* terminal.h (create_tty_session): Fix return type.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "script.h"
39 #include "script-sections.h"
40 #include "output.h"
41 #include "symtab.h"
42 #include "dynobj.h"
43 #include "ehframe.h"
44 #include "compressed_output.h"
45 #include "reloc.h"
46 #include "layout.h"
47
48 namespace gold
49 {
50
51 // Layout_task_runner methods.
52
53 // Lay out the sections. This is called after all the input objects
54 // have been read.
55
56 void
57 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
58 {
59 off_t file_size = this->layout_->finalize(this->input_objects_,
60 this->symtab_,
61 this->target_,
62 task);
63
64 // Now we know the final size of the output file and we know where
65 // each piece of information goes.
66 Output_file* of = new Output_file(parameters->options().output_file_name());
67 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
68 of->set_is_temporary();
69 of->open(file_size);
70
71 // Queue up the final set of tasks.
72 gold::queue_final_tasks(this->options_, this->input_objects_,
73 this->symtab_, this->layout_, workqueue, of);
74 }
75
76 // Layout methods.
77
78 Layout::Layout(const General_options& options, Script_options* script_options)
79 : options_(options),
80 script_options_(script_options),
81 namepool_(),
82 sympool_(),
83 dynpool_(),
84 signatures_(),
85 section_name_map_(),
86 segment_list_(),
87 section_list_(),
88 unattached_section_list_(),
89 sections_are_attached_(false),
90 special_output_list_(),
91 section_headers_(NULL),
92 tls_segment_(NULL),
93 symtab_section_(NULL),
94 symtab_xindex_(NULL),
95 dynsym_section_(NULL),
96 dynsym_xindex_(NULL),
97 dynamic_section_(NULL),
98 dynamic_data_(NULL),
99 eh_frame_section_(NULL),
100 eh_frame_data_(NULL),
101 added_eh_frame_data_(false),
102 eh_frame_hdr_section_(NULL),
103 build_id_note_(NULL),
104 group_signatures_(),
105 output_file_size_(-1),
106 input_requires_executable_stack_(false),
107 input_with_gnu_stack_note_(false),
108 input_without_gnu_stack_note_(false),
109 has_static_tls_(false),
110 any_postprocessing_sections_(false)
111 {
112 // Make space for more than enough segments for a typical file.
113 // This is just for efficiency--it's OK if we wind up needing more.
114 this->segment_list_.reserve(12);
115
116 // We expect two unattached Output_data objects: the file header and
117 // the segment headers.
118 this->special_output_list_.reserve(2);
119 }
120
121 // Hash a key we use to look up an output section mapping.
122
123 size_t
124 Layout::Hash_key::operator()(const Layout::Key& k) const
125 {
126 return k.first + k.second.first + k.second.second;
127 }
128
129 // Return whether PREFIX is a prefix of STR.
130
131 static inline bool
132 is_prefix_of(const char* prefix, const char* str)
133 {
134 return strncmp(prefix, str, strlen(prefix)) == 0;
135 }
136
137 // Returns whether the given section is in the list of
138 // debug-sections-used-by-some-version-of-gdb. Currently,
139 // we've checked versions of gdb up to and including 6.7.1.
140
141 static const char* gdb_sections[] =
142 { ".debug_abbrev",
143 // ".debug_aranges", // not used by gdb as of 6.7.1
144 ".debug_frame",
145 ".debug_info",
146 ".debug_line",
147 ".debug_loc",
148 ".debug_macinfo",
149 // ".debug_pubnames", // not used by gdb as of 6.7.1
150 ".debug_ranges",
151 ".debug_str",
152 };
153
154 static inline bool
155 is_gdb_debug_section(const char* str)
156 {
157 // We can do this faster: binary search or a hashtable. But why bother?
158 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
159 if (strcmp(str, gdb_sections[i]) == 0)
160 return true;
161 return false;
162 }
163
164 // Whether to include this section in the link.
165
166 template<int size, bool big_endian>
167 bool
168 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
169 const elfcpp::Shdr<size, big_endian>& shdr)
170 {
171 switch (shdr.get_sh_type())
172 {
173 case elfcpp::SHT_NULL:
174 case elfcpp::SHT_SYMTAB:
175 case elfcpp::SHT_DYNSYM:
176 case elfcpp::SHT_STRTAB:
177 case elfcpp::SHT_HASH:
178 case elfcpp::SHT_DYNAMIC:
179 case elfcpp::SHT_SYMTAB_SHNDX:
180 return false;
181
182 case elfcpp::SHT_RELA:
183 case elfcpp::SHT_REL:
184 case elfcpp::SHT_GROUP:
185 // If we are emitting relocations these should be handled
186 // elsewhere.
187 gold_assert(!parameters->options().relocatable()
188 && !parameters->options().emit_relocs());
189 return false;
190
191 case elfcpp::SHT_PROGBITS:
192 if (parameters->options().strip_debug()
193 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
194 {
195 // Debugging sections can only be recognized by name.
196 if (is_prefix_of(".debug", name)
197 || is_prefix_of(".gnu.linkonce.wi.", name)
198 || is_prefix_of(".line", name)
199 || is_prefix_of(".stab", name))
200 return false;
201 }
202 if (parameters->options().strip_debug_gdb()
203 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
204 {
205 // Debugging sections can only be recognized by name.
206 if (is_prefix_of(".debug", name)
207 && !is_gdb_debug_section(name))
208 return false;
209 }
210 return true;
211
212 default:
213 return true;
214 }
215 }
216
217 // Return an output section named NAME, or NULL if there is none.
218
219 Output_section*
220 Layout::find_output_section(const char* name) const
221 {
222 for (Section_list::const_iterator p = this->section_list_.begin();
223 p != this->section_list_.end();
224 ++p)
225 if (strcmp((*p)->name(), name) == 0)
226 return *p;
227 return NULL;
228 }
229
230 // Return an output segment of type TYPE, with segment flags SET set
231 // and segment flags CLEAR clear. Return NULL if there is none.
232
233 Output_segment*
234 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
235 elfcpp::Elf_Word clear) const
236 {
237 for (Segment_list::const_iterator p = this->segment_list_.begin();
238 p != this->segment_list_.end();
239 ++p)
240 if (static_cast<elfcpp::PT>((*p)->type()) == type
241 && ((*p)->flags() & set) == set
242 && ((*p)->flags() & clear) == 0)
243 return *p;
244 return NULL;
245 }
246
247 // Return the output section to use for section NAME with type TYPE
248 // and section flags FLAGS. NAME must be canonicalized in the string
249 // pool, and NAME_KEY is the key.
250
251 Output_section*
252 Layout::get_output_section(const char* name, Stringpool::Key name_key,
253 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
254 {
255 elfcpp::Elf_Xword lookup_flags = flags;
256
257 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
258 // read-write with read-only sections. Some other ELF linkers do
259 // not do this. FIXME: Perhaps there should be an option
260 // controlling this.
261 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
262
263 const Key key(name_key, std::make_pair(type, lookup_flags));
264 const std::pair<Key, Output_section*> v(key, NULL);
265 std::pair<Section_name_map::iterator, bool> ins(
266 this->section_name_map_.insert(v));
267
268 if (!ins.second)
269 return ins.first->second;
270 else
271 {
272 // This is the first time we've seen this name/type/flags
273 // combination. For compatibility with the GNU linker, we
274 // combine sections with contents and zero flags with sections
275 // with non-zero flags. This is a workaround for cases where
276 // assembler code forgets to set section flags. FIXME: Perhaps
277 // there should be an option to control this.
278 Output_section* os = NULL;
279
280 if (type == elfcpp::SHT_PROGBITS)
281 {
282 if (flags == 0)
283 {
284 Output_section* same_name = this->find_output_section(name);
285 if (same_name != NULL
286 && same_name->type() == elfcpp::SHT_PROGBITS
287 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
288 os = same_name;
289 }
290 else if ((flags & elfcpp::SHF_TLS) == 0)
291 {
292 elfcpp::Elf_Xword zero_flags = 0;
293 const Key zero_key(name_key, std::make_pair(type, zero_flags));
294 Section_name_map::iterator p =
295 this->section_name_map_.find(zero_key);
296 if (p != this->section_name_map_.end())
297 os = p->second;
298 }
299 }
300
301 if (os == NULL)
302 os = this->make_output_section(name, type, flags);
303 ins.first->second = os;
304 return os;
305 }
306 }
307
308 // Pick the output section to use for section NAME, in input file
309 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
310 // linker created section. IS_INPUT_SECTION is true if we are
311 // choosing an output section for an input section found in a input
312 // file. This will return NULL if the input section should be
313 // discarded.
314
315 Output_section*
316 Layout::choose_output_section(const Relobj* relobj, const char* name,
317 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
318 bool is_input_section)
319 {
320 // We should not see any input sections after we have attached
321 // sections to segments.
322 gold_assert(!is_input_section || !this->sections_are_attached_);
323
324 // Some flags in the input section should not be automatically
325 // copied to the output section.
326 flags &= ~ (elfcpp::SHF_INFO_LINK
327 | elfcpp::SHF_LINK_ORDER
328 | elfcpp::SHF_GROUP
329 | elfcpp::SHF_MERGE
330 | elfcpp::SHF_STRINGS);
331
332 if (this->script_options_->saw_sections_clause())
333 {
334 // We are using a SECTIONS clause, so the output section is
335 // chosen based only on the name.
336
337 Script_sections* ss = this->script_options_->script_sections();
338 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
339 Output_section** output_section_slot;
340 name = ss->output_section_name(file_name, name, &output_section_slot);
341 if (name == NULL)
342 {
343 // The SECTIONS clause says to discard this input section.
344 return NULL;
345 }
346
347 // If this is an orphan section--one not mentioned in the linker
348 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
349 // default processing below.
350
351 if (output_section_slot != NULL)
352 {
353 if (*output_section_slot != NULL)
354 return *output_section_slot;
355
356 // We don't put sections found in the linker script into
357 // SECTION_NAME_MAP_. That keeps us from getting confused
358 // if an orphan section is mapped to a section with the same
359 // name as one in the linker script.
360
361 name = this->namepool_.add(name, false, NULL);
362
363 Output_section* os = this->make_output_section(name, type, flags);
364 os->set_found_in_sections_clause();
365 *output_section_slot = os;
366 return os;
367 }
368 }
369
370 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
371
372 // Turn NAME from the name of the input section into the name of the
373 // output section.
374
375 size_t len = strlen(name);
376 if (is_input_section && !parameters->options().relocatable())
377 name = Layout::output_section_name(name, &len);
378
379 Stringpool::Key name_key;
380 name = this->namepool_.add_with_length(name, len, true, &name_key);
381
382 // Find or make the output section. The output section is selected
383 // based on the section name, type, and flags.
384 return this->get_output_section(name, name_key, type, flags);
385 }
386
387 // Return the output section to use for input section SHNDX, with name
388 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
389 // index of a relocation section which applies to this section, or 0
390 // if none, or -1U if more than one. RELOC_TYPE is the type of the
391 // relocation section if there is one. Set *OFF to the offset of this
392 // input section without the output section. Return NULL if the
393 // section should be discarded. Set *OFF to -1 if the section
394 // contents should not be written directly to the output file, but
395 // will instead receive special handling.
396
397 template<int size, bool big_endian>
398 Output_section*
399 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
400 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
401 unsigned int reloc_shndx, unsigned int, off_t* off)
402 {
403 if (!this->include_section(object, name, shdr))
404 return NULL;
405
406 Output_section* os;
407
408 // In a relocatable link a grouped section must not be combined with
409 // any other sections.
410 if (parameters->options().relocatable()
411 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
412 {
413 name = this->namepool_.add(name, true, NULL);
414 os = this->make_output_section(name, shdr.get_sh_type(),
415 shdr.get_sh_flags());
416 }
417 else
418 {
419 os = this->choose_output_section(object, name, shdr.get_sh_type(),
420 shdr.get_sh_flags(), true);
421 if (os == NULL)
422 return NULL;
423 }
424
425 // By default the GNU linker sorts input sections whose names match
426 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
427 // are sorted by name. This is used to implement constructor
428 // priority ordering. We are compatible.
429 if (!this->script_options_->saw_sections_clause()
430 && (is_prefix_of(".ctors.", name)
431 || is_prefix_of(".dtors.", name)
432 || is_prefix_of(".init_array.", name)
433 || is_prefix_of(".fini_array.", name)))
434 os->set_must_sort_attached_input_sections();
435
436 // FIXME: Handle SHF_LINK_ORDER somewhere.
437
438 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
439 this->script_options_->saw_sections_clause());
440
441 return os;
442 }
443
444 // Handle a relocation section when doing a relocatable link.
445
446 template<int size, bool big_endian>
447 Output_section*
448 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
449 unsigned int,
450 const elfcpp::Shdr<size, big_endian>& shdr,
451 Output_section* data_section,
452 Relocatable_relocs* rr)
453 {
454 gold_assert(parameters->options().relocatable()
455 || parameters->options().emit_relocs());
456
457 int sh_type = shdr.get_sh_type();
458
459 std::string name;
460 if (sh_type == elfcpp::SHT_REL)
461 name = ".rel";
462 else if (sh_type == elfcpp::SHT_RELA)
463 name = ".rela";
464 else
465 gold_unreachable();
466 name += data_section->name();
467
468 Output_section* os = this->choose_output_section(object, name.c_str(),
469 sh_type,
470 shdr.get_sh_flags(),
471 false);
472
473 os->set_should_link_to_symtab();
474 os->set_info_section(data_section);
475
476 Output_section_data* posd;
477 if (sh_type == elfcpp::SHT_REL)
478 {
479 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
480 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
481 size,
482 big_endian>(rr);
483 }
484 else if (sh_type == elfcpp::SHT_RELA)
485 {
486 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
487 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
488 size,
489 big_endian>(rr);
490 }
491 else
492 gold_unreachable();
493
494 os->add_output_section_data(posd);
495 rr->set_output_data(posd);
496
497 return os;
498 }
499
500 // Handle a group section when doing a relocatable link.
501
502 template<int size, bool big_endian>
503 void
504 Layout::layout_group(Symbol_table* symtab,
505 Sized_relobj<size, big_endian>* object,
506 unsigned int,
507 const char* group_section_name,
508 const char* signature,
509 const elfcpp::Shdr<size, big_endian>& shdr,
510 const elfcpp::Elf_Word* contents)
511 {
512 gold_assert(parameters->options().relocatable());
513 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
514 group_section_name = this->namepool_.add(group_section_name, true, NULL);
515 Output_section* os = this->make_output_section(group_section_name,
516 elfcpp::SHT_GROUP,
517 shdr.get_sh_flags());
518
519 // We need to find a symbol with the signature in the symbol table.
520 // If we don't find one now, we need to look again later.
521 Symbol* sym = symtab->lookup(signature, NULL);
522 if (sym != NULL)
523 os->set_info_symndx(sym);
524 else
525 {
526 // We will wind up using a symbol whose name is the signature.
527 // So just put the signature in the symbol name pool to save it.
528 signature = symtab->canonicalize_name(signature);
529 this->group_signatures_.push_back(Group_signature(os, signature));
530 }
531
532 os->set_should_link_to_symtab();
533 os->set_entsize(4);
534
535 section_size_type entry_count =
536 convert_to_section_size_type(shdr.get_sh_size() / 4);
537 Output_section_data* posd =
538 new Output_data_group<size, big_endian>(object, entry_count, contents);
539 os->add_output_section_data(posd);
540 }
541
542 // Special GNU handling of sections name .eh_frame. They will
543 // normally hold exception frame data as defined by the C++ ABI
544 // (http://codesourcery.com/cxx-abi/).
545
546 template<int size, bool big_endian>
547 Output_section*
548 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
549 const unsigned char* symbols,
550 off_t symbols_size,
551 const unsigned char* symbol_names,
552 off_t symbol_names_size,
553 unsigned int shndx,
554 const elfcpp::Shdr<size, big_endian>& shdr,
555 unsigned int reloc_shndx, unsigned int reloc_type,
556 off_t* off)
557 {
558 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
559 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
560
561 const char* const name = ".eh_frame";
562 Output_section* os = this->choose_output_section(object,
563 name,
564 elfcpp::SHT_PROGBITS,
565 elfcpp::SHF_ALLOC,
566 false);
567 if (os == NULL)
568 return NULL;
569
570 if (this->eh_frame_section_ == NULL)
571 {
572 this->eh_frame_section_ = os;
573 this->eh_frame_data_ = new Eh_frame();
574
575 if (this->options_.eh_frame_hdr())
576 {
577 Output_section* hdr_os =
578 this->choose_output_section(NULL,
579 ".eh_frame_hdr",
580 elfcpp::SHT_PROGBITS,
581 elfcpp::SHF_ALLOC,
582 false);
583
584 if (hdr_os != NULL)
585 {
586 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
587 this->eh_frame_data_);
588 hdr_os->add_output_section_data(hdr_posd);
589
590 hdr_os->set_after_input_sections();
591
592 if (!this->script_options_->saw_phdrs_clause())
593 {
594 Output_segment* hdr_oseg;
595 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
596 elfcpp::PF_R);
597 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
598 }
599
600 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
601 }
602 }
603 }
604
605 gold_assert(this->eh_frame_section_ == os);
606
607 if (this->eh_frame_data_->add_ehframe_input_section(object,
608 symbols,
609 symbols_size,
610 symbol_names,
611 symbol_names_size,
612 shndx,
613 reloc_shndx,
614 reloc_type))
615 {
616 os->update_flags_for_input_section(shdr.get_sh_flags());
617
618 // We found a .eh_frame section we are going to optimize, so now
619 // we can add the set of optimized sections to the output
620 // section. We need to postpone adding this until we've found a
621 // section we can optimize so that the .eh_frame section in
622 // crtbegin.o winds up at the start of the output section.
623 if (!this->added_eh_frame_data_)
624 {
625 os->add_output_section_data(this->eh_frame_data_);
626 this->added_eh_frame_data_ = true;
627 }
628 *off = -1;
629 }
630 else
631 {
632 // We couldn't handle this .eh_frame section for some reason.
633 // Add it as a normal section.
634 bool saw_sections_clause = this->script_options_->saw_sections_clause();
635 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
636 saw_sections_clause);
637 }
638
639 return os;
640 }
641
642 // Add POSD to an output section using NAME, TYPE, and FLAGS.
643
644 void
645 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
646 elfcpp::Elf_Xword flags,
647 Output_section_data* posd)
648 {
649 Output_section* os = this->choose_output_section(NULL, name, type, flags,
650 false);
651 if (os != NULL)
652 os->add_output_section_data(posd);
653 }
654
655 // Map section flags to segment flags.
656
657 elfcpp::Elf_Word
658 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
659 {
660 elfcpp::Elf_Word ret = elfcpp::PF_R;
661 if ((flags & elfcpp::SHF_WRITE) != 0)
662 ret |= elfcpp::PF_W;
663 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
664 ret |= elfcpp::PF_X;
665 return ret;
666 }
667
668 // Sometimes we compress sections. This is typically done for
669 // sections that are not part of normal program execution (such as
670 // .debug_* sections), and where the readers of these sections know
671 // how to deal with compressed sections. (To make it easier for them,
672 // we will rename the ouput section in such cases from .foo to
673 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
674 // doesn't say for certain whether we'll compress -- it depends on
675 // commandline options as well -- just whether this section is a
676 // candidate for compression.
677
678 static bool
679 is_compressible_debug_section(const char* secname)
680 {
681 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
682 }
683
684 // Make a new Output_section, and attach it to segments as
685 // appropriate.
686
687 Output_section*
688 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
689 elfcpp::Elf_Xword flags)
690 {
691 Output_section* os;
692 if ((flags & elfcpp::SHF_ALLOC) == 0
693 && strcmp(this->options_.compress_debug_sections(), "none") != 0
694 && is_compressible_debug_section(name))
695 os = new Output_compressed_section(&this->options_, name, type, flags);
696 else
697 os = new Output_section(name, type, flags);
698
699 this->section_list_.push_back(os);
700
701 // The GNU linker by default sorts some sections by priority, so we
702 // do the same. We need to know that this might happen before we
703 // attach any input sections.
704 if (!this->script_options_->saw_sections_clause()
705 && (strcmp(name, ".ctors") == 0
706 || strcmp(name, ".dtors") == 0
707 || strcmp(name, ".init_array") == 0
708 || strcmp(name, ".fini_array") == 0))
709 os->set_may_sort_attached_input_sections();
710
711 // If we have already attached the sections to segments, then we
712 // need to attach this one now. This happens for sections created
713 // directly by the linker.
714 if (this->sections_are_attached_)
715 this->attach_section_to_segment(os);
716
717 return os;
718 }
719
720 // Attach output sections to segments. This is called after we have
721 // seen all the input sections.
722
723 void
724 Layout::attach_sections_to_segments()
725 {
726 for (Section_list::iterator p = this->section_list_.begin();
727 p != this->section_list_.end();
728 ++p)
729 this->attach_section_to_segment(*p);
730
731 this->sections_are_attached_ = true;
732 }
733
734 // Attach an output section to a segment.
735
736 void
737 Layout::attach_section_to_segment(Output_section* os)
738 {
739 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
740 this->unattached_section_list_.push_back(os);
741 else
742 this->attach_allocated_section_to_segment(os);
743 }
744
745 // Attach an allocated output section to a segment.
746
747 void
748 Layout::attach_allocated_section_to_segment(Output_section* os)
749 {
750 elfcpp::Elf_Xword flags = os->flags();
751 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
752
753 if (parameters->options().relocatable())
754 return;
755
756 // If we have a SECTIONS clause, we can't handle the attachment to
757 // segments until after we've seen all the sections.
758 if (this->script_options_->saw_sections_clause())
759 return;
760
761 gold_assert(!this->script_options_->saw_phdrs_clause());
762
763 // This output section goes into a PT_LOAD segment.
764
765 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
766
767 // In general the only thing we really care about for PT_LOAD
768 // segments is whether or not they are writable, so that is how we
769 // search for them. People who need segments sorted on some other
770 // basis will have to use a linker script.
771
772 Segment_list::const_iterator p;
773 for (p = this->segment_list_.begin();
774 p != this->segment_list_.end();
775 ++p)
776 {
777 if ((*p)->type() == elfcpp::PT_LOAD
778 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
779 {
780 // If -Tbss was specified, we need to separate the data
781 // and BSS segments.
782 if (this->options_.user_set_Tbss())
783 {
784 if ((os->type() == elfcpp::SHT_NOBITS)
785 == (*p)->has_any_data_sections())
786 continue;
787 }
788
789 (*p)->add_output_section(os, seg_flags);
790 break;
791 }
792 }
793
794 if (p == this->segment_list_.end())
795 {
796 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
797 seg_flags);
798 oseg->add_output_section(os, seg_flags);
799 }
800
801 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
802 // segment.
803 if (os->type() == elfcpp::SHT_NOTE)
804 {
805 // See if we already have an equivalent PT_NOTE segment.
806 for (p = this->segment_list_.begin();
807 p != segment_list_.end();
808 ++p)
809 {
810 if ((*p)->type() == elfcpp::PT_NOTE
811 && (((*p)->flags() & elfcpp::PF_W)
812 == (seg_flags & elfcpp::PF_W)))
813 {
814 (*p)->add_output_section(os, seg_flags);
815 break;
816 }
817 }
818
819 if (p == this->segment_list_.end())
820 {
821 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
822 seg_flags);
823 oseg->add_output_section(os, seg_flags);
824 }
825 }
826
827 // If we see a loadable SHF_TLS section, we create a PT_TLS
828 // segment. There can only be one such segment.
829 if ((flags & elfcpp::SHF_TLS) != 0)
830 {
831 if (this->tls_segment_ == NULL)
832 this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
833 seg_flags);
834 this->tls_segment_->add_output_section(os, seg_flags);
835 }
836 }
837
838 // Make an output section for a script.
839
840 Output_section*
841 Layout::make_output_section_for_script(const char* name)
842 {
843 name = this->namepool_.add(name, false, NULL);
844 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
845 elfcpp::SHF_ALLOC);
846 os->set_found_in_sections_clause();
847 return os;
848 }
849
850 // Return the number of segments we expect to see.
851
852 size_t
853 Layout::expected_segment_count() const
854 {
855 size_t ret = this->segment_list_.size();
856
857 // If we didn't see a SECTIONS clause in a linker script, we should
858 // already have the complete list of segments. Otherwise we ask the
859 // SECTIONS clause how many segments it expects, and add in the ones
860 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
861
862 if (!this->script_options_->saw_sections_clause())
863 return ret;
864 else
865 {
866 const Script_sections* ss = this->script_options_->script_sections();
867 return ret + ss->expected_segment_count(this);
868 }
869 }
870
871 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
872 // is whether we saw a .note.GNU-stack section in the object file.
873 // GNU_STACK_FLAGS is the section flags. The flags give the
874 // protection required for stack memory. We record this in an
875 // executable as a PT_GNU_STACK segment. If an object file does not
876 // have a .note.GNU-stack segment, we must assume that it is an old
877 // object. On some targets that will force an executable stack.
878
879 void
880 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
881 {
882 if (!seen_gnu_stack)
883 this->input_without_gnu_stack_note_ = true;
884 else
885 {
886 this->input_with_gnu_stack_note_ = true;
887 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
888 this->input_requires_executable_stack_ = true;
889 }
890 }
891
892 // Create the dynamic sections which are needed before we read the
893 // relocs.
894
895 void
896 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
897 {
898 if (parameters->doing_static_link())
899 return;
900
901 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
902 elfcpp::SHT_DYNAMIC,
903 (elfcpp::SHF_ALLOC
904 | elfcpp::SHF_WRITE),
905 false);
906
907 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
908 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
909 elfcpp::STV_HIDDEN, 0, false, false);
910
911 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
912
913 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
914 }
915
916 // For each output section whose name can be represented as C symbol,
917 // define __start and __stop symbols for the section. This is a GNU
918 // extension.
919
920 void
921 Layout::define_section_symbols(Symbol_table* symtab)
922 {
923 for (Section_list::const_iterator p = this->section_list_.begin();
924 p != this->section_list_.end();
925 ++p)
926 {
927 const char* const name = (*p)->name();
928 if (name[strspn(name,
929 ("0123456789"
930 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
931 "abcdefghijklmnopqrstuvwxyz"
932 "_"))]
933 == '\0')
934 {
935 const std::string name_string(name);
936 const std::string start_name("__start_" + name_string);
937 const std::string stop_name("__stop_" + name_string);
938
939 symtab->define_in_output_data(start_name.c_str(),
940 NULL, // version
941 *p,
942 0, // value
943 0, // symsize
944 elfcpp::STT_NOTYPE,
945 elfcpp::STB_GLOBAL,
946 elfcpp::STV_DEFAULT,
947 0, // nonvis
948 false, // offset_is_from_end
949 true); // only_if_ref
950
951 symtab->define_in_output_data(stop_name.c_str(),
952 NULL, // version
953 *p,
954 0, // value
955 0, // symsize
956 elfcpp::STT_NOTYPE,
957 elfcpp::STB_GLOBAL,
958 elfcpp::STV_DEFAULT,
959 0, // nonvis
960 true, // offset_is_from_end
961 true); // only_if_ref
962 }
963 }
964 }
965
966 // Define symbols for group signatures.
967
968 void
969 Layout::define_group_signatures(Symbol_table* symtab)
970 {
971 for (Group_signatures::iterator p = this->group_signatures_.begin();
972 p != this->group_signatures_.end();
973 ++p)
974 {
975 Symbol* sym = symtab->lookup(p->signature, NULL);
976 if (sym != NULL)
977 p->section->set_info_symndx(sym);
978 else
979 {
980 // Force the name of the group section to the group
981 // signature, and use the group's section symbol as the
982 // signature symbol.
983 if (strcmp(p->section->name(), p->signature) != 0)
984 {
985 const char* name = this->namepool_.add(p->signature,
986 true, NULL);
987 p->section->set_name(name);
988 }
989 p->section->set_needs_symtab_index();
990 p->section->set_info_section_symndx(p->section);
991 }
992 }
993
994 this->group_signatures_.clear();
995 }
996
997 // Find the first read-only PT_LOAD segment, creating one if
998 // necessary.
999
1000 Output_segment*
1001 Layout::find_first_load_seg()
1002 {
1003 for (Segment_list::const_iterator p = this->segment_list_.begin();
1004 p != this->segment_list_.end();
1005 ++p)
1006 {
1007 if ((*p)->type() == elfcpp::PT_LOAD
1008 && ((*p)->flags() & elfcpp::PF_R) != 0
1009 && ((*p)->flags() & elfcpp::PF_W) == 0)
1010 return *p;
1011 }
1012
1013 gold_assert(!this->script_options_->saw_phdrs_clause());
1014
1015 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1016 elfcpp::PF_R);
1017 return load_seg;
1018 }
1019
1020 // Finalize the layout. When this is called, we have created all the
1021 // output sections and all the output segments which are based on
1022 // input sections. We have several things to do, and we have to do
1023 // them in the right order, so that we get the right results correctly
1024 // and efficiently.
1025
1026 // 1) Finalize the list of output segments and create the segment
1027 // table header.
1028
1029 // 2) Finalize the dynamic symbol table and associated sections.
1030
1031 // 3) Determine the final file offset of all the output segments.
1032
1033 // 4) Determine the final file offset of all the SHF_ALLOC output
1034 // sections.
1035
1036 // 5) Create the symbol table sections and the section name table
1037 // section.
1038
1039 // 6) Finalize the symbol table: set symbol values to their final
1040 // value and make a final determination of which symbols are going
1041 // into the output symbol table.
1042
1043 // 7) Create the section table header.
1044
1045 // 8) Determine the final file offset of all the output sections which
1046 // are not SHF_ALLOC, including the section table header.
1047
1048 // 9) Finalize the ELF file header.
1049
1050 // This function returns the size of the output file.
1051
1052 off_t
1053 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1054 Target* target, const Task* task)
1055 {
1056 target->finalize_sections(this);
1057
1058 this->count_local_symbols(task, input_objects);
1059
1060 this->create_gold_note();
1061 this->create_executable_stack_info(target);
1062 this->create_build_id();
1063
1064 Output_segment* phdr_seg = NULL;
1065 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1066 {
1067 // There was a dynamic object in the link. We need to create
1068 // some information for the dynamic linker.
1069
1070 // Create the PT_PHDR segment which will hold the program
1071 // headers.
1072 if (!this->script_options_->saw_phdrs_clause())
1073 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1074
1075 // Create the dynamic symbol table, including the hash table.
1076 Output_section* dynstr;
1077 std::vector<Symbol*> dynamic_symbols;
1078 unsigned int local_dynamic_count;
1079 Versions versions(*this->script_options()->version_script_info(),
1080 &this->dynpool_);
1081 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1082 &local_dynamic_count, &dynamic_symbols,
1083 &versions);
1084
1085 // Create the .interp section to hold the name of the
1086 // interpreter, and put it in a PT_INTERP segment.
1087 if (!parameters->options().shared())
1088 this->create_interp(target);
1089
1090 // Finish the .dynamic section to hold the dynamic data, and put
1091 // it in a PT_DYNAMIC segment.
1092 this->finish_dynamic_section(input_objects, symtab);
1093
1094 // We should have added everything we need to the dynamic string
1095 // table.
1096 this->dynpool_.set_string_offsets();
1097
1098 // Create the version sections. We can't do this until the
1099 // dynamic string table is complete.
1100 this->create_version_sections(&versions, symtab, local_dynamic_count,
1101 dynamic_symbols, dynstr);
1102 }
1103
1104 // If there is a SECTIONS clause, put all the input sections into
1105 // the required order.
1106 Output_segment* load_seg;
1107 if (this->script_options_->saw_sections_clause())
1108 load_seg = this->set_section_addresses_from_script(symtab);
1109 else if (parameters->options().relocatable())
1110 load_seg = NULL;
1111 else
1112 load_seg = this->find_first_load_seg();
1113
1114 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1115 load_seg = NULL;
1116
1117 gold_assert(phdr_seg == NULL || load_seg != NULL);
1118
1119 // Lay out the segment headers.
1120 Output_segment_headers* segment_headers;
1121 if (parameters->options().relocatable())
1122 segment_headers = NULL;
1123 else
1124 {
1125 segment_headers = new Output_segment_headers(this->segment_list_);
1126 if (load_seg != NULL)
1127 load_seg->add_initial_output_data(segment_headers);
1128 if (phdr_seg != NULL)
1129 phdr_seg->add_initial_output_data(segment_headers);
1130 }
1131
1132 // Lay out the file header.
1133 Output_file_header* file_header;
1134 file_header = new Output_file_header(target, symtab, segment_headers,
1135 this->options_.entry());
1136 if (load_seg != NULL)
1137 load_seg->add_initial_output_data(file_header);
1138
1139 this->special_output_list_.push_back(file_header);
1140 if (segment_headers != NULL)
1141 this->special_output_list_.push_back(segment_headers);
1142
1143 if (this->script_options_->saw_phdrs_clause()
1144 && !parameters->options().relocatable())
1145 {
1146 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1147 // clause in a linker script.
1148 Script_sections* ss = this->script_options_->script_sections();
1149 ss->put_headers_in_phdrs(file_header, segment_headers);
1150 }
1151
1152 // We set the output section indexes in set_segment_offsets and
1153 // set_section_indexes.
1154 unsigned int shndx = 1;
1155
1156 // Set the file offsets of all the segments, and all the sections
1157 // they contain.
1158 off_t off;
1159 if (!parameters->options().relocatable())
1160 off = this->set_segment_offsets(target, load_seg, &shndx);
1161 else
1162 off = this->set_relocatable_section_offsets(file_header, &shndx);
1163
1164 // Set the file offsets of all the non-data sections we've seen so
1165 // far which don't have to wait for the input sections. We need
1166 // this in order to finalize local symbols in non-allocated
1167 // sections.
1168 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1169
1170 // Set the section indexes of all unallocated sections seen so far,
1171 // in case any of them are somehow referenced by a symbol.
1172 shndx = this->set_section_indexes(shndx);
1173
1174 // Create the symbol table sections.
1175 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1176 if (!parameters->doing_static_link())
1177 this->assign_local_dynsym_offsets(input_objects);
1178
1179 // Process any symbol assignments from a linker script. This must
1180 // be called after the symbol table has been finalized.
1181 this->script_options_->finalize_symbols(symtab, this);
1182
1183 // Create the .shstrtab section.
1184 Output_section* shstrtab_section = this->create_shstrtab();
1185
1186 // Set the file offsets of the rest of the non-data sections which
1187 // don't have to wait for the input sections.
1188 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1189
1190 // Now that all sections have been created, set the section indexes
1191 // for any sections which haven't been done yet.
1192 shndx = this->set_section_indexes(shndx);
1193
1194 // Create the section table header.
1195 this->create_shdrs(shstrtab_section, &off);
1196
1197 // If there are no sections which require postprocessing, we can
1198 // handle the section names now, and avoid a resize later.
1199 if (!this->any_postprocessing_sections_)
1200 off = this->set_section_offsets(off,
1201 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1202
1203 file_header->set_section_info(this->section_headers_, shstrtab_section);
1204
1205 // Now we know exactly where everything goes in the output file
1206 // (except for non-allocated sections which require postprocessing).
1207 Output_data::layout_complete();
1208
1209 this->output_file_size_ = off;
1210
1211 return off;
1212 }
1213
1214 // Create a note header following the format defined in the ELF ABI.
1215 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1216 // descriptor. ALLOCATE is true if the section should be allocated in
1217 // memory. This returns the new note section. It sets
1218 // *TRAILING_PADDING to the number of trailing zero bytes required.
1219
1220 Output_section*
1221 Layout::create_note(const char* name, int note_type, size_t descsz,
1222 bool allocate, size_t* trailing_padding)
1223 {
1224 // Authorities all agree that the values in a .note field should
1225 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1226 // they differ on what the alignment is for 64-bit binaries.
1227 // The GABI says unambiguously they take 8-byte alignment:
1228 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1229 // Other documentation says alignment should always be 4 bytes:
1230 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1231 // GNU ld and GNU readelf both support the latter (at least as of
1232 // version 2.16.91), and glibc always generates the latter for
1233 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1234 // here.
1235 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1236 const int size = parameters->target().get_size();
1237 #else
1238 const int size = 32;
1239 #endif
1240
1241 // The contents of the .note section.
1242 size_t namesz = strlen(name) + 1;
1243 size_t aligned_namesz = align_address(namesz, size / 8);
1244 size_t aligned_descsz = align_address(descsz, size / 8);
1245
1246 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1247
1248 unsigned char* buffer = new unsigned char[notehdrsz];
1249 memset(buffer, 0, notehdrsz);
1250
1251 bool is_big_endian = parameters->target().is_big_endian();
1252
1253 if (size == 32)
1254 {
1255 if (!is_big_endian)
1256 {
1257 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1258 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1259 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1260 }
1261 else
1262 {
1263 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1264 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1265 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1266 }
1267 }
1268 else if (size == 64)
1269 {
1270 if (!is_big_endian)
1271 {
1272 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1273 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1274 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1275 }
1276 else
1277 {
1278 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1279 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1280 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1281 }
1282 }
1283 else
1284 gold_unreachable();
1285
1286 memcpy(buffer + 3 * (size / 8), name, namesz);
1287
1288 const char* note_name = this->namepool_.add(".note", false, NULL);
1289 elfcpp::Elf_Xword flags = 0;
1290 if (allocate)
1291 flags = elfcpp::SHF_ALLOC;
1292 Output_section* os = this->make_output_section(note_name,
1293 elfcpp::SHT_NOTE,
1294 flags);
1295 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1296 size / 8);
1297 os->add_output_section_data(posd);
1298
1299 *trailing_padding = aligned_descsz - descsz;
1300
1301 return os;
1302 }
1303
1304 // For an executable or shared library, create a note to record the
1305 // version of gold used to create the binary.
1306
1307 void
1308 Layout::create_gold_note()
1309 {
1310 if (parameters->options().relocatable())
1311 return;
1312
1313 std::string desc = std::string("gold ") + gold::get_version_string();
1314
1315 size_t trailing_padding;
1316 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1317 desc.size(), false, &trailing_padding);
1318
1319 Output_section_data* posd = new Output_data_const(desc, 4);
1320 os->add_output_section_data(posd);
1321
1322 if (trailing_padding > 0)
1323 {
1324 posd = new Output_data_fixed_space(trailing_padding, 0);
1325 os->add_output_section_data(posd);
1326 }
1327 }
1328
1329 // Record whether the stack should be executable. This can be set
1330 // from the command line using the -z execstack or -z noexecstack
1331 // options. Otherwise, if any input file has a .note.GNU-stack
1332 // section with the SHF_EXECINSTR flag set, the stack should be
1333 // executable. Otherwise, if at least one input file a
1334 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1335 // section, we use the target default for whether the stack should be
1336 // executable. Otherwise, we don't generate a stack note. When
1337 // generating a object file, we create a .note.GNU-stack section with
1338 // the appropriate marking. When generating an executable or shared
1339 // library, we create a PT_GNU_STACK segment.
1340
1341 void
1342 Layout::create_executable_stack_info(const Target* target)
1343 {
1344 bool is_stack_executable;
1345 if (this->options_.is_execstack_set())
1346 is_stack_executable = this->options_.is_stack_executable();
1347 else if (!this->input_with_gnu_stack_note_)
1348 return;
1349 else
1350 {
1351 if (this->input_requires_executable_stack_)
1352 is_stack_executable = true;
1353 else if (this->input_without_gnu_stack_note_)
1354 is_stack_executable = target->is_default_stack_executable();
1355 else
1356 is_stack_executable = false;
1357 }
1358
1359 if (parameters->options().relocatable())
1360 {
1361 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1362 elfcpp::Elf_Xword flags = 0;
1363 if (is_stack_executable)
1364 flags |= elfcpp::SHF_EXECINSTR;
1365 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1366 }
1367 else
1368 {
1369 if (this->script_options_->saw_phdrs_clause())
1370 return;
1371 int flags = elfcpp::PF_R | elfcpp::PF_W;
1372 if (is_stack_executable)
1373 flags |= elfcpp::PF_X;
1374 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1375 }
1376 }
1377
1378 // If --build-id was used, set up the build ID note.
1379
1380 void
1381 Layout::create_build_id()
1382 {
1383 if (!parameters->options().user_set_build_id())
1384 return;
1385
1386 const char* style = parameters->options().build_id();
1387 if (strcmp(style, "none") == 0)
1388 return;
1389
1390 // Set DESCSZ to the size of the note descriptor. When possible,
1391 // set DESC to the note descriptor contents.
1392 size_t descsz;
1393 std::string desc;
1394 if (strcmp(style, "md5") == 0)
1395 descsz = 128 / 8;
1396 else if (strcmp(style, "sha1") == 0)
1397 descsz = 160 / 8;
1398 else if (strcmp(style, "uuid") == 0)
1399 {
1400 const size_t uuidsz = 128 / 8;
1401
1402 char buffer[uuidsz];
1403 memset(buffer, 0, uuidsz);
1404
1405 int descriptor = ::open("/dev/urandom", O_RDONLY);
1406 if (descriptor < 0)
1407 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1408 strerror(errno));
1409 else
1410 {
1411 ssize_t got = ::read(descriptor, buffer, uuidsz);
1412 ::close(descriptor);
1413 if (got < 0)
1414 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1415 else if (static_cast<size_t>(got) != uuidsz)
1416 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1417 uuidsz, got);
1418 }
1419
1420 desc.assign(buffer, uuidsz);
1421 descsz = uuidsz;
1422 }
1423 else if (strncmp(style, "0x", 2) == 0)
1424 {
1425 hex_init();
1426 const char* p = style + 2;
1427 while (*p != '\0')
1428 {
1429 if (hex_p(p[0]) && hex_p(p[1]))
1430 {
1431 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1432 desc += c;
1433 p += 2;
1434 }
1435 else if (*p == '-' || *p == ':')
1436 ++p;
1437 else
1438 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1439 style);
1440 }
1441 descsz = desc.size();
1442 }
1443 else
1444 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1445
1446 // Create the note.
1447 size_t trailing_padding;
1448 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1449 descsz, true, &trailing_padding);
1450
1451 if (!desc.empty())
1452 {
1453 // We know the value already, so we fill it in now.
1454 gold_assert(desc.size() == descsz);
1455
1456 Output_section_data* posd = new Output_data_const(desc, 4);
1457 os->add_output_section_data(posd);
1458
1459 if (trailing_padding != 0)
1460 {
1461 posd = new Output_data_fixed_space(trailing_padding, 0);
1462 os->add_output_section_data(posd);
1463 }
1464 }
1465 else
1466 {
1467 // We need to compute a checksum after we have completed the
1468 // link.
1469 gold_assert(trailing_padding == 0);
1470 this->build_id_note_ = new Output_data_fixed_space(descsz, 4);
1471 os->add_output_section_data(this->build_id_note_);
1472 os->set_after_input_sections();
1473 }
1474 }
1475
1476 // Return whether SEG1 should be before SEG2 in the output file. This
1477 // is based entirely on the segment type and flags. When this is
1478 // called the segment addresses has normally not yet been set.
1479
1480 bool
1481 Layout::segment_precedes(const Output_segment* seg1,
1482 const Output_segment* seg2)
1483 {
1484 elfcpp::Elf_Word type1 = seg1->type();
1485 elfcpp::Elf_Word type2 = seg2->type();
1486
1487 // The single PT_PHDR segment is required to precede any loadable
1488 // segment. We simply make it always first.
1489 if (type1 == elfcpp::PT_PHDR)
1490 {
1491 gold_assert(type2 != elfcpp::PT_PHDR);
1492 return true;
1493 }
1494 if (type2 == elfcpp::PT_PHDR)
1495 return false;
1496
1497 // The single PT_INTERP segment is required to precede any loadable
1498 // segment. We simply make it always second.
1499 if (type1 == elfcpp::PT_INTERP)
1500 {
1501 gold_assert(type2 != elfcpp::PT_INTERP);
1502 return true;
1503 }
1504 if (type2 == elfcpp::PT_INTERP)
1505 return false;
1506
1507 // We then put PT_LOAD segments before any other segments.
1508 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1509 return true;
1510 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1511 return false;
1512
1513 // We put the PT_TLS segment last, because that is where the dynamic
1514 // linker expects to find it (this is just for efficiency; other
1515 // positions would also work correctly).
1516 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1517 return false;
1518 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1519 return true;
1520
1521 const elfcpp::Elf_Word flags1 = seg1->flags();
1522 const elfcpp::Elf_Word flags2 = seg2->flags();
1523
1524 // The order of non-PT_LOAD segments is unimportant. We simply sort
1525 // by the numeric segment type and flags values. There should not
1526 // be more than one segment with the same type and flags.
1527 if (type1 != elfcpp::PT_LOAD)
1528 {
1529 if (type1 != type2)
1530 return type1 < type2;
1531 gold_assert(flags1 != flags2);
1532 return flags1 < flags2;
1533 }
1534
1535 // If the addresses are set already, sort by load address.
1536 if (seg1->are_addresses_set())
1537 {
1538 if (!seg2->are_addresses_set())
1539 return true;
1540
1541 unsigned int section_count1 = seg1->output_section_count();
1542 unsigned int section_count2 = seg2->output_section_count();
1543 if (section_count1 == 0 && section_count2 > 0)
1544 return true;
1545 if (section_count1 > 0 && section_count2 == 0)
1546 return false;
1547
1548 uint64_t paddr1 = seg1->first_section_load_address();
1549 uint64_t paddr2 = seg2->first_section_load_address();
1550 if (paddr1 != paddr2)
1551 return paddr1 < paddr2;
1552 }
1553 else if (seg2->are_addresses_set())
1554 return false;
1555
1556 // We sort PT_LOAD segments based on the flags. Readonly segments
1557 // come before writable segments. Then writable segments with data
1558 // come before writable segments without data. Then executable
1559 // segments come before non-executable segments. Then the unlikely
1560 // case of a non-readable segment comes before the normal case of a
1561 // readable segment. If there are multiple segments with the same
1562 // type and flags, we require that the address be set, and we sort
1563 // by virtual address and then physical address.
1564 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1565 return (flags1 & elfcpp::PF_W) == 0;
1566 if ((flags1 & elfcpp::PF_W) != 0
1567 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1568 return seg1->has_any_data_sections();
1569 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1570 return (flags1 & elfcpp::PF_X) != 0;
1571 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1572 return (flags1 & elfcpp::PF_R) == 0;
1573
1574 // We shouldn't get here--we shouldn't create segments which we
1575 // can't distinguish.
1576 gold_unreachable();
1577 }
1578
1579 // Set the file offsets of all the segments, and all the sections they
1580 // contain. They have all been created. LOAD_SEG must be be laid out
1581 // first. Return the offset of the data to follow.
1582
1583 off_t
1584 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1585 unsigned int *pshndx)
1586 {
1587 // Sort them into the final order.
1588 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1589 Layout::Compare_segments());
1590
1591 // Find the PT_LOAD segments, and set their addresses and offsets
1592 // and their section's addresses and offsets.
1593 uint64_t addr;
1594 if (this->options_.user_set_Ttext())
1595 addr = this->options_.Ttext();
1596 else if (parameters->options().shared())
1597 addr = 0;
1598 else
1599 addr = target->default_text_segment_address();
1600 off_t off = 0;
1601
1602 // If LOAD_SEG is NULL, then the file header and segment headers
1603 // will not be loadable. But they still need to be at offset 0 in
1604 // the file. Set their offsets now.
1605 if (load_seg == NULL)
1606 {
1607 for (Data_list::iterator p = this->special_output_list_.begin();
1608 p != this->special_output_list_.end();
1609 ++p)
1610 {
1611 off = align_address(off, (*p)->addralign());
1612 (*p)->set_address_and_file_offset(0, off);
1613 off += (*p)->data_size();
1614 }
1615 }
1616
1617 bool was_readonly = false;
1618 for (Segment_list::iterator p = this->segment_list_.begin();
1619 p != this->segment_list_.end();
1620 ++p)
1621 {
1622 if ((*p)->type() == elfcpp::PT_LOAD)
1623 {
1624 if (load_seg != NULL && load_seg != *p)
1625 gold_unreachable();
1626 load_seg = NULL;
1627
1628 bool are_addresses_set = (*p)->are_addresses_set();
1629 if (are_addresses_set)
1630 {
1631 // When it comes to setting file offsets, we care about
1632 // the physical address.
1633 addr = (*p)->paddr();
1634 }
1635 else if (this->options_.user_set_Tdata()
1636 && ((*p)->flags() & elfcpp::PF_W) != 0
1637 && (!this->options_.user_set_Tbss()
1638 || (*p)->has_any_data_sections()))
1639 {
1640 addr = this->options_.Tdata();
1641 are_addresses_set = true;
1642 }
1643 else if (this->options_.user_set_Tbss()
1644 && ((*p)->flags() & elfcpp::PF_W) != 0
1645 && !(*p)->has_any_data_sections())
1646 {
1647 addr = this->options_.Tbss();
1648 are_addresses_set = true;
1649 }
1650
1651 uint64_t orig_addr = addr;
1652 uint64_t orig_off = off;
1653
1654 uint64_t aligned_addr = 0;
1655 uint64_t abi_pagesize = target->abi_pagesize();
1656
1657 // FIXME: This should depend on the -n and -N options.
1658 (*p)->set_minimum_p_align(target->common_pagesize());
1659
1660 if (are_addresses_set)
1661 {
1662 // Adjust the file offset to the same address modulo the
1663 // page size.
1664 uint64_t unsigned_off = off;
1665 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1666 | (addr & (abi_pagesize - 1)));
1667 if (aligned_off < unsigned_off)
1668 aligned_off += abi_pagesize;
1669 off = aligned_off;
1670 }
1671 else
1672 {
1673 // If the last segment was readonly, and this one is
1674 // not, then skip the address forward one page,
1675 // maintaining the same position within the page. This
1676 // lets us store both segments overlapping on a single
1677 // page in the file, but the loader will put them on
1678 // different pages in memory.
1679
1680 addr = align_address(addr, (*p)->maximum_alignment());
1681 aligned_addr = addr;
1682
1683 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1684 {
1685 if ((addr & (abi_pagesize - 1)) != 0)
1686 addr = addr + abi_pagesize;
1687 }
1688
1689 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1690 }
1691
1692 unsigned int shndx_hold = *pshndx;
1693 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1694 &off, pshndx);
1695
1696 // Now that we know the size of this segment, we may be able
1697 // to save a page in memory, at the cost of wasting some
1698 // file space, by instead aligning to the start of a new
1699 // page. Here we use the real machine page size rather than
1700 // the ABI mandated page size.
1701
1702 if (!are_addresses_set && aligned_addr != addr)
1703 {
1704 uint64_t common_pagesize = target->common_pagesize();
1705 uint64_t first_off = (common_pagesize
1706 - (aligned_addr
1707 & (common_pagesize - 1)));
1708 uint64_t last_off = new_addr & (common_pagesize - 1);
1709 if (first_off > 0
1710 && last_off > 0
1711 && ((aligned_addr & ~ (common_pagesize - 1))
1712 != (new_addr & ~ (common_pagesize - 1)))
1713 && first_off + last_off <= common_pagesize)
1714 {
1715 *pshndx = shndx_hold;
1716 addr = align_address(aligned_addr, common_pagesize);
1717 addr = align_address(addr, (*p)->maximum_alignment());
1718 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1719 new_addr = (*p)->set_section_addresses(this, true, addr,
1720 &off, pshndx);
1721 }
1722 }
1723
1724 addr = new_addr;
1725
1726 if (((*p)->flags() & elfcpp::PF_W) == 0)
1727 was_readonly = true;
1728 }
1729 }
1730
1731 // Handle the non-PT_LOAD segments, setting their offsets from their
1732 // section's offsets.
1733 for (Segment_list::iterator p = this->segment_list_.begin();
1734 p != this->segment_list_.end();
1735 ++p)
1736 {
1737 if ((*p)->type() != elfcpp::PT_LOAD)
1738 (*p)->set_offset();
1739 }
1740
1741 // Set the TLS offsets for each section in the PT_TLS segment.
1742 if (this->tls_segment_ != NULL)
1743 this->tls_segment_->set_tls_offsets();
1744
1745 return off;
1746 }
1747
1748 // Set the offsets of all the allocated sections when doing a
1749 // relocatable link. This does the same jobs as set_segment_offsets,
1750 // only for a relocatable link.
1751
1752 off_t
1753 Layout::set_relocatable_section_offsets(Output_data* file_header,
1754 unsigned int *pshndx)
1755 {
1756 off_t off = 0;
1757
1758 file_header->set_address_and_file_offset(0, 0);
1759 off += file_header->data_size();
1760
1761 for (Section_list::iterator p = this->section_list_.begin();
1762 p != this->section_list_.end();
1763 ++p)
1764 {
1765 // We skip unallocated sections here, except that group sections
1766 // have to come first.
1767 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1768 && (*p)->type() != elfcpp::SHT_GROUP)
1769 continue;
1770
1771 off = align_address(off, (*p)->addralign());
1772
1773 // The linker script might have set the address.
1774 if (!(*p)->is_address_valid())
1775 (*p)->set_address(0);
1776 (*p)->set_file_offset(off);
1777 (*p)->finalize_data_size();
1778 off += (*p)->data_size();
1779
1780 (*p)->set_out_shndx(*pshndx);
1781 ++*pshndx;
1782 }
1783
1784 return off;
1785 }
1786
1787 // Set the file offset of all the sections not associated with a
1788 // segment.
1789
1790 off_t
1791 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1792 {
1793 for (Section_list::iterator p = this->unattached_section_list_.begin();
1794 p != this->unattached_section_list_.end();
1795 ++p)
1796 {
1797 // The symtab section is handled in create_symtab_sections.
1798 if (*p == this->symtab_section_)
1799 continue;
1800
1801 // If we've already set the data size, don't set it again.
1802 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1803 continue;
1804
1805 if (pass == BEFORE_INPUT_SECTIONS_PASS
1806 && (*p)->requires_postprocessing())
1807 {
1808 (*p)->create_postprocessing_buffer();
1809 this->any_postprocessing_sections_ = true;
1810 }
1811
1812 if (pass == BEFORE_INPUT_SECTIONS_PASS
1813 && (*p)->after_input_sections())
1814 continue;
1815 else if (pass == POSTPROCESSING_SECTIONS_PASS
1816 && (!(*p)->after_input_sections()
1817 || (*p)->type() == elfcpp::SHT_STRTAB))
1818 continue;
1819 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1820 && (!(*p)->after_input_sections()
1821 || (*p)->type() != elfcpp::SHT_STRTAB))
1822 continue;
1823
1824 off = align_address(off, (*p)->addralign());
1825 (*p)->set_file_offset(off);
1826 (*p)->finalize_data_size();
1827 off += (*p)->data_size();
1828
1829 // At this point the name must be set.
1830 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1831 this->namepool_.add((*p)->name(), false, NULL);
1832 }
1833 return off;
1834 }
1835
1836 // Set the section indexes of all the sections not associated with a
1837 // segment.
1838
1839 unsigned int
1840 Layout::set_section_indexes(unsigned int shndx)
1841 {
1842 for (Section_list::iterator p = this->unattached_section_list_.begin();
1843 p != this->unattached_section_list_.end();
1844 ++p)
1845 {
1846 if (!(*p)->has_out_shndx())
1847 {
1848 (*p)->set_out_shndx(shndx);
1849 ++shndx;
1850 }
1851 }
1852 return shndx;
1853 }
1854
1855 // Set the section addresses according to the linker script. This is
1856 // only called when we see a SECTIONS clause. This returns the
1857 // program segment which should hold the file header and segment
1858 // headers, if any. It will return NULL if they should not be in a
1859 // segment.
1860
1861 Output_segment*
1862 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1863 {
1864 Script_sections* ss = this->script_options_->script_sections();
1865 gold_assert(ss->saw_sections_clause());
1866
1867 // Place each orphaned output section in the script.
1868 for (Section_list::iterator p = this->section_list_.begin();
1869 p != this->section_list_.end();
1870 ++p)
1871 {
1872 if (!(*p)->found_in_sections_clause())
1873 ss->place_orphan(*p);
1874 }
1875
1876 return this->script_options_->set_section_addresses(symtab, this);
1877 }
1878
1879 // Count the local symbols in the regular symbol table and the dynamic
1880 // symbol table, and build the respective string pools.
1881
1882 void
1883 Layout::count_local_symbols(const Task* task,
1884 const Input_objects* input_objects)
1885 {
1886 // First, figure out an upper bound on the number of symbols we'll
1887 // be inserting into each pool. This helps us create the pools with
1888 // the right size, to avoid unnecessary hashtable resizing.
1889 unsigned int symbol_count = 0;
1890 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1891 p != input_objects->relobj_end();
1892 ++p)
1893 symbol_count += (*p)->local_symbol_count();
1894
1895 // Go from "upper bound" to "estimate." We overcount for two
1896 // reasons: we double-count symbols that occur in more than one
1897 // object file, and we count symbols that are dropped from the
1898 // output. Add it all together and assume we overcount by 100%.
1899 symbol_count /= 2;
1900
1901 // We assume all symbols will go into both the sympool and dynpool.
1902 this->sympool_.reserve(symbol_count);
1903 this->dynpool_.reserve(symbol_count);
1904
1905 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1906 p != input_objects->relobj_end();
1907 ++p)
1908 {
1909 Task_lock_obj<Object> tlo(task, *p);
1910 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1911 }
1912 }
1913
1914 // Create the symbol table sections. Here we also set the final
1915 // values of the symbols. At this point all the loadable sections are
1916 // fully laid out. SHNUM is the number of sections so far.
1917
1918 void
1919 Layout::create_symtab_sections(const Input_objects* input_objects,
1920 Symbol_table* symtab,
1921 unsigned int shnum,
1922 off_t* poff)
1923 {
1924 int symsize;
1925 unsigned int align;
1926 if (parameters->target().get_size() == 32)
1927 {
1928 symsize = elfcpp::Elf_sizes<32>::sym_size;
1929 align = 4;
1930 }
1931 else if (parameters->target().get_size() == 64)
1932 {
1933 symsize = elfcpp::Elf_sizes<64>::sym_size;
1934 align = 8;
1935 }
1936 else
1937 gold_unreachable();
1938
1939 off_t off = *poff;
1940 off = align_address(off, align);
1941 off_t startoff = off;
1942
1943 // Save space for the dummy symbol at the start of the section. We
1944 // never bother to write this out--it will just be left as zero.
1945 off += symsize;
1946 unsigned int local_symbol_index = 1;
1947
1948 // Add STT_SECTION symbols for each Output section which needs one.
1949 for (Section_list::iterator p = this->section_list_.begin();
1950 p != this->section_list_.end();
1951 ++p)
1952 {
1953 if (!(*p)->needs_symtab_index())
1954 (*p)->set_symtab_index(-1U);
1955 else
1956 {
1957 (*p)->set_symtab_index(local_symbol_index);
1958 ++local_symbol_index;
1959 off += symsize;
1960 }
1961 }
1962
1963 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1964 p != input_objects->relobj_end();
1965 ++p)
1966 {
1967 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1968 off);
1969 off += (index - local_symbol_index) * symsize;
1970 local_symbol_index = index;
1971 }
1972
1973 unsigned int local_symcount = local_symbol_index;
1974 gold_assert(local_symcount * symsize == off - startoff);
1975
1976 off_t dynoff;
1977 size_t dyn_global_index;
1978 size_t dyncount;
1979 if (this->dynsym_section_ == NULL)
1980 {
1981 dynoff = 0;
1982 dyn_global_index = 0;
1983 dyncount = 0;
1984 }
1985 else
1986 {
1987 dyn_global_index = this->dynsym_section_->info();
1988 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1989 dynoff = this->dynsym_section_->offset() + locsize;
1990 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1991 gold_assert(static_cast<off_t>(dyncount * symsize)
1992 == this->dynsym_section_->data_size() - locsize);
1993 }
1994
1995 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1996 &this->sympool_, &local_symcount);
1997
1998 if (!parameters->options().strip_all())
1999 {
2000 this->sympool_.set_string_offsets();
2001
2002 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2003 Output_section* osymtab = this->make_output_section(symtab_name,
2004 elfcpp::SHT_SYMTAB,
2005 0);
2006 this->symtab_section_ = osymtab;
2007
2008 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2009 align);
2010 osymtab->add_output_section_data(pos);
2011
2012 // We generate a .symtab_shndx section if we have more than
2013 // SHN_LORESERVE sections. Technically it is possible that we
2014 // don't need one, because it is possible that there are no
2015 // symbols in any of sections with indexes larger than
2016 // SHN_LORESERVE. That is probably unusual, though, and it is
2017 // easier to always create one than to compute section indexes
2018 // twice (once here, once when writing out the symbols).
2019 if (shnum >= elfcpp::SHN_LORESERVE)
2020 {
2021 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2022 false, NULL);
2023 Output_section* osymtab_xindex =
2024 this->make_output_section(symtab_xindex_name,
2025 elfcpp::SHT_SYMTAB_SHNDX, 0);
2026
2027 size_t symcount = (off - startoff) / symsize;
2028 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2029
2030 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2031
2032 osymtab_xindex->set_link_section(osymtab);
2033 osymtab_xindex->set_addralign(4);
2034 osymtab_xindex->set_entsize(4);
2035
2036 osymtab_xindex->set_after_input_sections();
2037
2038 // This tells the driver code to wait until the symbol table
2039 // has written out before writing out the postprocessing
2040 // sections, including the .symtab_shndx section.
2041 this->any_postprocessing_sections_ = true;
2042 }
2043
2044 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2045 Output_section* ostrtab = this->make_output_section(strtab_name,
2046 elfcpp::SHT_STRTAB,
2047 0);
2048
2049 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2050 ostrtab->add_output_section_data(pstr);
2051
2052 osymtab->set_file_offset(startoff);
2053 osymtab->finalize_data_size();
2054 osymtab->set_link_section(ostrtab);
2055 osymtab->set_info(local_symcount);
2056 osymtab->set_entsize(symsize);
2057
2058 *poff = off;
2059 }
2060 }
2061
2062 // Create the .shstrtab section, which holds the names of the
2063 // sections. At the time this is called, we have created all the
2064 // output sections except .shstrtab itself.
2065
2066 Output_section*
2067 Layout::create_shstrtab()
2068 {
2069 // FIXME: We don't need to create a .shstrtab section if we are
2070 // stripping everything.
2071
2072 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2073
2074 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2075
2076 // We can't write out this section until we've set all the section
2077 // names, and we don't set the names of compressed output sections
2078 // until relocations are complete.
2079 os->set_after_input_sections();
2080
2081 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2082 os->add_output_section_data(posd);
2083
2084 return os;
2085 }
2086
2087 // Create the section headers. SIZE is 32 or 64. OFF is the file
2088 // offset.
2089
2090 void
2091 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2092 {
2093 Output_section_headers* oshdrs;
2094 oshdrs = new Output_section_headers(this,
2095 &this->segment_list_,
2096 &this->section_list_,
2097 &this->unattached_section_list_,
2098 &this->namepool_,
2099 shstrtab_section);
2100 off_t off = align_address(*poff, oshdrs->addralign());
2101 oshdrs->set_address_and_file_offset(0, off);
2102 off += oshdrs->data_size();
2103 *poff = off;
2104 this->section_headers_ = oshdrs;
2105 }
2106
2107 // Count the allocated sections.
2108
2109 size_t
2110 Layout::allocated_output_section_count() const
2111 {
2112 size_t section_count = 0;
2113 for (Segment_list::const_iterator p = this->segment_list_.begin();
2114 p != this->segment_list_.end();
2115 ++p)
2116 section_count += (*p)->output_section_count();
2117 return section_count;
2118 }
2119
2120 // Create the dynamic symbol table.
2121
2122 void
2123 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2124 Symbol_table* symtab,
2125 Output_section **pdynstr,
2126 unsigned int* plocal_dynamic_count,
2127 std::vector<Symbol*>* pdynamic_symbols,
2128 Versions* pversions)
2129 {
2130 // Count all the symbols in the dynamic symbol table, and set the
2131 // dynamic symbol indexes.
2132
2133 // Skip symbol 0, which is always all zeroes.
2134 unsigned int index = 1;
2135
2136 // Add STT_SECTION symbols for each Output section which needs one.
2137 for (Section_list::iterator p = this->section_list_.begin();
2138 p != this->section_list_.end();
2139 ++p)
2140 {
2141 if (!(*p)->needs_dynsym_index())
2142 (*p)->set_dynsym_index(-1U);
2143 else
2144 {
2145 (*p)->set_dynsym_index(index);
2146 ++index;
2147 }
2148 }
2149
2150 // Count the local symbols that need to go in the dynamic symbol table,
2151 // and set the dynamic symbol indexes.
2152 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2153 p != input_objects->relobj_end();
2154 ++p)
2155 {
2156 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2157 index = new_index;
2158 }
2159
2160 unsigned int local_symcount = index;
2161 *plocal_dynamic_count = local_symcount;
2162
2163 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2164 &this->dynpool_, pversions);
2165
2166 int symsize;
2167 unsigned int align;
2168 const int size = parameters->target().get_size();
2169 if (size == 32)
2170 {
2171 symsize = elfcpp::Elf_sizes<32>::sym_size;
2172 align = 4;
2173 }
2174 else if (size == 64)
2175 {
2176 symsize = elfcpp::Elf_sizes<64>::sym_size;
2177 align = 8;
2178 }
2179 else
2180 gold_unreachable();
2181
2182 // Create the dynamic symbol table section.
2183
2184 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2185 elfcpp::SHT_DYNSYM,
2186 elfcpp::SHF_ALLOC,
2187 false);
2188
2189 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2190 align);
2191 dynsym->add_output_section_data(odata);
2192
2193 dynsym->set_info(local_symcount);
2194 dynsym->set_entsize(symsize);
2195 dynsym->set_addralign(align);
2196
2197 this->dynsym_section_ = dynsym;
2198
2199 Output_data_dynamic* const odyn = this->dynamic_data_;
2200 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2201 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2202
2203 // If there are more than SHN_LORESERVE allocated sections, we
2204 // create a .dynsym_shndx section. It is possible that we don't
2205 // need one, because it is possible that there are no dynamic
2206 // symbols in any of the sections with indexes larger than
2207 // SHN_LORESERVE. This is probably unusual, though, and at this
2208 // time we don't know the actual section indexes so it is
2209 // inconvenient to check.
2210 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2211 {
2212 Output_section* dynsym_xindex =
2213 this->choose_output_section(NULL, ".dynsym_shndx",
2214 elfcpp::SHT_SYMTAB_SHNDX,
2215 elfcpp::SHF_ALLOC,
2216 false);
2217
2218 this->dynsym_xindex_ = new Output_symtab_xindex(index);
2219
2220 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2221
2222 dynsym_xindex->set_link_section(dynsym);
2223 dynsym_xindex->set_addralign(4);
2224 dynsym_xindex->set_entsize(4);
2225
2226 dynsym_xindex->set_after_input_sections();
2227
2228 // This tells the driver code to wait until the symbol table has
2229 // written out before writing out the postprocessing sections,
2230 // including the .dynsym_shndx section.
2231 this->any_postprocessing_sections_ = true;
2232 }
2233
2234 // Create the dynamic string table section.
2235
2236 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2237 elfcpp::SHT_STRTAB,
2238 elfcpp::SHF_ALLOC,
2239 false);
2240
2241 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2242 dynstr->add_output_section_data(strdata);
2243
2244 dynsym->set_link_section(dynstr);
2245 this->dynamic_section_->set_link_section(dynstr);
2246
2247 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2248 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2249
2250 *pdynstr = dynstr;
2251
2252 // Create the hash tables.
2253
2254 if (strcmp(parameters->options().hash_style(), "sysv") == 0
2255 || strcmp(parameters->options().hash_style(), "both") == 0)
2256 {
2257 unsigned char* phash;
2258 unsigned int hashlen;
2259 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2260 &phash, &hashlen);
2261
2262 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2263 elfcpp::SHT_HASH,
2264 elfcpp::SHF_ALLOC,
2265 false);
2266
2267 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2268 hashlen,
2269 align);
2270 hashsec->add_output_section_data(hashdata);
2271
2272 hashsec->set_link_section(dynsym);
2273 hashsec->set_entsize(4);
2274
2275 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2276 }
2277
2278 if (strcmp(parameters->options().hash_style(), "gnu") == 0
2279 || strcmp(parameters->options().hash_style(), "both") == 0)
2280 {
2281 unsigned char* phash;
2282 unsigned int hashlen;
2283 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2284 &phash, &hashlen);
2285
2286 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2287 elfcpp::SHT_GNU_HASH,
2288 elfcpp::SHF_ALLOC,
2289 false);
2290
2291 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2292 hashlen,
2293 align);
2294 hashsec->add_output_section_data(hashdata);
2295
2296 hashsec->set_link_section(dynsym);
2297 hashsec->set_entsize(4);
2298
2299 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2300 }
2301 }
2302
2303 // Assign offsets to each local portion of the dynamic symbol table.
2304
2305 void
2306 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2307 {
2308 Output_section* dynsym = this->dynsym_section_;
2309 gold_assert(dynsym != NULL);
2310
2311 off_t off = dynsym->offset();
2312
2313 // Skip the dummy symbol at the start of the section.
2314 off += dynsym->entsize();
2315
2316 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2317 p != input_objects->relobj_end();
2318 ++p)
2319 {
2320 unsigned int count = (*p)->set_local_dynsym_offset(off);
2321 off += count * dynsym->entsize();
2322 }
2323 }
2324
2325 // Create the version sections.
2326
2327 void
2328 Layout::create_version_sections(const Versions* versions,
2329 const Symbol_table* symtab,
2330 unsigned int local_symcount,
2331 const std::vector<Symbol*>& dynamic_symbols,
2332 const Output_section* dynstr)
2333 {
2334 if (!versions->any_defs() && !versions->any_needs())
2335 return;
2336
2337 switch (parameters->size_and_endianness())
2338 {
2339 #ifdef HAVE_TARGET_32_LITTLE
2340 case Parameters::TARGET_32_LITTLE:
2341 this->sized_create_version_sections<32, false>(versions, symtab,
2342 local_symcount,
2343 dynamic_symbols, dynstr);
2344 break;
2345 #endif
2346 #ifdef HAVE_TARGET_32_BIG
2347 case Parameters::TARGET_32_BIG:
2348 this->sized_create_version_sections<32, true>(versions, symtab,
2349 local_symcount,
2350 dynamic_symbols, dynstr);
2351 break;
2352 #endif
2353 #ifdef HAVE_TARGET_64_LITTLE
2354 case Parameters::TARGET_64_LITTLE:
2355 this->sized_create_version_sections<64, false>(versions, symtab,
2356 local_symcount,
2357 dynamic_symbols, dynstr);
2358 break;
2359 #endif
2360 #ifdef HAVE_TARGET_64_BIG
2361 case Parameters::TARGET_64_BIG:
2362 this->sized_create_version_sections<64, true>(versions, symtab,
2363 local_symcount,
2364 dynamic_symbols, dynstr);
2365 break;
2366 #endif
2367 default:
2368 gold_unreachable();
2369 }
2370 }
2371
2372 // Create the version sections, sized version.
2373
2374 template<int size, bool big_endian>
2375 void
2376 Layout::sized_create_version_sections(
2377 const Versions* versions,
2378 const Symbol_table* symtab,
2379 unsigned int local_symcount,
2380 const std::vector<Symbol*>& dynamic_symbols,
2381 const Output_section* dynstr)
2382 {
2383 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2384 elfcpp::SHT_GNU_versym,
2385 elfcpp::SHF_ALLOC,
2386 false);
2387
2388 unsigned char* vbuf;
2389 unsigned int vsize;
2390 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2391 local_symcount,
2392 dynamic_symbols,
2393 &vbuf, &vsize);
2394
2395 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
2396
2397 vsec->add_output_section_data(vdata);
2398 vsec->set_entsize(2);
2399 vsec->set_link_section(this->dynsym_section_);
2400
2401 Output_data_dynamic* const odyn = this->dynamic_data_;
2402 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2403
2404 if (versions->any_defs())
2405 {
2406 Output_section* vdsec;
2407 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2408 elfcpp::SHT_GNU_verdef,
2409 elfcpp::SHF_ALLOC,
2410 false);
2411
2412 unsigned char* vdbuf;
2413 unsigned int vdsize;
2414 unsigned int vdentries;
2415 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2416 &vdsize, &vdentries);
2417
2418 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2419 vdsize,
2420 4);
2421
2422 vdsec->add_output_section_data(vddata);
2423 vdsec->set_link_section(dynstr);
2424 vdsec->set_info(vdentries);
2425
2426 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2427 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2428 }
2429
2430 if (versions->any_needs())
2431 {
2432 Output_section* vnsec;
2433 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2434 elfcpp::SHT_GNU_verneed,
2435 elfcpp::SHF_ALLOC,
2436 false);
2437
2438 unsigned char* vnbuf;
2439 unsigned int vnsize;
2440 unsigned int vnentries;
2441 versions->need_section_contents<size, big_endian>(&this->dynpool_,
2442 &vnbuf, &vnsize,
2443 &vnentries);
2444
2445 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2446 vnsize,
2447 4);
2448
2449 vnsec->add_output_section_data(vndata);
2450 vnsec->set_link_section(dynstr);
2451 vnsec->set_info(vnentries);
2452
2453 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2454 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2455 }
2456 }
2457
2458 // Create the .interp section and PT_INTERP segment.
2459
2460 void
2461 Layout::create_interp(const Target* target)
2462 {
2463 const char* interp = this->options_.dynamic_linker();
2464 if (interp == NULL)
2465 {
2466 interp = target->dynamic_linker();
2467 gold_assert(interp != NULL);
2468 }
2469
2470 size_t len = strlen(interp) + 1;
2471
2472 Output_section_data* odata = new Output_data_const(interp, len, 1);
2473
2474 Output_section* osec = this->choose_output_section(NULL, ".interp",
2475 elfcpp::SHT_PROGBITS,
2476 elfcpp::SHF_ALLOC,
2477 false);
2478 osec->add_output_section_data(odata);
2479
2480 if (!this->script_options_->saw_phdrs_clause())
2481 {
2482 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2483 elfcpp::PF_R);
2484 oseg->add_initial_output_section(osec, elfcpp::PF_R);
2485 }
2486 }
2487
2488 // Finish the .dynamic section and PT_DYNAMIC segment.
2489
2490 void
2491 Layout::finish_dynamic_section(const Input_objects* input_objects,
2492 const Symbol_table* symtab)
2493 {
2494 if (!this->script_options_->saw_phdrs_clause())
2495 {
2496 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2497 (elfcpp::PF_R
2498 | elfcpp::PF_W));
2499 oseg->add_initial_output_section(this->dynamic_section_,
2500 elfcpp::PF_R | elfcpp::PF_W);
2501 }
2502
2503 Output_data_dynamic* const odyn = this->dynamic_data_;
2504
2505 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2506 p != input_objects->dynobj_end();
2507 ++p)
2508 {
2509 // FIXME: Handle --as-needed.
2510 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2511 }
2512
2513 if (parameters->options().shared())
2514 {
2515 const char* soname = this->options_.soname();
2516 if (soname != NULL)
2517 odyn->add_string(elfcpp::DT_SONAME, soname);
2518 }
2519
2520 // FIXME: Support --init and --fini.
2521 Symbol* sym = symtab->lookup("_init");
2522 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2523 odyn->add_symbol(elfcpp::DT_INIT, sym);
2524
2525 sym = symtab->lookup("_fini");
2526 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2527 odyn->add_symbol(elfcpp::DT_FINI, sym);
2528
2529 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2530
2531 // Add a DT_RPATH entry if needed.
2532 const General_options::Dir_list& rpath(this->options_.rpath());
2533 if (!rpath.empty())
2534 {
2535 std::string rpath_val;
2536 for (General_options::Dir_list::const_iterator p = rpath.begin();
2537 p != rpath.end();
2538 ++p)
2539 {
2540 if (rpath_val.empty())
2541 rpath_val = p->name();
2542 else
2543 {
2544 // Eliminate duplicates.
2545 General_options::Dir_list::const_iterator q;
2546 for (q = rpath.begin(); q != p; ++q)
2547 if (q->name() == p->name())
2548 break;
2549 if (q == p)
2550 {
2551 rpath_val += ':';
2552 rpath_val += p->name();
2553 }
2554 }
2555 }
2556
2557 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2558 if (parameters->options().enable_new_dtags())
2559 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2560 }
2561
2562 // Look for text segments that have dynamic relocations.
2563 bool have_textrel = false;
2564 if (!this->script_options_->saw_sections_clause())
2565 {
2566 for (Segment_list::const_iterator p = this->segment_list_.begin();
2567 p != this->segment_list_.end();
2568 ++p)
2569 {
2570 if (((*p)->flags() & elfcpp::PF_W) == 0
2571 && (*p)->dynamic_reloc_count() > 0)
2572 {
2573 have_textrel = true;
2574 break;
2575 }
2576 }
2577 }
2578 else
2579 {
2580 // We don't know the section -> segment mapping, so we are
2581 // conservative and just look for readonly sections with
2582 // relocations. If those sections wind up in writable segments,
2583 // then we have created an unnecessary DT_TEXTREL entry.
2584 for (Section_list::const_iterator p = this->section_list_.begin();
2585 p != this->section_list_.end();
2586 ++p)
2587 {
2588 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2589 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2590 && ((*p)->dynamic_reloc_count() > 0))
2591 {
2592 have_textrel = true;
2593 break;
2594 }
2595 }
2596 }
2597
2598 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2599 // post-link tools can easily modify these flags if desired.
2600 unsigned int flags = 0;
2601 if (have_textrel)
2602 {
2603 // Add a DT_TEXTREL for compatibility with older loaders.
2604 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2605 flags |= elfcpp::DF_TEXTREL;
2606 }
2607 if (parameters->options().shared() && this->has_static_tls())
2608 flags |= elfcpp::DF_STATIC_TLS;
2609 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2610
2611 flags = 0;
2612 if (parameters->options().initfirst())
2613 flags |= elfcpp::DF_1_INITFIRST;
2614 if (parameters->options().interpose())
2615 flags |= elfcpp::DF_1_INTERPOSE;
2616 if (parameters->options().loadfltr())
2617 flags |= elfcpp::DF_1_LOADFLTR;
2618 if (parameters->options().nodefaultlib())
2619 flags |= elfcpp::DF_1_NODEFLIB;
2620 if (parameters->options().nodelete())
2621 flags |= elfcpp::DF_1_NODELETE;
2622 if (parameters->options().nodlopen())
2623 flags |= elfcpp::DF_1_NOOPEN;
2624 if (parameters->options().nodump())
2625 flags |= elfcpp::DF_1_NODUMP;
2626 if (!parameters->options().shared())
2627 flags &= ~(elfcpp::DF_1_INITFIRST
2628 | elfcpp::DF_1_NODELETE
2629 | elfcpp::DF_1_NOOPEN);
2630 if (flags)
2631 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2632 }
2633
2634 // The mapping of .gnu.linkonce section names to real section names.
2635
2636 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2637 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2638 {
2639 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
2640 MAPPING_INIT("t", ".text"),
2641 MAPPING_INIT("r", ".rodata"),
2642 MAPPING_INIT("d", ".data"),
2643 MAPPING_INIT("b", ".bss"),
2644 MAPPING_INIT("s", ".sdata"),
2645 MAPPING_INIT("sb", ".sbss"),
2646 MAPPING_INIT("s2", ".sdata2"),
2647 MAPPING_INIT("sb2", ".sbss2"),
2648 MAPPING_INIT("wi", ".debug_info"),
2649 MAPPING_INIT("td", ".tdata"),
2650 MAPPING_INIT("tb", ".tbss"),
2651 MAPPING_INIT("lr", ".lrodata"),
2652 MAPPING_INIT("l", ".ldata"),
2653 MAPPING_INIT("lb", ".lbss"),
2654 };
2655 #undef MAPPING_INIT
2656
2657 const int Layout::linkonce_mapping_count =
2658 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2659
2660 // Return the name of the output section to use for a .gnu.linkonce
2661 // section. This is based on the default ELF linker script of the old
2662 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2663 // to ".text". Set *PLEN to the length of the name. *PLEN is
2664 // initialized to the length of NAME.
2665
2666 const char*
2667 Layout::linkonce_output_name(const char* name, size_t *plen)
2668 {
2669 const char* s = name + sizeof(".gnu.linkonce") - 1;
2670 if (*s != '.')
2671 return name;
2672 ++s;
2673 const Linkonce_mapping* plm = linkonce_mapping;
2674 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2675 {
2676 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2677 {
2678 *plen = plm->tolen;
2679 return plm->to;
2680 }
2681 }
2682 return name;
2683 }
2684
2685 // Choose the output section name to use given an input section name.
2686 // Set *PLEN to the length of the name. *PLEN is initialized to the
2687 // length of NAME.
2688
2689 const char*
2690 Layout::output_section_name(const char* name, size_t* plen)
2691 {
2692 if (Layout::is_linkonce(name))
2693 {
2694 // .gnu.linkonce sections are laid out as though they were named
2695 // for the sections are placed into.
2696 return Layout::linkonce_output_name(name, plen);
2697 }
2698
2699 // gcc 4.3 generates the following sorts of section names when it
2700 // needs a section name specific to a function:
2701 // .text.FN
2702 // .rodata.FN
2703 // .sdata2.FN
2704 // .data.FN
2705 // .data.rel.FN
2706 // .data.rel.local.FN
2707 // .data.rel.ro.FN
2708 // .data.rel.ro.local.FN
2709 // .sdata.FN
2710 // .bss.FN
2711 // .sbss.FN
2712 // .tdata.FN
2713 // .tbss.FN
2714
2715 // The GNU linker maps all of those to the part before the .FN,
2716 // except that .data.rel.local.FN is mapped to .data, and
2717 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2718 // beginning with .data.rel.ro.local are grouped together.
2719
2720 // For an anonymous namespace, the string FN can contain a '.'.
2721
2722 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2723 // GNU linker maps to .rodata.
2724
2725 // The .data.rel.ro sections enable a security feature triggered by
2726 // the -z relro option. Section which need to be relocated at
2727 // program startup time but which may be readonly after startup are
2728 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2729 // segment. The dynamic linker will make that segment writable,
2730 // perform relocations, and then make it read-only. FIXME: We do
2731 // not yet implement this optimization.
2732
2733 // It is hard to handle this in a principled way.
2734
2735 // These are the rules we follow:
2736
2737 // If the section name has no initial '.', or no dot other than an
2738 // initial '.', we use the name unchanged (i.e., "mysection" and
2739 // ".text" are unchanged).
2740
2741 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2742
2743 // Otherwise, we drop the second '.' and everything that comes after
2744 // it (i.e., ".text.XXX" becomes ".text").
2745
2746 const char* s = name;
2747 if (*s != '.')
2748 return name;
2749 ++s;
2750 const char* sdot = strchr(s, '.');
2751 if (sdot == NULL)
2752 return name;
2753
2754 const char* const data_rel_ro = ".data.rel.ro";
2755 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2756 {
2757 *plen = strlen(data_rel_ro);
2758 return data_rel_ro;
2759 }
2760
2761 *plen = sdot - name;
2762 return name;
2763 }
2764
2765 // Record the signature of a comdat section, and return whether to
2766 // include it in the link. If GROUP is true, this is a regular
2767 // section group. If GROUP is false, this is a group signature
2768 // derived from the name of a linkonce section. We want linkonce
2769 // signatures and group signatures to block each other, but we don't
2770 // want a linkonce signature to block another linkonce signature.
2771
2772 bool
2773 Layout::add_comdat(const char* signature, bool group)
2774 {
2775 std::string sig(signature);
2776 std::pair<Signatures::iterator, bool> ins(
2777 this->signatures_.insert(std::make_pair(sig, group)));
2778
2779 if (ins.second)
2780 {
2781 // This is the first time we've seen this signature.
2782 return true;
2783 }
2784
2785 if (ins.first->second)
2786 {
2787 // We've already seen a real section group with this signature.
2788 return false;
2789 }
2790 else if (group)
2791 {
2792 // This is a real section group, and we've already seen a
2793 // linkonce section with this signature. Record that we've seen
2794 // a section group, and don't include this section group.
2795 ins.first->second = true;
2796 return false;
2797 }
2798 else
2799 {
2800 // We've already seen a linkonce section and this is a linkonce
2801 // section. These don't block each other--this may be the same
2802 // symbol name with different section types.
2803 return true;
2804 }
2805 }
2806
2807 // Store the allocated sections into the section list.
2808
2809 void
2810 Layout::get_allocated_sections(Section_list* section_list) const
2811 {
2812 for (Section_list::const_iterator p = this->section_list_.begin();
2813 p != this->section_list_.end();
2814 ++p)
2815 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2816 section_list->push_back(*p);
2817 }
2818
2819 // Create an output segment.
2820
2821 Output_segment*
2822 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2823 {
2824 gold_assert(!parameters->options().relocatable());
2825 Output_segment* oseg = new Output_segment(type, flags);
2826 this->segment_list_.push_back(oseg);
2827 return oseg;
2828 }
2829
2830 // Write out the Output_sections. Most won't have anything to write,
2831 // since most of the data will come from input sections which are
2832 // handled elsewhere. But some Output_sections do have Output_data.
2833
2834 void
2835 Layout::write_output_sections(Output_file* of) const
2836 {
2837 for (Section_list::const_iterator p = this->section_list_.begin();
2838 p != this->section_list_.end();
2839 ++p)
2840 {
2841 if (!(*p)->after_input_sections())
2842 (*p)->write(of);
2843 }
2844 }
2845
2846 // Write out data not associated with a section or the symbol table.
2847
2848 void
2849 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2850 {
2851 if (!parameters->options().strip_all())
2852 {
2853 const Output_section* symtab_section = this->symtab_section_;
2854 for (Section_list::const_iterator p = this->section_list_.begin();
2855 p != this->section_list_.end();
2856 ++p)
2857 {
2858 if ((*p)->needs_symtab_index())
2859 {
2860 gold_assert(symtab_section != NULL);
2861 unsigned int index = (*p)->symtab_index();
2862 gold_assert(index > 0 && index != -1U);
2863 off_t off = (symtab_section->offset()
2864 + index * symtab_section->entsize());
2865 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
2866 }
2867 }
2868 }
2869
2870 const Output_section* dynsym_section = this->dynsym_section_;
2871 for (Section_list::const_iterator p = this->section_list_.begin();
2872 p != this->section_list_.end();
2873 ++p)
2874 {
2875 if ((*p)->needs_dynsym_index())
2876 {
2877 gold_assert(dynsym_section != NULL);
2878 unsigned int index = (*p)->dynsym_index();
2879 gold_assert(index > 0 && index != -1U);
2880 off_t off = (dynsym_section->offset()
2881 + index * dynsym_section->entsize());
2882 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
2883 }
2884 }
2885
2886 // Write out the Output_data which are not in an Output_section.
2887 for (Data_list::const_iterator p = this->special_output_list_.begin();
2888 p != this->special_output_list_.end();
2889 ++p)
2890 (*p)->write(of);
2891 }
2892
2893 // Write out the Output_sections which can only be written after the
2894 // input sections are complete.
2895
2896 void
2897 Layout::write_sections_after_input_sections(Output_file* of)
2898 {
2899 // Determine the final section offsets, and thus the final output
2900 // file size. Note we finalize the .shstrab last, to allow the
2901 // after_input_section sections to modify their section-names before
2902 // writing.
2903 if (this->any_postprocessing_sections_)
2904 {
2905 off_t off = this->output_file_size_;
2906 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2907
2908 // Now that we've finalized the names, we can finalize the shstrab.
2909 off =
2910 this->set_section_offsets(off,
2911 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2912
2913 if (off > this->output_file_size_)
2914 {
2915 of->resize(off);
2916 this->output_file_size_ = off;
2917 }
2918 }
2919
2920 for (Section_list::const_iterator p = this->section_list_.begin();
2921 p != this->section_list_.end();
2922 ++p)
2923 {
2924 if ((*p)->after_input_sections())
2925 (*p)->write(of);
2926 }
2927
2928 this->section_headers_->write(of);
2929 }
2930
2931 // If the build ID requires computing a checksum, do so here, and
2932 // write it out. We compute a checksum over the entire file because
2933 // that is simplest.
2934
2935 void
2936 Layout::write_build_id(Output_file* of) const
2937 {
2938 if (this->build_id_note_ == NULL)
2939 return;
2940
2941 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
2942
2943 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
2944 this->build_id_note_->data_size());
2945
2946 const char* style = parameters->options().build_id();
2947 if (strcmp(style, "sha1") == 0)
2948 {
2949 sha1_ctx ctx;
2950 sha1_init_ctx(&ctx);
2951 sha1_process_bytes(iv, this->output_file_size_, &ctx);
2952 sha1_finish_ctx(&ctx, ov);
2953 }
2954 else if (strcmp(style, "md5") == 0)
2955 {
2956 md5_ctx ctx;
2957 md5_init_ctx(&ctx);
2958 md5_process_bytes(iv, this->output_file_size_, &ctx);
2959 md5_finish_ctx(&ctx, ov);
2960 }
2961 else
2962 gold_unreachable();
2963
2964 of->write_output_view(this->build_id_note_->offset(),
2965 this->build_id_note_->data_size(),
2966 ov);
2967
2968 of->free_input_view(0, this->output_file_size_, iv);
2969 }
2970
2971 // Write out a binary file. This is called after the link is
2972 // complete. IN is the temporary output file we used to generate the
2973 // ELF code. We simply walk through the segments, read them from
2974 // their file offset in IN, and write them to their load address in
2975 // the output file. FIXME: with a bit more work, we could support
2976 // S-records and/or Intel hex format here.
2977
2978 void
2979 Layout::write_binary(Output_file* in) const
2980 {
2981 gold_assert(this->options_.oformat_enum()
2982 == General_options::OBJECT_FORMAT_BINARY);
2983
2984 // Get the size of the binary file.
2985 uint64_t max_load_address = 0;
2986 for (Segment_list::const_iterator p = this->segment_list_.begin();
2987 p != this->segment_list_.end();
2988 ++p)
2989 {
2990 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2991 {
2992 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
2993 if (max_paddr > max_load_address)
2994 max_load_address = max_paddr;
2995 }
2996 }
2997
2998 Output_file out(parameters->options().output_file_name());
2999 out.open(max_load_address);
3000
3001 for (Segment_list::const_iterator p = this->segment_list_.begin();
3002 p != this->segment_list_.end();
3003 ++p)
3004 {
3005 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3006 {
3007 const unsigned char* vin = in->get_input_view((*p)->offset(),
3008 (*p)->filesz());
3009 unsigned char* vout = out.get_output_view((*p)->paddr(),
3010 (*p)->filesz());
3011 memcpy(vout, vin, (*p)->filesz());
3012 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3013 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3014 }
3015 }
3016
3017 out.close();
3018 }
3019
3020 // Print statistical information to stderr. This is used for --stats.
3021
3022 void
3023 Layout::print_stats() const
3024 {
3025 this->namepool_.print_stats("section name pool");
3026 this->sympool_.print_stats("output symbol name pool");
3027 this->dynpool_.print_stats("dynamic name pool");
3028
3029 for (Section_list::const_iterator p = this->section_list_.begin();
3030 p != this->section_list_.end();
3031 ++p)
3032 (*p)->print_merge_stats();
3033 }
3034
3035 // Write_sections_task methods.
3036
3037 // We can always run this task.
3038
3039 Task_token*
3040 Write_sections_task::is_runnable()
3041 {
3042 return NULL;
3043 }
3044
3045 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3046 // when finished.
3047
3048 void
3049 Write_sections_task::locks(Task_locker* tl)
3050 {
3051 tl->add(this, this->output_sections_blocker_);
3052 tl->add(this, this->final_blocker_);
3053 }
3054
3055 // Run the task--write out the data.
3056
3057 void
3058 Write_sections_task::run(Workqueue*)
3059 {
3060 this->layout_->write_output_sections(this->of_);
3061 }
3062
3063 // Write_data_task methods.
3064
3065 // We can always run this task.
3066
3067 Task_token*
3068 Write_data_task::is_runnable()
3069 {
3070 return NULL;
3071 }
3072
3073 // We need to unlock FINAL_BLOCKER when finished.
3074
3075 void
3076 Write_data_task::locks(Task_locker* tl)
3077 {
3078 tl->add(this, this->final_blocker_);
3079 }
3080
3081 // Run the task--write out the data.
3082
3083 void
3084 Write_data_task::run(Workqueue*)
3085 {
3086 this->layout_->write_data(this->symtab_, this->of_);
3087 }
3088
3089 // Write_symbols_task methods.
3090
3091 // We can always run this task.
3092
3093 Task_token*
3094 Write_symbols_task::is_runnable()
3095 {
3096 return NULL;
3097 }
3098
3099 // We need to unlock FINAL_BLOCKER when finished.
3100
3101 void
3102 Write_symbols_task::locks(Task_locker* tl)
3103 {
3104 tl->add(this, this->final_blocker_);
3105 }
3106
3107 // Run the task--write out the symbols.
3108
3109 void
3110 Write_symbols_task::run(Workqueue*)
3111 {
3112 this->symtab_->write_globals(this->input_objects_, this->sympool_,
3113 this->dynpool_, this->layout_->symtab_xindex(),
3114 this->layout_->dynsym_xindex(), this->of_);
3115 }
3116
3117 // Write_after_input_sections_task methods.
3118
3119 // We can only run this task after the input sections have completed.
3120
3121 Task_token*
3122 Write_after_input_sections_task::is_runnable()
3123 {
3124 if (this->input_sections_blocker_->is_blocked())
3125 return this->input_sections_blocker_;
3126 return NULL;
3127 }
3128
3129 // We need to unlock FINAL_BLOCKER when finished.
3130
3131 void
3132 Write_after_input_sections_task::locks(Task_locker* tl)
3133 {
3134 tl->add(this, this->final_blocker_);
3135 }
3136
3137 // Run the task.
3138
3139 void
3140 Write_after_input_sections_task::run(Workqueue*)
3141 {
3142 this->layout_->write_sections_after_input_sections(this->of_);
3143 }
3144
3145 // Close_task_runner methods.
3146
3147 // Run the task--close the file.
3148
3149 void
3150 Close_task_runner::run(Workqueue*, const Task*)
3151 {
3152 // If we need to compute a checksum for the BUILD if, we do so here.
3153 this->layout_->write_build_id(this->of_);
3154
3155 // If we've been asked to create a binary file, we do so here.
3156 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3157 this->layout_->write_binary(this->of_);
3158
3159 this->of_->close();
3160 }
3161
3162 // Instantiate the templates we need. We could use the configure
3163 // script to restrict this to only the ones for implemented targets.
3164
3165 #ifdef HAVE_TARGET_32_LITTLE
3166 template
3167 Output_section*
3168 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3169 const char* name,
3170 const elfcpp::Shdr<32, false>& shdr,
3171 unsigned int, unsigned int, off_t*);
3172 #endif
3173
3174 #ifdef HAVE_TARGET_32_BIG
3175 template
3176 Output_section*
3177 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3178 const char* name,
3179 const elfcpp::Shdr<32, true>& shdr,
3180 unsigned int, unsigned int, off_t*);
3181 #endif
3182
3183 #ifdef HAVE_TARGET_64_LITTLE
3184 template
3185 Output_section*
3186 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3187 const char* name,
3188 const elfcpp::Shdr<64, false>& shdr,
3189 unsigned int, unsigned int, off_t*);
3190 #endif
3191
3192 #ifdef HAVE_TARGET_64_BIG
3193 template
3194 Output_section*
3195 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3196 const char* name,
3197 const elfcpp::Shdr<64, true>& shdr,
3198 unsigned int, unsigned int, off_t*);
3199 #endif
3200
3201 #ifdef HAVE_TARGET_32_LITTLE
3202 template
3203 Output_section*
3204 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3205 unsigned int reloc_shndx,
3206 const elfcpp::Shdr<32, false>& shdr,
3207 Output_section* data_section,
3208 Relocatable_relocs* rr);
3209 #endif
3210
3211 #ifdef HAVE_TARGET_32_BIG
3212 template
3213 Output_section*
3214 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3215 unsigned int reloc_shndx,
3216 const elfcpp::Shdr<32, true>& shdr,
3217 Output_section* data_section,
3218 Relocatable_relocs* rr);
3219 #endif
3220
3221 #ifdef HAVE_TARGET_64_LITTLE
3222 template
3223 Output_section*
3224 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3225 unsigned int reloc_shndx,
3226 const elfcpp::Shdr<64, false>& shdr,
3227 Output_section* data_section,
3228 Relocatable_relocs* rr);
3229 #endif
3230
3231 #ifdef HAVE_TARGET_64_BIG
3232 template
3233 Output_section*
3234 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3235 unsigned int reloc_shndx,
3236 const elfcpp::Shdr<64, true>& shdr,
3237 Output_section* data_section,
3238 Relocatable_relocs* rr);
3239 #endif
3240
3241 #ifdef HAVE_TARGET_32_LITTLE
3242 template
3243 void
3244 Layout::layout_group<32, false>(Symbol_table* symtab,
3245 Sized_relobj<32, false>* object,
3246 unsigned int,
3247 const char* group_section_name,
3248 const char* signature,
3249 const elfcpp::Shdr<32, false>& shdr,
3250 const elfcpp::Elf_Word* contents);
3251 #endif
3252
3253 #ifdef HAVE_TARGET_32_BIG
3254 template
3255 void
3256 Layout::layout_group<32, true>(Symbol_table* symtab,
3257 Sized_relobj<32, true>* object,
3258 unsigned int,
3259 const char* group_section_name,
3260 const char* signature,
3261 const elfcpp::Shdr<32, true>& shdr,
3262 const elfcpp::Elf_Word* contents);
3263 #endif
3264
3265 #ifdef HAVE_TARGET_64_LITTLE
3266 template
3267 void
3268 Layout::layout_group<64, false>(Symbol_table* symtab,
3269 Sized_relobj<64, false>* object,
3270 unsigned int,
3271 const char* group_section_name,
3272 const char* signature,
3273 const elfcpp::Shdr<64, false>& shdr,
3274 const elfcpp::Elf_Word* contents);
3275 #endif
3276
3277 #ifdef HAVE_TARGET_64_BIG
3278 template
3279 void
3280 Layout::layout_group<64, true>(Symbol_table* symtab,
3281 Sized_relobj<64, true>* object,
3282 unsigned int,
3283 const char* group_section_name,
3284 const char* signature,
3285 const elfcpp::Shdr<64, true>& shdr,
3286 const elfcpp::Elf_Word* contents);
3287 #endif
3288
3289 #ifdef HAVE_TARGET_32_LITTLE
3290 template
3291 Output_section*
3292 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3293 const unsigned char* symbols,
3294 off_t symbols_size,
3295 const unsigned char* symbol_names,
3296 off_t symbol_names_size,
3297 unsigned int shndx,
3298 const elfcpp::Shdr<32, false>& shdr,
3299 unsigned int reloc_shndx,
3300 unsigned int reloc_type,
3301 off_t* off);
3302 #endif
3303
3304 #ifdef HAVE_TARGET_32_BIG
3305 template
3306 Output_section*
3307 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3308 const unsigned char* symbols,
3309 off_t symbols_size,
3310 const unsigned char* symbol_names,
3311 off_t symbol_names_size,
3312 unsigned int shndx,
3313 const elfcpp::Shdr<32, true>& shdr,
3314 unsigned int reloc_shndx,
3315 unsigned int reloc_type,
3316 off_t* off);
3317 #endif
3318
3319 #ifdef HAVE_TARGET_64_LITTLE
3320 template
3321 Output_section*
3322 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3323 const unsigned char* symbols,
3324 off_t symbols_size,
3325 const unsigned char* symbol_names,
3326 off_t symbol_names_size,
3327 unsigned int shndx,
3328 const elfcpp::Shdr<64, false>& shdr,
3329 unsigned int reloc_shndx,
3330 unsigned int reloc_type,
3331 off_t* off);
3332 #endif
3333
3334 #ifdef HAVE_TARGET_64_BIG
3335 template
3336 Output_section*
3337 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3338 const unsigned char* symbols,
3339 off_t symbols_size,
3340 const unsigned char* symbol_names,
3341 off_t symbol_names_size,
3342 unsigned int shndx,
3343 const elfcpp::Shdr<64, true>& shdr,
3344 unsigned int reloc_shndx,
3345 unsigned int reloc_type,
3346 off_t* off);
3347 #endif
3348
3349 } // End namespace gold.
This page took 0.106247 seconds and 4 git commands to generate.