* layout.cc (Layout::include_section): Refactored check for debug
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "script.h"
39 #include "script-sections.h"
40 #include "output.h"
41 #include "symtab.h"
42 #include "dynobj.h"
43 #include "ehframe.h"
44 #include "compressed_output.h"
45 #include "reloc.h"
46 #include "layout.h"
47
48 namespace gold
49 {
50
51 // Layout_task_runner methods.
52
53 // Lay out the sections. This is called after all the input objects
54 // have been read.
55
56 void
57 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
58 {
59 off_t file_size = this->layout_->finalize(this->input_objects_,
60 this->symtab_,
61 this->target_,
62 task);
63
64 // Now we know the final size of the output file and we know where
65 // each piece of information goes.
66 Output_file* of = new Output_file(parameters->options().output_file_name());
67 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
68 of->set_is_temporary();
69 of->open(file_size);
70
71 // Queue up the final set of tasks.
72 gold::queue_final_tasks(this->options_, this->input_objects_,
73 this->symtab_, this->layout_, workqueue, of);
74 }
75
76 // Layout methods.
77
78 Layout::Layout(const General_options& options, Script_options* script_options)
79 : options_(options),
80 script_options_(script_options),
81 namepool_(),
82 sympool_(),
83 dynpool_(),
84 signatures_(),
85 section_name_map_(),
86 segment_list_(),
87 section_list_(),
88 unattached_section_list_(),
89 sections_are_attached_(false),
90 special_output_list_(),
91 section_headers_(NULL),
92 tls_segment_(NULL),
93 symtab_section_(NULL),
94 symtab_xindex_(NULL),
95 dynsym_section_(NULL),
96 dynsym_xindex_(NULL),
97 dynamic_section_(NULL),
98 dynamic_data_(NULL),
99 eh_frame_section_(NULL),
100 eh_frame_data_(NULL),
101 added_eh_frame_data_(false),
102 eh_frame_hdr_section_(NULL),
103 build_id_note_(NULL),
104 group_signatures_(),
105 output_file_size_(-1),
106 input_requires_executable_stack_(false),
107 input_with_gnu_stack_note_(false),
108 input_without_gnu_stack_note_(false),
109 has_static_tls_(false),
110 any_postprocessing_sections_(false)
111 {
112 // Make space for more than enough segments for a typical file.
113 // This is just for efficiency--it's OK if we wind up needing more.
114 this->segment_list_.reserve(12);
115
116 // We expect two unattached Output_data objects: the file header and
117 // the segment headers.
118 this->special_output_list_.reserve(2);
119 }
120
121 // Hash a key we use to look up an output section mapping.
122
123 size_t
124 Layout::Hash_key::operator()(const Layout::Key& k) const
125 {
126 return k.first + k.second.first + k.second.second;
127 }
128
129 // Return whether PREFIX is a prefix of STR.
130
131 static inline bool
132 is_prefix_of(const char* prefix, const char* str)
133 {
134 return strncmp(prefix, str, strlen(prefix)) == 0;
135 }
136
137 // Returns whether the given section is in the list of
138 // debug-sections-used-by-some-version-of-gdb. Currently,
139 // we've checked versions of gdb up to and including 6.7.1.
140
141 static const char* gdb_sections[] =
142 { ".debug_abbrev",
143 // ".debug_aranges", // not used by gdb as of 6.7.1
144 ".debug_frame",
145 ".debug_info",
146 ".debug_line",
147 ".debug_loc",
148 ".debug_macinfo",
149 // ".debug_pubnames", // not used by gdb as of 6.7.1
150 ".debug_ranges",
151 ".debug_str",
152 };
153
154 static inline bool
155 is_gdb_debug_section(const char* str)
156 {
157 // We can do this faster: binary search or a hashtable. But why bother?
158 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
159 if (strcmp(str, gdb_sections[i]) == 0)
160 return true;
161 return false;
162 }
163
164 // Whether to include this section in the link.
165
166 template<int size, bool big_endian>
167 bool
168 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
169 const elfcpp::Shdr<size, big_endian>& shdr)
170 {
171 switch (shdr.get_sh_type())
172 {
173 case elfcpp::SHT_NULL:
174 case elfcpp::SHT_SYMTAB:
175 case elfcpp::SHT_DYNSYM:
176 case elfcpp::SHT_STRTAB:
177 case elfcpp::SHT_HASH:
178 case elfcpp::SHT_DYNAMIC:
179 case elfcpp::SHT_SYMTAB_SHNDX:
180 return false;
181
182 case elfcpp::SHT_RELA:
183 case elfcpp::SHT_REL:
184 case elfcpp::SHT_GROUP:
185 // If we are emitting relocations these should be handled
186 // elsewhere.
187 gold_assert(!parameters->options().relocatable()
188 && !parameters->options().emit_relocs());
189 return false;
190
191 case elfcpp::SHT_PROGBITS:
192 if (parameters->options().strip_debug()
193 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
194 {
195 if (is_debug_info_section(name))
196 return false;
197 }
198 if (parameters->options().strip_debug_gdb()
199 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
200 {
201 // Debugging sections can only be recognized by name.
202 if (is_prefix_of(".debug", name)
203 && !is_gdb_debug_section(name))
204 return false;
205 }
206 return true;
207
208 default:
209 return true;
210 }
211 }
212
213 // Return an output section named NAME, or NULL if there is none.
214
215 Output_section*
216 Layout::find_output_section(const char* name) const
217 {
218 for (Section_list::const_iterator p = this->section_list_.begin();
219 p != this->section_list_.end();
220 ++p)
221 if (strcmp((*p)->name(), name) == 0)
222 return *p;
223 return NULL;
224 }
225
226 // Return an output segment of type TYPE, with segment flags SET set
227 // and segment flags CLEAR clear. Return NULL if there is none.
228
229 Output_segment*
230 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
231 elfcpp::Elf_Word clear) const
232 {
233 for (Segment_list::const_iterator p = this->segment_list_.begin();
234 p != this->segment_list_.end();
235 ++p)
236 if (static_cast<elfcpp::PT>((*p)->type()) == type
237 && ((*p)->flags() & set) == set
238 && ((*p)->flags() & clear) == 0)
239 return *p;
240 return NULL;
241 }
242
243 // Return the output section to use for section NAME with type TYPE
244 // and section flags FLAGS. NAME must be canonicalized in the string
245 // pool, and NAME_KEY is the key.
246
247 Output_section*
248 Layout::get_output_section(const char* name, Stringpool::Key name_key,
249 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
250 {
251 elfcpp::Elf_Xword lookup_flags = flags;
252
253 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
254 // read-write with read-only sections. Some other ELF linkers do
255 // not do this. FIXME: Perhaps there should be an option
256 // controlling this.
257 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
258
259 const Key key(name_key, std::make_pair(type, lookup_flags));
260 const std::pair<Key, Output_section*> v(key, NULL);
261 std::pair<Section_name_map::iterator, bool> ins(
262 this->section_name_map_.insert(v));
263
264 if (!ins.second)
265 return ins.first->second;
266 else
267 {
268 // This is the first time we've seen this name/type/flags
269 // combination. For compatibility with the GNU linker, we
270 // combine sections with contents and zero flags with sections
271 // with non-zero flags. This is a workaround for cases where
272 // assembler code forgets to set section flags. FIXME: Perhaps
273 // there should be an option to control this.
274 Output_section* os = NULL;
275
276 if (type == elfcpp::SHT_PROGBITS)
277 {
278 if (flags == 0)
279 {
280 Output_section* same_name = this->find_output_section(name);
281 if (same_name != NULL
282 && same_name->type() == elfcpp::SHT_PROGBITS
283 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
284 os = same_name;
285 }
286 else if ((flags & elfcpp::SHF_TLS) == 0)
287 {
288 elfcpp::Elf_Xword zero_flags = 0;
289 const Key zero_key(name_key, std::make_pair(type, zero_flags));
290 Section_name_map::iterator p =
291 this->section_name_map_.find(zero_key);
292 if (p != this->section_name_map_.end())
293 os = p->second;
294 }
295 }
296
297 if (os == NULL)
298 os = this->make_output_section(name, type, flags);
299 ins.first->second = os;
300 return os;
301 }
302 }
303
304 // Pick the output section to use for section NAME, in input file
305 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
306 // linker created section. IS_INPUT_SECTION is true if we are
307 // choosing an output section for an input section found in a input
308 // file. This will return NULL if the input section should be
309 // discarded.
310
311 Output_section*
312 Layout::choose_output_section(const Relobj* relobj, const char* name,
313 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
314 bool is_input_section)
315 {
316 // We should not see any input sections after we have attached
317 // sections to segments.
318 gold_assert(!is_input_section || !this->sections_are_attached_);
319
320 // Some flags in the input section should not be automatically
321 // copied to the output section.
322 flags &= ~ (elfcpp::SHF_INFO_LINK
323 | elfcpp::SHF_LINK_ORDER
324 | elfcpp::SHF_GROUP
325 | elfcpp::SHF_MERGE
326 | elfcpp::SHF_STRINGS);
327
328 if (this->script_options_->saw_sections_clause())
329 {
330 // We are using a SECTIONS clause, so the output section is
331 // chosen based only on the name.
332
333 Script_sections* ss = this->script_options_->script_sections();
334 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
335 Output_section** output_section_slot;
336 name = ss->output_section_name(file_name, name, &output_section_slot);
337 if (name == NULL)
338 {
339 // The SECTIONS clause says to discard this input section.
340 return NULL;
341 }
342
343 // If this is an orphan section--one not mentioned in the linker
344 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
345 // default processing below.
346
347 if (output_section_slot != NULL)
348 {
349 if (*output_section_slot != NULL)
350 return *output_section_slot;
351
352 // We don't put sections found in the linker script into
353 // SECTION_NAME_MAP_. That keeps us from getting confused
354 // if an orphan section is mapped to a section with the same
355 // name as one in the linker script.
356
357 name = this->namepool_.add(name, false, NULL);
358
359 Output_section* os = this->make_output_section(name, type, flags);
360 os->set_found_in_sections_clause();
361 *output_section_slot = os;
362 return os;
363 }
364 }
365
366 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
367
368 // Turn NAME from the name of the input section into the name of the
369 // output section.
370
371 size_t len = strlen(name);
372 if (is_input_section && !parameters->options().relocatable())
373 name = Layout::output_section_name(name, &len);
374
375 Stringpool::Key name_key;
376 name = this->namepool_.add_with_length(name, len, true, &name_key);
377
378 // Find or make the output section. The output section is selected
379 // based on the section name, type, and flags.
380 return this->get_output_section(name, name_key, type, flags);
381 }
382
383 // Return the output section to use for input section SHNDX, with name
384 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
385 // index of a relocation section which applies to this section, or 0
386 // if none, or -1U if more than one. RELOC_TYPE is the type of the
387 // relocation section if there is one. Set *OFF to the offset of this
388 // input section without the output section. Return NULL if the
389 // section should be discarded. Set *OFF to -1 if the section
390 // contents should not be written directly to the output file, but
391 // will instead receive special handling.
392
393 template<int size, bool big_endian>
394 Output_section*
395 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
396 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
397 unsigned int reloc_shndx, unsigned int, off_t* off)
398 {
399 if (!this->include_section(object, name, shdr))
400 return NULL;
401
402 Output_section* os;
403
404 // In a relocatable link a grouped section must not be combined with
405 // any other sections.
406 if (parameters->options().relocatable()
407 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
408 {
409 name = this->namepool_.add(name, true, NULL);
410 os = this->make_output_section(name, shdr.get_sh_type(),
411 shdr.get_sh_flags());
412 }
413 else
414 {
415 os = this->choose_output_section(object, name, shdr.get_sh_type(),
416 shdr.get_sh_flags(), true);
417 if (os == NULL)
418 return NULL;
419 }
420
421 // By default the GNU linker sorts input sections whose names match
422 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
423 // are sorted by name. This is used to implement constructor
424 // priority ordering. We are compatible.
425 if (!this->script_options_->saw_sections_clause()
426 && (is_prefix_of(".ctors.", name)
427 || is_prefix_of(".dtors.", name)
428 || is_prefix_of(".init_array.", name)
429 || is_prefix_of(".fini_array.", name)))
430 os->set_must_sort_attached_input_sections();
431
432 // FIXME: Handle SHF_LINK_ORDER somewhere.
433
434 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
435 this->script_options_->saw_sections_clause());
436
437 return os;
438 }
439
440 // Handle a relocation section when doing a relocatable link.
441
442 template<int size, bool big_endian>
443 Output_section*
444 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
445 unsigned int,
446 const elfcpp::Shdr<size, big_endian>& shdr,
447 Output_section* data_section,
448 Relocatable_relocs* rr)
449 {
450 gold_assert(parameters->options().relocatable()
451 || parameters->options().emit_relocs());
452
453 int sh_type = shdr.get_sh_type();
454
455 std::string name;
456 if (sh_type == elfcpp::SHT_REL)
457 name = ".rel";
458 else if (sh_type == elfcpp::SHT_RELA)
459 name = ".rela";
460 else
461 gold_unreachable();
462 name += data_section->name();
463
464 Output_section* os = this->choose_output_section(object, name.c_str(),
465 sh_type,
466 shdr.get_sh_flags(),
467 false);
468
469 os->set_should_link_to_symtab();
470 os->set_info_section(data_section);
471
472 Output_section_data* posd;
473 if (sh_type == elfcpp::SHT_REL)
474 {
475 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
476 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
477 size,
478 big_endian>(rr);
479 }
480 else if (sh_type == elfcpp::SHT_RELA)
481 {
482 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
483 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
484 size,
485 big_endian>(rr);
486 }
487 else
488 gold_unreachable();
489
490 os->add_output_section_data(posd);
491 rr->set_output_data(posd);
492
493 return os;
494 }
495
496 // Handle a group section when doing a relocatable link.
497
498 template<int size, bool big_endian>
499 void
500 Layout::layout_group(Symbol_table* symtab,
501 Sized_relobj<size, big_endian>* object,
502 unsigned int,
503 const char* group_section_name,
504 const char* signature,
505 const elfcpp::Shdr<size, big_endian>& shdr,
506 const elfcpp::Elf_Word* contents)
507 {
508 gold_assert(parameters->options().relocatable());
509 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
510 group_section_name = this->namepool_.add(group_section_name, true, NULL);
511 Output_section* os = this->make_output_section(group_section_name,
512 elfcpp::SHT_GROUP,
513 shdr.get_sh_flags());
514
515 // We need to find a symbol with the signature in the symbol table.
516 // If we don't find one now, we need to look again later.
517 Symbol* sym = symtab->lookup(signature, NULL);
518 if (sym != NULL)
519 os->set_info_symndx(sym);
520 else
521 {
522 // We will wind up using a symbol whose name is the signature.
523 // So just put the signature in the symbol name pool to save it.
524 signature = symtab->canonicalize_name(signature);
525 this->group_signatures_.push_back(Group_signature(os, signature));
526 }
527
528 os->set_should_link_to_symtab();
529 os->set_entsize(4);
530
531 section_size_type entry_count =
532 convert_to_section_size_type(shdr.get_sh_size() / 4);
533 Output_section_data* posd =
534 new Output_data_group<size, big_endian>(object, entry_count, contents);
535 os->add_output_section_data(posd);
536 }
537
538 // Special GNU handling of sections name .eh_frame. They will
539 // normally hold exception frame data as defined by the C++ ABI
540 // (http://codesourcery.com/cxx-abi/).
541
542 template<int size, bool big_endian>
543 Output_section*
544 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
545 const unsigned char* symbols,
546 off_t symbols_size,
547 const unsigned char* symbol_names,
548 off_t symbol_names_size,
549 unsigned int shndx,
550 const elfcpp::Shdr<size, big_endian>& shdr,
551 unsigned int reloc_shndx, unsigned int reloc_type,
552 off_t* off)
553 {
554 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
555 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
556
557 const char* const name = ".eh_frame";
558 Output_section* os = this->choose_output_section(object,
559 name,
560 elfcpp::SHT_PROGBITS,
561 elfcpp::SHF_ALLOC,
562 false);
563 if (os == NULL)
564 return NULL;
565
566 if (this->eh_frame_section_ == NULL)
567 {
568 this->eh_frame_section_ = os;
569 this->eh_frame_data_ = new Eh_frame();
570
571 if (this->options_.eh_frame_hdr())
572 {
573 Output_section* hdr_os =
574 this->choose_output_section(NULL,
575 ".eh_frame_hdr",
576 elfcpp::SHT_PROGBITS,
577 elfcpp::SHF_ALLOC,
578 false);
579
580 if (hdr_os != NULL)
581 {
582 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
583 this->eh_frame_data_);
584 hdr_os->add_output_section_data(hdr_posd);
585
586 hdr_os->set_after_input_sections();
587
588 if (!this->script_options_->saw_phdrs_clause())
589 {
590 Output_segment* hdr_oseg;
591 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
592 elfcpp::PF_R);
593 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
594 }
595
596 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
597 }
598 }
599 }
600
601 gold_assert(this->eh_frame_section_ == os);
602
603 if (this->eh_frame_data_->add_ehframe_input_section(object,
604 symbols,
605 symbols_size,
606 symbol_names,
607 symbol_names_size,
608 shndx,
609 reloc_shndx,
610 reloc_type))
611 {
612 os->update_flags_for_input_section(shdr.get_sh_flags());
613
614 // We found a .eh_frame section we are going to optimize, so now
615 // we can add the set of optimized sections to the output
616 // section. We need to postpone adding this until we've found a
617 // section we can optimize so that the .eh_frame section in
618 // crtbegin.o winds up at the start of the output section.
619 if (!this->added_eh_frame_data_)
620 {
621 os->add_output_section_data(this->eh_frame_data_);
622 this->added_eh_frame_data_ = true;
623 }
624 *off = -1;
625 }
626 else
627 {
628 // We couldn't handle this .eh_frame section for some reason.
629 // Add it as a normal section.
630 bool saw_sections_clause = this->script_options_->saw_sections_clause();
631 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
632 saw_sections_clause);
633 }
634
635 return os;
636 }
637
638 // Add POSD to an output section using NAME, TYPE, and FLAGS.
639
640 void
641 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
642 elfcpp::Elf_Xword flags,
643 Output_section_data* posd)
644 {
645 Output_section* os = this->choose_output_section(NULL, name, type, flags,
646 false);
647 if (os != NULL)
648 os->add_output_section_data(posd);
649 }
650
651 // Map section flags to segment flags.
652
653 elfcpp::Elf_Word
654 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
655 {
656 elfcpp::Elf_Word ret = elfcpp::PF_R;
657 if ((flags & elfcpp::SHF_WRITE) != 0)
658 ret |= elfcpp::PF_W;
659 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
660 ret |= elfcpp::PF_X;
661 return ret;
662 }
663
664 // Sometimes we compress sections. This is typically done for
665 // sections that are not part of normal program execution (such as
666 // .debug_* sections), and where the readers of these sections know
667 // how to deal with compressed sections. (To make it easier for them,
668 // we will rename the ouput section in such cases from .foo to
669 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
670 // doesn't say for certain whether we'll compress -- it depends on
671 // commandline options as well -- just whether this section is a
672 // candidate for compression.
673
674 static bool
675 is_compressible_debug_section(const char* secname)
676 {
677 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
678 }
679
680 // Make a new Output_section, and attach it to segments as
681 // appropriate.
682
683 Output_section*
684 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
685 elfcpp::Elf_Xword flags)
686 {
687 Output_section* os;
688 if ((flags & elfcpp::SHF_ALLOC) == 0
689 && strcmp(this->options_.compress_debug_sections(), "none") != 0
690 && is_compressible_debug_section(name))
691 os = new Output_compressed_section(&this->options_, name, type, flags);
692 else
693 os = new Output_section(name, type, flags);
694
695 this->section_list_.push_back(os);
696
697 // The GNU linker by default sorts some sections by priority, so we
698 // do the same. We need to know that this might happen before we
699 // attach any input sections.
700 if (!this->script_options_->saw_sections_clause()
701 && (strcmp(name, ".ctors") == 0
702 || strcmp(name, ".dtors") == 0
703 || strcmp(name, ".init_array") == 0
704 || strcmp(name, ".fini_array") == 0))
705 os->set_may_sort_attached_input_sections();
706
707 // If we have already attached the sections to segments, then we
708 // need to attach this one now. This happens for sections created
709 // directly by the linker.
710 if (this->sections_are_attached_)
711 this->attach_section_to_segment(os);
712
713 return os;
714 }
715
716 // Attach output sections to segments. This is called after we have
717 // seen all the input sections.
718
719 void
720 Layout::attach_sections_to_segments()
721 {
722 for (Section_list::iterator p = this->section_list_.begin();
723 p != this->section_list_.end();
724 ++p)
725 this->attach_section_to_segment(*p);
726
727 this->sections_are_attached_ = true;
728 }
729
730 // Attach an output section to a segment.
731
732 void
733 Layout::attach_section_to_segment(Output_section* os)
734 {
735 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
736 this->unattached_section_list_.push_back(os);
737 else
738 this->attach_allocated_section_to_segment(os);
739 }
740
741 // Attach an allocated output section to a segment.
742
743 void
744 Layout::attach_allocated_section_to_segment(Output_section* os)
745 {
746 elfcpp::Elf_Xword flags = os->flags();
747 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
748
749 if (parameters->options().relocatable())
750 return;
751
752 // If we have a SECTIONS clause, we can't handle the attachment to
753 // segments until after we've seen all the sections.
754 if (this->script_options_->saw_sections_clause())
755 return;
756
757 gold_assert(!this->script_options_->saw_phdrs_clause());
758
759 // This output section goes into a PT_LOAD segment.
760
761 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
762
763 // In general the only thing we really care about for PT_LOAD
764 // segments is whether or not they are writable, so that is how we
765 // search for them. People who need segments sorted on some other
766 // basis will have to use a linker script.
767
768 Segment_list::const_iterator p;
769 for (p = this->segment_list_.begin();
770 p != this->segment_list_.end();
771 ++p)
772 {
773 if ((*p)->type() == elfcpp::PT_LOAD
774 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
775 {
776 // If -Tbss was specified, we need to separate the data
777 // and BSS segments.
778 if (this->options_.user_set_Tbss())
779 {
780 if ((os->type() == elfcpp::SHT_NOBITS)
781 == (*p)->has_any_data_sections())
782 continue;
783 }
784
785 (*p)->add_output_section(os, seg_flags);
786 break;
787 }
788 }
789
790 if (p == this->segment_list_.end())
791 {
792 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
793 seg_flags);
794 oseg->add_output_section(os, seg_flags);
795 }
796
797 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
798 // segment.
799 if (os->type() == elfcpp::SHT_NOTE)
800 {
801 // See if we already have an equivalent PT_NOTE segment.
802 for (p = this->segment_list_.begin();
803 p != segment_list_.end();
804 ++p)
805 {
806 if ((*p)->type() == elfcpp::PT_NOTE
807 && (((*p)->flags() & elfcpp::PF_W)
808 == (seg_flags & elfcpp::PF_W)))
809 {
810 (*p)->add_output_section(os, seg_flags);
811 break;
812 }
813 }
814
815 if (p == this->segment_list_.end())
816 {
817 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
818 seg_flags);
819 oseg->add_output_section(os, seg_flags);
820 }
821 }
822
823 // If we see a loadable SHF_TLS section, we create a PT_TLS
824 // segment. There can only be one such segment.
825 if ((flags & elfcpp::SHF_TLS) != 0)
826 {
827 if (this->tls_segment_ == NULL)
828 this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
829 seg_flags);
830 this->tls_segment_->add_output_section(os, seg_flags);
831 }
832 }
833
834 // Make an output section for a script.
835
836 Output_section*
837 Layout::make_output_section_for_script(const char* name)
838 {
839 name = this->namepool_.add(name, false, NULL);
840 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
841 elfcpp::SHF_ALLOC);
842 os->set_found_in_sections_clause();
843 return os;
844 }
845
846 // Return the number of segments we expect to see.
847
848 size_t
849 Layout::expected_segment_count() const
850 {
851 size_t ret = this->segment_list_.size();
852
853 // If we didn't see a SECTIONS clause in a linker script, we should
854 // already have the complete list of segments. Otherwise we ask the
855 // SECTIONS clause how many segments it expects, and add in the ones
856 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
857
858 if (!this->script_options_->saw_sections_clause())
859 return ret;
860 else
861 {
862 const Script_sections* ss = this->script_options_->script_sections();
863 return ret + ss->expected_segment_count(this);
864 }
865 }
866
867 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
868 // is whether we saw a .note.GNU-stack section in the object file.
869 // GNU_STACK_FLAGS is the section flags. The flags give the
870 // protection required for stack memory. We record this in an
871 // executable as a PT_GNU_STACK segment. If an object file does not
872 // have a .note.GNU-stack segment, we must assume that it is an old
873 // object. On some targets that will force an executable stack.
874
875 void
876 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
877 {
878 if (!seen_gnu_stack)
879 this->input_without_gnu_stack_note_ = true;
880 else
881 {
882 this->input_with_gnu_stack_note_ = true;
883 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
884 this->input_requires_executable_stack_ = true;
885 }
886 }
887
888 // Create the dynamic sections which are needed before we read the
889 // relocs.
890
891 void
892 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
893 {
894 if (parameters->doing_static_link())
895 return;
896
897 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
898 elfcpp::SHT_DYNAMIC,
899 (elfcpp::SHF_ALLOC
900 | elfcpp::SHF_WRITE),
901 false);
902
903 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
904 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
905 elfcpp::STV_HIDDEN, 0, false, false);
906
907 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
908
909 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
910 }
911
912 // For each output section whose name can be represented as C symbol,
913 // define __start and __stop symbols for the section. This is a GNU
914 // extension.
915
916 void
917 Layout::define_section_symbols(Symbol_table* symtab)
918 {
919 for (Section_list::const_iterator p = this->section_list_.begin();
920 p != this->section_list_.end();
921 ++p)
922 {
923 const char* const name = (*p)->name();
924 if (name[strspn(name,
925 ("0123456789"
926 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
927 "abcdefghijklmnopqrstuvwxyz"
928 "_"))]
929 == '\0')
930 {
931 const std::string name_string(name);
932 const std::string start_name("__start_" + name_string);
933 const std::string stop_name("__stop_" + name_string);
934
935 symtab->define_in_output_data(start_name.c_str(),
936 NULL, // version
937 *p,
938 0, // value
939 0, // symsize
940 elfcpp::STT_NOTYPE,
941 elfcpp::STB_GLOBAL,
942 elfcpp::STV_DEFAULT,
943 0, // nonvis
944 false, // offset_is_from_end
945 true); // only_if_ref
946
947 symtab->define_in_output_data(stop_name.c_str(),
948 NULL, // version
949 *p,
950 0, // value
951 0, // symsize
952 elfcpp::STT_NOTYPE,
953 elfcpp::STB_GLOBAL,
954 elfcpp::STV_DEFAULT,
955 0, // nonvis
956 true, // offset_is_from_end
957 true); // only_if_ref
958 }
959 }
960 }
961
962 // Define symbols for group signatures.
963
964 void
965 Layout::define_group_signatures(Symbol_table* symtab)
966 {
967 for (Group_signatures::iterator p = this->group_signatures_.begin();
968 p != this->group_signatures_.end();
969 ++p)
970 {
971 Symbol* sym = symtab->lookup(p->signature, NULL);
972 if (sym != NULL)
973 p->section->set_info_symndx(sym);
974 else
975 {
976 // Force the name of the group section to the group
977 // signature, and use the group's section symbol as the
978 // signature symbol.
979 if (strcmp(p->section->name(), p->signature) != 0)
980 {
981 const char* name = this->namepool_.add(p->signature,
982 true, NULL);
983 p->section->set_name(name);
984 }
985 p->section->set_needs_symtab_index();
986 p->section->set_info_section_symndx(p->section);
987 }
988 }
989
990 this->group_signatures_.clear();
991 }
992
993 // Find the first read-only PT_LOAD segment, creating one if
994 // necessary.
995
996 Output_segment*
997 Layout::find_first_load_seg()
998 {
999 for (Segment_list::const_iterator p = this->segment_list_.begin();
1000 p != this->segment_list_.end();
1001 ++p)
1002 {
1003 if ((*p)->type() == elfcpp::PT_LOAD
1004 && ((*p)->flags() & elfcpp::PF_R) != 0
1005 && ((*p)->flags() & elfcpp::PF_W) == 0)
1006 return *p;
1007 }
1008
1009 gold_assert(!this->script_options_->saw_phdrs_clause());
1010
1011 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1012 elfcpp::PF_R);
1013 return load_seg;
1014 }
1015
1016 // Finalize the layout. When this is called, we have created all the
1017 // output sections and all the output segments which are based on
1018 // input sections. We have several things to do, and we have to do
1019 // them in the right order, so that we get the right results correctly
1020 // and efficiently.
1021
1022 // 1) Finalize the list of output segments and create the segment
1023 // table header.
1024
1025 // 2) Finalize the dynamic symbol table and associated sections.
1026
1027 // 3) Determine the final file offset of all the output segments.
1028
1029 // 4) Determine the final file offset of all the SHF_ALLOC output
1030 // sections.
1031
1032 // 5) Create the symbol table sections and the section name table
1033 // section.
1034
1035 // 6) Finalize the symbol table: set symbol values to their final
1036 // value and make a final determination of which symbols are going
1037 // into the output symbol table.
1038
1039 // 7) Create the section table header.
1040
1041 // 8) Determine the final file offset of all the output sections which
1042 // are not SHF_ALLOC, including the section table header.
1043
1044 // 9) Finalize the ELF file header.
1045
1046 // This function returns the size of the output file.
1047
1048 off_t
1049 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1050 Target* target, const Task* task)
1051 {
1052 target->finalize_sections(this);
1053
1054 this->count_local_symbols(task, input_objects);
1055
1056 this->create_gold_note();
1057 this->create_executable_stack_info(target);
1058 this->create_build_id();
1059
1060 Output_segment* phdr_seg = NULL;
1061 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1062 {
1063 // There was a dynamic object in the link. We need to create
1064 // some information for the dynamic linker.
1065
1066 // Create the PT_PHDR segment which will hold the program
1067 // headers.
1068 if (!this->script_options_->saw_phdrs_clause())
1069 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1070
1071 // Create the dynamic symbol table, including the hash table.
1072 Output_section* dynstr;
1073 std::vector<Symbol*> dynamic_symbols;
1074 unsigned int local_dynamic_count;
1075 Versions versions(*this->script_options()->version_script_info(),
1076 &this->dynpool_);
1077 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1078 &local_dynamic_count, &dynamic_symbols,
1079 &versions);
1080
1081 // Create the .interp section to hold the name of the
1082 // interpreter, and put it in a PT_INTERP segment.
1083 if (!parameters->options().shared())
1084 this->create_interp(target);
1085
1086 // Finish the .dynamic section to hold the dynamic data, and put
1087 // it in a PT_DYNAMIC segment.
1088 this->finish_dynamic_section(input_objects, symtab);
1089
1090 // We should have added everything we need to the dynamic string
1091 // table.
1092 this->dynpool_.set_string_offsets();
1093
1094 // Create the version sections. We can't do this until the
1095 // dynamic string table is complete.
1096 this->create_version_sections(&versions, symtab, local_dynamic_count,
1097 dynamic_symbols, dynstr);
1098 }
1099
1100 // If there is a SECTIONS clause, put all the input sections into
1101 // the required order.
1102 Output_segment* load_seg;
1103 if (this->script_options_->saw_sections_clause())
1104 load_seg = this->set_section_addresses_from_script(symtab);
1105 else if (parameters->options().relocatable())
1106 load_seg = NULL;
1107 else
1108 load_seg = this->find_first_load_seg();
1109
1110 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1111 load_seg = NULL;
1112
1113 gold_assert(phdr_seg == NULL || load_seg != NULL);
1114
1115 // Lay out the segment headers.
1116 Output_segment_headers* segment_headers;
1117 if (parameters->options().relocatable())
1118 segment_headers = NULL;
1119 else
1120 {
1121 segment_headers = new Output_segment_headers(this->segment_list_);
1122 if (load_seg != NULL)
1123 load_seg->add_initial_output_data(segment_headers);
1124 if (phdr_seg != NULL)
1125 phdr_seg->add_initial_output_data(segment_headers);
1126 }
1127
1128 // Lay out the file header.
1129 Output_file_header* file_header;
1130 file_header = new Output_file_header(target, symtab, segment_headers,
1131 this->options_.entry());
1132 if (load_seg != NULL)
1133 load_seg->add_initial_output_data(file_header);
1134
1135 this->special_output_list_.push_back(file_header);
1136 if (segment_headers != NULL)
1137 this->special_output_list_.push_back(segment_headers);
1138
1139 if (this->script_options_->saw_phdrs_clause()
1140 && !parameters->options().relocatable())
1141 {
1142 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1143 // clause in a linker script.
1144 Script_sections* ss = this->script_options_->script_sections();
1145 ss->put_headers_in_phdrs(file_header, segment_headers);
1146 }
1147
1148 // We set the output section indexes in set_segment_offsets and
1149 // set_section_indexes.
1150 unsigned int shndx = 1;
1151
1152 // Set the file offsets of all the segments, and all the sections
1153 // they contain.
1154 off_t off;
1155 if (!parameters->options().relocatable())
1156 off = this->set_segment_offsets(target, load_seg, &shndx);
1157 else
1158 off = this->set_relocatable_section_offsets(file_header, &shndx);
1159
1160 // Set the file offsets of all the non-data sections we've seen so
1161 // far which don't have to wait for the input sections. We need
1162 // this in order to finalize local symbols in non-allocated
1163 // sections.
1164 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1165
1166 // Set the section indexes of all unallocated sections seen so far,
1167 // in case any of them are somehow referenced by a symbol.
1168 shndx = this->set_section_indexes(shndx);
1169
1170 // Create the symbol table sections.
1171 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1172 if (!parameters->doing_static_link())
1173 this->assign_local_dynsym_offsets(input_objects);
1174
1175 // Process any symbol assignments from a linker script. This must
1176 // be called after the symbol table has been finalized.
1177 this->script_options_->finalize_symbols(symtab, this);
1178
1179 // Create the .shstrtab section.
1180 Output_section* shstrtab_section = this->create_shstrtab();
1181
1182 // Set the file offsets of the rest of the non-data sections which
1183 // don't have to wait for the input sections.
1184 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1185
1186 // Now that all sections have been created, set the section indexes
1187 // for any sections which haven't been done yet.
1188 shndx = this->set_section_indexes(shndx);
1189
1190 // Create the section table header.
1191 this->create_shdrs(shstrtab_section, &off);
1192
1193 // If there are no sections which require postprocessing, we can
1194 // handle the section names now, and avoid a resize later.
1195 if (!this->any_postprocessing_sections_)
1196 off = this->set_section_offsets(off,
1197 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1198
1199 file_header->set_section_info(this->section_headers_, shstrtab_section);
1200
1201 // Now we know exactly where everything goes in the output file
1202 // (except for non-allocated sections which require postprocessing).
1203 Output_data::layout_complete();
1204
1205 this->output_file_size_ = off;
1206
1207 return off;
1208 }
1209
1210 // Create a note header following the format defined in the ELF ABI.
1211 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1212 // descriptor. ALLOCATE is true if the section should be allocated in
1213 // memory. This returns the new note section. It sets
1214 // *TRAILING_PADDING to the number of trailing zero bytes required.
1215
1216 Output_section*
1217 Layout::create_note(const char* name, int note_type, size_t descsz,
1218 bool allocate, size_t* trailing_padding)
1219 {
1220 // Authorities all agree that the values in a .note field should
1221 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1222 // they differ on what the alignment is for 64-bit binaries.
1223 // The GABI says unambiguously they take 8-byte alignment:
1224 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1225 // Other documentation says alignment should always be 4 bytes:
1226 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1227 // GNU ld and GNU readelf both support the latter (at least as of
1228 // version 2.16.91), and glibc always generates the latter for
1229 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1230 // here.
1231 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1232 const int size = parameters->target().get_size();
1233 #else
1234 const int size = 32;
1235 #endif
1236
1237 // The contents of the .note section.
1238 size_t namesz = strlen(name) + 1;
1239 size_t aligned_namesz = align_address(namesz, size / 8);
1240 size_t aligned_descsz = align_address(descsz, size / 8);
1241
1242 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1243
1244 unsigned char* buffer = new unsigned char[notehdrsz];
1245 memset(buffer, 0, notehdrsz);
1246
1247 bool is_big_endian = parameters->target().is_big_endian();
1248
1249 if (size == 32)
1250 {
1251 if (!is_big_endian)
1252 {
1253 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1254 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1255 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1256 }
1257 else
1258 {
1259 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1260 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1261 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1262 }
1263 }
1264 else if (size == 64)
1265 {
1266 if (!is_big_endian)
1267 {
1268 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1269 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1270 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1271 }
1272 else
1273 {
1274 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1275 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1276 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1277 }
1278 }
1279 else
1280 gold_unreachable();
1281
1282 memcpy(buffer + 3 * (size / 8), name, namesz);
1283
1284 const char* note_name = this->namepool_.add(".note", false, NULL);
1285 elfcpp::Elf_Xword flags = 0;
1286 if (allocate)
1287 flags = elfcpp::SHF_ALLOC;
1288 Output_section* os = this->make_output_section(note_name,
1289 elfcpp::SHT_NOTE,
1290 flags);
1291 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1292 size / 8);
1293 os->add_output_section_data(posd);
1294
1295 *trailing_padding = aligned_descsz - descsz;
1296
1297 return os;
1298 }
1299
1300 // For an executable or shared library, create a note to record the
1301 // version of gold used to create the binary.
1302
1303 void
1304 Layout::create_gold_note()
1305 {
1306 if (parameters->options().relocatable())
1307 return;
1308
1309 std::string desc = std::string("gold ") + gold::get_version_string();
1310
1311 size_t trailing_padding;
1312 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1313 desc.size(), false, &trailing_padding);
1314
1315 Output_section_data* posd = new Output_data_const(desc, 4);
1316 os->add_output_section_data(posd);
1317
1318 if (trailing_padding > 0)
1319 {
1320 posd = new Output_data_fixed_space(trailing_padding, 0);
1321 os->add_output_section_data(posd);
1322 }
1323 }
1324
1325 // Record whether the stack should be executable. This can be set
1326 // from the command line using the -z execstack or -z noexecstack
1327 // options. Otherwise, if any input file has a .note.GNU-stack
1328 // section with the SHF_EXECINSTR flag set, the stack should be
1329 // executable. Otherwise, if at least one input file a
1330 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1331 // section, we use the target default for whether the stack should be
1332 // executable. Otherwise, we don't generate a stack note. When
1333 // generating a object file, we create a .note.GNU-stack section with
1334 // the appropriate marking. When generating an executable or shared
1335 // library, we create a PT_GNU_STACK segment.
1336
1337 void
1338 Layout::create_executable_stack_info(const Target* target)
1339 {
1340 bool is_stack_executable;
1341 if (this->options_.is_execstack_set())
1342 is_stack_executable = this->options_.is_stack_executable();
1343 else if (!this->input_with_gnu_stack_note_)
1344 return;
1345 else
1346 {
1347 if (this->input_requires_executable_stack_)
1348 is_stack_executable = true;
1349 else if (this->input_without_gnu_stack_note_)
1350 is_stack_executable = target->is_default_stack_executable();
1351 else
1352 is_stack_executable = false;
1353 }
1354
1355 if (parameters->options().relocatable())
1356 {
1357 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1358 elfcpp::Elf_Xword flags = 0;
1359 if (is_stack_executable)
1360 flags |= elfcpp::SHF_EXECINSTR;
1361 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1362 }
1363 else
1364 {
1365 if (this->script_options_->saw_phdrs_clause())
1366 return;
1367 int flags = elfcpp::PF_R | elfcpp::PF_W;
1368 if (is_stack_executable)
1369 flags |= elfcpp::PF_X;
1370 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1371 }
1372 }
1373
1374 // If --build-id was used, set up the build ID note.
1375
1376 void
1377 Layout::create_build_id()
1378 {
1379 if (!parameters->options().user_set_build_id())
1380 return;
1381
1382 const char* style = parameters->options().build_id();
1383 if (strcmp(style, "none") == 0)
1384 return;
1385
1386 // Set DESCSZ to the size of the note descriptor. When possible,
1387 // set DESC to the note descriptor contents.
1388 size_t descsz;
1389 std::string desc;
1390 if (strcmp(style, "md5") == 0)
1391 descsz = 128 / 8;
1392 else if (strcmp(style, "sha1") == 0)
1393 descsz = 160 / 8;
1394 else if (strcmp(style, "uuid") == 0)
1395 {
1396 const size_t uuidsz = 128 / 8;
1397
1398 char buffer[uuidsz];
1399 memset(buffer, 0, uuidsz);
1400
1401 int descriptor = ::open("/dev/urandom", O_RDONLY);
1402 if (descriptor < 0)
1403 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1404 strerror(errno));
1405 else
1406 {
1407 ssize_t got = ::read(descriptor, buffer, uuidsz);
1408 ::close(descriptor);
1409 if (got < 0)
1410 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1411 else if (static_cast<size_t>(got) != uuidsz)
1412 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1413 uuidsz, got);
1414 }
1415
1416 desc.assign(buffer, uuidsz);
1417 descsz = uuidsz;
1418 }
1419 else if (strncmp(style, "0x", 2) == 0)
1420 {
1421 hex_init();
1422 const char* p = style + 2;
1423 while (*p != '\0')
1424 {
1425 if (hex_p(p[0]) && hex_p(p[1]))
1426 {
1427 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1428 desc += c;
1429 p += 2;
1430 }
1431 else if (*p == '-' || *p == ':')
1432 ++p;
1433 else
1434 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1435 style);
1436 }
1437 descsz = desc.size();
1438 }
1439 else
1440 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1441
1442 // Create the note.
1443 size_t trailing_padding;
1444 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1445 descsz, true, &trailing_padding);
1446
1447 if (!desc.empty())
1448 {
1449 // We know the value already, so we fill it in now.
1450 gold_assert(desc.size() == descsz);
1451
1452 Output_section_data* posd = new Output_data_const(desc, 4);
1453 os->add_output_section_data(posd);
1454
1455 if (trailing_padding != 0)
1456 {
1457 posd = new Output_data_fixed_space(trailing_padding, 0);
1458 os->add_output_section_data(posd);
1459 }
1460 }
1461 else
1462 {
1463 // We need to compute a checksum after we have completed the
1464 // link.
1465 gold_assert(trailing_padding == 0);
1466 this->build_id_note_ = new Output_data_fixed_space(descsz, 4);
1467 os->add_output_section_data(this->build_id_note_);
1468 os->set_after_input_sections();
1469 }
1470 }
1471
1472 // Return whether SEG1 should be before SEG2 in the output file. This
1473 // is based entirely on the segment type and flags. When this is
1474 // called the segment addresses has normally not yet been set.
1475
1476 bool
1477 Layout::segment_precedes(const Output_segment* seg1,
1478 const Output_segment* seg2)
1479 {
1480 elfcpp::Elf_Word type1 = seg1->type();
1481 elfcpp::Elf_Word type2 = seg2->type();
1482
1483 // The single PT_PHDR segment is required to precede any loadable
1484 // segment. We simply make it always first.
1485 if (type1 == elfcpp::PT_PHDR)
1486 {
1487 gold_assert(type2 != elfcpp::PT_PHDR);
1488 return true;
1489 }
1490 if (type2 == elfcpp::PT_PHDR)
1491 return false;
1492
1493 // The single PT_INTERP segment is required to precede any loadable
1494 // segment. We simply make it always second.
1495 if (type1 == elfcpp::PT_INTERP)
1496 {
1497 gold_assert(type2 != elfcpp::PT_INTERP);
1498 return true;
1499 }
1500 if (type2 == elfcpp::PT_INTERP)
1501 return false;
1502
1503 // We then put PT_LOAD segments before any other segments.
1504 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1505 return true;
1506 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1507 return false;
1508
1509 // We put the PT_TLS segment last, because that is where the dynamic
1510 // linker expects to find it (this is just for efficiency; other
1511 // positions would also work correctly).
1512 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1513 return false;
1514 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1515 return true;
1516
1517 const elfcpp::Elf_Word flags1 = seg1->flags();
1518 const elfcpp::Elf_Word flags2 = seg2->flags();
1519
1520 // The order of non-PT_LOAD segments is unimportant. We simply sort
1521 // by the numeric segment type and flags values. There should not
1522 // be more than one segment with the same type and flags.
1523 if (type1 != elfcpp::PT_LOAD)
1524 {
1525 if (type1 != type2)
1526 return type1 < type2;
1527 gold_assert(flags1 != flags2);
1528 return flags1 < flags2;
1529 }
1530
1531 // If the addresses are set already, sort by load address.
1532 if (seg1->are_addresses_set())
1533 {
1534 if (!seg2->are_addresses_set())
1535 return true;
1536
1537 unsigned int section_count1 = seg1->output_section_count();
1538 unsigned int section_count2 = seg2->output_section_count();
1539 if (section_count1 == 0 && section_count2 > 0)
1540 return true;
1541 if (section_count1 > 0 && section_count2 == 0)
1542 return false;
1543
1544 uint64_t paddr1 = seg1->first_section_load_address();
1545 uint64_t paddr2 = seg2->first_section_load_address();
1546 if (paddr1 != paddr2)
1547 return paddr1 < paddr2;
1548 }
1549 else if (seg2->are_addresses_set())
1550 return false;
1551
1552 // We sort PT_LOAD segments based on the flags. Readonly segments
1553 // come before writable segments. Then writable segments with data
1554 // come before writable segments without data. Then executable
1555 // segments come before non-executable segments. Then the unlikely
1556 // case of a non-readable segment comes before the normal case of a
1557 // readable segment. If there are multiple segments with the same
1558 // type and flags, we require that the address be set, and we sort
1559 // by virtual address and then physical address.
1560 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1561 return (flags1 & elfcpp::PF_W) == 0;
1562 if ((flags1 & elfcpp::PF_W) != 0
1563 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1564 return seg1->has_any_data_sections();
1565 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1566 return (flags1 & elfcpp::PF_X) != 0;
1567 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1568 return (flags1 & elfcpp::PF_R) == 0;
1569
1570 // We shouldn't get here--we shouldn't create segments which we
1571 // can't distinguish.
1572 gold_unreachable();
1573 }
1574
1575 // Set the file offsets of all the segments, and all the sections they
1576 // contain. They have all been created. LOAD_SEG must be be laid out
1577 // first. Return the offset of the data to follow.
1578
1579 off_t
1580 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1581 unsigned int *pshndx)
1582 {
1583 // Sort them into the final order.
1584 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1585 Layout::Compare_segments());
1586
1587 // Find the PT_LOAD segments, and set their addresses and offsets
1588 // and their section's addresses and offsets.
1589 uint64_t addr;
1590 if (this->options_.user_set_Ttext())
1591 addr = this->options_.Ttext();
1592 else if (parameters->options().shared())
1593 addr = 0;
1594 else
1595 addr = target->default_text_segment_address();
1596 off_t off = 0;
1597
1598 // If LOAD_SEG is NULL, then the file header and segment headers
1599 // will not be loadable. But they still need to be at offset 0 in
1600 // the file. Set their offsets now.
1601 if (load_seg == NULL)
1602 {
1603 for (Data_list::iterator p = this->special_output_list_.begin();
1604 p != this->special_output_list_.end();
1605 ++p)
1606 {
1607 off = align_address(off, (*p)->addralign());
1608 (*p)->set_address_and_file_offset(0, off);
1609 off += (*p)->data_size();
1610 }
1611 }
1612
1613 bool was_readonly = false;
1614 for (Segment_list::iterator p = this->segment_list_.begin();
1615 p != this->segment_list_.end();
1616 ++p)
1617 {
1618 if ((*p)->type() == elfcpp::PT_LOAD)
1619 {
1620 if (load_seg != NULL && load_seg != *p)
1621 gold_unreachable();
1622 load_seg = NULL;
1623
1624 bool are_addresses_set = (*p)->are_addresses_set();
1625 if (are_addresses_set)
1626 {
1627 // When it comes to setting file offsets, we care about
1628 // the physical address.
1629 addr = (*p)->paddr();
1630 }
1631 else if (this->options_.user_set_Tdata()
1632 && ((*p)->flags() & elfcpp::PF_W) != 0
1633 && (!this->options_.user_set_Tbss()
1634 || (*p)->has_any_data_sections()))
1635 {
1636 addr = this->options_.Tdata();
1637 are_addresses_set = true;
1638 }
1639 else if (this->options_.user_set_Tbss()
1640 && ((*p)->flags() & elfcpp::PF_W) != 0
1641 && !(*p)->has_any_data_sections())
1642 {
1643 addr = this->options_.Tbss();
1644 are_addresses_set = true;
1645 }
1646
1647 uint64_t orig_addr = addr;
1648 uint64_t orig_off = off;
1649
1650 uint64_t aligned_addr = 0;
1651 uint64_t abi_pagesize = target->abi_pagesize();
1652
1653 // FIXME: This should depend on the -n and -N options.
1654 (*p)->set_minimum_p_align(target->common_pagesize());
1655
1656 if (are_addresses_set)
1657 {
1658 // Adjust the file offset to the same address modulo the
1659 // page size.
1660 uint64_t unsigned_off = off;
1661 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1662 | (addr & (abi_pagesize - 1)));
1663 if (aligned_off < unsigned_off)
1664 aligned_off += abi_pagesize;
1665 off = aligned_off;
1666 }
1667 else
1668 {
1669 // If the last segment was readonly, and this one is
1670 // not, then skip the address forward one page,
1671 // maintaining the same position within the page. This
1672 // lets us store both segments overlapping on a single
1673 // page in the file, but the loader will put them on
1674 // different pages in memory.
1675
1676 addr = align_address(addr, (*p)->maximum_alignment());
1677 aligned_addr = addr;
1678
1679 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1680 {
1681 if ((addr & (abi_pagesize - 1)) != 0)
1682 addr = addr + abi_pagesize;
1683 }
1684
1685 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1686 }
1687
1688 unsigned int shndx_hold = *pshndx;
1689 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1690 &off, pshndx);
1691
1692 // Now that we know the size of this segment, we may be able
1693 // to save a page in memory, at the cost of wasting some
1694 // file space, by instead aligning to the start of a new
1695 // page. Here we use the real machine page size rather than
1696 // the ABI mandated page size.
1697
1698 if (!are_addresses_set && aligned_addr != addr)
1699 {
1700 uint64_t common_pagesize = target->common_pagesize();
1701 uint64_t first_off = (common_pagesize
1702 - (aligned_addr
1703 & (common_pagesize - 1)));
1704 uint64_t last_off = new_addr & (common_pagesize - 1);
1705 if (first_off > 0
1706 && last_off > 0
1707 && ((aligned_addr & ~ (common_pagesize - 1))
1708 != (new_addr & ~ (common_pagesize - 1)))
1709 && first_off + last_off <= common_pagesize)
1710 {
1711 *pshndx = shndx_hold;
1712 addr = align_address(aligned_addr, common_pagesize);
1713 addr = align_address(addr, (*p)->maximum_alignment());
1714 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1715 new_addr = (*p)->set_section_addresses(this, true, addr,
1716 &off, pshndx);
1717 }
1718 }
1719
1720 addr = new_addr;
1721
1722 if (((*p)->flags() & elfcpp::PF_W) == 0)
1723 was_readonly = true;
1724 }
1725 }
1726
1727 // Handle the non-PT_LOAD segments, setting their offsets from their
1728 // section's offsets.
1729 for (Segment_list::iterator p = this->segment_list_.begin();
1730 p != this->segment_list_.end();
1731 ++p)
1732 {
1733 if ((*p)->type() != elfcpp::PT_LOAD)
1734 (*p)->set_offset();
1735 }
1736
1737 // Set the TLS offsets for each section in the PT_TLS segment.
1738 if (this->tls_segment_ != NULL)
1739 this->tls_segment_->set_tls_offsets();
1740
1741 return off;
1742 }
1743
1744 // Set the offsets of all the allocated sections when doing a
1745 // relocatable link. This does the same jobs as set_segment_offsets,
1746 // only for a relocatable link.
1747
1748 off_t
1749 Layout::set_relocatable_section_offsets(Output_data* file_header,
1750 unsigned int *pshndx)
1751 {
1752 off_t off = 0;
1753
1754 file_header->set_address_and_file_offset(0, 0);
1755 off += file_header->data_size();
1756
1757 for (Section_list::iterator p = this->section_list_.begin();
1758 p != this->section_list_.end();
1759 ++p)
1760 {
1761 // We skip unallocated sections here, except that group sections
1762 // have to come first.
1763 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1764 && (*p)->type() != elfcpp::SHT_GROUP)
1765 continue;
1766
1767 off = align_address(off, (*p)->addralign());
1768
1769 // The linker script might have set the address.
1770 if (!(*p)->is_address_valid())
1771 (*p)->set_address(0);
1772 (*p)->set_file_offset(off);
1773 (*p)->finalize_data_size();
1774 off += (*p)->data_size();
1775
1776 (*p)->set_out_shndx(*pshndx);
1777 ++*pshndx;
1778 }
1779
1780 return off;
1781 }
1782
1783 // Set the file offset of all the sections not associated with a
1784 // segment.
1785
1786 off_t
1787 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1788 {
1789 for (Section_list::iterator p = this->unattached_section_list_.begin();
1790 p != this->unattached_section_list_.end();
1791 ++p)
1792 {
1793 // The symtab section is handled in create_symtab_sections.
1794 if (*p == this->symtab_section_)
1795 continue;
1796
1797 // If we've already set the data size, don't set it again.
1798 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1799 continue;
1800
1801 if (pass == BEFORE_INPUT_SECTIONS_PASS
1802 && (*p)->requires_postprocessing())
1803 {
1804 (*p)->create_postprocessing_buffer();
1805 this->any_postprocessing_sections_ = true;
1806 }
1807
1808 if (pass == BEFORE_INPUT_SECTIONS_PASS
1809 && (*p)->after_input_sections())
1810 continue;
1811 else if (pass == POSTPROCESSING_SECTIONS_PASS
1812 && (!(*p)->after_input_sections()
1813 || (*p)->type() == elfcpp::SHT_STRTAB))
1814 continue;
1815 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1816 && (!(*p)->after_input_sections()
1817 || (*p)->type() != elfcpp::SHT_STRTAB))
1818 continue;
1819
1820 off = align_address(off, (*p)->addralign());
1821 (*p)->set_file_offset(off);
1822 (*p)->finalize_data_size();
1823 off += (*p)->data_size();
1824
1825 // At this point the name must be set.
1826 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1827 this->namepool_.add((*p)->name(), false, NULL);
1828 }
1829 return off;
1830 }
1831
1832 // Set the section indexes of all the sections not associated with a
1833 // segment.
1834
1835 unsigned int
1836 Layout::set_section_indexes(unsigned int shndx)
1837 {
1838 for (Section_list::iterator p = this->unattached_section_list_.begin();
1839 p != this->unattached_section_list_.end();
1840 ++p)
1841 {
1842 if (!(*p)->has_out_shndx())
1843 {
1844 (*p)->set_out_shndx(shndx);
1845 ++shndx;
1846 }
1847 }
1848 return shndx;
1849 }
1850
1851 // Set the section addresses according to the linker script. This is
1852 // only called when we see a SECTIONS clause. This returns the
1853 // program segment which should hold the file header and segment
1854 // headers, if any. It will return NULL if they should not be in a
1855 // segment.
1856
1857 Output_segment*
1858 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1859 {
1860 Script_sections* ss = this->script_options_->script_sections();
1861 gold_assert(ss->saw_sections_clause());
1862
1863 // Place each orphaned output section in the script.
1864 for (Section_list::iterator p = this->section_list_.begin();
1865 p != this->section_list_.end();
1866 ++p)
1867 {
1868 if (!(*p)->found_in_sections_clause())
1869 ss->place_orphan(*p);
1870 }
1871
1872 return this->script_options_->set_section_addresses(symtab, this);
1873 }
1874
1875 // Count the local symbols in the regular symbol table and the dynamic
1876 // symbol table, and build the respective string pools.
1877
1878 void
1879 Layout::count_local_symbols(const Task* task,
1880 const Input_objects* input_objects)
1881 {
1882 // First, figure out an upper bound on the number of symbols we'll
1883 // be inserting into each pool. This helps us create the pools with
1884 // the right size, to avoid unnecessary hashtable resizing.
1885 unsigned int symbol_count = 0;
1886 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1887 p != input_objects->relobj_end();
1888 ++p)
1889 symbol_count += (*p)->local_symbol_count();
1890
1891 // Go from "upper bound" to "estimate." We overcount for two
1892 // reasons: we double-count symbols that occur in more than one
1893 // object file, and we count symbols that are dropped from the
1894 // output. Add it all together and assume we overcount by 100%.
1895 symbol_count /= 2;
1896
1897 // We assume all symbols will go into both the sympool and dynpool.
1898 this->sympool_.reserve(symbol_count);
1899 this->dynpool_.reserve(symbol_count);
1900
1901 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1902 p != input_objects->relobj_end();
1903 ++p)
1904 {
1905 Task_lock_obj<Object> tlo(task, *p);
1906 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1907 }
1908 }
1909
1910 // Create the symbol table sections. Here we also set the final
1911 // values of the symbols. At this point all the loadable sections are
1912 // fully laid out. SHNUM is the number of sections so far.
1913
1914 void
1915 Layout::create_symtab_sections(const Input_objects* input_objects,
1916 Symbol_table* symtab,
1917 unsigned int shnum,
1918 off_t* poff)
1919 {
1920 int symsize;
1921 unsigned int align;
1922 if (parameters->target().get_size() == 32)
1923 {
1924 symsize = elfcpp::Elf_sizes<32>::sym_size;
1925 align = 4;
1926 }
1927 else if (parameters->target().get_size() == 64)
1928 {
1929 symsize = elfcpp::Elf_sizes<64>::sym_size;
1930 align = 8;
1931 }
1932 else
1933 gold_unreachable();
1934
1935 off_t off = *poff;
1936 off = align_address(off, align);
1937 off_t startoff = off;
1938
1939 // Save space for the dummy symbol at the start of the section. We
1940 // never bother to write this out--it will just be left as zero.
1941 off += symsize;
1942 unsigned int local_symbol_index = 1;
1943
1944 // Add STT_SECTION symbols for each Output section which needs one.
1945 for (Section_list::iterator p = this->section_list_.begin();
1946 p != this->section_list_.end();
1947 ++p)
1948 {
1949 if (!(*p)->needs_symtab_index())
1950 (*p)->set_symtab_index(-1U);
1951 else
1952 {
1953 (*p)->set_symtab_index(local_symbol_index);
1954 ++local_symbol_index;
1955 off += symsize;
1956 }
1957 }
1958
1959 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1960 p != input_objects->relobj_end();
1961 ++p)
1962 {
1963 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1964 off);
1965 off += (index - local_symbol_index) * symsize;
1966 local_symbol_index = index;
1967 }
1968
1969 unsigned int local_symcount = local_symbol_index;
1970 gold_assert(local_symcount * symsize == off - startoff);
1971
1972 off_t dynoff;
1973 size_t dyn_global_index;
1974 size_t dyncount;
1975 if (this->dynsym_section_ == NULL)
1976 {
1977 dynoff = 0;
1978 dyn_global_index = 0;
1979 dyncount = 0;
1980 }
1981 else
1982 {
1983 dyn_global_index = this->dynsym_section_->info();
1984 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1985 dynoff = this->dynsym_section_->offset() + locsize;
1986 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1987 gold_assert(static_cast<off_t>(dyncount * symsize)
1988 == this->dynsym_section_->data_size() - locsize);
1989 }
1990
1991 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1992 &this->sympool_, &local_symcount);
1993
1994 if (!parameters->options().strip_all())
1995 {
1996 this->sympool_.set_string_offsets();
1997
1998 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1999 Output_section* osymtab = this->make_output_section(symtab_name,
2000 elfcpp::SHT_SYMTAB,
2001 0);
2002 this->symtab_section_ = osymtab;
2003
2004 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2005 align);
2006 osymtab->add_output_section_data(pos);
2007
2008 // We generate a .symtab_shndx section if we have more than
2009 // SHN_LORESERVE sections. Technically it is possible that we
2010 // don't need one, because it is possible that there are no
2011 // symbols in any of sections with indexes larger than
2012 // SHN_LORESERVE. That is probably unusual, though, and it is
2013 // easier to always create one than to compute section indexes
2014 // twice (once here, once when writing out the symbols).
2015 if (shnum >= elfcpp::SHN_LORESERVE)
2016 {
2017 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2018 false, NULL);
2019 Output_section* osymtab_xindex =
2020 this->make_output_section(symtab_xindex_name,
2021 elfcpp::SHT_SYMTAB_SHNDX, 0);
2022
2023 size_t symcount = (off - startoff) / symsize;
2024 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2025
2026 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2027
2028 osymtab_xindex->set_link_section(osymtab);
2029 osymtab_xindex->set_addralign(4);
2030 osymtab_xindex->set_entsize(4);
2031
2032 osymtab_xindex->set_after_input_sections();
2033
2034 // This tells the driver code to wait until the symbol table
2035 // has written out before writing out the postprocessing
2036 // sections, including the .symtab_shndx section.
2037 this->any_postprocessing_sections_ = true;
2038 }
2039
2040 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2041 Output_section* ostrtab = this->make_output_section(strtab_name,
2042 elfcpp::SHT_STRTAB,
2043 0);
2044
2045 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2046 ostrtab->add_output_section_data(pstr);
2047
2048 osymtab->set_file_offset(startoff);
2049 osymtab->finalize_data_size();
2050 osymtab->set_link_section(ostrtab);
2051 osymtab->set_info(local_symcount);
2052 osymtab->set_entsize(symsize);
2053
2054 *poff = off;
2055 }
2056 }
2057
2058 // Create the .shstrtab section, which holds the names of the
2059 // sections. At the time this is called, we have created all the
2060 // output sections except .shstrtab itself.
2061
2062 Output_section*
2063 Layout::create_shstrtab()
2064 {
2065 // FIXME: We don't need to create a .shstrtab section if we are
2066 // stripping everything.
2067
2068 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2069
2070 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2071
2072 // We can't write out this section until we've set all the section
2073 // names, and we don't set the names of compressed output sections
2074 // until relocations are complete.
2075 os->set_after_input_sections();
2076
2077 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2078 os->add_output_section_data(posd);
2079
2080 return os;
2081 }
2082
2083 // Create the section headers. SIZE is 32 or 64. OFF is the file
2084 // offset.
2085
2086 void
2087 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2088 {
2089 Output_section_headers* oshdrs;
2090 oshdrs = new Output_section_headers(this,
2091 &this->segment_list_,
2092 &this->section_list_,
2093 &this->unattached_section_list_,
2094 &this->namepool_,
2095 shstrtab_section);
2096 off_t off = align_address(*poff, oshdrs->addralign());
2097 oshdrs->set_address_and_file_offset(0, off);
2098 off += oshdrs->data_size();
2099 *poff = off;
2100 this->section_headers_ = oshdrs;
2101 }
2102
2103 // Count the allocated sections.
2104
2105 size_t
2106 Layout::allocated_output_section_count() const
2107 {
2108 size_t section_count = 0;
2109 for (Segment_list::const_iterator p = this->segment_list_.begin();
2110 p != this->segment_list_.end();
2111 ++p)
2112 section_count += (*p)->output_section_count();
2113 return section_count;
2114 }
2115
2116 // Create the dynamic symbol table.
2117
2118 void
2119 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2120 Symbol_table* symtab,
2121 Output_section **pdynstr,
2122 unsigned int* plocal_dynamic_count,
2123 std::vector<Symbol*>* pdynamic_symbols,
2124 Versions* pversions)
2125 {
2126 // Count all the symbols in the dynamic symbol table, and set the
2127 // dynamic symbol indexes.
2128
2129 // Skip symbol 0, which is always all zeroes.
2130 unsigned int index = 1;
2131
2132 // Add STT_SECTION symbols for each Output section which needs one.
2133 for (Section_list::iterator p = this->section_list_.begin();
2134 p != this->section_list_.end();
2135 ++p)
2136 {
2137 if (!(*p)->needs_dynsym_index())
2138 (*p)->set_dynsym_index(-1U);
2139 else
2140 {
2141 (*p)->set_dynsym_index(index);
2142 ++index;
2143 }
2144 }
2145
2146 // Count the local symbols that need to go in the dynamic symbol table,
2147 // and set the dynamic symbol indexes.
2148 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2149 p != input_objects->relobj_end();
2150 ++p)
2151 {
2152 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2153 index = new_index;
2154 }
2155
2156 unsigned int local_symcount = index;
2157 *plocal_dynamic_count = local_symcount;
2158
2159 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2160 &this->dynpool_, pversions);
2161
2162 int symsize;
2163 unsigned int align;
2164 const int size = parameters->target().get_size();
2165 if (size == 32)
2166 {
2167 symsize = elfcpp::Elf_sizes<32>::sym_size;
2168 align = 4;
2169 }
2170 else if (size == 64)
2171 {
2172 symsize = elfcpp::Elf_sizes<64>::sym_size;
2173 align = 8;
2174 }
2175 else
2176 gold_unreachable();
2177
2178 // Create the dynamic symbol table section.
2179
2180 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2181 elfcpp::SHT_DYNSYM,
2182 elfcpp::SHF_ALLOC,
2183 false);
2184
2185 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2186 align);
2187 dynsym->add_output_section_data(odata);
2188
2189 dynsym->set_info(local_symcount);
2190 dynsym->set_entsize(symsize);
2191 dynsym->set_addralign(align);
2192
2193 this->dynsym_section_ = dynsym;
2194
2195 Output_data_dynamic* const odyn = this->dynamic_data_;
2196 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2197 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2198
2199 // If there are more than SHN_LORESERVE allocated sections, we
2200 // create a .dynsym_shndx section. It is possible that we don't
2201 // need one, because it is possible that there are no dynamic
2202 // symbols in any of the sections with indexes larger than
2203 // SHN_LORESERVE. This is probably unusual, though, and at this
2204 // time we don't know the actual section indexes so it is
2205 // inconvenient to check.
2206 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2207 {
2208 Output_section* dynsym_xindex =
2209 this->choose_output_section(NULL, ".dynsym_shndx",
2210 elfcpp::SHT_SYMTAB_SHNDX,
2211 elfcpp::SHF_ALLOC,
2212 false);
2213
2214 this->dynsym_xindex_ = new Output_symtab_xindex(index);
2215
2216 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2217
2218 dynsym_xindex->set_link_section(dynsym);
2219 dynsym_xindex->set_addralign(4);
2220 dynsym_xindex->set_entsize(4);
2221
2222 dynsym_xindex->set_after_input_sections();
2223
2224 // This tells the driver code to wait until the symbol table has
2225 // written out before writing out the postprocessing sections,
2226 // including the .dynsym_shndx section.
2227 this->any_postprocessing_sections_ = true;
2228 }
2229
2230 // Create the dynamic string table section.
2231
2232 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2233 elfcpp::SHT_STRTAB,
2234 elfcpp::SHF_ALLOC,
2235 false);
2236
2237 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2238 dynstr->add_output_section_data(strdata);
2239
2240 dynsym->set_link_section(dynstr);
2241 this->dynamic_section_->set_link_section(dynstr);
2242
2243 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2244 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2245
2246 *pdynstr = dynstr;
2247
2248 // Create the hash tables.
2249
2250 if (strcmp(parameters->options().hash_style(), "sysv") == 0
2251 || strcmp(parameters->options().hash_style(), "both") == 0)
2252 {
2253 unsigned char* phash;
2254 unsigned int hashlen;
2255 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2256 &phash, &hashlen);
2257
2258 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2259 elfcpp::SHT_HASH,
2260 elfcpp::SHF_ALLOC,
2261 false);
2262
2263 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2264 hashlen,
2265 align);
2266 hashsec->add_output_section_data(hashdata);
2267
2268 hashsec->set_link_section(dynsym);
2269 hashsec->set_entsize(4);
2270
2271 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2272 }
2273
2274 if (strcmp(parameters->options().hash_style(), "gnu") == 0
2275 || strcmp(parameters->options().hash_style(), "both") == 0)
2276 {
2277 unsigned char* phash;
2278 unsigned int hashlen;
2279 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2280 &phash, &hashlen);
2281
2282 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2283 elfcpp::SHT_GNU_HASH,
2284 elfcpp::SHF_ALLOC,
2285 false);
2286
2287 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2288 hashlen,
2289 align);
2290 hashsec->add_output_section_data(hashdata);
2291
2292 hashsec->set_link_section(dynsym);
2293 hashsec->set_entsize(4);
2294
2295 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2296 }
2297 }
2298
2299 // Assign offsets to each local portion of the dynamic symbol table.
2300
2301 void
2302 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2303 {
2304 Output_section* dynsym = this->dynsym_section_;
2305 gold_assert(dynsym != NULL);
2306
2307 off_t off = dynsym->offset();
2308
2309 // Skip the dummy symbol at the start of the section.
2310 off += dynsym->entsize();
2311
2312 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2313 p != input_objects->relobj_end();
2314 ++p)
2315 {
2316 unsigned int count = (*p)->set_local_dynsym_offset(off);
2317 off += count * dynsym->entsize();
2318 }
2319 }
2320
2321 // Create the version sections.
2322
2323 void
2324 Layout::create_version_sections(const Versions* versions,
2325 const Symbol_table* symtab,
2326 unsigned int local_symcount,
2327 const std::vector<Symbol*>& dynamic_symbols,
2328 const Output_section* dynstr)
2329 {
2330 if (!versions->any_defs() && !versions->any_needs())
2331 return;
2332
2333 switch (parameters->size_and_endianness())
2334 {
2335 #ifdef HAVE_TARGET_32_LITTLE
2336 case Parameters::TARGET_32_LITTLE:
2337 this->sized_create_version_sections<32, false>(versions, symtab,
2338 local_symcount,
2339 dynamic_symbols, dynstr);
2340 break;
2341 #endif
2342 #ifdef HAVE_TARGET_32_BIG
2343 case Parameters::TARGET_32_BIG:
2344 this->sized_create_version_sections<32, true>(versions, symtab,
2345 local_symcount,
2346 dynamic_symbols, dynstr);
2347 break;
2348 #endif
2349 #ifdef HAVE_TARGET_64_LITTLE
2350 case Parameters::TARGET_64_LITTLE:
2351 this->sized_create_version_sections<64, false>(versions, symtab,
2352 local_symcount,
2353 dynamic_symbols, dynstr);
2354 break;
2355 #endif
2356 #ifdef HAVE_TARGET_64_BIG
2357 case Parameters::TARGET_64_BIG:
2358 this->sized_create_version_sections<64, true>(versions, symtab,
2359 local_symcount,
2360 dynamic_symbols, dynstr);
2361 break;
2362 #endif
2363 default:
2364 gold_unreachable();
2365 }
2366 }
2367
2368 // Create the version sections, sized version.
2369
2370 template<int size, bool big_endian>
2371 void
2372 Layout::sized_create_version_sections(
2373 const Versions* versions,
2374 const Symbol_table* symtab,
2375 unsigned int local_symcount,
2376 const std::vector<Symbol*>& dynamic_symbols,
2377 const Output_section* dynstr)
2378 {
2379 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2380 elfcpp::SHT_GNU_versym,
2381 elfcpp::SHF_ALLOC,
2382 false);
2383
2384 unsigned char* vbuf;
2385 unsigned int vsize;
2386 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2387 local_symcount,
2388 dynamic_symbols,
2389 &vbuf, &vsize);
2390
2391 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
2392
2393 vsec->add_output_section_data(vdata);
2394 vsec->set_entsize(2);
2395 vsec->set_link_section(this->dynsym_section_);
2396
2397 Output_data_dynamic* const odyn = this->dynamic_data_;
2398 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2399
2400 if (versions->any_defs())
2401 {
2402 Output_section* vdsec;
2403 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2404 elfcpp::SHT_GNU_verdef,
2405 elfcpp::SHF_ALLOC,
2406 false);
2407
2408 unsigned char* vdbuf;
2409 unsigned int vdsize;
2410 unsigned int vdentries;
2411 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2412 &vdsize, &vdentries);
2413
2414 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2415 vdsize,
2416 4);
2417
2418 vdsec->add_output_section_data(vddata);
2419 vdsec->set_link_section(dynstr);
2420 vdsec->set_info(vdentries);
2421
2422 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2423 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2424 }
2425
2426 if (versions->any_needs())
2427 {
2428 Output_section* vnsec;
2429 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2430 elfcpp::SHT_GNU_verneed,
2431 elfcpp::SHF_ALLOC,
2432 false);
2433
2434 unsigned char* vnbuf;
2435 unsigned int vnsize;
2436 unsigned int vnentries;
2437 versions->need_section_contents<size, big_endian>(&this->dynpool_,
2438 &vnbuf, &vnsize,
2439 &vnentries);
2440
2441 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2442 vnsize,
2443 4);
2444
2445 vnsec->add_output_section_data(vndata);
2446 vnsec->set_link_section(dynstr);
2447 vnsec->set_info(vnentries);
2448
2449 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2450 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2451 }
2452 }
2453
2454 // Create the .interp section and PT_INTERP segment.
2455
2456 void
2457 Layout::create_interp(const Target* target)
2458 {
2459 const char* interp = this->options_.dynamic_linker();
2460 if (interp == NULL)
2461 {
2462 interp = target->dynamic_linker();
2463 gold_assert(interp != NULL);
2464 }
2465
2466 size_t len = strlen(interp) + 1;
2467
2468 Output_section_data* odata = new Output_data_const(interp, len, 1);
2469
2470 Output_section* osec = this->choose_output_section(NULL, ".interp",
2471 elfcpp::SHT_PROGBITS,
2472 elfcpp::SHF_ALLOC,
2473 false);
2474 osec->add_output_section_data(odata);
2475
2476 if (!this->script_options_->saw_phdrs_clause())
2477 {
2478 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2479 elfcpp::PF_R);
2480 oseg->add_initial_output_section(osec, elfcpp::PF_R);
2481 }
2482 }
2483
2484 // Finish the .dynamic section and PT_DYNAMIC segment.
2485
2486 void
2487 Layout::finish_dynamic_section(const Input_objects* input_objects,
2488 const Symbol_table* symtab)
2489 {
2490 if (!this->script_options_->saw_phdrs_clause())
2491 {
2492 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2493 (elfcpp::PF_R
2494 | elfcpp::PF_W));
2495 oseg->add_initial_output_section(this->dynamic_section_,
2496 elfcpp::PF_R | elfcpp::PF_W);
2497 }
2498
2499 Output_data_dynamic* const odyn = this->dynamic_data_;
2500
2501 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2502 p != input_objects->dynobj_end();
2503 ++p)
2504 {
2505 // FIXME: Handle --as-needed.
2506 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2507 }
2508
2509 if (parameters->options().shared())
2510 {
2511 const char* soname = this->options_.soname();
2512 if (soname != NULL)
2513 odyn->add_string(elfcpp::DT_SONAME, soname);
2514 }
2515
2516 // FIXME: Support --init and --fini.
2517 Symbol* sym = symtab->lookup("_init");
2518 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2519 odyn->add_symbol(elfcpp::DT_INIT, sym);
2520
2521 sym = symtab->lookup("_fini");
2522 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2523 odyn->add_symbol(elfcpp::DT_FINI, sym);
2524
2525 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2526
2527 // Add a DT_RPATH entry if needed.
2528 const General_options::Dir_list& rpath(this->options_.rpath());
2529 if (!rpath.empty())
2530 {
2531 std::string rpath_val;
2532 for (General_options::Dir_list::const_iterator p = rpath.begin();
2533 p != rpath.end();
2534 ++p)
2535 {
2536 if (rpath_val.empty())
2537 rpath_val = p->name();
2538 else
2539 {
2540 // Eliminate duplicates.
2541 General_options::Dir_list::const_iterator q;
2542 for (q = rpath.begin(); q != p; ++q)
2543 if (q->name() == p->name())
2544 break;
2545 if (q == p)
2546 {
2547 rpath_val += ':';
2548 rpath_val += p->name();
2549 }
2550 }
2551 }
2552
2553 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2554 if (parameters->options().enable_new_dtags())
2555 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2556 }
2557
2558 // Look for text segments that have dynamic relocations.
2559 bool have_textrel = false;
2560 if (!this->script_options_->saw_sections_clause())
2561 {
2562 for (Segment_list::const_iterator p = this->segment_list_.begin();
2563 p != this->segment_list_.end();
2564 ++p)
2565 {
2566 if (((*p)->flags() & elfcpp::PF_W) == 0
2567 && (*p)->dynamic_reloc_count() > 0)
2568 {
2569 have_textrel = true;
2570 break;
2571 }
2572 }
2573 }
2574 else
2575 {
2576 // We don't know the section -> segment mapping, so we are
2577 // conservative and just look for readonly sections with
2578 // relocations. If those sections wind up in writable segments,
2579 // then we have created an unnecessary DT_TEXTREL entry.
2580 for (Section_list::const_iterator p = this->section_list_.begin();
2581 p != this->section_list_.end();
2582 ++p)
2583 {
2584 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2585 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2586 && ((*p)->dynamic_reloc_count() > 0))
2587 {
2588 have_textrel = true;
2589 break;
2590 }
2591 }
2592 }
2593
2594 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2595 // post-link tools can easily modify these flags if desired.
2596 unsigned int flags = 0;
2597 if (have_textrel)
2598 {
2599 // Add a DT_TEXTREL for compatibility with older loaders.
2600 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2601 flags |= elfcpp::DF_TEXTREL;
2602 }
2603 if (parameters->options().shared() && this->has_static_tls())
2604 flags |= elfcpp::DF_STATIC_TLS;
2605 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2606
2607 flags = 0;
2608 if (parameters->options().initfirst())
2609 flags |= elfcpp::DF_1_INITFIRST;
2610 if (parameters->options().interpose())
2611 flags |= elfcpp::DF_1_INTERPOSE;
2612 if (parameters->options().loadfltr())
2613 flags |= elfcpp::DF_1_LOADFLTR;
2614 if (parameters->options().nodefaultlib())
2615 flags |= elfcpp::DF_1_NODEFLIB;
2616 if (parameters->options().nodelete())
2617 flags |= elfcpp::DF_1_NODELETE;
2618 if (parameters->options().nodlopen())
2619 flags |= elfcpp::DF_1_NOOPEN;
2620 if (parameters->options().nodump())
2621 flags |= elfcpp::DF_1_NODUMP;
2622 if (!parameters->options().shared())
2623 flags &= ~(elfcpp::DF_1_INITFIRST
2624 | elfcpp::DF_1_NODELETE
2625 | elfcpp::DF_1_NOOPEN);
2626 if (flags)
2627 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2628 }
2629
2630 // The mapping of .gnu.linkonce section names to real section names.
2631
2632 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2633 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2634 {
2635 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
2636 MAPPING_INIT("t", ".text"),
2637 MAPPING_INIT("r", ".rodata"),
2638 MAPPING_INIT("d", ".data"),
2639 MAPPING_INIT("b", ".bss"),
2640 MAPPING_INIT("s", ".sdata"),
2641 MAPPING_INIT("sb", ".sbss"),
2642 MAPPING_INIT("s2", ".sdata2"),
2643 MAPPING_INIT("sb2", ".sbss2"),
2644 MAPPING_INIT("wi", ".debug_info"),
2645 MAPPING_INIT("td", ".tdata"),
2646 MAPPING_INIT("tb", ".tbss"),
2647 MAPPING_INIT("lr", ".lrodata"),
2648 MAPPING_INIT("l", ".ldata"),
2649 MAPPING_INIT("lb", ".lbss"),
2650 };
2651 #undef MAPPING_INIT
2652
2653 const int Layout::linkonce_mapping_count =
2654 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2655
2656 // Return the name of the output section to use for a .gnu.linkonce
2657 // section. This is based on the default ELF linker script of the old
2658 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2659 // to ".text". Set *PLEN to the length of the name. *PLEN is
2660 // initialized to the length of NAME.
2661
2662 const char*
2663 Layout::linkonce_output_name(const char* name, size_t *plen)
2664 {
2665 const char* s = name + sizeof(".gnu.linkonce") - 1;
2666 if (*s != '.')
2667 return name;
2668 ++s;
2669 const Linkonce_mapping* plm = linkonce_mapping;
2670 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2671 {
2672 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2673 {
2674 *plen = plm->tolen;
2675 return plm->to;
2676 }
2677 }
2678 return name;
2679 }
2680
2681 // Choose the output section name to use given an input section name.
2682 // Set *PLEN to the length of the name. *PLEN is initialized to the
2683 // length of NAME.
2684
2685 const char*
2686 Layout::output_section_name(const char* name, size_t* plen)
2687 {
2688 if (Layout::is_linkonce(name))
2689 {
2690 // .gnu.linkonce sections are laid out as though they were named
2691 // for the sections are placed into.
2692 return Layout::linkonce_output_name(name, plen);
2693 }
2694
2695 // gcc 4.3 generates the following sorts of section names when it
2696 // needs a section name specific to a function:
2697 // .text.FN
2698 // .rodata.FN
2699 // .sdata2.FN
2700 // .data.FN
2701 // .data.rel.FN
2702 // .data.rel.local.FN
2703 // .data.rel.ro.FN
2704 // .data.rel.ro.local.FN
2705 // .sdata.FN
2706 // .bss.FN
2707 // .sbss.FN
2708 // .tdata.FN
2709 // .tbss.FN
2710
2711 // The GNU linker maps all of those to the part before the .FN,
2712 // except that .data.rel.local.FN is mapped to .data, and
2713 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2714 // beginning with .data.rel.ro.local are grouped together.
2715
2716 // For an anonymous namespace, the string FN can contain a '.'.
2717
2718 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2719 // GNU linker maps to .rodata.
2720
2721 // The .data.rel.ro sections enable a security feature triggered by
2722 // the -z relro option. Section which need to be relocated at
2723 // program startup time but which may be readonly after startup are
2724 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2725 // segment. The dynamic linker will make that segment writable,
2726 // perform relocations, and then make it read-only. FIXME: We do
2727 // not yet implement this optimization.
2728
2729 // It is hard to handle this in a principled way.
2730
2731 // These are the rules we follow:
2732
2733 // If the section name has no initial '.', or no dot other than an
2734 // initial '.', we use the name unchanged (i.e., "mysection" and
2735 // ".text" are unchanged).
2736
2737 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2738
2739 // Otherwise, we drop the second '.' and everything that comes after
2740 // it (i.e., ".text.XXX" becomes ".text").
2741
2742 const char* s = name;
2743 if (*s != '.')
2744 return name;
2745 ++s;
2746 const char* sdot = strchr(s, '.');
2747 if (sdot == NULL)
2748 return name;
2749
2750 const char* const data_rel_ro = ".data.rel.ro";
2751 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2752 {
2753 *plen = strlen(data_rel_ro);
2754 return data_rel_ro;
2755 }
2756
2757 *plen = sdot - name;
2758 return name;
2759 }
2760
2761 // Record the signature of a comdat section, and return whether to
2762 // include it in the link. If GROUP is true, this is a regular
2763 // section group. If GROUP is false, this is a group signature
2764 // derived from the name of a linkonce section. We want linkonce
2765 // signatures and group signatures to block each other, but we don't
2766 // want a linkonce signature to block another linkonce signature.
2767
2768 bool
2769 Layout::add_comdat(Relobj* object, unsigned int shndx,
2770 const std::string& signature, bool group)
2771 {
2772 Kept_section kept(object, shndx, group);
2773 std::pair<Signatures::iterator, bool> ins(
2774 this->signatures_.insert(std::make_pair(signature, kept)));
2775
2776 if (ins.second)
2777 {
2778 // This is the first time we've seen this signature.
2779 return true;
2780 }
2781
2782 if (ins.first->second.group_)
2783 {
2784 // We've already seen a real section group with this signature.
2785 return false;
2786 }
2787 else if (group)
2788 {
2789 // This is a real section group, and we've already seen a
2790 // linkonce section with this signature. Record that we've seen
2791 // a section group, and don't include this section group.
2792 ins.first->second.group_ = true;
2793 return false;
2794 }
2795 else
2796 {
2797 // We've already seen a linkonce section and this is a linkonce
2798 // section. These don't block each other--this may be the same
2799 // symbol name with different section types.
2800 return true;
2801 }
2802 }
2803
2804 // Find the given comdat signature, and return the object and section
2805 // index of the kept group.
2806 Relobj*
2807 Layout::find_kept_object(const std::string& signature,
2808 unsigned int* pshndx) const
2809 {
2810 Signatures::const_iterator p = this->signatures_.find(signature);
2811 if (p == this->signatures_.end())
2812 return NULL;
2813 if (pshndx != NULL)
2814 *pshndx = p->second.shndx_;
2815 return p->second.object_;
2816 }
2817
2818 // Store the allocated sections into the section list.
2819
2820 void
2821 Layout::get_allocated_sections(Section_list* section_list) const
2822 {
2823 for (Section_list::const_iterator p = this->section_list_.begin();
2824 p != this->section_list_.end();
2825 ++p)
2826 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2827 section_list->push_back(*p);
2828 }
2829
2830 // Create an output segment.
2831
2832 Output_segment*
2833 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2834 {
2835 gold_assert(!parameters->options().relocatable());
2836 Output_segment* oseg = new Output_segment(type, flags);
2837 this->segment_list_.push_back(oseg);
2838 return oseg;
2839 }
2840
2841 // Write out the Output_sections. Most won't have anything to write,
2842 // since most of the data will come from input sections which are
2843 // handled elsewhere. But some Output_sections do have Output_data.
2844
2845 void
2846 Layout::write_output_sections(Output_file* of) const
2847 {
2848 for (Section_list::const_iterator p = this->section_list_.begin();
2849 p != this->section_list_.end();
2850 ++p)
2851 {
2852 if (!(*p)->after_input_sections())
2853 (*p)->write(of);
2854 }
2855 }
2856
2857 // Write out data not associated with a section or the symbol table.
2858
2859 void
2860 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2861 {
2862 if (!parameters->options().strip_all())
2863 {
2864 const Output_section* symtab_section = this->symtab_section_;
2865 for (Section_list::const_iterator p = this->section_list_.begin();
2866 p != this->section_list_.end();
2867 ++p)
2868 {
2869 if ((*p)->needs_symtab_index())
2870 {
2871 gold_assert(symtab_section != NULL);
2872 unsigned int index = (*p)->symtab_index();
2873 gold_assert(index > 0 && index != -1U);
2874 off_t off = (symtab_section->offset()
2875 + index * symtab_section->entsize());
2876 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
2877 }
2878 }
2879 }
2880
2881 const Output_section* dynsym_section = this->dynsym_section_;
2882 for (Section_list::const_iterator p = this->section_list_.begin();
2883 p != this->section_list_.end();
2884 ++p)
2885 {
2886 if ((*p)->needs_dynsym_index())
2887 {
2888 gold_assert(dynsym_section != NULL);
2889 unsigned int index = (*p)->dynsym_index();
2890 gold_assert(index > 0 && index != -1U);
2891 off_t off = (dynsym_section->offset()
2892 + index * dynsym_section->entsize());
2893 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
2894 }
2895 }
2896
2897 // Write out the Output_data which are not in an Output_section.
2898 for (Data_list::const_iterator p = this->special_output_list_.begin();
2899 p != this->special_output_list_.end();
2900 ++p)
2901 (*p)->write(of);
2902 }
2903
2904 // Write out the Output_sections which can only be written after the
2905 // input sections are complete.
2906
2907 void
2908 Layout::write_sections_after_input_sections(Output_file* of)
2909 {
2910 // Determine the final section offsets, and thus the final output
2911 // file size. Note we finalize the .shstrab last, to allow the
2912 // after_input_section sections to modify their section-names before
2913 // writing.
2914 if (this->any_postprocessing_sections_)
2915 {
2916 off_t off = this->output_file_size_;
2917 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2918
2919 // Now that we've finalized the names, we can finalize the shstrab.
2920 off =
2921 this->set_section_offsets(off,
2922 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2923
2924 if (off > this->output_file_size_)
2925 {
2926 of->resize(off);
2927 this->output_file_size_ = off;
2928 }
2929 }
2930
2931 for (Section_list::const_iterator p = this->section_list_.begin();
2932 p != this->section_list_.end();
2933 ++p)
2934 {
2935 if ((*p)->after_input_sections())
2936 (*p)->write(of);
2937 }
2938
2939 this->section_headers_->write(of);
2940 }
2941
2942 // If the build ID requires computing a checksum, do so here, and
2943 // write it out. We compute a checksum over the entire file because
2944 // that is simplest.
2945
2946 void
2947 Layout::write_build_id(Output_file* of) const
2948 {
2949 if (this->build_id_note_ == NULL)
2950 return;
2951
2952 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
2953
2954 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
2955 this->build_id_note_->data_size());
2956
2957 const char* style = parameters->options().build_id();
2958 if (strcmp(style, "sha1") == 0)
2959 {
2960 sha1_ctx ctx;
2961 sha1_init_ctx(&ctx);
2962 sha1_process_bytes(iv, this->output_file_size_, &ctx);
2963 sha1_finish_ctx(&ctx, ov);
2964 }
2965 else if (strcmp(style, "md5") == 0)
2966 {
2967 md5_ctx ctx;
2968 md5_init_ctx(&ctx);
2969 md5_process_bytes(iv, this->output_file_size_, &ctx);
2970 md5_finish_ctx(&ctx, ov);
2971 }
2972 else
2973 gold_unreachable();
2974
2975 of->write_output_view(this->build_id_note_->offset(),
2976 this->build_id_note_->data_size(),
2977 ov);
2978
2979 of->free_input_view(0, this->output_file_size_, iv);
2980 }
2981
2982 // Write out a binary file. This is called after the link is
2983 // complete. IN is the temporary output file we used to generate the
2984 // ELF code. We simply walk through the segments, read them from
2985 // their file offset in IN, and write them to their load address in
2986 // the output file. FIXME: with a bit more work, we could support
2987 // S-records and/or Intel hex format here.
2988
2989 void
2990 Layout::write_binary(Output_file* in) const
2991 {
2992 gold_assert(this->options_.oformat_enum()
2993 == General_options::OBJECT_FORMAT_BINARY);
2994
2995 // Get the size of the binary file.
2996 uint64_t max_load_address = 0;
2997 for (Segment_list::const_iterator p = this->segment_list_.begin();
2998 p != this->segment_list_.end();
2999 ++p)
3000 {
3001 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3002 {
3003 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3004 if (max_paddr > max_load_address)
3005 max_load_address = max_paddr;
3006 }
3007 }
3008
3009 Output_file out(parameters->options().output_file_name());
3010 out.open(max_load_address);
3011
3012 for (Segment_list::const_iterator p = this->segment_list_.begin();
3013 p != this->segment_list_.end();
3014 ++p)
3015 {
3016 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3017 {
3018 const unsigned char* vin = in->get_input_view((*p)->offset(),
3019 (*p)->filesz());
3020 unsigned char* vout = out.get_output_view((*p)->paddr(),
3021 (*p)->filesz());
3022 memcpy(vout, vin, (*p)->filesz());
3023 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3024 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3025 }
3026 }
3027
3028 out.close();
3029 }
3030
3031 // Print statistical information to stderr. This is used for --stats.
3032
3033 void
3034 Layout::print_stats() const
3035 {
3036 this->namepool_.print_stats("section name pool");
3037 this->sympool_.print_stats("output symbol name pool");
3038 this->dynpool_.print_stats("dynamic name pool");
3039
3040 for (Section_list::const_iterator p = this->section_list_.begin();
3041 p != this->section_list_.end();
3042 ++p)
3043 (*p)->print_merge_stats();
3044 }
3045
3046 // Write_sections_task methods.
3047
3048 // We can always run this task.
3049
3050 Task_token*
3051 Write_sections_task::is_runnable()
3052 {
3053 return NULL;
3054 }
3055
3056 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3057 // when finished.
3058
3059 void
3060 Write_sections_task::locks(Task_locker* tl)
3061 {
3062 tl->add(this, this->output_sections_blocker_);
3063 tl->add(this, this->final_blocker_);
3064 }
3065
3066 // Run the task--write out the data.
3067
3068 void
3069 Write_sections_task::run(Workqueue*)
3070 {
3071 this->layout_->write_output_sections(this->of_);
3072 }
3073
3074 // Write_data_task methods.
3075
3076 // We can always run this task.
3077
3078 Task_token*
3079 Write_data_task::is_runnable()
3080 {
3081 return NULL;
3082 }
3083
3084 // We need to unlock FINAL_BLOCKER when finished.
3085
3086 void
3087 Write_data_task::locks(Task_locker* tl)
3088 {
3089 tl->add(this, this->final_blocker_);
3090 }
3091
3092 // Run the task--write out the data.
3093
3094 void
3095 Write_data_task::run(Workqueue*)
3096 {
3097 this->layout_->write_data(this->symtab_, this->of_);
3098 }
3099
3100 // Write_symbols_task methods.
3101
3102 // We can always run this task.
3103
3104 Task_token*
3105 Write_symbols_task::is_runnable()
3106 {
3107 return NULL;
3108 }
3109
3110 // We need to unlock FINAL_BLOCKER when finished.
3111
3112 void
3113 Write_symbols_task::locks(Task_locker* tl)
3114 {
3115 tl->add(this, this->final_blocker_);
3116 }
3117
3118 // Run the task--write out the symbols.
3119
3120 void
3121 Write_symbols_task::run(Workqueue*)
3122 {
3123 this->symtab_->write_globals(this->input_objects_, this->sympool_,
3124 this->dynpool_, this->layout_->symtab_xindex(),
3125 this->layout_->dynsym_xindex(), this->of_);
3126 }
3127
3128 // Write_after_input_sections_task methods.
3129
3130 // We can only run this task after the input sections have completed.
3131
3132 Task_token*
3133 Write_after_input_sections_task::is_runnable()
3134 {
3135 if (this->input_sections_blocker_->is_blocked())
3136 return this->input_sections_blocker_;
3137 return NULL;
3138 }
3139
3140 // We need to unlock FINAL_BLOCKER when finished.
3141
3142 void
3143 Write_after_input_sections_task::locks(Task_locker* tl)
3144 {
3145 tl->add(this, this->final_blocker_);
3146 }
3147
3148 // Run the task.
3149
3150 void
3151 Write_after_input_sections_task::run(Workqueue*)
3152 {
3153 this->layout_->write_sections_after_input_sections(this->of_);
3154 }
3155
3156 // Close_task_runner methods.
3157
3158 // Run the task--close the file.
3159
3160 void
3161 Close_task_runner::run(Workqueue*, const Task*)
3162 {
3163 // If we need to compute a checksum for the BUILD if, we do so here.
3164 this->layout_->write_build_id(this->of_);
3165
3166 // If we've been asked to create a binary file, we do so here.
3167 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3168 this->layout_->write_binary(this->of_);
3169
3170 this->of_->close();
3171 }
3172
3173 // Instantiate the templates we need. We could use the configure
3174 // script to restrict this to only the ones for implemented targets.
3175
3176 #ifdef HAVE_TARGET_32_LITTLE
3177 template
3178 Output_section*
3179 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3180 const char* name,
3181 const elfcpp::Shdr<32, false>& shdr,
3182 unsigned int, unsigned int, off_t*);
3183 #endif
3184
3185 #ifdef HAVE_TARGET_32_BIG
3186 template
3187 Output_section*
3188 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3189 const char* name,
3190 const elfcpp::Shdr<32, true>& shdr,
3191 unsigned int, unsigned int, off_t*);
3192 #endif
3193
3194 #ifdef HAVE_TARGET_64_LITTLE
3195 template
3196 Output_section*
3197 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3198 const char* name,
3199 const elfcpp::Shdr<64, false>& shdr,
3200 unsigned int, unsigned int, off_t*);
3201 #endif
3202
3203 #ifdef HAVE_TARGET_64_BIG
3204 template
3205 Output_section*
3206 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3207 const char* name,
3208 const elfcpp::Shdr<64, true>& shdr,
3209 unsigned int, unsigned int, off_t*);
3210 #endif
3211
3212 #ifdef HAVE_TARGET_32_LITTLE
3213 template
3214 Output_section*
3215 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3216 unsigned int reloc_shndx,
3217 const elfcpp::Shdr<32, false>& shdr,
3218 Output_section* data_section,
3219 Relocatable_relocs* rr);
3220 #endif
3221
3222 #ifdef HAVE_TARGET_32_BIG
3223 template
3224 Output_section*
3225 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3226 unsigned int reloc_shndx,
3227 const elfcpp::Shdr<32, true>& shdr,
3228 Output_section* data_section,
3229 Relocatable_relocs* rr);
3230 #endif
3231
3232 #ifdef HAVE_TARGET_64_LITTLE
3233 template
3234 Output_section*
3235 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3236 unsigned int reloc_shndx,
3237 const elfcpp::Shdr<64, false>& shdr,
3238 Output_section* data_section,
3239 Relocatable_relocs* rr);
3240 #endif
3241
3242 #ifdef HAVE_TARGET_64_BIG
3243 template
3244 Output_section*
3245 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3246 unsigned int reloc_shndx,
3247 const elfcpp::Shdr<64, true>& shdr,
3248 Output_section* data_section,
3249 Relocatable_relocs* rr);
3250 #endif
3251
3252 #ifdef HAVE_TARGET_32_LITTLE
3253 template
3254 void
3255 Layout::layout_group<32, false>(Symbol_table* symtab,
3256 Sized_relobj<32, false>* object,
3257 unsigned int,
3258 const char* group_section_name,
3259 const char* signature,
3260 const elfcpp::Shdr<32, false>& shdr,
3261 const elfcpp::Elf_Word* contents);
3262 #endif
3263
3264 #ifdef HAVE_TARGET_32_BIG
3265 template
3266 void
3267 Layout::layout_group<32, true>(Symbol_table* symtab,
3268 Sized_relobj<32, true>* object,
3269 unsigned int,
3270 const char* group_section_name,
3271 const char* signature,
3272 const elfcpp::Shdr<32, true>& shdr,
3273 const elfcpp::Elf_Word* contents);
3274 #endif
3275
3276 #ifdef HAVE_TARGET_64_LITTLE
3277 template
3278 void
3279 Layout::layout_group<64, false>(Symbol_table* symtab,
3280 Sized_relobj<64, false>* object,
3281 unsigned int,
3282 const char* group_section_name,
3283 const char* signature,
3284 const elfcpp::Shdr<64, false>& shdr,
3285 const elfcpp::Elf_Word* contents);
3286 #endif
3287
3288 #ifdef HAVE_TARGET_64_BIG
3289 template
3290 void
3291 Layout::layout_group<64, true>(Symbol_table* symtab,
3292 Sized_relobj<64, true>* object,
3293 unsigned int,
3294 const char* group_section_name,
3295 const char* signature,
3296 const elfcpp::Shdr<64, true>& shdr,
3297 const elfcpp::Elf_Word* contents);
3298 #endif
3299
3300 #ifdef HAVE_TARGET_32_LITTLE
3301 template
3302 Output_section*
3303 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3304 const unsigned char* symbols,
3305 off_t symbols_size,
3306 const unsigned char* symbol_names,
3307 off_t symbol_names_size,
3308 unsigned int shndx,
3309 const elfcpp::Shdr<32, false>& shdr,
3310 unsigned int reloc_shndx,
3311 unsigned int reloc_type,
3312 off_t* off);
3313 #endif
3314
3315 #ifdef HAVE_TARGET_32_BIG
3316 template
3317 Output_section*
3318 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3319 const unsigned char* symbols,
3320 off_t symbols_size,
3321 const unsigned char* symbol_names,
3322 off_t symbol_names_size,
3323 unsigned int shndx,
3324 const elfcpp::Shdr<32, true>& shdr,
3325 unsigned int reloc_shndx,
3326 unsigned int reloc_type,
3327 off_t* off);
3328 #endif
3329
3330 #ifdef HAVE_TARGET_64_LITTLE
3331 template
3332 Output_section*
3333 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3334 const unsigned char* symbols,
3335 off_t symbols_size,
3336 const unsigned char* symbol_names,
3337 off_t symbol_names_size,
3338 unsigned int shndx,
3339 const elfcpp::Shdr<64, false>& shdr,
3340 unsigned int reloc_shndx,
3341 unsigned int reloc_type,
3342 off_t* off);
3343 #endif
3344
3345 #ifdef HAVE_TARGET_64_BIG
3346 template
3347 Output_section*
3348 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3349 const unsigned char* symbols,
3350 off_t symbols_size,
3351 const unsigned char* symbol_names,
3352 off_t symbol_names_size,
3353 unsigned int shndx,
3354 const elfcpp::Shdr<64, true>& shdr,
3355 unsigned int reloc_shndx,
3356 unsigned int reloc_type,
3357 off_t* off);
3358 #endif
3359
3360 } // End namespace gold.
This page took 0.123468 seconds and 4 git commands to generate.