gas: run the hwcaps-bump tests with 64-bit sparc objects only.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87 this->list_.push_front(Free_list_node(0, len));
88 this->last_remove_ = this->list_.begin();
89 this->extend_ = extend;
90 this->length_ = len;
91 ++Free_list::num_lists;
92 ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107 if (start == end)
108 return;
109 gold_assert(start < end);
110
111 ++Free_list::num_removes;
112
113 Iterator p = this->last_remove_;
114 if (p->start_ > start)
115 p = this->list_.begin();
116
117 for (; p != this->list_.end(); ++p)
118 {
119 ++Free_list::num_remove_visits;
120 // Find a node that wholly contains the indicated region.
121 if (p->start_ <= start && p->end_ >= end)
122 {
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 p = this->list_.erase(p);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p->start_ + 3 >= start)
129 p->start_ = end;
130 // Case 3: remove a chunk from the end of the node.
131 else if (p->end_ <= end + 3)
132 p->end_ = start;
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
135 else
136 {
137 Free_list_node newnode(p->start_, start);
138 p->start_ = end;
139 this->list_.insert(p, newnode);
140 ++Free_list::num_nodes;
141 }
142 this->last_remove_ = p;
143 return;
144 }
145 }
146
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161 gold_debug(DEBUG_INCREMENTAL,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len), static_cast<int>(align),
164 static_cast<long>(minoff));
165 if (len == 0)
166 return align_address(minoff, align);
167
168 ++Free_list::num_allocates;
169
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176 {
177 ++Free_list::num_allocate_visits;
178 off_t start = p->start_ > minoff ? p->start_ : minoff;
179 start = align_address(start, align);
180 off_t end = start + len;
181 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 {
183 this->length_ = end;
184 p->end_ = end;
185 }
186 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 {
188 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 this->list_.erase(p);
190 else if (p->start_ + fuzz >= start)
191 p->start_ = end;
192 else if (p->end_ <= end + fuzz)
193 p->end_ = start;
194 else
195 {
196 Free_list_node newnode(p->start_, start);
197 p->start_ = end;
198 this->list_.insert(p, newnode);
199 ++Free_list::num_nodes;
200 }
201 return start;
202 }
203 }
204 if (this->extend_)
205 {
206 off_t start = align_address(this->length_, align);
207 this->length_ = start + len;
208 return start;
209 }
210 return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
220 static_cast<long>(p->end_),
221 static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228 fprintf(stderr, _("%s: total free lists: %u\n"),
229 program_name, Free_list::num_lists);
230 fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 program_name, Free_list::num_nodes);
232 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 program_name, Free_list::num_removes);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_remove_visits);
236 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name, Free_list::num_allocates);
238 fprintf(stderr, _("%s: nodes visited: %u\n"),
239 program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246 public:
247 Hash_task(Output_file* of,
248 size_t offset,
249 size_t size,
250 unsigned char* dst,
251 Task_token* final_blocker)
252 : of_(of), offset_(offset), size_(size), dst_(dst),
253 final_blocker_(final_blocker)
254 { }
255
256 void
257 run(Workqueue*)
258 {
259 const unsigned char* iv =
260 this->of_->get_input_view(this->offset_, this->size_);
261 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262 this->of_->free_input_view(this->offset_, this->size_, iv);
263 }
264
265 Task_token*
266 is_runnable()
267 { return NULL; }
268
269 // Unblock FINAL_BLOCKER_ when done.
270 void
271 locks(Task_locker* tl)
272 { tl->add(this, this->final_blocker_); }
273
274 std::string
275 get_name() const
276 { return "Hash_task"; }
277
278 private:
279 Output_file* of_;
280 const size_t offset_;
281 const size_t size_;
282 unsigned char* const dst_;
283 Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 script_output_section_data_list_(),
470 segment_states_(NULL),
471 relaxation_debug_check_(NULL),
472 section_order_map_(),
473 section_segment_map_(),
474 input_section_position_(),
475 input_section_glob_(),
476 incremental_base_(NULL),
477 free_list_()
478 {
479 // Make space for more than enough segments for a typical file.
480 // This is just for efficiency--it's OK if we wind up needing more.
481 this->segment_list_.reserve(12);
482
483 // We expect two unattached Output_data objects: the file header and
484 // the segment headers.
485 this->special_output_list_.reserve(2);
486
487 // Initialize structure needed for an incremental build.
488 if (parameters->incremental())
489 this->incremental_inputs_ = new Incremental_inputs;
490
491 // The section name pool is worth optimizing in all cases, because
492 // it is small, but there are often overlaps due to .rel sections.
493 this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501 this->incremental_base_ = base;
502 this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510 return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520 "abbrev",
521 "addr", // Fission extension
522 // "aranges", // not used by gdb as of 7.4
523 "frame",
524 "gdb_scripts",
525 "info",
526 "types",
527 "line",
528 "loc",
529 "macinfo",
530 "macro",
531 // "pubnames", // not used by gdb as of 7.4
532 // "pubtypes", // not used by gdb as of 7.4
533 // "gnu_pubnames", // Fission extension
534 // "gnu_pubtypes", // Fission extension
535 "ranges",
536 "str",
537 "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544 "abbrev",
545 // "addr", // Fission extension
546 // "aranges", // not used by gdb as of 7.4
547 // "frame",
548 // "gdb_scripts",
549 "info",
550 // "types",
551 "line",
552 // "loc",
553 // "macinfo",
554 // "macro",
555 // "pubnames", // not used by gdb as of 7.4
556 // "pubtypes", // not used by gdb as of 7.4
557 // "gnu_pubnames", // Fission extension
558 // "gnu_pubtypes", // Fission extension
559 // "ranges",
560 "str",
561 "str_offsets", // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569 "aranges",
570 "pubnames",
571 "gnu_pubnames",
572 "pubtypes",
573 "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583 // We can do this faster: binary search or a hashtable. But why bother?
584 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585 if (strcmp(suffix, gdb_sections[i]) == 0)
586 return true;
587 return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595 // We can do this faster: binary search or a hashtable. But why bother?
596 for (size_t i = 0;
597 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598 ++i)
599 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600 return true;
601 return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610 // We can do this faster: binary search or a hashtable. But why bother?
611 for (size_t i = 0;
612 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613 ++i)
614 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615 return true;
616 return false;
617 }
618
619 // Sometimes we compress sections. This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections. This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631 return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files. Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640 return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646 gold_assert(secname[0] == '.' && secname[1] == 'z');
647 std::string ret(".");
648 ret.append(secname, 2, std::string::npos);
649 return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657 const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659 if (!parameters->options().relocatable()
660 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661 return false;
662
663 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667 return parameters->target().should_include_section(sh_type);
668
669 switch (sh_type)
670 {
671 case elfcpp::SHT_NULL:
672 case elfcpp::SHT_SYMTAB:
673 case elfcpp::SHT_DYNSYM:
674 case elfcpp::SHT_HASH:
675 case elfcpp::SHT_DYNAMIC:
676 case elfcpp::SHT_SYMTAB_SHNDX:
677 return false;
678
679 case elfcpp::SHT_STRTAB:
680 // Discard the sections which have special meanings in the ELF
681 // ABI. Keep others (e.g., .stabstr). We could also do this by
682 // checking the sh_link fields of the appropriate sections.
683 return (strcmp(name, ".dynstr") != 0
684 && strcmp(name, ".strtab") != 0
685 && strcmp(name, ".shstrtab") != 0);
686
687 case elfcpp::SHT_RELA:
688 case elfcpp::SHT_REL:
689 case elfcpp::SHT_GROUP:
690 // If we are emitting relocations these should be handled
691 // elsewhere.
692 gold_assert(!parameters->options().relocatable());
693 return false;
694
695 case elfcpp::SHT_PROGBITS:
696 if (parameters->options().strip_debug()
697 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698 {
699 if (is_debug_info_section(name))
700 return false;
701 }
702 if (parameters->options().strip_debug_non_line()
703 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704 {
705 // Debugging sections can only be recognized by name.
706 if (is_prefix_of(".debug_", name)
707 && !is_lines_only_debug_section(name + 7))
708 return false;
709 if (is_prefix_of(".zdebug_", name)
710 && !is_lines_only_debug_section(name + 8))
711 return false;
712 }
713 if (parameters->options().strip_debug_gdb()
714 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715 {
716 // Debugging sections can only be recognized by name.
717 if (is_prefix_of(".debug_", name)
718 && !is_gdb_debug_section(name + 7))
719 return false;
720 if (is_prefix_of(".zdebug_", name)
721 && !is_gdb_debug_section(name + 8))
722 return false;
723 }
724 if (parameters->options().gdb_index()
725 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726 {
727 // When building .gdb_index, we can strip .debug_pubnames,
728 // .debug_pubtypes, and .debug_aranges sections.
729 if (is_prefix_of(".debug_", name)
730 && is_gdb_fast_lookup_section(name + 7))
731 return false;
732 if (is_prefix_of(".zdebug_", name)
733 && is_gdb_fast_lookup_section(name + 8))
734 return false;
735 }
736 if (parameters->options().strip_lto_sections()
737 && !parameters->options().relocatable()
738 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739 {
740 // Ignore LTO sections containing intermediate code.
741 if (is_prefix_of(".gnu.lto_", name))
742 return false;
743 }
744 // The GNU linker strips .gnu_debuglink sections, so we do too.
745 // This is a feature used to keep debugging information in
746 // separate files.
747 if (strcmp(name, ".gnu_debuglink") == 0)
748 return false;
749 return true;
750
751 default:
752 return true;
753 }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761 for (Section_list::const_iterator p = this->section_list_.begin();
762 p != this->section_list_.end();
763 ++p)
764 if (strcmp((*p)->name(), name) == 0)
765 return *p;
766 return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear. Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774 elfcpp::Elf_Word clear) const
775 {
776 for (Segment_list::const_iterator p = this->segment_list_.begin();
777 p != this->segment_list_.end();
778 ++p)
779 if (static_cast<elfcpp::PT>((*p)->type()) == type
780 && ((*p)->flags() & set) == set
781 && ((*p)->flags() & clear) == 0)
782 return *p;
783 return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section. This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors. Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run. This set just keeps track of
794 // these sections which need to be reversed. It is only changed by
795 // Layout::layout. It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807 != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS. NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key. ORDER is where this should appear
813 // in the output sections. IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818 Output_section_order order, bool is_relro)
819 {
820 elfcpp::Elf_Word lookup_type = type;
821
822 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
824 // .init_array, .fini_array, and .preinit_array sections by name
825 // whatever their type in the input file. We do this because the
826 // types are not always right in the input files.
827 if (lookup_type == elfcpp::SHT_INIT_ARRAY
828 || lookup_type == elfcpp::SHT_FINI_ARRAY
829 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830 lookup_type = elfcpp::SHT_PROGBITS;
831
832 elfcpp::Elf_Xword lookup_flags = flags;
833
834 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835 // read-write with read-only sections. Some other ELF linkers do
836 // not do this. FIXME: Perhaps there should be an option
837 // controlling this.
838 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841 const std::pair<Key, Output_section*> v(key, NULL);
842 std::pair<Section_name_map::iterator, bool> ins(
843 this->section_name_map_.insert(v));
844
845 if (!ins.second)
846 return ins.first->second;
847 else
848 {
849 // This is the first time we've seen this name/type/flags
850 // combination. For compatibility with the GNU linker, we
851 // combine sections with contents and zero flags with sections
852 // with non-zero flags. This is a workaround for cases where
853 // assembler code forgets to set section flags. FIXME: Perhaps
854 // there should be an option to control this.
855 Output_section* os = NULL;
856
857 if (lookup_type == elfcpp::SHT_PROGBITS)
858 {
859 if (flags == 0)
860 {
861 Output_section* same_name = this->find_output_section(name);
862 if (same_name != NULL
863 && (same_name->type() == elfcpp::SHT_PROGBITS
864 || same_name->type() == elfcpp::SHT_INIT_ARRAY
865 || same_name->type() == elfcpp::SHT_FINI_ARRAY
866 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868 os = same_name;
869 }
870 else if ((flags & elfcpp::SHF_TLS) == 0)
871 {
872 elfcpp::Elf_Xword zero_flags = 0;
873 const Key zero_key(name_key, std::make_pair(lookup_type,
874 zero_flags));
875 Section_name_map::iterator p =
876 this->section_name_map_.find(zero_key);
877 if (p != this->section_name_map_.end())
878 os = p->second;
879 }
880 }
881
882 if (os == NULL)
883 os = this->make_output_section(name, type, flags, order, is_relro);
884
885 ins.first->second = os;
886 return os;
887 }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896 if (! this->script_options_->saw_sections_clause())
897 return false;
898
899 Script_sections* ss = this->script_options_->script_sections();
900 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901 Output_section** output_section_slot;
902 Script_sections::Section_type script_section_type;
903 bool keep;
904
905 name = ss->output_section_name(file_name, name, &output_section_slot,
906 &script_section_type, &keep);
907 return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916 // Some flags in the input section should not be automatically
917 // copied to the output section.
918 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919 | elfcpp::SHF_GROUP
920 | elfcpp::SHF_COMPRESSED
921 | elfcpp::SHF_MERGE
922 | elfcpp::SHF_STRINGS);
923
924 // We only clear the SHF_LINK_ORDER flag in for
925 // a non-relocatable link.
926 if (!parameters->options().relocatable())
927 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929 return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
934 // linker created section. IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file. ORDER is where this section should appear in the output
937 // sections. IS_RELRO is true for a relro section. This will return
938 // NULL if the input section should be discarded.
939
940 Output_section*
941 Layout::choose_output_section(const Relobj* relobj, const char* name,
942 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
943 bool is_input_section, Output_section_order order,
944 bool is_relro)
945 {
946 // We should not see any input sections after we have attached
947 // sections to segments.
948 gold_assert(!is_input_section || !this->sections_are_attached_);
949
950 flags = this->get_output_section_flags(flags);
951
952 if (this->script_options_->saw_sections_clause())
953 {
954 // We are using a SECTIONS clause, so the output section is
955 // chosen based only on the name.
956
957 Script_sections* ss = this->script_options_->script_sections();
958 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
959 Output_section** output_section_slot;
960 Script_sections::Section_type script_section_type;
961 const char* orig_name = name;
962 bool keep;
963 name = ss->output_section_name(file_name, name, &output_section_slot,
964 &script_section_type, &keep);
965
966 if (name == NULL)
967 {
968 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
969 "because it is not allowed by the "
970 "SECTIONS clause of the linker script"),
971 orig_name);
972 // The SECTIONS clause says to discard this input section.
973 return NULL;
974 }
975
976 // We can only handle script section types ST_NONE and ST_NOLOAD.
977 switch (script_section_type)
978 {
979 case Script_sections::ST_NONE:
980 break;
981 case Script_sections::ST_NOLOAD:
982 flags &= elfcpp::SHF_ALLOC;
983 break;
984 default:
985 gold_unreachable();
986 }
987
988 // If this is an orphan section--one not mentioned in the linker
989 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
990 // default processing below.
991
992 if (output_section_slot != NULL)
993 {
994 if (*output_section_slot != NULL)
995 {
996 (*output_section_slot)->update_flags_for_input_section(flags);
997 return *output_section_slot;
998 }
999
1000 // We don't put sections found in the linker script into
1001 // SECTION_NAME_MAP_. That keeps us from getting confused
1002 // if an orphan section is mapped to a section with the same
1003 // name as one in the linker script.
1004
1005 name = this->namepool_.add(name, false, NULL);
1006
1007 Output_section* os = this->make_output_section(name, type, flags,
1008 order, is_relro);
1009
1010 os->set_found_in_sections_clause();
1011
1012 // Special handling for NOLOAD sections.
1013 if (script_section_type == Script_sections::ST_NOLOAD)
1014 {
1015 os->set_is_noload();
1016
1017 // The constructor of Output_section sets addresses of non-ALLOC
1018 // sections to 0 by default. We don't want that for NOLOAD
1019 // sections even if they have no SHF_ALLOC flag.
1020 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1021 && os->is_address_valid())
1022 {
1023 gold_assert(os->address() == 0
1024 && !os->is_offset_valid()
1025 && !os->is_data_size_valid());
1026 os->reset_address_and_file_offset();
1027 }
1028 }
1029
1030 *output_section_slot = os;
1031 return os;
1032 }
1033 }
1034
1035 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1036
1037 size_t len = strlen(name);
1038 std::string uncompressed_name;
1039
1040 // Compressed debug sections should be mapped to the corresponding
1041 // uncompressed section.
1042 if (is_compressed_debug_section(name))
1043 {
1044 uncompressed_name =
1045 corresponding_uncompressed_section_name(std::string(name, len));
1046 name = uncompressed_name.c_str();
1047 len = uncompressed_name.length();
1048 }
1049
1050 // Turn NAME from the name of the input section into the name of the
1051 // output section.
1052 if (is_input_section
1053 && !this->script_options_->saw_sections_clause()
1054 && !parameters->options().relocatable())
1055 {
1056 const char *orig_name = name;
1057 name = parameters->target().output_section_name(relobj, name, &len);
1058 if (name == NULL)
1059 name = Layout::output_section_name(relobj, orig_name, &len);
1060 }
1061
1062 Stringpool::Key name_key;
1063 name = this->namepool_.add_with_length(name, len, true, &name_key);
1064
1065 // Find or make the output section. The output section is selected
1066 // based on the section name, type, and flags.
1067 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1068 }
1069
1070 // For incremental links, record the initial fixed layout of a section
1071 // from the base file, and return a pointer to the Output_section.
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::init_fixed_output_section(const char* name,
1076 elfcpp::Shdr<size, big_endian>& shdr)
1077 {
1078 unsigned int sh_type = shdr.get_sh_type();
1079
1080 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1081 // PRE_INIT_ARRAY, and NOTE sections.
1082 // All others will be created from scratch and reallocated.
1083 if (!can_incremental_update(sh_type))
1084 return NULL;
1085
1086 // If we're generating a .gdb_index section, we need to regenerate
1087 // it from scratch.
1088 if (parameters->options().gdb_index()
1089 && sh_type == elfcpp::SHT_PROGBITS
1090 && strcmp(name, ".gdb_index") == 0)
1091 return NULL;
1092
1093 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1094 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1095 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1096 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1097 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1098 shdr.get_sh_addralign();
1099
1100 // Make the output section.
1101 Stringpool::Key name_key;
1102 name = this->namepool_.add(name, true, &name_key);
1103 Output_section* os = this->get_output_section(name, name_key, sh_type,
1104 sh_flags, ORDER_INVALID, false);
1105 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1106 if (sh_type != elfcpp::SHT_NOBITS)
1107 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1108 return os;
1109 }
1110
1111 // Return the index by which an input section should be ordered. This
1112 // is used to sort some .text sections, for compatibility with GNU ld.
1113
1114 int
1115 Layout::special_ordering_of_input_section(const char* name)
1116 {
1117 // The GNU linker has some special handling for some sections that
1118 // wind up in the .text section. Sections that start with these
1119 // prefixes must appear first, and must appear in the order listed
1120 // here.
1121 static const char* const text_section_sort[] =
1122 {
1123 ".text.unlikely",
1124 ".text.exit",
1125 ".text.startup",
1126 ".text.hot"
1127 };
1128
1129 for (size_t i = 0;
1130 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1131 i++)
1132 if (is_prefix_of(text_section_sort[i], name))
1133 return i;
1134
1135 return -1;
1136 }
1137
1138 // Return the output section to use for input section SHNDX, with name
1139 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1140 // index of a relocation section which applies to this section, or 0
1141 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1142 // relocation section if there is one. Set *OFF to the offset of this
1143 // input section without the output section. Return NULL if the
1144 // section should be discarded. Set *OFF to -1 if the section
1145 // contents should not be written directly to the output file, but
1146 // will instead receive special handling.
1147
1148 template<int size, bool big_endian>
1149 Output_section*
1150 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1151 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1152 unsigned int reloc_shndx, unsigned int, off_t* off)
1153 {
1154 *off = 0;
1155
1156 if (!this->include_section(object, name, shdr))
1157 return NULL;
1158
1159 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1160
1161 // In a relocatable link a grouped section must not be combined with
1162 // any other sections.
1163 Output_section* os;
1164 if (parameters->options().relocatable()
1165 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1166 {
1167 // Some flags in the input section should not be automatically
1168 // copied to the output section.
1169 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1170 & ~ elfcpp::SHF_COMPRESSED);
1171 name = this->namepool_.add(name, true, NULL);
1172 os = this->make_output_section(name, sh_type, flags,
1173 ORDER_INVALID, false);
1174 }
1175 else
1176 {
1177 // Plugins can choose to place one or more subsets of sections in
1178 // unique segments and this is done by mapping these section subsets
1179 // to unique output sections. Check if this section needs to be
1180 // remapped to a unique output section.
1181 Section_segment_map::iterator it
1182 = this->section_segment_map_.find(Const_section_id(object, shndx));
1183 if (it == this->section_segment_map_.end())
1184 {
1185 os = this->choose_output_section(object, name, sh_type,
1186 shdr.get_sh_flags(), true,
1187 ORDER_INVALID, false);
1188 }
1189 else
1190 {
1191 // We know the name of the output section, directly call
1192 // get_output_section here by-passing choose_output_section.
1193 elfcpp::Elf_Xword flags
1194 = this->get_output_section_flags(shdr.get_sh_flags());
1195
1196 const char* os_name = it->second->name;
1197 Stringpool::Key name_key;
1198 os_name = this->namepool_.add(os_name, true, &name_key);
1199 os = this->get_output_section(os_name, name_key, sh_type, flags,
1200 ORDER_INVALID, false);
1201 if (!os->is_unique_segment())
1202 {
1203 os->set_is_unique_segment();
1204 os->set_extra_segment_flags(it->second->flags);
1205 os->set_segment_alignment(it->second->align);
1206 }
1207 }
1208 if (os == NULL)
1209 return NULL;
1210 }
1211
1212 // By default the GNU linker sorts input sections whose names match
1213 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1214 // sections are sorted by name. This is used to implement
1215 // constructor priority ordering. We are compatible. When we put
1216 // .ctor sections in .init_array and .dtor sections in .fini_array,
1217 // we must also sort plain .ctor and .dtor sections.
1218 if (!this->script_options_->saw_sections_clause()
1219 && !parameters->options().relocatable()
1220 && (is_prefix_of(".ctors.", name)
1221 || is_prefix_of(".dtors.", name)
1222 || is_prefix_of(".init_array.", name)
1223 || is_prefix_of(".fini_array.", name)
1224 || (parameters->options().ctors_in_init_array()
1225 && (strcmp(name, ".ctors") == 0
1226 || strcmp(name, ".dtors") == 0))))
1227 os->set_must_sort_attached_input_sections();
1228
1229 // By default the GNU linker sorts some special text sections ahead
1230 // of others. We are compatible.
1231 if (parameters->options().text_reorder()
1232 && !this->script_options_->saw_sections_clause()
1233 && !this->is_section_ordering_specified()
1234 && !parameters->options().relocatable()
1235 && Layout::special_ordering_of_input_section(name) >= 0)
1236 os->set_must_sort_attached_input_sections();
1237
1238 // If this is a .ctors or .ctors.* section being mapped to a
1239 // .init_array section, or a .dtors or .dtors.* section being mapped
1240 // to a .fini_array section, we will need to reverse the words if
1241 // there is more than one. Record this section for later. See
1242 // ctors_sections_in_init_array above.
1243 if (!this->script_options_->saw_sections_clause()
1244 && !parameters->options().relocatable()
1245 && shdr.get_sh_size() > size / 8
1246 && (((strcmp(name, ".ctors") == 0
1247 || is_prefix_of(".ctors.", name))
1248 && strcmp(os->name(), ".init_array") == 0)
1249 || ((strcmp(name, ".dtors") == 0
1250 || is_prefix_of(".dtors.", name))
1251 && strcmp(os->name(), ".fini_array") == 0)))
1252 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1253
1254 // FIXME: Handle SHF_LINK_ORDER somewhere.
1255
1256 elfcpp::Elf_Xword orig_flags = os->flags();
1257
1258 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1259 this->script_options_->saw_sections_clause());
1260
1261 // If the flags changed, we may have to change the order.
1262 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1263 {
1264 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1265 elfcpp::Elf_Xword new_flags =
1266 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1267 if (orig_flags != new_flags)
1268 os->set_order(this->default_section_order(os, false));
1269 }
1270
1271 this->have_added_input_section_ = true;
1272
1273 return os;
1274 }
1275
1276 // Maps section SECN to SEGMENT s.
1277 void
1278 Layout::insert_section_segment_map(Const_section_id secn,
1279 Unique_segment_info *s)
1280 {
1281 gold_assert(this->unique_segment_for_sections_specified_);
1282 this->section_segment_map_[secn] = s;
1283 }
1284
1285 // Handle a relocation section when doing a relocatable link.
1286
1287 template<int size, bool big_endian>
1288 Output_section*
1289 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1290 unsigned int,
1291 const elfcpp::Shdr<size, big_endian>& shdr,
1292 Output_section* data_section,
1293 Relocatable_relocs* rr)
1294 {
1295 gold_assert(parameters->options().relocatable()
1296 || parameters->options().emit_relocs());
1297
1298 int sh_type = shdr.get_sh_type();
1299
1300 std::string name;
1301 if (sh_type == elfcpp::SHT_REL)
1302 name = ".rel";
1303 else if (sh_type == elfcpp::SHT_RELA)
1304 name = ".rela";
1305 else
1306 gold_unreachable();
1307 name += data_section->name();
1308
1309 // In a relocatable link relocs for a grouped section must not be
1310 // combined with other reloc sections.
1311 Output_section* os;
1312 if (!parameters->options().relocatable()
1313 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1314 os = this->choose_output_section(object, name.c_str(), sh_type,
1315 shdr.get_sh_flags(), false,
1316 ORDER_INVALID, false);
1317 else
1318 {
1319 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1320 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1321 ORDER_INVALID, false);
1322 }
1323
1324 os->set_should_link_to_symtab();
1325 os->set_info_section(data_section);
1326
1327 Output_section_data* posd;
1328 if (sh_type == elfcpp::SHT_REL)
1329 {
1330 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1331 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1332 size,
1333 big_endian>(rr);
1334 }
1335 else if (sh_type == elfcpp::SHT_RELA)
1336 {
1337 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1338 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1339 size,
1340 big_endian>(rr);
1341 }
1342 else
1343 gold_unreachable();
1344
1345 os->add_output_section_data(posd);
1346 rr->set_output_data(posd);
1347
1348 return os;
1349 }
1350
1351 // Handle a group section when doing a relocatable link.
1352
1353 template<int size, bool big_endian>
1354 void
1355 Layout::layout_group(Symbol_table* symtab,
1356 Sized_relobj_file<size, big_endian>* object,
1357 unsigned int,
1358 const char* group_section_name,
1359 const char* signature,
1360 const elfcpp::Shdr<size, big_endian>& shdr,
1361 elfcpp::Elf_Word flags,
1362 std::vector<unsigned int>* shndxes)
1363 {
1364 gold_assert(parameters->options().relocatable());
1365 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1366 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1367 Output_section* os = this->make_output_section(group_section_name,
1368 elfcpp::SHT_GROUP,
1369 shdr.get_sh_flags(),
1370 ORDER_INVALID, false);
1371
1372 // We need to find a symbol with the signature in the symbol table.
1373 // If we don't find one now, we need to look again later.
1374 Symbol* sym = symtab->lookup(signature, NULL);
1375 if (sym != NULL)
1376 os->set_info_symndx(sym);
1377 else
1378 {
1379 // Reserve some space to minimize reallocations.
1380 if (this->group_signatures_.empty())
1381 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1382
1383 // We will wind up using a symbol whose name is the signature.
1384 // So just put the signature in the symbol name pool to save it.
1385 signature = symtab->canonicalize_name(signature);
1386 this->group_signatures_.push_back(Group_signature(os, signature));
1387 }
1388
1389 os->set_should_link_to_symtab();
1390 os->set_entsize(4);
1391
1392 section_size_type entry_count =
1393 convert_to_section_size_type(shdr.get_sh_size() / 4);
1394 Output_section_data* posd =
1395 new Output_data_group<size, big_endian>(object, entry_count, flags,
1396 shndxes);
1397 os->add_output_section_data(posd);
1398 }
1399
1400 // Special GNU handling of sections name .eh_frame. They will
1401 // normally hold exception frame data as defined by the C++ ABI
1402 // (http://codesourcery.com/cxx-abi/).
1403
1404 template<int size, bool big_endian>
1405 Output_section*
1406 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1407 const unsigned char* symbols,
1408 off_t symbols_size,
1409 const unsigned char* symbol_names,
1410 off_t symbol_names_size,
1411 unsigned int shndx,
1412 const elfcpp::Shdr<size, big_endian>& shdr,
1413 unsigned int reloc_shndx, unsigned int reloc_type,
1414 off_t* off)
1415 {
1416 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1417 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1418 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1419
1420 Output_section* os = this->make_eh_frame_section(object);
1421 if (os == NULL)
1422 return NULL;
1423
1424 gold_assert(this->eh_frame_section_ == os);
1425
1426 elfcpp::Elf_Xword orig_flags = os->flags();
1427
1428 Eh_frame::Eh_frame_section_disposition disp =
1429 Eh_frame::EH_UNRECOGNIZED_SECTION;
1430 if (!parameters->incremental())
1431 {
1432 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1433 symbols,
1434 symbols_size,
1435 symbol_names,
1436 symbol_names_size,
1437 shndx,
1438 reloc_shndx,
1439 reloc_type);
1440 }
1441
1442 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1443 {
1444 os->update_flags_for_input_section(shdr.get_sh_flags());
1445
1446 // A writable .eh_frame section is a RELRO section.
1447 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1448 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1449 {
1450 os->set_is_relro();
1451 os->set_order(ORDER_RELRO);
1452 }
1453
1454 *off = -1;
1455 return os;
1456 }
1457
1458 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1459 {
1460 // We found the end marker section, so now we can add the set of
1461 // optimized sections to the output section. We need to postpone
1462 // adding this until we've found a section we can optimize so that
1463 // the .eh_frame section in crtbeginT.o winds up at the start of
1464 // the output section.
1465 os->add_output_section_data(this->eh_frame_data_);
1466 this->added_eh_frame_data_ = true;
1467 }
1468
1469 // We couldn't handle this .eh_frame section for some reason.
1470 // Add it as a normal section.
1471 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1472 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1473 reloc_shndx, saw_sections_clause);
1474 this->have_added_input_section_ = true;
1475
1476 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478 os->set_order(this->default_section_order(os, false));
1479
1480 return os;
1481 }
1482
1483 void
1484 Layout::finalize_eh_frame_section()
1485 {
1486 // If we never found an end marker section, we need to add the
1487 // optimized eh sections to the output section now.
1488 if (!parameters->incremental()
1489 && this->eh_frame_section_ != NULL
1490 && !this->added_eh_frame_data_)
1491 {
1492 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1493 this->added_eh_frame_data_ = true;
1494 }
1495 }
1496
1497 // Create and return the magic .eh_frame section. Create
1498 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1499 // input .eh_frame section; it may be NULL.
1500
1501 Output_section*
1502 Layout::make_eh_frame_section(const Relobj* object)
1503 {
1504 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1505 // SHT_PROGBITS.
1506 Output_section* os = this->choose_output_section(object, ".eh_frame",
1507 elfcpp::SHT_PROGBITS,
1508 elfcpp::SHF_ALLOC, false,
1509 ORDER_EHFRAME, false);
1510 if (os == NULL)
1511 return NULL;
1512
1513 if (this->eh_frame_section_ == NULL)
1514 {
1515 this->eh_frame_section_ = os;
1516 this->eh_frame_data_ = new Eh_frame();
1517
1518 // For incremental linking, we do not optimize .eh_frame sections
1519 // or create a .eh_frame_hdr section.
1520 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1521 {
1522 Output_section* hdr_os =
1523 this->choose_output_section(NULL, ".eh_frame_hdr",
1524 elfcpp::SHT_PROGBITS,
1525 elfcpp::SHF_ALLOC, false,
1526 ORDER_EHFRAME, false);
1527
1528 if (hdr_os != NULL)
1529 {
1530 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1531 this->eh_frame_data_);
1532 hdr_os->add_output_section_data(hdr_posd);
1533
1534 hdr_os->set_after_input_sections();
1535
1536 if (!this->script_options_->saw_phdrs_clause())
1537 {
1538 Output_segment* hdr_oseg;
1539 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1540 elfcpp::PF_R);
1541 hdr_oseg->add_output_section_to_nonload(hdr_os,
1542 elfcpp::PF_R);
1543 }
1544
1545 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1546 }
1547 }
1548 }
1549
1550 return os;
1551 }
1552
1553 // Add an exception frame for a PLT. This is called from target code.
1554
1555 void
1556 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1557 size_t cie_length, const unsigned char* fde_data,
1558 size_t fde_length)
1559 {
1560 if (parameters->incremental())
1561 {
1562 // FIXME: Maybe this could work some day....
1563 return;
1564 }
1565 Output_section* os = this->make_eh_frame_section(NULL);
1566 if (os == NULL)
1567 return;
1568 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1569 fde_data, fde_length);
1570 if (!this->added_eh_frame_data_)
1571 {
1572 os->add_output_section_data(this->eh_frame_data_);
1573 this->added_eh_frame_data_ = true;
1574 }
1575 }
1576
1577 // Scan a .debug_info or .debug_types section, and add summary
1578 // information to the .gdb_index section.
1579
1580 template<int size, bool big_endian>
1581 void
1582 Layout::add_to_gdb_index(bool is_type_unit,
1583 Sized_relobj<size, big_endian>* object,
1584 const unsigned char* symbols,
1585 off_t symbols_size,
1586 unsigned int shndx,
1587 unsigned int reloc_shndx,
1588 unsigned int reloc_type)
1589 {
1590 if (this->gdb_index_data_ == NULL)
1591 {
1592 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1593 elfcpp::SHT_PROGBITS, 0,
1594 false, ORDER_INVALID,
1595 false);
1596 if (os == NULL)
1597 return;
1598
1599 this->gdb_index_data_ = new Gdb_index(os);
1600 os->add_output_section_data(this->gdb_index_data_);
1601 os->set_after_input_sections();
1602 }
1603
1604 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1605 symbols_size, shndx, reloc_shndx,
1606 reloc_type);
1607 }
1608
1609 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1610 // the output section.
1611
1612 Output_section*
1613 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1614 elfcpp::Elf_Xword flags,
1615 Output_section_data* posd,
1616 Output_section_order order, bool is_relro)
1617 {
1618 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1619 false, order, is_relro);
1620 if (os != NULL)
1621 os->add_output_section_data(posd);
1622 return os;
1623 }
1624
1625 // Map section flags to segment flags.
1626
1627 elfcpp::Elf_Word
1628 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1629 {
1630 elfcpp::Elf_Word ret = elfcpp::PF_R;
1631 if ((flags & elfcpp::SHF_WRITE) != 0)
1632 ret |= elfcpp::PF_W;
1633 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1634 ret |= elfcpp::PF_X;
1635 return ret;
1636 }
1637
1638 // Make a new Output_section, and attach it to segments as
1639 // appropriate. ORDER is the order in which this section should
1640 // appear in the output segment. IS_RELRO is true if this is a relro
1641 // (read-only after relocations) section.
1642
1643 Output_section*
1644 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1645 elfcpp::Elf_Xword flags,
1646 Output_section_order order, bool is_relro)
1647 {
1648 Output_section* os;
1649 if ((flags & elfcpp::SHF_ALLOC) == 0
1650 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1651 && is_compressible_debug_section(name))
1652 os = new Output_compressed_section(&parameters->options(), name, type,
1653 flags);
1654 else if ((flags & elfcpp::SHF_ALLOC) == 0
1655 && parameters->options().strip_debug_non_line()
1656 && strcmp(".debug_abbrev", name) == 0)
1657 {
1658 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1659 name, type, flags);
1660 if (this->debug_info_)
1661 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1662 }
1663 else if ((flags & elfcpp::SHF_ALLOC) == 0
1664 && parameters->options().strip_debug_non_line()
1665 && strcmp(".debug_info", name) == 0)
1666 {
1667 os = this->debug_info_ = new Output_reduced_debug_info_section(
1668 name, type, flags);
1669 if (this->debug_abbrev_)
1670 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1671 }
1672 else
1673 {
1674 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1675 // not have correct section types. Force them here.
1676 if (type == elfcpp::SHT_PROGBITS)
1677 {
1678 if (is_prefix_of(".init_array", name))
1679 type = elfcpp::SHT_INIT_ARRAY;
1680 else if (is_prefix_of(".preinit_array", name))
1681 type = elfcpp::SHT_PREINIT_ARRAY;
1682 else if (is_prefix_of(".fini_array", name))
1683 type = elfcpp::SHT_FINI_ARRAY;
1684 }
1685
1686 // FIXME: const_cast is ugly.
1687 Target* target = const_cast<Target*>(&parameters->target());
1688 os = target->make_output_section(name, type, flags);
1689 }
1690
1691 // With -z relro, we have to recognize the special sections by name.
1692 // There is no other way.
1693 bool is_relro_local = false;
1694 if (!this->script_options_->saw_sections_clause()
1695 && parameters->options().relro()
1696 && (flags & elfcpp::SHF_ALLOC) != 0
1697 && (flags & elfcpp::SHF_WRITE) != 0)
1698 {
1699 if (type == elfcpp::SHT_PROGBITS)
1700 {
1701 if ((flags & elfcpp::SHF_TLS) != 0)
1702 is_relro = true;
1703 else if (strcmp(name, ".data.rel.ro") == 0)
1704 is_relro = true;
1705 else if (strcmp(name, ".data.rel.ro.local") == 0)
1706 {
1707 is_relro = true;
1708 is_relro_local = true;
1709 }
1710 else if (strcmp(name, ".ctors") == 0
1711 || strcmp(name, ".dtors") == 0
1712 || strcmp(name, ".jcr") == 0)
1713 is_relro = true;
1714 }
1715 else if (type == elfcpp::SHT_INIT_ARRAY
1716 || type == elfcpp::SHT_FINI_ARRAY
1717 || type == elfcpp::SHT_PREINIT_ARRAY)
1718 is_relro = true;
1719 }
1720
1721 if (is_relro)
1722 os->set_is_relro();
1723
1724 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1725 order = this->default_section_order(os, is_relro_local);
1726
1727 os->set_order(order);
1728
1729 parameters->target().new_output_section(os);
1730
1731 this->section_list_.push_back(os);
1732
1733 // The GNU linker by default sorts some sections by priority, so we
1734 // do the same. We need to know that this might happen before we
1735 // attach any input sections.
1736 if (!this->script_options_->saw_sections_clause()
1737 && !parameters->options().relocatable()
1738 && (strcmp(name, ".init_array") == 0
1739 || strcmp(name, ".fini_array") == 0
1740 || (!parameters->options().ctors_in_init_array()
1741 && (strcmp(name, ".ctors") == 0
1742 || strcmp(name, ".dtors") == 0))))
1743 os->set_may_sort_attached_input_sections();
1744
1745 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1746 // sections before other .text sections. We are compatible. We
1747 // need to know that this might happen before we attach any input
1748 // sections.
1749 if (parameters->options().text_reorder()
1750 && !this->script_options_->saw_sections_clause()
1751 && !this->is_section_ordering_specified()
1752 && !parameters->options().relocatable()
1753 && strcmp(name, ".text") == 0)
1754 os->set_may_sort_attached_input_sections();
1755
1756 // GNU linker sorts section by name with --sort-section=name.
1757 if (strcmp(parameters->options().sort_section(), "name") == 0)
1758 os->set_must_sort_attached_input_sections();
1759
1760 // Check for .stab*str sections, as .stab* sections need to link to
1761 // them.
1762 if (type == elfcpp::SHT_STRTAB
1763 && !this->have_stabstr_section_
1764 && strncmp(name, ".stab", 5) == 0
1765 && strcmp(name + strlen(name) - 3, "str") == 0)
1766 this->have_stabstr_section_ = true;
1767
1768 // During a full incremental link, we add patch space to most
1769 // PROGBITS and NOBITS sections. Flag those that may be
1770 // arbitrarily padded.
1771 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1772 && order != ORDER_INTERP
1773 && order != ORDER_INIT
1774 && order != ORDER_PLT
1775 && order != ORDER_FINI
1776 && order != ORDER_RELRO_LAST
1777 && order != ORDER_NON_RELRO_FIRST
1778 && strcmp(name, ".eh_frame") != 0
1779 && strcmp(name, ".ctors") != 0
1780 && strcmp(name, ".dtors") != 0
1781 && strcmp(name, ".jcr") != 0)
1782 {
1783 os->set_is_patch_space_allowed();
1784
1785 // Certain sections require "holes" to be filled with
1786 // specific fill patterns. These fill patterns may have
1787 // a minimum size, so we must prevent allocations from the
1788 // free list that leave a hole smaller than the minimum.
1789 if (strcmp(name, ".debug_info") == 0)
1790 os->set_free_space_fill(new Output_fill_debug_info(false));
1791 else if (strcmp(name, ".debug_types") == 0)
1792 os->set_free_space_fill(new Output_fill_debug_info(true));
1793 else if (strcmp(name, ".debug_line") == 0)
1794 os->set_free_space_fill(new Output_fill_debug_line());
1795 }
1796
1797 // If we have already attached the sections to segments, then we
1798 // need to attach this one now. This happens for sections created
1799 // directly by the linker.
1800 if (this->sections_are_attached_)
1801 this->attach_section_to_segment(&parameters->target(), os);
1802
1803 return os;
1804 }
1805
1806 // Return the default order in which a section should be placed in an
1807 // output segment. This function captures a lot of the ideas in
1808 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1809 // linker created section is normally set when the section is created;
1810 // this function is used for input sections.
1811
1812 Output_section_order
1813 Layout::default_section_order(Output_section* os, bool is_relro_local)
1814 {
1815 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1816 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1817 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1818 bool is_bss = false;
1819
1820 switch (os->type())
1821 {
1822 default:
1823 case elfcpp::SHT_PROGBITS:
1824 break;
1825 case elfcpp::SHT_NOBITS:
1826 is_bss = true;
1827 break;
1828 case elfcpp::SHT_RELA:
1829 case elfcpp::SHT_REL:
1830 if (!is_write)
1831 return ORDER_DYNAMIC_RELOCS;
1832 break;
1833 case elfcpp::SHT_HASH:
1834 case elfcpp::SHT_DYNAMIC:
1835 case elfcpp::SHT_SHLIB:
1836 case elfcpp::SHT_DYNSYM:
1837 case elfcpp::SHT_GNU_HASH:
1838 case elfcpp::SHT_GNU_verdef:
1839 case elfcpp::SHT_GNU_verneed:
1840 case elfcpp::SHT_GNU_versym:
1841 if (!is_write)
1842 return ORDER_DYNAMIC_LINKER;
1843 break;
1844 case elfcpp::SHT_NOTE:
1845 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1846 }
1847
1848 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1849 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1850
1851 if (!is_bss && !is_write)
1852 {
1853 if (is_execinstr)
1854 {
1855 if (strcmp(os->name(), ".init") == 0)
1856 return ORDER_INIT;
1857 else if (strcmp(os->name(), ".fini") == 0)
1858 return ORDER_FINI;
1859 }
1860 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1861 }
1862
1863 if (os->is_relro())
1864 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1865
1866 if (os->is_small_section())
1867 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1868 if (os->is_large_section())
1869 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1870
1871 return is_bss ? ORDER_BSS : ORDER_DATA;
1872 }
1873
1874 // Attach output sections to segments. This is called after we have
1875 // seen all the input sections.
1876
1877 void
1878 Layout::attach_sections_to_segments(const Target* target)
1879 {
1880 for (Section_list::iterator p = this->section_list_.begin();
1881 p != this->section_list_.end();
1882 ++p)
1883 this->attach_section_to_segment(target, *p);
1884
1885 this->sections_are_attached_ = true;
1886 }
1887
1888 // Attach an output section to a segment.
1889
1890 void
1891 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1892 {
1893 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1894 this->unattached_section_list_.push_back(os);
1895 else
1896 this->attach_allocated_section_to_segment(target, os);
1897 }
1898
1899 // Attach an allocated output section to a segment.
1900
1901 void
1902 Layout::attach_allocated_section_to_segment(const Target* target,
1903 Output_section* os)
1904 {
1905 elfcpp::Elf_Xword flags = os->flags();
1906 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1907
1908 if (parameters->options().relocatable())
1909 return;
1910
1911 // If we have a SECTIONS clause, we can't handle the attachment to
1912 // segments until after we've seen all the sections.
1913 if (this->script_options_->saw_sections_clause())
1914 return;
1915
1916 gold_assert(!this->script_options_->saw_phdrs_clause());
1917
1918 // This output section goes into a PT_LOAD segment.
1919
1920 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1921
1922 // If this output section's segment has extra flags that need to be set,
1923 // coming from a linker plugin, do that.
1924 seg_flags |= os->extra_segment_flags();
1925
1926 // Check for --section-start.
1927 uint64_t addr;
1928 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1929
1930 // In general the only thing we really care about for PT_LOAD
1931 // segments is whether or not they are writable or executable,
1932 // so that is how we search for them.
1933 // Large data sections also go into their own PT_LOAD segment.
1934 // People who need segments sorted on some other basis will
1935 // have to use a linker script.
1936
1937 Segment_list::const_iterator p;
1938 if (!os->is_unique_segment())
1939 {
1940 for (p = this->segment_list_.begin();
1941 p != this->segment_list_.end();
1942 ++p)
1943 {
1944 if ((*p)->type() != elfcpp::PT_LOAD)
1945 continue;
1946 if ((*p)->is_unique_segment())
1947 continue;
1948 if (!parameters->options().omagic()
1949 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1950 continue;
1951 if ((target->isolate_execinstr() || parameters->options().rosegment())
1952 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1953 continue;
1954 // If -Tbss was specified, we need to separate the data and BSS
1955 // segments.
1956 if (parameters->options().user_set_Tbss())
1957 {
1958 if ((os->type() == elfcpp::SHT_NOBITS)
1959 == (*p)->has_any_data_sections())
1960 continue;
1961 }
1962 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1963 continue;
1964
1965 if (is_address_set)
1966 {
1967 if ((*p)->are_addresses_set())
1968 continue;
1969
1970 (*p)->add_initial_output_data(os);
1971 (*p)->update_flags_for_output_section(seg_flags);
1972 (*p)->set_addresses(addr, addr);
1973 break;
1974 }
1975
1976 (*p)->add_output_section_to_load(this, os, seg_flags);
1977 break;
1978 }
1979 }
1980
1981 if (p == this->segment_list_.end()
1982 || os->is_unique_segment())
1983 {
1984 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1985 seg_flags);
1986 if (os->is_large_data_section())
1987 oseg->set_is_large_data_segment();
1988 oseg->add_output_section_to_load(this, os, seg_flags);
1989 if (is_address_set)
1990 oseg->set_addresses(addr, addr);
1991 // Check if segment should be marked unique. For segments marked
1992 // unique by linker plugins, set the new alignment if specified.
1993 if (os->is_unique_segment())
1994 {
1995 oseg->set_is_unique_segment();
1996 if (os->segment_alignment() != 0)
1997 oseg->set_minimum_p_align(os->segment_alignment());
1998 }
1999 }
2000
2001 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2002 // segment.
2003 if (os->type() == elfcpp::SHT_NOTE)
2004 {
2005 // See if we already have an equivalent PT_NOTE segment.
2006 for (p = this->segment_list_.begin();
2007 p != segment_list_.end();
2008 ++p)
2009 {
2010 if ((*p)->type() == elfcpp::PT_NOTE
2011 && (((*p)->flags() & elfcpp::PF_W)
2012 == (seg_flags & elfcpp::PF_W)))
2013 {
2014 (*p)->add_output_section_to_nonload(os, seg_flags);
2015 break;
2016 }
2017 }
2018
2019 if (p == this->segment_list_.end())
2020 {
2021 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2022 seg_flags);
2023 oseg->add_output_section_to_nonload(os, seg_flags);
2024 }
2025 }
2026
2027 // If we see a loadable SHF_TLS section, we create a PT_TLS
2028 // segment. There can only be one such segment.
2029 if ((flags & elfcpp::SHF_TLS) != 0)
2030 {
2031 if (this->tls_segment_ == NULL)
2032 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2033 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2034 }
2035
2036 // If -z relro is in effect, and we see a relro section, we create a
2037 // PT_GNU_RELRO segment. There can only be one such segment.
2038 if (os->is_relro() && parameters->options().relro())
2039 {
2040 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2041 if (this->relro_segment_ == NULL)
2042 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2043 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2044 }
2045
2046 // If we see a section named .interp, put it into a PT_INTERP
2047 // segment. This seems broken to me, but this is what GNU ld does,
2048 // and glibc expects it.
2049 if (strcmp(os->name(), ".interp") == 0
2050 && !this->script_options_->saw_phdrs_clause())
2051 {
2052 if (this->interp_segment_ == NULL)
2053 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2054 else
2055 gold_warning(_("multiple '.interp' sections in input files "
2056 "may cause confusing PT_INTERP segment"));
2057 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2058 }
2059 }
2060
2061 // Make an output section for a script.
2062
2063 Output_section*
2064 Layout::make_output_section_for_script(
2065 const char* name,
2066 Script_sections::Section_type section_type)
2067 {
2068 name = this->namepool_.add(name, false, NULL);
2069 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2070 if (section_type == Script_sections::ST_NOLOAD)
2071 sh_flags = 0;
2072 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2073 sh_flags, ORDER_INVALID,
2074 false);
2075 os->set_found_in_sections_clause();
2076 if (section_type == Script_sections::ST_NOLOAD)
2077 os->set_is_noload();
2078 return os;
2079 }
2080
2081 // Return the number of segments we expect to see.
2082
2083 size_t
2084 Layout::expected_segment_count() const
2085 {
2086 size_t ret = this->segment_list_.size();
2087
2088 // If we didn't see a SECTIONS clause in a linker script, we should
2089 // already have the complete list of segments. Otherwise we ask the
2090 // SECTIONS clause how many segments it expects, and add in the ones
2091 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2092
2093 if (!this->script_options_->saw_sections_clause())
2094 return ret;
2095 else
2096 {
2097 const Script_sections* ss = this->script_options_->script_sections();
2098 return ret + ss->expected_segment_count(this);
2099 }
2100 }
2101
2102 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2103 // is whether we saw a .note.GNU-stack section in the object file.
2104 // GNU_STACK_FLAGS is the section flags. The flags give the
2105 // protection required for stack memory. We record this in an
2106 // executable as a PT_GNU_STACK segment. If an object file does not
2107 // have a .note.GNU-stack segment, we must assume that it is an old
2108 // object. On some targets that will force an executable stack.
2109
2110 void
2111 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2112 const Object* obj)
2113 {
2114 if (!seen_gnu_stack)
2115 {
2116 this->input_without_gnu_stack_note_ = true;
2117 if (parameters->options().warn_execstack()
2118 && parameters->target().is_default_stack_executable())
2119 gold_warning(_("%s: missing .note.GNU-stack section"
2120 " implies executable stack"),
2121 obj->name().c_str());
2122 }
2123 else
2124 {
2125 this->input_with_gnu_stack_note_ = true;
2126 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2127 {
2128 this->input_requires_executable_stack_ = true;
2129 if (parameters->options().warn_execstack())
2130 gold_warning(_("%s: requires executable stack"),
2131 obj->name().c_str());
2132 }
2133 }
2134 }
2135
2136 // Create automatic note sections.
2137
2138 void
2139 Layout::create_notes()
2140 {
2141 this->create_gold_note();
2142 this->create_stack_segment();
2143 this->create_build_id();
2144 }
2145
2146 // Create the dynamic sections which are needed before we read the
2147 // relocs.
2148
2149 void
2150 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2151 {
2152 if (parameters->doing_static_link())
2153 return;
2154
2155 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2156 elfcpp::SHT_DYNAMIC,
2157 (elfcpp::SHF_ALLOC
2158 | elfcpp::SHF_WRITE),
2159 false, ORDER_RELRO,
2160 true);
2161
2162 // A linker script may discard .dynamic, so check for NULL.
2163 if (this->dynamic_section_ != NULL)
2164 {
2165 this->dynamic_symbol_ =
2166 symtab->define_in_output_data("_DYNAMIC", NULL,
2167 Symbol_table::PREDEFINED,
2168 this->dynamic_section_, 0, 0,
2169 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2170 elfcpp::STV_HIDDEN, 0, false, false);
2171
2172 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2173
2174 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2175 }
2176 }
2177
2178 // For each output section whose name can be represented as C symbol,
2179 // define __start and __stop symbols for the section. This is a GNU
2180 // extension.
2181
2182 void
2183 Layout::define_section_symbols(Symbol_table* symtab)
2184 {
2185 for (Section_list::const_iterator p = this->section_list_.begin();
2186 p != this->section_list_.end();
2187 ++p)
2188 {
2189 const char* const name = (*p)->name();
2190 if (is_cident(name))
2191 {
2192 const std::string name_string(name);
2193 const std::string start_name(cident_section_start_prefix
2194 + name_string);
2195 const std::string stop_name(cident_section_stop_prefix
2196 + name_string);
2197
2198 symtab->define_in_output_data(start_name.c_str(),
2199 NULL, // version
2200 Symbol_table::PREDEFINED,
2201 *p,
2202 0, // value
2203 0, // symsize
2204 elfcpp::STT_NOTYPE,
2205 elfcpp::STB_GLOBAL,
2206 elfcpp::STV_DEFAULT,
2207 0, // nonvis
2208 false, // offset_is_from_end
2209 true); // only_if_ref
2210
2211 symtab->define_in_output_data(stop_name.c_str(),
2212 NULL, // version
2213 Symbol_table::PREDEFINED,
2214 *p,
2215 0, // value
2216 0, // symsize
2217 elfcpp::STT_NOTYPE,
2218 elfcpp::STB_GLOBAL,
2219 elfcpp::STV_DEFAULT,
2220 0, // nonvis
2221 true, // offset_is_from_end
2222 true); // only_if_ref
2223 }
2224 }
2225 }
2226
2227 // Define symbols for group signatures.
2228
2229 void
2230 Layout::define_group_signatures(Symbol_table* symtab)
2231 {
2232 for (Group_signatures::iterator p = this->group_signatures_.begin();
2233 p != this->group_signatures_.end();
2234 ++p)
2235 {
2236 Symbol* sym = symtab->lookup(p->signature, NULL);
2237 if (sym != NULL)
2238 p->section->set_info_symndx(sym);
2239 else
2240 {
2241 // Force the name of the group section to the group
2242 // signature, and use the group's section symbol as the
2243 // signature symbol.
2244 if (strcmp(p->section->name(), p->signature) != 0)
2245 {
2246 const char* name = this->namepool_.add(p->signature,
2247 true, NULL);
2248 p->section->set_name(name);
2249 }
2250 p->section->set_needs_symtab_index();
2251 p->section->set_info_section_symndx(p->section);
2252 }
2253 }
2254
2255 this->group_signatures_.clear();
2256 }
2257
2258 // Find the first read-only PT_LOAD segment, creating one if
2259 // necessary.
2260
2261 Output_segment*
2262 Layout::find_first_load_seg(const Target* target)
2263 {
2264 Output_segment* best = NULL;
2265 for (Segment_list::const_iterator p = this->segment_list_.begin();
2266 p != this->segment_list_.end();
2267 ++p)
2268 {
2269 if ((*p)->type() == elfcpp::PT_LOAD
2270 && ((*p)->flags() & elfcpp::PF_R) != 0
2271 && (parameters->options().omagic()
2272 || ((*p)->flags() & elfcpp::PF_W) == 0)
2273 && (!target->isolate_execinstr()
2274 || ((*p)->flags() & elfcpp::PF_X) == 0))
2275 {
2276 if (best == NULL || this->segment_precedes(*p, best))
2277 best = *p;
2278 }
2279 }
2280 if (best != NULL)
2281 return best;
2282
2283 gold_assert(!this->script_options_->saw_phdrs_clause());
2284
2285 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2286 elfcpp::PF_R);
2287 return load_seg;
2288 }
2289
2290 // Save states of all current output segments. Store saved states
2291 // in SEGMENT_STATES.
2292
2293 void
2294 Layout::save_segments(Segment_states* segment_states)
2295 {
2296 for (Segment_list::const_iterator p = this->segment_list_.begin();
2297 p != this->segment_list_.end();
2298 ++p)
2299 {
2300 Output_segment* segment = *p;
2301 // Shallow copy.
2302 Output_segment* copy = new Output_segment(*segment);
2303 (*segment_states)[segment] = copy;
2304 }
2305 }
2306
2307 // Restore states of output segments and delete any segment not found in
2308 // SEGMENT_STATES.
2309
2310 void
2311 Layout::restore_segments(const Segment_states* segment_states)
2312 {
2313 // Go through the segment list and remove any segment added in the
2314 // relaxation loop.
2315 this->tls_segment_ = NULL;
2316 this->relro_segment_ = NULL;
2317 Segment_list::iterator list_iter = this->segment_list_.begin();
2318 while (list_iter != this->segment_list_.end())
2319 {
2320 Output_segment* segment = *list_iter;
2321 Segment_states::const_iterator states_iter =
2322 segment_states->find(segment);
2323 if (states_iter != segment_states->end())
2324 {
2325 const Output_segment* copy = states_iter->second;
2326 // Shallow copy to restore states.
2327 *segment = *copy;
2328
2329 // Also fix up TLS and RELRO segment pointers as appropriate.
2330 if (segment->type() == elfcpp::PT_TLS)
2331 this->tls_segment_ = segment;
2332 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2333 this->relro_segment_ = segment;
2334
2335 ++list_iter;
2336 }
2337 else
2338 {
2339 list_iter = this->segment_list_.erase(list_iter);
2340 // This is a segment created during section layout. It should be
2341 // safe to remove it since we should have removed all pointers to it.
2342 delete segment;
2343 }
2344 }
2345 }
2346
2347 // Clean up after relaxation so that sections can be laid out again.
2348
2349 void
2350 Layout::clean_up_after_relaxation()
2351 {
2352 // Restore the segments to point state just prior to the relaxation loop.
2353 Script_sections* script_section = this->script_options_->script_sections();
2354 script_section->release_segments();
2355 this->restore_segments(this->segment_states_);
2356
2357 // Reset section addresses and file offsets
2358 for (Section_list::iterator p = this->section_list_.begin();
2359 p != this->section_list_.end();
2360 ++p)
2361 {
2362 (*p)->restore_states();
2363
2364 // If an input section changes size because of relaxation,
2365 // we need to adjust the section offsets of all input sections.
2366 // after such a section.
2367 if ((*p)->section_offsets_need_adjustment())
2368 (*p)->adjust_section_offsets();
2369
2370 (*p)->reset_address_and_file_offset();
2371 }
2372
2373 // Reset special output object address and file offsets.
2374 for (Data_list::iterator p = this->special_output_list_.begin();
2375 p != this->special_output_list_.end();
2376 ++p)
2377 (*p)->reset_address_and_file_offset();
2378
2379 // A linker script may have created some output section data objects.
2380 // They are useless now.
2381 for (Output_section_data_list::const_iterator p =
2382 this->script_output_section_data_list_.begin();
2383 p != this->script_output_section_data_list_.end();
2384 ++p)
2385 delete *p;
2386 this->script_output_section_data_list_.clear();
2387
2388 // Special-case fill output objects are recreated each time through
2389 // the relaxation loop.
2390 this->reset_relax_output();
2391 }
2392
2393 void
2394 Layout::reset_relax_output()
2395 {
2396 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2397 p != this->relax_output_list_.end();
2398 ++p)
2399 delete *p;
2400 this->relax_output_list_.clear();
2401 }
2402
2403 // Prepare for relaxation.
2404
2405 void
2406 Layout::prepare_for_relaxation()
2407 {
2408 // Create an relaxation debug check if in debugging mode.
2409 if (is_debugging_enabled(DEBUG_RELAXATION))
2410 this->relaxation_debug_check_ = new Relaxation_debug_check();
2411
2412 // Save segment states.
2413 this->segment_states_ = new Segment_states();
2414 this->save_segments(this->segment_states_);
2415
2416 for(Section_list::const_iterator p = this->section_list_.begin();
2417 p != this->section_list_.end();
2418 ++p)
2419 (*p)->save_states();
2420
2421 if (is_debugging_enabled(DEBUG_RELAXATION))
2422 this->relaxation_debug_check_->check_output_data_for_reset_values(
2423 this->section_list_, this->special_output_list_,
2424 this->relax_output_list_);
2425
2426 // Also enable recording of output section data from scripts.
2427 this->record_output_section_data_from_script_ = true;
2428 }
2429
2430 // If the user set the address of the text segment, that may not be
2431 // compatible with putting the segment headers and file headers into
2432 // that segment. For isolate_execinstr() targets, it's the rodata
2433 // segment rather than text where we might put the headers.
2434 static inline bool
2435 load_seg_unusable_for_headers(const Target* target)
2436 {
2437 const General_options& options = parameters->options();
2438 if (target->isolate_execinstr())
2439 return (options.user_set_Trodata_segment()
2440 && options.Trodata_segment() % target->abi_pagesize() != 0);
2441 else
2442 return (options.user_set_Ttext()
2443 && options.Ttext() % target->abi_pagesize() != 0);
2444 }
2445
2446 // Relaxation loop body: If target has no relaxation, this runs only once
2447 // Otherwise, the target relaxation hook is called at the end of
2448 // each iteration. If the hook returns true, it means re-layout of
2449 // section is required.
2450 //
2451 // The number of segments created by a linking script without a PHDRS
2452 // clause may be affected by section sizes and alignments. There is
2453 // a remote chance that relaxation causes different number of PT_LOAD
2454 // segments are created and sections are attached to different segments.
2455 // Therefore, we always throw away all segments created during section
2456 // layout. In order to be able to restart the section layout, we keep
2457 // a copy of the segment list right before the relaxation loop and use
2458 // that to restore the segments.
2459 //
2460 // PASS is the current relaxation pass number.
2461 // SYMTAB is a symbol table.
2462 // PLOAD_SEG is the address of a pointer for the load segment.
2463 // PHDR_SEG is a pointer to the PHDR segment.
2464 // SEGMENT_HEADERS points to the output segment header.
2465 // FILE_HEADER points to the output file header.
2466 // PSHNDX is the address to store the output section index.
2467
2468 off_t inline
2469 Layout::relaxation_loop_body(
2470 int pass,
2471 Target* target,
2472 Symbol_table* symtab,
2473 Output_segment** pload_seg,
2474 Output_segment* phdr_seg,
2475 Output_segment_headers* segment_headers,
2476 Output_file_header* file_header,
2477 unsigned int* pshndx)
2478 {
2479 // If this is not the first iteration, we need to clean up after
2480 // relaxation so that we can lay out the sections again.
2481 if (pass != 0)
2482 this->clean_up_after_relaxation();
2483
2484 // If there is a SECTIONS clause, put all the input sections into
2485 // the required order.
2486 Output_segment* load_seg;
2487 if (this->script_options_->saw_sections_clause())
2488 load_seg = this->set_section_addresses_from_script(symtab);
2489 else if (parameters->options().relocatable())
2490 load_seg = NULL;
2491 else
2492 load_seg = this->find_first_load_seg(target);
2493
2494 if (parameters->options().oformat_enum()
2495 != General_options::OBJECT_FORMAT_ELF)
2496 load_seg = NULL;
2497
2498 if (load_seg_unusable_for_headers(target))
2499 {
2500 load_seg = NULL;
2501 phdr_seg = NULL;
2502 }
2503
2504 gold_assert(phdr_seg == NULL
2505 || load_seg != NULL
2506 || this->script_options_->saw_sections_clause());
2507
2508 // If the address of the load segment we found has been set by
2509 // --section-start rather than by a script, then adjust the VMA and
2510 // LMA downward if possible to include the file and section headers.
2511 uint64_t header_gap = 0;
2512 if (load_seg != NULL
2513 && load_seg->are_addresses_set()
2514 && !this->script_options_->saw_sections_clause()
2515 && !parameters->options().relocatable())
2516 {
2517 file_header->finalize_data_size();
2518 segment_headers->finalize_data_size();
2519 size_t sizeof_headers = (file_header->data_size()
2520 + segment_headers->data_size());
2521 const uint64_t abi_pagesize = target->abi_pagesize();
2522 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2523 hdr_paddr &= ~(abi_pagesize - 1);
2524 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2525 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2526 load_seg = NULL;
2527 else
2528 {
2529 load_seg->set_addresses(load_seg->vaddr() - subtract,
2530 load_seg->paddr() - subtract);
2531 header_gap = subtract - sizeof_headers;
2532 }
2533 }
2534
2535 // Lay out the segment headers.
2536 if (!parameters->options().relocatable())
2537 {
2538 gold_assert(segment_headers != NULL);
2539 if (header_gap != 0 && load_seg != NULL)
2540 {
2541 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2542 load_seg->add_initial_output_data(z);
2543 }
2544 if (load_seg != NULL)
2545 load_seg->add_initial_output_data(segment_headers);
2546 if (phdr_seg != NULL)
2547 phdr_seg->add_initial_output_data(segment_headers);
2548 }
2549
2550 // Lay out the file header.
2551 if (load_seg != NULL)
2552 load_seg->add_initial_output_data(file_header);
2553
2554 if (this->script_options_->saw_phdrs_clause()
2555 && !parameters->options().relocatable())
2556 {
2557 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2558 // clause in a linker script.
2559 Script_sections* ss = this->script_options_->script_sections();
2560 ss->put_headers_in_phdrs(file_header, segment_headers);
2561 }
2562
2563 // We set the output section indexes in set_segment_offsets and
2564 // set_section_indexes.
2565 *pshndx = 1;
2566
2567 // Set the file offsets of all the segments, and all the sections
2568 // they contain.
2569 off_t off;
2570 if (!parameters->options().relocatable())
2571 off = this->set_segment_offsets(target, load_seg, pshndx);
2572 else
2573 off = this->set_relocatable_section_offsets(file_header, pshndx);
2574
2575 // Verify that the dummy relaxation does not change anything.
2576 if (is_debugging_enabled(DEBUG_RELAXATION))
2577 {
2578 if (pass == 0)
2579 this->relaxation_debug_check_->read_sections(this->section_list_);
2580 else
2581 this->relaxation_debug_check_->verify_sections(this->section_list_);
2582 }
2583
2584 *pload_seg = load_seg;
2585 return off;
2586 }
2587
2588 // Search the list of patterns and find the postion of the given section
2589 // name in the output section. If the section name matches a glob
2590 // pattern and a non-glob name, then the non-glob position takes
2591 // precedence. Return 0 if no match is found.
2592
2593 unsigned int
2594 Layout::find_section_order_index(const std::string& section_name)
2595 {
2596 Unordered_map<std::string, unsigned int>::iterator map_it;
2597 map_it = this->input_section_position_.find(section_name);
2598 if (map_it != this->input_section_position_.end())
2599 return map_it->second;
2600
2601 // Absolute match failed. Linear search the glob patterns.
2602 std::vector<std::string>::iterator it;
2603 for (it = this->input_section_glob_.begin();
2604 it != this->input_section_glob_.end();
2605 ++it)
2606 {
2607 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2608 {
2609 map_it = this->input_section_position_.find(*it);
2610 gold_assert(map_it != this->input_section_position_.end());
2611 return map_it->second;
2612 }
2613 }
2614 return 0;
2615 }
2616
2617 // Read the sequence of input sections from the file specified with
2618 // option --section-ordering-file.
2619
2620 void
2621 Layout::read_layout_from_file()
2622 {
2623 const char* filename = parameters->options().section_ordering_file();
2624 std::ifstream in;
2625 std::string line;
2626
2627 in.open(filename);
2628 if (!in)
2629 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2630 filename, strerror(errno));
2631
2632 std::getline(in, line); // this chops off the trailing \n, if any
2633 unsigned int position = 1;
2634 this->set_section_ordering_specified();
2635
2636 while (in)
2637 {
2638 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2639 line.resize(line.length() - 1);
2640 // Ignore comments, beginning with '#'
2641 if (line[0] == '#')
2642 {
2643 std::getline(in, line);
2644 continue;
2645 }
2646 this->input_section_position_[line] = position;
2647 // Store all glob patterns in a vector.
2648 if (is_wildcard_string(line.c_str()))
2649 this->input_section_glob_.push_back(line);
2650 position++;
2651 std::getline(in, line);
2652 }
2653 }
2654
2655 // Finalize the layout. When this is called, we have created all the
2656 // output sections and all the output segments which are based on
2657 // input sections. We have several things to do, and we have to do
2658 // them in the right order, so that we get the right results correctly
2659 // and efficiently.
2660
2661 // 1) Finalize the list of output segments and create the segment
2662 // table header.
2663
2664 // 2) Finalize the dynamic symbol table and associated sections.
2665
2666 // 3) Determine the final file offset of all the output segments.
2667
2668 // 4) Determine the final file offset of all the SHF_ALLOC output
2669 // sections.
2670
2671 // 5) Create the symbol table sections and the section name table
2672 // section.
2673
2674 // 6) Finalize the symbol table: set symbol values to their final
2675 // value and make a final determination of which symbols are going
2676 // into the output symbol table.
2677
2678 // 7) Create the section table header.
2679
2680 // 8) Determine the final file offset of all the output sections which
2681 // are not SHF_ALLOC, including the section table header.
2682
2683 // 9) Finalize the ELF file header.
2684
2685 // This function returns the size of the output file.
2686
2687 off_t
2688 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2689 Target* target, const Task* task)
2690 {
2691 target->finalize_sections(this, input_objects, symtab);
2692
2693 this->count_local_symbols(task, input_objects);
2694
2695 this->link_stabs_sections();
2696
2697 Output_segment* phdr_seg = NULL;
2698 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2699 {
2700 // There was a dynamic object in the link. We need to create
2701 // some information for the dynamic linker.
2702
2703 // Create the PT_PHDR segment which will hold the program
2704 // headers.
2705 if (!this->script_options_->saw_phdrs_clause())
2706 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2707
2708 // Create the dynamic symbol table, including the hash table.
2709 Output_section* dynstr;
2710 std::vector<Symbol*> dynamic_symbols;
2711 unsigned int local_dynamic_count;
2712 Versions versions(*this->script_options()->version_script_info(),
2713 &this->dynpool_);
2714 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2715 &local_dynamic_count, &dynamic_symbols,
2716 &versions);
2717
2718 // Create the .interp section to hold the name of the
2719 // interpreter, and put it in a PT_INTERP segment. Don't do it
2720 // if we saw a .interp section in an input file.
2721 if ((!parameters->options().shared()
2722 || parameters->options().dynamic_linker() != NULL)
2723 && this->interp_segment_ == NULL)
2724 this->create_interp(target);
2725
2726 // Finish the .dynamic section to hold the dynamic data, and put
2727 // it in a PT_DYNAMIC segment.
2728 this->finish_dynamic_section(input_objects, symtab);
2729
2730 // We should have added everything we need to the dynamic string
2731 // table.
2732 this->dynpool_.set_string_offsets();
2733
2734 // Create the version sections. We can't do this until the
2735 // dynamic string table is complete.
2736 this->create_version_sections(&versions, symtab, local_dynamic_count,
2737 dynamic_symbols, dynstr);
2738
2739 // Set the size of the _DYNAMIC symbol. We can't do this until
2740 // after we call create_version_sections.
2741 this->set_dynamic_symbol_size(symtab);
2742 }
2743
2744 // Create segment headers.
2745 Output_segment_headers* segment_headers =
2746 (parameters->options().relocatable()
2747 ? NULL
2748 : new Output_segment_headers(this->segment_list_));
2749
2750 // Lay out the file header.
2751 Output_file_header* file_header = new Output_file_header(target, symtab,
2752 segment_headers);
2753
2754 this->special_output_list_.push_back(file_header);
2755 if (segment_headers != NULL)
2756 this->special_output_list_.push_back(segment_headers);
2757
2758 // Find approriate places for orphan output sections if we are using
2759 // a linker script.
2760 if (this->script_options_->saw_sections_clause())
2761 this->place_orphan_sections_in_script();
2762
2763 Output_segment* load_seg;
2764 off_t off;
2765 unsigned int shndx;
2766 int pass = 0;
2767
2768 // Take a snapshot of the section layout as needed.
2769 if (target->may_relax())
2770 this->prepare_for_relaxation();
2771
2772 // Run the relaxation loop to lay out sections.
2773 do
2774 {
2775 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2776 phdr_seg, segment_headers, file_header,
2777 &shndx);
2778 pass++;
2779 }
2780 while (target->may_relax()
2781 && target->relax(pass, input_objects, symtab, this, task));
2782
2783 // If there is a load segment that contains the file and program headers,
2784 // provide a symbol __ehdr_start pointing there.
2785 // A program can use this to examine itself robustly.
2786 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2787 if (ehdr_start != NULL && ehdr_start->is_predefined())
2788 {
2789 if (load_seg != NULL)
2790 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2791 else
2792 ehdr_start->set_undefined();
2793 }
2794
2795 // Set the file offsets of all the non-data sections we've seen so
2796 // far which don't have to wait for the input sections. We need
2797 // this in order to finalize local symbols in non-allocated
2798 // sections.
2799 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2800
2801 // Set the section indexes of all unallocated sections seen so far,
2802 // in case any of them are somehow referenced by a symbol.
2803 shndx = this->set_section_indexes(shndx);
2804
2805 // Create the symbol table sections.
2806 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2807 if (!parameters->doing_static_link())
2808 this->assign_local_dynsym_offsets(input_objects);
2809
2810 // Process any symbol assignments from a linker script. This must
2811 // be called after the symbol table has been finalized.
2812 this->script_options_->finalize_symbols(symtab, this);
2813
2814 // Create the incremental inputs sections.
2815 if (this->incremental_inputs_)
2816 {
2817 this->incremental_inputs_->finalize();
2818 this->create_incremental_info_sections(symtab);
2819 }
2820
2821 // Create the .shstrtab section.
2822 Output_section* shstrtab_section = this->create_shstrtab();
2823
2824 // Set the file offsets of the rest of the non-data sections which
2825 // don't have to wait for the input sections.
2826 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2827
2828 // Now that all sections have been created, set the section indexes
2829 // for any sections which haven't been done yet.
2830 shndx = this->set_section_indexes(shndx);
2831
2832 // Create the section table header.
2833 this->create_shdrs(shstrtab_section, &off);
2834
2835 // If there are no sections which require postprocessing, we can
2836 // handle the section names now, and avoid a resize later.
2837 if (!this->any_postprocessing_sections_)
2838 {
2839 off = this->set_section_offsets(off,
2840 POSTPROCESSING_SECTIONS_PASS);
2841 off =
2842 this->set_section_offsets(off,
2843 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2844 }
2845
2846 file_header->set_section_info(this->section_headers_, shstrtab_section);
2847
2848 // Now we know exactly where everything goes in the output file
2849 // (except for non-allocated sections which require postprocessing).
2850 Output_data::layout_complete();
2851
2852 this->output_file_size_ = off;
2853
2854 return off;
2855 }
2856
2857 // Create a note header following the format defined in the ELF ABI.
2858 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2859 // of the section to create, DESCSZ is the size of the descriptor.
2860 // ALLOCATE is true if the section should be allocated in memory.
2861 // This returns the new note section. It sets *TRAILING_PADDING to
2862 // the number of trailing zero bytes required.
2863
2864 Output_section*
2865 Layout::create_note(const char* name, int note_type,
2866 const char* section_name, size_t descsz,
2867 bool allocate, size_t* trailing_padding)
2868 {
2869 // Authorities all agree that the values in a .note field should
2870 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2871 // they differ on what the alignment is for 64-bit binaries.
2872 // The GABI says unambiguously they take 8-byte alignment:
2873 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2874 // Other documentation says alignment should always be 4 bytes:
2875 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2876 // GNU ld and GNU readelf both support the latter (at least as of
2877 // version 2.16.91), and glibc always generates the latter for
2878 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2879 // here.
2880 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2881 const int size = parameters->target().get_size();
2882 #else
2883 const int size = 32;
2884 #endif
2885
2886 // The contents of the .note section.
2887 size_t namesz = strlen(name) + 1;
2888 size_t aligned_namesz = align_address(namesz, size / 8);
2889 size_t aligned_descsz = align_address(descsz, size / 8);
2890
2891 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2892
2893 unsigned char* buffer = new unsigned char[notehdrsz];
2894 memset(buffer, 0, notehdrsz);
2895
2896 bool is_big_endian = parameters->target().is_big_endian();
2897
2898 if (size == 32)
2899 {
2900 if (!is_big_endian)
2901 {
2902 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2903 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2904 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2905 }
2906 else
2907 {
2908 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2909 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2910 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2911 }
2912 }
2913 else if (size == 64)
2914 {
2915 if (!is_big_endian)
2916 {
2917 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2918 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2919 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2920 }
2921 else
2922 {
2923 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2924 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2925 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2926 }
2927 }
2928 else
2929 gold_unreachable();
2930
2931 memcpy(buffer + 3 * (size / 8), name, namesz);
2932
2933 elfcpp::Elf_Xword flags = 0;
2934 Output_section_order order = ORDER_INVALID;
2935 if (allocate)
2936 {
2937 flags = elfcpp::SHF_ALLOC;
2938 order = ORDER_RO_NOTE;
2939 }
2940 Output_section* os = this->choose_output_section(NULL, section_name,
2941 elfcpp::SHT_NOTE,
2942 flags, false, order, false);
2943 if (os == NULL)
2944 return NULL;
2945
2946 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2947 size / 8,
2948 "** note header");
2949 os->add_output_section_data(posd);
2950
2951 *trailing_padding = aligned_descsz - descsz;
2952
2953 return os;
2954 }
2955
2956 // For an executable or shared library, create a note to record the
2957 // version of gold used to create the binary.
2958
2959 void
2960 Layout::create_gold_note()
2961 {
2962 if (parameters->options().relocatable()
2963 || parameters->incremental_update())
2964 return;
2965
2966 std::string desc = std::string("gold ") + gold::get_version_string();
2967
2968 size_t trailing_padding;
2969 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2970 ".note.gnu.gold-version", desc.size(),
2971 false, &trailing_padding);
2972 if (os == NULL)
2973 return;
2974
2975 Output_section_data* posd = new Output_data_const(desc, 4);
2976 os->add_output_section_data(posd);
2977
2978 if (trailing_padding > 0)
2979 {
2980 posd = new Output_data_zero_fill(trailing_padding, 0);
2981 os->add_output_section_data(posd);
2982 }
2983 }
2984
2985 // Record whether the stack should be executable. This can be set
2986 // from the command line using the -z execstack or -z noexecstack
2987 // options. Otherwise, if any input file has a .note.GNU-stack
2988 // section with the SHF_EXECINSTR flag set, the stack should be
2989 // executable. Otherwise, if at least one input file a
2990 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2991 // section, we use the target default for whether the stack should be
2992 // executable. If -z stack-size was used to set a p_memsz value for
2993 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
2994 // don't generate a stack note. When generating a object file, we
2995 // create a .note.GNU-stack section with the appropriate marking.
2996 // When generating an executable or shared library, we create a
2997 // PT_GNU_STACK segment.
2998
2999 void
3000 Layout::create_stack_segment()
3001 {
3002 bool is_stack_executable;
3003 if (parameters->options().is_execstack_set())
3004 {
3005 is_stack_executable = parameters->options().is_stack_executable();
3006 if (!is_stack_executable
3007 && this->input_requires_executable_stack_
3008 && parameters->options().warn_execstack())
3009 gold_warning(_("one or more inputs require executable stack, "
3010 "but -z noexecstack was given"));
3011 }
3012 else if (!this->input_with_gnu_stack_note_
3013 && (!parameters->options().user_set_stack_size()
3014 || parameters->options().relocatable()))
3015 return;
3016 else
3017 {
3018 if (this->input_requires_executable_stack_)
3019 is_stack_executable = true;
3020 else if (this->input_without_gnu_stack_note_)
3021 is_stack_executable =
3022 parameters->target().is_default_stack_executable();
3023 else
3024 is_stack_executable = false;
3025 }
3026
3027 if (parameters->options().relocatable())
3028 {
3029 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3030 elfcpp::Elf_Xword flags = 0;
3031 if (is_stack_executable)
3032 flags |= elfcpp::SHF_EXECINSTR;
3033 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3034 ORDER_INVALID, false);
3035 }
3036 else
3037 {
3038 if (this->script_options_->saw_phdrs_clause())
3039 return;
3040 int flags = elfcpp::PF_R | elfcpp::PF_W;
3041 if (is_stack_executable)
3042 flags |= elfcpp::PF_X;
3043 Output_segment* seg =
3044 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3045 seg->set_size(parameters->options().stack_size());
3046 // BFD lets targets override this default alignment, but the only
3047 // targets that do so are ones that Gold does not support so far.
3048 seg->set_minimum_p_align(16);
3049 }
3050 }
3051
3052 // If --build-id was used, set up the build ID note.
3053
3054 void
3055 Layout::create_build_id()
3056 {
3057 if (!parameters->options().user_set_build_id())
3058 return;
3059
3060 const char* style = parameters->options().build_id();
3061 if (strcmp(style, "none") == 0)
3062 return;
3063
3064 // Set DESCSZ to the size of the note descriptor. When possible,
3065 // set DESC to the note descriptor contents.
3066 size_t descsz;
3067 std::string desc;
3068 if (strcmp(style, "md5") == 0)
3069 descsz = 128 / 8;
3070 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3071 descsz = 160 / 8;
3072 else if (strcmp(style, "uuid") == 0)
3073 {
3074 #ifndef __MINGW32__
3075 const size_t uuidsz = 128 / 8;
3076
3077 char buffer[uuidsz];
3078 memset(buffer, 0, uuidsz);
3079
3080 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3081 if (descriptor < 0)
3082 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3083 strerror(errno));
3084 else
3085 {
3086 ssize_t got = ::read(descriptor, buffer, uuidsz);
3087 release_descriptor(descriptor, true);
3088 if (got < 0)
3089 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3090 else if (static_cast<size_t>(got) != uuidsz)
3091 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3092 uuidsz, got);
3093 }
3094
3095 desc.assign(buffer, uuidsz);
3096 descsz = uuidsz;
3097 #else // __MINGW32__
3098 UUID uuid;
3099 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3100
3101 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3102 if (!rpc_library)
3103 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3104 else
3105 {
3106 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3107 GetProcAddress(rpc_library, "UuidCreate"));
3108 if (!uuid_create)
3109 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3110 else if (uuid_create(&uuid) != RPC_S_OK)
3111 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3112 FreeLibrary(rpc_library);
3113 }
3114 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3115 descsz = sizeof(UUID);
3116 #endif // __MINGW32__
3117 }
3118 else if (strncmp(style, "0x", 2) == 0)
3119 {
3120 hex_init();
3121 const char* p = style + 2;
3122 while (*p != '\0')
3123 {
3124 if (hex_p(p[0]) && hex_p(p[1]))
3125 {
3126 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3127 desc += c;
3128 p += 2;
3129 }
3130 else if (*p == '-' || *p == ':')
3131 ++p;
3132 else
3133 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3134 style);
3135 }
3136 descsz = desc.size();
3137 }
3138 else
3139 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3140
3141 // Create the note.
3142 size_t trailing_padding;
3143 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3144 ".note.gnu.build-id", descsz, true,
3145 &trailing_padding);
3146 if (os == NULL)
3147 return;
3148
3149 if (!desc.empty())
3150 {
3151 // We know the value already, so we fill it in now.
3152 gold_assert(desc.size() == descsz);
3153
3154 Output_section_data* posd = new Output_data_const(desc, 4);
3155 os->add_output_section_data(posd);
3156
3157 if (trailing_padding != 0)
3158 {
3159 posd = new Output_data_zero_fill(trailing_padding, 0);
3160 os->add_output_section_data(posd);
3161 }
3162 }
3163 else
3164 {
3165 // We need to compute a checksum after we have completed the
3166 // link.
3167 gold_assert(trailing_padding == 0);
3168 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3169 os->add_output_section_data(this->build_id_note_);
3170 }
3171 }
3172
3173 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3174 // field of the former should point to the latter. I'm not sure who
3175 // started this, but the GNU linker does it, and some tools depend
3176 // upon it.
3177
3178 void
3179 Layout::link_stabs_sections()
3180 {
3181 if (!this->have_stabstr_section_)
3182 return;
3183
3184 for (Section_list::iterator p = this->section_list_.begin();
3185 p != this->section_list_.end();
3186 ++p)
3187 {
3188 if ((*p)->type() != elfcpp::SHT_STRTAB)
3189 continue;
3190
3191 const char* name = (*p)->name();
3192 if (strncmp(name, ".stab", 5) != 0)
3193 continue;
3194
3195 size_t len = strlen(name);
3196 if (strcmp(name + len - 3, "str") != 0)
3197 continue;
3198
3199 std::string stab_name(name, len - 3);
3200 Output_section* stab_sec;
3201 stab_sec = this->find_output_section(stab_name.c_str());
3202 if (stab_sec != NULL)
3203 stab_sec->set_link_section(*p);
3204 }
3205 }
3206
3207 // Create .gnu_incremental_inputs and related sections needed
3208 // for the next run of incremental linking to check what has changed.
3209
3210 void
3211 Layout::create_incremental_info_sections(Symbol_table* symtab)
3212 {
3213 Incremental_inputs* incr = this->incremental_inputs_;
3214
3215 gold_assert(incr != NULL);
3216
3217 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3218 incr->create_data_sections(symtab);
3219
3220 // Add the .gnu_incremental_inputs section.
3221 const char* incremental_inputs_name =
3222 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3223 Output_section* incremental_inputs_os =
3224 this->make_output_section(incremental_inputs_name,
3225 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3226 ORDER_INVALID, false);
3227 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3228
3229 // Add the .gnu_incremental_symtab section.
3230 const char* incremental_symtab_name =
3231 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3232 Output_section* incremental_symtab_os =
3233 this->make_output_section(incremental_symtab_name,
3234 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3235 ORDER_INVALID, false);
3236 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3237 incremental_symtab_os->set_entsize(4);
3238
3239 // Add the .gnu_incremental_relocs section.
3240 const char* incremental_relocs_name =
3241 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3242 Output_section* incremental_relocs_os =
3243 this->make_output_section(incremental_relocs_name,
3244 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3245 ORDER_INVALID, false);
3246 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3247 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3248
3249 // Add the .gnu_incremental_got_plt section.
3250 const char* incremental_got_plt_name =
3251 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3252 Output_section* incremental_got_plt_os =
3253 this->make_output_section(incremental_got_plt_name,
3254 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3255 ORDER_INVALID, false);
3256 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3257
3258 // Add the .gnu_incremental_strtab section.
3259 const char* incremental_strtab_name =
3260 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3261 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3262 elfcpp::SHT_STRTAB, 0,
3263 ORDER_INVALID, false);
3264 Output_data_strtab* strtab_data =
3265 new Output_data_strtab(incr->get_stringpool());
3266 incremental_strtab_os->add_output_section_data(strtab_data);
3267
3268 incremental_inputs_os->set_after_input_sections();
3269 incremental_symtab_os->set_after_input_sections();
3270 incremental_relocs_os->set_after_input_sections();
3271 incremental_got_plt_os->set_after_input_sections();
3272
3273 incremental_inputs_os->set_link_section(incremental_strtab_os);
3274 incremental_symtab_os->set_link_section(incremental_inputs_os);
3275 incremental_relocs_os->set_link_section(incremental_inputs_os);
3276 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3277 }
3278
3279 // Return whether SEG1 should be before SEG2 in the output file. This
3280 // is based entirely on the segment type and flags. When this is
3281 // called the segment addresses have normally not yet been set.
3282
3283 bool
3284 Layout::segment_precedes(const Output_segment* seg1,
3285 const Output_segment* seg2)
3286 {
3287 elfcpp::Elf_Word type1 = seg1->type();
3288 elfcpp::Elf_Word type2 = seg2->type();
3289
3290 // The single PT_PHDR segment is required to precede any loadable
3291 // segment. We simply make it always first.
3292 if (type1 == elfcpp::PT_PHDR)
3293 {
3294 gold_assert(type2 != elfcpp::PT_PHDR);
3295 return true;
3296 }
3297 if (type2 == elfcpp::PT_PHDR)
3298 return false;
3299
3300 // The single PT_INTERP segment is required to precede any loadable
3301 // segment. We simply make it always second.
3302 if (type1 == elfcpp::PT_INTERP)
3303 {
3304 gold_assert(type2 != elfcpp::PT_INTERP);
3305 return true;
3306 }
3307 if (type2 == elfcpp::PT_INTERP)
3308 return false;
3309
3310 // We then put PT_LOAD segments before any other segments.
3311 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3312 return true;
3313 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3314 return false;
3315
3316 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3317 // segment, because that is where the dynamic linker expects to find
3318 // it (this is just for efficiency; other positions would also work
3319 // correctly).
3320 if (type1 == elfcpp::PT_TLS
3321 && type2 != elfcpp::PT_TLS
3322 && type2 != elfcpp::PT_GNU_RELRO)
3323 return false;
3324 if (type2 == elfcpp::PT_TLS
3325 && type1 != elfcpp::PT_TLS
3326 && type1 != elfcpp::PT_GNU_RELRO)
3327 return true;
3328
3329 // We put the PT_GNU_RELRO segment last, because that is where the
3330 // dynamic linker expects to find it (as with PT_TLS, this is just
3331 // for efficiency).
3332 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3333 return false;
3334 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3335 return true;
3336
3337 const elfcpp::Elf_Word flags1 = seg1->flags();
3338 const elfcpp::Elf_Word flags2 = seg2->flags();
3339
3340 // The order of non-PT_LOAD segments is unimportant. We simply sort
3341 // by the numeric segment type and flags values. There should not
3342 // be more than one segment with the same type and flags, except
3343 // when a linker script specifies such.
3344 if (type1 != elfcpp::PT_LOAD)
3345 {
3346 if (type1 != type2)
3347 return type1 < type2;
3348 gold_assert(flags1 != flags2
3349 || this->script_options_->saw_phdrs_clause());
3350 return flags1 < flags2;
3351 }
3352
3353 // If the addresses are set already, sort by load address.
3354 if (seg1->are_addresses_set())
3355 {
3356 if (!seg2->are_addresses_set())
3357 return true;
3358
3359 unsigned int section_count1 = seg1->output_section_count();
3360 unsigned int section_count2 = seg2->output_section_count();
3361 if (section_count1 == 0 && section_count2 > 0)
3362 return true;
3363 if (section_count1 > 0 && section_count2 == 0)
3364 return false;
3365
3366 uint64_t paddr1 = (seg1->are_addresses_set()
3367 ? seg1->paddr()
3368 : seg1->first_section_load_address());
3369 uint64_t paddr2 = (seg2->are_addresses_set()
3370 ? seg2->paddr()
3371 : seg2->first_section_load_address());
3372
3373 if (paddr1 != paddr2)
3374 return paddr1 < paddr2;
3375 }
3376 else if (seg2->are_addresses_set())
3377 return false;
3378
3379 // A segment which holds large data comes after a segment which does
3380 // not hold large data.
3381 if (seg1->is_large_data_segment())
3382 {
3383 if (!seg2->is_large_data_segment())
3384 return false;
3385 }
3386 else if (seg2->is_large_data_segment())
3387 return true;
3388
3389 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3390 // segments come before writable segments. Then writable segments
3391 // with data come before writable segments without data. Then
3392 // executable segments come before non-executable segments. Then
3393 // the unlikely case of a non-readable segment comes before the
3394 // normal case of a readable segment. If there are multiple
3395 // segments with the same type and flags, we require that the
3396 // address be set, and we sort by virtual address and then physical
3397 // address.
3398 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3399 return (flags1 & elfcpp::PF_W) == 0;
3400 if ((flags1 & elfcpp::PF_W) != 0
3401 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3402 return seg1->has_any_data_sections();
3403 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3404 return (flags1 & elfcpp::PF_X) != 0;
3405 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3406 return (flags1 & elfcpp::PF_R) == 0;
3407
3408 // We shouldn't get here--we shouldn't create segments which we
3409 // can't distinguish. Unless of course we are using a weird linker
3410 // script or overlapping --section-start options. We could also get
3411 // here if plugins want unique segments for subsets of sections.
3412 gold_assert(this->script_options_->saw_phdrs_clause()
3413 || parameters->options().any_section_start()
3414 || this->is_unique_segment_for_sections_specified());
3415 return false;
3416 }
3417
3418 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3419
3420 static off_t
3421 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3422 {
3423 uint64_t unsigned_off = off;
3424 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3425 | (addr & (abi_pagesize - 1)));
3426 if (aligned_off < unsigned_off)
3427 aligned_off += abi_pagesize;
3428 return aligned_off;
3429 }
3430
3431 // On targets where the text segment contains only executable code,
3432 // a non-executable segment is never the text segment.
3433
3434 static inline bool
3435 is_text_segment(const Target* target, const Output_segment* seg)
3436 {
3437 elfcpp::Elf_Xword flags = seg->flags();
3438 if ((flags & elfcpp::PF_W) != 0)
3439 return false;
3440 if ((flags & elfcpp::PF_X) == 0)
3441 return !target->isolate_execinstr();
3442 return true;
3443 }
3444
3445 // Set the file offsets of all the segments, and all the sections they
3446 // contain. They have all been created. LOAD_SEG must be be laid out
3447 // first. Return the offset of the data to follow.
3448
3449 off_t
3450 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3451 unsigned int* pshndx)
3452 {
3453 // Sort them into the final order. We use a stable sort so that we
3454 // don't randomize the order of indistinguishable segments created
3455 // by linker scripts.
3456 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3457 Layout::Compare_segments(this));
3458
3459 // Find the PT_LOAD segments, and set their addresses and offsets
3460 // and their section's addresses and offsets.
3461 uint64_t start_addr;
3462 if (parameters->options().user_set_Ttext())
3463 start_addr = parameters->options().Ttext();
3464 else if (parameters->options().output_is_position_independent())
3465 start_addr = 0;
3466 else
3467 start_addr = target->default_text_segment_address();
3468
3469 uint64_t addr = start_addr;
3470 off_t off = 0;
3471
3472 // If LOAD_SEG is NULL, then the file header and segment headers
3473 // will not be loadable. But they still need to be at offset 0 in
3474 // the file. Set their offsets now.
3475 if (load_seg == NULL)
3476 {
3477 for (Data_list::iterator p = this->special_output_list_.begin();
3478 p != this->special_output_list_.end();
3479 ++p)
3480 {
3481 off = align_address(off, (*p)->addralign());
3482 (*p)->set_address_and_file_offset(0, off);
3483 off += (*p)->data_size();
3484 }
3485 }
3486
3487 unsigned int increase_relro = this->increase_relro_;
3488 if (this->script_options_->saw_sections_clause())
3489 increase_relro = 0;
3490
3491 const bool check_sections = parameters->options().check_sections();
3492 Output_segment* last_load_segment = NULL;
3493
3494 unsigned int shndx_begin = *pshndx;
3495 unsigned int shndx_load_seg = *pshndx;
3496
3497 for (Segment_list::iterator p = this->segment_list_.begin();
3498 p != this->segment_list_.end();
3499 ++p)
3500 {
3501 if ((*p)->type() == elfcpp::PT_LOAD)
3502 {
3503 if (target->isolate_execinstr())
3504 {
3505 // When we hit the segment that should contain the
3506 // file headers, reset the file offset so we place
3507 // it and subsequent segments appropriately.
3508 // We'll fix up the preceding segments below.
3509 if (load_seg == *p)
3510 {
3511 if (off == 0)
3512 load_seg = NULL;
3513 else
3514 {
3515 off = 0;
3516 shndx_load_seg = *pshndx;
3517 }
3518 }
3519 }
3520 else
3521 {
3522 // Verify that the file headers fall into the first segment.
3523 if (load_seg != NULL && load_seg != *p)
3524 gold_unreachable();
3525 load_seg = NULL;
3526 }
3527
3528 bool are_addresses_set = (*p)->are_addresses_set();
3529 if (are_addresses_set)
3530 {
3531 // When it comes to setting file offsets, we care about
3532 // the physical address.
3533 addr = (*p)->paddr();
3534 }
3535 else if (parameters->options().user_set_Ttext()
3536 && (parameters->options().omagic()
3537 || is_text_segment(target, *p)))
3538 {
3539 are_addresses_set = true;
3540 }
3541 else if (parameters->options().user_set_Trodata_segment()
3542 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3543 {
3544 addr = parameters->options().Trodata_segment();
3545 are_addresses_set = true;
3546 }
3547 else if (parameters->options().user_set_Tdata()
3548 && ((*p)->flags() & elfcpp::PF_W) != 0
3549 && (!parameters->options().user_set_Tbss()
3550 || (*p)->has_any_data_sections()))
3551 {
3552 addr = parameters->options().Tdata();
3553 are_addresses_set = true;
3554 }
3555 else if (parameters->options().user_set_Tbss()
3556 && ((*p)->flags() & elfcpp::PF_W) != 0
3557 && !(*p)->has_any_data_sections())
3558 {
3559 addr = parameters->options().Tbss();
3560 are_addresses_set = true;
3561 }
3562
3563 uint64_t orig_addr = addr;
3564 uint64_t orig_off = off;
3565
3566 uint64_t aligned_addr = 0;
3567 uint64_t abi_pagesize = target->abi_pagesize();
3568 uint64_t common_pagesize = target->common_pagesize();
3569
3570 if (!parameters->options().nmagic()
3571 && !parameters->options().omagic())
3572 (*p)->set_minimum_p_align(abi_pagesize);
3573
3574 if (!are_addresses_set)
3575 {
3576 // Skip the address forward one page, maintaining the same
3577 // position within the page. This lets us store both segments
3578 // overlapping on a single page in the file, but the loader will
3579 // put them on different pages in memory. We will revisit this
3580 // decision once we know the size of the segment.
3581
3582 uint64_t max_align = (*p)->maximum_alignment();
3583 if (max_align > abi_pagesize)
3584 addr = align_address(addr, max_align);
3585 aligned_addr = addr;
3586
3587 if (load_seg == *p)
3588 {
3589 // This is the segment that will contain the file
3590 // headers, so its offset will have to be exactly zero.
3591 gold_assert(orig_off == 0);
3592
3593 // If the target wants a fixed minimum distance from the
3594 // text segment to the read-only segment, move up now.
3595 uint64_t min_addr =
3596 start_addr + (parameters->options().user_set_rosegment_gap()
3597 ? parameters->options().rosegment_gap()
3598 : target->rosegment_gap());
3599 if (addr < min_addr)
3600 addr = min_addr;
3601
3602 // But this is not the first segment! To make its
3603 // address congruent with its offset, that address better
3604 // be aligned to the ABI-mandated page size.
3605 addr = align_address(addr, abi_pagesize);
3606 aligned_addr = addr;
3607 }
3608 else
3609 {
3610 if ((addr & (abi_pagesize - 1)) != 0)
3611 addr = addr + abi_pagesize;
3612
3613 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3614 }
3615 }
3616
3617 if (!parameters->options().nmagic()
3618 && !parameters->options().omagic())
3619 {
3620 // Here we are also taking care of the case when
3621 // the maximum segment alignment is larger than the page size.
3622 off = align_file_offset(off, addr,
3623 std::max(abi_pagesize,
3624 (*p)->maximum_alignment()));
3625 }
3626 else
3627 {
3628 // This is -N or -n with a section script which prevents
3629 // us from using a load segment. We need to ensure that
3630 // the file offset is aligned to the alignment of the
3631 // segment. This is because the linker script
3632 // implicitly assumed a zero offset. If we don't align
3633 // here, then the alignment of the sections in the
3634 // linker script may not match the alignment of the
3635 // sections in the set_section_addresses call below,
3636 // causing an error about dot moving backward.
3637 off = align_address(off, (*p)->maximum_alignment());
3638 }
3639
3640 unsigned int shndx_hold = *pshndx;
3641 bool has_relro = false;
3642 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3643 false, addr,
3644 &increase_relro,
3645 &has_relro,
3646 &off, pshndx);
3647
3648 // Now that we know the size of this segment, we may be able
3649 // to save a page in memory, at the cost of wasting some
3650 // file space, by instead aligning to the start of a new
3651 // page. Here we use the real machine page size rather than
3652 // the ABI mandated page size. If the segment has been
3653 // aligned so that the relro data ends at a page boundary,
3654 // we do not try to realign it.
3655
3656 if (!are_addresses_set
3657 && !has_relro
3658 && aligned_addr != addr
3659 && !parameters->incremental())
3660 {
3661 uint64_t first_off = (common_pagesize
3662 - (aligned_addr
3663 & (common_pagesize - 1)));
3664 uint64_t last_off = new_addr & (common_pagesize - 1);
3665 if (first_off > 0
3666 && last_off > 0
3667 && ((aligned_addr & ~ (common_pagesize - 1))
3668 != (new_addr & ~ (common_pagesize - 1)))
3669 && first_off + last_off <= common_pagesize)
3670 {
3671 *pshndx = shndx_hold;
3672 addr = align_address(aligned_addr, common_pagesize);
3673 addr = align_address(addr, (*p)->maximum_alignment());
3674 if ((addr & (abi_pagesize - 1)) != 0)
3675 addr = addr + abi_pagesize;
3676 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3677 off = align_file_offset(off, addr, abi_pagesize);
3678
3679 increase_relro = this->increase_relro_;
3680 if (this->script_options_->saw_sections_clause())
3681 increase_relro = 0;
3682 has_relro = false;
3683
3684 new_addr = (*p)->set_section_addresses(target, this,
3685 true, addr,
3686 &increase_relro,
3687 &has_relro,
3688 &off, pshndx);
3689 }
3690 }
3691
3692 addr = new_addr;
3693
3694 // Implement --check-sections. We know that the segments
3695 // are sorted by LMA.
3696 if (check_sections && last_load_segment != NULL)
3697 {
3698 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3699 if (last_load_segment->paddr() + last_load_segment->memsz()
3700 > (*p)->paddr())
3701 {
3702 unsigned long long lb1 = last_load_segment->paddr();
3703 unsigned long long le1 = lb1 + last_load_segment->memsz();
3704 unsigned long long lb2 = (*p)->paddr();
3705 unsigned long long le2 = lb2 + (*p)->memsz();
3706 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3707 "[0x%llx -> 0x%llx]"),
3708 lb1, le1, lb2, le2);
3709 }
3710 }
3711 last_load_segment = *p;
3712 }
3713 }
3714
3715 if (load_seg != NULL && target->isolate_execinstr())
3716 {
3717 // Process the early segments again, setting their file offsets
3718 // so they land after the segments starting at LOAD_SEG.
3719 off = align_file_offset(off, 0, target->abi_pagesize());
3720
3721 this->reset_relax_output();
3722
3723 for (Segment_list::iterator p = this->segment_list_.begin();
3724 *p != load_seg;
3725 ++p)
3726 {
3727 if ((*p)->type() == elfcpp::PT_LOAD)
3728 {
3729 // We repeat the whole job of assigning addresses and
3730 // offsets, but we really only want to change the offsets and
3731 // must ensure that the addresses all come out the same as
3732 // they did the first time through.
3733 bool has_relro = false;
3734 const uint64_t old_addr = (*p)->vaddr();
3735 const uint64_t old_end = old_addr + (*p)->memsz();
3736 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3737 true, old_addr,
3738 &increase_relro,
3739 &has_relro,
3740 &off,
3741 &shndx_begin);
3742 gold_assert(new_addr == old_end);
3743 }
3744 }
3745
3746 gold_assert(shndx_begin == shndx_load_seg);
3747 }
3748
3749 // Handle the non-PT_LOAD segments, setting their offsets from their
3750 // section's offsets.
3751 for (Segment_list::iterator p = this->segment_list_.begin();
3752 p != this->segment_list_.end();
3753 ++p)
3754 {
3755 // PT_GNU_STACK was set up correctly when it was created.
3756 if ((*p)->type() != elfcpp::PT_LOAD
3757 && (*p)->type() != elfcpp::PT_GNU_STACK)
3758 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3759 ? increase_relro
3760 : 0);
3761 }
3762
3763 // Set the TLS offsets for each section in the PT_TLS segment.
3764 if (this->tls_segment_ != NULL)
3765 this->tls_segment_->set_tls_offsets();
3766
3767 return off;
3768 }
3769
3770 // Set the offsets of all the allocated sections when doing a
3771 // relocatable link. This does the same jobs as set_segment_offsets,
3772 // only for a relocatable link.
3773
3774 off_t
3775 Layout::set_relocatable_section_offsets(Output_data* file_header,
3776 unsigned int* pshndx)
3777 {
3778 off_t off = 0;
3779
3780 file_header->set_address_and_file_offset(0, 0);
3781 off += file_header->data_size();
3782
3783 for (Section_list::iterator p = this->section_list_.begin();
3784 p != this->section_list_.end();
3785 ++p)
3786 {
3787 // We skip unallocated sections here, except that group sections
3788 // have to come first.
3789 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3790 && (*p)->type() != elfcpp::SHT_GROUP)
3791 continue;
3792
3793 off = align_address(off, (*p)->addralign());
3794
3795 // The linker script might have set the address.
3796 if (!(*p)->is_address_valid())
3797 (*p)->set_address(0);
3798 (*p)->set_file_offset(off);
3799 (*p)->finalize_data_size();
3800 if ((*p)->type() != elfcpp::SHT_NOBITS)
3801 off += (*p)->data_size();
3802
3803 (*p)->set_out_shndx(*pshndx);
3804 ++*pshndx;
3805 }
3806
3807 return off;
3808 }
3809
3810 // Set the file offset of all the sections not associated with a
3811 // segment.
3812
3813 off_t
3814 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3815 {
3816 off_t startoff = off;
3817 off_t maxoff = off;
3818
3819 for (Section_list::iterator p = this->unattached_section_list_.begin();
3820 p != this->unattached_section_list_.end();
3821 ++p)
3822 {
3823 // The symtab section is handled in create_symtab_sections.
3824 if (*p == this->symtab_section_)
3825 continue;
3826
3827 // If we've already set the data size, don't set it again.
3828 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3829 continue;
3830
3831 if (pass == BEFORE_INPUT_SECTIONS_PASS
3832 && (*p)->requires_postprocessing())
3833 {
3834 (*p)->create_postprocessing_buffer();
3835 this->any_postprocessing_sections_ = true;
3836 }
3837
3838 if (pass == BEFORE_INPUT_SECTIONS_PASS
3839 && (*p)->after_input_sections())
3840 continue;
3841 else if (pass == POSTPROCESSING_SECTIONS_PASS
3842 && (!(*p)->after_input_sections()
3843 || (*p)->type() == elfcpp::SHT_STRTAB))
3844 continue;
3845 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3846 && (!(*p)->after_input_sections()
3847 || (*p)->type() != elfcpp::SHT_STRTAB))
3848 continue;
3849
3850 if (!parameters->incremental_update())
3851 {
3852 off = align_address(off, (*p)->addralign());
3853 (*p)->set_file_offset(off);
3854 (*p)->finalize_data_size();
3855 }
3856 else
3857 {
3858 // Incremental update: allocate file space from free list.
3859 (*p)->pre_finalize_data_size();
3860 off_t current_size = (*p)->current_data_size();
3861 off = this->allocate(current_size, (*p)->addralign(), startoff);
3862 if (off == -1)
3863 {
3864 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3865 this->free_list_.dump();
3866 gold_assert((*p)->output_section() != NULL);
3867 gold_fallback(_("out of patch space for section %s; "
3868 "relink with --incremental-full"),
3869 (*p)->output_section()->name());
3870 }
3871 (*p)->set_file_offset(off);
3872 (*p)->finalize_data_size();
3873 if ((*p)->data_size() > current_size)
3874 {
3875 gold_assert((*p)->output_section() != NULL);
3876 gold_fallback(_("%s: section changed size; "
3877 "relink with --incremental-full"),
3878 (*p)->output_section()->name());
3879 }
3880 gold_debug(DEBUG_INCREMENTAL,
3881 "set_section_offsets: %08lx %08lx %s",
3882 static_cast<long>(off),
3883 static_cast<long>((*p)->data_size()),
3884 ((*p)->output_section() != NULL
3885 ? (*p)->output_section()->name() : "(special)"));
3886 }
3887
3888 off += (*p)->data_size();
3889 if (off > maxoff)
3890 maxoff = off;
3891
3892 // At this point the name must be set.
3893 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3894 this->namepool_.add((*p)->name(), false, NULL);
3895 }
3896 return maxoff;
3897 }
3898
3899 // Set the section indexes of all the sections not associated with a
3900 // segment.
3901
3902 unsigned int
3903 Layout::set_section_indexes(unsigned int shndx)
3904 {
3905 for (Section_list::iterator p = this->unattached_section_list_.begin();
3906 p != this->unattached_section_list_.end();
3907 ++p)
3908 {
3909 if (!(*p)->has_out_shndx())
3910 {
3911 (*p)->set_out_shndx(shndx);
3912 ++shndx;
3913 }
3914 }
3915 return shndx;
3916 }
3917
3918 // Set the section addresses according to the linker script. This is
3919 // only called when we see a SECTIONS clause. This returns the
3920 // program segment which should hold the file header and segment
3921 // headers, if any. It will return NULL if they should not be in a
3922 // segment.
3923
3924 Output_segment*
3925 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3926 {
3927 Script_sections* ss = this->script_options_->script_sections();
3928 gold_assert(ss->saw_sections_clause());
3929 return this->script_options_->set_section_addresses(symtab, this);
3930 }
3931
3932 // Place the orphan sections in the linker script.
3933
3934 void
3935 Layout::place_orphan_sections_in_script()
3936 {
3937 Script_sections* ss = this->script_options_->script_sections();
3938 gold_assert(ss->saw_sections_clause());
3939
3940 // Place each orphaned output section in the script.
3941 for (Section_list::iterator p = this->section_list_.begin();
3942 p != this->section_list_.end();
3943 ++p)
3944 {
3945 if (!(*p)->found_in_sections_clause())
3946 ss->place_orphan(*p);
3947 }
3948 }
3949
3950 // Count the local symbols in the regular symbol table and the dynamic
3951 // symbol table, and build the respective string pools.
3952
3953 void
3954 Layout::count_local_symbols(const Task* task,
3955 const Input_objects* input_objects)
3956 {
3957 // First, figure out an upper bound on the number of symbols we'll
3958 // be inserting into each pool. This helps us create the pools with
3959 // the right size, to avoid unnecessary hashtable resizing.
3960 unsigned int symbol_count = 0;
3961 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3962 p != input_objects->relobj_end();
3963 ++p)
3964 symbol_count += (*p)->local_symbol_count();
3965
3966 // Go from "upper bound" to "estimate." We overcount for two
3967 // reasons: we double-count symbols that occur in more than one
3968 // object file, and we count symbols that are dropped from the
3969 // output. Add it all together and assume we overcount by 100%.
3970 symbol_count /= 2;
3971
3972 // We assume all symbols will go into both the sympool and dynpool.
3973 this->sympool_.reserve(symbol_count);
3974 this->dynpool_.reserve(symbol_count);
3975
3976 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3977 p != input_objects->relobj_end();
3978 ++p)
3979 {
3980 Task_lock_obj<Object> tlo(task, *p);
3981 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3982 }
3983 }
3984
3985 // Create the symbol table sections. Here we also set the final
3986 // values of the symbols. At this point all the loadable sections are
3987 // fully laid out. SHNUM is the number of sections so far.
3988
3989 void
3990 Layout::create_symtab_sections(const Input_objects* input_objects,
3991 Symbol_table* symtab,
3992 unsigned int shnum,
3993 off_t* poff)
3994 {
3995 int symsize;
3996 unsigned int align;
3997 if (parameters->target().get_size() == 32)
3998 {
3999 symsize = elfcpp::Elf_sizes<32>::sym_size;
4000 align = 4;
4001 }
4002 else if (parameters->target().get_size() == 64)
4003 {
4004 symsize = elfcpp::Elf_sizes<64>::sym_size;
4005 align = 8;
4006 }
4007 else
4008 gold_unreachable();
4009
4010 // Compute file offsets relative to the start of the symtab section.
4011 off_t off = 0;
4012
4013 // Save space for the dummy symbol at the start of the section. We
4014 // never bother to write this out--it will just be left as zero.
4015 off += symsize;
4016 unsigned int local_symbol_index = 1;
4017
4018 // Add STT_SECTION symbols for each Output section which needs one.
4019 for (Section_list::iterator p = this->section_list_.begin();
4020 p != this->section_list_.end();
4021 ++p)
4022 {
4023 if (!(*p)->needs_symtab_index())
4024 (*p)->set_symtab_index(-1U);
4025 else
4026 {
4027 (*p)->set_symtab_index(local_symbol_index);
4028 ++local_symbol_index;
4029 off += symsize;
4030 }
4031 }
4032
4033 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4034 p != input_objects->relobj_end();
4035 ++p)
4036 {
4037 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4038 off, symtab);
4039 off += (index - local_symbol_index) * symsize;
4040 local_symbol_index = index;
4041 }
4042
4043 unsigned int local_symcount = local_symbol_index;
4044 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4045
4046 off_t dynoff;
4047 size_t dyn_global_index;
4048 size_t dyncount;
4049 if (this->dynsym_section_ == NULL)
4050 {
4051 dynoff = 0;
4052 dyn_global_index = 0;
4053 dyncount = 0;
4054 }
4055 else
4056 {
4057 dyn_global_index = this->dynsym_section_->info();
4058 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4059 dynoff = this->dynsym_section_->offset() + locsize;
4060 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4061 gold_assert(static_cast<off_t>(dyncount * symsize)
4062 == this->dynsym_section_->data_size() - locsize);
4063 }
4064
4065 off_t global_off = off;
4066 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4067 &this->sympool_, &local_symcount);
4068
4069 if (!parameters->options().strip_all())
4070 {
4071 this->sympool_.set_string_offsets();
4072
4073 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4074 Output_section* osymtab = this->make_output_section(symtab_name,
4075 elfcpp::SHT_SYMTAB,
4076 0, ORDER_INVALID,
4077 false);
4078 this->symtab_section_ = osymtab;
4079
4080 Output_section_data* pos = new Output_data_fixed_space(off, align,
4081 "** symtab");
4082 osymtab->add_output_section_data(pos);
4083
4084 // We generate a .symtab_shndx section if we have more than
4085 // SHN_LORESERVE sections. Technically it is possible that we
4086 // don't need one, because it is possible that there are no
4087 // symbols in any of sections with indexes larger than
4088 // SHN_LORESERVE. That is probably unusual, though, and it is
4089 // easier to always create one than to compute section indexes
4090 // twice (once here, once when writing out the symbols).
4091 if (shnum >= elfcpp::SHN_LORESERVE)
4092 {
4093 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4094 false, NULL);
4095 Output_section* osymtab_xindex =
4096 this->make_output_section(symtab_xindex_name,
4097 elfcpp::SHT_SYMTAB_SHNDX, 0,
4098 ORDER_INVALID, false);
4099
4100 size_t symcount = off / symsize;
4101 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4102
4103 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4104
4105 osymtab_xindex->set_link_section(osymtab);
4106 osymtab_xindex->set_addralign(4);
4107 osymtab_xindex->set_entsize(4);
4108
4109 osymtab_xindex->set_after_input_sections();
4110
4111 // This tells the driver code to wait until the symbol table
4112 // has written out before writing out the postprocessing
4113 // sections, including the .symtab_shndx section.
4114 this->any_postprocessing_sections_ = true;
4115 }
4116
4117 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4118 Output_section* ostrtab = this->make_output_section(strtab_name,
4119 elfcpp::SHT_STRTAB,
4120 0, ORDER_INVALID,
4121 false);
4122
4123 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4124 ostrtab->add_output_section_data(pstr);
4125
4126 off_t symtab_off;
4127 if (!parameters->incremental_update())
4128 symtab_off = align_address(*poff, align);
4129 else
4130 {
4131 symtab_off = this->allocate(off, align, *poff);
4132 if (off == -1)
4133 gold_fallback(_("out of patch space for symbol table; "
4134 "relink with --incremental-full"));
4135 gold_debug(DEBUG_INCREMENTAL,
4136 "create_symtab_sections: %08lx %08lx .symtab",
4137 static_cast<long>(symtab_off),
4138 static_cast<long>(off));
4139 }
4140
4141 symtab->set_file_offset(symtab_off + global_off);
4142 osymtab->set_file_offset(symtab_off);
4143 osymtab->finalize_data_size();
4144 osymtab->set_link_section(ostrtab);
4145 osymtab->set_info(local_symcount);
4146 osymtab->set_entsize(symsize);
4147
4148 if (symtab_off + off > *poff)
4149 *poff = symtab_off + off;
4150 }
4151 }
4152
4153 // Create the .shstrtab section, which holds the names of the
4154 // sections. At the time this is called, we have created all the
4155 // output sections except .shstrtab itself.
4156
4157 Output_section*
4158 Layout::create_shstrtab()
4159 {
4160 // FIXME: We don't need to create a .shstrtab section if we are
4161 // stripping everything.
4162
4163 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4164
4165 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4166 ORDER_INVALID, false);
4167
4168 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4169 {
4170 // We can't write out this section until we've set all the
4171 // section names, and we don't set the names of compressed
4172 // output sections until relocations are complete. FIXME: With
4173 // the current names we use, this is unnecessary.
4174 os->set_after_input_sections();
4175 }
4176
4177 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4178 os->add_output_section_data(posd);
4179
4180 return os;
4181 }
4182
4183 // Create the section headers. SIZE is 32 or 64. OFF is the file
4184 // offset.
4185
4186 void
4187 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4188 {
4189 Output_section_headers* oshdrs;
4190 oshdrs = new Output_section_headers(this,
4191 &this->segment_list_,
4192 &this->section_list_,
4193 &this->unattached_section_list_,
4194 &this->namepool_,
4195 shstrtab_section);
4196 off_t off;
4197 if (!parameters->incremental_update())
4198 off = align_address(*poff, oshdrs->addralign());
4199 else
4200 {
4201 oshdrs->pre_finalize_data_size();
4202 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4203 if (off == -1)
4204 gold_fallback(_("out of patch space for section header table; "
4205 "relink with --incremental-full"));
4206 gold_debug(DEBUG_INCREMENTAL,
4207 "create_shdrs: %08lx %08lx (section header table)",
4208 static_cast<long>(off),
4209 static_cast<long>(off + oshdrs->data_size()));
4210 }
4211 oshdrs->set_address_and_file_offset(0, off);
4212 off += oshdrs->data_size();
4213 if (off > *poff)
4214 *poff = off;
4215 this->section_headers_ = oshdrs;
4216 }
4217
4218 // Count the allocated sections.
4219
4220 size_t
4221 Layout::allocated_output_section_count() const
4222 {
4223 size_t section_count = 0;
4224 for (Segment_list::const_iterator p = this->segment_list_.begin();
4225 p != this->segment_list_.end();
4226 ++p)
4227 section_count += (*p)->output_section_count();
4228 return section_count;
4229 }
4230
4231 // Create the dynamic symbol table.
4232
4233 void
4234 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4235 Symbol_table* symtab,
4236 Output_section** pdynstr,
4237 unsigned int* plocal_dynamic_count,
4238 std::vector<Symbol*>* pdynamic_symbols,
4239 Versions* pversions)
4240 {
4241 // Count all the symbols in the dynamic symbol table, and set the
4242 // dynamic symbol indexes.
4243
4244 // Skip symbol 0, which is always all zeroes.
4245 unsigned int index = 1;
4246
4247 // Add STT_SECTION symbols for each Output section which needs one.
4248 for (Section_list::iterator p = this->section_list_.begin();
4249 p != this->section_list_.end();
4250 ++p)
4251 {
4252 if (!(*p)->needs_dynsym_index())
4253 (*p)->set_dynsym_index(-1U);
4254 else
4255 {
4256 (*p)->set_dynsym_index(index);
4257 ++index;
4258 }
4259 }
4260
4261 // Count the local symbols that need to go in the dynamic symbol table,
4262 // and set the dynamic symbol indexes.
4263 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4264 p != input_objects->relobj_end();
4265 ++p)
4266 {
4267 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4268 index = new_index;
4269 }
4270
4271 unsigned int local_symcount = index;
4272 *plocal_dynamic_count = local_symcount;
4273
4274 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4275 &this->dynpool_, pversions);
4276
4277 int symsize;
4278 unsigned int align;
4279 const int size = parameters->target().get_size();
4280 if (size == 32)
4281 {
4282 symsize = elfcpp::Elf_sizes<32>::sym_size;
4283 align = 4;
4284 }
4285 else if (size == 64)
4286 {
4287 symsize = elfcpp::Elf_sizes<64>::sym_size;
4288 align = 8;
4289 }
4290 else
4291 gold_unreachable();
4292
4293 // Create the dynamic symbol table section.
4294
4295 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4296 elfcpp::SHT_DYNSYM,
4297 elfcpp::SHF_ALLOC,
4298 false,
4299 ORDER_DYNAMIC_LINKER,
4300 false);
4301
4302 // Check for NULL as a linker script may discard .dynsym.
4303 if (dynsym != NULL)
4304 {
4305 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4306 align,
4307 "** dynsym");
4308 dynsym->add_output_section_data(odata);
4309
4310 dynsym->set_info(local_symcount);
4311 dynsym->set_entsize(symsize);
4312 dynsym->set_addralign(align);
4313
4314 this->dynsym_section_ = dynsym;
4315 }
4316
4317 Output_data_dynamic* const odyn = this->dynamic_data_;
4318 if (odyn != NULL)
4319 {
4320 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4321 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4322 }
4323
4324 // If there are more than SHN_LORESERVE allocated sections, we
4325 // create a .dynsym_shndx section. It is possible that we don't
4326 // need one, because it is possible that there are no dynamic
4327 // symbols in any of the sections with indexes larger than
4328 // SHN_LORESERVE. This is probably unusual, though, and at this
4329 // time we don't know the actual section indexes so it is
4330 // inconvenient to check.
4331 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4332 {
4333 Output_section* dynsym_xindex =
4334 this->choose_output_section(NULL, ".dynsym_shndx",
4335 elfcpp::SHT_SYMTAB_SHNDX,
4336 elfcpp::SHF_ALLOC,
4337 false, ORDER_DYNAMIC_LINKER, false);
4338
4339 if (dynsym_xindex != NULL)
4340 {
4341 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4342
4343 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4344
4345 dynsym_xindex->set_link_section(dynsym);
4346 dynsym_xindex->set_addralign(4);
4347 dynsym_xindex->set_entsize(4);
4348
4349 dynsym_xindex->set_after_input_sections();
4350
4351 // This tells the driver code to wait until the symbol table
4352 // has written out before writing out the postprocessing
4353 // sections, including the .dynsym_shndx section.
4354 this->any_postprocessing_sections_ = true;
4355 }
4356 }
4357
4358 // Create the dynamic string table section.
4359
4360 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4361 elfcpp::SHT_STRTAB,
4362 elfcpp::SHF_ALLOC,
4363 false,
4364 ORDER_DYNAMIC_LINKER,
4365 false);
4366 *pdynstr = dynstr;
4367 if (dynstr != NULL)
4368 {
4369 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4370 dynstr->add_output_section_data(strdata);
4371
4372 if (dynsym != NULL)
4373 dynsym->set_link_section(dynstr);
4374 if (this->dynamic_section_ != NULL)
4375 this->dynamic_section_->set_link_section(dynstr);
4376
4377 if (odyn != NULL)
4378 {
4379 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4380 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4381 }
4382 }
4383
4384 // Create the hash tables. The Gnu-style hash table must be
4385 // built first, because it changes the order of the symbols
4386 // in the dynamic symbol table.
4387
4388 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4389 || strcmp(parameters->options().hash_style(), "both") == 0)
4390 {
4391 unsigned char* phash;
4392 unsigned int hashlen;
4393 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4394 &phash, &hashlen);
4395
4396 Output_section* hashsec =
4397 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4398 elfcpp::SHF_ALLOC, false,
4399 ORDER_DYNAMIC_LINKER, false);
4400
4401 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4402 hashlen,
4403 align,
4404 "** hash");
4405 if (hashsec != NULL && hashdata != NULL)
4406 hashsec->add_output_section_data(hashdata);
4407
4408 if (hashsec != NULL)
4409 {
4410 if (dynsym != NULL)
4411 hashsec->set_link_section(dynsym);
4412
4413 // For a 64-bit target, the entries in .gnu.hash do not have
4414 // a uniform size, so we only set the entry size for a
4415 // 32-bit target.
4416 if (parameters->target().get_size() == 32)
4417 hashsec->set_entsize(4);
4418
4419 if (odyn != NULL)
4420 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4421 }
4422 }
4423
4424 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4425 || strcmp(parameters->options().hash_style(), "both") == 0)
4426 {
4427 unsigned char* phash;
4428 unsigned int hashlen;
4429 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4430 &phash, &hashlen);
4431
4432 Output_section* hashsec =
4433 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4434 elfcpp::SHF_ALLOC, false,
4435 ORDER_DYNAMIC_LINKER, false);
4436
4437 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4438 hashlen,
4439 align,
4440 "** hash");
4441 if (hashsec != NULL && hashdata != NULL)
4442 hashsec->add_output_section_data(hashdata);
4443
4444 if (hashsec != NULL)
4445 {
4446 if (dynsym != NULL)
4447 hashsec->set_link_section(dynsym);
4448 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4449 }
4450
4451 if (odyn != NULL)
4452 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4453 }
4454 }
4455
4456 // Assign offsets to each local portion of the dynamic symbol table.
4457
4458 void
4459 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4460 {
4461 Output_section* dynsym = this->dynsym_section_;
4462 if (dynsym == NULL)
4463 return;
4464
4465 off_t off = dynsym->offset();
4466
4467 // Skip the dummy symbol at the start of the section.
4468 off += dynsym->entsize();
4469
4470 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4471 p != input_objects->relobj_end();
4472 ++p)
4473 {
4474 unsigned int count = (*p)->set_local_dynsym_offset(off);
4475 off += count * dynsym->entsize();
4476 }
4477 }
4478
4479 // Create the version sections.
4480
4481 void
4482 Layout::create_version_sections(const Versions* versions,
4483 const Symbol_table* symtab,
4484 unsigned int local_symcount,
4485 const std::vector<Symbol*>& dynamic_symbols,
4486 const Output_section* dynstr)
4487 {
4488 if (!versions->any_defs() && !versions->any_needs())
4489 return;
4490
4491 switch (parameters->size_and_endianness())
4492 {
4493 #ifdef HAVE_TARGET_32_LITTLE
4494 case Parameters::TARGET_32_LITTLE:
4495 this->sized_create_version_sections<32, false>(versions, symtab,
4496 local_symcount,
4497 dynamic_symbols, dynstr);
4498 break;
4499 #endif
4500 #ifdef HAVE_TARGET_32_BIG
4501 case Parameters::TARGET_32_BIG:
4502 this->sized_create_version_sections<32, true>(versions, symtab,
4503 local_symcount,
4504 dynamic_symbols, dynstr);
4505 break;
4506 #endif
4507 #ifdef HAVE_TARGET_64_LITTLE
4508 case Parameters::TARGET_64_LITTLE:
4509 this->sized_create_version_sections<64, false>(versions, symtab,
4510 local_symcount,
4511 dynamic_symbols, dynstr);
4512 break;
4513 #endif
4514 #ifdef HAVE_TARGET_64_BIG
4515 case Parameters::TARGET_64_BIG:
4516 this->sized_create_version_sections<64, true>(versions, symtab,
4517 local_symcount,
4518 dynamic_symbols, dynstr);
4519 break;
4520 #endif
4521 default:
4522 gold_unreachable();
4523 }
4524 }
4525
4526 // Create the version sections, sized version.
4527
4528 template<int size, bool big_endian>
4529 void
4530 Layout::sized_create_version_sections(
4531 const Versions* versions,
4532 const Symbol_table* symtab,
4533 unsigned int local_symcount,
4534 const std::vector<Symbol*>& dynamic_symbols,
4535 const Output_section* dynstr)
4536 {
4537 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4538 elfcpp::SHT_GNU_versym,
4539 elfcpp::SHF_ALLOC,
4540 false,
4541 ORDER_DYNAMIC_LINKER,
4542 false);
4543
4544 // Check for NULL since a linker script may discard this section.
4545 if (vsec != NULL)
4546 {
4547 unsigned char* vbuf;
4548 unsigned int vsize;
4549 versions->symbol_section_contents<size, big_endian>(symtab,
4550 &this->dynpool_,
4551 local_symcount,
4552 dynamic_symbols,
4553 &vbuf, &vsize);
4554
4555 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4556 "** versions");
4557
4558 vsec->add_output_section_data(vdata);
4559 vsec->set_entsize(2);
4560 vsec->set_link_section(this->dynsym_section_);
4561 }
4562
4563 Output_data_dynamic* const odyn = this->dynamic_data_;
4564 if (odyn != NULL && vsec != NULL)
4565 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4566
4567 if (versions->any_defs())
4568 {
4569 Output_section* vdsec;
4570 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4571 elfcpp::SHT_GNU_verdef,
4572 elfcpp::SHF_ALLOC,
4573 false, ORDER_DYNAMIC_LINKER, false);
4574
4575 if (vdsec != NULL)
4576 {
4577 unsigned char* vdbuf;
4578 unsigned int vdsize;
4579 unsigned int vdentries;
4580 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4581 &vdbuf, &vdsize,
4582 &vdentries);
4583
4584 Output_section_data* vddata =
4585 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4586
4587 vdsec->add_output_section_data(vddata);
4588 vdsec->set_link_section(dynstr);
4589 vdsec->set_info(vdentries);
4590
4591 if (odyn != NULL)
4592 {
4593 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4594 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4595 }
4596 }
4597 }
4598
4599 if (versions->any_needs())
4600 {
4601 Output_section* vnsec;
4602 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4603 elfcpp::SHT_GNU_verneed,
4604 elfcpp::SHF_ALLOC,
4605 false, ORDER_DYNAMIC_LINKER, false);
4606
4607 if (vnsec != NULL)
4608 {
4609 unsigned char* vnbuf;
4610 unsigned int vnsize;
4611 unsigned int vnentries;
4612 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4613 &vnbuf, &vnsize,
4614 &vnentries);
4615
4616 Output_section_data* vndata =
4617 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4618
4619 vnsec->add_output_section_data(vndata);
4620 vnsec->set_link_section(dynstr);
4621 vnsec->set_info(vnentries);
4622
4623 if (odyn != NULL)
4624 {
4625 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4626 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4627 }
4628 }
4629 }
4630 }
4631
4632 // Create the .interp section and PT_INTERP segment.
4633
4634 void
4635 Layout::create_interp(const Target* target)
4636 {
4637 gold_assert(this->interp_segment_ == NULL);
4638
4639 const char* interp = parameters->options().dynamic_linker();
4640 if (interp == NULL)
4641 {
4642 interp = target->dynamic_linker();
4643 gold_assert(interp != NULL);
4644 }
4645
4646 size_t len = strlen(interp) + 1;
4647
4648 Output_section_data* odata = new Output_data_const(interp, len, 1);
4649
4650 Output_section* osec = this->choose_output_section(NULL, ".interp",
4651 elfcpp::SHT_PROGBITS,
4652 elfcpp::SHF_ALLOC,
4653 false, ORDER_INTERP,
4654 false);
4655 if (osec != NULL)
4656 osec->add_output_section_data(odata);
4657 }
4658
4659 // Add dynamic tags for the PLT and the dynamic relocs. This is
4660 // called by the target-specific code. This does nothing if not doing
4661 // a dynamic link.
4662
4663 // USE_REL is true for REL relocs rather than RELA relocs.
4664
4665 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4666
4667 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4668 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4669 // some targets have multiple reloc sections in PLT_REL.
4670
4671 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4672 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4673 // section.
4674
4675 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4676 // executable.
4677
4678 void
4679 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4680 const Output_data* plt_rel,
4681 const Output_data_reloc_generic* dyn_rel,
4682 bool add_debug, bool dynrel_includes_plt)
4683 {
4684 Output_data_dynamic* odyn = this->dynamic_data_;
4685 if (odyn == NULL)
4686 return;
4687
4688 if (plt_got != NULL && plt_got->output_section() != NULL)
4689 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4690
4691 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4692 {
4693 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4694 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4695 odyn->add_constant(elfcpp::DT_PLTREL,
4696 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4697 }
4698
4699 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4700 || (dynrel_includes_plt
4701 && plt_rel != NULL
4702 && plt_rel->output_section() != NULL))
4703 {
4704 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4705 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4706 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4707 (have_dyn_rel
4708 ? dyn_rel->output_section()
4709 : plt_rel->output_section()));
4710 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4711 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4712 odyn->add_section_size(size_tag,
4713 dyn_rel->output_section(),
4714 plt_rel->output_section());
4715 else if (have_dyn_rel)
4716 odyn->add_section_size(size_tag, dyn_rel->output_section());
4717 else
4718 odyn->add_section_size(size_tag, plt_rel->output_section());
4719 const int size = parameters->target().get_size();
4720 elfcpp::DT rel_tag;
4721 int rel_size;
4722 if (use_rel)
4723 {
4724 rel_tag = elfcpp::DT_RELENT;
4725 if (size == 32)
4726 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4727 else if (size == 64)
4728 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4729 else
4730 gold_unreachable();
4731 }
4732 else
4733 {
4734 rel_tag = elfcpp::DT_RELAENT;
4735 if (size == 32)
4736 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4737 else if (size == 64)
4738 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4739 else
4740 gold_unreachable();
4741 }
4742 odyn->add_constant(rel_tag, rel_size);
4743
4744 if (parameters->options().combreloc() && have_dyn_rel)
4745 {
4746 size_t c = dyn_rel->relative_reloc_count();
4747 if (c > 0)
4748 odyn->add_constant((use_rel
4749 ? elfcpp::DT_RELCOUNT
4750 : elfcpp::DT_RELACOUNT),
4751 c);
4752 }
4753 }
4754
4755 if (add_debug && !parameters->options().shared())
4756 {
4757 // The value of the DT_DEBUG tag is filled in by the dynamic
4758 // linker at run time, and used by the debugger.
4759 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4760 }
4761 }
4762
4763 void
4764 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4765 {
4766 Output_data_dynamic* odyn = this->dynamic_data_;
4767 if (odyn == NULL)
4768 return;
4769 odyn->add_constant(tag, val);
4770 }
4771
4772 // Finish the .dynamic section and PT_DYNAMIC segment.
4773
4774 void
4775 Layout::finish_dynamic_section(const Input_objects* input_objects,
4776 const Symbol_table* symtab)
4777 {
4778 if (!this->script_options_->saw_phdrs_clause()
4779 && this->dynamic_section_ != NULL)
4780 {
4781 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4782 (elfcpp::PF_R
4783 | elfcpp::PF_W));
4784 oseg->add_output_section_to_nonload(this->dynamic_section_,
4785 elfcpp::PF_R | elfcpp::PF_W);
4786 }
4787
4788 Output_data_dynamic* const odyn = this->dynamic_data_;
4789 if (odyn == NULL)
4790 return;
4791
4792 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4793 p != input_objects->dynobj_end();
4794 ++p)
4795 {
4796 if (!(*p)->is_needed() && (*p)->as_needed())
4797 {
4798 // This dynamic object was linked with --as-needed, but it
4799 // is not needed.
4800 continue;
4801 }
4802
4803 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4804 }
4805
4806 if (parameters->options().shared())
4807 {
4808 const char* soname = parameters->options().soname();
4809 if (soname != NULL)
4810 odyn->add_string(elfcpp::DT_SONAME, soname);
4811 }
4812
4813 Symbol* sym = symtab->lookup(parameters->options().init());
4814 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4815 odyn->add_symbol(elfcpp::DT_INIT, sym);
4816
4817 sym = symtab->lookup(parameters->options().fini());
4818 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4819 odyn->add_symbol(elfcpp::DT_FINI, sym);
4820
4821 // Look for .init_array, .preinit_array and .fini_array by checking
4822 // section types.
4823 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4824 p != this->section_list_.end();
4825 ++p)
4826 switch((*p)->type())
4827 {
4828 case elfcpp::SHT_FINI_ARRAY:
4829 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4830 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4831 break;
4832 case elfcpp::SHT_INIT_ARRAY:
4833 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4834 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4835 break;
4836 case elfcpp::SHT_PREINIT_ARRAY:
4837 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4838 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4839 break;
4840 default:
4841 break;
4842 }
4843
4844 // Add a DT_RPATH entry if needed.
4845 const General_options::Dir_list& rpath(parameters->options().rpath());
4846 if (!rpath.empty())
4847 {
4848 std::string rpath_val;
4849 for (General_options::Dir_list::const_iterator p = rpath.begin();
4850 p != rpath.end();
4851 ++p)
4852 {
4853 if (rpath_val.empty())
4854 rpath_val = p->name();
4855 else
4856 {
4857 // Eliminate duplicates.
4858 General_options::Dir_list::const_iterator q;
4859 for (q = rpath.begin(); q != p; ++q)
4860 if (q->name() == p->name())
4861 break;
4862 if (q == p)
4863 {
4864 rpath_val += ':';
4865 rpath_val += p->name();
4866 }
4867 }
4868 }
4869
4870 if (!parameters->options().enable_new_dtags())
4871 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4872 else
4873 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4874 }
4875
4876 // Look for text segments that have dynamic relocations.
4877 bool have_textrel = false;
4878 if (!this->script_options_->saw_sections_clause())
4879 {
4880 for (Segment_list::const_iterator p = this->segment_list_.begin();
4881 p != this->segment_list_.end();
4882 ++p)
4883 {
4884 if ((*p)->type() == elfcpp::PT_LOAD
4885 && ((*p)->flags() & elfcpp::PF_W) == 0
4886 && (*p)->has_dynamic_reloc())
4887 {
4888 have_textrel = true;
4889 break;
4890 }
4891 }
4892 }
4893 else
4894 {
4895 // We don't know the section -> segment mapping, so we are
4896 // conservative and just look for readonly sections with
4897 // relocations. If those sections wind up in writable segments,
4898 // then we have created an unnecessary DT_TEXTREL entry.
4899 for (Section_list::const_iterator p = this->section_list_.begin();
4900 p != this->section_list_.end();
4901 ++p)
4902 {
4903 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4904 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4905 && (*p)->has_dynamic_reloc())
4906 {
4907 have_textrel = true;
4908 break;
4909 }
4910 }
4911 }
4912
4913 if (parameters->options().filter() != NULL)
4914 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4915 if (parameters->options().any_auxiliary())
4916 {
4917 for (options::String_set::const_iterator p =
4918 parameters->options().auxiliary_begin();
4919 p != parameters->options().auxiliary_end();
4920 ++p)
4921 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4922 }
4923
4924 // Add a DT_FLAGS entry if necessary.
4925 unsigned int flags = 0;
4926 if (have_textrel)
4927 {
4928 // Add a DT_TEXTREL for compatibility with older loaders.
4929 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4930 flags |= elfcpp::DF_TEXTREL;
4931
4932 if (parameters->options().text())
4933 gold_error(_("read-only segment has dynamic relocations"));
4934 else if (parameters->options().warn_shared_textrel()
4935 && parameters->options().shared())
4936 gold_warning(_("shared library text segment is not shareable"));
4937 }
4938 if (parameters->options().shared() && this->has_static_tls())
4939 flags |= elfcpp::DF_STATIC_TLS;
4940 if (parameters->options().origin())
4941 flags |= elfcpp::DF_ORIGIN;
4942 if (parameters->options().Bsymbolic()
4943 && !parameters->options().have_dynamic_list())
4944 {
4945 flags |= elfcpp::DF_SYMBOLIC;
4946 // Add DT_SYMBOLIC for compatibility with older loaders.
4947 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4948 }
4949 if (parameters->options().now())
4950 flags |= elfcpp::DF_BIND_NOW;
4951 if (flags != 0)
4952 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4953
4954 flags = 0;
4955 if (parameters->options().global())
4956 flags |= elfcpp::DF_1_GLOBAL;
4957 if (parameters->options().initfirst())
4958 flags |= elfcpp::DF_1_INITFIRST;
4959 if (parameters->options().interpose())
4960 flags |= elfcpp::DF_1_INTERPOSE;
4961 if (parameters->options().loadfltr())
4962 flags |= elfcpp::DF_1_LOADFLTR;
4963 if (parameters->options().nodefaultlib())
4964 flags |= elfcpp::DF_1_NODEFLIB;
4965 if (parameters->options().nodelete())
4966 flags |= elfcpp::DF_1_NODELETE;
4967 if (parameters->options().nodlopen())
4968 flags |= elfcpp::DF_1_NOOPEN;
4969 if (parameters->options().nodump())
4970 flags |= elfcpp::DF_1_NODUMP;
4971 if (!parameters->options().shared())
4972 flags &= ~(elfcpp::DF_1_INITFIRST
4973 | elfcpp::DF_1_NODELETE
4974 | elfcpp::DF_1_NOOPEN);
4975 if (parameters->options().origin())
4976 flags |= elfcpp::DF_1_ORIGIN;
4977 if (parameters->options().now())
4978 flags |= elfcpp::DF_1_NOW;
4979 if (parameters->options().Bgroup())
4980 flags |= elfcpp::DF_1_GROUP;
4981 if (flags != 0)
4982 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4983 }
4984
4985 // Set the size of the _DYNAMIC symbol table to be the size of the
4986 // dynamic data.
4987
4988 void
4989 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4990 {
4991 Output_data_dynamic* const odyn = this->dynamic_data_;
4992 if (odyn == NULL)
4993 return;
4994 odyn->finalize_data_size();
4995 if (this->dynamic_symbol_ == NULL)
4996 return;
4997 off_t data_size = odyn->data_size();
4998 const int size = parameters->target().get_size();
4999 if (size == 32)
5000 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5001 else if (size == 64)
5002 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5003 else
5004 gold_unreachable();
5005 }
5006
5007 // The mapping of input section name prefixes to output section names.
5008 // In some cases one prefix is itself a prefix of another prefix; in
5009 // such a case the longer prefix must come first. These prefixes are
5010 // based on the GNU linker default ELF linker script.
5011
5012 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5013 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5014 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5015 {
5016 MAPPING_INIT(".text.", ".text"),
5017 MAPPING_INIT(".rodata.", ".rodata"),
5018 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5019 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5020 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5021 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5022 MAPPING_INIT(".data.", ".data"),
5023 MAPPING_INIT(".bss.", ".bss"),
5024 MAPPING_INIT(".tdata.", ".tdata"),
5025 MAPPING_INIT(".tbss.", ".tbss"),
5026 MAPPING_INIT(".init_array.", ".init_array"),
5027 MAPPING_INIT(".fini_array.", ".fini_array"),
5028 MAPPING_INIT(".sdata.", ".sdata"),
5029 MAPPING_INIT(".sbss.", ".sbss"),
5030 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5031 // differently depending on whether it is creating a shared library.
5032 MAPPING_INIT(".sdata2.", ".sdata"),
5033 MAPPING_INIT(".sbss2.", ".sbss"),
5034 MAPPING_INIT(".lrodata.", ".lrodata"),
5035 MAPPING_INIT(".ldata.", ".ldata"),
5036 MAPPING_INIT(".lbss.", ".lbss"),
5037 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5038 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5039 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5040 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5041 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5042 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5043 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5044 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5045 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5046 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5047 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5048 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5049 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5050 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5051 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5052 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5053 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5054 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5055 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5056 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5057 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5058 };
5059 #undef MAPPING_INIT
5060 #undef MAPPING_INIT_EXACT
5061
5062 const int Layout::section_name_mapping_count =
5063 (sizeof(Layout::section_name_mapping)
5064 / sizeof(Layout::section_name_mapping[0]));
5065
5066 // Choose the output section name to use given an input section name.
5067 // Set *PLEN to the length of the name. *PLEN is initialized to the
5068 // length of NAME.
5069
5070 const char*
5071 Layout::output_section_name(const Relobj* relobj, const char* name,
5072 size_t* plen)
5073 {
5074 // gcc 4.3 generates the following sorts of section names when it
5075 // needs a section name specific to a function:
5076 // .text.FN
5077 // .rodata.FN
5078 // .sdata2.FN
5079 // .data.FN
5080 // .data.rel.FN
5081 // .data.rel.local.FN
5082 // .data.rel.ro.FN
5083 // .data.rel.ro.local.FN
5084 // .sdata.FN
5085 // .bss.FN
5086 // .sbss.FN
5087 // .tdata.FN
5088 // .tbss.FN
5089
5090 // The GNU linker maps all of those to the part before the .FN,
5091 // except that .data.rel.local.FN is mapped to .data, and
5092 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5093 // beginning with .data.rel.ro.local are grouped together.
5094
5095 // For an anonymous namespace, the string FN can contain a '.'.
5096
5097 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5098 // GNU linker maps to .rodata.
5099
5100 // The .data.rel.ro sections are used with -z relro. The sections
5101 // are recognized by name. We use the same names that the GNU
5102 // linker does for these sections.
5103
5104 // It is hard to handle this in a principled way, so we don't even
5105 // try. We use a table of mappings. If the input section name is
5106 // not found in the table, we simply use it as the output section
5107 // name.
5108
5109 const Section_name_mapping* psnm = section_name_mapping;
5110 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5111 {
5112 if (psnm->fromlen > 0)
5113 {
5114 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5115 {
5116 *plen = psnm->tolen;
5117 return psnm->to;
5118 }
5119 }
5120 else
5121 {
5122 if (strcmp(name, psnm->from) == 0)
5123 {
5124 *plen = psnm->tolen;
5125 return psnm->to;
5126 }
5127 }
5128 }
5129
5130 // As an additional complication, .ctors sections are output in
5131 // either .ctors or .init_array sections, and .dtors sections are
5132 // output in either .dtors or .fini_array sections.
5133 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5134 {
5135 if (parameters->options().ctors_in_init_array())
5136 {
5137 *plen = 11;
5138 return name[1] == 'c' ? ".init_array" : ".fini_array";
5139 }
5140 else
5141 {
5142 *plen = 6;
5143 return name[1] == 'c' ? ".ctors" : ".dtors";
5144 }
5145 }
5146 if (parameters->options().ctors_in_init_array()
5147 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5148 {
5149 // To make .init_array/.fini_array work with gcc we must exclude
5150 // .ctors and .dtors sections from the crtbegin and crtend
5151 // files.
5152 if (relobj == NULL
5153 || (!Layout::match_file_name(relobj, "crtbegin")
5154 && !Layout::match_file_name(relobj, "crtend")))
5155 {
5156 *plen = 11;
5157 return name[1] == 'c' ? ".init_array" : ".fini_array";
5158 }
5159 }
5160
5161 return name;
5162 }
5163
5164 // Return true if RELOBJ is an input file whose base name matches
5165 // FILE_NAME. The base name must have an extension of ".o", and must
5166 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5167 // to match crtbegin.o as well as crtbeginS.o without getting confused
5168 // by other possibilities. Overall matching the file name this way is
5169 // a dreadful hack, but the GNU linker does it in order to better
5170 // support gcc, and we need to be compatible.
5171
5172 bool
5173 Layout::match_file_name(const Relobj* relobj, const char* match)
5174 {
5175 const std::string& file_name(relobj->name());
5176 const char* base_name = lbasename(file_name.c_str());
5177 size_t match_len = strlen(match);
5178 if (strncmp(base_name, match, match_len) != 0)
5179 return false;
5180 size_t base_len = strlen(base_name);
5181 if (base_len != match_len + 2 && base_len != match_len + 3)
5182 return false;
5183 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5184 }
5185
5186 // Check if a comdat group or .gnu.linkonce section with the given
5187 // NAME is selected for the link. If there is already a section,
5188 // *KEPT_SECTION is set to point to the existing section and the
5189 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5190 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5191 // *KEPT_SECTION is set to the internal copy and the function returns
5192 // true.
5193
5194 bool
5195 Layout::find_or_add_kept_section(const std::string& name,
5196 Relobj* object,
5197 unsigned int shndx,
5198 bool is_comdat,
5199 bool is_group_name,
5200 Kept_section** kept_section)
5201 {
5202 // It's normal to see a couple of entries here, for the x86 thunk
5203 // sections. If we see more than a few, we're linking a C++
5204 // program, and we resize to get more space to minimize rehashing.
5205 if (this->signatures_.size() > 4
5206 && !this->resized_signatures_)
5207 {
5208 reserve_unordered_map(&this->signatures_,
5209 this->number_of_input_files_ * 64);
5210 this->resized_signatures_ = true;
5211 }
5212
5213 Kept_section candidate;
5214 std::pair<Signatures::iterator, bool> ins =
5215 this->signatures_.insert(std::make_pair(name, candidate));
5216
5217 if (kept_section != NULL)
5218 *kept_section = &ins.first->second;
5219 if (ins.second)
5220 {
5221 // This is the first time we've seen this signature.
5222 ins.first->second.set_object(object);
5223 ins.first->second.set_shndx(shndx);
5224 if (is_comdat)
5225 ins.first->second.set_is_comdat();
5226 if (is_group_name)
5227 ins.first->second.set_is_group_name();
5228 return true;
5229 }
5230
5231 // We have already seen this signature.
5232
5233 if (ins.first->second.is_group_name())
5234 {
5235 // We've already seen a real section group with this signature.
5236 // If the kept group is from a plugin object, and we're in the
5237 // replacement phase, accept the new one as a replacement.
5238 if (ins.first->second.object() == NULL
5239 && parameters->options().plugins()->in_replacement_phase())
5240 {
5241 ins.first->second.set_object(object);
5242 ins.first->second.set_shndx(shndx);
5243 return true;
5244 }
5245 return false;
5246 }
5247 else if (is_group_name)
5248 {
5249 // This is a real section group, and we've already seen a
5250 // linkonce section with this signature. Record that we've seen
5251 // a section group, and don't include this section group.
5252 ins.first->second.set_is_group_name();
5253 return false;
5254 }
5255 else
5256 {
5257 // We've already seen a linkonce section and this is a linkonce
5258 // section. These don't block each other--this may be the same
5259 // symbol name with different section types.
5260 return true;
5261 }
5262 }
5263
5264 // Store the allocated sections into the section list.
5265
5266 void
5267 Layout::get_allocated_sections(Section_list* section_list) const
5268 {
5269 for (Section_list::const_iterator p = this->section_list_.begin();
5270 p != this->section_list_.end();
5271 ++p)
5272 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5273 section_list->push_back(*p);
5274 }
5275
5276 // Store the executable sections into the section list.
5277
5278 void
5279 Layout::get_executable_sections(Section_list* section_list) const
5280 {
5281 for (Section_list::const_iterator p = this->section_list_.begin();
5282 p != this->section_list_.end();
5283 ++p)
5284 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5285 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5286 section_list->push_back(*p);
5287 }
5288
5289 // Create an output segment.
5290
5291 Output_segment*
5292 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5293 {
5294 gold_assert(!parameters->options().relocatable());
5295 Output_segment* oseg = new Output_segment(type, flags);
5296 this->segment_list_.push_back(oseg);
5297
5298 if (type == elfcpp::PT_TLS)
5299 this->tls_segment_ = oseg;
5300 else if (type == elfcpp::PT_GNU_RELRO)
5301 this->relro_segment_ = oseg;
5302 else if (type == elfcpp::PT_INTERP)
5303 this->interp_segment_ = oseg;
5304
5305 return oseg;
5306 }
5307
5308 // Return the file offset of the normal symbol table.
5309
5310 off_t
5311 Layout::symtab_section_offset() const
5312 {
5313 if (this->symtab_section_ != NULL)
5314 return this->symtab_section_->offset();
5315 return 0;
5316 }
5317
5318 // Return the section index of the normal symbol table. It may have
5319 // been stripped by the -s/--strip-all option.
5320
5321 unsigned int
5322 Layout::symtab_section_shndx() const
5323 {
5324 if (this->symtab_section_ != NULL)
5325 return this->symtab_section_->out_shndx();
5326 return 0;
5327 }
5328
5329 // Write out the Output_sections. Most won't have anything to write,
5330 // since most of the data will come from input sections which are
5331 // handled elsewhere. But some Output_sections do have Output_data.
5332
5333 void
5334 Layout::write_output_sections(Output_file* of) const
5335 {
5336 for (Section_list::const_iterator p = this->section_list_.begin();
5337 p != this->section_list_.end();
5338 ++p)
5339 {
5340 if (!(*p)->after_input_sections())
5341 (*p)->write(of);
5342 }
5343 }
5344
5345 // Write out data not associated with a section or the symbol table.
5346
5347 void
5348 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5349 {
5350 if (!parameters->options().strip_all())
5351 {
5352 const Output_section* symtab_section = this->symtab_section_;
5353 for (Section_list::const_iterator p = this->section_list_.begin();
5354 p != this->section_list_.end();
5355 ++p)
5356 {
5357 if ((*p)->needs_symtab_index())
5358 {
5359 gold_assert(symtab_section != NULL);
5360 unsigned int index = (*p)->symtab_index();
5361 gold_assert(index > 0 && index != -1U);
5362 off_t off = (symtab_section->offset()
5363 + index * symtab_section->entsize());
5364 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5365 }
5366 }
5367 }
5368
5369 const Output_section* dynsym_section = this->dynsym_section_;
5370 for (Section_list::const_iterator p = this->section_list_.begin();
5371 p != this->section_list_.end();
5372 ++p)
5373 {
5374 if ((*p)->needs_dynsym_index())
5375 {
5376 gold_assert(dynsym_section != NULL);
5377 unsigned int index = (*p)->dynsym_index();
5378 gold_assert(index > 0 && index != -1U);
5379 off_t off = (dynsym_section->offset()
5380 + index * dynsym_section->entsize());
5381 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5382 }
5383 }
5384
5385 // Write out the Output_data which are not in an Output_section.
5386 for (Data_list::const_iterator p = this->special_output_list_.begin();
5387 p != this->special_output_list_.end();
5388 ++p)
5389 (*p)->write(of);
5390
5391 // Write out the Output_data which are not in an Output_section
5392 // and are regenerated in each iteration of relaxation.
5393 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5394 p != this->relax_output_list_.end();
5395 ++p)
5396 (*p)->write(of);
5397 }
5398
5399 // Write out the Output_sections which can only be written after the
5400 // input sections are complete.
5401
5402 void
5403 Layout::write_sections_after_input_sections(Output_file* of)
5404 {
5405 // Determine the final section offsets, and thus the final output
5406 // file size. Note we finalize the .shstrab last, to allow the
5407 // after_input_section sections to modify their section-names before
5408 // writing.
5409 if (this->any_postprocessing_sections_)
5410 {
5411 off_t off = this->output_file_size_;
5412 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5413
5414 // Now that we've finalized the names, we can finalize the shstrab.
5415 off =
5416 this->set_section_offsets(off,
5417 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5418
5419 if (off > this->output_file_size_)
5420 {
5421 of->resize(off);
5422 this->output_file_size_ = off;
5423 }
5424 }
5425
5426 for (Section_list::const_iterator p = this->section_list_.begin();
5427 p != this->section_list_.end();
5428 ++p)
5429 {
5430 if ((*p)->after_input_sections())
5431 (*p)->write(of);
5432 }
5433
5434 this->section_headers_->write(of);
5435 }
5436
5437 // If a tree-style build ID was requested, the parallel part of that computation
5438 // is already done, and the final hash-of-hashes is computed here. For other
5439 // types of build IDs, all the work is done here.
5440
5441 void
5442 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5443 size_t size_of_hashes) const
5444 {
5445 if (this->build_id_note_ == NULL)
5446 return;
5447
5448 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5449 this->build_id_note_->data_size());
5450
5451 if (array_of_hashes == NULL)
5452 {
5453 const size_t output_file_size = this->output_file_size();
5454 const unsigned char* iv = of->get_input_view(0, output_file_size);
5455 const char* style = parameters->options().build_id();
5456
5457 // If we get here with style == "tree" then the output must be
5458 // too small for chunking, and we use SHA-1 in that case.
5459 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5460 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5461 else if (strcmp(style, "md5") == 0)
5462 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5463 else
5464 gold_unreachable();
5465
5466 of->free_input_view(0, output_file_size, iv);
5467 }
5468 else
5469 {
5470 // Non-overlapping substrings of the output file have been hashed.
5471 // Compute SHA-1 hash of the hashes.
5472 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5473 size_of_hashes, ov);
5474 delete[] array_of_hashes;
5475 }
5476
5477 of->write_output_view(this->build_id_note_->offset(),
5478 this->build_id_note_->data_size(),
5479 ov);
5480 }
5481
5482 // Write out a binary file. This is called after the link is
5483 // complete. IN is the temporary output file we used to generate the
5484 // ELF code. We simply walk through the segments, read them from
5485 // their file offset in IN, and write them to their load address in
5486 // the output file. FIXME: with a bit more work, we could support
5487 // S-records and/or Intel hex format here.
5488
5489 void
5490 Layout::write_binary(Output_file* in) const
5491 {
5492 gold_assert(parameters->options().oformat_enum()
5493 == General_options::OBJECT_FORMAT_BINARY);
5494
5495 // Get the size of the binary file.
5496 uint64_t max_load_address = 0;
5497 for (Segment_list::const_iterator p = this->segment_list_.begin();
5498 p != this->segment_list_.end();
5499 ++p)
5500 {
5501 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5502 {
5503 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5504 if (max_paddr > max_load_address)
5505 max_load_address = max_paddr;
5506 }
5507 }
5508
5509 Output_file out(parameters->options().output_file_name());
5510 out.open(max_load_address);
5511
5512 for (Segment_list::const_iterator p = this->segment_list_.begin();
5513 p != this->segment_list_.end();
5514 ++p)
5515 {
5516 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5517 {
5518 const unsigned char* vin = in->get_input_view((*p)->offset(),
5519 (*p)->filesz());
5520 unsigned char* vout = out.get_output_view((*p)->paddr(),
5521 (*p)->filesz());
5522 memcpy(vout, vin, (*p)->filesz());
5523 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5524 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5525 }
5526 }
5527
5528 out.close();
5529 }
5530
5531 // Print the output sections to the map file.
5532
5533 void
5534 Layout::print_to_mapfile(Mapfile* mapfile) const
5535 {
5536 for (Segment_list::const_iterator p = this->segment_list_.begin();
5537 p != this->segment_list_.end();
5538 ++p)
5539 (*p)->print_sections_to_mapfile(mapfile);
5540 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5541 p != this->unattached_section_list_.end();
5542 ++p)
5543 (*p)->print_to_mapfile(mapfile);
5544 }
5545
5546 // Print statistical information to stderr. This is used for --stats.
5547
5548 void
5549 Layout::print_stats() const
5550 {
5551 this->namepool_.print_stats("section name pool");
5552 this->sympool_.print_stats("output symbol name pool");
5553 this->dynpool_.print_stats("dynamic name pool");
5554
5555 for (Section_list::const_iterator p = this->section_list_.begin();
5556 p != this->section_list_.end();
5557 ++p)
5558 (*p)->print_merge_stats();
5559 }
5560
5561 // Write_sections_task methods.
5562
5563 // We can always run this task.
5564
5565 Task_token*
5566 Write_sections_task::is_runnable()
5567 {
5568 return NULL;
5569 }
5570
5571 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5572 // when finished.
5573
5574 void
5575 Write_sections_task::locks(Task_locker* tl)
5576 {
5577 tl->add(this, this->output_sections_blocker_);
5578 if (this->input_sections_blocker_ != NULL)
5579 tl->add(this, this->input_sections_blocker_);
5580 tl->add(this, this->final_blocker_);
5581 }
5582
5583 // Run the task--write out the data.
5584
5585 void
5586 Write_sections_task::run(Workqueue*)
5587 {
5588 this->layout_->write_output_sections(this->of_);
5589 }
5590
5591 // Write_data_task methods.
5592
5593 // We can always run this task.
5594
5595 Task_token*
5596 Write_data_task::is_runnable()
5597 {
5598 return NULL;
5599 }
5600
5601 // We need to unlock FINAL_BLOCKER when finished.
5602
5603 void
5604 Write_data_task::locks(Task_locker* tl)
5605 {
5606 tl->add(this, this->final_blocker_);
5607 }
5608
5609 // Run the task--write out the data.
5610
5611 void
5612 Write_data_task::run(Workqueue*)
5613 {
5614 this->layout_->write_data(this->symtab_, this->of_);
5615 }
5616
5617 // Write_symbols_task methods.
5618
5619 // We can always run this task.
5620
5621 Task_token*
5622 Write_symbols_task::is_runnable()
5623 {
5624 return NULL;
5625 }
5626
5627 // We need to unlock FINAL_BLOCKER when finished.
5628
5629 void
5630 Write_symbols_task::locks(Task_locker* tl)
5631 {
5632 tl->add(this, this->final_blocker_);
5633 }
5634
5635 // Run the task--write out the symbols.
5636
5637 void
5638 Write_symbols_task::run(Workqueue*)
5639 {
5640 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5641 this->layout_->symtab_xindex(),
5642 this->layout_->dynsym_xindex(), this->of_);
5643 }
5644
5645 // Write_after_input_sections_task methods.
5646
5647 // We can only run this task after the input sections have completed.
5648
5649 Task_token*
5650 Write_after_input_sections_task::is_runnable()
5651 {
5652 if (this->input_sections_blocker_->is_blocked())
5653 return this->input_sections_blocker_;
5654 return NULL;
5655 }
5656
5657 // We need to unlock FINAL_BLOCKER when finished.
5658
5659 void
5660 Write_after_input_sections_task::locks(Task_locker* tl)
5661 {
5662 tl->add(this, this->final_blocker_);
5663 }
5664
5665 // Run the task.
5666
5667 void
5668 Write_after_input_sections_task::run(Workqueue*)
5669 {
5670 this->layout_->write_sections_after_input_sections(this->of_);
5671 }
5672
5673 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5674 // or as a "tree" where each chunk of the string is hashed and then those
5675 // hashes are put into a (much smaller) string which is hashed with sha1.
5676 // We compute a checksum over the entire file because that is simplest.
5677
5678 void
5679 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5680 {
5681 Task_token* post_hash_tasks_blocker = new Task_token(true);
5682 const Layout* layout = this->layout_;
5683 Output_file* of = this->of_;
5684 const size_t filesize = (layout->output_file_size() <= 0 ? 0
5685 : static_cast<size_t>(layout->output_file_size()));
5686 unsigned char* array_of_hashes = NULL;
5687 size_t size_of_hashes = 0;
5688
5689 if (strcmp(this->options_->build_id(), "tree") == 0
5690 && this->options_->build_id_chunk_size_for_treehash() > 0
5691 && filesize > 0
5692 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5693 {
5694 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5695 const size_t chunk_size =
5696 this->options_->build_id_chunk_size_for_treehash();
5697 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5698 post_hash_tasks_blocker->add_blockers(num_hashes);
5699 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5700 array_of_hashes = new unsigned char[size_of_hashes];
5701 unsigned char *dst = array_of_hashes;
5702 for (size_t i = 0, src_offset = 0; i < num_hashes;
5703 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5704 {
5705 size_t size = std::min(chunk_size, filesize - src_offset);
5706 workqueue->queue(new Hash_task(of,
5707 src_offset,
5708 size,
5709 dst,
5710 post_hash_tasks_blocker));
5711 }
5712 }
5713
5714 // Queue the final task to write the build id and close the output file.
5715 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5716 layout,
5717 of,
5718 array_of_hashes,
5719 size_of_hashes),
5720 post_hash_tasks_blocker,
5721 "Task_function Close_task_runner"));
5722 }
5723
5724 // Close_task_runner methods.
5725
5726 // Finish up the build ID computation, if necessary, and write a binary file,
5727 // if necessary. Then close the output file.
5728
5729 void
5730 Close_task_runner::run(Workqueue*, const Task*)
5731 {
5732 // At this point the multi-threaded part of the build ID computation,
5733 // if any, is done. See Build_id_task_runner.
5734 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5735 this->size_of_hashes_);
5736
5737 // If we've been asked to create a binary file, we do so here.
5738 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5739 this->layout_->write_binary(this->of_);
5740
5741 this->of_->close();
5742 }
5743
5744 // Instantiate the templates we need. We could use the configure
5745 // script to restrict this to only the ones for implemented targets.
5746
5747 #ifdef HAVE_TARGET_32_LITTLE
5748 template
5749 Output_section*
5750 Layout::init_fixed_output_section<32, false>(
5751 const char* name,
5752 elfcpp::Shdr<32, false>& shdr);
5753 #endif
5754
5755 #ifdef HAVE_TARGET_32_BIG
5756 template
5757 Output_section*
5758 Layout::init_fixed_output_section<32, true>(
5759 const char* name,
5760 elfcpp::Shdr<32, true>& shdr);
5761 #endif
5762
5763 #ifdef HAVE_TARGET_64_LITTLE
5764 template
5765 Output_section*
5766 Layout::init_fixed_output_section<64, false>(
5767 const char* name,
5768 elfcpp::Shdr<64, false>& shdr);
5769 #endif
5770
5771 #ifdef HAVE_TARGET_64_BIG
5772 template
5773 Output_section*
5774 Layout::init_fixed_output_section<64, true>(
5775 const char* name,
5776 elfcpp::Shdr<64, true>& shdr);
5777 #endif
5778
5779 #ifdef HAVE_TARGET_32_LITTLE
5780 template
5781 Output_section*
5782 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5783 unsigned int shndx,
5784 const char* name,
5785 const elfcpp::Shdr<32, false>& shdr,
5786 unsigned int, unsigned int, off_t*);
5787 #endif
5788
5789 #ifdef HAVE_TARGET_32_BIG
5790 template
5791 Output_section*
5792 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5793 unsigned int shndx,
5794 const char* name,
5795 const elfcpp::Shdr<32, true>& shdr,
5796 unsigned int, unsigned int, off_t*);
5797 #endif
5798
5799 #ifdef HAVE_TARGET_64_LITTLE
5800 template
5801 Output_section*
5802 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5803 unsigned int shndx,
5804 const char* name,
5805 const elfcpp::Shdr<64, false>& shdr,
5806 unsigned int, unsigned int, off_t*);
5807 #endif
5808
5809 #ifdef HAVE_TARGET_64_BIG
5810 template
5811 Output_section*
5812 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5813 unsigned int shndx,
5814 const char* name,
5815 const elfcpp::Shdr<64, true>& shdr,
5816 unsigned int, unsigned int, off_t*);
5817 #endif
5818
5819 #ifdef HAVE_TARGET_32_LITTLE
5820 template
5821 Output_section*
5822 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5823 unsigned int reloc_shndx,
5824 const elfcpp::Shdr<32, false>& shdr,
5825 Output_section* data_section,
5826 Relocatable_relocs* rr);
5827 #endif
5828
5829 #ifdef HAVE_TARGET_32_BIG
5830 template
5831 Output_section*
5832 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5833 unsigned int reloc_shndx,
5834 const elfcpp::Shdr<32, true>& shdr,
5835 Output_section* data_section,
5836 Relocatable_relocs* rr);
5837 #endif
5838
5839 #ifdef HAVE_TARGET_64_LITTLE
5840 template
5841 Output_section*
5842 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5843 unsigned int reloc_shndx,
5844 const elfcpp::Shdr<64, false>& shdr,
5845 Output_section* data_section,
5846 Relocatable_relocs* rr);
5847 #endif
5848
5849 #ifdef HAVE_TARGET_64_BIG
5850 template
5851 Output_section*
5852 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5853 unsigned int reloc_shndx,
5854 const elfcpp::Shdr<64, true>& shdr,
5855 Output_section* data_section,
5856 Relocatable_relocs* rr);
5857 #endif
5858
5859 #ifdef HAVE_TARGET_32_LITTLE
5860 template
5861 void
5862 Layout::layout_group<32, false>(Symbol_table* symtab,
5863 Sized_relobj_file<32, false>* object,
5864 unsigned int,
5865 const char* group_section_name,
5866 const char* signature,
5867 const elfcpp::Shdr<32, false>& shdr,
5868 elfcpp::Elf_Word flags,
5869 std::vector<unsigned int>* shndxes);
5870 #endif
5871
5872 #ifdef HAVE_TARGET_32_BIG
5873 template
5874 void
5875 Layout::layout_group<32, true>(Symbol_table* symtab,
5876 Sized_relobj_file<32, true>* object,
5877 unsigned int,
5878 const char* group_section_name,
5879 const char* signature,
5880 const elfcpp::Shdr<32, true>& shdr,
5881 elfcpp::Elf_Word flags,
5882 std::vector<unsigned int>* shndxes);
5883 #endif
5884
5885 #ifdef HAVE_TARGET_64_LITTLE
5886 template
5887 void
5888 Layout::layout_group<64, false>(Symbol_table* symtab,
5889 Sized_relobj_file<64, false>* object,
5890 unsigned int,
5891 const char* group_section_name,
5892 const char* signature,
5893 const elfcpp::Shdr<64, false>& shdr,
5894 elfcpp::Elf_Word flags,
5895 std::vector<unsigned int>* shndxes);
5896 #endif
5897
5898 #ifdef HAVE_TARGET_64_BIG
5899 template
5900 void
5901 Layout::layout_group<64, true>(Symbol_table* symtab,
5902 Sized_relobj_file<64, true>* object,
5903 unsigned int,
5904 const char* group_section_name,
5905 const char* signature,
5906 const elfcpp::Shdr<64, true>& shdr,
5907 elfcpp::Elf_Word flags,
5908 std::vector<unsigned int>* shndxes);
5909 #endif
5910
5911 #ifdef HAVE_TARGET_32_LITTLE
5912 template
5913 Output_section*
5914 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5915 const unsigned char* symbols,
5916 off_t symbols_size,
5917 const unsigned char* symbol_names,
5918 off_t symbol_names_size,
5919 unsigned int shndx,
5920 const elfcpp::Shdr<32, false>& shdr,
5921 unsigned int reloc_shndx,
5922 unsigned int reloc_type,
5923 off_t* off);
5924 #endif
5925
5926 #ifdef HAVE_TARGET_32_BIG
5927 template
5928 Output_section*
5929 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5930 const unsigned char* symbols,
5931 off_t symbols_size,
5932 const unsigned char* symbol_names,
5933 off_t symbol_names_size,
5934 unsigned int shndx,
5935 const elfcpp::Shdr<32, true>& shdr,
5936 unsigned int reloc_shndx,
5937 unsigned int reloc_type,
5938 off_t* off);
5939 #endif
5940
5941 #ifdef HAVE_TARGET_64_LITTLE
5942 template
5943 Output_section*
5944 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5945 const unsigned char* symbols,
5946 off_t symbols_size,
5947 const unsigned char* symbol_names,
5948 off_t symbol_names_size,
5949 unsigned int shndx,
5950 const elfcpp::Shdr<64, false>& shdr,
5951 unsigned int reloc_shndx,
5952 unsigned int reloc_type,
5953 off_t* off);
5954 #endif
5955
5956 #ifdef HAVE_TARGET_64_BIG
5957 template
5958 Output_section*
5959 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5960 const unsigned char* symbols,
5961 off_t symbols_size,
5962 const unsigned char* symbol_names,
5963 off_t symbol_names_size,
5964 unsigned int shndx,
5965 const elfcpp::Shdr<64, true>& shdr,
5966 unsigned int reloc_shndx,
5967 unsigned int reloc_type,
5968 off_t* off);
5969 #endif
5970
5971 #ifdef HAVE_TARGET_32_LITTLE
5972 template
5973 void
5974 Layout::add_to_gdb_index(bool is_type_unit,
5975 Sized_relobj<32, false>* object,
5976 const unsigned char* symbols,
5977 off_t symbols_size,
5978 unsigned int shndx,
5979 unsigned int reloc_shndx,
5980 unsigned int reloc_type);
5981 #endif
5982
5983 #ifdef HAVE_TARGET_32_BIG
5984 template
5985 void
5986 Layout::add_to_gdb_index(bool is_type_unit,
5987 Sized_relobj<32, true>* object,
5988 const unsigned char* symbols,
5989 off_t symbols_size,
5990 unsigned int shndx,
5991 unsigned int reloc_shndx,
5992 unsigned int reloc_type);
5993 #endif
5994
5995 #ifdef HAVE_TARGET_64_LITTLE
5996 template
5997 void
5998 Layout::add_to_gdb_index(bool is_type_unit,
5999 Sized_relobj<64, false>* object,
6000 const unsigned char* symbols,
6001 off_t symbols_size,
6002 unsigned int shndx,
6003 unsigned int reloc_shndx,
6004 unsigned int reloc_type);
6005 #endif
6006
6007 #ifdef HAVE_TARGET_64_BIG
6008 template
6009 void
6010 Layout::add_to_gdb_index(bool is_type_unit,
6011 Sized_relobj<64, true>* object,
6012 const unsigned char* symbols,
6013 off_t symbols_size,
6014 unsigned int shndx,
6015 unsigned int reloc_shndx,
6016 unsigned int reloc_type);
6017 #endif
6018
6019 } // End namespace gold.
This page took 0.705192 seconds and 4 git commands to generate.