 0)
1665 {
1666 if (type == elfcpp::SHT_PROGBITS)
1667 {
1668 if ((flags & elfcpp::SHF_TLS) != 0)
1669 is_relro = true;
1670 else if (strcmp(name, ".data.rel.ro") == 0)
1671 is_relro = true;
1672 else if (strcmp(name, ".data.rel.ro.local") == 0)
1673 {
1674 is_relro = true;
1675 is_relro_local = true;
1676 }
1677 else if (strcmp(name, ".ctors") == 0
1678 || strcmp(name, ".dtors") == 0
1679 || strcmp(name, ".jcr") == 0)
1680 is_relro = true;
1681 }
1682 else if (type == elfcpp::SHT_INIT_ARRAY
1683 || type == elfcpp::SHT_FINI_ARRAY
1684 || type == elfcpp::SHT_PREINIT_ARRAY)
1685 is_relro = true;
1686 }
1687
1688 if (is_relro)
1689 os->set_is_relro();
1690
1691 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1692 order = this->default_section_order(os, is_relro_local);
1693
1694 os->set_order(order);
1695
1696 parameters->target().new_output_section(os);
1697
1698 this->section_list_.push_back(os);
1699
1700 // The GNU linker by default sorts some sections by priority, so we
1701 // do the same. We need to know that this might happen before we
1702 // attach any input sections.
1703 if (!this->script_options_->saw_sections_clause()
1704 && !parameters->options().relocatable()
1705 && (strcmp(name, ".init_array") == 0
1706 || strcmp(name, ".fini_array") == 0
1707 || (!parameters->options().ctors_in_init_array()
1708 && (strcmp(name, ".ctors") == 0
1709 || strcmp(name, ".dtors") == 0))))
1710 os->set_may_sort_attached_input_sections();
1711
1712 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1713 // sections before other .text sections. We are compatible. We
1714 // need to know that this might happen before we attach any input
1715 // sections.
1716 if (parameters->options().text_reorder()
1717 && !this->script_options_->saw_sections_clause()
1718 && !this->is_section_ordering_specified()
1719 && !parameters->options().relocatable()
1720 && strcmp(name, ".text") == 0)
1721 os->set_may_sort_attached_input_sections();
1722
1723 // GNU linker sorts section by name with --sort-section=name.
1724 if (strcmp(parameters->options().sort_section(), "name") == 0)
1725 os->set_must_sort_attached_input_sections();
1726
1727 // Check for .stab*str sections, as .stab* sections need to link to
1728 // them.
1729 if (type == elfcpp::SHT_STRTAB
1730 && !this->have_stabstr_section_
1731 && strncmp(name, ".stab", 5) == 0
1732 && strcmp(name + strlen(name) - 3, "str") == 0)
1733 this->have_stabstr_section_ = true;
1734
1735 // During a full incremental link, we add patch space to most
1736 // PROGBITS and NOBITS sections. Flag those that may be
1737 // arbitrarily padded.
1738 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1739 && order != ORDER_INTERP
1740 && order != ORDER_INIT
1741 && order != ORDER_PLT
1742 && order != ORDER_FINI
1743 && order != ORDER_RELRO_LAST
1744 && order != ORDER_NON_RELRO_FIRST
1745 && strcmp(name, ".eh_frame") != 0
1746 && strcmp(name, ".ctors") != 0
1747 && strcmp(name, ".dtors") != 0
1748 && strcmp(name, ".jcr") != 0)
1749 {
1750 os->set_is_patch_space_allowed();
1751
1752 // Certain sections require "holes" to be filled with
1753 // specific fill patterns. These fill patterns may have
1754 // a minimum size, so we must prevent allocations from the
1755 // free list that leave a hole smaller than the minimum.
1756 if (strcmp(name, ".debug_info") == 0)
1757 os->set_free_space_fill(new Output_fill_debug_info(false));
1758 else if (strcmp(name, ".debug_types") == 0)
1759 os->set_free_space_fill(new Output_fill_debug_info(true));
1760 else if (strcmp(name, ".debug_line") == 0)
1761 os->set_free_space_fill(new Output_fill_debug_line());
1762 }
1763
1764 // If we have already attached the sections to segments, then we
1765 // need to attach this one now. This happens for sections created
1766 // directly by the linker.
1767 if (this->sections_are_attached_)
1768 this->attach_section_to_segment(&parameters->target(), os);
1769
1770 return os;
1771 }
1772
1773 // Return the default order in which a section should be placed in an
1774 // output segment. This function captures a lot of the ideas in
1775 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1776 // linker created section is normally set when the section is created;
1777 // this function is used for input sections.
1778
1779 Output_section_order
1780 Layout::default_section_order(Output_section* os, bool is_relro_local)
1781 {
1782 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1783 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1784 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1785 bool is_bss = false;
1786
1787 switch (os->type())
1788 {
1789 default:
1790 case elfcpp::SHT_PROGBITS:
1791 break;
1792 case elfcpp::SHT_NOBITS:
1793 is_bss = true;
1794 break;
1795 case elfcpp::SHT_RELA:
1796 case elfcpp::SHT_REL:
1797 if (!is_write)
1798 return ORDER_DYNAMIC_RELOCS;
1799 break;
1800 case elfcpp::SHT_HASH:
1801 case elfcpp::SHT_DYNAMIC:
1802 case elfcpp::SHT_SHLIB:
1803 case elfcpp::SHT_DYNSYM:
1804 case elfcpp::SHT_GNU_HASH:
1805 case elfcpp::SHT_GNU_verdef:
1806 case elfcpp::SHT_GNU_verneed:
1807 case elfcpp::SHT_GNU_versym:
1808 if (!is_write)
1809 return ORDER_DYNAMIC_LINKER;
1810 break;
1811 case elfcpp::SHT_NOTE:
1812 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1813 }
1814
1815 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1816 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1817
1818 if (!is_bss && !is_write)
1819 {
1820 if (is_execinstr)
1821 {
1822 if (strcmp(os->name(), ".init") == 0)
1823 return ORDER_INIT;
1824 else if (strcmp(os->name(), ".fini") == 0)
1825 return ORDER_FINI;
1826 }
1827 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1828 }
1829
1830 if (os->is_relro())
1831 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1832
1833 if (os->is_small_section())
1834 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1835 if (os->is_large_section())
1836 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1837
1838 return is_bss ? ORDER_BSS : ORDER_DATA;
1839 }
1840
1841 // Attach output sections to segments. This is called after we have
1842 // seen all the input sections.
1843
1844 void
1845 Layout::attach_sections_to_segments(const Target* target)
1846 {
1847 for (Section_list::iterator p = this->section_list_.begin();
1848 p != this->section_list_.end();
1849 ++p)
1850 this->attach_section_to_segment(target, *p);
1851
1852 this->sections_are_attached_ = true;
1853 }
1854
1855 // Attach an output section to a segment.
1856
1857 void
1858 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1859 {
1860 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1861 this->unattached_section_list_.push_back(os);
1862 else
1863 this->attach_allocated_section_to_segment(target, os);
1864 }
1865
1866 // Attach an allocated output section to a segment.
1867
1868 void
1869 Layout::attach_allocated_section_to_segment(const Target* target,
1870 Output_section* os)
1871 {
1872 elfcpp::Elf_Xword flags = os->flags();
1873 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1874
1875 if (parameters->options().relocatable())
1876 return;
1877
1878 // If we have a SECTIONS clause, we can't handle the attachment to
1879 // segments until after we've seen all the sections.
1880 if (this->script_options_->saw_sections_clause())
1881 return;
1882
1883 gold_assert(!this->script_options_->saw_phdrs_clause());
1884
1885 // This output section goes into a PT_LOAD segment.
1886
1887 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1888
1889 // If this output section's segment has extra flags that need to be set,
1890 // coming from a linker plugin, do that.
1891 seg_flags |= os->extra_segment_flags();
1892
1893 // Check for --section-start.
1894 uint64_t addr;
1895 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1896
1897 // In general the only thing we really care about for PT_LOAD
1898 // segments is whether or not they are writable or executable,
1899 // so that is how we search for them.
1900 // Large data sections also go into their own PT_LOAD segment.
1901 // People who need segments sorted on some other basis will
1902 // have to use a linker script.
1903
1904 Segment_list::const_iterator p;
1905 if (!os->is_unique_segment())
1906 {
1907 for (p = this->segment_list_.begin();
1908 p != this->segment_list_.end();
1909 ++p)
1910 {
1911 if ((*p)->type() != elfcpp::PT_LOAD)
1912 continue;
1913 if ((*p)->is_unique_segment())
1914 continue;
1915 if (!parameters->options().omagic()
1916 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1917 continue;
1918 if ((target->isolate_execinstr() || parameters->options().rosegment())
1919 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1920 continue;
1921 // If -Tbss was specified, we need to separate the data and BSS
1922 // segments.
1923 if (parameters->options().user_set_Tbss())
1924 {
1925 if ((os->type() == elfcpp::SHT_NOBITS)
1926 == (*p)->has_any_data_sections())
1927 continue;
1928 }
1929 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1930 continue;
1931
1932 if (is_address_set)
1933 {
1934 if ((*p)->are_addresses_set())
1935 continue;
1936
1937 (*p)->add_initial_output_data(os);
1938 (*p)->update_flags_for_output_section(seg_flags);
1939 (*p)->set_addresses(addr, addr);
1940 break;
1941 }
1942
1943 (*p)->add_output_section_to_load(this, os, seg_flags);
1944 break;
1945 }
1946 }
1947
1948 if (p == this->segment_list_.end()
1949 || os->is_unique_segment())
1950 {
1951 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1952 seg_flags);
1953 if (os->is_large_data_section())
1954 oseg->set_is_large_data_segment();
1955 oseg->add_output_section_to_load(this, os, seg_flags);
1956 if (is_address_set)
1957 oseg->set_addresses(addr, addr);
1958 // Check if segment should be marked unique. For segments marked
1959 // unique by linker plugins, set the new alignment if specified.
1960 if (os->is_unique_segment())
1961 {
1962 oseg->set_is_unique_segment();
1963 if (os->segment_alignment() != 0)
1964 oseg->set_minimum_p_align(os->segment_alignment());
1965 }
1966 }
1967
1968 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1969 // segment.
1970 if (os->type() == elfcpp::SHT_NOTE)
1971 {
1972 // See if we already have an equivalent PT_NOTE segment.
1973 for (p = this->segment_list_.begin();
1974 p != segment_list_.end();
1975 ++p)
1976 {
1977 if ((*p)->type() == elfcpp::PT_NOTE
1978 && (((*p)->flags() & elfcpp::PF_W)
1979 == (seg_flags & elfcpp::PF_W)))
1980 {
1981 (*p)->add_output_section_to_nonload(os, seg_flags);
1982 break;
1983 }
1984 }
1985
1986 if (p == this->segment_list_.end())
1987 {
1988 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1989 seg_flags);
1990 oseg->add_output_section_to_nonload(os, seg_flags);
1991 }
1992 }
1993
1994 // If we see a loadable SHF_TLS section, we create a PT_TLS
1995 // segment. There can only be one such segment.
1996 if ((flags & elfcpp::SHF_TLS) != 0)
1997 {
1998 if (this->tls_segment_ == NULL)
1999 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2000 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2001 }
2002
2003 // If -z relro is in effect, and we see a relro section, we create a
2004 // PT_GNU_RELRO segment. There can only be one such segment.
2005 if (os->is_relro() && parameters->options().relro())
2006 {
2007 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2008 if (this->relro_segment_ == NULL)
2009 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2010 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2011 }
2012
2013 // If we see a section named .interp, put it into a PT_INTERP
2014 // segment. This seems broken to me, but this is what GNU ld does,
2015 // and glibc expects it.
2016 if (strcmp(os->name(), ".interp") == 0
2017 && !this->script_options_->saw_phdrs_clause())
2018 {
2019 if (this->interp_segment_ == NULL)
2020 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2021 else
2022 gold_warning(_("multiple '.interp' sections in input files "
2023 "may cause confusing PT_INTERP segment"));
2024 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2025 }
2026 }
2027
2028 // Make an output section for a script.
2029
2030 Output_section*
2031 Layout::make_output_section_for_script(
2032 const char* name,
2033 Script_sections::Section_type section_type)
2034 {
2035 name = this->namepool_.add(name, false, NULL);
2036 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2037 if (section_type == Script_sections::ST_NOLOAD)
2038 sh_flags = 0;
2039 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2040 sh_flags, ORDER_INVALID,
2041 false);
2042 os->set_found_in_sections_clause();
2043 if (section_type == Script_sections::ST_NOLOAD)
2044 os->set_is_noload();
2045 return os;
2046 }
2047
2048 // Return the number of segments we expect to see.
2049
2050 size_t
2051 Layout::expected_segment_count() const
2052 {
2053 size_t ret = this->segment_list_.size();
2054
2055 // If we didn't see a SECTIONS clause in a linker script, we should
2056 // already have the complete list of segments. Otherwise we ask the
2057 // SECTIONS clause how many segments it expects, and add in the ones
2058 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2059
2060 if (!this->script_options_->saw_sections_clause())
2061 return ret;
2062 else
2063 {
2064 const Script_sections* ss = this->script_options_->script_sections();
2065 return ret + ss->expected_segment_count(this);
2066 }
2067 }
2068
2069 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2070 // is whether we saw a .note.GNU-stack section in the object file.
2071 // GNU_STACK_FLAGS is the section flags. The flags give the
2072 // protection required for stack memory. We record this in an
2073 // executable as a PT_GNU_STACK segment. If an object file does not
2074 // have a .note.GNU-stack segment, we must assume that it is an old
2075 // object. On some targets that will force an executable stack.
2076
2077 void
2078 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2079 const Object* obj)
2080 {
2081 if (!seen_gnu_stack)
2082 {
2083 this->input_without_gnu_stack_note_ = true;
2084 if (parameters->options().warn_execstack()
2085 && parameters->target().is_default_stack_executable())
2086 gold_warning(_("%s: missing .note.GNU-stack section"
2087 " implies executable stack"),
2088 obj->name().c_str());
2089 }
2090 else
2091 {
2092 this->input_with_gnu_stack_note_ = true;
2093 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2094 {
2095 this->input_requires_executable_stack_ = true;
2096 if (parameters->options().warn_execstack()
2097 || parameters->options().is_stack_executable())
2098 gold_warning(_("%s: requires executable stack"),
2099 obj->name().c_str());
2100 }
2101 }
2102 }
2103
2104 // Create automatic note sections.
2105
2106 void
2107 Layout::create_notes()
2108 {
2109 this->create_gold_note();
2110 this->create_executable_stack_info();
2111 this->create_build_id();
2112 }
2113
2114 // Create the dynamic sections which are needed before we read the
2115 // relocs.
2116
2117 void
2118 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2119 {
2120 if (parameters->doing_static_link())
2121 return;
2122
2123 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2124 elfcpp::SHT_DYNAMIC,
2125 (elfcpp::SHF_ALLOC
2126 | elfcpp::SHF_WRITE),
2127 false, ORDER_RELRO,
2128 true);
2129
2130 // A linker script may discard .dynamic, so check for NULL.
2131 if (this->dynamic_section_ != NULL)
2132 {
2133 this->dynamic_symbol_ =
2134 symtab->define_in_output_data("_DYNAMIC", NULL,
2135 Symbol_table::PREDEFINED,
2136 this->dynamic_section_, 0, 0,
2137 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2138 elfcpp::STV_HIDDEN, 0, false, false);
2139
2140 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2141
2142 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2143 }
2144 }
2145
2146 // For each output section whose name can be represented as C symbol,
2147 // define __start and __stop symbols for the section. This is a GNU
2148 // extension.
2149
2150 void
2151 Layout::define_section_symbols(Symbol_table* symtab)
2152 {
2153 for (Section_list::const_iterator p = this->section_list_.begin();
2154 p != this->section_list_.end();
2155 ++p)
2156 {
2157 const char* const name = (*p)->name();
2158 if (is_cident(name))
2159 {
2160 const std::string name_string(name);
2161 const std::string start_name(cident_section_start_prefix
2162 + name_string);
2163 const std::string stop_name(cident_section_stop_prefix
2164 + name_string);
2165
2166 symtab->define_in_output_data(start_name.c_str(),
2167 NULL, // version
2168 Symbol_table::PREDEFINED,
2169 *p,
2170 0, // value
2171 0, // symsize
2172 elfcpp::STT_NOTYPE,
2173 elfcpp::STB_GLOBAL,
2174 elfcpp::STV_DEFAULT,
2175 0, // nonvis
2176 false, // offset_is_from_end
2177 true); // only_if_ref
2178
2179 symtab->define_in_output_data(stop_name.c_str(),
2180 NULL, // version
2181 Symbol_table::PREDEFINED,
2182 *p,
2183 0, // value
2184 0, // symsize
2185 elfcpp::STT_NOTYPE,
2186 elfcpp::STB_GLOBAL,
2187 elfcpp::STV_DEFAULT,
2188 0, // nonvis
2189 true, // offset_is_from_end
2190 true); // only_if_ref
2191 }
2192 }
2193 }
2194
2195 // Define symbols for group signatures.
2196
2197 void
2198 Layout::define_group_signatures(Symbol_table* symtab)
2199 {
2200 for (Group_signatures::iterator p = this->group_signatures_.begin();
2201 p != this->group_signatures_.end();
2202 ++p)
2203 {
2204 Symbol* sym = symtab->lookup(p->signature, NULL);
2205 if (sym != NULL)
2206 p->section->set_info_symndx(sym);
2207 else
2208 {
2209 // Force the name of the group section to the group
2210 // signature, and use the group's section symbol as the
2211 // signature symbol.
2212 if (strcmp(p->section->name(), p->signature) != 0)
2213 {
2214 const char* name = this->namepool_.add(p->signature,
2215 true, NULL);
2216 p->section->set_name(name);
2217 }
2218 p->section->set_needs_symtab_index();
2219 p->section->set_info_section_symndx(p->section);
2220 }
2221 }
2222
2223 this->group_signatures_.clear();
2224 }
2225
2226 // Find the first read-only PT_LOAD segment, creating one if
2227 // necessary.
2228
2229 Output_segment*
2230 Layout::find_first_load_seg(const Target* target)
2231 {
2232 Output_segment* best = NULL;
2233 for (Segment_list::const_iterator p = this->segment_list_.begin();
2234 p != this->segment_list_.end();
2235 ++p)
2236 {
2237 if ((*p)->type() == elfcpp::PT_LOAD
2238 && ((*p)->flags() & elfcpp::PF_R) != 0
2239 && (parameters->options().omagic()
2240 || ((*p)->flags() & elfcpp::PF_W) == 0)
2241 && (!target->isolate_execinstr()
2242 || ((*p)->flags() & elfcpp::PF_X) == 0))
2243 {
2244 if (best == NULL || this->segment_precedes(*p, best))
2245 best = *p;
2246 }
2247 }
2248 if (best != NULL)
2249 return best;
2250
2251 gold_assert(!this->script_options_->saw_phdrs_clause());
2252
2253 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2254 elfcpp::PF_R);
2255 return load_seg;
2256 }
2257
2258 // Save states of all current output segments. Store saved states
2259 // in SEGMENT_STATES.
2260
2261 void
2262 Layout::save_segments(Segment_states* segment_states)
2263 {
2264 for (Segment_list::const_iterator p = this->segment_list_.begin();
2265 p != this->segment_list_.end();
2266 ++p)
2267 {
2268 Output_segment* segment = *p;
2269 // Shallow copy.
2270 Output_segment* copy = new Output_segment(*segment);
2271 (*segment_states)[segment] = copy;
2272 }
2273 }
2274
2275 // Restore states of output segments and delete any segment not found in
2276 // SEGMENT_STATES.
2277
2278 void
2279 Layout::restore_segments(const Segment_states* segment_states)
2280 {
2281 // Go through the segment list and remove any segment added in the
2282 // relaxation loop.
2283 this->tls_segment_ = NULL;
2284 this->relro_segment_ = NULL;
2285 Segment_list::iterator list_iter = this->segment_list_.begin();
2286 while (list_iter != this->segment_list_.end())
2287 {
2288 Output_segment* segment = *list_iter;
2289 Segment_states::const_iterator states_iter =
2290 segment_states->find(segment);
2291 if (states_iter != segment_states->end())
2292 {
2293 const Output_segment* copy = states_iter->second;
2294 // Shallow copy to restore states.
2295 *segment = *copy;
2296
2297 // Also fix up TLS and RELRO segment pointers as appropriate.
2298 if (segment->type() == elfcpp::PT_TLS)
2299 this->tls_segment_ = segment;
2300 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2301 this->relro_segment_ = segment;
2302
2303 ++list_iter;
2304 }
2305 else
2306 {
2307 list_iter = this->segment_list_.erase(list_iter);
2308 // This is a segment created during section layout. It should be
2309 // safe to remove it since we should have removed all pointers to it.
2310 delete segment;
2311 }
2312 }
2313 }
2314
2315 // Clean up after relaxation so that sections can be laid out again.
2316
2317 void
2318 Layout::clean_up_after_relaxation()
2319 {
2320 // Restore the segments to point state just prior to the relaxation loop.
2321 Script_sections* script_section = this->script_options_->script_sections();
2322 script_section->release_segments();
2323 this->restore_segments(this->segment_states_);
2324
2325 // Reset section addresses and file offsets
2326 for (Section_list::iterator p = this->section_list_.begin();
2327 p != this->section_list_.end();
2328 ++p)
2329 {
2330 (*p)->restore_states();
2331
2332 // If an input section changes size because of relaxation,
2333 // we need to adjust the section offsets of all input sections.
2334 // after such a section.
2335 if ((*p)->section_offsets_need_adjustment())
2336 (*p)->adjust_section_offsets();
2337
2338 (*p)->reset_address_and_file_offset();
2339 }
2340
2341 // Reset special output object address and file offsets.
2342 for (Data_list::iterator p = this->special_output_list_.begin();
2343 p != this->special_output_list_.end();
2344 ++p)
2345 (*p)->reset_address_and_file_offset();
2346
2347 // A linker script may have created some output section data objects.
2348 // They are useless now.
2349 for (Output_section_data_list::const_iterator p =
2350 this->script_output_section_data_list_.begin();
2351 p != this->script_output_section_data_list_.end();
2352 ++p)
2353 delete *p;
2354 this->script_output_section_data_list_.clear();
2355
2356 // Special-case fill output objects are recreated each time through
2357 // the relaxation loop.
2358 this->reset_relax_output();
2359 }
2360
2361 void
2362 Layout::reset_relax_output()
2363 {
2364 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2365 p != this->relax_output_list_.end();
2366 ++p)
2367 delete *p;
2368 this->relax_output_list_.clear();
2369 }
2370
2371 // Prepare for relaxation.
2372
2373 void
2374 Layout::prepare_for_relaxation()
2375 {
2376 // Create an relaxation debug check if in debugging mode.
2377 if (is_debugging_enabled(DEBUG_RELAXATION))
2378 this->relaxation_debug_check_ = new Relaxation_debug_check();
2379
2380 // Save segment states.
2381 this->segment_states_ = new Segment_states();
2382 this->save_segments(this->segment_states_);
2383
2384 for(Section_list::const_iterator p = this->section_list_.begin();
2385 p != this->section_list_.end();
2386 ++p)
2387 (*p)->save_states();
2388
2389 if (is_debugging_enabled(DEBUG_RELAXATION))
2390 this->relaxation_debug_check_->check_output_data_for_reset_values(
2391 this->section_list_, this->special_output_list_,
2392 this->relax_output_list_);
2393
2394 // Also enable recording of output section data from scripts.
2395 this->record_output_section_data_from_script_ = true;
2396 }
2397
2398 // If the user set the address of the text segment, that may not be
2399 // compatible with putting the segment headers and file headers into
2400 // that segment. For isolate_execinstr() targets, it's the rodata
2401 // segment rather than text where we might put the headers.
2402 static inline bool
2403 load_seg_unusable_for_headers(const Target* target)
2404 {
2405 const General_options& options = parameters->options();
2406 if (target->isolate_execinstr())
2407 return (options.user_set_Trodata_segment()
2408 && options.Trodata_segment() % target->abi_pagesize() != 0);
2409 else
2410 return (options.user_set_Ttext()
2411 && options.Ttext() % target->abi_pagesize() != 0);
2412 }
2413
2414 // Relaxation loop body: If target has no relaxation, this runs only once
2415 // Otherwise, the target relaxation hook is called at the end of
2416 // each iteration. If the hook returns true, it means re-layout of
2417 // section is required.
2418 //
2419 // The number of segments created by a linking script without a PHDRS
2420 // clause may be affected by section sizes and alignments. There is
2421 // a remote chance that relaxation causes different number of PT_LOAD
2422 // segments are created and sections are attached to different segments.
2423 // Therefore, we always throw away all segments created during section
2424 // layout. In order to be able to restart the section layout, we keep
2425 // a copy of the segment list right before the relaxation loop and use
2426 // that to restore the segments.
2427 //
2428 // PASS is the current relaxation pass number.
2429 // SYMTAB is a symbol table.
2430 // PLOAD_SEG is the address of a pointer for the load segment.
2431 // PHDR_SEG is a pointer to the PHDR segment.
2432 // SEGMENT_HEADERS points to the output segment header.
2433 // FILE_HEADER points to the output file header.
2434 // PSHNDX is the address to store the output section index.
2435
2436 off_t inline
2437 Layout::relaxation_loop_body(
2438 int pass,
2439 Target* target,
2440 Symbol_table* symtab,
2441 Output_segment** pload_seg,
2442 Output_segment* phdr_seg,
2443 Output_segment_headers* segment_headers,
2444 Output_file_header* file_header,
2445 unsigned int* pshndx)
2446 {
2447 // If this is not the first iteration, we need to clean up after
2448 // relaxation so that we can lay out the sections again.
2449 if (pass != 0)
2450 this->clean_up_after_relaxation();
2451
2452 // If there is a SECTIONS clause, put all the input sections into
2453 // the required order.
2454 Output_segment* load_seg;
2455 if (this->script_options_->saw_sections_clause())
2456 load_seg = this->set_section_addresses_from_script(symtab);
2457 else if (parameters->options().relocatable())
2458 load_seg = NULL;
2459 else
2460 load_seg = this->find_first_load_seg(target);
2461
2462 if (parameters->options().oformat_enum()
2463 != General_options::OBJECT_FORMAT_ELF)
2464 load_seg = NULL;
2465
2466 if (load_seg_unusable_for_headers(target))
2467 {
2468 load_seg = NULL;
2469 phdr_seg = NULL;
2470 }
2471
2472 gold_assert(phdr_seg == NULL
2473 || load_seg != NULL
2474 || this->script_options_->saw_sections_clause());
2475
2476 // If the address of the load segment we found has been set by
2477 // --section-start rather than by a script, then adjust the VMA and
2478 // LMA downward if possible to include the file and section headers.
2479 uint64_t header_gap = 0;
2480 if (load_seg != NULL
2481 && load_seg->are_addresses_set()
2482 && !this->script_options_->saw_sections_clause()
2483 && !parameters->options().relocatable())
2484 {
2485 file_header->finalize_data_size();
2486 segment_headers->finalize_data_size();
2487 size_t sizeof_headers = (file_header->data_size()
2488 + segment_headers->data_size());
2489 const uint64_t abi_pagesize = target->abi_pagesize();
2490 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2491 hdr_paddr &= ~(abi_pagesize - 1);
2492 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2493 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2494 load_seg = NULL;
2495 else
2496 {
2497 load_seg->set_addresses(load_seg->vaddr() - subtract,
2498 load_seg->paddr() - subtract);
2499 header_gap = subtract - sizeof_headers;
2500 }
2501 }
2502
2503 // Lay out the segment headers.
2504 if (!parameters->options().relocatable())
2505 {
2506 gold_assert(segment_headers != NULL);
2507 if (header_gap != 0 && load_seg != NULL)
2508 {
2509 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2510 load_seg->add_initial_output_data(z);
2511 }
2512 if (load_seg != NULL)
2513 load_seg->add_initial_output_data(segment_headers);
2514 if (phdr_seg != NULL)
2515 phdr_seg->add_initial_output_data(segment_headers);
2516 }
2517
2518 // Lay out the file header.
2519 if (load_seg != NULL)
2520 load_seg->add_initial_output_data(file_header);
2521
2522 if (this->script_options_->saw_phdrs_clause()
2523 && !parameters->options().relocatable())
2524 {
2525 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2526 // clause in a linker script.
2527 Script_sections* ss = this->script_options_->script_sections();
2528 ss->put_headers_in_phdrs(file_header, segment_headers);
2529 }
2530
2531 // We set the output section indexes in set_segment_offsets and
2532 // set_section_indexes.
2533 *pshndx = 1;
2534
2535 // Set the file offsets of all the segments, and all the sections
2536 // they contain.
2537 off_t off;
2538 if (!parameters->options().relocatable())
2539 off = this->set_segment_offsets(target, load_seg, pshndx);
2540 else
2541 off = this->set_relocatable_section_offsets(file_header, pshndx);
2542
2543 // Verify that the dummy relaxation does not change anything.
2544 if (is_debugging_enabled(DEBUG_RELAXATION))
2545 {
2546 if (pass == 0)
2547 this->relaxation_debug_check_->read_sections(this->section_list_);
2548 else
2549 this->relaxation_debug_check_->verify_sections(this->section_list_);
2550 }
2551
2552 *pload_seg = load_seg;
2553 return off;
2554 }
2555
2556 // Search the list of patterns and find the postion of the given section
2557 // name in the output section. If the section name matches a glob
2558 // pattern and a non-glob name, then the non-glob position takes
2559 // precedence. Return 0 if no match is found.
2560
2561 unsigned int
2562 Layout::find_section_order_index(const std::string& section_name)
2563 {
2564 Unordered_map<std::string, unsigned int>::iterator map_it;
2565 map_it = this->input_section_position_.find(section_name);
2566 if (map_it != this->input_section_position_.end())
2567 return map_it->second;
2568
2569 // Absolute match failed. Linear search the glob patterns.
2570 std::vector<std::string>::iterator it;
2571 for (it = this->input_section_glob_.begin();
2572 it != this->input_section_glob_.end();
2573 ++it)
2574 {
2575 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2576 {
2577 map_it = this->input_section_position_.find(*it);
2578 gold_assert(map_it != this->input_section_position_.end());
2579 return map_it->second;
2580 }
2581 }
2582 return 0;
2583 }
2584
2585 // Read the sequence of input sections from the file specified with
2586 // option --section-ordering-file.
2587
2588 void
2589 Layout::read_layout_from_file()
2590 {
2591 const char* filename = parameters->options().section_ordering_file();
2592 std::ifstream in;
2593 std::string line;
2594
2595 in.open(filename);
2596 if (!in)
2597 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2598 filename, strerror(errno));
2599
2600 std::getline(in, line); // this chops off the trailing \n, if any
2601 unsigned int position = 1;
2602 this->set_section_ordering_specified();
2603
2604 while (in)
2605 {
2606 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2607 line.resize(line.length() - 1);
2608 // Ignore comments, beginning with '#'
2609 if (line[0] == '#')
2610 {
2611 std::getline(in, line);
2612 continue;
2613 }
2614 this->input_section_position_[line] = position;
2615 // Store all glob patterns in a vector.
2616 if (is_wildcard_string(line.c_str()))
2617 this->input_section_glob_.push_back(line);
2618 position++;
2619 std::getline(in, line);
2620 }
2621 }
2622
2623 // Finalize the layout. When this is called, we have created all the
2624 // output sections and all the output segments which are based on
2625 // input sections. We have several things to do, and we have to do
2626 // them in the right order, so that we get the right results correctly
2627 // and efficiently.
2628
2629 // 1) Finalize the list of output segments and create the segment
2630 // table header.
2631
2632 // 2) Finalize the dynamic symbol table and associated sections.
2633
2634 // 3) Determine the final file offset of all the output segments.
2635
2636 // 4) Determine the final file offset of all the SHF_ALLOC output
2637 // sections.
2638
2639 // 5) Create the symbol table sections and the section name table
2640 // section.
2641
2642 // 6) Finalize the symbol table: set symbol values to their final
2643 // value and make a final determination of which symbols are going
2644 // into the output symbol table.
2645
2646 // 7) Create the section table header.
2647
2648 // 8) Determine the final file offset of all the output sections which
2649 // are not SHF_ALLOC, including the section table header.
2650
2651 // 9) Finalize the ELF file header.
2652
2653 // This function returns the size of the output file.
2654
2655 off_t
2656 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2657 Target* target, const Task* task)
2658 {
2659 target->finalize_sections(this, input_objects, symtab);
2660
2661 this->count_local_symbols(task, input_objects);
2662
2663 this->link_stabs_sections();
2664
2665 Output_segment* phdr_seg = NULL;
2666 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2667 {
2668 // There was a dynamic object in the link. We need to create
2669 // some information for the dynamic linker.
2670
2671 // Create the PT_PHDR segment which will hold the program
2672 // headers.
2673 if (!this->script_options_->saw_phdrs_clause())
2674 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2675
2676 // Create the dynamic symbol table, including the hash table.
2677 Output_section* dynstr;
2678 std::vector<Symbol*> dynamic_symbols;
2679 unsigned int local_dynamic_count;
2680 Versions versions(*this->script_options()->version_script_info(),
2681 &this->dynpool_);
2682 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2683 &local_dynamic_count, &dynamic_symbols,
2684 &versions);
2685
2686 // Create the .interp section to hold the name of the
2687 // interpreter, and put it in a PT_INTERP segment. Don't do it
2688 // if we saw a .interp section in an input file.
2689 if ((!parameters->options().shared()
2690 || parameters->options().dynamic_linker() != NULL)
2691 && this->interp_segment_ == NULL)
2692 this->create_interp(target);
2693
2694 // Finish the .dynamic section to hold the dynamic data, and put
2695 // it in a PT_DYNAMIC segment.
2696 this->finish_dynamic_section(input_objects, symtab);
2697
2698 // We should have added everything we need to the dynamic string
2699 // table.
2700 this->dynpool_.set_string_offsets();
2701
2702 // Create the version sections. We can't do this until the
2703 // dynamic string table is complete.
2704 this->create_version_sections(&versions, symtab, local_dynamic_count,
2705 dynamic_symbols, dynstr);
2706
2707 // Set the size of the _DYNAMIC symbol. We can't do this until
2708 // after we call create_version_sections.
2709 this->set_dynamic_symbol_size(symtab);
2710 }
2711
2712 // Create segment headers.
2713 Output_segment_headers* segment_headers =
2714 (parameters->options().relocatable()
2715 ? NULL
2716 : new Output_segment_headers(this->segment_list_));
2717
2718 // Lay out the file header.
2719 Output_file_header* file_header = new Output_file_header(target, symtab,
2720 segment_headers);
2721
2722 this->special_output_list_.push_back(file_header);
2723 if (segment_headers != NULL)
2724 this->special_output_list_.push_back(segment_headers);
2725
2726 // Find approriate places for orphan output sections if we are using
2727 // a linker script.
2728 if (this->script_options_->saw_sections_clause())
2729 this->place_orphan_sections_in_script();
2730
2731 Output_segment* load_seg;
2732 off_t off;
2733 unsigned int shndx;
2734 int pass = 0;
2735
2736 // Take a snapshot of the section layout as needed.
2737 if (target->may_relax())
2738 this->prepare_for_relaxation();
2739
2740 // Run the relaxation loop to lay out sections.
2741 do
2742 {
2743 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2744 phdr_seg, segment_headers, file_header,
2745 &shndx);
2746 pass++;
2747 }
2748 while (target->may_relax()
2749 && target->relax(pass, input_objects, symtab, this, task));
2750
2751 // If there is a load segment that contains the file and program headers,
2752 // provide a symbol __ehdr_start pointing there.
2753 // A program can use this to examine itself robustly.
2754 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2755 if (ehdr_start != NULL && ehdr_start->is_predefined())
2756 {
2757 if (load_seg != NULL)
2758 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2759 else
2760 ehdr_start->set_undefined();
2761 }
2762
2763 // Set the file offsets of all the non-data sections we've seen so
2764 // far which don't have to wait for the input sections. We need
2765 // this in order to finalize local symbols in non-allocated
2766 // sections.
2767 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2768
2769 // Set the section indexes of all unallocated sections seen so far,
2770 // in case any of them are somehow referenced by a symbol.
2771 shndx = this->set_section_indexes(shndx);
2772
2773 // Create the symbol table sections.
2774 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2775 if (!parameters->doing_static_link())
2776 this->assign_local_dynsym_offsets(input_objects);
2777
2778 // Process any symbol assignments from a linker script. This must
2779 // be called after the symbol table has been finalized.
2780 this->script_options_->finalize_symbols(symtab, this);
2781
2782 // Create the incremental inputs sections.
2783 if (this->incremental_inputs_)
2784 {
2785 this->incremental_inputs_->finalize();
2786 this->create_incremental_info_sections(symtab);
2787 }
2788
2789 // Create the .shstrtab section.
2790 Output_section* shstrtab_section = this->create_shstrtab();
2791
2792 // Set the file offsets of the rest of the non-data sections which
2793 // don't have to wait for the input sections.
2794 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2795
2796 // Now that all sections have been created, set the section indexes
2797 // for any sections which haven't been done yet.
2798 shndx = this->set_section_indexes(shndx);
2799
2800 // Create the section table header.
2801 this->create_shdrs(shstrtab_section, &off);
2802
2803 // If there are no sections which require postprocessing, we can
2804 // handle the section names now, and avoid a resize later.
2805 if (!this->any_postprocessing_sections_)
2806 {
2807 off = this->set_section_offsets(off,
2808 POSTPROCESSING_SECTIONS_PASS);
2809 off =
2810 this->set_section_offsets(off,
2811 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2812 }
2813
2814 file_header->set_section_info(this->section_headers_, shstrtab_section);
2815
2816 // Now we know exactly where everything goes in the output file
2817 // (except for non-allocated sections which require postprocessing).
2818 Output_data::layout_complete();
2819
2820 this->output_file_size_ = off;
2821
2822 return off;
2823 }
2824
2825 // Create a note header following the format defined in the ELF ABI.
2826 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2827 // of the section to create, DESCSZ is the size of the descriptor.
2828 // ALLOCATE is true if the section should be allocated in memory.
2829 // This returns the new note section. It sets *TRAILING_PADDING to
2830 // the number of trailing zero bytes required.
2831
2832 Output_section*
2833 Layout::create_note(const char* name, int note_type,
2834 const char* section_name, size_t descsz,
2835 bool allocate, size_t* trailing_padding)
2836 {
2837 // Authorities all agree that the values in a .note field should
2838 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2839 // they differ on what the alignment is for 64-bit binaries.
2840 // The GABI says unambiguously they take 8-byte alignment:
2841 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2842 // Other documentation says alignment should always be 4 bytes:
2843 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2844 // GNU ld and GNU readelf both support the latter (at least as of
2845 // version 2.16.91), and glibc always generates the latter for
2846 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2847 // here.
2848 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2849 const int size = parameters->target().get_size();
2850 #else
2851 const int size = 32;
2852 #endif
2853
2854 // The contents of the .note section.
2855 size_t namesz = strlen(name) + 1;
2856 size_t aligned_namesz = align_address(namesz, size / 8);
2857 size_t aligned_descsz = align_address(descsz, size / 8);
2858
2859 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2860
2861 unsigned char* buffer = new unsigned char[notehdrsz];
2862 memset(buffer, 0, notehdrsz);
2863
2864 bool is_big_endian = parameters->target().is_big_endian();
2865
2866 if (size == 32)
2867 {
2868 if (!is_big_endian)
2869 {
2870 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2871 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2872 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2873 }
2874 else
2875 {
2876 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2877 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2878 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2879 }
2880 }
2881 else if (size == 64)
2882 {
2883 if (!is_big_endian)
2884 {
2885 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2886 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2887 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2888 }
2889 else
2890 {
2891 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2892 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2893 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2894 }
2895 }
2896 else
2897 gold_unreachable();
2898
2899 memcpy(buffer + 3 * (size / 8), name, namesz);
2900
2901 elfcpp::Elf_Xword flags = 0;
2902 Output_section_order order = ORDER_INVALID;
2903 if (allocate)
2904 {
2905 flags = elfcpp::SHF_ALLOC;
2906 order = ORDER_RO_NOTE;
2907 }
2908 Output_section* os = this->choose_output_section(NULL, section_name,
2909 elfcpp::SHT_NOTE,
2910 flags, false, order, false);
2911 if (os == NULL)
2912 return NULL;
2913
2914 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2915 size / 8,
2916 "** note header");
2917 os->add_output_section_data(posd);
2918
2919 *trailing_padding = aligned_descsz - descsz;
2920
2921 return os;
2922 }
2923
2924 // For an executable or shared library, create a note to record the
2925 // version of gold used to create the binary.
2926
2927 void
2928 Layout::create_gold_note()
2929 {
2930 if (parameters->options().relocatable()
2931 || parameters->incremental_update())
2932 return;
2933
2934 std::string desc = std::string("gold ") + gold::get_version_string();
2935
2936 size_t trailing_padding;
2937 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2938 ".note.gnu.gold-version", desc.size(),
2939 false, &trailing_padding);
2940 if (os == NULL)
2941 return;
2942
2943 Output_section_data* posd = new Output_data_const(desc, 4);
2944 os->add_output_section_data(posd);
2945
2946 if (trailing_padding > 0)
2947 {
2948 posd = new Output_data_zero_fill(trailing_padding, 0);
2949 os->add_output_section_data(posd);
2950 }
2951 }
2952
2953 // Record whether the stack should be executable. This can be set
2954 // from the command line using the -z execstack or -z noexecstack
2955 // options. Otherwise, if any input file has a .note.GNU-stack
2956 // section with the SHF_EXECINSTR flag set, the stack should be
2957 // executable. Otherwise, if at least one input file a
2958 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2959 // section, we use the target default for whether the stack should be
2960 // executable. Otherwise, we don't generate a stack note. When
2961 // generating a object file, we create a .note.GNU-stack section with
2962 // the appropriate marking. When generating an executable or shared
2963 // library, we create a PT_GNU_STACK segment.
2964
2965 void
2966 Layout::create_executable_stack_info()
2967 {
2968 bool is_stack_executable;
2969 if (parameters->options().is_execstack_set())
2970 is_stack_executable = parameters->options().is_stack_executable();
2971 else if (!this->input_with_gnu_stack_note_)
2972 return;
2973 else
2974 {
2975 if (this->input_requires_executable_stack_)
2976 is_stack_executable = true;
2977 else if (this->input_without_gnu_stack_note_)
2978 is_stack_executable =
2979 parameters->target().is_default_stack_executable();
2980 else
2981 is_stack_executable = false;
2982 }
2983
2984 if (parameters->options().relocatable())
2985 {
2986 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2987 elfcpp::Elf_Xword flags = 0;
2988 if (is_stack_executable)
2989 flags |= elfcpp::SHF_EXECINSTR;
2990 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2991 ORDER_INVALID, false);
2992 }
2993 else
2994 {
2995 if (this->script_options_->saw_phdrs_clause())
2996 return;
2997 int flags = elfcpp::PF_R | elfcpp::PF_W;
2998 if (is_stack_executable)
2999 flags |= elfcpp::PF_X;
3000 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3001 }
3002 }
3003
3004 // If --build-id was used, set up the build ID note.
3005
3006 void
3007 Layout::create_build_id()
3008 {
3009 if (!parameters->options().user_set_build_id())
3010 return;
3011
3012 const char* style = parameters->options().build_id();
3013 if (strcmp(style, "none") == 0)
3014 return;
3015
3016 // Set DESCSZ to the size of the note descriptor. When possible,
3017 // set DESC to the note descriptor contents.
3018 size_t descsz;
3019 std::string desc;
3020 if (strcmp(style, "md5") == 0)
3021 descsz = 128 / 8;
3022 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3023 descsz = 160 / 8;
3024 else if (strcmp(style, "uuid") == 0)
3025 {
3026 const size_t uuidsz = 128 / 8;
3027
3028 char buffer[uuidsz];
3029 memset(buffer, 0, uuidsz);
3030
3031 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3032 if (descriptor < 0)
3033 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3034 strerror(errno));
3035 else
3036 {
3037 ssize_t got = ::read(descriptor, buffer, uuidsz);
3038 release_descriptor(descriptor, true);
3039 if (got < 0)
3040 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3041 else if (static_cast<size_t>(got) != uuidsz)
3042 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3043 uuidsz, got);
3044 }
3045
3046 desc.assign(buffer, uuidsz);
3047 descsz = uuidsz;
3048 }
3049 else if (strncmp(style, "0x", 2) == 0)
3050 {
3051 hex_init();
3052 const char* p = style + 2;
3053 while (*p != '\0')
3054 {
3055 if (hex_p(p[0]) && hex_p(p[1]))
3056 {
3057 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3058 desc += c;
3059 p += 2;
3060 }
3061 else if (*p == '-' || *p == ':')
3062 ++p;
3063 else
3064 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3065 style);
3066 }
3067 descsz = desc.size();
3068 }
3069 else
3070 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3071
3072 // Create the note.
3073 size_t trailing_padding;
3074 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3075 ".note.gnu.build-id", descsz, true,
3076 &trailing_padding);
3077 if (os == NULL)
3078 return;
3079
3080 if (!desc.empty())
3081 {
3082 // We know the value already, so we fill it in now.
3083 gold_assert(desc.size() == descsz);
3084
3085 Output_section_data* posd = new Output_data_const(desc, 4);
3086 os->add_output_section_data(posd);
3087
3088 if (trailing_padding != 0)
3089 {
3090 posd = new Output_data_zero_fill(trailing_padding, 0);
3091 os->add_output_section_data(posd);
3092 }
3093 }
3094 else
3095 {
3096 // We need to compute a checksum after we have completed the
3097 // link.
3098 gold_assert(trailing_padding == 0);
3099 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3100 os->add_output_section_data(this->build_id_note_);
3101 }
3102 }
3103
3104 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3105 // field of the former should point to the latter. I'm not sure who
3106 // started this, but the GNU linker does it, and some tools depend
3107 // upon it.
3108
3109 void
3110 Layout::link_stabs_sections()
3111 {
3112 if (!this->have_stabstr_section_)
3113 return;
3114
3115 for (Section_list::iterator p = this->section_list_.begin();
3116 p != this->section_list_.end();
3117 ++p)
3118 {
3119 if ((*p)->type() != elfcpp::SHT_STRTAB)
3120 continue;
3121
3122 const char* name = (*p)->name();
3123 if (strncmp(name, ".stab", 5) != 0)
3124 continue;
3125
3126 size_t len = strlen(name);
3127 if (strcmp(name + len - 3, "str") != 0)
3128 continue;
3129
3130 std::string stab_name(name, len - 3);
3131 Output_section* stab_sec;
3132 stab_sec = this->find_output_section(stab_name.c_str());
3133 if (stab_sec != NULL)
3134 stab_sec->set_link_section(*p);
3135 }
3136 }
3137
3138 // Create .gnu_incremental_inputs and related sections needed
3139 // for the next run of incremental linking to check what has changed.
3140
3141 void
3142 Layout::create_incremental_info_sections(Symbol_table* symtab)
3143 {
3144 Incremental_inputs* incr = this->incremental_inputs_;
3145
3146 gold_assert(incr != NULL);
3147
3148 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3149 incr->create_data_sections(symtab);
3150
3151 // Add the .gnu_incremental_inputs section.
3152 const char* incremental_inputs_name =
3153 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3154 Output_section* incremental_inputs_os =
3155 this->make_output_section(incremental_inputs_name,
3156 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3157 ORDER_INVALID, false);
3158 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3159
3160 // Add the .gnu_incremental_symtab section.
3161 const char* incremental_symtab_name =
3162 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3163 Output_section* incremental_symtab_os =
3164 this->make_output_section(incremental_symtab_name,
3165 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3166 ORDER_INVALID, false);
3167 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3168 incremental_symtab_os->set_entsize(4);
3169
3170 // Add the .gnu_incremental_relocs section.
3171 const char* incremental_relocs_name =
3172 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3173 Output_section* incremental_relocs_os =
3174 this->make_output_section(incremental_relocs_name,
3175 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3176 ORDER_INVALID, false);
3177 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3178 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3179
3180 // Add the .gnu_incremental_got_plt section.
3181 const char* incremental_got_plt_name =
3182 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3183 Output_section* incremental_got_plt_os =
3184 this->make_output_section(incremental_got_plt_name,
3185 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3186 ORDER_INVALID, false);
3187 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3188
3189 // Add the .gnu_incremental_strtab section.
3190 const char* incremental_strtab_name =
3191 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3192 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3193 elfcpp::SHT_STRTAB, 0,
3194 ORDER_INVALID, false);
3195 Output_data_strtab* strtab_data =
3196 new Output_data_strtab(incr->get_stringpool());
3197 incremental_strtab_os->add_output_section_data(strtab_data);
3198
3199 incremental_inputs_os->set_after_input_sections();
3200 incremental_symtab_os->set_after_input_sections();
3201 incremental_relocs_os->set_after_input_sections();
3202 incremental_got_plt_os->set_after_input_sections();
3203
3204 incremental_inputs_os->set_link_section(incremental_strtab_os);
3205 incremental_symtab_os->set_link_section(incremental_inputs_os);
3206 incremental_relocs_os->set_link_section(incremental_inputs_os);
3207 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3208 }
3209
3210 // Return whether SEG1 should be before SEG2 in the output file. This
3211 // is based entirely on the segment type and flags. When this is
3212 // called the segment addresses have normally not yet been set.
3213
3214 bool
3215 Layout::segment_precedes(const Output_segment* seg1,
3216 const Output_segment* seg2)
3217 {
3218 elfcpp::Elf_Word type1 = seg1->type();
3219 elfcpp::Elf_Word type2 = seg2->type();
3220
3221 // The single PT_PHDR segment is required to precede any loadable
3222 // segment. We simply make it always first.
3223 if (type1 == elfcpp::PT_PHDR)
3224 {
3225 gold_assert(type2 != elfcpp::PT_PHDR);
3226 return true;
3227 }
3228 if (type2 == elfcpp::PT_PHDR)
3229 return false;
3230
3231 // The single PT_INTERP segment is required to precede any loadable
3232 // segment. We simply make it always second.
3233 if (type1 == elfcpp::PT_INTERP)
3234 {
3235 gold_assert(type2 != elfcpp::PT_INTERP);
3236 return true;
3237 }
3238 if (type2 == elfcpp::PT_INTERP)
3239 return false;
3240
3241 // We then put PT_LOAD segments before any other segments.
3242 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3243 return true;
3244 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3245 return false;
3246
3247 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3248 // segment, because that is where the dynamic linker expects to find
3249 // it (this is just for efficiency; other positions would also work
3250 // correctly).
3251 if (type1 == elfcpp::PT_TLS
3252 && type2 != elfcpp::PT_TLS
3253 && type2 != elfcpp::PT_GNU_RELRO)
3254 return false;
3255 if (type2 == elfcpp::PT_TLS
3256 && type1 != elfcpp::PT_TLS
3257 && type1 != elfcpp::PT_GNU_RELRO)
3258 return true;
3259
3260 // We put the PT_GNU_RELRO segment last, because that is where the
3261 // dynamic linker expects to find it (as with PT_TLS, this is just
3262 // for efficiency).
3263 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3264 return false;
3265 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3266 return true;
3267
3268 const elfcpp::Elf_Word flags1 = seg1->flags();
3269 const elfcpp::Elf_Word flags2 = seg2->flags();
3270
3271 // The order of non-PT_LOAD segments is unimportant. We simply sort
3272 // by the numeric segment type and flags values. There should not
3273 // be more than one segment with the same type and flags, except
3274 // when a linker script specifies such.
3275 if (type1 != elfcpp::PT_LOAD)
3276 {
3277 if (type1 != type2)
3278 return type1 < type2;
3279 gold_assert(flags1 != flags2
3280 || this->script_options_->saw_phdrs_clause());
3281 return flags1 < flags2;
3282 }
3283
3284 // If the addresses are set already, sort by load address.
3285 if (seg1->are_addresses_set())
3286 {
3287 if (!seg2->are_addresses_set())
3288 return true;
3289
3290 unsigned int section_count1 = seg1->output_section_count();
3291 unsigned int section_count2 = seg2->output_section_count();
3292 if (section_count1 == 0 && section_count2 > 0)
3293 return true;
3294 if (section_count1 > 0 && section_count2 == 0)
3295 return false;
3296
3297 uint64_t paddr1 = (seg1->are_addresses_set()
3298 ? seg1->paddr()
3299 : seg1->first_section_load_address());
3300 uint64_t paddr2 = (seg2->are_addresses_set()
3301 ? seg2->paddr()
3302 : seg2->first_section_load_address());
3303
3304 if (paddr1 != paddr2)
3305 return paddr1 < paddr2;
3306 }
3307 else if (seg2->are_addresses_set())
3308 return false;
3309
3310 // A segment which holds large data comes after a segment which does
3311 // not hold large data.
3312 if (seg1->is_large_data_segment())
3313 {
3314 if (!seg2->is_large_data_segment())
3315 return false;
3316 }
3317 else if (seg2->is_large_data_segment())
3318 return true;
3319
3320 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3321 // segments come before writable segments. Then writable segments
3322 // with data come before writable segments without data. Then
3323 // executable segments come before non-executable segments. Then
3324 // the unlikely case of a non-readable segment comes before the
3325 // normal case of a readable segment. If there are multiple
3326 // segments with the same type and flags, we require that the
3327 // address be set, and we sort by virtual address and then physical
3328 // address.
3329 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3330 return (flags1 & elfcpp::PF_W) == 0;
3331 if ((flags1 & elfcpp::PF_W) != 0
3332 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3333 return seg1->has_any_data_sections();
3334 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3335 return (flags1 & elfcpp::PF_X) != 0;
3336 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3337 return (flags1 & elfcpp::PF_R) == 0;
3338
3339 // We shouldn't get here--we shouldn't create segments which we
3340 // can't distinguish. Unless of course we are using a weird linker
3341 // script or overlapping --section-start options. We could also get
3342 // here if plugins want unique segments for subsets of sections.
3343 gold_assert(this->script_options_->saw_phdrs_clause()
3344 || parameters->options().any_section_start()
3345 || this->is_unique_segment_for_sections_specified());
3346 return false;
3347 }
3348
3349 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3350
3351 static off_t
3352 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3353 {
3354 uint64_t unsigned_off = off;
3355 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3356 | (addr & (abi_pagesize - 1)));
3357 if (aligned_off < unsigned_off)
3358 aligned_off += abi_pagesize;
3359 return aligned_off;
3360 }
3361
3362 // On targets where the text segment contains only executable code,
3363 // a non-executable segment is never the text segment.
3364
3365 static inline bool
3366 is_text_segment(const Target* target, const Output_segment* seg)
3367 {
3368 elfcpp::Elf_Xword flags = seg->flags();
3369 if ((flags & elfcpp::PF_W) != 0)
3370 return false;
3371 if ((flags & elfcpp::PF_X) == 0)
3372 return !target->isolate_execinstr();
3373 return true;
3374 }
3375
3376 // Set the file offsets of all the segments, and all the sections they
3377 // contain. They have all been created. LOAD_SEG must be be laid out
3378 // first. Return the offset of the data to follow.
3379
3380 off_t
3381 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3382 unsigned int* pshndx)
3383 {
3384 // Sort them into the final order. We use a stable sort so that we
3385 // don't randomize the order of indistinguishable segments created
3386 // by linker scripts.
3387 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3388 Layout::Compare_segments(this));
3389
3390 // Find the PT_LOAD segments, and set their addresses and offsets
3391 // and their section's addresses and offsets.
3392 uint64_t start_addr;
3393 if (parameters->options().user_set_Ttext())
3394 start_addr = parameters->options().Ttext();
3395 else if (parameters->options().output_is_position_independent())
3396 start_addr = 0;
3397 else
3398 start_addr = target->default_text_segment_address();
3399
3400 uint64_t addr = start_addr;
3401 off_t off = 0;
3402
3403 // If LOAD_SEG is NULL, then the file header and segment headers
3404 // will not be loadable. But they still need to be at offset 0 in
3405 // the file. Set their offsets now.
3406 if (load_seg == NULL)
3407 {
3408 for (Data_list::iterator p = this->special_output_list_.begin();
3409 p != this->special_output_list_.end();
3410 ++p)
3411 {
3412 off = align_address(off, (*p)->addralign());
3413 (*p)->set_address_and_file_offset(0, off);
3414 off += (*p)->data_size();
3415 }
3416 }
3417
3418 unsigned int increase_relro = this->increase_relro_;
3419 if (this->script_options_->saw_sections_clause())
3420 increase_relro = 0;
3421
3422 const bool check_sections = parameters->options().check_sections();
3423 Output_segment* last_load_segment = NULL;
3424
3425 unsigned int shndx_begin = *pshndx;
3426 unsigned int shndx_load_seg = *pshndx;
3427
3428 for (Segment_list::iterator p = this->segment_list_.begin();
3429 p != this->segment_list_.end();
3430 ++p)
3431 {
3432 if ((*p)->type() == elfcpp::PT_LOAD)
3433 {
3434 if (target->isolate_execinstr())
3435 {
3436 // When we hit the segment that should contain the
3437 // file headers, reset the file offset so we place
3438 // it and subsequent segments appropriately.
3439 // We'll fix up the preceding segments below.
3440 if (load_seg == *p)
3441 {
3442 if (off == 0)
3443 load_seg = NULL;
3444 else
3445 {
3446 off = 0;
3447 shndx_load_seg = *pshndx;
3448 }
3449 }
3450 }
3451 else
3452 {
3453 // Verify that the file headers fall into the first segment.
3454 if (load_seg != NULL && load_seg != *p)
3455 gold_unreachable();
3456 load_seg = NULL;
3457 }
3458
3459 bool are_addresses_set = (*p)->are_addresses_set();
3460 if (are_addresses_set)
3461 {
3462 // When it comes to setting file offsets, we care about
3463 // the physical address.
3464 addr = (*p)->paddr();
3465 }
3466 else if (parameters->options().user_set_Ttext()
3467 && (parameters->options().omagic()
3468 || is_text_segment(target, *p)))
3469 {
3470 are_addresses_set = true;
3471 }
3472 else if (parameters->options().user_set_Trodata_segment()
3473 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3474 {
3475 addr = parameters->options().Trodata_segment();
3476 are_addresses_set = true;
3477 }
3478 else if (parameters->options().user_set_Tdata()
3479 && ((*p)->flags() & elfcpp::PF_W) != 0
3480 && (!parameters->options().user_set_Tbss()
3481 || (*p)->has_any_data_sections()))
3482 {
3483 addr = parameters->options().Tdata();
3484 are_addresses_set = true;
3485 }
3486 else if (parameters->options().user_set_Tbss()
3487 && ((*p)->flags() & elfcpp::PF_W) != 0
3488 && !(*p)->has_any_data_sections())
3489 {
3490 addr = parameters->options().Tbss();
3491 are_addresses_set = true;
3492 }
3493
3494 uint64_t orig_addr = addr;
3495 uint64_t orig_off = off;
3496
3497 uint64_t aligned_addr = 0;
3498 uint64_t abi_pagesize = target->abi_pagesize();
3499 uint64_t common_pagesize = target->common_pagesize();
3500
3501 if (!parameters->options().nmagic()
3502 && !parameters->options().omagic())
3503 (*p)->set_minimum_p_align(abi_pagesize);
3504
3505 if (!are_addresses_set)
3506 {
3507 // Skip the address forward one page, maintaining the same
3508 // position within the page. This lets us store both segments
3509 // overlapping on a single page in the file, but the loader will
3510 // put them on different pages in memory. We will revisit this
3511 // decision once we know the size of the segment.
3512
3513 addr = align_address(addr, (*p)->maximum_alignment());
3514 aligned_addr = addr;
3515
3516 if (load_seg == *p)
3517 {
3518 // This is the segment that will contain the file
3519 // headers, so its offset will have to be exactly zero.
3520 gold_assert(orig_off == 0);
3521
3522 // If the target wants a fixed minimum distance from the
3523 // text segment to the read-only segment, move up now.
3524 uint64_t min_addr =
3525 start_addr + (parameters->options().user_set_rosegment_gap()
3526 ? parameters->options().rosegment_gap()
3527 : target->rosegment_gap());
3528 if (addr < min_addr)
3529 addr = min_addr;
3530
3531 // But this is not the first segment! To make its
3532 // address congruent with its offset, that address better
3533 // be aligned to the ABI-mandated page size.
3534 addr = align_address(addr, abi_pagesize);
3535 aligned_addr = addr;
3536 }
3537 else
3538 {
3539 if ((addr & (abi_pagesize - 1)) != 0)
3540 addr = addr + abi_pagesize;
3541
3542 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3543 }
3544 }
3545
3546 if (!parameters->options().nmagic()
3547 && !parameters->options().omagic())
3548 {
3549 // Here we are also taking care of the case when
3550 // the maximum segment alignment is larger than the page size.
3551 off = align_file_offset(off, addr,
3552 std::max(abi_pagesize,
3553 (*p)->maximum_alignment()));
3554 }
3555 else
3556 {
3557 // This is -N or -n with a section script which prevents
3558 // us from using a load segment. We need to ensure that
3559 // the file offset is aligned to the alignment of the
3560 // segment. This is because the linker script
3561 // implicitly assumed a zero offset. If we don't align
3562 // here, then the alignment of the sections in the
3563 // linker script may not match the alignment of the
3564 // sections in the set_section_addresses call below,
3565 // causing an error about dot moving backward.
3566 off = align_address(off, (*p)->maximum_alignment());
3567 }
3568
3569 unsigned int shndx_hold = *pshndx;
3570 bool has_relro = false;
3571 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3572 false, addr,
3573 &increase_relro,
3574 &has_relro,
3575 &off, pshndx);
3576
3577 // Now that we know the size of this segment, we may be able
3578 // to save a page in memory, at the cost of wasting some
3579 // file space, by instead aligning to the start of a new
3580 // page. Here we use the real machine page size rather than
3581 // the ABI mandated page size. If the segment has been
3582 // aligned so that the relro data ends at a page boundary,
3583 // we do not try to realign it.
3584
3585 if (!are_addresses_set
3586 && !has_relro
3587 && aligned_addr != addr
3588 && !parameters->incremental())
3589 {
3590 uint64_t first_off = (common_pagesize
3591 - (aligned_addr
3592 & (common_pagesize - 1)));
3593 uint64_t last_off = new_addr & (common_pagesize - 1);
3594 if (first_off > 0
3595 && last_off > 0
3596 && ((aligned_addr & ~ (common_pagesize - 1))
3597 != (new_addr & ~ (common_pagesize - 1)))
3598 && first_off + last_off <= common_pagesize)
3599 {
3600 *pshndx = shndx_hold;
3601 addr = align_address(aligned_addr, common_pagesize);
3602 addr = align_address(addr, (*p)->maximum_alignment());
3603 if ((addr & (abi_pagesize - 1)) != 0)
3604 addr = addr + abi_pagesize;
3605 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3606 off = align_file_offset(off, addr, abi_pagesize);
3607
3608 increase_relro = this->increase_relro_;
3609 if (this->script_options_->saw_sections_clause())
3610 increase_relro = 0;
3611 has_relro = false;
3612
3613 new_addr = (*p)->set_section_addresses(target, this,
3614 true, addr,
3615 &increase_relro,
3616 &has_relro,
3617 &off, pshndx);
3618 }
3619 }
3620
3621 addr = new_addr;
3622
3623 // Implement --check-sections. We know that the segments
3624 // are sorted by LMA.
3625 if (check_sections && last_load_segment != NULL)
3626 {
3627 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3628 if (last_load_segment->paddr() + last_load_segment->memsz()
3629 > (*p)->paddr())
3630 {
3631 unsigned long long lb1 = last_load_segment->paddr();
3632 unsigned long long le1 = lb1 + last_load_segment->memsz();
3633 unsigned long long lb2 = (*p)->paddr();
3634 unsigned long long le2 = lb2 + (*p)->memsz();
3635 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3636 "[0x%llx -> 0x%llx]"),
3637 lb1, le1, lb2, le2);
3638 }
3639 }
3640 last_load_segment = *p;
3641 }
3642 }
3643
3644 if (load_seg != NULL && target->isolate_execinstr())
3645 {
3646 // Process the early segments again, setting their file offsets
3647 // so they land after the segments starting at LOAD_SEG.
3648 off = align_file_offset(off, 0, target->abi_pagesize());
3649
3650 this->reset_relax_output();
3651
3652 for (Segment_list::iterator p = this->segment_list_.begin();
3653 *p != load_seg;
3654 ++p)
3655 {
3656 if ((*p)->type() == elfcpp::PT_LOAD)
3657 {
3658 // We repeat the whole job of assigning addresses and
3659 // offsets, but we really only want to change the offsets and
3660 // must ensure that the addresses all come out the same as
3661 // they did the first time through.
3662 bool has_relro = false;
3663 const uint64_t old_addr = (*p)->vaddr();
3664 const uint64_t old_end = old_addr + (*p)->memsz();
3665 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3666 true, old_addr,
3667 &increase_relro,
3668 &has_relro,
3669 &off,
3670 &shndx_begin);
3671 gold_assert(new_addr == old_end);
3672 }
3673 }
3674
3675 gold_assert(shndx_begin == shndx_load_seg);
3676 }
3677
3678 // Handle the non-PT_LOAD segments, setting their offsets from their
3679 // section's offsets.
3680 for (Segment_list::iterator p = this->segment_list_.begin();
3681 p != this->segment_list_.end();
3682 ++p)
3683 {
3684 if ((*p)->type() != elfcpp::PT_LOAD)
3685 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3686 ? increase_relro
3687 : 0);
3688 }
3689
3690 // Set the TLS offsets for each section in the PT_TLS segment.
3691 if (this->tls_segment_ != NULL)
3692 this->tls_segment_->set_tls_offsets();
3693
3694 return off;
3695 }
3696
3697 // Set the offsets of all the allocated sections when doing a
3698 // relocatable link. This does the same jobs as set_segment_offsets,
3699 // only for a relocatable link.
3700
3701 off_t
3702 Layout::set_relocatable_section_offsets(Output_data* file_header,
3703 unsigned int* pshndx)
3704 {
3705 off_t off = 0;
3706
3707 file_header->set_address_and_file_offset(0, 0);
3708 off += file_header->data_size();
3709
3710 for (Section_list::iterator p = this->section_list_.begin();
3711 p != this->section_list_.end();
3712 ++p)
3713 {
3714 // We skip unallocated sections here, except that group sections
3715 // have to come first.
3716 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3717 && (*p)->type() != elfcpp::SHT_GROUP)
3718 continue;
3719
3720 off = align_address(off, (*p)->addralign());
3721
3722 // The linker script might have set the address.
3723 if (!(*p)->is_address_valid())
3724 (*p)->set_address(0);
3725 (*p)->set_file_offset(off);
3726 (*p)->finalize_data_size();
3727 if ((*p)->type() != elfcpp::SHT_NOBITS)
3728 off += (*p)->data_size();
3729
3730 (*p)->set_out_shndx(*pshndx);
3731 ++*pshndx;
3732 }
3733
3734 return off;
3735 }
3736
3737 // Set the file offset of all the sections not associated with a
3738 // segment.
3739
3740 off_t
3741 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3742 {
3743 off_t startoff = off;
3744 off_t maxoff = off;
3745
3746 for (Section_list::iterator p = this->unattached_section_list_.begin();
3747 p != this->unattached_section_list_.end();
3748 ++p)
3749 {
3750 // The symtab section is handled in create_symtab_sections.
3751 if (*p == this->symtab_section_)
3752 continue;
3753
3754 // If we've already set the data size, don't set it again.
3755 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3756 continue;
3757
3758 if (pass == BEFORE_INPUT_SECTIONS_PASS
3759 && (*p)->requires_postprocessing())
3760 {
3761 (*p)->create_postprocessing_buffer();
3762 this->any_postprocessing_sections_ = true;
3763 }
3764
3765 if (pass == BEFORE_INPUT_SECTIONS_PASS
3766 && (*p)->after_input_sections())
3767 continue;
3768 else if (pass == POSTPROCESSING_SECTIONS_PASS
3769 && (!(*p)->after_input_sections()
3770 || (*p)->type() == elfcpp::SHT_STRTAB))
3771 continue;
3772 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3773 && (!(*p)->after_input_sections()
3774 || (*p)->type() != elfcpp::SHT_STRTAB))
3775 continue;
3776
3777 if (!parameters->incremental_update())
3778 {
3779 off = align_address(off, (*p)->addralign());
3780 (*p)->set_file_offset(off);
3781 (*p)->finalize_data_size();
3782 }
3783 else
3784 {
3785 // Incremental update: allocate file space from free list.
3786 (*p)->pre_finalize_data_size();
3787 off_t current_size = (*p)->current_data_size();
3788 off = this->allocate(current_size, (*p)->addralign(), startoff);
3789 if (off == -1)
3790 {
3791 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3792 this->free_list_.dump();
3793 gold_assert((*p)->output_section() != NULL);
3794 gold_fallback(_("out of patch space for section %s; "
3795 "relink with --incremental-full"),
3796 (*p)->output_section()->name());
3797 }
3798 (*p)->set_file_offset(off);
3799 (*p)->finalize_data_size();
3800 if ((*p)->data_size() > current_size)
3801 {
3802 gold_assert((*p)->output_section() != NULL);
3803 gold_fallback(_("%s: section changed size; "
3804 "relink with --incremental-full"),
3805 (*p)->output_section()->name());
3806 }
3807 gold_debug(DEBUG_INCREMENTAL,
3808 "set_section_offsets: %08lx %08lx %s",
3809 static_cast<long>(off),
3810 static_cast<long>((*p)->data_size()),
3811 ((*p)->output_section() != NULL
3812 ? (*p)->output_section()->name() : "(special)"));
3813 }
3814
3815 off += (*p)->data_size();
3816 if (off > maxoff)
3817 maxoff = off;
3818
3819 // At this point the name must be set.
3820 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3821 this->namepool_.add((*p)->name(), false, NULL);
3822 }
3823 return maxoff;
3824 }
3825
3826 // Set the section indexes of all the sections not associated with a
3827 // segment.
3828
3829 unsigned int
3830 Layout::set_section_indexes(unsigned int shndx)
3831 {
3832 for (Section_list::iterator p = this->unattached_section_list_.begin();
3833 p != this->unattached_section_list_.end();
3834 ++p)
3835 {
3836 if (!(*p)->has_out_shndx())
3837 {
3838 (*p)->set_out_shndx(shndx);
3839 ++shndx;
3840 }
3841 }
3842 return shndx;
3843 }
3844
3845 // Set the section addresses according to the linker script. This is
3846 // only called when we see a SECTIONS clause. This returns the
3847 // program segment which should hold the file header and segment
3848 // headers, if any. It will return NULL if they should not be in a
3849 // segment.
3850
3851 Output_segment*
3852 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3853 {
3854 Script_sections* ss = this->script_options_->script_sections();
3855 gold_assert(ss->saw_sections_clause());
3856 return this->script_options_->set_section_addresses(symtab, this);
3857 }
3858
3859 // Place the orphan sections in the linker script.
3860
3861 void
3862 Layout::place_orphan_sections_in_script()
3863 {
3864 Script_sections* ss = this->script_options_->script_sections();
3865 gold_assert(ss->saw_sections_clause());
3866
3867 // Place each orphaned output section in the script.
3868 for (Section_list::iterator p = this->section_list_.begin();
3869 p != this->section_list_.end();
3870 ++p)
3871 {
3872 if (!(*p)->found_in_sections_clause())
3873 ss->place_orphan(*p);
3874 }
3875 }
3876
3877 // Count the local symbols in the regular symbol table and the dynamic
3878 // symbol table, and build the respective string pools.
3879
3880 void
3881 Layout::count_local_symbols(const Task* task,
3882 const Input_objects* input_objects)
3883 {
3884 // First, figure out an upper bound on the number of symbols we'll
3885 // be inserting into each pool. This helps us create the pools with
3886 // the right size, to avoid unnecessary hashtable resizing.
3887 unsigned int symbol_count = 0;
3888 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3889 p != input_objects->relobj_end();
3890 ++p)
3891 symbol_count += (*p)->local_symbol_count();
3892
3893 // Go from "upper bound" to "estimate." We overcount for two
3894 // reasons: we double-count symbols that occur in more than one
3895 // object file, and we count symbols that are dropped from the
3896 // output. Add it all together and assume we overcount by 100%.
3897 symbol_count /= 2;
3898
3899 // We assume all symbols will go into both the sympool and dynpool.
3900 this->sympool_.reserve(symbol_count);
3901 this->dynpool_.reserve(symbol_count);
3902
3903 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3904 p != input_objects->relobj_end();
3905 ++p)
3906 {
3907 Task_lock_obj<Object> tlo(task, *p);
3908 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3909 }
3910 }
3911
3912 // Create the symbol table sections. Here we also set the final
3913 // values of the symbols. At this point all the loadable sections are
3914 // fully laid out. SHNUM is the number of sections so far.
3915
3916 void
3917 Layout::create_symtab_sections(const Input_objects* input_objects,
3918 Symbol_table* symtab,
3919 unsigned int shnum,
3920 off_t* poff)
3921 {
3922 int symsize;
3923 unsigned int align;
3924 if (parameters->target().get_size() == 32)
3925 {
3926 symsize = elfcpp::Elf_sizes<32>::sym_size;
3927 align = 4;
3928 }
3929 else if (parameters->target().get_size() == 64)
3930 {
3931 symsize = elfcpp::Elf_sizes<64>::sym_size;
3932 align = 8;
3933 }
3934 else
3935 gold_unreachable();
3936
3937 // Compute file offsets relative to the start of the symtab section.
3938 off_t off = 0;
3939
3940 // Save space for the dummy symbol at the start of the section. We
3941 // never bother to write this out--it will just be left as zero.
3942 off += symsize;
3943 unsigned int local_symbol_index = 1;
3944
3945 // Add STT_SECTION symbols for each Output section which needs one.
3946 for (Section_list::iterator p = this->section_list_.begin();
3947 p != this->section_list_.end();
3948 ++p)
3949 {
3950 if (!(*p)->needs_symtab_index())
3951 (*p)->set_symtab_index(-1U);
3952 else
3953 {
3954 (*p)->set_symtab_index(local_symbol_index);
3955 ++local_symbol_index;
3956 off += symsize;
3957 }
3958 }
3959
3960 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3961 p != input_objects->relobj_end();
3962 ++p)
3963 {
3964 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3965 off, symtab);
3966 off += (index - local_symbol_index) * symsize;
3967 local_symbol_index = index;
3968 }
3969
3970 unsigned int local_symcount = local_symbol_index;
3971 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3972
3973 off_t dynoff;
3974 size_t dyn_global_index;
3975 size_t dyncount;
3976 if (this->dynsym_section_ == NULL)
3977 {
3978 dynoff = 0;
3979 dyn_global_index = 0;
3980 dyncount = 0;
3981 }
3982 else
3983 {
3984 dyn_global_index = this->dynsym_section_->info();
3985 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3986 dynoff = this->dynsym_section_->offset() + locsize;
3987 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3988 gold_assert(static_cast<off_t>(dyncount * symsize)
3989 == this->dynsym_section_->data_size() - locsize);
3990 }
3991
3992 off_t global_off = off;
3993 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3994 &this->sympool_, &local_symcount);
3995
3996 if (!parameters->options().strip_all())
3997 {
3998 this->sympool_.set_string_offsets();
3999
4000 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4001 Output_section* osymtab = this->make_output_section(symtab_name,
4002 elfcpp::SHT_SYMTAB,
4003 0, ORDER_INVALID,
4004 false);
4005 this->symtab_section_ = osymtab;
4006
4007 Output_section_data* pos = new Output_data_fixed_space(off, align,
4008 "** symtab");
4009 osymtab->add_output_section_data(pos);
4010
4011 // We generate a .symtab_shndx section if we have more than
4012 // SHN_LORESERVE sections. Technically it is possible that we
4013 // don't need one, because it is possible that there are no
4014 // symbols in any of sections with indexes larger than
4015 // SHN_LORESERVE. That is probably unusual, though, and it is
4016 // easier to always create one than to compute section indexes
4017 // twice (once here, once when writing out the symbols).
4018 if (shnum >= elfcpp::SHN_LORESERVE)
4019 {
4020 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4021 false, NULL);
4022 Output_section* osymtab_xindex =
4023 this->make_output_section(symtab_xindex_name,
4024 elfcpp::SHT_SYMTAB_SHNDX, 0,
4025 ORDER_INVALID, false);
4026
4027 size_t symcount = off / symsize;
4028 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4029
4030 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4031
4032 osymtab_xindex->set_link_section(osymtab);
4033 osymtab_xindex->set_addralign(4);
4034 osymtab_xindex->set_entsize(4);
4035
4036 osymtab_xindex->set_after_input_sections();
4037
4038 // This tells the driver code to wait until the symbol table
4039 // has written out before writing out the postprocessing
4040 // sections, including the .symtab_shndx section.
4041 this->any_postprocessing_sections_ = true;
4042 }
4043
4044 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4045 Output_section* ostrtab = this->make_output_section(strtab_name,
4046 elfcpp::SHT_STRTAB,
4047 0, ORDER_INVALID,
4048 false);
4049
4050 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4051 ostrtab->add_output_section_data(pstr);
4052
4053 off_t symtab_off;
4054 if (!parameters->incremental_update())
4055 symtab_off = align_address(*poff, align);
4056 else
4057 {
4058 symtab_off = this->allocate(off, align, *poff);
4059 if (off == -1)
4060 gold_fallback(_("out of patch space for symbol table; "
4061 "relink with --incremental-full"));
4062 gold_debug(DEBUG_INCREMENTAL,
4063 "create_symtab_sections: %08lx %08lx .symtab",
4064 static_cast<long>(symtab_off),
4065 static_cast<long>(off));
4066 }
4067
4068 symtab->set_file_offset(symtab_off + global_off);
4069 osymtab->set_file_offset(symtab_off);
4070 osymtab->finalize_data_size();
4071 osymtab->set_link_section(ostrtab);
4072 osymtab->set_info(local_symcount);
4073 osymtab->set_entsize(symsize);
4074
4075 if (symtab_off + off > *poff)
4076 *poff = symtab_off + off;
4077 }
4078 }
4079
4080 // Create the .shstrtab section, which holds the names of the
4081 // sections. At the time this is called, we have created all the
4082 // output sections except .shstrtab itself.
4083
4084 Output_section*
4085 Layout::create_shstrtab()
4086 {
4087 // FIXME: We don't need to create a .shstrtab section if we are
4088 // stripping everything.
4089
4090 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4091
4092 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4093 ORDER_INVALID, false);
4094
4095 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4096 {
4097 // We can't write out this section until we've set all the
4098 // section names, and we don't set the names of compressed
4099 // output sections until relocations are complete. FIXME: With
4100 // the current names we use, this is unnecessary.
4101 os->set_after_input_sections();
4102 }
4103
4104 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4105 os->add_output_section_data(posd);
4106
4107 return os;
4108 }
4109
4110 // Create the section headers. SIZE is 32 or 64. OFF is the file
4111 // offset.
4112
4113 void
4114 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4115 {
4116 Output_section_headers* oshdrs;
4117 oshdrs = new Output_section_headers(this,
4118 &this->segment_list_,
4119 &this->section_list_,
4120 &this->unattached_section_list_,
4121 &this->namepool_,
4122 shstrtab_section);
4123 off_t off;
4124 if (!parameters->incremental_update())
4125 off = align_address(*poff, oshdrs->addralign());
4126 else
4127 {
4128 oshdrs->pre_finalize_data_size();
4129 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4130 if (off == -1)
4131 gold_fallback(_("out of patch space for section header table; "
4132 "relink with --incremental-full"));
4133 gold_debug(DEBUG_INCREMENTAL,
4134 "create_shdrs: %08lx %08lx (section header table)",
4135 static_cast<long>(off),
4136 static_cast<long>(off + oshdrs->data_size()));
4137 }
4138 oshdrs->set_address_and_file_offset(0, off);
4139 off += oshdrs->data_size();
4140 if (off > *poff)
4141 *poff = off;
4142 this->section_headers_ = oshdrs;
4143 }
4144
4145 // Count the allocated sections.
4146
4147 size_t
4148 Layout::allocated_output_section_count() const
4149 {
4150 size_t section_count = 0;
4151 for (Segment_list::const_iterator p = this->segment_list_.begin();
4152 p != this->segment_list_.end();
4153 ++p)
4154 section_count += (*p)->output_section_count();
4155 return section_count;
4156 }
4157
4158 // Create the dynamic symbol table.
4159
4160 void
4161 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4162 Symbol_table* symtab,
4163 Output_section** pdynstr,
4164 unsigned int* plocal_dynamic_count,
4165 std::vector<Symbol*>* pdynamic_symbols,
4166 Versions* pversions)
4167 {
4168 // Count all the symbols in the dynamic symbol table, and set the
4169 // dynamic symbol indexes.
4170
4171 // Skip symbol 0, which is always all zeroes.
4172 unsigned int index = 1;
4173
4174 // Add STT_SECTION symbols for each Output section which needs one.
4175 for (Section_list::iterator p = this->section_list_.begin();
4176 p != this->section_list_.end();
4177 ++p)
4178 {
4179 if (!(*p)->needs_dynsym_index())
4180 (*p)->set_dynsym_index(-1U);
4181 else
4182 {
4183 (*p)->set_dynsym_index(index);
4184 ++index;
4185 }
4186 }
4187
4188 // Count the local symbols that need to go in the dynamic symbol table,
4189 // and set the dynamic symbol indexes.
4190 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4191 p != input_objects->relobj_end();
4192 ++p)
4193 {
4194 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4195 index = new_index;
4196 }
4197
4198 unsigned int local_symcount = index;
4199 *plocal_dynamic_count = local_symcount;
4200
4201 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4202 &this->dynpool_, pversions);
4203
4204 int symsize;
4205 unsigned int align;
4206 const int size = parameters->target().get_size();
4207 if (size == 32)
4208 {
4209 symsize = elfcpp::Elf_sizes<32>::sym_size;
4210 align = 4;
4211 }
4212 else if (size == 64)
4213 {
4214 symsize = elfcpp::Elf_sizes<64>::sym_size;
4215 align = 8;
4216 }
4217 else
4218 gold_unreachable();
4219
4220 // Create the dynamic symbol table section.
4221
4222 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4223 elfcpp::SHT_DYNSYM,
4224 elfcpp::SHF_ALLOC,
4225 false,
4226 ORDER_DYNAMIC_LINKER,
4227 false);
4228
4229 // Check for NULL as a linker script may discard .dynsym.
4230 if (dynsym != NULL)
4231 {
4232 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4233 align,
4234 "** dynsym");
4235 dynsym->add_output_section_data(odata);
4236
4237 dynsym->set_info(local_symcount);
4238 dynsym->set_entsize(symsize);
4239 dynsym->set_addralign(align);
4240
4241 this->dynsym_section_ = dynsym;
4242 }
4243
4244 Output_data_dynamic* const odyn = this->dynamic_data_;
4245 if (odyn != NULL)
4246 {
4247 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4248 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4249 }
4250
4251 // If there are more than SHN_LORESERVE allocated sections, we
4252 // create a .dynsym_shndx section. It is possible that we don't
4253 // need one, because it is possible that there are no dynamic
4254 // symbols in any of the sections with indexes larger than
4255 // SHN_LORESERVE. This is probably unusual, though, and at this
4256 // time we don't know the actual section indexes so it is
4257 // inconvenient to check.
4258 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4259 {
4260 Output_section* dynsym_xindex =
4261 this->choose_output_section(NULL, ".dynsym_shndx",
4262 elfcpp::SHT_SYMTAB_SHNDX,
4263 elfcpp::SHF_ALLOC,
4264 false, ORDER_DYNAMIC_LINKER, false);
4265
4266 if (dynsym_xindex != NULL)
4267 {
4268 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4269
4270 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4271
4272 dynsym_xindex->set_link_section(dynsym);
4273 dynsym_xindex->set_addralign(4);
4274 dynsym_xindex->set_entsize(4);
4275
4276 dynsym_xindex->set_after_input_sections();
4277
4278 // This tells the driver code to wait until the symbol table
4279 // has written out before writing out the postprocessing
4280 // sections, including the .dynsym_shndx section.
4281 this->any_postprocessing_sections_ = true;
4282 }
4283 }
4284
4285 // Create the dynamic string table section.
4286
4287 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4288 elfcpp::SHT_STRTAB,
4289 elfcpp::SHF_ALLOC,
4290 false,
4291 ORDER_DYNAMIC_LINKER,
4292 false);
4293 *pdynstr = dynstr;
4294 if (dynstr != NULL)
4295 {
4296 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4297 dynstr->add_output_section_data(strdata);
4298
4299 if (dynsym != NULL)
4300 dynsym->set_link_section(dynstr);
4301 if (this->dynamic_section_ != NULL)
4302 this->dynamic_section_->set_link_section(dynstr);
4303
4304 if (odyn != NULL)
4305 {
4306 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4307 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4308 }
4309 }
4310
4311 // Create the hash tables. The Gnu-style hash table must be
4312 // built first, because it changes the order of the symbols
4313 // in the dynamic symbol table.
4314
4315 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4316 || strcmp(parameters->options().hash_style(), "both") == 0)
4317 {
4318 unsigned char* phash;
4319 unsigned int hashlen;
4320 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4321 &phash, &hashlen);
4322
4323 Output_section* hashsec =
4324 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4325 elfcpp::SHF_ALLOC, false,
4326 ORDER_DYNAMIC_LINKER, false);
4327
4328 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4329 hashlen,
4330 align,
4331 "** hash");
4332 if (hashsec != NULL && hashdata != NULL)
4333 hashsec->add_output_section_data(hashdata);
4334
4335 if (hashsec != NULL)
4336 {
4337 if (dynsym != NULL)
4338 hashsec->set_link_section(dynsym);
4339
4340 // For a 64-bit target, the entries in .gnu.hash do not have
4341 // a uniform size, so we only set the entry size for a
4342 // 32-bit target.
4343 if (parameters->target().get_size() == 32)
4344 hashsec->set_entsize(4);
4345
4346 if (odyn != NULL)
4347 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4348 }
4349 }
4350
4351 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4352 || strcmp(parameters->options().hash_style(), "both") == 0)
4353 {
4354 unsigned char* phash;
4355 unsigned int hashlen;
4356 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4357 &phash, &hashlen);
4358
4359 Output_section* hashsec =
4360 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4361 elfcpp::SHF_ALLOC, false,
4362 ORDER_DYNAMIC_LINKER, false);
4363
4364 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4365 hashlen,
4366 align,
4367 "** hash");
4368 if (hashsec != NULL && hashdata != NULL)
4369 hashsec->add_output_section_data(hashdata);
4370
4371 if (hashsec != NULL)
4372 {
4373 if (dynsym != NULL)
4374 hashsec->set_link_section(dynsym);
4375 hashsec->set_entsize(4);
4376 }
4377
4378 if (odyn != NULL)
4379 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4380 }
4381 }
4382
4383 // Assign offsets to each local portion of the dynamic symbol table.
4384
4385 void
4386 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4387 {
4388 Output_section* dynsym = this->dynsym_section_;
4389 if (dynsym == NULL)
4390 return;
4391
4392 off_t off = dynsym->offset();
4393
4394 // Skip the dummy symbol at the start of the section.
4395 off += dynsym->entsize();
4396
4397 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4398 p != input_objects->relobj_end();
4399 ++p)
4400 {
4401 unsigned int count = (*p)->set_local_dynsym_offset(off);
4402 off += count * dynsym->entsize();
4403 }
4404 }
4405
4406 // Create the version sections.
4407
4408 void
4409 Layout::create_version_sections(const Versions* versions,
4410 const Symbol_table* symtab,
4411 unsigned int local_symcount,
4412 const std::vector<Symbol*>& dynamic_symbols,
4413 const Output_section* dynstr)
4414 {
4415 if (!versions->any_defs() && !versions->any_needs())
4416 return;
4417
4418 switch (parameters->size_and_endianness())
4419 {
4420 #ifdef HAVE_TARGET_32_LITTLE
4421 case Parameters::TARGET_32_LITTLE:
4422 this->sized_create_version_sections<32, false>(versions, symtab,
4423 local_symcount,
4424 dynamic_symbols, dynstr);
4425 break;
4426 #endif
4427 #ifdef HAVE_TARGET_32_BIG
4428 case Parameters::TARGET_32_BIG:
4429 this->sized_create_version_sections<32, true>(versions, symtab,
4430 local_symcount,
4431 dynamic_symbols, dynstr);
4432 break;
4433 #endif
4434 #ifdef HAVE_TARGET_64_LITTLE
4435 case Parameters::TARGET_64_LITTLE:
4436 this->sized_create_version_sections<64, false>(versions, symtab,
4437 local_symcount,
4438 dynamic_symbols, dynstr);
4439 break;
4440 #endif
4441 #ifdef HAVE_TARGET_64_BIG
4442 case Parameters::TARGET_64_BIG:
4443 this->sized_create_version_sections<64, true>(versions, symtab,
4444 local_symcount,
4445 dynamic_symbols, dynstr);
4446 break;
4447 #endif
4448 default:
4449 gold_unreachable();
4450 }
4451 }
4452
4453 // Create the version sections, sized version.
4454
4455 template<int size, bool big_endian>
4456 void
4457 Layout::sized_create_version_sections(
4458 const Versions* versions,
4459 const Symbol_table* symtab,
4460 unsigned int local_symcount,
4461 const std::vector<Symbol*>& dynamic_symbols,
4462 const Output_section* dynstr)
4463 {
4464 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4465 elfcpp::SHT_GNU_versym,
4466 elfcpp::SHF_ALLOC,
4467 false,
4468 ORDER_DYNAMIC_LINKER,
4469 false);
4470
4471 // Check for NULL since a linker script may discard this section.
4472 if (vsec != NULL)
4473 {
4474 unsigned char* vbuf;
4475 unsigned int vsize;
4476 versions->symbol_section_contents<size, big_endian>(symtab,
4477 &this->dynpool_,
4478 local_symcount,
4479 dynamic_symbols,
4480 &vbuf, &vsize);
4481
4482 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4483 "** versions");
4484
4485 vsec->add_output_section_data(vdata);
4486 vsec->set_entsize(2);
4487 vsec->set_link_section(this->dynsym_section_);
4488 }
4489
4490 Output_data_dynamic* const odyn = this->dynamic_data_;
4491 if (odyn != NULL && vsec != NULL)
4492 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4493
4494 if (versions->any_defs())
4495 {
4496 Output_section* vdsec;
4497 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4498 elfcpp::SHT_GNU_verdef,
4499 elfcpp::SHF_ALLOC,
4500 false, ORDER_DYNAMIC_LINKER, false);
4501
4502 if (vdsec != NULL)
4503 {
4504 unsigned char* vdbuf;
4505 unsigned int vdsize;
4506 unsigned int vdentries;
4507 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4508 &vdbuf, &vdsize,
4509 &vdentries);
4510
4511 Output_section_data* vddata =
4512 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4513
4514 vdsec->add_output_section_data(vddata);
4515 vdsec->set_link_section(dynstr);
4516 vdsec->set_info(vdentries);
4517
4518 if (odyn != NULL)
4519 {
4520 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4521 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4522 }
4523 }
4524 }
4525
4526 if (versions->any_needs())
4527 {
4528 Output_section* vnsec;
4529 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4530 elfcpp::SHT_GNU_verneed,
4531 elfcpp::SHF_ALLOC,
4532 false, ORDER_DYNAMIC_LINKER, false);
4533
4534 if (vnsec != NULL)
4535 {
4536 unsigned char* vnbuf;
4537 unsigned int vnsize;
4538 unsigned int vnentries;
4539 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4540 &vnbuf, &vnsize,
4541 &vnentries);
4542
4543 Output_section_data* vndata =
4544 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4545
4546 vnsec->add_output_section_data(vndata);
4547 vnsec->set_link_section(dynstr);
4548 vnsec->set_info(vnentries);
4549
4550 if (odyn != NULL)
4551 {
4552 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4553 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4554 }
4555 }
4556 }
4557 }
4558
4559 // Create the .interp section and PT_INTERP segment.
4560
4561 void
4562 Layout::create_interp(const Target* target)
4563 {
4564 gold_assert(this->interp_segment_ == NULL);
4565
4566 const char* interp = parameters->options().dynamic_linker();
4567 if (interp == NULL)
4568 {
4569 interp = target->dynamic_linker();
4570 gold_assert(interp != NULL);
4571 }
4572
4573 size_t len = strlen(interp) + 1;
4574
4575 Output_section_data* odata = new Output_data_const(interp, len, 1);
4576
4577 Output_section* osec = this->choose_output_section(NULL, ".interp",
4578 elfcpp::SHT_PROGBITS,
4579 elfcpp::SHF_ALLOC,
4580 false, ORDER_INTERP,
4581 false);
4582 if (osec != NULL)
4583 osec->add_output_section_data(odata);
4584 }
4585
4586 // Add dynamic tags for the PLT and the dynamic relocs. This is
4587 // called by the target-specific code. This does nothing if not doing
4588 // a dynamic link.
4589
4590 // USE_REL is true for REL relocs rather than RELA relocs.
4591
4592 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4593
4594 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4595 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4596 // some targets have multiple reloc sections in PLT_REL.
4597
4598 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4599 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4600 // section.
4601
4602 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4603 // executable.
4604
4605 void
4606 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4607 const Output_data* plt_rel,
4608 const Output_data_reloc_generic* dyn_rel,
4609 bool add_debug, bool dynrel_includes_plt)
4610 {
4611 Output_data_dynamic* odyn = this->dynamic_data_;
4612 if (odyn == NULL)
4613 return;
4614
4615 if (plt_got != NULL && plt_got->output_section() != NULL)
4616 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4617
4618 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4619 {
4620 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4621 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4622 odyn->add_constant(elfcpp::DT_PLTREL,
4623 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4624 }
4625
4626 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4627 || (dynrel_includes_plt
4628 && plt_rel != NULL
4629 && plt_rel->output_section() != NULL))
4630 {
4631 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4632 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4633 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4634 (have_dyn_rel
4635 ? dyn_rel->output_section()
4636 : plt_rel->output_section()));
4637 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4638 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4639 odyn->add_section_size(size_tag,
4640 dyn_rel->output_section(),
4641 plt_rel->output_section());
4642 else if (have_dyn_rel)
4643 odyn->add_section_size(size_tag, dyn_rel->output_section());
4644 else
4645 odyn->add_section_size(size_tag, plt_rel->output_section());
4646 const int size = parameters->target().get_size();
4647 elfcpp::DT rel_tag;
4648 int rel_size;
4649 if (use_rel)
4650 {
4651 rel_tag = elfcpp::DT_RELENT;
4652 if (size == 32)
4653 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4654 else if (size == 64)
4655 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4656 else
4657 gold_unreachable();
4658 }
4659 else
4660 {
4661 rel_tag = elfcpp::DT_RELAENT;
4662 if (size == 32)
4663 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4664 else if (size == 64)
4665 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4666 else
4667 gold_unreachable();
4668 }
4669 odyn->add_constant(rel_tag, rel_size);
4670
4671 if (parameters->options().combreloc() && have_dyn_rel)
4672 {
4673 size_t c = dyn_rel->relative_reloc_count();
4674 if (c > 0)
4675 odyn->add_constant((use_rel
4676 ? elfcpp::DT_RELCOUNT
4677 : elfcpp::DT_RELACOUNT),
4678 c);
4679 }
4680 }
4681
4682 if (add_debug && !parameters->options().shared())
4683 {
4684 // The value of the DT_DEBUG tag is filled in by the dynamic
4685 // linker at run time, and used by the debugger.
4686 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4687 }
4688 }
4689
4690 // Finish the .dynamic section and PT_DYNAMIC segment.
4691
4692 void
4693 Layout::finish_dynamic_section(const Input_objects* input_objects,
4694 const Symbol_table* symtab)
4695 {
4696 if (!this->script_options_->saw_phdrs_clause()
4697 && this->dynamic_section_ != NULL)
4698 {
4699 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4700 (elfcpp::PF_R
4701 | elfcpp::PF_W));
4702 oseg->add_output_section_to_nonload(this->dynamic_section_,
4703 elfcpp::PF_R | elfcpp::PF_W);
4704 }
4705
4706 Output_data_dynamic* const odyn = this->dynamic_data_;
4707 if (odyn == NULL)
4708 return;
4709
4710 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4711 p != input_objects->dynobj_end();
4712 ++p)
4713 {
4714 if (!(*p)->is_needed() && (*p)->as_needed())
4715 {
4716 // This dynamic object was linked with --as-needed, but it
4717 // is not needed.
4718 continue;
4719 }
4720
4721 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4722 }
4723
4724 if (parameters->options().shared())
4725 {
4726 const char* soname = parameters->options().soname();
4727 if (soname != NULL)
4728 odyn->add_string(elfcpp::DT_SONAME, soname);
4729 }
4730
4731 Symbol* sym = symtab->lookup(parameters->options().init());
4732 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4733 odyn->add_symbol(elfcpp::DT_INIT, sym);
4734
4735 sym = symtab->lookup(parameters->options().fini());
4736 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4737 odyn->add_symbol(elfcpp::DT_FINI, sym);
4738
4739 // Look for .init_array, .preinit_array and .fini_array by checking
4740 // section types.
4741 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4742 p != this->section_list_.end();
4743 ++p)
4744 switch((*p)->type())
4745 {
4746 case elfcpp::SHT_FINI_ARRAY:
4747 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4748 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4749 break;
4750 case elfcpp::SHT_INIT_ARRAY:
4751 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4752 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4753 break;
4754 case elfcpp::SHT_PREINIT_ARRAY:
4755 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4756 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4757 break;
4758 default:
4759 break;
4760 }
4761
4762 // Add a DT_RPATH entry if needed.
4763 const General_options::Dir_list& rpath(parameters->options().rpath());
4764 if (!rpath.empty())
4765 {
4766 std::string rpath_val;
4767 for (General_options::Dir_list::const_iterator p = rpath.begin();
4768 p != rpath.end();
4769 ++p)
4770 {
4771 if (rpath_val.empty())
4772 rpath_val = p->name();
4773 else
4774 {
4775 // Eliminate duplicates.
4776 General_options::Dir_list::const_iterator q;
4777 for (q = rpath.begin(); q != p; ++q)
4778 if (q->name() == p->name())
4779 break;
4780 if (q == p)
4781 {
4782 rpath_val += ':';
4783 rpath_val += p->name();
4784 }
4785 }
4786 }
4787
4788 if (!parameters->options().enable_new_dtags())
4789 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4790 else
4791 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4792 }
4793
4794 // Look for text segments that have dynamic relocations.
4795 bool have_textrel = false;
4796 if (!this->script_options_->saw_sections_clause())
4797 {
4798 for (Segment_list::const_iterator p = this->segment_list_.begin();
4799 p != this->segment_list_.end();
4800 ++p)
4801 {
4802 if ((*p)->type() == elfcpp::PT_LOAD
4803 && ((*p)->flags() & elfcpp::PF_W) == 0
4804 && (*p)->has_dynamic_reloc())
4805 {
4806 have_textrel = true;
4807 break;
4808 }
4809 }
4810 }
4811 else
4812 {
4813 // We don't know the section -> segment mapping, so we are
4814 // conservative and just look for readonly sections with
4815 // relocations. If those sections wind up in writable segments,
4816 // then we have created an unnecessary DT_TEXTREL entry.
4817 for (Section_list::const_iterator p = this->section_list_.begin();
4818 p != this->section_list_.end();
4819 ++p)
4820 {
4821 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4822 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4823 && (*p)->has_dynamic_reloc())
4824 {
4825 have_textrel = true;
4826 break;
4827 }
4828 }
4829 }
4830
4831 if (parameters->options().filter() != NULL)
4832 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4833 if (parameters->options().any_auxiliary())
4834 {
4835 for (options::String_set::const_iterator p =
4836 parameters->options().auxiliary_begin();
4837 p != parameters->options().auxiliary_end();
4838 ++p)
4839 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4840 }
4841
4842 // Add a DT_FLAGS entry if necessary.
4843 unsigned int flags = 0;
4844 if (have_textrel)
4845 {
4846 // Add a DT_TEXTREL for compatibility with older loaders.
4847 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4848 flags |= elfcpp::DF_TEXTREL;
4849
4850 if (parameters->options().text())
4851 gold_error(_("read-only segment has dynamic relocations"));
4852 else if (parameters->options().warn_shared_textrel()
4853 && parameters->options().shared())
4854 gold_warning(_("shared library text segment is not shareable"));
4855 }
4856 if (parameters->options().shared() && this->has_static_tls())
4857 flags |= elfcpp::DF_STATIC_TLS;
4858 if (parameters->options().origin())
4859 flags |= elfcpp::DF_ORIGIN;
4860 if (parameters->options().Bsymbolic())
4861 {
4862 flags |= elfcpp::DF_SYMBOLIC;
4863 // Add DT_SYMBOLIC for compatibility with older loaders.
4864 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4865 }
4866 if (parameters->options().now())
4867 flags |= elfcpp::DF_BIND_NOW;
4868 if (flags != 0)
4869 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4870
4871 flags = 0;
4872 if (parameters->options().initfirst())
4873 flags |= elfcpp::DF_1_INITFIRST;
4874 if (parameters->options().interpose())
4875 flags |= elfcpp::DF_1_INTERPOSE;
4876 if (parameters->options().loadfltr())
4877 flags |= elfcpp::DF_1_LOADFLTR;
4878 if (parameters->options().nodefaultlib())
4879 flags |= elfcpp::DF_1_NODEFLIB;
4880 if (parameters->options().nodelete())
4881 flags |= elfcpp::DF_1_NODELETE;
4882 if (parameters->options().nodlopen())
4883 flags |= elfcpp::DF_1_NOOPEN;
4884 if (parameters->options().nodump())
4885 flags |= elfcpp::DF_1_NODUMP;
4886 if (!parameters->options().shared())
4887 flags &= ~(elfcpp::DF_1_INITFIRST
4888 | elfcpp::DF_1_NODELETE
4889 | elfcpp::DF_1_NOOPEN);
4890 if (parameters->options().origin())
4891 flags |= elfcpp::DF_1_ORIGIN;
4892 if (parameters->options().now())
4893 flags |= elfcpp::DF_1_NOW;
4894 if (parameters->options().Bgroup())
4895 flags |= elfcpp::DF_1_GROUP;
4896 if (flags != 0)
4897 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4898 }
4899
4900 // Set the size of the _DYNAMIC symbol table to be the size of the
4901 // dynamic data.
4902
4903 void
4904 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4905 {
4906 Output_data_dynamic* const odyn = this->dynamic_data_;
4907 if (odyn == NULL)
4908 return;
4909 odyn->finalize_data_size();
4910 if (this->dynamic_symbol_ == NULL)
4911 return;
4912 off_t data_size = odyn->data_size();
4913 const int size = parameters->target().get_size();
4914 if (size == 32)
4915 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4916 else if (size == 64)
4917 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4918 else
4919 gold_unreachable();
4920 }
4921
4922 // The mapping of input section name prefixes to output section names.
4923 // In some cases one prefix is itself a prefix of another prefix; in
4924 // such a case the longer prefix must come first. These prefixes are
4925 // based on the GNU linker default ELF linker script.
4926
4927 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4928 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4929 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4930 {
4931 MAPPING_INIT(".text.", ".text"),
4932 MAPPING_INIT(".rodata.", ".rodata"),
4933 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4934 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4935 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4936 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4937 MAPPING_INIT(".data.", ".data"),
4938 MAPPING_INIT(".bss.", ".bss"),
4939 MAPPING_INIT(".tdata.", ".tdata"),
4940 MAPPING_INIT(".tbss.", ".tbss"),
4941 MAPPING_INIT(".init_array.", ".init_array"),
4942 MAPPING_INIT(".fini_array.", ".fini_array"),
4943 MAPPING_INIT(".sdata.", ".sdata"),
4944 MAPPING_INIT(".sbss.", ".sbss"),
4945 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4946 // differently depending on whether it is creating a shared library.
4947 MAPPING_INIT(".sdata2.", ".sdata"),
4948 MAPPING_INIT(".sbss2.", ".sbss"),
4949 MAPPING_INIT(".lrodata.", ".lrodata"),
4950 MAPPING_INIT(".ldata.", ".ldata"),
4951 MAPPING_INIT(".lbss.", ".lbss"),
4952 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4953 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4954 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4955 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4956 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4957 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4958 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4959 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4960 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4961 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4962 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4963 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4964 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4965 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4966 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4967 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4968 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4969 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4970 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4971 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4972 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4973 };
4974 #undef MAPPING_INIT
4975 #undef MAPPING_INIT_EXACT
4976
4977 const int Layout::section_name_mapping_count =
4978 (sizeof(Layout::section_name_mapping)
4979 / sizeof(Layout::section_name_mapping[0]));
4980
4981 // Choose the output section name to use given an input section name.
4982 // Set *PLEN to the length of the name. *PLEN is initialized to the
4983 // length of NAME.
4984
4985 const char*
4986 Layout::output_section_name(const Relobj* relobj, const char* name,
4987 size_t* plen)
4988 {
4989 // gcc 4.3 generates the following sorts of section names when it
4990 // needs a section name specific to a function:
4991 // .text.FN
4992 // .rodata.FN
4993 // .sdata2.FN
4994 // .data.FN
4995 // .data.rel.FN
4996 // .data.rel.local.FN
4997 // .data.rel.ro.FN
4998 // .data.rel.ro.local.FN
4999 // .sdata.FN
5000 // .bss.FN
5001 // .sbss.FN
5002 // .tdata.FN
5003 // .tbss.FN
5004
5005 // The GNU linker maps all of those to the part before the .FN,
5006 // except that .data.rel.local.FN is mapped to .data, and
5007 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5008 // beginning with .data.rel.ro.local are grouped together.
5009
5010 // For an anonymous namespace, the string FN can contain a '.'.
5011
5012 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5013 // GNU linker maps to .rodata.
5014
5015 // The .data.rel.ro sections are used with -z relro. The sections
5016 // are recognized by name. We use the same names that the GNU
5017 // linker does for these sections.
5018
5019 // It is hard to handle this in a principled way, so we don't even
5020 // try. We use a table of mappings. If the input section name is
5021 // not found in the table, we simply use it as the output section
5022 // name.
5023
5024 const Section_name_mapping* psnm = section_name_mapping;
5025 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5026 {
5027 if (psnm->fromlen > 0)
5028 {
5029 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5030 {
5031 *plen = psnm->tolen;
5032 return psnm->to;
5033 }
5034 }
5035 else
5036 {
5037 if (strcmp(name, psnm->from) == 0)
5038 {
5039 *plen = psnm->tolen;
5040 return psnm->to;
5041 }
5042 }
5043 }
5044
5045 // As an additional complication, .ctors sections are output in
5046 // either .ctors or .init_array sections, and .dtors sections are
5047 // output in either .dtors or .fini_array sections.
5048 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5049 {
5050 if (parameters->options().ctors_in_init_array())
5051 {
5052 *plen = 11;
5053 return name[1] == 'c' ? ".init_array" : ".fini_array";
5054 }
5055 else
5056 {
5057 *plen = 6;
5058 return name[1] == 'c' ? ".ctors" : ".dtors";
5059 }
5060 }
5061 if (parameters->options().ctors_in_init_array()
5062 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5063 {
5064 // To make .init_array/.fini_array work with gcc we must exclude
5065 // .ctors and .dtors sections from the crtbegin and crtend
5066 // files.
5067 if (relobj == NULL
5068 || (!Layout::match_file_name(relobj, "crtbegin")
5069 && !Layout::match_file_name(relobj, "crtend")))
5070 {
5071 *plen = 11;
5072 return name[1] == 'c' ? ".init_array" : ".fini_array";
5073 }
5074 }
5075
5076 return name;
5077 }
5078
5079 // Return true if RELOBJ is an input file whose base name matches
5080 // FILE_NAME. The base name must have an extension of ".o", and must
5081 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5082 // to match crtbegin.o as well as crtbeginS.o without getting confused
5083 // by other possibilities. Overall matching the file name this way is
5084 // a dreadful hack, but the GNU linker does it in order to better
5085 // support gcc, and we need to be compatible.
5086
5087 bool
5088 Layout::match_file_name(const Relobj* relobj, const char* match)
5089 {
5090 const std::string& file_name(relobj->name());
5091 const char* base_name = lbasename(file_name.c_str());
5092 size_t match_len = strlen(match);
5093 if (strncmp(base_name, match, match_len) != 0)
5094 return false;
5095 size_t base_len = strlen(base_name);
5096 if (base_len != match_len + 2 && base_len != match_len + 3)
5097 return false;
5098 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5099 }
5100
5101 // Check if a comdat group or .gnu.linkonce section with the given
5102 // NAME is selected for the link. If there is already a section,
5103 // *KEPT_SECTION is set to point to the existing section and the
5104 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5105 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5106 // *KEPT_SECTION is set to the internal copy and the function returns
5107 // true.
5108
5109 bool
5110 Layout::find_or_add_kept_section(const std::string& name,
5111 Relobj* object,
5112 unsigned int shndx,
5113 bool is_comdat,
5114 bool is_group_name,
5115 Kept_section** kept_section)
5116 {
5117 // It's normal to see a couple of entries here, for the x86 thunk
5118 // sections. If we see more than a few, we're linking a C++
5119 // program, and we resize to get more space to minimize rehashing.
5120 if (this->signatures_.size() > 4
5121 && !this->resized_signatures_)
5122 {
5123 reserve_unordered_map(&this->signatures_,
5124 this->number_of_input_files_ * 64);
5125 this->resized_signatures_ = true;
5126 }
5127
5128 Kept_section candidate;
5129 std::pair<Signatures::iterator, bool> ins =
5130 this->signatures_.insert(std::make_pair(name, candidate));
5131
5132 if (kept_section != NULL)
5133 *kept_section = &ins.first->second;
5134 if (ins.second)
5135 {
5136 // This is the first time we've seen this signature.
5137 ins.first->second.set_object(object);
5138 ins.first->second.set_shndx(shndx);
5139 if (is_comdat)
5140 ins.first->second.set_is_comdat();
5141 if (is_group_name)
5142 ins.first->second.set_is_group_name();
5143 return true;
5144 }
5145
5146 // We have already seen this signature.
5147
5148 if (ins.first->second.is_group_name())
5149 {
5150 // We've already seen a real section group with this signature.
5151 // If the kept group is from a plugin object, and we're in the
5152 // replacement phase, accept the new one as a replacement.
5153 if (ins.first->second.object() == NULL
5154 && parameters->options().plugins()->in_replacement_phase())
5155 {
5156 ins.first->second.set_object(object);
5157 ins.first->second.set_shndx(shndx);
5158 return true;
5159 }
5160 return false;
5161 }
5162 else if (is_group_name)
5163 {
5164 // This is a real section group, and we've already seen a
5165 // linkonce section with this signature. Record that we've seen
5166 // a section group, and don't include this section group.
5167 ins.first->second.set_is_group_name();
5168 return false;
5169 }
5170 else
5171 {
5172 // We've already seen a linkonce section and this is a linkonce
5173 // section. These don't block each other--this may be the same
5174 // symbol name with different section types.
5175 return true;
5176 }
5177 }
5178
5179 // Store the allocated sections into the section list.
5180
5181 void
5182 Layout::get_allocated_sections(Section_list* section_list) const
5183 {
5184 for (Section_list::const_iterator p = this->section_list_.begin();
5185 p != this->section_list_.end();
5186 ++p)
5187 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5188 section_list->push_back(*p);
5189 }
5190
5191 // Store the executable sections into the section list.
5192
5193 void
5194 Layout::get_executable_sections(Section_list* section_list) const
5195 {
5196 for (Section_list::const_iterator p = this->section_list_.begin();
5197 p != this->section_list_.end();
5198 ++p)
5199 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5200 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5201 section_list->push_back(*p);
5202 }
5203
5204 // Create an output segment.
5205
5206 Output_segment*
5207 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5208 {
5209 gold_assert(!parameters->options().relocatable());
5210 Output_segment* oseg = new Output_segment(type, flags);
5211 this->segment_list_.push_back(oseg);
5212
5213 if (type == elfcpp::PT_TLS)
5214 this->tls_segment_ = oseg;
5215 else if (type == elfcpp::PT_GNU_RELRO)
5216 this->relro_segment_ = oseg;
5217 else if (type == elfcpp::PT_INTERP)
5218 this->interp_segment_ = oseg;
5219
5220 return oseg;
5221 }
5222
5223 // Return the file offset of the normal symbol table.
5224
5225 off_t
5226 Layout::symtab_section_offset() const
5227 {
5228 if (this->symtab_section_ != NULL)
5229 return this->symtab_section_->offset();
5230 return 0;
5231 }
5232
5233 // Return the section index of the normal symbol table. It may have
5234 // been stripped by the -s/--strip-all option.
5235
5236 unsigned int
5237 Layout::symtab_section_shndx() const
5238 {
5239 if (this->symtab_section_ != NULL)
5240 return this->symtab_section_->out_shndx();
5241 return 0;
5242 }
5243
5244 // Write out the Output_sections. Most won't have anything to write,
5245 // since most of the data will come from input sections which are
5246 // handled elsewhere. But some Output_sections do have Output_data.
5247
5248 void
5249 Layout::write_output_sections(Output_file* of) const
5250 {
5251 for (Section_list::const_iterator p = this->section_list_.begin();
5252 p != this->section_list_.end();
5253 ++p)
5254 {
5255 if (!(*p)->after_input_sections())
5256 (*p)->write(of);
5257 }
5258 }
5259
5260 // Write out data not associated with a section or the symbol table.
5261
5262 void
5263 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5264 {
5265 if (!parameters->options().strip_all())
5266 {
5267 const Output_section* symtab_section = this->symtab_section_;
5268 for (Section_list::const_iterator p = this->section_list_.begin();
5269 p != this->section_list_.end();
5270 ++p)
5271 {
5272 if ((*p)->needs_symtab_index())
5273 {
5274 gold_assert(symtab_section != NULL);
5275 unsigned int index = (*p)->symtab_index();
5276 gold_assert(index > 0 && index != -1U);
5277 off_t off = (symtab_section->offset()
5278 + index * symtab_section->entsize());
5279 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5280 }
5281 }
5282 }
5283
5284 const Output_section* dynsym_section = this->dynsym_section_;
5285 for (Section_list::const_iterator p = this->section_list_.begin();
5286 p != this->section_list_.end();
5287 ++p)
5288 {
5289 if ((*p)->needs_dynsym_index())
5290 {
5291 gold_assert(dynsym_section != NULL);
5292 unsigned int index = (*p)->dynsym_index();
5293 gold_assert(index > 0 && index != -1U);
5294 off_t off = (dynsym_section->offset()
5295 + index * dynsym_section->entsize());
5296 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5297 }
5298 }
5299
5300 // Write out the Output_data which are not in an Output_section.
5301 for (Data_list::const_iterator p = this->special_output_list_.begin();
5302 p != this->special_output_list_.end();
5303 ++p)
5304 (*p)->write(of);
5305
5306 // Write out the Output_data which are not in an Output_section
5307 // and are regenerated in each iteration of relaxation.
5308 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5309 p != this->relax_output_list_.end();
5310 ++p)
5311 (*p)->write(of);
5312 }
5313
5314 // Write out the Output_sections which can only be written after the
5315 // input sections are complete.
5316
5317 void
5318 Layout::write_sections_after_input_sections(Output_file* of)
5319 {
5320 // Determine the final section offsets, and thus the final output
5321 // file size. Note we finalize the .shstrab last, to allow the
5322 // after_input_section sections to modify their section-names before
5323 // writing.
5324 if (this->any_postprocessing_sections_)
5325 {
5326 off_t off = this->output_file_size_;
5327 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5328
5329 // Now that we've finalized the names, we can finalize the shstrab.
5330 off =
5331 this->set_section_offsets(off,
5332 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5333
5334 if (off > this->output_file_size_)
5335 {
5336 of->resize(off);
5337 this->output_file_size_ = off;
5338 }
5339 }
5340
5341 for (Section_list::const_iterator p = this->section_list_.begin();
5342 p != this->section_list_.end();
5343 ++p)
5344 {
5345 if ((*p)->after_input_sections())
5346 (*p)->write(of);
5347 }
5348
5349 this->section_headers_->write(of);
5350 }
5351
5352 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5353 // or as a "tree" where each chunk of the string is hashed and then those
5354 // hashes are put into a (much smaller) string which is hashed with sha1.
5355 // We compute a checksum over the entire file because that is simplest.
5356
5357 Task_token*
5358 Layout::queue_build_id_tasks(Workqueue* workqueue, Task_token* build_id_blocker,
5359 Output_file* of)
5360 {
5361 const size_t filesize = (this->output_file_size() <= 0 ? 0
5362 : static_cast<size_t>(this->output_file_size()));
5363 if (this->build_id_note_ != NULL
5364 && strcmp(parameters->options().build_id(), "tree") == 0
5365 && parameters->options().build_id_chunk_size_for_treehash() > 0
5366 && filesize > 0
5367 && (filesize >=
5368 parameters->options().build_id_min_file_size_for_treehash()))
5369 {
5370 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5371 const size_t chunk_size =
5372 parameters->options().build_id_chunk_size_for_treehash();
5373 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5374 Task_token* post_hash_tasks_blocker = new Task_token(true);
5375 post_hash_tasks_blocker->add_blockers(num_hashes);
5376 this->size_of_array_of_hashes_ = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5377 const unsigned char* src = of->get_input_view(0, filesize);
5378 this->input_view_ = src;
5379 unsigned char *dst = new unsigned char[this->size_of_array_of_hashes_];
5380 this->array_of_hashes_ = dst;
5381 for (size_t i = 0, src_offset = 0; i < num_hashes;
5382 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5383 {
5384 size_t size = std::min(chunk_size, filesize - src_offset);
5385 workqueue->queue(new Hash_task(src + src_offset,
5386 size,
5387 dst,
5388 build_id_blocker,
5389 post_hash_tasks_blocker));
5390 }
5391 return post_hash_tasks_blocker;
5392 }
5393 return build_id_blocker;
5394 }
5395
5396 // If a tree-style build ID was requested, the parallel part of that computation
5397 // is already done, and the final hash-of-hashes is computed here. For other
5398 // types of build IDs, all the work is done here.
5399
5400 void
5401 Layout::write_build_id(Output_file* of) const
5402 {
5403 if (this->build_id_note_ == NULL)
5404 return;
5405
5406 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5407 this->build_id_note_->data_size());
5408
5409 if (this->array_of_hashes_ == NULL)
5410 {
5411 const size_t output_file_size = this->output_file_size();
5412 const unsigned char* iv = of->get_input_view(0, output_file_size);
5413 const char* style = parameters->options().build_id();
5414
5415 // If we get here with style == "tree" then the output must be
5416 // too small for chunking, and we use SHA-1 in that case.
5417 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5418 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5419 else if (strcmp(style, "md5") == 0)
5420 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5421 else
5422 gold_unreachable();
5423
5424 of->free_input_view(0, output_file_size, iv);
5425 }
5426 else
5427 {
5428 // Non-overlapping substrings of the output file have been hashed.
5429 // Compute SHA-1 hash of the hashes.
5430 sha1_buffer(reinterpret_cast<const char*>(this->array_of_hashes_),
5431 this->size_of_array_of_hashes_, ov);
5432 delete[] this->array_of_hashes_;
5433 of->free_input_view(0, this->output_file_size(), this->input_view_);
5434 }
5435
5436 of->write_output_view(this->build_id_note_->offset(),
5437 this->build_id_note_->data_size(),
5438 ov);
5439 }
5440
5441 // Write out a binary file. This is called after the link is
5442 // complete. IN is the temporary output file we used to generate the
5443 // ELF code. We simply walk through the segments, read them from
5444 // their file offset in IN, and write them to their load address in
5445 // the output file. FIXME: with a bit more work, we could support
5446 // S-records and/or Intel hex format here.
5447
5448 void
5449 Layout::write_binary(Output_file* in) const
5450 {
5451 gold_assert(parameters->options().oformat_enum()
5452 == General_options::OBJECT_FORMAT_BINARY);
5453
5454 // Get the size of the binary file.
5455 uint64_t max_load_address = 0;
5456 for (Segment_list::const_iterator p = this->segment_list_.begin();
5457 p != this->segment_list_.end();
5458 ++p)
5459 {
5460 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5461 {
5462 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5463 if (max_paddr > max_load_address)
5464 max_load_address = max_paddr;
5465 }
5466 }
5467
5468 Output_file out(parameters->options().output_file_name());
5469 out.open(max_load_address);
5470
5471 for (Segment_list::const_iterator p = this->segment_list_.begin();
5472 p != this->segment_list_.end();
5473 ++p)
5474 {
5475 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5476 {
5477 const unsigned char* vin = in->get_input_view((*p)->offset(),
5478 (*p)->filesz());
5479 unsigned char* vout = out.get_output_view((*p)->paddr(),
5480 (*p)->filesz());
5481 memcpy(vout, vin, (*p)->filesz());
5482 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5483 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5484 }
5485 }
5486
5487 out.close();
5488 }
5489
5490 // Print the output sections to the map file.
5491
5492 void
5493 Layout::print_to_mapfile(Mapfile* mapfile) const
5494 {
5495 for (Segment_list::const_iterator p = this->segment_list_.begin();
5496 p != this->segment_list_.end();
5497 ++p)
5498 (*p)->print_sections_to_mapfile(mapfile);
5499 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5500 p != this->unattached_section_list_.end();
5501 ++p)
5502 (*p)->print_to_mapfile(mapfile);
5503 }
5504
5505 // Print statistical information to stderr. This is used for --stats.
5506
5507 void
5508 Layout::print_stats() const
5509 {
5510 this->namepool_.print_stats("section name pool");
5511 this->sympool_.print_stats("output symbol name pool");
5512 this->dynpool_.print_stats("dynamic name pool");
5513
5514 for (Section_list::const_iterator p = this->section_list_.begin();
5515 p != this->section_list_.end();
5516 ++p)
5517 (*p)->print_merge_stats();
5518 }
5519
5520 // Write_sections_task methods.
5521
5522 // We can always run this task.
5523
5524 Task_token*
5525 Write_sections_task::is_runnable()
5526 {
5527 return NULL;
5528 }
5529
5530 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5531 // when finished.
5532
5533 void
5534 Write_sections_task::locks(Task_locker* tl)
5535 {
5536 tl->add(this, this->output_sections_blocker_);
5537 if (this->input_sections_blocker_ != NULL)
5538 tl->add(this, this->input_sections_blocker_);
5539 tl->add(this, this->final_blocker_);
5540 }
5541
5542 // Run the task--write out the data.
5543
5544 void
5545 Write_sections_task::run(Workqueue*)
5546 {
5547 this->layout_->write_output_sections(this->of_);
5548 }
5549
5550 // Write_data_task methods.
5551
5552 // We can always run this task.
5553
5554 Task_token*
5555 Write_data_task::is_runnable()
5556 {
5557 return NULL;
5558 }
5559
5560 // We need to unlock FINAL_BLOCKER when finished.
5561
5562 void
5563 Write_data_task::locks(Task_locker* tl)
5564 {
5565 tl->add(this, this->final_blocker_);
5566 }
5567
5568 // Run the task--write out the data.
5569
5570 void
5571 Write_data_task::run(Workqueue*)
5572 {
5573 this->layout_->write_data(this->symtab_, this->of_);
5574 }
5575
5576 // Write_symbols_task methods.
5577
5578 // We can always run this task.
5579
5580 Task_token*
5581 Write_symbols_task::is_runnable()
5582 {
5583 return NULL;
5584 }
5585
5586 // We need to unlock FINAL_BLOCKER when finished.
5587
5588 void
5589 Write_symbols_task::locks(Task_locker* tl)
5590 {
5591 tl->add(this, this->final_blocker_);
5592 }
5593
5594 // Run the task--write out the symbols.
5595
5596 void
5597 Write_symbols_task::run(Workqueue*)
5598 {
5599 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5600 this->layout_->symtab_xindex(),
5601 this->layout_->dynsym_xindex(), this->of_);
5602 }
5603
5604 // Write_after_input_sections_task methods.
5605
5606 // We can only run this task after the input sections have completed.
5607
5608 Task_token*
5609 Write_after_input_sections_task::is_runnable()
5610 {
5611 if (this->input_sections_blocker_->is_blocked())
5612 return this->input_sections_blocker_;
5613 return NULL;
5614 }
5615
5616 // We need to unlock FINAL_BLOCKER when finished.
5617
5618 void
5619 Write_after_input_sections_task::locks(Task_locker* tl)
5620 {
5621 tl->add(this, this->final_blocker_);
5622 }
5623
5624 // Run the task.
5625
5626 void
5627 Write_after_input_sections_task::run(Workqueue*)
5628 {
5629 this->layout_->write_sections_after_input_sections(this->of_);
5630 }
5631
5632 // Close_task_runner methods.
5633
5634 // Finish up the build ID computation, if necessary, and write a binary file,
5635 // if necessary. Then close the output file.
5636
5637 void
5638 Close_task_runner::run(Workqueue*, const Task*)
5639 {
5640 // At this point the multi-threaded part of the build ID computation,
5641 // if any, is done. See queue_build_id_tasks().
5642 this->layout_->write_build_id(this->of_);
5643
5644 // If we've been asked to create a binary file, we do so here.
5645 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5646 this->layout_->write_binary(this->of_);
5647
5648 this->of_->close();
5649 }
5650
5651 // Instantiate the templates we need. We could use the configure
5652 // script to restrict this to only the ones for implemented targets.
5653
5654 #ifdef HAVE_TARGET_32_LITTLE
5655 template
5656 Output_section*
5657 Layout::init_fixed_output_section<32, false>(
5658 const char* name,
5659 elfcpp::Shdr<32, false>& shdr);
5660 #endif
5661
5662 #ifdef HAVE_TARGET_32_BIG
5663 template
5664 Output_section*
5665 Layout::init_fixed_output_section<32, true>(
5666 const char* name,
5667 elfcpp::Shdr<32, true>& shdr);
5668 #endif
5669
5670 #ifdef HAVE_TARGET_64_LITTLE
5671 template
5672 Output_section*
5673 Layout::init_fixed_output_section<64, false>(
5674 const char* name,
5675 elfcpp::Shdr<64, false>& shdr);
5676 #endif
5677
5678 #ifdef HAVE_TARGET_64_BIG
5679 template
5680 Output_section*
5681 Layout::init_fixed_output_section<64, true>(
5682 const char* name,
5683 elfcpp::Shdr<64, true>& shdr);
5684 #endif
5685
5686 #ifdef HAVE_TARGET_32_LITTLE
5687 template
5688 Output_section*
5689 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5690 unsigned int shndx,
5691 const char* name,
5692 const elfcpp::Shdr<32, false>& shdr,
5693 unsigned int, unsigned int, off_t*);
5694 #endif
5695
5696 #ifdef HAVE_TARGET_32_BIG
5697 template
5698 Output_section*
5699 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5700 unsigned int shndx,
5701 const char* name,
5702 const elfcpp::Shdr<32, true>& shdr,
5703 unsigned int, unsigned int, off_t*);
5704 #endif
5705
5706 #ifdef HAVE_TARGET_64_LITTLE
5707 template
5708 Output_section*
5709 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5710 unsigned int shndx,
5711 const char* name,
5712 const elfcpp::Shdr<64, false>& shdr,
5713 unsigned int, unsigned int, off_t*);
5714 #endif
5715
5716 #ifdef HAVE_TARGET_64_BIG
5717 template
5718 Output_section*
5719 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5720 unsigned int shndx,
5721 const char* name,
5722 const elfcpp::Shdr<64, true>& shdr,
5723 unsigned int, unsigned int, off_t*);
5724 #endif
5725
5726 #ifdef HAVE_TARGET_32_LITTLE
5727 template
5728 Output_section*
5729 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5730 unsigned int reloc_shndx,
5731 const elfcpp::Shdr<32, false>& shdr,
5732 Output_section* data_section,
5733 Relocatable_relocs* rr);
5734 #endif
5735
5736 #ifdef HAVE_TARGET_32_BIG
5737 template
5738 Output_section*
5739 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5740 unsigned int reloc_shndx,
5741 const elfcpp::Shdr<32, true>& shdr,
5742 Output_section* data_section,
5743 Relocatable_relocs* rr);
5744 #endif
5745
5746 #ifdef HAVE_TARGET_64_LITTLE
5747 template
5748 Output_section*
5749 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5750 unsigned int reloc_shndx,
5751 const elfcpp::Shdr<64, false>& shdr,
5752 Output_section* data_section,
5753 Relocatable_relocs* rr);
5754 #endif
5755
5756 #ifdef HAVE_TARGET_64_BIG
5757 template
5758 Output_section*
5759 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5760 unsigned int reloc_shndx,
5761 const elfcpp::Shdr<64, true>& shdr,
5762 Output_section* data_section,
5763 Relocatable_relocs* rr);
5764 #endif
5765
5766 #ifdef HAVE_TARGET_32_LITTLE
5767 template
5768 void
5769 Layout::layout_group<32, false>(Symbol_table* symtab,
5770 Sized_relobj_file<32, false>* object,
5771 unsigned int,
5772 const char* group_section_name,
5773 const char* signature,
5774 const elfcpp::Shdr<32, false>& shdr,
5775 elfcpp::Elf_Word flags,
5776 std::vector<unsigned int>* shndxes);
5777 #endif
5778
5779 #ifdef HAVE_TARGET_32_BIG
5780 template
5781 void
5782 Layout::layout_group<32, true>(Symbol_table* symtab,
5783 Sized_relobj_file<32, true>* object,
5784 unsigned int,
5785 const char* group_section_name,
5786 const char* signature,
5787 const elfcpp::Shdr<32, true>& shdr,
5788 elfcpp::Elf_Word flags,
5789 std::vector<unsigned int>* shndxes);
5790 #endif
5791
5792 #ifdef HAVE_TARGET_64_LITTLE
5793 template
5794 void
5795 Layout::layout_group<64, false>(Symbol_table* symtab,
5796 Sized_relobj_file<64, false>* object,
5797 unsigned int,
5798 const char* group_section_name,
5799 const char* signature,
5800 const elfcpp::Shdr<64, false>& shdr,
5801 elfcpp::Elf_Word flags,
5802 std::vector<unsigned int>* shndxes);
5803 #endif
5804
5805 #ifdef HAVE_TARGET_64_BIG
5806 template
5807 void
5808 Layout::layout_group<64, true>(Symbol_table* symtab,
5809 Sized_relobj_file<64, true>* object,
5810 unsigned int,
5811 const char* group_section_name,
5812 const char* signature,
5813 const elfcpp::Shdr<64, true>& shdr,
5814 elfcpp::Elf_Word flags,
5815 std::vector<unsigned int>* shndxes);
5816 #endif
5817
5818 #ifdef HAVE_TARGET_32_LITTLE
5819 template
5820 Output_section*
5821 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5822 const unsigned char* symbols,
5823 off_t symbols_size,
5824 const unsigned char* symbol_names,
5825 off_t symbol_names_size,
5826 unsigned int shndx,
5827 const elfcpp::Shdr<32, false>& shdr,
5828 unsigned int reloc_shndx,
5829 unsigned int reloc_type,
5830 off_t* off);
5831 #endif
5832
5833 #ifdef HAVE_TARGET_32_BIG
5834 template
5835 Output_section*
5836 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5837 const unsigned char* symbols,
5838 off_t symbols_size,
5839 const unsigned char* symbol_names,
5840 off_t symbol_names_size,
5841 unsigned int shndx,
5842 const elfcpp::Shdr<32, true>& shdr,
5843 unsigned int reloc_shndx,
5844 unsigned int reloc_type,
5845 off_t* off);
5846 #endif
5847
5848 #ifdef HAVE_TARGET_64_LITTLE
5849 template
5850 Output_section*
5851 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5852 const unsigned char* symbols,
5853 off_t symbols_size,
5854 const unsigned char* symbol_names,
5855 off_t symbol_names_size,
5856 unsigned int shndx,
5857 const elfcpp::Shdr<64, false>& shdr,
5858 unsigned int reloc_shndx,
5859 unsigned int reloc_type,
5860 off_t* off);
5861 #endif
5862
5863 #ifdef HAVE_TARGET_64_BIG
5864 template
5865 Output_section*
5866 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5867 const unsigned char* symbols,
5868 off_t symbols_size,
5869 const unsigned char* symbol_names,
5870 off_t symbol_names_size,
5871 unsigned int shndx,
5872 const elfcpp::Shdr<64, true>& shdr,
5873 unsigned int reloc_shndx,
5874 unsigned int reloc_type,
5875 off_t* off);
5876 #endif
5877
5878 #ifdef HAVE_TARGET_32_LITTLE
5879 template
5880 void
5881 Layout::add_to_gdb_index(bool is_type_unit,
5882 Sized_relobj<32, false>* object,
5883 const unsigned char* symbols,
5884 off_t symbols_size,
5885 unsigned int shndx,
5886 unsigned int reloc_shndx,
5887 unsigned int reloc_type);
5888 #endif
5889
5890 #ifdef HAVE_TARGET_32_BIG
5891 template
5892 void
5893 Layout::add_to_gdb_index(bool is_type_unit,
5894 Sized_relobj<32, true>* object,
5895 const unsigned char* symbols,
5896 off_t symbols_size,
5897 unsigned int shndx,
5898 unsigned int reloc_shndx,
5899 unsigned int reloc_type);
5900 #endif
5901
5902 #ifdef HAVE_TARGET_64_LITTLE
5903 template
5904 void
5905 Layout::add_to_gdb_index(bool is_type_unit,
5906 Sized_relobj<64, false>* object,
5907 const unsigned char* symbols,
5908 off_t symbols_size,
5909 unsigned int shndx,
5910 unsigned int reloc_shndx,
5911 unsigned int reloc_type);
5912 #endif
5913
5914 #ifdef HAVE_TARGET_64_BIG
5915 template
5916 void
5917 Layout::add_to_gdb_index(bool is_type_unit,
5918 Sized_relobj<64, true>* object,
5919 const unsigned char* symbols,
5920 off_t symbols_size,
5921 unsigned int shndx,
5922 unsigned int reloc_shndx,
5923 unsigned int reloc_type);
5924 #endif
5925
5926 } // End namespace gold.
This page took 0.15061 seconds and 4 git commands to generate.