From Craig Silverstein: Have Parameters point to General_options.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "reloc.h"
40 #include "layout.h"
41
42 namespace gold
43 {
44
45 // Layout_task_runner methods.
46
47 // Lay out the sections. This is called after all the input objects
48 // have been read.
49
50 void
51 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
52 {
53 off_t file_size = this->layout_->finalize(this->input_objects_,
54 this->symtab_,
55 this->target_,
56 task);
57
58 // Now we know the final size of the output file and we know where
59 // each piece of information goes.
60 Output_file* of = new Output_file(parameters->options().output_file_name());
61 if (this->options_.oformat() != General_options::OBJECT_FORMAT_ELF)
62 of->set_is_temporary();
63 of->open(file_size);
64
65 // Queue up the final set of tasks.
66 gold::queue_final_tasks(this->options_, this->input_objects_,
67 this->symtab_, this->layout_, workqueue, of);
68 }
69
70 // Layout methods.
71
72 Layout::Layout(const General_options& options, Script_options* script_options)
73 : options_(options), script_options_(script_options), namepool_(),
74 sympool_(), dynpool_(), signatures_(),
75 section_name_map_(), segment_list_(), section_list_(),
76 unattached_section_list_(), special_output_list_(),
77 section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
78 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
79 eh_frame_section_(NULL), group_signatures_(), output_file_size_(-1),
80 input_requires_executable_stack_(false),
81 input_with_gnu_stack_note_(false),
82 input_without_gnu_stack_note_(false),
83 has_static_tls_(false),
84 any_postprocessing_sections_(false)
85 {
86 // Make space for more than enough segments for a typical file.
87 // This is just for efficiency--it's OK if we wind up needing more.
88 this->segment_list_.reserve(12);
89
90 // We expect two unattached Output_data objects: the file header and
91 // the segment headers.
92 this->special_output_list_.reserve(2);
93 }
94
95 // Hash a key we use to look up an output section mapping.
96
97 size_t
98 Layout::Hash_key::operator()(const Layout::Key& k) const
99 {
100 return k.first + k.second.first + k.second.second;
101 }
102
103 // Return whether PREFIX is a prefix of STR.
104
105 static inline bool
106 is_prefix_of(const char* prefix, const char* str)
107 {
108 return strncmp(prefix, str, strlen(prefix)) == 0;
109 }
110
111 // Returns whether the given section is in the list of
112 // debug-sections-used-by-some-version-of-gdb. Currently,
113 // we've checked versions of gdb up to and including 6.7.1.
114
115 static const char* gdb_sections[] =
116 { ".debug_abbrev",
117 // ".debug_aranges", // not used by gdb as of 6.7.1
118 ".debug_frame",
119 ".debug_info",
120 ".debug_line",
121 ".debug_loc",
122 ".debug_macinfo",
123 // ".debug_pubnames", // not used by gdb as of 6.7.1
124 ".debug_ranges",
125 ".debug_str",
126 };
127
128 static inline bool
129 is_gdb_debug_section(const char* str)
130 {
131 // We can do this faster: binary search or a hashtable. But why bother?
132 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
133 if (strcmp(str, gdb_sections[i]) == 0)
134 return true;
135 return false;
136 }
137
138 // Whether to include this section in the link.
139
140 template<int size, bool big_endian>
141 bool
142 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
143 const elfcpp::Shdr<size, big_endian>& shdr)
144 {
145 switch (shdr.get_sh_type())
146 {
147 case elfcpp::SHT_NULL:
148 case elfcpp::SHT_SYMTAB:
149 case elfcpp::SHT_DYNSYM:
150 case elfcpp::SHT_STRTAB:
151 case elfcpp::SHT_HASH:
152 case elfcpp::SHT_DYNAMIC:
153 case elfcpp::SHT_SYMTAB_SHNDX:
154 return false;
155
156 case elfcpp::SHT_RELA:
157 case elfcpp::SHT_REL:
158 case elfcpp::SHT_GROUP:
159 // If we are emitting relocations these should be handled
160 // elsewhere.
161 gold_assert(!parameters->options().relocatable()
162 && !parameters->options().emit_relocs());
163 return false;
164
165 case elfcpp::SHT_PROGBITS:
166 if (parameters->options().strip_debug()
167 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
168 {
169 // Debugging sections can only be recognized by name.
170 if (is_prefix_of(".debug", name)
171 || is_prefix_of(".gnu.linkonce.wi.", name)
172 || is_prefix_of(".line", name)
173 || is_prefix_of(".stab", name))
174 return false;
175 }
176 if (parameters->options().strip_debug_gdb()
177 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
178 {
179 // Debugging sections can only be recognized by name.
180 if (is_prefix_of(".debug", name)
181 && !is_gdb_debug_section(name))
182 return false;
183 }
184 return true;
185
186 default:
187 return true;
188 }
189 }
190
191 // Return an output section named NAME, or NULL if there is none.
192
193 Output_section*
194 Layout::find_output_section(const char* name) const
195 {
196 for (Section_list::const_iterator p = this->section_list_.begin();
197 p != this->section_list_.end();
198 ++p)
199 if (strcmp((*p)->name(), name) == 0)
200 return *p;
201 return NULL;
202 }
203
204 // Return an output segment of type TYPE, with segment flags SET set
205 // and segment flags CLEAR clear. Return NULL if there is none.
206
207 Output_segment*
208 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
209 elfcpp::Elf_Word clear) const
210 {
211 for (Segment_list::const_iterator p = this->segment_list_.begin();
212 p != this->segment_list_.end();
213 ++p)
214 if (static_cast<elfcpp::PT>((*p)->type()) == type
215 && ((*p)->flags() & set) == set
216 && ((*p)->flags() & clear) == 0)
217 return *p;
218 return NULL;
219 }
220
221 // Return the output section to use for section NAME with type TYPE
222 // and section flags FLAGS. NAME must be canonicalized in the string
223 // pool, and NAME_KEY is the key.
224
225 Output_section*
226 Layout::get_output_section(const char* name, Stringpool::Key name_key,
227 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
228 {
229 const Key key(name_key, std::make_pair(type, flags));
230 const std::pair<Key, Output_section*> v(key, NULL);
231 std::pair<Section_name_map::iterator, bool> ins(
232 this->section_name_map_.insert(v));
233
234 if (!ins.second)
235 return ins.first->second;
236 else
237 {
238 // This is the first time we've seen this name/type/flags
239 // combination.
240 Output_section* os = this->make_output_section(name, type, flags);
241 ins.first->second = os;
242 return os;
243 }
244 }
245
246 // Pick the output section to use for section NAME, in input file
247 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
248 // linker created section. ADJUST_NAME is true if we should apply the
249 // standard name mappings in Layout::output_section_name. This will
250 // return NULL if the input section should be discarded.
251
252 Output_section*
253 Layout::choose_output_section(const Relobj* relobj, const char* name,
254 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
255 bool adjust_name)
256 {
257 // We should ignore some flags. FIXME: This will need some
258 // adjustment for ld -r.
259 flags &= ~ (elfcpp::SHF_INFO_LINK
260 | elfcpp::SHF_LINK_ORDER
261 | elfcpp::SHF_GROUP
262 | elfcpp::SHF_MERGE
263 | elfcpp::SHF_STRINGS);
264
265 if (this->script_options_->saw_sections_clause())
266 {
267 // We are using a SECTIONS clause, so the output section is
268 // chosen based only on the name.
269
270 Script_sections* ss = this->script_options_->script_sections();
271 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
272 Output_section** output_section_slot;
273 name = ss->output_section_name(file_name, name, &output_section_slot);
274 if (name == NULL)
275 {
276 // The SECTIONS clause says to discard this input section.
277 return NULL;
278 }
279
280 // If this is an orphan section--one not mentioned in the linker
281 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
282 // default processing below.
283
284 if (output_section_slot != NULL)
285 {
286 if (*output_section_slot != NULL)
287 return *output_section_slot;
288
289 // We don't put sections found in the linker script into
290 // SECTION_NAME_MAP_. That keeps us from getting confused
291 // if an orphan section is mapped to a section with the same
292 // name as one in the linker script.
293
294 name = this->namepool_.add(name, false, NULL);
295
296 Output_section* os = this->make_output_section(name, type, flags);
297 os->set_found_in_sections_clause();
298 *output_section_slot = os;
299 return os;
300 }
301 }
302
303 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
304
305 // Turn NAME from the name of the input section into the name of the
306 // output section.
307
308 size_t len = strlen(name);
309 if (adjust_name && !parameters->options().relocatable())
310 name = Layout::output_section_name(name, &len);
311
312 Stringpool::Key name_key;
313 name = this->namepool_.add_with_length(name, len, true, &name_key);
314
315 // Find or make the output section. The output section is selected
316 // based on the section name, type, and flags.
317 return this->get_output_section(name, name_key, type, flags);
318 }
319
320 // Return the output section to use for input section SHNDX, with name
321 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
322 // index of a relocation section which applies to this section, or 0
323 // if none, or -1U if more than one. RELOC_TYPE is the type of the
324 // relocation section if there is one. Set *OFF to the offset of this
325 // input section without the output section. Return NULL if the
326 // section should be discarded. Set *OFF to -1 if the section
327 // contents should not be written directly to the output file, but
328 // will instead receive special handling.
329
330 template<int size, bool big_endian>
331 Output_section*
332 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
333 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
334 unsigned int reloc_shndx, unsigned int, off_t* off)
335 {
336 if (!this->include_section(object, name, shdr))
337 return NULL;
338
339 Output_section* os;
340
341 // In a relocatable link a grouped section must not be combined with
342 // any other sections.
343 if (parameters->options().relocatable()
344 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
345 {
346 name = this->namepool_.add(name, true, NULL);
347 os = this->make_output_section(name, shdr.get_sh_type(),
348 shdr.get_sh_flags());
349 }
350 else
351 {
352 os = this->choose_output_section(object, name, shdr.get_sh_type(),
353 shdr.get_sh_flags(), true);
354 if (os == NULL)
355 return NULL;
356 }
357
358 // FIXME: Handle SHF_LINK_ORDER somewhere.
359
360 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
361 this->script_options_->saw_sections_clause());
362
363 return os;
364 }
365
366 // Handle a relocation section when doing a relocatable link.
367
368 template<int size, bool big_endian>
369 Output_section*
370 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
371 unsigned int,
372 const elfcpp::Shdr<size, big_endian>& shdr,
373 Output_section* data_section,
374 Relocatable_relocs* rr)
375 {
376 gold_assert(parameters->options().relocatable()
377 || parameters->options().emit_relocs());
378
379 int sh_type = shdr.get_sh_type();
380
381 std::string name;
382 if (sh_type == elfcpp::SHT_REL)
383 name = ".rel";
384 else if (sh_type == elfcpp::SHT_RELA)
385 name = ".rela";
386 else
387 gold_unreachable();
388 name += data_section->name();
389
390 Output_section* os = this->choose_output_section(object, name.c_str(),
391 sh_type,
392 shdr.get_sh_flags(),
393 false);
394
395 os->set_should_link_to_symtab();
396 os->set_info_section(data_section);
397
398 Output_section_data* posd;
399 if (sh_type == elfcpp::SHT_REL)
400 {
401 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
402 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
403 size,
404 big_endian>(rr);
405 }
406 else if (sh_type == elfcpp::SHT_RELA)
407 {
408 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
409 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
410 size,
411 big_endian>(rr);
412 }
413 else
414 gold_unreachable();
415
416 os->add_output_section_data(posd);
417 rr->set_output_data(posd);
418
419 return os;
420 }
421
422 // Handle a group section when doing a relocatable link.
423
424 template<int size, bool big_endian>
425 void
426 Layout::layout_group(Symbol_table* symtab,
427 Sized_relobj<size, big_endian>* object,
428 unsigned int,
429 const char* group_section_name,
430 const char* signature,
431 const elfcpp::Shdr<size, big_endian>& shdr,
432 const elfcpp::Elf_Word* contents)
433 {
434 gold_assert(parameters->options().relocatable());
435 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
436 group_section_name = this->namepool_.add(group_section_name, true, NULL);
437 Output_section* os = this->make_output_section(group_section_name,
438 elfcpp::SHT_GROUP,
439 shdr.get_sh_flags());
440
441 // We need to find a symbol with the signature in the symbol table.
442 // If we don't find one now, we need to look again later.
443 Symbol* sym = symtab->lookup(signature, NULL);
444 if (sym != NULL)
445 os->set_info_symndx(sym);
446 else
447 {
448 // We will wind up using a symbol whose name is the signature.
449 // So just put the signature in the symbol name pool to save it.
450 signature = symtab->canonicalize_name(signature);
451 this->group_signatures_.push_back(Group_signature(os, signature));
452 }
453
454 os->set_should_link_to_symtab();
455 os->set_entsize(4);
456
457 section_size_type entry_count =
458 convert_to_section_size_type(shdr.get_sh_size() / 4);
459 Output_section_data* posd =
460 new Output_data_group<size, big_endian>(object, entry_count, contents);
461 os->add_output_section_data(posd);
462 }
463
464 // Special GNU handling of sections name .eh_frame. They will
465 // normally hold exception frame data as defined by the C++ ABI
466 // (http://codesourcery.com/cxx-abi/).
467
468 template<int size, bool big_endian>
469 Output_section*
470 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
471 const unsigned char* symbols,
472 off_t symbols_size,
473 const unsigned char* symbol_names,
474 off_t symbol_names_size,
475 unsigned int shndx,
476 const elfcpp::Shdr<size, big_endian>& shdr,
477 unsigned int reloc_shndx, unsigned int reloc_type,
478 off_t* off)
479 {
480 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
481 gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
482
483 const char* const name = ".eh_frame";
484 Output_section* os = this->choose_output_section(object,
485 name,
486 elfcpp::SHT_PROGBITS,
487 elfcpp::SHF_ALLOC,
488 false);
489 if (os == NULL)
490 return NULL;
491
492 if (this->eh_frame_section_ == NULL)
493 {
494 this->eh_frame_section_ = os;
495 this->eh_frame_data_ = new Eh_frame();
496 os->add_output_section_data(this->eh_frame_data_);
497
498 if (this->options_.eh_frame_hdr())
499 {
500 Output_section* hdr_os =
501 this->choose_output_section(NULL,
502 ".eh_frame_hdr",
503 elfcpp::SHT_PROGBITS,
504 elfcpp::SHF_ALLOC,
505 false);
506
507 if (hdr_os != NULL)
508 {
509 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
510 this->eh_frame_data_);
511 hdr_os->add_output_section_data(hdr_posd);
512
513 hdr_os->set_after_input_sections();
514
515 if (!this->script_options_->saw_phdrs_clause())
516 {
517 Output_segment* hdr_oseg;
518 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
519 elfcpp::PF_R);
520 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
521 }
522
523 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
524 }
525 }
526 }
527
528 gold_assert(this->eh_frame_section_ == os);
529
530 if (this->eh_frame_data_->add_ehframe_input_section(object,
531 symbols,
532 symbols_size,
533 symbol_names,
534 symbol_names_size,
535 shndx,
536 reloc_shndx,
537 reloc_type))
538 *off = -1;
539 else
540 {
541 // We couldn't handle this .eh_frame section for some reason.
542 // Add it as a normal section.
543 bool saw_sections_clause = this->script_options_->saw_sections_clause();
544 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
545 saw_sections_clause);
546 }
547
548 return os;
549 }
550
551 // Add POSD to an output section using NAME, TYPE, and FLAGS.
552
553 void
554 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
555 elfcpp::Elf_Xword flags,
556 Output_section_data* posd)
557 {
558 Output_section* os = this->choose_output_section(NULL, name, type, flags,
559 false);
560 if (os != NULL)
561 os->add_output_section_data(posd);
562 }
563
564 // Map section flags to segment flags.
565
566 elfcpp::Elf_Word
567 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
568 {
569 elfcpp::Elf_Word ret = elfcpp::PF_R;
570 if ((flags & elfcpp::SHF_WRITE) != 0)
571 ret |= elfcpp::PF_W;
572 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
573 ret |= elfcpp::PF_X;
574 return ret;
575 }
576
577 // Sometimes we compress sections. This is typically done for
578 // sections that are not part of normal program execution (such as
579 // .debug_* sections), and where the readers of these sections know
580 // how to deal with compressed sections. (To make it easier for them,
581 // we will rename the ouput section in such cases from .foo to
582 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
583 // doesn't say for certain whether we'll compress -- it depends on
584 // commandline options as well -- just whether this section is a
585 // candidate for compression.
586
587 static bool
588 is_compressible_debug_section(const char* secname)
589 {
590 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
591 }
592
593 // Make a new Output_section, and attach it to segments as
594 // appropriate.
595
596 Output_section*
597 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
598 elfcpp::Elf_Xword flags)
599 {
600 Output_section* os;
601 if ((flags & elfcpp::SHF_ALLOC) == 0
602 && this->options_.compress_debug_sections()
603 && is_compressible_debug_section(name))
604 os = new Output_compressed_section(&this->options_, name, type, flags);
605 else
606 os = new Output_section(name, type, flags);
607
608 this->section_list_.push_back(os);
609
610 if ((flags & elfcpp::SHF_ALLOC) == 0)
611 this->unattached_section_list_.push_back(os);
612 else
613 {
614 if (parameters->options().relocatable())
615 return os;
616
617 // If we have a SECTIONS clause, we can't handle the attachment
618 // to segments until after we've seen all the sections.
619 if (this->script_options_->saw_sections_clause())
620 return os;
621
622 gold_assert(!this->script_options_->saw_phdrs_clause());
623
624 // This output section goes into a PT_LOAD segment.
625
626 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
627
628 // In general the only thing we really care about for PT_LOAD
629 // segments is whether or not they are writable, so that is how
630 // we search for them. People who need segments sorted on some
631 // other basis will have to use a linker script.
632
633 Segment_list::const_iterator p;
634 for (p = this->segment_list_.begin();
635 p != this->segment_list_.end();
636 ++p)
637 {
638 if ((*p)->type() == elfcpp::PT_LOAD
639 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
640 {
641 // If -Tbss was specified, we need to separate the data
642 // and BSS segments.
643 if (this->options_.user_set_Tbss())
644 {
645 if ((type == elfcpp::SHT_NOBITS)
646 == (*p)->has_any_data_sections())
647 continue;
648 }
649
650 (*p)->add_output_section(os, seg_flags);
651 break;
652 }
653 }
654
655 if (p == this->segment_list_.end())
656 {
657 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
658 seg_flags);
659 oseg->add_output_section(os, seg_flags);
660 }
661
662 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
663 // segment.
664 if (type == elfcpp::SHT_NOTE)
665 {
666 // See if we already have an equivalent PT_NOTE segment.
667 for (p = this->segment_list_.begin();
668 p != segment_list_.end();
669 ++p)
670 {
671 if ((*p)->type() == elfcpp::PT_NOTE
672 && (((*p)->flags() & elfcpp::PF_W)
673 == (seg_flags & elfcpp::PF_W)))
674 {
675 (*p)->add_output_section(os, seg_flags);
676 break;
677 }
678 }
679
680 if (p == this->segment_list_.end())
681 {
682 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
683 seg_flags);
684 oseg->add_output_section(os, seg_flags);
685 }
686 }
687
688 // If we see a loadable SHF_TLS section, we create a PT_TLS
689 // segment. There can only be one such segment.
690 if ((flags & elfcpp::SHF_TLS) != 0)
691 {
692 if (this->tls_segment_ == NULL)
693 this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
694 seg_flags);
695 this->tls_segment_->add_output_section(os, seg_flags);
696 }
697 }
698
699 return os;
700 }
701
702 // Return the number of segments we expect to see.
703
704 size_t
705 Layout::expected_segment_count() const
706 {
707 size_t ret = this->segment_list_.size();
708
709 // If we didn't see a SECTIONS clause in a linker script, we should
710 // already have the complete list of segments. Otherwise we ask the
711 // SECTIONS clause how many segments it expects, and add in the ones
712 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
713
714 if (!this->script_options_->saw_sections_clause())
715 return ret;
716 else
717 {
718 const Script_sections* ss = this->script_options_->script_sections();
719 return ret + ss->expected_segment_count(this);
720 }
721 }
722
723 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
724 // is whether we saw a .note.GNU-stack section in the object file.
725 // GNU_STACK_FLAGS is the section flags. The flags give the
726 // protection required for stack memory. We record this in an
727 // executable as a PT_GNU_STACK segment. If an object file does not
728 // have a .note.GNU-stack segment, we must assume that it is an old
729 // object. On some targets that will force an executable stack.
730
731 void
732 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
733 {
734 if (!seen_gnu_stack)
735 this->input_without_gnu_stack_note_ = true;
736 else
737 {
738 this->input_with_gnu_stack_note_ = true;
739 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
740 this->input_requires_executable_stack_ = true;
741 }
742 }
743
744 // Create the dynamic sections which are needed before we read the
745 // relocs.
746
747 void
748 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
749 {
750 if (parameters->doing_static_link())
751 return;
752
753 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
754 elfcpp::SHT_DYNAMIC,
755 (elfcpp::SHF_ALLOC
756 | elfcpp::SHF_WRITE),
757 false);
758
759 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
760 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
761 elfcpp::STV_HIDDEN, 0, false, false);
762
763 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
764
765 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
766 }
767
768 // For each output section whose name can be represented as C symbol,
769 // define __start and __stop symbols for the section. This is a GNU
770 // extension.
771
772 void
773 Layout::define_section_symbols(Symbol_table* symtab)
774 {
775 for (Section_list::const_iterator p = this->section_list_.begin();
776 p != this->section_list_.end();
777 ++p)
778 {
779 const char* const name = (*p)->name();
780 if (name[strspn(name,
781 ("0123456789"
782 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
783 "abcdefghijklmnopqrstuvwxyz"
784 "_"))]
785 == '\0')
786 {
787 const std::string name_string(name);
788 const std::string start_name("__start_" + name_string);
789 const std::string stop_name("__stop_" + name_string);
790
791 symtab->define_in_output_data(start_name.c_str(),
792 NULL, // version
793 *p,
794 0, // value
795 0, // symsize
796 elfcpp::STT_NOTYPE,
797 elfcpp::STB_GLOBAL,
798 elfcpp::STV_DEFAULT,
799 0, // nonvis
800 false, // offset_is_from_end
801 true); // only_if_ref
802
803 symtab->define_in_output_data(stop_name.c_str(),
804 NULL, // version
805 *p,
806 0, // value
807 0, // symsize
808 elfcpp::STT_NOTYPE,
809 elfcpp::STB_GLOBAL,
810 elfcpp::STV_DEFAULT,
811 0, // nonvis
812 true, // offset_is_from_end
813 true); // only_if_ref
814 }
815 }
816 }
817
818 // Define symbols for group signatures.
819
820 void
821 Layout::define_group_signatures(Symbol_table* symtab)
822 {
823 for (Group_signatures::iterator p = this->group_signatures_.begin();
824 p != this->group_signatures_.end();
825 ++p)
826 {
827 Symbol* sym = symtab->lookup(p->signature, NULL);
828 if (sym != NULL)
829 p->section->set_info_symndx(sym);
830 else
831 {
832 // Force the name of the group section to the group
833 // signature, and use the group's section symbol as the
834 // signature symbol.
835 if (strcmp(p->section->name(), p->signature) != 0)
836 {
837 const char* name = this->namepool_.add(p->signature,
838 true, NULL);
839 p->section->set_name(name);
840 }
841 p->section->set_needs_symtab_index();
842 p->section->set_info_section_symndx(p->section);
843 }
844 }
845
846 this->group_signatures_.clear();
847 }
848
849 // Find the first read-only PT_LOAD segment, creating one if
850 // necessary.
851
852 Output_segment*
853 Layout::find_first_load_seg()
854 {
855 for (Segment_list::const_iterator p = this->segment_list_.begin();
856 p != this->segment_list_.end();
857 ++p)
858 {
859 if ((*p)->type() == elfcpp::PT_LOAD
860 && ((*p)->flags() & elfcpp::PF_R) != 0
861 && ((*p)->flags() & elfcpp::PF_W) == 0)
862 return *p;
863 }
864
865 gold_assert(!this->script_options_->saw_phdrs_clause());
866
867 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
868 elfcpp::PF_R);
869 return load_seg;
870 }
871
872 // Finalize the layout. When this is called, we have created all the
873 // output sections and all the output segments which are based on
874 // input sections. We have several things to do, and we have to do
875 // them in the right order, so that we get the right results correctly
876 // and efficiently.
877
878 // 1) Finalize the list of output segments and create the segment
879 // table header.
880
881 // 2) Finalize the dynamic symbol table and associated sections.
882
883 // 3) Determine the final file offset of all the output segments.
884
885 // 4) Determine the final file offset of all the SHF_ALLOC output
886 // sections.
887
888 // 5) Create the symbol table sections and the section name table
889 // section.
890
891 // 6) Finalize the symbol table: set symbol values to their final
892 // value and make a final determination of which symbols are going
893 // into the output symbol table.
894
895 // 7) Create the section table header.
896
897 // 8) Determine the final file offset of all the output sections which
898 // are not SHF_ALLOC, including the section table header.
899
900 // 9) Finalize the ELF file header.
901
902 // This function returns the size of the output file.
903
904 off_t
905 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
906 Target* target, const Task* task)
907 {
908 target->finalize_sections(this);
909
910 this->count_local_symbols(task, input_objects);
911
912 this->create_gold_note();
913 this->create_executable_stack_info(target);
914
915 Output_segment* phdr_seg = NULL;
916 if (!parameters->options().relocatable() && !parameters->doing_static_link())
917 {
918 // There was a dynamic object in the link. We need to create
919 // some information for the dynamic linker.
920
921 // Create the PT_PHDR segment which will hold the program
922 // headers.
923 if (!this->script_options_->saw_phdrs_clause())
924 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
925
926 // Create the dynamic symbol table, including the hash table.
927 Output_section* dynstr;
928 std::vector<Symbol*> dynamic_symbols;
929 unsigned int local_dynamic_count;
930 Versions versions(*this->script_options()->version_script_info(),
931 &this->dynpool_);
932 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
933 &local_dynamic_count, &dynamic_symbols,
934 &versions);
935
936 // Create the .interp section to hold the name of the
937 // interpreter, and put it in a PT_INTERP segment.
938 if (!parameters->options().shared())
939 this->create_interp(target);
940
941 // Finish the .dynamic section to hold the dynamic data, and put
942 // it in a PT_DYNAMIC segment.
943 this->finish_dynamic_section(input_objects, symtab);
944
945 // We should have added everything we need to the dynamic string
946 // table.
947 this->dynpool_.set_string_offsets();
948
949 // Create the version sections. We can't do this until the
950 // dynamic string table is complete.
951 this->create_version_sections(&versions, symtab, local_dynamic_count,
952 dynamic_symbols, dynstr);
953 }
954
955 // If there is a SECTIONS clause, put all the input sections into
956 // the required order.
957 Output_segment* load_seg;
958 if (this->script_options_->saw_sections_clause())
959 load_seg = this->set_section_addresses_from_script(symtab);
960 else if (parameters->options().relocatable())
961 load_seg = NULL;
962 else
963 load_seg = this->find_first_load_seg();
964
965 if (this->options_.oformat() != General_options::OBJECT_FORMAT_ELF)
966 load_seg = NULL;
967
968 gold_assert(phdr_seg == NULL || load_seg != NULL);
969
970 // Lay out the segment headers.
971 Output_segment_headers* segment_headers;
972 if (parameters->options().relocatable())
973 segment_headers = NULL;
974 else
975 {
976 segment_headers = new Output_segment_headers(this->segment_list_);
977 if (load_seg != NULL)
978 load_seg->add_initial_output_data(segment_headers);
979 if (phdr_seg != NULL)
980 phdr_seg->add_initial_output_data(segment_headers);
981 }
982
983 // Lay out the file header.
984 Output_file_header* file_header;
985 file_header = new Output_file_header(target, symtab, segment_headers,
986 this->options_.entry());
987 if (load_seg != NULL)
988 load_seg->add_initial_output_data(file_header);
989
990 this->special_output_list_.push_back(file_header);
991 if (segment_headers != NULL)
992 this->special_output_list_.push_back(segment_headers);
993
994 if (this->script_options_->saw_phdrs_clause()
995 && !parameters->options().relocatable())
996 {
997 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
998 // clause in a linker script.
999 Script_sections* ss = this->script_options_->script_sections();
1000 ss->put_headers_in_phdrs(file_header, segment_headers);
1001 }
1002
1003 // We set the output section indexes in set_segment_offsets and
1004 // set_section_indexes.
1005 unsigned int shndx = 1;
1006
1007 // Set the file offsets of all the segments, and all the sections
1008 // they contain.
1009 off_t off;
1010 if (!parameters->options().relocatable())
1011 off = this->set_segment_offsets(target, load_seg, &shndx);
1012 else
1013 off = this->set_relocatable_section_offsets(file_header, &shndx);
1014
1015 // Set the file offsets of all the non-data sections we've seen so
1016 // far which don't have to wait for the input sections. We need
1017 // this in order to finalize local symbols in non-allocated
1018 // sections.
1019 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1020
1021 // Create the symbol table sections.
1022 this->create_symtab_sections(input_objects, symtab, &off);
1023 if (!parameters->doing_static_link())
1024 this->assign_local_dynsym_offsets(input_objects);
1025
1026 // Process any symbol assignments from a linker script. This must
1027 // be called after the symbol table has been finalized.
1028 this->script_options_->finalize_symbols(symtab, this);
1029
1030 // Create the .shstrtab section.
1031 Output_section* shstrtab_section = this->create_shstrtab();
1032
1033 // Set the file offsets of the rest of the non-data sections which
1034 // don't have to wait for the input sections.
1035 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1036
1037 // Now that all sections have been created, set the section indexes.
1038 shndx = this->set_section_indexes(shndx);
1039
1040 // Create the section table header.
1041 this->create_shdrs(&off);
1042
1043 // If there are no sections which require postprocessing, we can
1044 // handle the section names now, and avoid a resize later.
1045 if (!this->any_postprocessing_sections_)
1046 off = this->set_section_offsets(off,
1047 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1048
1049 file_header->set_section_info(this->section_headers_, shstrtab_section);
1050
1051 // Now we know exactly where everything goes in the output file
1052 // (except for non-allocated sections which require postprocessing).
1053 Output_data::layout_complete();
1054
1055 this->output_file_size_ = off;
1056
1057 return off;
1058 }
1059
1060 // Create a .note section for an executable or shared library. This
1061 // records the version of gold used to create the binary.
1062
1063 void
1064 Layout::create_gold_note()
1065 {
1066 if (parameters->options().relocatable())
1067 return;
1068
1069 // Authorities all agree that the values in a .note field should
1070 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1071 // they differ on what the alignment is for 64-bit binaries.
1072 // The GABI says unambiguously they take 8-byte alignment:
1073 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1074 // Other documentation says alignment should always be 4 bytes:
1075 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1076 // GNU ld and GNU readelf both support the latter (at least as of
1077 // version 2.16.91), and glibc always generates the latter for
1078 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1079 // here.
1080 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1081 const int size = parameters->target().get_size();
1082 #else
1083 const int size = 32;
1084 #endif
1085
1086 // The contents of the .note section.
1087 const char* name = "GNU";
1088 std::string desc(std::string("gold ") + gold::get_version_string());
1089 size_t namesz = strlen(name) + 1;
1090 size_t aligned_namesz = align_address(namesz, size / 8);
1091 size_t descsz = desc.length() + 1;
1092 size_t aligned_descsz = align_address(descsz, size / 8);
1093 const int note_type = 4;
1094
1095 size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
1096
1097 unsigned char buffer[128];
1098 gold_assert(sizeof buffer >= notesz);
1099 memset(buffer, 0, notesz);
1100
1101 bool is_big_endian = parameters->target().is_big_endian();
1102
1103 if (size == 32)
1104 {
1105 if (!is_big_endian)
1106 {
1107 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1108 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1109 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1110 }
1111 else
1112 {
1113 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1114 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1115 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1116 }
1117 }
1118 else if (size == 64)
1119 {
1120 if (!is_big_endian)
1121 {
1122 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1123 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1124 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1125 }
1126 else
1127 {
1128 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1129 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1130 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1131 }
1132 }
1133 else
1134 gold_unreachable();
1135
1136 memcpy(buffer + 3 * (size / 8), name, namesz);
1137 memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
1138
1139 const char* note_name = this->namepool_.add(".note", false, NULL);
1140 Output_section* os = this->make_output_section(note_name,
1141 elfcpp::SHT_NOTE,
1142 0);
1143 Output_section_data* posd = new Output_data_const(buffer, notesz,
1144 size / 8);
1145 os->add_output_section_data(posd);
1146 }
1147
1148 // Record whether the stack should be executable. This can be set
1149 // from the command line using the -z execstack or -z noexecstack
1150 // options. Otherwise, if any input file has a .note.GNU-stack
1151 // section with the SHF_EXECINSTR flag set, the stack should be
1152 // executable. Otherwise, if at least one input file a
1153 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1154 // section, we use the target default for whether the stack should be
1155 // executable. Otherwise, we don't generate a stack note. When
1156 // generating a object file, we create a .note.GNU-stack section with
1157 // the appropriate marking. When generating an executable or shared
1158 // library, we create a PT_GNU_STACK segment.
1159
1160 void
1161 Layout::create_executable_stack_info(const Target* target)
1162 {
1163 bool is_stack_executable;
1164 if (this->options_.is_execstack_set())
1165 is_stack_executable = this->options_.is_stack_executable();
1166 else if (!this->input_with_gnu_stack_note_)
1167 return;
1168 else
1169 {
1170 if (this->input_requires_executable_stack_)
1171 is_stack_executable = true;
1172 else if (this->input_without_gnu_stack_note_)
1173 is_stack_executable = target->is_default_stack_executable();
1174 else
1175 is_stack_executable = false;
1176 }
1177
1178 if (parameters->options().relocatable())
1179 {
1180 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1181 elfcpp::Elf_Xword flags = 0;
1182 if (is_stack_executable)
1183 flags |= elfcpp::SHF_EXECINSTR;
1184 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1185 }
1186 else
1187 {
1188 if (this->script_options_->saw_phdrs_clause())
1189 return;
1190 int flags = elfcpp::PF_R | elfcpp::PF_W;
1191 if (is_stack_executable)
1192 flags |= elfcpp::PF_X;
1193 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1194 }
1195 }
1196
1197 // Return whether SEG1 should be before SEG2 in the output file. This
1198 // is based entirely on the segment type and flags. When this is
1199 // called the segment addresses has normally not yet been set.
1200
1201 bool
1202 Layout::segment_precedes(const Output_segment* seg1,
1203 const Output_segment* seg2)
1204 {
1205 elfcpp::Elf_Word type1 = seg1->type();
1206 elfcpp::Elf_Word type2 = seg2->type();
1207
1208 // The single PT_PHDR segment is required to precede any loadable
1209 // segment. We simply make it always first.
1210 if (type1 == elfcpp::PT_PHDR)
1211 {
1212 gold_assert(type2 != elfcpp::PT_PHDR);
1213 return true;
1214 }
1215 if (type2 == elfcpp::PT_PHDR)
1216 return false;
1217
1218 // The single PT_INTERP segment is required to precede any loadable
1219 // segment. We simply make it always second.
1220 if (type1 == elfcpp::PT_INTERP)
1221 {
1222 gold_assert(type2 != elfcpp::PT_INTERP);
1223 return true;
1224 }
1225 if (type2 == elfcpp::PT_INTERP)
1226 return false;
1227
1228 // We then put PT_LOAD segments before any other segments.
1229 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1230 return true;
1231 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1232 return false;
1233
1234 // We put the PT_TLS segment last, because that is where the dynamic
1235 // linker expects to find it (this is just for efficiency; other
1236 // positions would also work correctly).
1237 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1238 return false;
1239 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1240 return true;
1241
1242 const elfcpp::Elf_Word flags1 = seg1->flags();
1243 const elfcpp::Elf_Word flags2 = seg2->flags();
1244
1245 // The order of non-PT_LOAD segments is unimportant. We simply sort
1246 // by the numeric segment type and flags values. There should not
1247 // be more than one segment with the same type and flags.
1248 if (type1 != elfcpp::PT_LOAD)
1249 {
1250 if (type1 != type2)
1251 return type1 < type2;
1252 gold_assert(flags1 != flags2);
1253 return flags1 < flags2;
1254 }
1255
1256 // If the addresses are set already, sort by load address.
1257 if (seg1->are_addresses_set())
1258 {
1259 if (!seg2->are_addresses_set())
1260 return true;
1261
1262 unsigned int section_count1 = seg1->output_section_count();
1263 unsigned int section_count2 = seg2->output_section_count();
1264 if (section_count1 == 0 && section_count2 > 0)
1265 return true;
1266 if (section_count1 > 0 && section_count2 == 0)
1267 return false;
1268
1269 uint64_t paddr1 = seg1->first_section_load_address();
1270 uint64_t paddr2 = seg2->first_section_load_address();
1271 if (paddr1 != paddr2)
1272 return paddr1 < paddr2;
1273 }
1274 else if (seg2->are_addresses_set())
1275 return false;
1276
1277 // We sort PT_LOAD segments based on the flags. Readonly segments
1278 // come before writable segments. Then writable segments with data
1279 // come before writable segments without data. Then executable
1280 // segments come before non-executable segments. Then the unlikely
1281 // case of a non-readable segment comes before the normal case of a
1282 // readable segment. If there are multiple segments with the same
1283 // type and flags, we require that the address be set, and we sort
1284 // by virtual address and then physical address.
1285 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1286 return (flags1 & elfcpp::PF_W) == 0;
1287 if ((flags1 & elfcpp::PF_W) != 0
1288 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1289 return seg1->has_any_data_sections();
1290 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1291 return (flags1 & elfcpp::PF_X) != 0;
1292 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1293 return (flags1 & elfcpp::PF_R) == 0;
1294
1295 // We shouldn't get here--we shouldn't create segments which we
1296 // can't distinguish.
1297 gold_unreachable();
1298 }
1299
1300 // Set the file offsets of all the segments, and all the sections they
1301 // contain. They have all been created. LOAD_SEG must be be laid out
1302 // first. Return the offset of the data to follow.
1303
1304 off_t
1305 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1306 unsigned int *pshndx)
1307 {
1308 // Sort them into the final order.
1309 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1310 Layout::Compare_segments());
1311
1312 // Find the PT_LOAD segments, and set their addresses and offsets
1313 // and their section's addresses and offsets.
1314 uint64_t addr;
1315 if (this->options_.user_set_Ttext())
1316 addr = this->options_.Ttext();
1317 else if (parameters->options().shared())
1318 addr = 0;
1319 else
1320 addr = target->default_text_segment_address();
1321 off_t off = 0;
1322
1323 // If LOAD_SEG is NULL, then the file header and segment headers
1324 // will not be loadable. But they still need to be at offset 0 in
1325 // the file. Set their offsets now.
1326 if (load_seg == NULL)
1327 {
1328 for (Data_list::iterator p = this->special_output_list_.begin();
1329 p != this->special_output_list_.end();
1330 ++p)
1331 {
1332 off = align_address(off, (*p)->addralign());
1333 (*p)->set_address_and_file_offset(0, off);
1334 off += (*p)->data_size();
1335 }
1336 }
1337
1338 bool was_readonly = false;
1339 for (Segment_list::iterator p = this->segment_list_.begin();
1340 p != this->segment_list_.end();
1341 ++p)
1342 {
1343 if ((*p)->type() == elfcpp::PT_LOAD)
1344 {
1345 if (load_seg != NULL && load_seg != *p)
1346 gold_unreachable();
1347 load_seg = NULL;
1348
1349 bool are_addresses_set = (*p)->are_addresses_set();
1350 if (are_addresses_set)
1351 {
1352 // When it comes to setting file offsets, we care about
1353 // the physical address.
1354 addr = (*p)->paddr();
1355 }
1356 else if (this->options_.user_set_Tdata()
1357 && ((*p)->flags() & elfcpp::PF_W) != 0
1358 && (!this->options_.user_set_Tbss()
1359 || (*p)->has_any_data_sections()))
1360 {
1361 addr = this->options_.Tdata();
1362 are_addresses_set = true;
1363 }
1364 else if (this->options_.user_set_Tbss()
1365 && ((*p)->flags() & elfcpp::PF_W) != 0
1366 && !(*p)->has_any_data_sections())
1367 {
1368 addr = this->options_.Tbss();
1369 are_addresses_set = true;
1370 }
1371
1372 uint64_t orig_addr = addr;
1373 uint64_t orig_off = off;
1374
1375 uint64_t aligned_addr = 0;
1376 uint64_t abi_pagesize = target->abi_pagesize();
1377
1378 // FIXME: This should depend on the -n and -N options.
1379 (*p)->set_minimum_p_align(target->common_pagesize());
1380
1381 if (are_addresses_set)
1382 {
1383 // Adjust the file offset to the same address modulo the
1384 // page size.
1385 uint64_t unsigned_off = off;
1386 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1387 | (addr & (abi_pagesize - 1)));
1388 if (aligned_off < unsigned_off)
1389 aligned_off += abi_pagesize;
1390 off = aligned_off;
1391 }
1392 else
1393 {
1394 // If the last segment was readonly, and this one is
1395 // not, then skip the address forward one page,
1396 // maintaining the same position within the page. This
1397 // lets us store both segments overlapping on a single
1398 // page in the file, but the loader will put them on
1399 // different pages in memory.
1400
1401 addr = align_address(addr, (*p)->maximum_alignment());
1402 aligned_addr = addr;
1403
1404 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1405 {
1406 if ((addr & (abi_pagesize - 1)) != 0)
1407 addr = addr + abi_pagesize;
1408 }
1409
1410 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1411 }
1412
1413 unsigned int shndx_hold = *pshndx;
1414 uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1415 pshndx);
1416
1417 // Now that we know the size of this segment, we may be able
1418 // to save a page in memory, at the cost of wasting some
1419 // file space, by instead aligning to the start of a new
1420 // page. Here we use the real machine page size rather than
1421 // the ABI mandated page size.
1422
1423 if (!are_addresses_set && aligned_addr != addr)
1424 {
1425 uint64_t common_pagesize = target->common_pagesize();
1426 uint64_t first_off = (common_pagesize
1427 - (aligned_addr
1428 & (common_pagesize - 1)));
1429 uint64_t last_off = new_addr & (common_pagesize - 1);
1430 if (first_off > 0
1431 && last_off > 0
1432 && ((aligned_addr & ~ (common_pagesize - 1))
1433 != (new_addr & ~ (common_pagesize - 1)))
1434 && first_off + last_off <= common_pagesize)
1435 {
1436 *pshndx = shndx_hold;
1437 addr = align_address(aligned_addr, common_pagesize);
1438 addr = align_address(addr, (*p)->maximum_alignment());
1439 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1440 new_addr = (*p)->set_section_addresses(true, addr, &off,
1441 pshndx);
1442 }
1443 }
1444
1445 addr = new_addr;
1446
1447 if (((*p)->flags() & elfcpp::PF_W) == 0)
1448 was_readonly = true;
1449 }
1450 }
1451
1452 // Handle the non-PT_LOAD segments, setting their offsets from their
1453 // section's offsets.
1454 for (Segment_list::iterator p = this->segment_list_.begin();
1455 p != this->segment_list_.end();
1456 ++p)
1457 {
1458 if ((*p)->type() != elfcpp::PT_LOAD)
1459 (*p)->set_offset();
1460 }
1461
1462 // Set the TLS offsets for each section in the PT_TLS segment.
1463 if (this->tls_segment_ != NULL)
1464 this->tls_segment_->set_tls_offsets();
1465
1466 return off;
1467 }
1468
1469 // Set the offsets of all the allocated sections when doing a
1470 // relocatable link. This does the same jobs as set_segment_offsets,
1471 // only for a relocatable link.
1472
1473 off_t
1474 Layout::set_relocatable_section_offsets(Output_data* file_header,
1475 unsigned int *pshndx)
1476 {
1477 off_t off = 0;
1478
1479 file_header->set_address_and_file_offset(0, 0);
1480 off += file_header->data_size();
1481
1482 for (Section_list::iterator p = this->section_list_.begin();
1483 p != this->section_list_.end();
1484 ++p)
1485 {
1486 // We skip unallocated sections here, except that group sections
1487 // have to come first.
1488 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1489 && (*p)->type() != elfcpp::SHT_GROUP)
1490 continue;
1491
1492 off = align_address(off, (*p)->addralign());
1493
1494 // The linker script might have set the address.
1495 if (!(*p)->is_address_valid())
1496 (*p)->set_address(0);
1497 (*p)->set_file_offset(off);
1498 (*p)->finalize_data_size();
1499 off += (*p)->data_size();
1500
1501 (*p)->set_out_shndx(*pshndx);
1502 ++*pshndx;
1503 }
1504
1505 return off;
1506 }
1507
1508 // Set the file offset of all the sections not associated with a
1509 // segment.
1510
1511 off_t
1512 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1513 {
1514 for (Section_list::iterator p = this->unattached_section_list_.begin();
1515 p != this->unattached_section_list_.end();
1516 ++p)
1517 {
1518 // The symtab section is handled in create_symtab_sections.
1519 if (*p == this->symtab_section_)
1520 continue;
1521
1522 // If we've already set the data size, don't set it again.
1523 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1524 continue;
1525
1526 if (pass == BEFORE_INPUT_SECTIONS_PASS
1527 && (*p)->requires_postprocessing())
1528 {
1529 (*p)->create_postprocessing_buffer();
1530 this->any_postprocessing_sections_ = true;
1531 }
1532
1533 if (pass == BEFORE_INPUT_SECTIONS_PASS
1534 && (*p)->after_input_sections())
1535 continue;
1536 else if (pass == POSTPROCESSING_SECTIONS_PASS
1537 && (!(*p)->after_input_sections()
1538 || (*p)->type() == elfcpp::SHT_STRTAB))
1539 continue;
1540 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1541 && (!(*p)->after_input_sections()
1542 || (*p)->type() != elfcpp::SHT_STRTAB))
1543 continue;
1544
1545 off = align_address(off, (*p)->addralign());
1546 (*p)->set_file_offset(off);
1547 (*p)->finalize_data_size();
1548 off += (*p)->data_size();
1549
1550 // At this point the name must be set.
1551 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1552 this->namepool_.add((*p)->name(), false, NULL);
1553 }
1554 return off;
1555 }
1556
1557 // Set the section indexes of all the sections not associated with a
1558 // segment.
1559
1560 unsigned int
1561 Layout::set_section_indexes(unsigned int shndx)
1562 {
1563 const bool output_is_object = parameters->options().relocatable();
1564 for (Section_list::iterator p = this->unattached_section_list_.begin();
1565 p != this->unattached_section_list_.end();
1566 ++p)
1567 {
1568 // In a relocatable link, we already did group sections.
1569 if (output_is_object
1570 && (*p)->type() == elfcpp::SHT_GROUP)
1571 continue;
1572
1573 (*p)->set_out_shndx(shndx);
1574 ++shndx;
1575 }
1576 return shndx;
1577 }
1578
1579 // Set the section addresses according to the linker script. This is
1580 // only called when we see a SECTIONS clause. This returns the
1581 // program segment which should hold the file header and segment
1582 // headers, if any. It will return NULL if they should not be in a
1583 // segment.
1584
1585 Output_segment*
1586 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1587 {
1588 Script_sections* ss = this->script_options_->script_sections();
1589 gold_assert(ss->saw_sections_clause());
1590
1591 // Place each orphaned output section in the script.
1592 for (Section_list::iterator p = this->section_list_.begin();
1593 p != this->section_list_.end();
1594 ++p)
1595 {
1596 if (!(*p)->found_in_sections_clause())
1597 ss->place_orphan(*p);
1598 }
1599
1600 return this->script_options_->set_section_addresses(symtab, this);
1601 }
1602
1603 // Count the local symbols in the regular symbol table and the dynamic
1604 // symbol table, and build the respective string pools.
1605
1606 void
1607 Layout::count_local_symbols(const Task* task,
1608 const Input_objects* input_objects)
1609 {
1610 // First, figure out an upper bound on the number of symbols we'll
1611 // be inserting into each pool. This helps us create the pools with
1612 // the right size, to avoid unnecessary hashtable resizing.
1613 unsigned int symbol_count = 0;
1614 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1615 p != input_objects->relobj_end();
1616 ++p)
1617 symbol_count += (*p)->local_symbol_count();
1618
1619 // Go from "upper bound" to "estimate." We overcount for two
1620 // reasons: we double-count symbols that occur in more than one
1621 // object file, and we count symbols that are dropped from the
1622 // output. Add it all together and assume we overcount by 100%.
1623 symbol_count /= 2;
1624
1625 // We assume all symbols will go into both the sympool and dynpool.
1626 this->sympool_.reserve(symbol_count);
1627 this->dynpool_.reserve(symbol_count);
1628
1629 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1630 p != input_objects->relobj_end();
1631 ++p)
1632 {
1633 Task_lock_obj<Object> tlo(task, *p);
1634 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1635 }
1636 }
1637
1638 // Create the symbol table sections. Here we also set the final
1639 // values of the symbols. At this point all the loadable sections are
1640 // fully laid out.
1641
1642 void
1643 Layout::create_symtab_sections(const Input_objects* input_objects,
1644 Symbol_table* symtab,
1645 off_t* poff)
1646 {
1647 int symsize;
1648 unsigned int align;
1649 if (parameters->target().get_size() == 32)
1650 {
1651 symsize = elfcpp::Elf_sizes<32>::sym_size;
1652 align = 4;
1653 }
1654 else if (parameters->target().get_size() == 64)
1655 {
1656 symsize = elfcpp::Elf_sizes<64>::sym_size;
1657 align = 8;
1658 }
1659 else
1660 gold_unreachable();
1661
1662 off_t off = *poff;
1663 off = align_address(off, align);
1664 off_t startoff = off;
1665
1666 // Save space for the dummy symbol at the start of the section. We
1667 // never bother to write this out--it will just be left as zero.
1668 off += symsize;
1669 unsigned int local_symbol_index = 1;
1670
1671 // Add STT_SECTION symbols for each Output section which needs one.
1672 for (Section_list::iterator p = this->section_list_.begin();
1673 p != this->section_list_.end();
1674 ++p)
1675 {
1676 if (!(*p)->needs_symtab_index())
1677 (*p)->set_symtab_index(-1U);
1678 else
1679 {
1680 (*p)->set_symtab_index(local_symbol_index);
1681 ++local_symbol_index;
1682 off += symsize;
1683 }
1684 }
1685
1686 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1687 p != input_objects->relobj_end();
1688 ++p)
1689 {
1690 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1691 off);
1692 off += (index - local_symbol_index) * symsize;
1693 local_symbol_index = index;
1694 }
1695
1696 unsigned int local_symcount = local_symbol_index;
1697 gold_assert(local_symcount * symsize == off - startoff);
1698
1699 off_t dynoff;
1700 size_t dyn_global_index;
1701 size_t dyncount;
1702 if (this->dynsym_section_ == NULL)
1703 {
1704 dynoff = 0;
1705 dyn_global_index = 0;
1706 dyncount = 0;
1707 }
1708 else
1709 {
1710 dyn_global_index = this->dynsym_section_->info();
1711 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1712 dynoff = this->dynsym_section_->offset() + locsize;
1713 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1714 gold_assert(static_cast<off_t>(dyncount * symsize)
1715 == this->dynsym_section_->data_size() - locsize);
1716 }
1717
1718 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1719 &this->sympool_, &local_symcount);
1720
1721 if (!parameters->options().strip_all())
1722 {
1723 this->sympool_.set_string_offsets();
1724
1725 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1726 Output_section* osymtab = this->make_output_section(symtab_name,
1727 elfcpp::SHT_SYMTAB,
1728 0);
1729 this->symtab_section_ = osymtab;
1730
1731 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1732 align);
1733 osymtab->add_output_section_data(pos);
1734
1735 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1736 Output_section* ostrtab = this->make_output_section(strtab_name,
1737 elfcpp::SHT_STRTAB,
1738 0);
1739
1740 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1741 ostrtab->add_output_section_data(pstr);
1742
1743 osymtab->set_file_offset(startoff);
1744 osymtab->finalize_data_size();
1745 osymtab->set_link_section(ostrtab);
1746 osymtab->set_info(local_symcount);
1747 osymtab->set_entsize(symsize);
1748
1749 *poff = off;
1750 }
1751 }
1752
1753 // Create the .shstrtab section, which holds the names of the
1754 // sections. At the time this is called, we have created all the
1755 // output sections except .shstrtab itself.
1756
1757 Output_section*
1758 Layout::create_shstrtab()
1759 {
1760 // FIXME: We don't need to create a .shstrtab section if we are
1761 // stripping everything.
1762
1763 const char* name = this->namepool_.add(".shstrtab", false, NULL);
1764
1765 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1766
1767 // We can't write out this section until we've set all the section
1768 // names, and we don't set the names of compressed output sections
1769 // until relocations are complete.
1770 os->set_after_input_sections();
1771
1772 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1773 os->add_output_section_data(posd);
1774
1775 return os;
1776 }
1777
1778 // Create the section headers. SIZE is 32 or 64. OFF is the file
1779 // offset.
1780
1781 void
1782 Layout::create_shdrs(off_t* poff)
1783 {
1784 Output_section_headers* oshdrs;
1785 oshdrs = new Output_section_headers(this,
1786 &this->segment_list_,
1787 &this->section_list_,
1788 &this->unattached_section_list_,
1789 &this->namepool_);
1790 off_t off = align_address(*poff, oshdrs->addralign());
1791 oshdrs->set_address_and_file_offset(0, off);
1792 off += oshdrs->data_size();
1793 *poff = off;
1794 this->section_headers_ = oshdrs;
1795 }
1796
1797 // Create the dynamic symbol table.
1798
1799 void
1800 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1801 Symbol_table* symtab,
1802 Output_section **pdynstr,
1803 unsigned int* plocal_dynamic_count,
1804 std::vector<Symbol*>* pdynamic_symbols,
1805 Versions* pversions)
1806 {
1807 // Count all the symbols in the dynamic symbol table, and set the
1808 // dynamic symbol indexes.
1809
1810 // Skip symbol 0, which is always all zeroes.
1811 unsigned int index = 1;
1812
1813 // Add STT_SECTION symbols for each Output section which needs one.
1814 for (Section_list::iterator p = this->section_list_.begin();
1815 p != this->section_list_.end();
1816 ++p)
1817 {
1818 if (!(*p)->needs_dynsym_index())
1819 (*p)->set_dynsym_index(-1U);
1820 else
1821 {
1822 (*p)->set_dynsym_index(index);
1823 ++index;
1824 }
1825 }
1826
1827 // Count the local symbols that need to go in the dynamic symbol table,
1828 // and set the dynamic symbol indexes.
1829 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1830 p != input_objects->relobj_end();
1831 ++p)
1832 {
1833 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1834 index = new_index;
1835 }
1836
1837 unsigned int local_symcount = index;
1838 *plocal_dynamic_count = local_symcount;
1839
1840 // FIXME: We have to tell set_dynsym_indexes whether the
1841 // -E/--export-dynamic option was used.
1842 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1843 &this->dynpool_, pversions);
1844
1845 int symsize;
1846 unsigned int align;
1847 const int size = parameters->target().get_size();
1848 if (size == 32)
1849 {
1850 symsize = elfcpp::Elf_sizes<32>::sym_size;
1851 align = 4;
1852 }
1853 else if (size == 64)
1854 {
1855 symsize = elfcpp::Elf_sizes<64>::sym_size;
1856 align = 8;
1857 }
1858 else
1859 gold_unreachable();
1860
1861 // Create the dynamic symbol table section.
1862
1863 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
1864 elfcpp::SHT_DYNSYM,
1865 elfcpp::SHF_ALLOC,
1866 false);
1867
1868 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1869 align);
1870 dynsym->add_output_section_data(odata);
1871
1872 dynsym->set_info(local_symcount);
1873 dynsym->set_entsize(symsize);
1874 dynsym->set_addralign(align);
1875
1876 this->dynsym_section_ = dynsym;
1877
1878 Output_data_dynamic* const odyn = this->dynamic_data_;
1879 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1880 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1881
1882 // Create the dynamic string table section.
1883
1884 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
1885 elfcpp::SHT_STRTAB,
1886 elfcpp::SHF_ALLOC,
1887 false);
1888
1889 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1890 dynstr->add_output_section_data(strdata);
1891
1892 dynsym->set_link_section(dynstr);
1893 this->dynamic_section_->set_link_section(dynstr);
1894
1895 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1896 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1897
1898 *pdynstr = dynstr;
1899
1900 // Create the hash tables.
1901
1902 // FIXME: We need an option to create a GNU hash table.
1903
1904 unsigned char* phash;
1905 unsigned int hashlen;
1906 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1907 &phash, &hashlen);
1908
1909 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
1910 elfcpp::SHT_HASH,
1911 elfcpp::SHF_ALLOC,
1912 false);
1913
1914 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1915 hashlen,
1916 align);
1917 hashsec->add_output_section_data(hashdata);
1918
1919 hashsec->set_link_section(dynsym);
1920 hashsec->set_entsize(4);
1921
1922 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1923 }
1924
1925 // Assign offsets to each local portion of the dynamic symbol table.
1926
1927 void
1928 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1929 {
1930 Output_section* dynsym = this->dynsym_section_;
1931 gold_assert(dynsym != NULL);
1932
1933 off_t off = dynsym->offset();
1934
1935 // Skip the dummy symbol at the start of the section.
1936 off += dynsym->entsize();
1937
1938 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1939 p != input_objects->relobj_end();
1940 ++p)
1941 {
1942 unsigned int count = (*p)->set_local_dynsym_offset(off);
1943 off += count * dynsym->entsize();
1944 }
1945 }
1946
1947 // Create the version sections.
1948
1949 void
1950 Layout::create_version_sections(const Versions* versions,
1951 const Symbol_table* symtab,
1952 unsigned int local_symcount,
1953 const std::vector<Symbol*>& dynamic_symbols,
1954 const Output_section* dynstr)
1955 {
1956 if (!versions->any_defs() && !versions->any_needs())
1957 return;
1958
1959 switch (parameters->size_and_endianness())
1960 {
1961 #ifdef HAVE_TARGET_32_LITTLE
1962 case Parameters::TARGET_32_LITTLE:
1963 this->sized_create_version_sections
1964 SELECT_SIZE_ENDIAN_NAME(32, false)(
1965 versions, symtab, local_symcount, dynamic_symbols, dynstr
1966 SELECT_SIZE_ENDIAN(32, false));
1967 break;
1968 #endif
1969 #ifdef HAVE_TARGET_32_BIG
1970 case Parameters::TARGET_32_BIG:
1971 this->sized_create_version_sections
1972 SELECT_SIZE_ENDIAN_NAME(32, true)(
1973 versions, symtab, local_symcount, dynamic_symbols, dynstr
1974 SELECT_SIZE_ENDIAN(32, true));
1975 break;
1976 #endif
1977 #ifdef HAVE_TARGET_64_LITTLE
1978 case Parameters::TARGET_64_LITTLE:
1979 this->sized_create_version_sections
1980 SELECT_SIZE_ENDIAN_NAME(64, false)(
1981 versions, symtab, local_symcount, dynamic_symbols, dynstr
1982 SELECT_SIZE_ENDIAN(64, false));
1983 break;
1984 #endif
1985 #ifdef HAVE_TARGET_64_BIG
1986 case Parameters::TARGET_64_BIG:
1987 this->sized_create_version_sections
1988 SELECT_SIZE_ENDIAN_NAME(64, true)(
1989 versions, symtab, local_symcount, dynamic_symbols, dynstr
1990 SELECT_SIZE_ENDIAN(64, true));
1991 break;
1992 #endif
1993 default:
1994 gold_unreachable();
1995 }
1996 }
1997
1998 // Create the version sections, sized version.
1999
2000 template<int size, bool big_endian>
2001 void
2002 Layout::sized_create_version_sections(
2003 const Versions* versions,
2004 const Symbol_table* symtab,
2005 unsigned int local_symcount,
2006 const std::vector<Symbol*>& dynamic_symbols,
2007 const Output_section* dynstr
2008 ACCEPT_SIZE_ENDIAN)
2009 {
2010 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2011 elfcpp::SHT_GNU_versym,
2012 elfcpp::SHF_ALLOC,
2013 false);
2014
2015 unsigned char* vbuf;
2016 unsigned int vsize;
2017 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2018 symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
2019 SELECT_SIZE_ENDIAN(size, big_endian));
2020
2021 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
2022
2023 vsec->add_output_section_data(vdata);
2024 vsec->set_entsize(2);
2025 vsec->set_link_section(this->dynsym_section_);
2026
2027 Output_data_dynamic* const odyn = this->dynamic_data_;
2028 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2029
2030 if (versions->any_defs())
2031 {
2032 Output_section* vdsec;
2033 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2034 elfcpp::SHT_GNU_verdef,
2035 elfcpp::SHF_ALLOC,
2036 false);
2037
2038 unsigned char* vdbuf;
2039 unsigned int vdsize;
2040 unsigned int vdentries;
2041 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2042 &this->dynpool_, &vdbuf, &vdsize, &vdentries
2043 SELECT_SIZE_ENDIAN(size, big_endian));
2044
2045 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2046 vdsize,
2047 4);
2048
2049 vdsec->add_output_section_data(vddata);
2050 vdsec->set_link_section(dynstr);
2051 vdsec->set_info(vdentries);
2052
2053 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2054 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2055 }
2056
2057 if (versions->any_needs())
2058 {
2059 Output_section* vnsec;
2060 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2061 elfcpp::SHT_GNU_verneed,
2062 elfcpp::SHF_ALLOC,
2063 false);
2064
2065 unsigned char* vnbuf;
2066 unsigned int vnsize;
2067 unsigned int vnentries;
2068 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
2069 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
2070 SELECT_SIZE_ENDIAN(size, big_endian));
2071
2072 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2073 vnsize,
2074 4);
2075
2076 vnsec->add_output_section_data(vndata);
2077 vnsec->set_link_section(dynstr);
2078 vnsec->set_info(vnentries);
2079
2080 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2081 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2082 }
2083 }
2084
2085 // Create the .interp section and PT_INTERP segment.
2086
2087 void
2088 Layout::create_interp(const Target* target)
2089 {
2090 const char* interp = this->options_.dynamic_linker();
2091 if (interp == NULL)
2092 {
2093 interp = target->dynamic_linker();
2094 gold_assert(interp != NULL);
2095 }
2096
2097 size_t len = strlen(interp) + 1;
2098
2099 Output_section_data* odata = new Output_data_const(interp, len, 1);
2100
2101 Output_section* osec = this->choose_output_section(NULL, ".interp",
2102 elfcpp::SHT_PROGBITS,
2103 elfcpp::SHF_ALLOC,
2104 false);
2105 osec->add_output_section_data(odata);
2106
2107 if (!this->script_options_->saw_phdrs_clause())
2108 {
2109 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2110 elfcpp::PF_R);
2111 oseg->add_initial_output_section(osec, elfcpp::PF_R);
2112 }
2113 }
2114
2115 // Finish the .dynamic section and PT_DYNAMIC segment.
2116
2117 void
2118 Layout::finish_dynamic_section(const Input_objects* input_objects,
2119 const Symbol_table* symtab)
2120 {
2121 if (!this->script_options_->saw_phdrs_clause())
2122 {
2123 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2124 (elfcpp::PF_R
2125 | elfcpp::PF_W));
2126 oseg->add_initial_output_section(this->dynamic_section_,
2127 elfcpp::PF_R | elfcpp::PF_W);
2128 }
2129
2130 Output_data_dynamic* const odyn = this->dynamic_data_;
2131
2132 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2133 p != input_objects->dynobj_end();
2134 ++p)
2135 {
2136 // FIXME: Handle --as-needed.
2137 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2138 }
2139
2140 if (parameters->options().shared())
2141 {
2142 const char* soname = this->options_.soname();
2143 if (soname != NULL)
2144 odyn->add_string(elfcpp::DT_SONAME, soname);
2145 }
2146
2147 // FIXME: Support --init and --fini.
2148 Symbol* sym = symtab->lookup("_init");
2149 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2150 odyn->add_symbol(elfcpp::DT_INIT, sym);
2151
2152 sym = symtab->lookup("_fini");
2153 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2154 odyn->add_symbol(elfcpp::DT_FINI, sym);
2155
2156 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2157
2158 // Add a DT_RPATH entry if needed.
2159 const General_options::Dir_list& rpath(this->options_.rpath());
2160 if (!rpath.empty())
2161 {
2162 std::string rpath_val;
2163 for (General_options::Dir_list::const_iterator p = rpath.begin();
2164 p != rpath.end();
2165 ++p)
2166 {
2167 if (rpath_val.empty())
2168 rpath_val = p->name();
2169 else
2170 {
2171 // Eliminate duplicates.
2172 General_options::Dir_list::const_iterator q;
2173 for (q = rpath.begin(); q != p; ++q)
2174 if (q->name() == p->name())
2175 break;
2176 if (q == p)
2177 {
2178 rpath_val += ':';
2179 rpath_val += p->name();
2180 }
2181 }
2182 }
2183
2184 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2185 }
2186
2187 // Look for text segments that have dynamic relocations.
2188 bool have_textrel = false;
2189 if (!this->script_options_->saw_sections_clause())
2190 {
2191 for (Segment_list::const_iterator p = this->segment_list_.begin();
2192 p != this->segment_list_.end();
2193 ++p)
2194 {
2195 if (((*p)->flags() & elfcpp::PF_W) == 0
2196 && (*p)->dynamic_reloc_count() > 0)
2197 {
2198 have_textrel = true;
2199 break;
2200 }
2201 }
2202 }
2203 else
2204 {
2205 // We don't know the section -> segment mapping, so we are
2206 // conservative and just look for readonly sections with
2207 // relocations. If those sections wind up in writable segments,
2208 // then we have created an unnecessary DT_TEXTREL entry.
2209 for (Section_list::const_iterator p = this->section_list_.begin();
2210 p != this->section_list_.end();
2211 ++p)
2212 {
2213 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2214 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2215 && ((*p)->dynamic_reloc_count() > 0))
2216 {
2217 have_textrel = true;
2218 break;
2219 }
2220 }
2221 }
2222
2223 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2224 // post-link tools can easily modify these flags if desired.
2225 unsigned int flags = 0;
2226 if (have_textrel)
2227 {
2228 // Add a DT_TEXTREL for compatibility with older loaders.
2229 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2230 flags |= elfcpp::DF_TEXTREL;
2231 }
2232 if (parameters->options().shared() && this->has_static_tls())
2233 flags |= elfcpp::DF_STATIC_TLS;
2234 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2235 }
2236
2237 // The mapping of .gnu.linkonce section names to real section names.
2238
2239 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2240 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2241 {
2242 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
2243 MAPPING_INIT("t", ".text"),
2244 MAPPING_INIT("r", ".rodata"),
2245 MAPPING_INIT("d", ".data"),
2246 MAPPING_INIT("b", ".bss"),
2247 MAPPING_INIT("s", ".sdata"),
2248 MAPPING_INIT("sb", ".sbss"),
2249 MAPPING_INIT("s2", ".sdata2"),
2250 MAPPING_INIT("sb2", ".sbss2"),
2251 MAPPING_INIT("wi", ".debug_info"),
2252 MAPPING_INIT("td", ".tdata"),
2253 MAPPING_INIT("tb", ".tbss"),
2254 MAPPING_INIT("lr", ".lrodata"),
2255 MAPPING_INIT("l", ".ldata"),
2256 MAPPING_INIT("lb", ".lbss"),
2257 };
2258 #undef MAPPING_INIT
2259
2260 const int Layout::linkonce_mapping_count =
2261 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2262
2263 // Return the name of the output section to use for a .gnu.linkonce
2264 // section. This is based on the default ELF linker script of the old
2265 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2266 // to ".text". Set *PLEN to the length of the name. *PLEN is
2267 // initialized to the length of NAME.
2268
2269 const char*
2270 Layout::linkonce_output_name(const char* name, size_t *plen)
2271 {
2272 const char* s = name + sizeof(".gnu.linkonce") - 1;
2273 if (*s != '.')
2274 return name;
2275 ++s;
2276 const Linkonce_mapping* plm = linkonce_mapping;
2277 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2278 {
2279 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2280 {
2281 *plen = plm->tolen;
2282 return plm->to;
2283 }
2284 }
2285 return name;
2286 }
2287
2288 // Choose the output section name to use given an input section name.
2289 // Set *PLEN to the length of the name. *PLEN is initialized to the
2290 // length of NAME.
2291
2292 const char*
2293 Layout::output_section_name(const char* name, size_t* plen)
2294 {
2295 if (Layout::is_linkonce(name))
2296 {
2297 // .gnu.linkonce sections are laid out as though they were named
2298 // for the sections are placed into.
2299 return Layout::linkonce_output_name(name, plen);
2300 }
2301
2302 // gcc 4.3 generates the following sorts of section names when it
2303 // needs a section name specific to a function:
2304 // .text.FN
2305 // .rodata.FN
2306 // .sdata2.FN
2307 // .data.FN
2308 // .data.rel.FN
2309 // .data.rel.local.FN
2310 // .data.rel.ro.FN
2311 // .data.rel.ro.local.FN
2312 // .sdata.FN
2313 // .bss.FN
2314 // .sbss.FN
2315 // .tdata.FN
2316 // .tbss.FN
2317
2318 // The GNU linker maps all of those to the part before the .FN,
2319 // except that .data.rel.local.FN is mapped to .data, and
2320 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2321 // beginning with .data.rel.ro.local are grouped together.
2322
2323 // For an anonymous namespace, the string FN can contain a '.'.
2324
2325 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2326 // GNU linker maps to .rodata.
2327
2328 // The .data.rel.ro sections enable a security feature triggered by
2329 // the -z relro option. Section which need to be relocated at
2330 // program startup time but which may be readonly after startup are
2331 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2332 // segment. The dynamic linker will make that segment writable,
2333 // perform relocations, and then make it read-only. FIXME: We do
2334 // not yet implement this optimization.
2335
2336 // It is hard to handle this in a principled way.
2337
2338 // These are the rules we follow:
2339
2340 // If the section name has no initial '.', or no dot other than an
2341 // initial '.', we use the name unchanged (i.e., "mysection" and
2342 // ".text" are unchanged).
2343
2344 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2345
2346 // Otherwise, we drop the second '.' and everything that comes after
2347 // it (i.e., ".text.XXX" becomes ".text").
2348
2349 const char* s = name;
2350 if (*s != '.')
2351 return name;
2352 ++s;
2353 const char* sdot = strchr(s, '.');
2354 if (sdot == NULL)
2355 return name;
2356
2357 const char* const data_rel_ro = ".data.rel.ro";
2358 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2359 {
2360 *plen = strlen(data_rel_ro);
2361 return data_rel_ro;
2362 }
2363
2364 *plen = sdot - name;
2365 return name;
2366 }
2367
2368 // Record the signature of a comdat section, and return whether to
2369 // include it in the link. If GROUP is true, this is a regular
2370 // section group. If GROUP is false, this is a group signature
2371 // derived from the name of a linkonce section. We want linkonce
2372 // signatures and group signatures to block each other, but we don't
2373 // want a linkonce signature to block another linkonce signature.
2374
2375 bool
2376 Layout::add_comdat(const char* signature, bool group)
2377 {
2378 std::string sig(signature);
2379 std::pair<Signatures::iterator, bool> ins(
2380 this->signatures_.insert(std::make_pair(sig, group)));
2381
2382 if (ins.second)
2383 {
2384 // This is the first time we've seen this signature.
2385 return true;
2386 }
2387
2388 if (ins.first->second)
2389 {
2390 // We've already seen a real section group with this signature.
2391 return false;
2392 }
2393 else if (group)
2394 {
2395 // This is a real section group, and we've already seen a
2396 // linkonce section with this signature. Record that we've seen
2397 // a section group, and don't include this section group.
2398 ins.first->second = true;
2399 return false;
2400 }
2401 else
2402 {
2403 // We've already seen a linkonce section and this is a linkonce
2404 // section. These don't block each other--this may be the same
2405 // symbol name with different section types.
2406 return true;
2407 }
2408 }
2409
2410 // Store the allocated sections into the section list.
2411
2412 void
2413 Layout::get_allocated_sections(Section_list* section_list) const
2414 {
2415 for (Section_list::const_iterator p = this->section_list_.begin();
2416 p != this->section_list_.end();
2417 ++p)
2418 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2419 section_list->push_back(*p);
2420 }
2421
2422 // Create an output segment.
2423
2424 Output_segment*
2425 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2426 {
2427 gold_assert(!parameters->options().relocatable());
2428 Output_segment* oseg = new Output_segment(type, flags);
2429 this->segment_list_.push_back(oseg);
2430 return oseg;
2431 }
2432
2433 // Write out the Output_sections. Most won't have anything to write,
2434 // since most of the data will come from input sections which are
2435 // handled elsewhere. But some Output_sections do have Output_data.
2436
2437 void
2438 Layout::write_output_sections(Output_file* of) const
2439 {
2440 for (Section_list::const_iterator p = this->section_list_.begin();
2441 p != this->section_list_.end();
2442 ++p)
2443 {
2444 if (!(*p)->after_input_sections())
2445 (*p)->write(of);
2446 }
2447 }
2448
2449 // Write out data not associated with a section or the symbol table.
2450
2451 void
2452 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2453 {
2454 if (!parameters->options().strip_all())
2455 {
2456 const Output_section* symtab_section = this->symtab_section_;
2457 for (Section_list::const_iterator p = this->section_list_.begin();
2458 p != this->section_list_.end();
2459 ++p)
2460 {
2461 if ((*p)->needs_symtab_index())
2462 {
2463 gold_assert(symtab_section != NULL);
2464 unsigned int index = (*p)->symtab_index();
2465 gold_assert(index > 0 && index != -1U);
2466 off_t off = (symtab_section->offset()
2467 + index * symtab_section->entsize());
2468 symtab->write_section_symbol(*p, of, off);
2469 }
2470 }
2471 }
2472
2473 const Output_section* dynsym_section = this->dynsym_section_;
2474 for (Section_list::const_iterator p = this->section_list_.begin();
2475 p != this->section_list_.end();
2476 ++p)
2477 {
2478 if ((*p)->needs_dynsym_index())
2479 {
2480 gold_assert(dynsym_section != NULL);
2481 unsigned int index = (*p)->dynsym_index();
2482 gold_assert(index > 0 && index != -1U);
2483 off_t off = (dynsym_section->offset()
2484 + index * dynsym_section->entsize());
2485 symtab->write_section_symbol(*p, of, off);
2486 }
2487 }
2488
2489 // Write out the Output_data which are not in an Output_section.
2490 for (Data_list::const_iterator p = this->special_output_list_.begin();
2491 p != this->special_output_list_.end();
2492 ++p)
2493 (*p)->write(of);
2494 }
2495
2496 // Write out the Output_sections which can only be written after the
2497 // input sections are complete.
2498
2499 void
2500 Layout::write_sections_after_input_sections(Output_file* of)
2501 {
2502 // Determine the final section offsets, and thus the final output
2503 // file size. Note we finalize the .shstrab last, to allow the
2504 // after_input_section sections to modify their section-names before
2505 // writing.
2506 if (this->any_postprocessing_sections_)
2507 {
2508 off_t off = this->output_file_size_;
2509 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2510
2511 // Now that we've finalized the names, we can finalize the shstrab.
2512 off =
2513 this->set_section_offsets(off,
2514 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2515
2516 if (off > this->output_file_size_)
2517 {
2518 of->resize(off);
2519 this->output_file_size_ = off;
2520 }
2521 }
2522
2523 for (Section_list::const_iterator p = this->section_list_.begin();
2524 p != this->section_list_.end();
2525 ++p)
2526 {
2527 if ((*p)->after_input_sections())
2528 (*p)->write(of);
2529 }
2530
2531 this->section_headers_->write(of);
2532 }
2533
2534 // Write out a binary file. This is called after the link is
2535 // complete. IN is the temporary output file we used to generate the
2536 // ELF code. We simply walk through the segments, read them from
2537 // their file offset in IN, and write them to their load address in
2538 // the output file. FIXME: with a bit more work, we could support
2539 // S-records and/or Intel hex format here.
2540
2541 void
2542 Layout::write_binary(Output_file* in) const
2543 {
2544 gold_assert(this->options_.oformat()
2545 == General_options::OBJECT_FORMAT_BINARY);
2546
2547 // Get the size of the binary file.
2548 uint64_t max_load_address = 0;
2549 for (Segment_list::const_iterator p = this->segment_list_.begin();
2550 p != this->segment_list_.end();
2551 ++p)
2552 {
2553 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2554 {
2555 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
2556 if (max_paddr > max_load_address)
2557 max_load_address = max_paddr;
2558 }
2559 }
2560
2561 Output_file out(parameters->options().output_file_name());
2562 out.open(max_load_address);
2563
2564 for (Segment_list::const_iterator p = this->segment_list_.begin();
2565 p != this->segment_list_.end();
2566 ++p)
2567 {
2568 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2569 {
2570 const unsigned char* vin = in->get_input_view((*p)->offset(),
2571 (*p)->filesz());
2572 unsigned char* vout = out.get_output_view((*p)->paddr(),
2573 (*p)->filesz());
2574 memcpy(vout, vin, (*p)->filesz());
2575 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
2576 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
2577 }
2578 }
2579
2580 out.close();
2581 }
2582
2583 // Print statistical information to stderr. This is used for --stats.
2584
2585 void
2586 Layout::print_stats() const
2587 {
2588 this->namepool_.print_stats("section name pool");
2589 this->sympool_.print_stats("output symbol name pool");
2590 this->dynpool_.print_stats("dynamic name pool");
2591
2592 for (Section_list::const_iterator p = this->section_list_.begin();
2593 p != this->section_list_.end();
2594 ++p)
2595 (*p)->print_merge_stats();
2596 }
2597
2598 // Write_sections_task methods.
2599
2600 // We can always run this task.
2601
2602 Task_token*
2603 Write_sections_task::is_runnable()
2604 {
2605 return NULL;
2606 }
2607
2608 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2609 // when finished.
2610
2611 void
2612 Write_sections_task::locks(Task_locker* tl)
2613 {
2614 tl->add(this, this->output_sections_blocker_);
2615 tl->add(this, this->final_blocker_);
2616 }
2617
2618 // Run the task--write out the data.
2619
2620 void
2621 Write_sections_task::run(Workqueue*)
2622 {
2623 this->layout_->write_output_sections(this->of_);
2624 }
2625
2626 // Write_data_task methods.
2627
2628 // We can always run this task.
2629
2630 Task_token*
2631 Write_data_task::is_runnable()
2632 {
2633 return NULL;
2634 }
2635
2636 // We need to unlock FINAL_BLOCKER when finished.
2637
2638 void
2639 Write_data_task::locks(Task_locker* tl)
2640 {
2641 tl->add(this, this->final_blocker_);
2642 }
2643
2644 // Run the task--write out the data.
2645
2646 void
2647 Write_data_task::run(Workqueue*)
2648 {
2649 this->layout_->write_data(this->symtab_, this->of_);
2650 }
2651
2652 // Write_symbols_task methods.
2653
2654 // We can always run this task.
2655
2656 Task_token*
2657 Write_symbols_task::is_runnable()
2658 {
2659 return NULL;
2660 }
2661
2662 // We need to unlock FINAL_BLOCKER when finished.
2663
2664 void
2665 Write_symbols_task::locks(Task_locker* tl)
2666 {
2667 tl->add(this, this->final_blocker_);
2668 }
2669
2670 // Run the task--write out the symbols.
2671
2672 void
2673 Write_symbols_task::run(Workqueue*)
2674 {
2675 this->symtab_->write_globals(this->input_objects_, this->sympool_,
2676 this->dynpool_, this->of_);
2677 }
2678
2679 // Write_after_input_sections_task methods.
2680
2681 // We can only run this task after the input sections have completed.
2682
2683 Task_token*
2684 Write_after_input_sections_task::is_runnable()
2685 {
2686 if (this->input_sections_blocker_->is_blocked())
2687 return this->input_sections_blocker_;
2688 return NULL;
2689 }
2690
2691 // We need to unlock FINAL_BLOCKER when finished.
2692
2693 void
2694 Write_after_input_sections_task::locks(Task_locker* tl)
2695 {
2696 tl->add(this, this->final_blocker_);
2697 }
2698
2699 // Run the task.
2700
2701 void
2702 Write_after_input_sections_task::run(Workqueue*)
2703 {
2704 this->layout_->write_sections_after_input_sections(this->of_);
2705 }
2706
2707 // Close_task_runner methods.
2708
2709 // Run the task--close the file.
2710
2711 void
2712 Close_task_runner::run(Workqueue*, const Task*)
2713 {
2714 // If we've been asked to create a binary file, we do so here.
2715 if (this->options_->oformat() != General_options::OBJECT_FORMAT_ELF)
2716 this->layout_->write_binary(this->of_);
2717
2718 this->of_->close();
2719 }
2720
2721 // Instantiate the templates we need. We could use the configure
2722 // script to restrict this to only the ones for implemented targets.
2723
2724 #ifdef HAVE_TARGET_32_LITTLE
2725 template
2726 Output_section*
2727 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2728 const char* name,
2729 const elfcpp::Shdr<32, false>& shdr,
2730 unsigned int, unsigned int, off_t*);
2731 #endif
2732
2733 #ifdef HAVE_TARGET_32_BIG
2734 template
2735 Output_section*
2736 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2737 const char* name,
2738 const elfcpp::Shdr<32, true>& shdr,
2739 unsigned int, unsigned int, off_t*);
2740 #endif
2741
2742 #ifdef HAVE_TARGET_64_LITTLE
2743 template
2744 Output_section*
2745 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2746 const char* name,
2747 const elfcpp::Shdr<64, false>& shdr,
2748 unsigned int, unsigned int, off_t*);
2749 #endif
2750
2751 #ifdef HAVE_TARGET_64_BIG
2752 template
2753 Output_section*
2754 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2755 const char* name,
2756 const elfcpp::Shdr<64, true>& shdr,
2757 unsigned int, unsigned int, off_t*);
2758 #endif
2759
2760 #ifdef HAVE_TARGET_32_LITTLE
2761 template
2762 Output_section*
2763 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
2764 unsigned int reloc_shndx,
2765 const elfcpp::Shdr<32, false>& shdr,
2766 Output_section* data_section,
2767 Relocatable_relocs* rr);
2768 #endif
2769
2770 #ifdef HAVE_TARGET_32_BIG
2771 template
2772 Output_section*
2773 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
2774 unsigned int reloc_shndx,
2775 const elfcpp::Shdr<32, true>& shdr,
2776 Output_section* data_section,
2777 Relocatable_relocs* rr);
2778 #endif
2779
2780 #ifdef HAVE_TARGET_64_LITTLE
2781 template
2782 Output_section*
2783 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
2784 unsigned int reloc_shndx,
2785 const elfcpp::Shdr<64, false>& shdr,
2786 Output_section* data_section,
2787 Relocatable_relocs* rr);
2788 #endif
2789
2790 #ifdef HAVE_TARGET_64_BIG
2791 template
2792 Output_section*
2793 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
2794 unsigned int reloc_shndx,
2795 const elfcpp::Shdr<64, true>& shdr,
2796 Output_section* data_section,
2797 Relocatable_relocs* rr);
2798 #endif
2799
2800 #ifdef HAVE_TARGET_32_LITTLE
2801 template
2802 void
2803 Layout::layout_group<32, false>(Symbol_table* symtab,
2804 Sized_relobj<32, false>* object,
2805 unsigned int,
2806 const char* group_section_name,
2807 const char* signature,
2808 const elfcpp::Shdr<32, false>& shdr,
2809 const elfcpp::Elf_Word* contents);
2810 #endif
2811
2812 #ifdef HAVE_TARGET_32_BIG
2813 template
2814 void
2815 Layout::layout_group<32, true>(Symbol_table* symtab,
2816 Sized_relobj<32, true>* object,
2817 unsigned int,
2818 const char* group_section_name,
2819 const char* signature,
2820 const elfcpp::Shdr<32, true>& shdr,
2821 const elfcpp::Elf_Word* contents);
2822 #endif
2823
2824 #ifdef HAVE_TARGET_64_LITTLE
2825 template
2826 void
2827 Layout::layout_group<64, false>(Symbol_table* symtab,
2828 Sized_relobj<64, false>* object,
2829 unsigned int,
2830 const char* group_section_name,
2831 const char* signature,
2832 const elfcpp::Shdr<64, false>& shdr,
2833 const elfcpp::Elf_Word* contents);
2834 #endif
2835
2836 #ifdef HAVE_TARGET_64_BIG
2837 template
2838 void
2839 Layout::layout_group<64, true>(Symbol_table* symtab,
2840 Sized_relobj<64, true>* object,
2841 unsigned int,
2842 const char* group_section_name,
2843 const char* signature,
2844 const elfcpp::Shdr<64, true>& shdr,
2845 const elfcpp::Elf_Word* contents);
2846 #endif
2847
2848 #ifdef HAVE_TARGET_32_LITTLE
2849 template
2850 Output_section*
2851 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2852 const unsigned char* symbols,
2853 off_t symbols_size,
2854 const unsigned char* symbol_names,
2855 off_t symbol_names_size,
2856 unsigned int shndx,
2857 const elfcpp::Shdr<32, false>& shdr,
2858 unsigned int reloc_shndx,
2859 unsigned int reloc_type,
2860 off_t* off);
2861 #endif
2862
2863 #ifdef HAVE_TARGET_32_BIG
2864 template
2865 Output_section*
2866 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2867 const unsigned char* symbols,
2868 off_t symbols_size,
2869 const unsigned char* symbol_names,
2870 off_t symbol_names_size,
2871 unsigned int shndx,
2872 const elfcpp::Shdr<32, true>& shdr,
2873 unsigned int reloc_shndx,
2874 unsigned int reloc_type,
2875 off_t* off);
2876 #endif
2877
2878 #ifdef HAVE_TARGET_64_LITTLE
2879 template
2880 Output_section*
2881 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2882 const unsigned char* symbols,
2883 off_t symbols_size,
2884 const unsigned char* symbol_names,
2885 off_t symbol_names_size,
2886 unsigned int shndx,
2887 const elfcpp::Shdr<64, false>& shdr,
2888 unsigned int reloc_shndx,
2889 unsigned int reloc_type,
2890 off_t* off);
2891 #endif
2892
2893 #ifdef HAVE_TARGET_64_BIG
2894 template
2895 Output_section*
2896 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2897 const unsigned char* symbols,
2898 off_t symbols_size,
2899 const unsigned char* symbol_names,
2900 off_t symbol_names_size,
2901 unsigned int shndx,
2902 const elfcpp::Shdr<64, true>& shdr,
2903 unsigned int reloc_shndx,
2904 unsigned int reloc_type,
2905 off_t* off);
2906 #endif
2907
2908 } // End namespace gold.
This page took 0.163505 seconds and 4 git commands to generate.