Fix misreporting of omitted bytes for large remote packets
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87 this->list_.push_front(Free_list_node(0, len));
88 this->last_remove_ = this->list_.begin();
89 this->extend_ = extend;
90 this->length_ = len;
91 ++Free_list::num_lists;
92 ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107 if (start == end)
108 return;
109 gold_assert(start < end);
110
111 ++Free_list::num_removes;
112
113 Iterator p = this->last_remove_;
114 if (p->start_ > start)
115 p = this->list_.begin();
116
117 for (; p != this->list_.end(); ++p)
118 {
119 ++Free_list::num_remove_visits;
120 // Find a node that wholly contains the indicated region.
121 if (p->start_ <= start && p->end_ >= end)
122 {
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 p = this->list_.erase(p);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p->start_ + 3 >= start)
129 p->start_ = end;
130 // Case 3: remove a chunk from the end of the node.
131 else if (p->end_ <= end + 3)
132 p->end_ = start;
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
135 else
136 {
137 Free_list_node newnode(p->start_, start);
138 p->start_ = end;
139 this->list_.insert(p, newnode);
140 ++Free_list::num_nodes;
141 }
142 this->last_remove_ = p;
143 return;
144 }
145 }
146
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161 gold_debug(DEBUG_INCREMENTAL,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len), static_cast<int>(align),
164 static_cast<long>(minoff));
165 if (len == 0)
166 return align_address(minoff, align);
167
168 ++Free_list::num_allocates;
169
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176 {
177 ++Free_list::num_allocate_visits;
178 off_t start = p->start_ > minoff ? p->start_ : minoff;
179 start = align_address(start, align);
180 off_t end = start + len;
181 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 {
183 this->length_ = end;
184 p->end_ = end;
185 }
186 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 {
188 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 this->list_.erase(p);
190 else if (p->start_ + fuzz >= start)
191 p->start_ = end;
192 else if (p->end_ <= end + fuzz)
193 p->end_ = start;
194 else
195 {
196 Free_list_node newnode(p->start_, start);
197 p->start_ = end;
198 this->list_.insert(p, newnode);
199 ++Free_list::num_nodes;
200 }
201 return start;
202 }
203 }
204 if (this->extend_)
205 {
206 off_t start = align_address(this->length_, align);
207 this->length_ = start + len;
208 return start;
209 }
210 return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
220 static_cast<long>(p->end_),
221 static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228 fprintf(stderr, _("%s: total free lists: %u\n"),
229 program_name, Free_list::num_lists);
230 fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 program_name, Free_list::num_nodes);
232 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 program_name, Free_list::num_removes);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_remove_visits);
236 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name, Free_list::num_allocates);
238 fprintf(stderr, _("%s: nodes visited: %u\n"),
239 program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246 public:
247 Hash_task(Output_file* of,
248 size_t offset,
249 size_t size,
250 unsigned char* dst,
251 Task_token* final_blocker)
252 : of_(of), offset_(offset), size_(size), dst_(dst),
253 final_blocker_(final_blocker)
254 { }
255
256 void
257 run(Workqueue*)
258 {
259 const unsigned char* iv =
260 this->of_->get_input_view(this->offset_, this->size_);
261 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262 this->of_->free_input_view(this->offset_, this->size_, iv);
263 }
264
265 Task_token*
266 is_runnable()
267 { return NULL; }
268
269 // Unblock FINAL_BLOCKER_ when done.
270 void
271 locks(Task_locker* tl)
272 { tl->add(this, this->final_blocker_); }
273
274 std::string
275 get_name() const
276 { return "Hash_task"; }
277
278 private:
279 Output_file* of_;
280 const size_t offset_;
281 const size_t size_;
282 unsigned char* const dst_;
283 Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 script_output_section_data_list_(),
470 segment_states_(NULL),
471 relaxation_debug_check_(NULL),
472 section_order_map_(),
473 section_segment_map_(),
474 input_section_position_(),
475 input_section_glob_(),
476 incremental_base_(NULL),
477 free_list_()
478 {
479 // Make space for more than enough segments for a typical file.
480 // This is just for efficiency--it's OK if we wind up needing more.
481 this->segment_list_.reserve(12);
482
483 // We expect two unattached Output_data objects: the file header and
484 // the segment headers.
485 this->special_output_list_.reserve(2);
486
487 // Initialize structure needed for an incremental build.
488 if (parameters->incremental())
489 this->incremental_inputs_ = new Incremental_inputs;
490
491 // The section name pool is worth optimizing in all cases, because
492 // it is small, but there are often overlaps due to .rel sections.
493 this->namepool_.set_optimize();
494 }
495
496 // For incremental links, record the base file to be modified.
497
498 void
499 Layout::set_incremental_base(Incremental_binary* base)
500 {
501 this->incremental_base_ = base;
502 this->free_list_.init(base->output_file()->filesize(), true);
503 }
504
505 // Hash a key we use to look up an output section mapping.
506
507 size_t
508 Layout::Hash_key::operator()(const Layout::Key& k) const
509 {
510 return k.first + k.second.first + k.second.second;
511 }
512
513 // These are the debug sections that are actually used by gdb.
514 // Currently, we've checked versions of gdb up to and including 7.4.
515 // We only check the part of the name that follows ".debug_" or
516 // ".zdebug_".
517
518 static const char* gdb_sections[] =
519 {
520 "abbrev",
521 "addr", // Fission extension
522 // "aranges", // not used by gdb as of 7.4
523 "frame",
524 "gdb_scripts",
525 "info",
526 "types",
527 "line",
528 "loc",
529 "macinfo",
530 "macro",
531 // "pubnames", // not used by gdb as of 7.4
532 // "pubtypes", // not used by gdb as of 7.4
533 // "gnu_pubnames", // Fission extension
534 // "gnu_pubtypes", // Fission extension
535 "ranges",
536 "str",
537 "str_offsets",
538 };
539
540 // This is the minimum set of sections needed for line numbers.
541
542 static const char* lines_only_debug_sections[] =
543 {
544 "abbrev",
545 // "addr", // Fission extension
546 // "aranges", // not used by gdb as of 7.4
547 // "frame",
548 // "gdb_scripts",
549 "info",
550 // "types",
551 "line",
552 // "loc",
553 // "macinfo",
554 // "macro",
555 // "pubnames", // not used by gdb as of 7.4
556 // "pubtypes", // not used by gdb as of 7.4
557 // "gnu_pubnames", // Fission extension
558 // "gnu_pubtypes", // Fission extension
559 // "ranges",
560 "str",
561 "str_offsets", // Fission extension
562 };
563
564 // These sections are the DWARF fast-lookup tables, and are not needed
565 // when building a .gdb_index section.
566
567 static const char* gdb_fast_lookup_sections[] =
568 {
569 "aranges",
570 "pubnames",
571 "gnu_pubnames",
572 "pubtypes",
573 "gnu_pubtypes",
574 };
575
576 // Returns whether the given debug section is in the list of
577 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
578 // portion of the name following ".debug_" or ".zdebug_".
579
580 static inline bool
581 is_gdb_debug_section(const char* suffix)
582 {
583 // We can do this faster: binary search or a hashtable. But why bother?
584 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
585 if (strcmp(suffix, gdb_sections[i]) == 0)
586 return true;
587 return false;
588 }
589
590 // Returns whether the given section is needed for lines-only debugging.
591
592 static inline bool
593 is_lines_only_debug_section(const char* suffix)
594 {
595 // We can do this faster: binary search or a hashtable. But why bother?
596 for (size_t i = 0;
597 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
598 ++i)
599 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
600 return true;
601 return false;
602 }
603
604 // Returns whether the given section is a fast-lookup section that
605 // will not be needed when building a .gdb_index section.
606
607 static inline bool
608 is_gdb_fast_lookup_section(const char* suffix)
609 {
610 // We can do this faster: binary search or a hashtable. But why bother?
611 for (size_t i = 0;
612 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
613 ++i)
614 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
615 return true;
616 return false;
617 }
618
619 // Sometimes we compress sections. This is typically done for
620 // sections that are not part of normal program execution (such as
621 // .debug_* sections), and where the readers of these sections know
622 // how to deal with compressed sections. This routine doesn't say for
623 // certain whether we'll compress -- it depends on commandline options
624 // as well -- just whether this section is a candidate for compression.
625 // (The Output_compressed_section class decides whether to compress
626 // a given section, and picks the name of the compressed section.)
627
628 static bool
629 is_compressible_debug_section(const char* secname)
630 {
631 return (is_prefix_of(".debug", secname));
632 }
633
634 // We may see compressed debug sections in input files. Return TRUE
635 // if this is the name of a compressed debug section.
636
637 bool
638 is_compressed_debug_section(const char* secname)
639 {
640 return (is_prefix_of(".zdebug", secname));
641 }
642
643 std::string
644 corresponding_uncompressed_section_name(std::string secname)
645 {
646 gold_assert(secname[0] == '.' && secname[1] == 'z');
647 std::string ret(".");
648 ret.append(secname, 2, std::string::npos);
649 return ret;
650 }
651
652 // Whether to include this section in the link.
653
654 template<int size, bool big_endian>
655 bool
656 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
657 const elfcpp::Shdr<size, big_endian>& shdr)
658 {
659 if (!parameters->options().relocatable()
660 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
661 return false;
662
663 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
664
665 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
666 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
667 return parameters->target().should_include_section(sh_type);
668
669 switch (sh_type)
670 {
671 case elfcpp::SHT_NULL:
672 case elfcpp::SHT_SYMTAB:
673 case elfcpp::SHT_DYNSYM:
674 case elfcpp::SHT_HASH:
675 case elfcpp::SHT_DYNAMIC:
676 case elfcpp::SHT_SYMTAB_SHNDX:
677 return false;
678
679 case elfcpp::SHT_STRTAB:
680 // Discard the sections which have special meanings in the ELF
681 // ABI. Keep others (e.g., .stabstr). We could also do this by
682 // checking the sh_link fields of the appropriate sections.
683 return (strcmp(name, ".dynstr") != 0
684 && strcmp(name, ".strtab") != 0
685 && strcmp(name, ".shstrtab") != 0);
686
687 case elfcpp::SHT_RELA:
688 case elfcpp::SHT_REL:
689 case elfcpp::SHT_GROUP:
690 // If we are emitting relocations these should be handled
691 // elsewhere.
692 gold_assert(!parameters->options().relocatable());
693 return false;
694
695 case elfcpp::SHT_PROGBITS:
696 if (parameters->options().strip_debug()
697 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
698 {
699 if (is_debug_info_section(name))
700 return false;
701 }
702 if (parameters->options().strip_debug_non_line()
703 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
704 {
705 // Debugging sections can only be recognized by name.
706 if (is_prefix_of(".debug_", name)
707 && !is_lines_only_debug_section(name + 7))
708 return false;
709 if (is_prefix_of(".zdebug_", name)
710 && !is_lines_only_debug_section(name + 8))
711 return false;
712 }
713 if (parameters->options().strip_debug_gdb()
714 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
715 {
716 // Debugging sections can only be recognized by name.
717 if (is_prefix_of(".debug_", name)
718 && !is_gdb_debug_section(name + 7))
719 return false;
720 if (is_prefix_of(".zdebug_", name)
721 && !is_gdb_debug_section(name + 8))
722 return false;
723 }
724 if (parameters->options().gdb_index()
725 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
726 {
727 // When building .gdb_index, we can strip .debug_pubnames,
728 // .debug_pubtypes, and .debug_aranges sections.
729 if (is_prefix_of(".debug_", name)
730 && is_gdb_fast_lookup_section(name + 7))
731 return false;
732 if (is_prefix_of(".zdebug_", name)
733 && is_gdb_fast_lookup_section(name + 8))
734 return false;
735 }
736 if (parameters->options().strip_lto_sections()
737 && !parameters->options().relocatable()
738 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
739 {
740 // Ignore LTO sections containing intermediate code.
741 if (is_prefix_of(".gnu.lto_", name))
742 return false;
743 }
744 // The GNU linker strips .gnu_debuglink sections, so we do too.
745 // This is a feature used to keep debugging information in
746 // separate files.
747 if (strcmp(name, ".gnu_debuglink") == 0)
748 return false;
749 return true;
750
751 default:
752 return true;
753 }
754 }
755
756 // Return an output section named NAME, or NULL if there is none.
757
758 Output_section*
759 Layout::find_output_section(const char* name) const
760 {
761 for (Section_list::const_iterator p = this->section_list_.begin();
762 p != this->section_list_.end();
763 ++p)
764 if (strcmp((*p)->name(), name) == 0)
765 return *p;
766 return NULL;
767 }
768
769 // Return an output segment of type TYPE, with segment flags SET set
770 // and segment flags CLEAR clear. Return NULL if there is none.
771
772 Output_segment*
773 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
774 elfcpp::Elf_Word clear) const
775 {
776 for (Segment_list::const_iterator p = this->segment_list_.begin();
777 p != this->segment_list_.end();
778 ++p)
779 if (static_cast<elfcpp::PT>((*p)->type()) == type
780 && ((*p)->flags() & set) == set
781 && ((*p)->flags() & clear) == 0)
782 return *p;
783 return NULL;
784 }
785
786 // When we put a .ctors or .dtors section with more than one word into
787 // a .init_array or .fini_array section, we need to reverse the words
788 // in the .ctors/.dtors section. This is because .init_array executes
789 // constructors front to back, where .ctors executes them back to
790 // front, and vice-versa for .fini_array/.dtors. Although we do want
791 // to remap .ctors/.dtors into .init_array/.fini_array because it can
792 // be more efficient, we don't want to change the order in which
793 // constructors/destructors are run. This set just keeps track of
794 // these sections which need to be reversed. It is only changed by
795 // Layout::layout. It should be a private member of Layout, but that
796 // would require layout.h to #include object.h to get the definition
797 // of Section_id.
798 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
799
800 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
801 // .init_array/.fini_array section.
802
803 bool
804 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
805 {
806 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
807 != ctors_sections_in_init_array.end());
808 }
809
810 // Return the output section to use for section NAME with type TYPE
811 // and section flags FLAGS. NAME must be canonicalized in the string
812 // pool, and NAME_KEY is the key. ORDER is where this should appear
813 // in the output sections. IS_RELRO is true for a relro section.
814
815 Output_section*
816 Layout::get_output_section(const char* name, Stringpool::Key name_key,
817 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
818 Output_section_order order, bool is_relro)
819 {
820 elfcpp::Elf_Word lookup_type = type;
821
822 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
823 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
824 // .init_array, .fini_array, and .preinit_array sections by name
825 // whatever their type in the input file. We do this because the
826 // types are not always right in the input files.
827 if (lookup_type == elfcpp::SHT_INIT_ARRAY
828 || lookup_type == elfcpp::SHT_FINI_ARRAY
829 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
830 lookup_type = elfcpp::SHT_PROGBITS;
831
832 elfcpp::Elf_Xword lookup_flags = flags;
833
834 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
835 // read-write with read-only sections. Some other ELF linkers do
836 // not do this. FIXME: Perhaps there should be an option
837 // controlling this.
838 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
839
840 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
841 const std::pair<Key, Output_section*> v(key, NULL);
842 std::pair<Section_name_map::iterator, bool> ins(
843 this->section_name_map_.insert(v));
844
845 if (!ins.second)
846 return ins.first->second;
847 else
848 {
849 // This is the first time we've seen this name/type/flags
850 // combination. For compatibility with the GNU linker, we
851 // combine sections with contents and zero flags with sections
852 // with non-zero flags. This is a workaround for cases where
853 // assembler code forgets to set section flags. FIXME: Perhaps
854 // there should be an option to control this.
855 Output_section* os = NULL;
856
857 if (lookup_type == elfcpp::SHT_PROGBITS)
858 {
859 if (flags == 0)
860 {
861 Output_section* same_name = this->find_output_section(name);
862 if (same_name != NULL
863 && (same_name->type() == elfcpp::SHT_PROGBITS
864 || same_name->type() == elfcpp::SHT_INIT_ARRAY
865 || same_name->type() == elfcpp::SHT_FINI_ARRAY
866 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
867 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
868 os = same_name;
869 }
870 else if ((flags & elfcpp::SHF_TLS) == 0)
871 {
872 elfcpp::Elf_Xword zero_flags = 0;
873 const Key zero_key(name_key, std::make_pair(lookup_type,
874 zero_flags));
875 Section_name_map::iterator p =
876 this->section_name_map_.find(zero_key);
877 if (p != this->section_name_map_.end())
878 os = p->second;
879 }
880 }
881
882 if (os == NULL)
883 os = this->make_output_section(name, type, flags, order, is_relro);
884
885 ins.first->second = os;
886 return os;
887 }
888 }
889
890 // Returns TRUE iff NAME (an input section from RELOBJ) will
891 // be mapped to an output section that should be KEPT.
892
893 bool
894 Layout::keep_input_section(const Relobj* relobj, const char* name)
895 {
896 if (! this->script_options_->saw_sections_clause())
897 return false;
898
899 Script_sections* ss = this->script_options_->script_sections();
900 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
901 Output_section** output_section_slot;
902 Script_sections::Section_type script_section_type;
903 bool keep;
904
905 name = ss->output_section_name(file_name, name, &output_section_slot,
906 &script_section_type, &keep, true);
907 return name != NULL && keep;
908 }
909
910 // Clear the input section flags that should not be copied to the
911 // output section.
912
913 elfcpp::Elf_Xword
914 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
915 {
916 // Some flags in the input section should not be automatically
917 // copied to the output section.
918 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
919 | elfcpp::SHF_GROUP
920 | elfcpp::SHF_COMPRESSED
921 | elfcpp::SHF_MERGE
922 | elfcpp::SHF_STRINGS);
923
924 // We only clear the SHF_LINK_ORDER flag in for
925 // a non-relocatable link.
926 if (!parameters->options().relocatable())
927 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
928
929 return input_section_flags;
930 }
931
932 // Pick the output section to use for section NAME, in input file
933 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
934 // linker created section. IS_INPUT_SECTION is true if we are
935 // choosing an output section for an input section found in a input
936 // file. ORDER is where this section should appear in the output
937 // sections. IS_RELRO is true for a relro section. This will return
938 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
939 // is true if the section name should be matched against input specs
940 // in a linker script.
941
942 Output_section*
943 Layout::choose_output_section(const Relobj* relobj, const char* name,
944 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
945 bool is_input_section, Output_section_order order,
946 bool is_relro, bool is_reloc,
947 bool match_input_spec)
948 {
949 // We should not see any input sections after we have attached
950 // sections to segments.
951 gold_assert(!is_input_section || !this->sections_are_attached_);
952
953 flags = this->get_output_section_flags(flags);
954
955 if (this->script_options_->saw_sections_clause() && !is_reloc)
956 {
957 // We are using a SECTIONS clause, so the output section is
958 // chosen based only on the name.
959
960 Script_sections* ss = this->script_options_->script_sections();
961 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
962 Output_section** output_section_slot;
963 Script_sections::Section_type script_section_type;
964 const char* orig_name = name;
965 bool keep;
966 name = ss->output_section_name(file_name, name, &output_section_slot,
967 &script_section_type, &keep,
968 match_input_spec);
969
970 if (name == NULL)
971 {
972 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
973 "because it is not allowed by the "
974 "SECTIONS clause of the linker script"),
975 orig_name);
976 // The SECTIONS clause says to discard this input section.
977 return NULL;
978 }
979
980 // We can only handle script section types ST_NONE and ST_NOLOAD.
981 switch (script_section_type)
982 {
983 case Script_sections::ST_NONE:
984 break;
985 case Script_sections::ST_NOLOAD:
986 flags &= elfcpp::SHF_ALLOC;
987 break;
988 default:
989 gold_unreachable();
990 }
991
992 // If this is an orphan section--one not mentioned in the linker
993 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
994 // default processing below.
995
996 if (output_section_slot != NULL)
997 {
998 if (*output_section_slot != NULL)
999 {
1000 (*output_section_slot)->update_flags_for_input_section(flags);
1001 return *output_section_slot;
1002 }
1003
1004 // We don't put sections found in the linker script into
1005 // SECTION_NAME_MAP_. That keeps us from getting confused
1006 // if an orphan section is mapped to a section with the same
1007 // name as one in the linker script.
1008
1009 name = this->namepool_.add(name, false, NULL);
1010
1011 Output_section* os = this->make_output_section(name, type, flags,
1012 order, is_relro);
1013
1014 os->set_found_in_sections_clause();
1015
1016 // Special handling for NOLOAD sections.
1017 if (script_section_type == Script_sections::ST_NOLOAD)
1018 {
1019 os->set_is_noload();
1020
1021 // The constructor of Output_section sets addresses of non-ALLOC
1022 // sections to 0 by default. We don't want that for NOLOAD
1023 // sections even if they have no SHF_ALLOC flag.
1024 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1025 && os->is_address_valid())
1026 {
1027 gold_assert(os->address() == 0
1028 && !os->is_offset_valid()
1029 && !os->is_data_size_valid());
1030 os->reset_address_and_file_offset();
1031 }
1032 }
1033
1034 *output_section_slot = os;
1035 return os;
1036 }
1037 }
1038
1039 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1040
1041 size_t len = strlen(name);
1042 std::string uncompressed_name;
1043
1044 // Compressed debug sections should be mapped to the corresponding
1045 // uncompressed section.
1046 if (is_compressed_debug_section(name))
1047 {
1048 uncompressed_name =
1049 corresponding_uncompressed_section_name(std::string(name, len));
1050 name = uncompressed_name.c_str();
1051 len = uncompressed_name.length();
1052 }
1053
1054 // Turn NAME from the name of the input section into the name of the
1055 // output section.
1056 if (is_input_section
1057 && !this->script_options_->saw_sections_clause()
1058 && !parameters->options().relocatable())
1059 {
1060 const char *orig_name = name;
1061 name = parameters->target().output_section_name(relobj, name, &len);
1062 if (name == NULL)
1063 name = Layout::output_section_name(relobj, orig_name, &len);
1064 }
1065
1066 Stringpool::Key name_key;
1067 name = this->namepool_.add_with_length(name, len, true, &name_key);
1068
1069 // Find or make the output section. The output section is selected
1070 // based on the section name, type, and flags.
1071 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1072 }
1073
1074 // For incremental links, record the initial fixed layout of a section
1075 // from the base file, and return a pointer to the Output_section.
1076
1077 template<int size, bool big_endian>
1078 Output_section*
1079 Layout::init_fixed_output_section(const char* name,
1080 elfcpp::Shdr<size, big_endian>& shdr)
1081 {
1082 unsigned int sh_type = shdr.get_sh_type();
1083
1084 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1085 // PRE_INIT_ARRAY, and NOTE sections.
1086 // All others will be created from scratch and reallocated.
1087 if (!can_incremental_update(sh_type))
1088 return NULL;
1089
1090 // If we're generating a .gdb_index section, we need to regenerate
1091 // it from scratch.
1092 if (parameters->options().gdb_index()
1093 && sh_type == elfcpp::SHT_PROGBITS
1094 && strcmp(name, ".gdb_index") == 0)
1095 return NULL;
1096
1097 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1098 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1099 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1100 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1101 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1102 shdr.get_sh_addralign();
1103
1104 // Make the output section.
1105 Stringpool::Key name_key;
1106 name = this->namepool_.add(name, true, &name_key);
1107 Output_section* os = this->get_output_section(name, name_key, sh_type,
1108 sh_flags, ORDER_INVALID, false);
1109 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1110 if (sh_type != elfcpp::SHT_NOBITS)
1111 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1112 return os;
1113 }
1114
1115 // Return the index by which an input section should be ordered. This
1116 // is used to sort some .text sections, for compatibility with GNU ld.
1117
1118 int
1119 Layout::special_ordering_of_input_section(const char* name)
1120 {
1121 // The GNU linker has some special handling for some sections that
1122 // wind up in the .text section. Sections that start with these
1123 // prefixes must appear first, and must appear in the order listed
1124 // here.
1125 static const char* const text_section_sort[] =
1126 {
1127 ".text.unlikely",
1128 ".text.exit",
1129 ".text.startup",
1130 ".text.hot"
1131 };
1132
1133 for (size_t i = 0;
1134 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1135 i++)
1136 if (is_prefix_of(text_section_sort[i], name))
1137 return i;
1138
1139 return -1;
1140 }
1141
1142 // Return the output section to use for input section SHNDX, with name
1143 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1144 // index of a relocation section which applies to this section, or 0
1145 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1146 // relocation section if there is one. Set *OFF to the offset of this
1147 // input section without the output section. Return NULL if the
1148 // section should be discarded. Set *OFF to -1 if the section
1149 // contents should not be written directly to the output file, but
1150 // will instead receive special handling.
1151
1152 template<int size, bool big_endian>
1153 Output_section*
1154 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1155 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1156 unsigned int reloc_shndx, unsigned int, off_t* off)
1157 {
1158 *off = 0;
1159
1160 if (!this->include_section(object, name, shdr))
1161 return NULL;
1162
1163 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1164
1165 // In a relocatable link a grouped section must not be combined with
1166 // any other sections.
1167 Output_section* os;
1168 if (parameters->options().relocatable()
1169 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1170 {
1171 // Some flags in the input section should not be automatically
1172 // copied to the output section.
1173 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174 & ~ elfcpp::SHF_COMPRESSED);
1175 name = this->namepool_.add(name, true, NULL);
1176 os = this->make_output_section(name, sh_type, flags,
1177 ORDER_INVALID, false);
1178 }
1179 else
1180 {
1181 // All ".text.unlikely.*" sections can be moved to a unique
1182 // segment with --text-unlikely-segment option.
1183 bool text_unlikely_segment
1184 = (parameters->options().text_unlikely_segment()
1185 && is_prefix_of(".text.unlikely",
1186 object->section_name(shndx).c_str()));
1187 if (text_unlikely_segment)
1188 {
1189 elfcpp::Elf_Xword flags
1190 = this->get_output_section_flags(shdr.get_sh_flags());
1191
1192 Stringpool::Key name_key;
1193 const char* os_name = this->namepool_.add(".text.unlikely", true,
1194 &name_key);
1195 os = this->get_output_section(os_name, name_key, sh_type, flags,
1196 ORDER_INVALID, false);
1197 // Map this output section to a unique segment. This is done to
1198 // separate "text" that is not likely to be executed from "text"
1199 // that is likely executed.
1200 os->set_is_unique_segment();
1201 }
1202 else
1203 {
1204 // Plugins can choose to place one or more subsets of sections in
1205 // unique segments and this is done by mapping these section subsets
1206 // to unique output sections. Check if this section needs to be
1207 // remapped to a unique output section.
1208 Section_segment_map::iterator it
1209 = this->section_segment_map_.find(Const_section_id(object, shndx));
1210 if (it == this->section_segment_map_.end())
1211 {
1212 os = this->choose_output_section(object, name, sh_type,
1213 shdr.get_sh_flags(), true,
1214 ORDER_INVALID, false, false,
1215 true);
1216 }
1217 else
1218 {
1219 // We know the name of the output section, directly call
1220 // get_output_section here by-passing choose_output_section.
1221 elfcpp::Elf_Xword flags
1222 = this->get_output_section_flags(shdr.get_sh_flags());
1223
1224 const char* os_name = it->second->name;
1225 Stringpool::Key name_key;
1226 os_name = this->namepool_.add(os_name, true, &name_key);
1227 os = this->get_output_section(os_name, name_key, sh_type, flags,
1228 ORDER_INVALID, false);
1229 if (!os->is_unique_segment())
1230 {
1231 os->set_is_unique_segment();
1232 os->set_extra_segment_flags(it->second->flags);
1233 os->set_segment_alignment(it->second->align);
1234 }
1235 }
1236 }
1237 if (os == NULL)
1238 return NULL;
1239 }
1240
1241 // By default the GNU linker sorts input sections whose names match
1242 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1243 // sections are sorted by name. This is used to implement
1244 // constructor priority ordering. We are compatible. When we put
1245 // .ctor sections in .init_array and .dtor sections in .fini_array,
1246 // we must also sort plain .ctor and .dtor sections.
1247 if (!this->script_options_->saw_sections_clause()
1248 && !parameters->options().relocatable()
1249 && (is_prefix_of(".ctors.", name)
1250 || is_prefix_of(".dtors.", name)
1251 || is_prefix_of(".init_array.", name)
1252 || is_prefix_of(".fini_array.", name)
1253 || (parameters->options().ctors_in_init_array()
1254 && (strcmp(name, ".ctors") == 0
1255 || strcmp(name, ".dtors") == 0))))
1256 os->set_must_sort_attached_input_sections();
1257
1258 // By default the GNU linker sorts some special text sections ahead
1259 // of others. We are compatible.
1260 if (parameters->options().text_reorder()
1261 && !this->script_options_->saw_sections_clause()
1262 && !this->is_section_ordering_specified()
1263 && !parameters->options().relocatable()
1264 && Layout::special_ordering_of_input_section(name) >= 0)
1265 os->set_must_sort_attached_input_sections();
1266
1267 // If this is a .ctors or .ctors.* section being mapped to a
1268 // .init_array section, or a .dtors or .dtors.* section being mapped
1269 // to a .fini_array section, we will need to reverse the words if
1270 // there is more than one. Record this section for later. See
1271 // ctors_sections_in_init_array above.
1272 if (!this->script_options_->saw_sections_clause()
1273 && !parameters->options().relocatable()
1274 && shdr.get_sh_size() > size / 8
1275 && (((strcmp(name, ".ctors") == 0
1276 || is_prefix_of(".ctors.", name))
1277 && strcmp(os->name(), ".init_array") == 0)
1278 || ((strcmp(name, ".dtors") == 0
1279 || is_prefix_of(".dtors.", name))
1280 && strcmp(os->name(), ".fini_array") == 0)))
1281 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1282
1283 // FIXME: Handle SHF_LINK_ORDER somewhere.
1284
1285 elfcpp::Elf_Xword orig_flags = os->flags();
1286
1287 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1288 this->script_options_->saw_sections_clause());
1289
1290 // If the flags changed, we may have to change the order.
1291 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1292 {
1293 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1294 elfcpp::Elf_Xword new_flags =
1295 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296 if (orig_flags != new_flags)
1297 os->set_order(this->default_section_order(os, false));
1298 }
1299
1300 this->have_added_input_section_ = true;
1301
1302 return os;
1303 }
1304
1305 // Maps section SECN to SEGMENT s.
1306 void
1307 Layout::insert_section_segment_map(Const_section_id secn,
1308 Unique_segment_info *s)
1309 {
1310 gold_assert(this->unique_segment_for_sections_specified_);
1311 this->section_segment_map_[secn] = s;
1312 }
1313
1314 // Handle a relocation section when doing a relocatable link.
1315
1316 template<int size, bool big_endian>
1317 Output_section*
1318 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1319 unsigned int,
1320 const elfcpp::Shdr<size, big_endian>& shdr,
1321 Output_section* data_section,
1322 Relocatable_relocs* rr)
1323 {
1324 gold_assert(parameters->options().relocatable()
1325 || parameters->options().emit_relocs());
1326
1327 int sh_type = shdr.get_sh_type();
1328
1329 std::string name;
1330 if (sh_type == elfcpp::SHT_REL)
1331 name = ".rel";
1332 else if (sh_type == elfcpp::SHT_RELA)
1333 name = ".rela";
1334 else
1335 gold_unreachable();
1336 name += data_section->name();
1337
1338 // In a relocatable link relocs for a grouped section must not be
1339 // combined with other reloc sections.
1340 Output_section* os;
1341 if (!parameters->options().relocatable()
1342 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1343 os = this->choose_output_section(object, name.c_str(), sh_type,
1344 shdr.get_sh_flags(), false,
1345 ORDER_INVALID, false, true, false);
1346 else
1347 {
1348 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1349 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1350 ORDER_INVALID, false);
1351 }
1352
1353 os->set_should_link_to_symtab();
1354 os->set_info_section(data_section);
1355
1356 Output_section_data* posd;
1357 if (sh_type == elfcpp::SHT_REL)
1358 {
1359 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1360 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1361 size,
1362 big_endian>(rr);
1363 }
1364 else if (sh_type == elfcpp::SHT_RELA)
1365 {
1366 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1367 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1368 size,
1369 big_endian>(rr);
1370 }
1371 else
1372 gold_unreachable();
1373
1374 os->add_output_section_data(posd);
1375 rr->set_output_data(posd);
1376
1377 return os;
1378 }
1379
1380 // Handle a group section when doing a relocatable link.
1381
1382 template<int size, bool big_endian>
1383 void
1384 Layout::layout_group(Symbol_table* symtab,
1385 Sized_relobj_file<size, big_endian>* object,
1386 unsigned int,
1387 const char* group_section_name,
1388 const char* signature,
1389 const elfcpp::Shdr<size, big_endian>& shdr,
1390 elfcpp::Elf_Word flags,
1391 std::vector<unsigned int>* shndxes)
1392 {
1393 gold_assert(parameters->options().relocatable());
1394 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1395 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1396 Output_section* os = this->make_output_section(group_section_name,
1397 elfcpp::SHT_GROUP,
1398 shdr.get_sh_flags(),
1399 ORDER_INVALID, false);
1400
1401 // We need to find a symbol with the signature in the symbol table.
1402 // If we don't find one now, we need to look again later.
1403 Symbol* sym = symtab->lookup(signature, NULL);
1404 if (sym != NULL)
1405 os->set_info_symndx(sym);
1406 else
1407 {
1408 // Reserve some space to minimize reallocations.
1409 if (this->group_signatures_.empty())
1410 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1411
1412 // We will wind up using a symbol whose name is the signature.
1413 // So just put the signature in the symbol name pool to save it.
1414 signature = symtab->canonicalize_name(signature);
1415 this->group_signatures_.push_back(Group_signature(os, signature));
1416 }
1417
1418 os->set_should_link_to_symtab();
1419 os->set_entsize(4);
1420
1421 section_size_type entry_count =
1422 convert_to_section_size_type(shdr.get_sh_size() / 4);
1423 Output_section_data* posd =
1424 new Output_data_group<size, big_endian>(object, entry_count, flags,
1425 shndxes);
1426 os->add_output_section_data(posd);
1427 }
1428
1429 // Special GNU handling of sections name .eh_frame. They will
1430 // normally hold exception frame data as defined by the C++ ABI
1431 // (http://codesourcery.com/cxx-abi/).
1432
1433 template<int size, bool big_endian>
1434 Output_section*
1435 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1436 const unsigned char* symbols,
1437 off_t symbols_size,
1438 const unsigned char* symbol_names,
1439 off_t symbol_names_size,
1440 unsigned int shndx,
1441 const elfcpp::Shdr<size, big_endian>& shdr,
1442 unsigned int reloc_shndx, unsigned int reloc_type,
1443 off_t* off)
1444 {
1445 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1446 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1447 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1448
1449 Output_section* os = this->make_eh_frame_section(object);
1450 if (os == NULL)
1451 return NULL;
1452
1453 gold_assert(this->eh_frame_section_ == os);
1454
1455 elfcpp::Elf_Xword orig_flags = os->flags();
1456
1457 Eh_frame::Eh_frame_section_disposition disp =
1458 Eh_frame::EH_UNRECOGNIZED_SECTION;
1459 if (!parameters->incremental())
1460 {
1461 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1462 symbols,
1463 symbols_size,
1464 symbol_names,
1465 symbol_names_size,
1466 shndx,
1467 reloc_shndx,
1468 reloc_type);
1469 }
1470
1471 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1472 {
1473 os->update_flags_for_input_section(shdr.get_sh_flags());
1474
1475 // A writable .eh_frame section is a RELRO section.
1476 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478 {
1479 os->set_is_relro();
1480 os->set_order(ORDER_RELRO);
1481 }
1482
1483 *off = -1;
1484 return os;
1485 }
1486
1487 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1488 {
1489 // We found the end marker section, so now we can add the set of
1490 // optimized sections to the output section. We need to postpone
1491 // adding this until we've found a section we can optimize so that
1492 // the .eh_frame section in crtbeginT.o winds up at the start of
1493 // the output section.
1494 os->add_output_section_data(this->eh_frame_data_);
1495 this->added_eh_frame_data_ = true;
1496 }
1497
1498 // We couldn't handle this .eh_frame section for some reason.
1499 // Add it as a normal section.
1500 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1501 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1502 reloc_shndx, saw_sections_clause);
1503 this->have_added_input_section_ = true;
1504
1505 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1506 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1507 os->set_order(this->default_section_order(os, false));
1508
1509 return os;
1510 }
1511
1512 void
1513 Layout::finalize_eh_frame_section()
1514 {
1515 // If we never found an end marker section, we need to add the
1516 // optimized eh sections to the output section now.
1517 if (!parameters->incremental()
1518 && this->eh_frame_section_ != NULL
1519 && !this->added_eh_frame_data_)
1520 {
1521 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1522 this->added_eh_frame_data_ = true;
1523 }
1524 }
1525
1526 // Create and return the magic .eh_frame section. Create
1527 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1528 // input .eh_frame section; it may be NULL.
1529
1530 Output_section*
1531 Layout::make_eh_frame_section(const Relobj* object)
1532 {
1533 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1534 // SHT_PROGBITS.
1535 Output_section* os = this->choose_output_section(object, ".eh_frame",
1536 elfcpp::SHT_PROGBITS,
1537 elfcpp::SHF_ALLOC, false,
1538 ORDER_EHFRAME, false, false,
1539 false);
1540 if (os == NULL)
1541 return NULL;
1542
1543 if (this->eh_frame_section_ == NULL)
1544 {
1545 this->eh_frame_section_ = os;
1546 this->eh_frame_data_ = new Eh_frame();
1547
1548 // For incremental linking, we do not optimize .eh_frame sections
1549 // or create a .eh_frame_hdr section.
1550 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1551 {
1552 Output_section* hdr_os =
1553 this->choose_output_section(NULL, ".eh_frame_hdr",
1554 elfcpp::SHT_PROGBITS,
1555 elfcpp::SHF_ALLOC, false,
1556 ORDER_EHFRAME, false, false,
1557 false);
1558
1559 if (hdr_os != NULL)
1560 {
1561 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1562 this->eh_frame_data_);
1563 hdr_os->add_output_section_data(hdr_posd);
1564
1565 hdr_os->set_after_input_sections();
1566
1567 if (!this->script_options_->saw_phdrs_clause())
1568 {
1569 Output_segment* hdr_oseg;
1570 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1571 elfcpp::PF_R);
1572 hdr_oseg->add_output_section_to_nonload(hdr_os,
1573 elfcpp::PF_R);
1574 }
1575
1576 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1577 }
1578 }
1579 }
1580
1581 return os;
1582 }
1583
1584 // Add an exception frame for a PLT. This is called from target code.
1585
1586 void
1587 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1588 size_t cie_length, const unsigned char* fde_data,
1589 size_t fde_length)
1590 {
1591 if (parameters->incremental())
1592 {
1593 // FIXME: Maybe this could work some day....
1594 return;
1595 }
1596 Output_section* os = this->make_eh_frame_section(NULL);
1597 if (os == NULL)
1598 return;
1599 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1600 fde_data, fde_length);
1601 if (!this->added_eh_frame_data_)
1602 {
1603 os->add_output_section_data(this->eh_frame_data_);
1604 this->added_eh_frame_data_ = true;
1605 }
1606 }
1607
1608 // Remove .eh_frame information for a PLT. FDEs using the CIE must
1609 // be removed in reverse order to the order they were added.
1610
1611 void
1612 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1613 size_t cie_length, const unsigned char* fde_data,
1614 size_t fde_length)
1615 {
1616 if (parameters->incremental())
1617 {
1618 // FIXME: Maybe this could work some day....
1619 return;
1620 }
1621 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length,
1622 fde_data, fde_length);
1623 }
1624
1625 // Scan a .debug_info or .debug_types section, and add summary
1626 // information to the .gdb_index section.
1627
1628 template<int size, bool big_endian>
1629 void
1630 Layout::add_to_gdb_index(bool is_type_unit,
1631 Sized_relobj<size, big_endian>* object,
1632 const unsigned char* symbols,
1633 off_t symbols_size,
1634 unsigned int shndx,
1635 unsigned int reloc_shndx,
1636 unsigned int reloc_type)
1637 {
1638 if (this->gdb_index_data_ == NULL)
1639 {
1640 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1641 elfcpp::SHT_PROGBITS, 0,
1642 false, ORDER_INVALID,
1643 false, false, false);
1644 if (os == NULL)
1645 return;
1646
1647 this->gdb_index_data_ = new Gdb_index(os);
1648 os->add_output_section_data(this->gdb_index_data_);
1649 os->set_after_input_sections();
1650 }
1651
1652 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1653 symbols_size, shndx, reloc_shndx,
1654 reloc_type);
1655 }
1656
1657 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1658 // the output section.
1659
1660 Output_section*
1661 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1662 elfcpp::Elf_Xword flags,
1663 Output_section_data* posd,
1664 Output_section_order order, bool is_relro)
1665 {
1666 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1667 false, order, is_relro,
1668 false, false);
1669 if (os != NULL)
1670 os->add_output_section_data(posd);
1671 return os;
1672 }
1673
1674 // Map section flags to segment flags.
1675
1676 elfcpp::Elf_Word
1677 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1678 {
1679 elfcpp::Elf_Word ret = elfcpp::PF_R;
1680 if ((flags & elfcpp::SHF_WRITE) != 0)
1681 ret |= elfcpp::PF_W;
1682 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1683 ret |= elfcpp::PF_X;
1684 return ret;
1685 }
1686
1687 // Make a new Output_section, and attach it to segments as
1688 // appropriate. ORDER is the order in which this section should
1689 // appear in the output segment. IS_RELRO is true if this is a relro
1690 // (read-only after relocations) section.
1691
1692 Output_section*
1693 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1694 elfcpp::Elf_Xword flags,
1695 Output_section_order order, bool is_relro)
1696 {
1697 Output_section* os;
1698 if ((flags & elfcpp::SHF_ALLOC) == 0
1699 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1700 && is_compressible_debug_section(name))
1701 os = new Output_compressed_section(&parameters->options(), name, type,
1702 flags);
1703 else if ((flags & elfcpp::SHF_ALLOC) == 0
1704 && parameters->options().strip_debug_non_line()
1705 && strcmp(".debug_abbrev", name) == 0)
1706 {
1707 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1708 name, type, flags);
1709 if (this->debug_info_)
1710 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1711 }
1712 else if ((flags & elfcpp::SHF_ALLOC) == 0
1713 && parameters->options().strip_debug_non_line()
1714 && strcmp(".debug_info", name) == 0)
1715 {
1716 os = this->debug_info_ = new Output_reduced_debug_info_section(
1717 name, type, flags);
1718 if (this->debug_abbrev_)
1719 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1720 }
1721 else
1722 {
1723 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1724 // not have correct section types. Force them here.
1725 if (type == elfcpp::SHT_PROGBITS)
1726 {
1727 if (is_prefix_of(".init_array", name))
1728 type = elfcpp::SHT_INIT_ARRAY;
1729 else if (is_prefix_of(".preinit_array", name))
1730 type = elfcpp::SHT_PREINIT_ARRAY;
1731 else if (is_prefix_of(".fini_array", name))
1732 type = elfcpp::SHT_FINI_ARRAY;
1733 }
1734
1735 // FIXME: const_cast is ugly.
1736 Target* target = const_cast<Target*>(&parameters->target());
1737 os = target->make_output_section(name, type, flags);
1738 }
1739
1740 // With -z relro, we have to recognize the special sections by name.
1741 // There is no other way.
1742 bool is_relro_local = false;
1743 if (!this->script_options_->saw_sections_clause()
1744 && parameters->options().relro()
1745 && (flags & elfcpp::SHF_ALLOC) != 0
1746 && (flags & elfcpp::SHF_WRITE) != 0)
1747 {
1748 if (type == elfcpp::SHT_PROGBITS)
1749 {
1750 if ((flags & elfcpp::SHF_TLS) != 0)
1751 is_relro = true;
1752 else if (strcmp(name, ".data.rel.ro") == 0)
1753 is_relro = true;
1754 else if (strcmp(name, ".data.rel.ro.local") == 0)
1755 {
1756 is_relro = true;
1757 is_relro_local = true;
1758 }
1759 else if (strcmp(name, ".ctors") == 0
1760 || strcmp(name, ".dtors") == 0
1761 || strcmp(name, ".jcr") == 0)
1762 is_relro = true;
1763 }
1764 else if (type == elfcpp::SHT_INIT_ARRAY
1765 || type == elfcpp::SHT_FINI_ARRAY
1766 || type == elfcpp::SHT_PREINIT_ARRAY)
1767 is_relro = true;
1768 }
1769
1770 if (is_relro)
1771 os->set_is_relro();
1772
1773 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1774 order = this->default_section_order(os, is_relro_local);
1775
1776 os->set_order(order);
1777
1778 parameters->target().new_output_section(os);
1779
1780 this->section_list_.push_back(os);
1781
1782 // The GNU linker by default sorts some sections by priority, so we
1783 // do the same. We need to know that this might happen before we
1784 // attach any input sections.
1785 if (!this->script_options_->saw_sections_clause()
1786 && !parameters->options().relocatable()
1787 && (strcmp(name, ".init_array") == 0
1788 || strcmp(name, ".fini_array") == 0
1789 || (!parameters->options().ctors_in_init_array()
1790 && (strcmp(name, ".ctors") == 0
1791 || strcmp(name, ".dtors") == 0))))
1792 os->set_may_sort_attached_input_sections();
1793
1794 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1795 // sections before other .text sections. We are compatible. We
1796 // need to know that this might happen before we attach any input
1797 // sections.
1798 if (parameters->options().text_reorder()
1799 && !this->script_options_->saw_sections_clause()
1800 && !this->is_section_ordering_specified()
1801 && !parameters->options().relocatable()
1802 && strcmp(name, ".text") == 0)
1803 os->set_may_sort_attached_input_sections();
1804
1805 // GNU linker sorts section by name with --sort-section=name.
1806 if (strcmp(parameters->options().sort_section(), "name") == 0)
1807 os->set_must_sort_attached_input_sections();
1808
1809 // Check for .stab*str sections, as .stab* sections need to link to
1810 // them.
1811 if (type == elfcpp::SHT_STRTAB
1812 && !this->have_stabstr_section_
1813 && strncmp(name, ".stab", 5) == 0
1814 && strcmp(name + strlen(name) - 3, "str") == 0)
1815 this->have_stabstr_section_ = true;
1816
1817 // During a full incremental link, we add patch space to most
1818 // PROGBITS and NOBITS sections. Flag those that may be
1819 // arbitrarily padded.
1820 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1821 && order != ORDER_INTERP
1822 && order != ORDER_INIT
1823 && order != ORDER_PLT
1824 && order != ORDER_FINI
1825 && order != ORDER_RELRO_LAST
1826 && order != ORDER_NON_RELRO_FIRST
1827 && strcmp(name, ".eh_frame") != 0
1828 && strcmp(name, ".ctors") != 0
1829 && strcmp(name, ".dtors") != 0
1830 && strcmp(name, ".jcr") != 0)
1831 {
1832 os->set_is_patch_space_allowed();
1833
1834 // Certain sections require "holes" to be filled with
1835 // specific fill patterns. These fill patterns may have
1836 // a minimum size, so we must prevent allocations from the
1837 // free list that leave a hole smaller than the minimum.
1838 if (strcmp(name, ".debug_info") == 0)
1839 os->set_free_space_fill(new Output_fill_debug_info(false));
1840 else if (strcmp(name, ".debug_types") == 0)
1841 os->set_free_space_fill(new Output_fill_debug_info(true));
1842 else if (strcmp(name, ".debug_line") == 0)
1843 os->set_free_space_fill(new Output_fill_debug_line());
1844 }
1845
1846 // If we have already attached the sections to segments, then we
1847 // need to attach this one now. This happens for sections created
1848 // directly by the linker.
1849 if (this->sections_are_attached_)
1850 this->attach_section_to_segment(&parameters->target(), os);
1851
1852 return os;
1853 }
1854
1855 // Return the default order in which a section should be placed in an
1856 // output segment. This function captures a lot of the ideas in
1857 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1858 // linker created section is normally set when the section is created;
1859 // this function is used for input sections.
1860
1861 Output_section_order
1862 Layout::default_section_order(Output_section* os, bool is_relro_local)
1863 {
1864 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1865 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1866 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1867 bool is_bss = false;
1868
1869 switch (os->type())
1870 {
1871 default:
1872 case elfcpp::SHT_PROGBITS:
1873 break;
1874 case elfcpp::SHT_NOBITS:
1875 is_bss = true;
1876 break;
1877 case elfcpp::SHT_RELA:
1878 case elfcpp::SHT_REL:
1879 if (!is_write)
1880 return ORDER_DYNAMIC_RELOCS;
1881 break;
1882 case elfcpp::SHT_HASH:
1883 case elfcpp::SHT_DYNAMIC:
1884 case elfcpp::SHT_SHLIB:
1885 case elfcpp::SHT_DYNSYM:
1886 case elfcpp::SHT_GNU_HASH:
1887 case elfcpp::SHT_GNU_verdef:
1888 case elfcpp::SHT_GNU_verneed:
1889 case elfcpp::SHT_GNU_versym:
1890 if (!is_write)
1891 return ORDER_DYNAMIC_LINKER;
1892 break;
1893 case elfcpp::SHT_NOTE:
1894 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1895 }
1896
1897 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1898 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1899
1900 if (!is_bss && !is_write)
1901 {
1902 if (is_execinstr)
1903 {
1904 if (strcmp(os->name(), ".init") == 0)
1905 return ORDER_INIT;
1906 else if (strcmp(os->name(), ".fini") == 0)
1907 return ORDER_FINI;
1908 else if (parameters->options().keep_text_section_prefix())
1909 {
1910 // -z,keep-text-section-prefix introduces additional
1911 // output sections.
1912 if (strcmp(os->name(), ".text.hot") == 0)
1913 return ORDER_TEXT_HOT;
1914 else if (strcmp(os->name(), ".text.startup") == 0)
1915 return ORDER_TEXT_STARTUP;
1916 else if (strcmp(os->name(), ".text.exit") == 0)
1917 return ORDER_TEXT_EXIT;
1918 else if (strcmp(os->name(), ".text.unlikely") == 0)
1919 return ORDER_TEXT_UNLIKELY;
1920 }
1921 }
1922 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1923 }
1924
1925 if (os->is_relro())
1926 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1927
1928 if (os->is_small_section())
1929 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1930 if (os->is_large_section())
1931 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1932
1933 return is_bss ? ORDER_BSS : ORDER_DATA;
1934 }
1935
1936 // Attach output sections to segments. This is called after we have
1937 // seen all the input sections.
1938
1939 void
1940 Layout::attach_sections_to_segments(const Target* target)
1941 {
1942 for (Section_list::iterator p = this->section_list_.begin();
1943 p != this->section_list_.end();
1944 ++p)
1945 this->attach_section_to_segment(target, *p);
1946
1947 this->sections_are_attached_ = true;
1948 }
1949
1950 // Attach an output section to a segment.
1951
1952 void
1953 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1954 {
1955 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1956 this->unattached_section_list_.push_back(os);
1957 else
1958 this->attach_allocated_section_to_segment(target, os);
1959 }
1960
1961 // Attach an allocated output section to a segment.
1962
1963 void
1964 Layout::attach_allocated_section_to_segment(const Target* target,
1965 Output_section* os)
1966 {
1967 elfcpp::Elf_Xword flags = os->flags();
1968 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1969
1970 if (parameters->options().relocatable())
1971 return;
1972
1973 // If we have a SECTIONS clause, we can't handle the attachment to
1974 // segments until after we've seen all the sections.
1975 if (this->script_options_->saw_sections_clause())
1976 return;
1977
1978 gold_assert(!this->script_options_->saw_phdrs_clause());
1979
1980 // This output section goes into a PT_LOAD segment.
1981
1982 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1983
1984 // If this output section's segment has extra flags that need to be set,
1985 // coming from a linker plugin, do that.
1986 seg_flags |= os->extra_segment_flags();
1987
1988 // Check for --section-start.
1989 uint64_t addr;
1990 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1991
1992 // In general the only thing we really care about for PT_LOAD
1993 // segments is whether or not they are writable or executable,
1994 // so that is how we search for them.
1995 // Large data sections also go into their own PT_LOAD segment.
1996 // People who need segments sorted on some other basis will
1997 // have to use a linker script.
1998
1999 Segment_list::const_iterator p;
2000 if (!os->is_unique_segment())
2001 {
2002 for (p = this->segment_list_.begin();
2003 p != this->segment_list_.end();
2004 ++p)
2005 {
2006 if ((*p)->type() != elfcpp::PT_LOAD)
2007 continue;
2008 if ((*p)->is_unique_segment())
2009 continue;
2010 if (!parameters->options().omagic()
2011 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2012 continue;
2013 if ((target->isolate_execinstr() || parameters->options().rosegment())
2014 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2015 continue;
2016 // If -Tbss was specified, we need to separate the data and BSS
2017 // segments.
2018 if (parameters->options().user_set_Tbss())
2019 {
2020 if ((os->type() == elfcpp::SHT_NOBITS)
2021 == (*p)->has_any_data_sections())
2022 continue;
2023 }
2024 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2025 continue;
2026
2027 if (is_address_set)
2028 {
2029 if ((*p)->are_addresses_set())
2030 continue;
2031
2032 (*p)->add_initial_output_data(os);
2033 (*p)->update_flags_for_output_section(seg_flags);
2034 (*p)->set_addresses(addr, addr);
2035 break;
2036 }
2037
2038 (*p)->add_output_section_to_load(this, os, seg_flags);
2039 break;
2040 }
2041 }
2042
2043 if (p == this->segment_list_.end()
2044 || os->is_unique_segment())
2045 {
2046 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2047 seg_flags);
2048 if (os->is_large_data_section())
2049 oseg->set_is_large_data_segment();
2050 oseg->add_output_section_to_load(this, os, seg_flags);
2051 if (is_address_set)
2052 oseg->set_addresses(addr, addr);
2053 // Check if segment should be marked unique. For segments marked
2054 // unique by linker plugins, set the new alignment if specified.
2055 if (os->is_unique_segment())
2056 {
2057 oseg->set_is_unique_segment();
2058 if (os->segment_alignment() != 0)
2059 oseg->set_minimum_p_align(os->segment_alignment());
2060 }
2061 }
2062
2063 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2064 // segment.
2065 if (os->type() == elfcpp::SHT_NOTE)
2066 {
2067 // See if we already have an equivalent PT_NOTE segment.
2068 for (p = this->segment_list_.begin();
2069 p != segment_list_.end();
2070 ++p)
2071 {
2072 if ((*p)->type() == elfcpp::PT_NOTE
2073 && (((*p)->flags() & elfcpp::PF_W)
2074 == (seg_flags & elfcpp::PF_W)))
2075 {
2076 (*p)->add_output_section_to_nonload(os, seg_flags);
2077 break;
2078 }
2079 }
2080
2081 if (p == this->segment_list_.end())
2082 {
2083 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2084 seg_flags);
2085 oseg->add_output_section_to_nonload(os, seg_flags);
2086 }
2087 }
2088
2089 // If we see a loadable SHF_TLS section, we create a PT_TLS
2090 // segment. There can only be one such segment.
2091 if ((flags & elfcpp::SHF_TLS) != 0)
2092 {
2093 if (this->tls_segment_ == NULL)
2094 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2095 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2096 }
2097
2098 // If -z relro is in effect, and we see a relro section, we create a
2099 // PT_GNU_RELRO segment. There can only be one such segment.
2100 if (os->is_relro() && parameters->options().relro())
2101 {
2102 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2103 if (this->relro_segment_ == NULL)
2104 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2105 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2106 }
2107
2108 // If we see a section named .interp, put it into a PT_INTERP
2109 // segment. This seems broken to me, but this is what GNU ld does,
2110 // and glibc expects it.
2111 if (strcmp(os->name(), ".interp") == 0
2112 && !this->script_options_->saw_phdrs_clause())
2113 {
2114 if (this->interp_segment_ == NULL)
2115 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2116 else
2117 gold_warning(_("multiple '.interp' sections in input files "
2118 "may cause confusing PT_INTERP segment"));
2119 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2120 }
2121 }
2122
2123 // Make an output section for a script.
2124
2125 Output_section*
2126 Layout::make_output_section_for_script(
2127 const char* name,
2128 Script_sections::Section_type section_type)
2129 {
2130 name = this->namepool_.add(name, false, NULL);
2131 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2132 if (section_type == Script_sections::ST_NOLOAD)
2133 sh_flags = 0;
2134 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2135 sh_flags, ORDER_INVALID,
2136 false);
2137 os->set_found_in_sections_clause();
2138 if (section_type == Script_sections::ST_NOLOAD)
2139 os->set_is_noload();
2140 return os;
2141 }
2142
2143 // Return the number of segments we expect to see.
2144
2145 size_t
2146 Layout::expected_segment_count() const
2147 {
2148 size_t ret = this->segment_list_.size();
2149
2150 // If we didn't see a SECTIONS clause in a linker script, we should
2151 // already have the complete list of segments. Otherwise we ask the
2152 // SECTIONS clause how many segments it expects, and add in the ones
2153 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2154
2155 if (!this->script_options_->saw_sections_clause())
2156 return ret;
2157 else
2158 {
2159 const Script_sections* ss = this->script_options_->script_sections();
2160 return ret + ss->expected_segment_count(this);
2161 }
2162 }
2163
2164 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2165 // is whether we saw a .note.GNU-stack section in the object file.
2166 // GNU_STACK_FLAGS is the section flags. The flags give the
2167 // protection required for stack memory. We record this in an
2168 // executable as a PT_GNU_STACK segment. If an object file does not
2169 // have a .note.GNU-stack segment, we must assume that it is an old
2170 // object. On some targets that will force an executable stack.
2171
2172 void
2173 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2174 const Object* obj)
2175 {
2176 if (!seen_gnu_stack)
2177 {
2178 this->input_without_gnu_stack_note_ = true;
2179 if (parameters->options().warn_execstack()
2180 && parameters->target().is_default_stack_executable())
2181 gold_warning(_("%s: missing .note.GNU-stack section"
2182 " implies executable stack"),
2183 obj->name().c_str());
2184 }
2185 else
2186 {
2187 this->input_with_gnu_stack_note_ = true;
2188 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2189 {
2190 this->input_requires_executable_stack_ = true;
2191 if (parameters->options().warn_execstack())
2192 gold_warning(_("%s: requires executable stack"),
2193 obj->name().c_str());
2194 }
2195 }
2196 }
2197
2198 // Create automatic note sections.
2199
2200 void
2201 Layout::create_notes()
2202 {
2203 this->create_gold_note();
2204 this->create_stack_segment();
2205 this->create_build_id();
2206 }
2207
2208 // Create the dynamic sections which are needed before we read the
2209 // relocs.
2210
2211 void
2212 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2213 {
2214 if (parameters->doing_static_link())
2215 return;
2216
2217 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2218 elfcpp::SHT_DYNAMIC,
2219 (elfcpp::SHF_ALLOC
2220 | elfcpp::SHF_WRITE),
2221 false, ORDER_RELRO,
2222 true, false, false);
2223
2224 // A linker script may discard .dynamic, so check for NULL.
2225 if (this->dynamic_section_ != NULL)
2226 {
2227 this->dynamic_symbol_ =
2228 symtab->define_in_output_data("_DYNAMIC", NULL,
2229 Symbol_table::PREDEFINED,
2230 this->dynamic_section_, 0, 0,
2231 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2232 elfcpp::STV_HIDDEN, 0, false, false);
2233
2234 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2235
2236 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2237 }
2238 }
2239
2240 // For each output section whose name can be represented as C symbol,
2241 // define __start and __stop symbols for the section. This is a GNU
2242 // extension.
2243
2244 void
2245 Layout::define_section_symbols(Symbol_table* symtab)
2246 {
2247 for (Section_list::const_iterator p = this->section_list_.begin();
2248 p != this->section_list_.end();
2249 ++p)
2250 {
2251 const char* const name = (*p)->name();
2252 if (is_cident(name))
2253 {
2254 const std::string name_string(name);
2255 const std::string start_name(cident_section_start_prefix
2256 + name_string);
2257 const std::string stop_name(cident_section_stop_prefix
2258 + name_string);
2259
2260 symtab->define_in_output_data(start_name.c_str(),
2261 NULL, // version
2262 Symbol_table::PREDEFINED,
2263 *p,
2264 0, // value
2265 0, // symsize
2266 elfcpp::STT_NOTYPE,
2267 elfcpp::STB_GLOBAL,
2268 elfcpp::STV_PROTECTED,
2269 0, // nonvis
2270 false, // offset_is_from_end
2271 true); // only_if_ref
2272
2273 symtab->define_in_output_data(stop_name.c_str(),
2274 NULL, // version
2275 Symbol_table::PREDEFINED,
2276 *p,
2277 0, // value
2278 0, // symsize
2279 elfcpp::STT_NOTYPE,
2280 elfcpp::STB_GLOBAL,
2281 elfcpp::STV_PROTECTED,
2282 0, // nonvis
2283 true, // offset_is_from_end
2284 true); // only_if_ref
2285 }
2286 }
2287 }
2288
2289 // Define symbols for group signatures.
2290
2291 void
2292 Layout::define_group_signatures(Symbol_table* symtab)
2293 {
2294 for (Group_signatures::iterator p = this->group_signatures_.begin();
2295 p != this->group_signatures_.end();
2296 ++p)
2297 {
2298 Symbol* sym = symtab->lookup(p->signature, NULL);
2299 if (sym != NULL)
2300 p->section->set_info_symndx(sym);
2301 else
2302 {
2303 // Force the name of the group section to the group
2304 // signature, and use the group's section symbol as the
2305 // signature symbol.
2306 if (strcmp(p->section->name(), p->signature) != 0)
2307 {
2308 const char* name = this->namepool_.add(p->signature,
2309 true, NULL);
2310 p->section->set_name(name);
2311 }
2312 p->section->set_needs_symtab_index();
2313 p->section->set_info_section_symndx(p->section);
2314 }
2315 }
2316
2317 this->group_signatures_.clear();
2318 }
2319
2320 // Find the first read-only PT_LOAD segment, creating one if
2321 // necessary.
2322
2323 Output_segment*
2324 Layout::find_first_load_seg(const Target* target)
2325 {
2326 Output_segment* best = NULL;
2327 for (Segment_list::const_iterator p = this->segment_list_.begin();
2328 p != this->segment_list_.end();
2329 ++p)
2330 {
2331 if ((*p)->type() == elfcpp::PT_LOAD
2332 && ((*p)->flags() & elfcpp::PF_R) != 0
2333 && (parameters->options().omagic()
2334 || ((*p)->flags() & elfcpp::PF_W) == 0)
2335 && (!target->isolate_execinstr()
2336 || ((*p)->flags() & elfcpp::PF_X) == 0))
2337 {
2338 if (best == NULL || this->segment_precedes(*p, best))
2339 best = *p;
2340 }
2341 }
2342 if (best != NULL)
2343 return best;
2344
2345 gold_assert(!this->script_options_->saw_phdrs_clause());
2346
2347 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2348 elfcpp::PF_R);
2349 return load_seg;
2350 }
2351
2352 // Save states of all current output segments. Store saved states
2353 // in SEGMENT_STATES.
2354
2355 void
2356 Layout::save_segments(Segment_states* segment_states)
2357 {
2358 for (Segment_list::const_iterator p = this->segment_list_.begin();
2359 p != this->segment_list_.end();
2360 ++p)
2361 {
2362 Output_segment* segment = *p;
2363 // Shallow copy.
2364 Output_segment* copy = new Output_segment(*segment);
2365 (*segment_states)[segment] = copy;
2366 }
2367 }
2368
2369 // Restore states of output segments and delete any segment not found in
2370 // SEGMENT_STATES.
2371
2372 void
2373 Layout::restore_segments(const Segment_states* segment_states)
2374 {
2375 // Go through the segment list and remove any segment added in the
2376 // relaxation loop.
2377 this->tls_segment_ = NULL;
2378 this->relro_segment_ = NULL;
2379 Segment_list::iterator list_iter = this->segment_list_.begin();
2380 while (list_iter != this->segment_list_.end())
2381 {
2382 Output_segment* segment = *list_iter;
2383 Segment_states::const_iterator states_iter =
2384 segment_states->find(segment);
2385 if (states_iter != segment_states->end())
2386 {
2387 const Output_segment* copy = states_iter->second;
2388 // Shallow copy to restore states.
2389 *segment = *copy;
2390
2391 // Also fix up TLS and RELRO segment pointers as appropriate.
2392 if (segment->type() == elfcpp::PT_TLS)
2393 this->tls_segment_ = segment;
2394 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2395 this->relro_segment_ = segment;
2396
2397 ++list_iter;
2398 }
2399 else
2400 {
2401 list_iter = this->segment_list_.erase(list_iter);
2402 // This is a segment created during section layout. It should be
2403 // safe to remove it since we should have removed all pointers to it.
2404 delete segment;
2405 }
2406 }
2407 }
2408
2409 // Clean up after relaxation so that sections can be laid out again.
2410
2411 void
2412 Layout::clean_up_after_relaxation()
2413 {
2414 // Restore the segments to point state just prior to the relaxation loop.
2415 Script_sections* script_section = this->script_options_->script_sections();
2416 script_section->release_segments();
2417 this->restore_segments(this->segment_states_);
2418
2419 // Reset section addresses and file offsets
2420 for (Section_list::iterator p = this->section_list_.begin();
2421 p != this->section_list_.end();
2422 ++p)
2423 {
2424 (*p)->restore_states();
2425
2426 // If an input section changes size because of relaxation,
2427 // we need to adjust the section offsets of all input sections.
2428 // after such a section.
2429 if ((*p)->section_offsets_need_adjustment())
2430 (*p)->adjust_section_offsets();
2431
2432 (*p)->reset_address_and_file_offset();
2433 }
2434
2435 // Reset special output object address and file offsets.
2436 for (Data_list::iterator p = this->special_output_list_.begin();
2437 p != this->special_output_list_.end();
2438 ++p)
2439 (*p)->reset_address_and_file_offset();
2440
2441 // A linker script may have created some output section data objects.
2442 // They are useless now.
2443 for (Output_section_data_list::const_iterator p =
2444 this->script_output_section_data_list_.begin();
2445 p != this->script_output_section_data_list_.end();
2446 ++p)
2447 delete *p;
2448 this->script_output_section_data_list_.clear();
2449
2450 // Special-case fill output objects are recreated each time through
2451 // the relaxation loop.
2452 this->reset_relax_output();
2453 }
2454
2455 void
2456 Layout::reset_relax_output()
2457 {
2458 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2459 p != this->relax_output_list_.end();
2460 ++p)
2461 delete *p;
2462 this->relax_output_list_.clear();
2463 }
2464
2465 // Prepare for relaxation.
2466
2467 void
2468 Layout::prepare_for_relaxation()
2469 {
2470 // Create an relaxation debug check if in debugging mode.
2471 if (is_debugging_enabled(DEBUG_RELAXATION))
2472 this->relaxation_debug_check_ = new Relaxation_debug_check();
2473
2474 // Save segment states.
2475 this->segment_states_ = new Segment_states();
2476 this->save_segments(this->segment_states_);
2477
2478 for(Section_list::const_iterator p = this->section_list_.begin();
2479 p != this->section_list_.end();
2480 ++p)
2481 (*p)->save_states();
2482
2483 if (is_debugging_enabled(DEBUG_RELAXATION))
2484 this->relaxation_debug_check_->check_output_data_for_reset_values(
2485 this->section_list_, this->special_output_list_,
2486 this->relax_output_list_);
2487
2488 // Also enable recording of output section data from scripts.
2489 this->record_output_section_data_from_script_ = true;
2490 }
2491
2492 // If the user set the address of the text segment, that may not be
2493 // compatible with putting the segment headers and file headers into
2494 // that segment. For isolate_execinstr() targets, it's the rodata
2495 // segment rather than text where we might put the headers.
2496 static inline bool
2497 load_seg_unusable_for_headers(const Target* target)
2498 {
2499 const General_options& options = parameters->options();
2500 if (target->isolate_execinstr())
2501 return (options.user_set_Trodata_segment()
2502 && options.Trodata_segment() % target->abi_pagesize() != 0);
2503 else
2504 return (options.user_set_Ttext()
2505 && options.Ttext() % target->abi_pagesize() != 0);
2506 }
2507
2508 // Relaxation loop body: If target has no relaxation, this runs only once
2509 // Otherwise, the target relaxation hook is called at the end of
2510 // each iteration. If the hook returns true, it means re-layout of
2511 // section is required.
2512 //
2513 // The number of segments created by a linking script without a PHDRS
2514 // clause may be affected by section sizes and alignments. There is
2515 // a remote chance that relaxation causes different number of PT_LOAD
2516 // segments are created and sections are attached to different segments.
2517 // Therefore, we always throw away all segments created during section
2518 // layout. In order to be able to restart the section layout, we keep
2519 // a copy of the segment list right before the relaxation loop and use
2520 // that to restore the segments.
2521 //
2522 // PASS is the current relaxation pass number.
2523 // SYMTAB is a symbol table.
2524 // PLOAD_SEG is the address of a pointer for the load segment.
2525 // PHDR_SEG is a pointer to the PHDR segment.
2526 // SEGMENT_HEADERS points to the output segment header.
2527 // FILE_HEADER points to the output file header.
2528 // PSHNDX is the address to store the output section index.
2529
2530 off_t inline
2531 Layout::relaxation_loop_body(
2532 int pass,
2533 Target* target,
2534 Symbol_table* symtab,
2535 Output_segment** pload_seg,
2536 Output_segment* phdr_seg,
2537 Output_segment_headers* segment_headers,
2538 Output_file_header* file_header,
2539 unsigned int* pshndx)
2540 {
2541 // If this is not the first iteration, we need to clean up after
2542 // relaxation so that we can lay out the sections again.
2543 if (pass != 0)
2544 this->clean_up_after_relaxation();
2545
2546 // If there is a SECTIONS clause, put all the input sections into
2547 // the required order.
2548 Output_segment* load_seg;
2549 if (this->script_options_->saw_sections_clause())
2550 load_seg = this->set_section_addresses_from_script(symtab);
2551 else if (parameters->options().relocatable())
2552 load_seg = NULL;
2553 else
2554 load_seg = this->find_first_load_seg(target);
2555
2556 if (parameters->options().oformat_enum()
2557 != General_options::OBJECT_FORMAT_ELF)
2558 load_seg = NULL;
2559
2560 if (load_seg_unusable_for_headers(target))
2561 {
2562 load_seg = NULL;
2563 phdr_seg = NULL;
2564 }
2565
2566 gold_assert(phdr_seg == NULL
2567 || load_seg != NULL
2568 || this->script_options_->saw_sections_clause());
2569
2570 // If the address of the load segment we found has been set by
2571 // --section-start rather than by a script, then adjust the VMA and
2572 // LMA downward if possible to include the file and section headers.
2573 uint64_t header_gap = 0;
2574 if (load_seg != NULL
2575 && load_seg->are_addresses_set()
2576 && !this->script_options_->saw_sections_clause()
2577 && !parameters->options().relocatable())
2578 {
2579 file_header->finalize_data_size();
2580 segment_headers->finalize_data_size();
2581 size_t sizeof_headers = (file_header->data_size()
2582 + segment_headers->data_size());
2583 const uint64_t abi_pagesize = target->abi_pagesize();
2584 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2585 hdr_paddr &= ~(abi_pagesize - 1);
2586 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2587 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2588 load_seg = NULL;
2589 else
2590 {
2591 load_seg->set_addresses(load_seg->vaddr() - subtract,
2592 load_seg->paddr() - subtract);
2593 header_gap = subtract - sizeof_headers;
2594 }
2595 }
2596
2597 // Lay out the segment headers.
2598 if (!parameters->options().relocatable())
2599 {
2600 gold_assert(segment_headers != NULL);
2601 if (header_gap != 0 && load_seg != NULL)
2602 {
2603 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2604 load_seg->add_initial_output_data(z);
2605 }
2606 if (load_seg != NULL)
2607 load_seg->add_initial_output_data(segment_headers);
2608 if (phdr_seg != NULL)
2609 phdr_seg->add_initial_output_data(segment_headers);
2610 }
2611
2612 // Lay out the file header.
2613 if (load_seg != NULL)
2614 load_seg->add_initial_output_data(file_header);
2615
2616 if (this->script_options_->saw_phdrs_clause()
2617 && !parameters->options().relocatable())
2618 {
2619 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2620 // clause in a linker script.
2621 Script_sections* ss = this->script_options_->script_sections();
2622 ss->put_headers_in_phdrs(file_header, segment_headers);
2623 }
2624
2625 // We set the output section indexes in set_segment_offsets and
2626 // set_section_indexes.
2627 *pshndx = 1;
2628
2629 // Set the file offsets of all the segments, and all the sections
2630 // they contain.
2631 off_t off;
2632 if (!parameters->options().relocatable())
2633 off = this->set_segment_offsets(target, load_seg, pshndx);
2634 else
2635 off = this->set_relocatable_section_offsets(file_header, pshndx);
2636
2637 // Verify that the dummy relaxation does not change anything.
2638 if (is_debugging_enabled(DEBUG_RELAXATION))
2639 {
2640 if (pass == 0)
2641 this->relaxation_debug_check_->read_sections(this->section_list_);
2642 else
2643 this->relaxation_debug_check_->verify_sections(this->section_list_);
2644 }
2645
2646 *pload_seg = load_seg;
2647 return off;
2648 }
2649
2650 // Search the list of patterns and find the position of the given section
2651 // name in the output section. If the section name matches a glob
2652 // pattern and a non-glob name, then the non-glob position takes
2653 // precedence. Return 0 if no match is found.
2654
2655 unsigned int
2656 Layout::find_section_order_index(const std::string& section_name)
2657 {
2658 Unordered_map<std::string, unsigned int>::iterator map_it;
2659 map_it = this->input_section_position_.find(section_name);
2660 if (map_it != this->input_section_position_.end())
2661 return map_it->second;
2662
2663 // Absolute match failed. Linear search the glob patterns.
2664 std::vector<std::string>::iterator it;
2665 for (it = this->input_section_glob_.begin();
2666 it != this->input_section_glob_.end();
2667 ++it)
2668 {
2669 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2670 {
2671 map_it = this->input_section_position_.find(*it);
2672 gold_assert(map_it != this->input_section_position_.end());
2673 return map_it->second;
2674 }
2675 }
2676 return 0;
2677 }
2678
2679 // Read the sequence of input sections from the file specified with
2680 // option --section-ordering-file.
2681
2682 void
2683 Layout::read_layout_from_file()
2684 {
2685 const char* filename = parameters->options().section_ordering_file();
2686 std::ifstream in;
2687 std::string line;
2688
2689 in.open(filename);
2690 if (!in)
2691 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2692 filename, strerror(errno));
2693
2694 std::getline(in, line); // this chops off the trailing \n, if any
2695 unsigned int position = 1;
2696 this->set_section_ordering_specified();
2697
2698 while (in)
2699 {
2700 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2701 line.resize(line.length() - 1);
2702 // Ignore comments, beginning with '#'
2703 if (line[0] == '#')
2704 {
2705 std::getline(in, line);
2706 continue;
2707 }
2708 this->input_section_position_[line] = position;
2709 // Store all glob patterns in a vector.
2710 if (is_wildcard_string(line.c_str()))
2711 this->input_section_glob_.push_back(line);
2712 position++;
2713 std::getline(in, line);
2714 }
2715 }
2716
2717 // Finalize the layout. When this is called, we have created all the
2718 // output sections and all the output segments which are based on
2719 // input sections. We have several things to do, and we have to do
2720 // them in the right order, so that we get the right results correctly
2721 // and efficiently.
2722
2723 // 1) Finalize the list of output segments and create the segment
2724 // table header.
2725
2726 // 2) Finalize the dynamic symbol table and associated sections.
2727
2728 // 3) Determine the final file offset of all the output segments.
2729
2730 // 4) Determine the final file offset of all the SHF_ALLOC output
2731 // sections.
2732
2733 // 5) Create the symbol table sections and the section name table
2734 // section.
2735
2736 // 6) Finalize the symbol table: set symbol values to their final
2737 // value and make a final determination of which symbols are going
2738 // into the output symbol table.
2739
2740 // 7) Create the section table header.
2741
2742 // 8) Determine the final file offset of all the output sections which
2743 // are not SHF_ALLOC, including the section table header.
2744
2745 // 9) Finalize the ELF file header.
2746
2747 // This function returns the size of the output file.
2748
2749 off_t
2750 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2751 Target* target, const Task* task)
2752 {
2753 unsigned int local_dynamic_count = 0;
2754 unsigned int forced_local_dynamic_count = 0;
2755
2756 target->finalize_sections(this, input_objects, symtab);
2757
2758 this->count_local_symbols(task, input_objects);
2759
2760 this->link_stabs_sections();
2761
2762 Output_segment* phdr_seg = NULL;
2763 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2764 {
2765 // There was a dynamic object in the link. We need to create
2766 // some information for the dynamic linker.
2767
2768 // Create the PT_PHDR segment which will hold the program
2769 // headers.
2770 if (!this->script_options_->saw_phdrs_clause())
2771 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2772
2773 // Create the dynamic symbol table, including the hash table.
2774 Output_section* dynstr;
2775 std::vector<Symbol*> dynamic_symbols;
2776 Versions versions(*this->script_options()->version_script_info(),
2777 &this->dynpool_);
2778 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2779 &local_dynamic_count,
2780 &forced_local_dynamic_count,
2781 &dynamic_symbols,
2782 &versions);
2783
2784 // Create the .interp section to hold the name of the
2785 // interpreter, and put it in a PT_INTERP segment. Don't do it
2786 // if we saw a .interp section in an input file.
2787 if ((!parameters->options().shared()
2788 || parameters->options().dynamic_linker() != NULL)
2789 && this->interp_segment_ == NULL)
2790 this->create_interp(target);
2791
2792 // Finish the .dynamic section to hold the dynamic data, and put
2793 // it in a PT_DYNAMIC segment.
2794 this->finish_dynamic_section(input_objects, symtab);
2795
2796 // We should have added everything we need to the dynamic string
2797 // table.
2798 this->dynpool_.set_string_offsets();
2799
2800 // Create the version sections. We can't do this until the
2801 // dynamic string table is complete.
2802 this->create_version_sections(&versions, symtab,
2803 (local_dynamic_count
2804 + forced_local_dynamic_count),
2805 dynamic_symbols, dynstr);
2806
2807 // Set the size of the _DYNAMIC symbol. We can't do this until
2808 // after we call create_version_sections.
2809 this->set_dynamic_symbol_size(symtab);
2810 }
2811
2812 // Create segment headers.
2813 Output_segment_headers* segment_headers =
2814 (parameters->options().relocatable()
2815 ? NULL
2816 : new Output_segment_headers(this->segment_list_));
2817
2818 // Lay out the file header.
2819 Output_file_header* file_header = new Output_file_header(target, symtab,
2820 segment_headers);
2821
2822 this->special_output_list_.push_back(file_header);
2823 if (segment_headers != NULL)
2824 this->special_output_list_.push_back(segment_headers);
2825
2826 // Find approriate places for orphan output sections if we are using
2827 // a linker script.
2828 if (this->script_options_->saw_sections_clause())
2829 this->place_orphan_sections_in_script();
2830
2831 Output_segment* load_seg;
2832 off_t off;
2833 unsigned int shndx;
2834 int pass = 0;
2835
2836 // Take a snapshot of the section layout as needed.
2837 if (target->may_relax())
2838 this->prepare_for_relaxation();
2839
2840 // Run the relaxation loop to lay out sections.
2841 do
2842 {
2843 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2844 phdr_seg, segment_headers, file_header,
2845 &shndx);
2846 pass++;
2847 }
2848 while (target->may_relax()
2849 && target->relax(pass, input_objects, symtab, this, task));
2850
2851 // If there is a load segment that contains the file and program headers,
2852 // provide a symbol __ehdr_start pointing there.
2853 // A program can use this to examine itself robustly.
2854 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2855 if (ehdr_start != NULL && ehdr_start->is_predefined())
2856 {
2857 if (load_seg != NULL)
2858 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2859 else
2860 ehdr_start->set_undefined();
2861 }
2862
2863 // Set the file offsets of all the non-data sections we've seen so
2864 // far which don't have to wait for the input sections. We need
2865 // this in order to finalize local symbols in non-allocated
2866 // sections.
2867 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2868
2869 // Set the section indexes of all unallocated sections seen so far,
2870 // in case any of them are somehow referenced by a symbol.
2871 shndx = this->set_section_indexes(shndx);
2872
2873 // Create the symbol table sections.
2874 this->create_symtab_sections(input_objects, symtab, shndx, &off,
2875 local_dynamic_count);
2876 if (!parameters->doing_static_link())
2877 this->assign_local_dynsym_offsets(input_objects);
2878
2879 // Process any symbol assignments from a linker script. This must
2880 // be called after the symbol table has been finalized.
2881 this->script_options_->finalize_symbols(symtab, this);
2882
2883 // Create the incremental inputs sections.
2884 if (this->incremental_inputs_)
2885 {
2886 this->incremental_inputs_->finalize();
2887 this->create_incremental_info_sections(symtab);
2888 }
2889
2890 // Create the .shstrtab section.
2891 Output_section* shstrtab_section = this->create_shstrtab();
2892
2893 // Set the file offsets of the rest of the non-data sections which
2894 // don't have to wait for the input sections.
2895 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2896
2897 // Now that all sections have been created, set the section indexes
2898 // for any sections which haven't been done yet.
2899 shndx = this->set_section_indexes(shndx);
2900
2901 // Create the section table header.
2902 this->create_shdrs(shstrtab_section, &off);
2903
2904 // If there are no sections which require postprocessing, we can
2905 // handle the section names now, and avoid a resize later.
2906 if (!this->any_postprocessing_sections_)
2907 {
2908 off = this->set_section_offsets(off,
2909 POSTPROCESSING_SECTIONS_PASS);
2910 off =
2911 this->set_section_offsets(off,
2912 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2913 }
2914
2915 file_header->set_section_info(this->section_headers_, shstrtab_section);
2916
2917 // Now we know exactly where everything goes in the output file
2918 // (except for non-allocated sections which require postprocessing).
2919 Output_data::layout_complete();
2920
2921 this->output_file_size_ = off;
2922
2923 return off;
2924 }
2925
2926 // Create a note header following the format defined in the ELF ABI.
2927 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2928 // of the section to create, DESCSZ is the size of the descriptor.
2929 // ALLOCATE is true if the section should be allocated in memory.
2930 // This returns the new note section. It sets *TRAILING_PADDING to
2931 // the number of trailing zero bytes required.
2932
2933 Output_section*
2934 Layout::create_note(const char* name, int note_type,
2935 const char* section_name, size_t descsz,
2936 bool allocate, size_t* trailing_padding)
2937 {
2938 // Authorities all agree that the values in a .note field should
2939 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2940 // they differ on what the alignment is for 64-bit binaries.
2941 // The GABI says unambiguously they take 8-byte alignment:
2942 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2943 // Other documentation says alignment should always be 4 bytes:
2944 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2945 // GNU ld and GNU readelf both support the latter (at least as of
2946 // version 2.16.91), and glibc always generates the latter for
2947 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2948 // here.
2949 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2950 const int size = parameters->target().get_size();
2951 #else
2952 const int size = 32;
2953 #endif
2954
2955 // The contents of the .note section.
2956 size_t namesz = strlen(name) + 1;
2957 size_t aligned_namesz = align_address(namesz, size / 8);
2958 size_t aligned_descsz = align_address(descsz, size / 8);
2959
2960 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2961
2962 unsigned char* buffer = new unsigned char[notehdrsz];
2963 memset(buffer, 0, notehdrsz);
2964
2965 bool is_big_endian = parameters->target().is_big_endian();
2966
2967 if (size == 32)
2968 {
2969 if (!is_big_endian)
2970 {
2971 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2972 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2973 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2974 }
2975 else
2976 {
2977 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2978 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2979 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2980 }
2981 }
2982 else if (size == 64)
2983 {
2984 if (!is_big_endian)
2985 {
2986 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2987 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2988 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2989 }
2990 else
2991 {
2992 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2993 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2994 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2995 }
2996 }
2997 else
2998 gold_unreachable();
2999
3000 memcpy(buffer + 3 * (size / 8), name, namesz);
3001
3002 elfcpp::Elf_Xword flags = 0;
3003 Output_section_order order = ORDER_INVALID;
3004 if (allocate)
3005 {
3006 flags = elfcpp::SHF_ALLOC;
3007 order = ORDER_RO_NOTE;
3008 }
3009 Output_section* os = this->choose_output_section(NULL, section_name,
3010 elfcpp::SHT_NOTE,
3011 flags, false, order, false,
3012 false, true);
3013 if (os == NULL)
3014 return NULL;
3015
3016 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3017 size / 8,
3018 "** note header");
3019 os->add_output_section_data(posd);
3020
3021 *trailing_padding = aligned_descsz - descsz;
3022
3023 return os;
3024 }
3025
3026 // For an executable or shared library, create a note to record the
3027 // version of gold used to create the binary.
3028
3029 void
3030 Layout::create_gold_note()
3031 {
3032 if (parameters->options().relocatable()
3033 || parameters->incremental_update())
3034 return;
3035
3036 std::string desc = std::string("gold ") + gold::get_version_string();
3037
3038 size_t trailing_padding;
3039 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3040 ".note.gnu.gold-version", desc.size(),
3041 false, &trailing_padding);
3042 if (os == NULL)
3043 return;
3044
3045 Output_section_data* posd = new Output_data_const(desc, 4);
3046 os->add_output_section_data(posd);
3047
3048 if (trailing_padding > 0)
3049 {
3050 posd = new Output_data_zero_fill(trailing_padding, 0);
3051 os->add_output_section_data(posd);
3052 }
3053 }
3054
3055 // Record whether the stack should be executable. This can be set
3056 // from the command line using the -z execstack or -z noexecstack
3057 // options. Otherwise, if any input file has a .note.GNU-stack
3058 // section with the SHF_EXECINSTR flag set, the stack should be
3059 // executable. Otherwise, if at least one input file a
3060 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3061 // section, we use the target default for whether the stack should be
3062 // executable. If -z stack-size was used to set a p_memsz value for
3063 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3064 // don't generate a stack note. When generating a object file, we
3065 // create a .note.GNU-stack section with the appropriate marking.
3066 // When generating an executable or shared library, we create a
3067 // PT_GNU_STACK segment.
3068
3069 void
3070 Layout::create_stack_segment()
3071 {
3072 bool is_stack_executable;
3073 if (parameters->options().is_execstack_set())
3074 {
3075 is_stack_executable = parameters->options().is_stack_executable();
3076 if (!is_stack_executable
3077 && this->input_requires_executable_stack_
3078 && parameters->options().warn_execstack())
3079 gold_warning(_("one or more inputs require executable stack, "
3080 "but -z noexecstack was given"));
3081 }
3082 else if (!this->input_with_gnu_stack_note_
3083 && (!parameters->options().user_set_stack_size()
3084 || parameters->options().relocatable()))
3085 return;
3086 else
3087 {
3088 if (this->input_requires_executable_stack_)
3089 is_stack_executable = true;
3090 else if (this->input_without_gnu_stack_note_)
3091 is_stack_executable =
3092 parameters->target().is_default_stack_executable();
3093 else
3094 is_stack_executable = false;
3095 }
3096
3097 if (parameters->options().relocatable())
3098 {
3099 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3100 elfcpp::Elf_Xword flags = 0;
3101 if (is_stack_executable)
3102 flags |= elfcpp::SHF_EXECINSTR;
3103 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3104 ORDER_INVALID, false);
3105 }
3106 else
3107 {
3108 if (this->script_options_->saw_phdrs_clause())
3109 return;
3110 int flags = elfcpp::PF_R | elfcpp::PF_W;
3111 if (is_stack_executable)
3112 flags |= elfcpp::PF_X;
3113 Output_segment* seg =
3114 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3115 seg->set_size(parameters->options().stack_size());
3116 // BFD lets targets override this default alignment, but the only
3117 // targets that do so are ones that Gold does not support so far.
3118 seg->set_minimum_p_align(16);
3119 }
3120 }
3121
3122 // If --build-id was used, set up the build ID note.
3123
3124 void
3125 Layout::create_build_id()
3126 {
3127 if (!parameters->options().user_set_build_id())
3128 return;
3129
3130 const char* style = parameters->options().build_id();
3131 if (strcmp(style, "none") == 0)
3132 return;
3133
3134 // Set DESCSZ to the size of the note descriptor. When possible,
3135 // set DESC to the note descriptor contents.
3136 size_t descsz;
3137 std::string desc;
3138 if (strcmp(style, "md5") == 0)
3139 descsz = 128 / 8;
3140 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3141 descsz = 160 / 8;
3142 else if (strcmp(style, "uuid") == 0)
3143 {
3144 #ifndef __MINGW32__
3145 const size_t uuidsz = 128 / 8;
3146
3147 char buffer[uuidsz];
3148 memset(buffer, 0, uuidsz);
3149
3150 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3151 if (descriptor < 0)
3152 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3153 strerror(errno));
3154 else
3155 {
3156 ssize_t got = ::read(descriptor, buffer, uuidsz);
3157 release_descriptor(descriptor, true);
3158 if (got < 0)
3159 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3160 else if (static_cast<size_t>(got) != uuidsz)
3161 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3162 uuidsz, got);
3163 }
3164
3165 desc.assign(buffer, uuidsz);
3166 descsz = uuidsz;
3167 #else // __MINGW32__
3168 UUID uuid;
3169 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3170
3171 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3172 if (!rpc_library)
3173 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3174 else
3175 {
3176 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3177 GetProcAddress(rpc_library, "UuidCreate"));
3178 if (!uuid_create)
3179 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3180 else if (uuid_create(&uuid) != RPC_S_OK)
3181 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3182 FreeLibrary(rpc_library);
3183 }
3184 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3185 descsz = sizeof(UUID);
3186 #endif // __MINGW32__
3187 }
3188 else if (strncmp(style, "0x", 2) == 0)
3189 {
3190 hex_init();
3191 const char* p = style + 2;
3192 while (*p != '\0')
3193 {
3194 if (hex_p(p[0]) && hex_p(p[1]))
3195 {
3196 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3197 desc += c;
3198 p += 2;
3199 }
3200 else if (*p == '-' || *p == ':')
3201 ++p;
3202 else
3203 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3204 style);
3205 }
3206 descsz = desc.size();
3207 }
3208 else
3209 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3210
3211 // Create the note.
3212 size_t trailing_padding;
3213 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3214 ".note.gnu.build-id", descsz, true,
3215 &trailing_padding);
3216 if (os == NULL)
3217 return;
3218
3219 if (!desc.empty())
3220 {
3221 // We know the value already, so we fill it in now.
3222 gold_assert(desc.size() == descsz);
3223
3224 Output_section_data* posd = new Output_data_const(desc, 4);
3225 os->add_output_section_data(posd);
3226
3227 if (trailing_padding != 0)
3228 {
3229 posd = new Output_data_zero_fill(trailing_padding, 0);
3230 os->add_output_section_data(posd);
3231 }
3232 }
3233 else
3234 {
3235 // We need to compute a checksum after we have completed the
3236 // link.
3237 gold_assert(trailing_padding == 0);
3238 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3239 os->add_output_section_data(this->build_id_note_);
3240 }
3241 }
3242
3243 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3244 // field of the former should point to the latter. I'm not sure who
3245 // started this, but the GNU linker does it, and some tools depend
3246 // upon it.
3247
3248 void
3249 Layout::link_stabs_sections()
3250 {
3251 if (!this->have_stabstr_section_)
3252 return;
3253
3254 for (Section_list::iterator p = this->section_list_.begin();
3255 p != this->section_list_.end();
3256 ++p)
3257 {
3258 if ((*p)->type() != elfcpp::SHT_STRTAB)
3259 continue;
3260
3261 const char* name = (*p)->name();
3262 if (strncmp(name, ".stab", 5) != 0)
3263 continue;
3264
3265 size_t len = strlen(name);
3266 if (strcmp(name + len - 3, "str") != 0)
3267 continue;
3268
3269 std::string stab_name(name, len - 3);
3270 Output_section* stab_sec;
3271 stab_sec = this->find_output_section(stab_name.c_str());
3272 if (stab_sec != NULL)
3273 stab_sec->set_link_section(*p);
3274 }
3275 }
3276
3277 // Create .gnu_incremental_inputs and related sections needed
3278 // for the next run of incremental linking to check what has changed.
3279
3280 void
3281 Layout::create_incremental_info_sections(Symbol_table* symtab)
3282 {
3283 Incremental_inputs* incr = this->incremental_inputs_;
3284
3285 gold_assert(incr != NULL);
3286
3287 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3288 incr->create_data_sections(symtab);
3289
3290 // Add the .gnu_incremental_inputs section.
3291 const char* incremental_inputs_name =
3292 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3293 Output_section* incremental_inputs_os =
3294 this->make_output_section(incremental_inputs_name,
3295 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3296 ORDER_INVALID, false);
3297 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3298
3299 // Add the .gnu_incremental_symtab section.
3300 const char* incremental_symtab_name =
3301 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3302 Output_section* incremental_symtab_os =
3303 this->make_output_section(incremental_symtab_name,
3304 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3305 ORDER_INVALID, false);
3306 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3307 incremental_symtab_os->set_entsize(4);
3308
3309 // Add the .gnu_incremental_relocs section.
3310 const char* incremental_relocs_name =
3311 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3312 Output_section* incremental_relocs_os =
3313 this->make_output_section(incremental_relocs_name,
3314 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3315 ORDER_INVALID, false);
3316 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3317 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3318
3319 // Add the .gnu_incremental_got_plt section.
3320 const char* incremental_got_plt_name =
3321 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3322 Output_section* incremental_got_plt_os =
3323 this->make_output_section(incremental_got_plt_name,
3324 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3325 ORDER_INVALID, false);
3326 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3327
3328 // Add the .gnu_incremental_strtab section.
3329 const char* incremental_strtab_name =
3330 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3331 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3332 elfcpp::SHT_STRTAB, 0,
3333 ORDER_INVALID, false);
3334 Output_data_strtab* strtab_data =
3335 new Output_data_strtab(incr->get_stringpool());
3336 incremental_strtab_os->add_output_section_data(strtab_data);
3337
3338 incremental_inputs_os->set_after_input_sections();
3339 incremental_symtab_os->set_after_input_sections();
3340 incremental_relocs_os->set_after_input_sections();
3341 incremental_got_plt_os->set_after_input_sections();
3342
3343 incremental_inputs_os->set_link_section(incremental_strtab_os);
3344 incremental_symtab_os->set_link_section(incremental_inputs_os);
3345 incremental_relocs_os->set_link_section(incremental_inputs_os);
3346 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3347 }
3348
3349 // Return whether SEG1 should be before SEG2 in the output file. This
3350 // is based entirely on the segment type and flags. When this is
3351 // called the segment addresses have normally not yet been set.
3352
3353 bool
3354 Layout::segment_precedes(const Output_segment* seg1,
3355 const Output_segment* seg2)
3356 {
3357 // In order to produce a stable ordering if we're called with the same pointer
3358 // return false.
3359 if (seg1 == seg2)
3360 return false;
3361
3362 elfcpp::Elf_Word type1 = seg1->type();
3363 elfcpp::Elf_Word type2 = seg2->type();
3364
3365 // The single PT_PHDR segment is required to precede any loadable
3366 // segment. We simply make it always first.
3367 if (type1 == elfcpp::PT_PHDR)
3368 {
3369 gold_assert(type2 != elfcpp::PT_PHDR);
3370 return true;
3371 }
3372 if (type2 == elfcpp::PT_PHDR)
3373 return false;
3374
3375 // The single PT_INTERP segment is required to precede any loadable
3376 // segment. We simply make it always second.
3377 if (type1 == elfcpp::PT_INTERP)
3378 {
3379 gold_assert(type2 != elfcpp::PT_INTERP);
3380 return true;
3381 }
3382 if (type2 == elfcpp::PT_INTERP)
3383 return false;
3384
3385 // We then put PT_LOAD segments before any other segments.
3386 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3387 return true;
3388 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3389 return false;
3390
3391 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3392 // segment, because that is where the dynamic linker expects to find
3393 // it (this is just for efficiency; other positions would also work
3394 // correctly).
3395 if (type1 == elfcpp::PT_TLS
3396 && type2 != elfcpp::PT_TLS
3397 && type2 != elfcpp::PT_GNU_RELRO)
3398 return false;
3399 if (type2 == elfcpp::PT_TLS
3400 && type1 != elfcpp::PT_TLS
3401 && type1 != elfcpp::PT_GNU_RELRO)
3402 return true;
3403
3404 // We put the PT_GNU_RELRO segment last, because that is where the
3405 // dynamic linker expects to find it (as with PT_TLS, this is just
3406 // for efficiency).
3407 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3408 return false;
3409 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3410 return true;
3411
3412 const elfcpp::Elf_Word flags1 = seg1->flags();
3413 const elfcpp::Elf_Word flags2 = seg2->flags();
3414
3415 // The order of non-PT_LOAD segments is unimportant. We simply sort
3416 // by the numeric segment type and flags values. There should not
3417 // be more than one segment with the same type and flags, except
3418 // when a linker script specifies such.
3419 if (type1 != elfcpp::PT_LOAD)
3420 {
3421 if (type1 != type2)
3422 return type1 < type2;
3423 gold_assert(flags1 != flags2
3424 || this->script_options_->saw_phdrs_clause());
3425 return flags1 < flags2;
3426 }
3427
3428 // If the addresses are set already, sort by load address.
3429 if (seg1->are_addresses_set())
3430 {
3431 if (!seg2->are_addresses_set())
3432 return true;
3433
3434 unsigned int section_count1 = seg1->output_section_count();
3435 unsigned int section_count2 = seg2->output_section_count();
3436 if (section_count1 == 0 && section_count2 > 0)
3437 return true;
3438 if (section_count1 > 0 && section_count2 == 0)
3439 return false;
3440
3441 uint64_t paddr1 = (seg1->are_addresses_set()
3442 ? seg1->paddr()
3443 : seg1->first_section_load_address());
3444 uint64_t paddr2 = (seg2->are_addresses_set()
3445 ? seg2->paddr()
3446 : seg2->first_section_load_address());
3447
3448 if (paddr1 != paddr2)
3449 return paddr1 < paddr2;
3450 }
3451 else if (seg2->are_addresses_set())
3452 return false;
3453
3454 // A segment which holds large data comes after a segment which does
3455 // not hold large data.
3456 if (seg1->is_large_data_segment())
3457 {
3458 if (!seg2->is_large_data_segment())
3459 return false;
3460 }
3461 else if (seg2->is_large_data_segment())
3462 return true;
3463
3464 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3465 // segments come before writable segments. Then writable segments
3466 // with data come before writable segments without data. Then
3467 // executable segments come before non-executable segments. Then
3468 // the unlikely case of a non-readable segment comes before the
3469 // normal case of a readable segment. If there are multiple
3470 // segments with the same type and flags, we require that the
3471 // address be set, and we sort by virtual address and then physical
3472 // address.
3473 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3474 return (flags1 & elfcpp::PF_W) == 0;
3475 if ((flags1 & elfcpp::PF_W) != 0
3476 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3477 return seg1->has_any_data_sections();
3478 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3479 return (flags1 & elfcpp::PF_X) != 0;
3480 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3481 return (flags1 & elfcpp::PF_R) == 0;
3482
3483 // We shouldn't get here--we shouldn't create segments which we
3484 // can't distinguish. Unless of course we are using a weird linker
3485 // script or overlapping --section-start options. We could also get
3486 // here if plugins want unique segments for subsets of sections.
3487 gold_assert(this->script_options_->saw_phdrs_clause()
3488 || parameters->options().any_section_start()
3489 || this->is_unique_segment_for_sections_specified()
3490 || parameters->options().text_unlikely_segment());
3491 return false;
3492 }
3493
3494 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3495
3496 static off_t
3497 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3498 {
3499 uint64_t unsigned_off = off;
3500 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3501 | (addr & (abi_pagesize - 1)));
3502 if (aligned_off < unsigned_off)
3503 aligned_off += abi_pagesize;
3504 return aligned_off;
3505 }
3506
3507 // On targets where the text segment contains only executable code,
3508 // a non-executable segment is never the text segment.
3509
3510 static inline bool
3511 is_text_segment(const Target* target, const Output_segment* seg)
3512 {
3513 elfcpp::Elf_Xword flags = seg->flags();
3514 if ((flags & elfcpp::PF_W) != 0)
3515 return false;
3516 if ((flags & elfcpp::PF_X) == 0)
3517 return !target->isolate_execinstr();
3518 return true;
3519 }
3520
3521 // Set the file offsets of all the segments, and all the sections they
3522 // contain. They have all been created. LOAD_SEG must be laid out
3523 // first. Return the offset of the data to follow.
3524
3525 off_t
3526 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3527 unsigned int* pshndx)
3528 {
3529 // Sort them into the final order. We use a stable sort so that we
3530 // don't randomize the order of indistinguishable segments created
3531 // by linker scripts.
3532 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3533 Layout::Compare_segments(this));
3534
3535 // Find the PT_LOAD segments, and set their addresses and offsets
3536 // and their section's addresses and offsets.
3537 uint64_t start_addr;
3538 if (parameters->options().user_set_Ttext())
3539 start_addr = parameters->options().Ttext();
3540 else if (parameters->options().output_is_position_independent())
3541 start_addr = 0;
3542 else
3543 start_addr = target->default_text_segment_address();
3544
3545 uint64_t addr = start_addr;
3546 off_t off = 0;
3547
3548 // If LOAD_SEG is NULL, then the file header and segment headers
3549 // will not be loadable. But they still need to be at offset 0 in
3550 // the file. Set their offsets now.
3551 if (load_seg == NULL)
3552 {
3553 for (Data_list::iterator p = this->special_output_list_.begin();
3554 p != this->special_output_list_.end();
3555 ++p)
3556 {
3557 off = align_address(off, (*p)->addralign());
3558 (*p)->set_address_and_file_offset(0, off);
3559 off += (*p)->data_size();
3560 }
3561 }
3562
3563 unsigned int increase_relro = this->increase_relro_;
3564 if (this->script_options_->saw_sections_clause())
3565 increase_relro = 0;
3566
3567 const bool check_sections = parameters->options().check_sections();
3568 Output_segment* last_load_segment = NULL;
3569
3570 unsigned int shndx_begin = *pshndx;
3571 unsigned int shndx_load_seg = *pshndx;
3572
3573 for (Segment_list::iterator p = this->segment_list_.begin();
3574 p != this->segment_list_.end();
3575 ++p)
3576 {
3577 if ((*p)->type() == elfcpp::PT_LOAD)
3578 {
3579 if (target->isolate_execinstr())
3580 {
3581 // When we hit the segment that should contain the
3582 // file headers, reset the file offset so we place
3583 // it and subsequent segments appropriately.
3584 // We'll fix up the preceding segments below.
3585 if (load_seg == *p)
3586 {
3587 if (off == 0)
3588 load_seg = NULL;
3589 else
3590 {
3591 off = 0;
3592 shndx_load_seg = *pshndx;
3593 }
3594 }
3595 }
3596 else
3597 {
3598 // Verify that the file headers fall into the first segment.
3599 if (load_seg != NULL && load_seg != *p)
3600 gold_unreachable();
3601 load_seg = NULL;
3602 }
3603
3604 bool are_addresses_set = (*p)->are_addresses_set();
3605 if (are_addresses_set)
3606 {
3607 // When it comes to setting file offsets, we care about
3608 // the physical address.
3609 addr = (*p)->paddr();
3610 }
3611 else if (parameters->options().user_set_Ttext()
3612 && (parameters->options().omagic()
3613 || is_text_segment(target, *p)))
3614 {
3615 are_addresses_set = true;
3616 }
3617 else if (parameters->options().user_set_Trodata_segment()
3618 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3619 {
3620 addr = parameters->options().Trodata_segment();
3621 are_addresses_set = true;
3622 }
3623 else if (parameters->options().user_set_Tdata()
3624 && ((*p)->flags() & elfcpp::PF_W) != 0
3625 && (!parameters->options().user_set_Tbss()
3626 || (*p)->has_any_data_sections()))
3627 {
3628 addr = parameters->options().Tdata();
3629 are_addresses_set = true;
3630 }
3631 else if (parameters->options().user_set_Tbss()
3632 && ((*p)->flags() & elfcpp::PF_W) != 0
3633 && !(*p)->has_any_data_sections())
3634 {
3635 addr = parameters->options().Tbss();
3636 are_addresses_set = true;
3637 }
3638
3639 uint64_t orig_addr = addr;
3640 uint64_t orig_off = off;
3641
3642 uint64_t aligned_addr = 0;
3643 uint64_t abi_pagesize = target->abi_pagesize();
3644 uint64_t common_pagesize = target->common_pagesize();
3645
3646 if (!parameters->options().nmagic()
3647 && !parameters->options().omagic())
3648 (*p)->set_minimum_p_align(abi_pagesize);
3649
3650 if (!are_addresses_set)
3651 {
3652 // Skip the address forward one page, maintaining the same
3653 // position within the page. This lets us store both segments
3654 // overlapping on a single page in the file, but the loader will
3655 // put them on different pages in memory. We will revisit this
3656 // decision once we know the size of the segment.
3657
3658 uint64_t max_align = (*p)->maximum_alignment();
3659 if (max_align > abi_pagesize)
3660 addr = align_address(addr, max_align);
3661 aligned_addr = addr;
3662
3663 if (load_seg == *p)
3664 {
3665 // This is the segment that will contain the file
3666 // headers, so its offset will have to be exactly zero.
3667 gold_assert(orig_off == 0);
3668
3669 // If the target wants a fixed minimum distance from the
3670 // text segment to the read-only segment, move up now.
3671 uint64_t min_addr =
3672 start_addr + (parameters->options().user_set_rosegment_gap()
3673 ? parameters->options().rosegment_gap()
3674 : target->rosegment_gap());
3675 if (addr < min_addr)
3676 addr = min_addr;
3677
3678 // But this is not the first segment! To make its
3679 // address congruent with its offset, that address better
3680 // be aligned to the ABI-mandated page size.
3681 addr = align_address(addr, abi_pagesize);
3682 aligned_addr = addr;
3683 }
3684 else
3685 {
3686 if ((addr & (abi_pagesize - 1)) != 0)
3687 addr = addr + abi_pagesize;
3688
3689 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3690 }
3691 }
3692
3693 if (!parameters->options().nmagic()
3694 && !parameters->options().omagic())
3695 {
3696 // Here we are also taking care of the case when
3697 // the maximum segment alignment is larger than the page size.
3698 off = align_file_offset(off, addr,
3699 std::max(abi_pagesize,
3700 (*p)->maximum_alignment()));
3701 }
3702 else
3703 {
3704 // This is -N or -n with a section script which prevents
3705 // us from using a load segment. We need to ensure that
3706 // the file offset is aligned to the alignment of the
3707 // segment. This is because the linker script
3708 // implicitly assumed a zero offset. If we don't align
3709 // here, then the alignment of the sections in the
3710 // linker script may not match the alignment of the
3711 // sections in the set_section_addresses call below,
3712 // causing an error about dot moving backward.
3713 off = align_address(off, (*p)->maximum_alignment());
3714 }
3715
3716 unsigned int shndx_hold = *pshndx;
3717 bool has_relro = false;
3718 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3719 false, addr,
3720 &increase_relro,
3721 &has_relro,
3722 &off, pshndx);
3723
3724 // Now that we know the size of this segment, we may be able
3725 // to save a page in memory, at the cost of wasting some
3726 // file space, by instead aligning to the start of a new
3727 // page. Here we use the real machine page size rather than
3728 // the ABI mandated page size. If the segment has been
3729 // aligned so that the relro data ends at a page boundary,
3730 // we do not try to realign it.
3731
3732 if (!are_addresses_set
3733 && !has_relro
3734 && aligned_addr != addr
3735 && !parameters->incremental())
3736 {
3737 uint64_t first_off = (common_pagesize
3738 - (aligned_addr
3739 & (common_pagesize - 1)));
3740 uint64_t last_off = new_addr & (common_pagesize - 1);
3741 if (first_off > 0
3742 && last_off > 0
3743 && ((aligned_addr & ~ (common_pagesize - 1))
3744 != (new_addr & ~ (common_pagesize - 1)))
3745 && first_off + last_off <= common_pagesize)
3746 {
3747 *pshndx = shndx_hold;
3748 addr = align_address(aligned_addr, common_pagesize);
3749 addr = align_address(addr, (*p)->maximum_alignment());
3750 if ((addr & (abi_pagesize - 1)) != 0)
3751 addr = addr + abi_pagesize;
3752 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3753 off = align_file_offset(off, addr, abi_pagesize);
3754
3755 increase_relro = this->increase_relro_;
3756 if (this->script_options_->saw_sections_clause())
3757 increase_relro = 0;
3758 has_relro = false;
3759
3760 new_addr = (*p)->set_section_addresses(target, this,
3761 true, addr,
3762 &increase_relro,
3763 &has_relro,
3764 &off, pshndx);
3765 }
3766 }
3767
3768 addr = new_addr;
3769
3770 // Implement --check-sections. We know that the segments
3771 // are sorted by LMA.
3772 if (check_sections && last_load_segment != NULL)
3773 {
3774 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3775 if (last_load_segment->paddr() + last_load_segment->memsz()
3776 > (*p)->paddr())
3777 {
3778 unsigned long long lb1 = last_load_segment->paddr();
3779 unsigned long long le1 = lb1 + last_load_segment->memsz();
3780 unsigned long long lb2 = (*p)->paddr();
3781 unsigned long long le2 = lb2 + (*p)->memsz();
3782 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3783 "[0x%llx -> 0x%llx]"),
3784 lb1, le1, lb2, le2);
3785 }
3786 }
3787 last_load_segment = *p;
3788 }
3789 }
3790
3791 if (load_seg != NULL && target->isolate_execinstr())
3792 {
3793 // Process the early segments again, setting their file offsets
3794 // so they land after the segments starting at LOAD_SEG.
3795 off = align_file_offset(off, 0, target->abi_pagesize());
3796
3797 this->reset_relax_output();
3798
3799 for (Segment_list::iterator p = this->segment_list_.begin();
3800 *p != load_seg;
3801 ++p)
3802 {
3803 if ((*p)->type() == elfcpp::PT_LOAD)
3804 {
3805 // We repeat the whole job of assigning addresses and
3806 // offsets, but we really only want to change the offsets and
3807 // must ensure that the addresses all come out the same as
3808 // they did the first time through.
3809 bool has_relro = false;
3810 const uint64_t old_addr = (*p)->vaddr();
3811 const uint64_t old_end = old_addr + (*p)->memsz();
3812 uint64_t new_addr = (*p)->set_section_addresses(target, this,
3813 true, old_addr,
3814 &increase_relro,
3815 &has_relro,
3816 &off,
3817 &shndx_begin);
3818 gold_assert(new_addr == old_end);
3819 }
3820 }
3821
3822 gold_assert(shndx_begin == shndx_load_seg);
3823 }
3824
3825 // Handle the non-PT_LOAD segments, setting their offsets from their
3826 // section's offsets.
3827 for (Segment_list::iterator p = this->segment_list_.begin();
3828 p != this->segment_list_.end();
3829 ++p)
3830 {
3831 // PT_GNU_STACK was set up correctly when it was created.
3832 if ((*p)->type() != elfcpp::PT_LOAD
3833 && (*p)->type() != elfcpp::PT_GNU_STACK)
3834 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3835 ? increase_relro
3836 : 0);
3837 }
3838
3839 // Set the TLS offsets for each section in the PT_TLS segment.
3840 if (this->tls_segment_ != NULL)
3841 this->tls_segment_->set_tls_offsets();
3842
3843 return off;
3844 }
3845
3846 // Set the offsets of all the allocated sections when doing a
3847 // relocatable link. This does the same jobs as set_segment_offsets,
3848 // only for a relocatable link.
3849
3850 off_t
3851 Layout::set_relocatable_section_offsets(Output_data* file_header,
3852 unsigned int* pshndx)
3853 {
3854 off_t off = 0;
3855
3856 file_header->set_address_and_file_offset(0, 0);
3857 off += file_header->data_size();
3858
3859 for (Section_list::iterator p = this->section_list_.begin();
3860 p != this->section_list_.end();
3861 ++p)
3862 {
3863 // We skip unallocated sections here, except that group sections
3864 // have to come first.
3865 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3866 && (*p)->type() != elfcpp::SHT_GROUP)
3867 continue;
3868
3869 off = align_address(off, (*p)->addralign());
3870
3871 // The linker script might have set the address.
3872 if (!(*p)->is_address_valid())
3873 (*p)->set_address(0);
3874 (*p)->set_file_offset(off);
3875 (*p)->finalize_data_size();
3876 if ((*p)->type() != elfcpp::SHT_NOBITS)
3877 off += (*p)->data_size();
3878
3879 (*p)->set_out_shndx(*pshndx);
3880 ++*pshndx;
3881 }
3882
3883 return off;
3884 }
3885
3886 // Set the file offset of all the sections not associated with a
3887 // segment.
3888
3889 off_t
3890 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3891 {
3892 off_t startoff = off;
3893 off_t maxoff = off;
3894
3895 for (Section_list::iterator p = this->unattached_section_list_.begin();
3896 p != this->unattached_section_list_.end();
3897 ++p)
3898 {
3899 // The symtab section is handled in create_symtab_sections.
3900 if (*p == this->symtab_section_)
3901 continue;
3902
3903 // If we've already set the data size, don't set it again.
3904 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3905 continue;
3906
3907 if (pass == BEFORE_INPUT_SECTIONS_PASS
3908 && (*p)->requires_postprocessing())
3909 {
3910 (*p)->create_postprocessing_buffer();
3911 this->any_postprocessing_sections_ = true;
3912 }
3913
3914 if (pass == BEFORE_INPUT_SECTIONS_PASS
3915 && (*p)->after_input_sections())
3916 continue;
3917 else if (pass == POSTPROCESSING_SECTIONS_PASS
3918 && (!(*p)->after_input_sections()
3919 || (*p)->type() == elfcpp::SHT_STRTAB))
3920 continue;
3921 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3922 && (!(*p)->after_input_sections()
3923 || (*p)->type() != elfcpp::SHT_STRTAB))
3924 continue;
3925
3926 if (!parameters->incremental_update())
3927 {
3928 off = align_address(off, (*p)->addralign());
3929 (*p)->set_file_offset(off);
3930 (*p)->finalize_data_size();
3931 }
3932 else
3933 {
3934 // Incremental update: allocate file space from free list.
3935 (*p)->pre_finalize_data_size();
3936 off_t current_size = (*p)->current_data_size();
3937 off = this->allocate(current_size, (*p)->addralign(), startoff);
3938 if (off == -1)
3939 {
3940 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3941 this->free_list_.dump();
3942 gold_assert((*p)->output_section() != NULL);
3943 gold_fallback(_("out of patch space for section %s; "
3944 "relink with --incremental-full"),
3945 (*p)->output_section()->name());
3946 }
3947 (*p)->set_file_offset(off);
3948 (*p)->finalize_data_size();
3949 if ((*p)->data_size() > current_size)
3950 {
3951 gold_assert((*p)->output_section() != NULL);
3952 gold_fallback(_("%s: section changed size; "
3953 "relink with --incremental-full"),
3954 (*p)->output_section()->name());
3955 }
3956 gold_debug(DEBUG_INCREMENTAL,
3957 "set_section_offsets: %08lx %08lx %s",
3958 static_cast<long>(off),
3959 static_cast<long>((*p)->data_size()),
3960 ((*p)->output_section() != NULL
3961 ? (*p)->output_section()->name() : "(special)"));
3962 }
3963
3964 off += (*p)->data_size();
3965 if (off > maxoff)
3966 maxoff = off;
3967
3968 // At this point the name must be set.
3969 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3970 this->namepool_.add((*p)->name(), false, NULL);
3971 }
3972 return maxoff;
3973 }
3974
3975 // Set the section indexes of all the sections not associated with a
3976 // segment.
3977
3978 unsigned int
3979 Layout::set_section_indexes(unsigned int shndx)
3980 {
3981 for (Section_list::iterator p = this->unattached_section_list_.begin();
3982 p != this->unattached_section_list_.end();
3983 ++p)
3984 {
3985 if (!(*p)->has_out_shndx())
3986 {
3987 (*p)->set_out_shndx(shndx);
3988 ++shndx;
3989 }
3990 }
3991 return shndx;
3992 }
3993
3994 // Set the section addresses according to the linker script. This is
3995 // only called when we see a SECTIONS clause. This returns the
3996 // program segment which should hold the file header and segment
3997 // headers, if any. It will return NULL if they should not be in a
3998 // segment.
3999
4000 Output_segment*
4001 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4002 {
4003 Script_sections* ss = this->script_options_->script_sections();
4004 gold_assert(ss->saw_sections_clause());
4005 return this->script_options_->set_section_addresses(symtab, this);
4006 }
4007
4008 // Place the orphan sections in the linker script.
4009
4010 void
4011 Layout::place_orphan_sections_in_script()
4012 {
4013 Script_sections* ss = this->script_options_->script_sections();
4014 gold_assert(ss->saw_sections_clause());
4015
4016 // Place each orphaned output section in the script.
4017 for (Section_list::iterator p = this->section_list_.begin();
4018 p != this->section_list_.end();
4019 ++p)
4020 {
4021 if (!(*p)->found_in_sections_clause())
4022 ss->place_orphan(*p);
4023 }
4024 }
4025
4026 // Count the local symbols in the regular symbol table and the dynamic
4027 // symbol table, and build the respective string pools.
4028
4029 void
4030 Layout::count_local_symbols(const Task* task,
4031 const Input_objects* input_objects)
4032 {
4033 // First, figure out an upper bound on the number of symbols we'll
4034 // be inserting into each pool. This helps us create the pools with
4035 // the right size, to avoid unnecessary hashtable resizing.
4036 unsigned int symbol_count = 0;
4037 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4038 p != input_objects->relobj_end();
4039 ++p)
4040 symbol_count += (*p)->local_symbol_count();
4041
4042 // Go from "upper bound" to "estimate." We overcount for two
4043 // reasons: we double-count symbols that occur in more than one
4044 // object file, and we count symbols that are dropped from the
4045 // output. Add it all together and assume we overcount by 100%.
4046 symbol_count /= 2;
4047
4048 // We assume all symbols will go into both the sympool and dynpool.
4049 this->sympool_.reserve(symbol_count);
4050 this->dynpool_.reserve(symbol_count);
4051
4052 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4053 p != input_objects->relobj_end();
4054 ++p)
4055 {
4056 Task_lock_obj<Object> tlo(task, *p);
4057 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4058 }
4059 }
4060
4061 // Create the symbol table sections. Here we also set the final
4062 // values of the symbols. At this point all the loadable sections are
4063 // fully laid out. SHNUM is the number of sections so far.
4064
4065 void
4066 Layout::create_symtab_sections(const Input_objects* input_objects,
4067 Symbol_table* symtab,
4068 unsigned int shnum,
4069 off_t* poff,
4070 unsigned int local_dynamic_count)
4071 {
4072 int symsize;
4073 unsigned int align;
4074 if (parameters->target().get_size() == 32)
4075 {
4076 symsize = elfcpp::Elf_sizes<32>::sym_size;
4077 align = 4;
4078 }
4079 else if (parameters->target().get_size() == 64)
4080 {
4081 symsize = elfcpp::Elf_sizes<64>::sym_size;
4082 align = 8;
4083 }
4084 else
4085 gold_unreachable();
4086
4087 // Compute file offsets relative to the start of the symtab section.
4088 off_t off = 0;
4089
4090 // Save space for the dummy symbol at the start of the section. We
4091 // never bother to write this out--it will just be left as zero.
4092 off += symsize;
4093 unsigned int local_symbol_index = 1;
4094
4095 // Add STT_SECTION symbols for each Output section which needs one.
4096 for (Section_list::iterator p = this->section_list_.begin();
4097 p != this->section_list_.end();
4098 ++p)
4099 {
4100 if (!(*p)->needs_symtab_index())
4101 (*p)->set_symtab_index(-1U);
4102 else
4103 {
4104 (*p)->set_symtab_index(local_symbol_index);
4105 ++local_symbol_index;
4106 off += symsize;
4107 }
4108 }
4109
4110 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4111 p != input_objects->relobj_end();
4112 ++p)
4113 {
4114 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4115 off, symtab);
4116 off += (index - local_symbol_index) * symsize;
4117 local_symbol_index = index;
4118 }
4119
4120 unsigned int local_symcount = local_symbol_index;
4121 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4122
4123 off_t dynoff;
4124 size_t dyncount;
4125 if (this->dynsym_section_ == NULL)
4126 {
4127 dynoff = 0;
4128 dyncount = 0;
4129 }
4130 else
4131 {
4132 off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4133 dynoff = this->dynsym_section_->offset() + locsize;
4134 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4135 gold_assert(static_cast<off_t>(dyncount * symsize)
4136 == this->dynsym_section_->data_size() - locsize);
4137 }
4138
4139 off_t global_off = off;
4140 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4141 &this->sympool_, &local_symcount);
4142
4143 if (!parameters->options().strip_all())
4144 {
4145 this->sympool_.set_string_offsets();
4146
4147 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4148 Output_section* osymtab = this->make_output_section(symtab_name,
4149 elfcpp::SHT_SYMTAB,
4150 0, ORDER_INVALID,
4151 false);
4152 this->symtab_section_ = osymtab;
4153
4154 Output_section_data* pos = new Output_data_fixed_space(off, align,
4155 "** symtab");
4156 osymtab->add_output_section_data(pos);
4157
4158 // We generate a .symtab_shndx section if we have more than
4159 // SHN_LORESERVE sections. Technically it is possible that we
4160 // don't need one, because it is possible that there are no
4161 // symbols in any of sections with indexes larger than
4162 // SHN_LORESERVE. That is probably unusual, though, and it is
4163 // easier to always create one than to compute section indexes
4164 // twice (once here, once when writing out the symbols).
4165 if (shnum >= elfcpp::SHN_LORESERVE)
4166 {
4167 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4168 false, NULL);
4169 Output_section* osymtab_xindex =
4170 this->make_output_section(symtab_xindex_name,
4171 elfcpp::SHT_SYMTAB_SHNDX, 0,
4172 ORDER_INVALID, false);
4173
4174 size_t symcount = off / symsize;
4175 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4176
4177 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4178
4179 osymtab_xindex->set_link_section(osymtab);
4180 osymtab_xindex->set_addralign(4);
4181 osymtab_xindex->set_entsize(4);
4182
4183 osymtab_xindex->set_after_input_sections();
4184
4185 // This tells the driver code to wait until the symbol table
4186 // has written out before writing out the postprocessing
4187 // sections, including the .symtab_shndx section.
4188 this->any_postprocessing_sections_ = true;
4189 }
4190
4191 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4192 Output_section* ostrtab = this->make_output_section(strtab_name,
4193 elfcpp::SHT_STRTAB,
4194 0, ORDER_INVALID,
4195 false);
4196
4197 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4198 ostrtab->add_output_section_data(pstr);
4199
4200 off_t symtab_off;
4201 if (!parameters->incremental_update())
4202 symtab_off = align_address(*poff, align);
4203 else
4204 {
4205 symtab_off = this->allocate(off, align, *poff);
4206 if (off == -1)
4207 gold_fallback(_("out of patch space for symbol table; "
4208 "relink with --incremental-full"));
4209 gold_debug(DEBUG_INCREMENTAL,
4210 "create_symtab_sections: %08lx %08lx .symtab",
4211 static_cast<long>(symtab_off),
4212 static_cast<long>(off));
4213 }
4214
4215 symtab->set_file_offset(symtab_off + global_off);
4216 osymtab->set_file_offset(symtab_off);
4217 osymtab->finalize_data_size();
4218 osymtab->set_link_section(ostrtab);
4219 osymtab->set_info(local_symcount);
4220 osymtab->set_entsize(symsize);
4221
4222 if (symtab_off + off > *poff)
4223 *poff = symtab_off + off;
4224 }
4225 }
4226
4227 // Create the .shstrtab section, which holds the names of the
4228 // sections. At the time this is called, we have created all the
4229 // output sections except .shstrtab itself.
4230
4231 Output_section*
4232 Layout::create_shstrtab()
4233 {
4234 // FIXME: We don't need to create a .shstrtab section if we are
4235 // stripping everything.
4236
4237 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4238
4239 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4240 ORDER_INVALID, false);
4241
4242 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4243 {
4244 // We can't write out this section until we've set all the
4245 // section names, and we don't set the names of compressed
4246 // output sections until relocations are complete. FIXME: With
4247 // the current names we use, this is unnecessary.
4248 os->set_after_input_sections();
4249 }
4250
4251 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4252 os->add_output_section_data(posd);
4253
4254 return os;
4255 }
4256
4257 // Create the section headers. SIZE is 32 or 64. OFF is the file
4258 // offset.
4259
4260 void
4261 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4262 {
4263 Output_section_headers* oshdrs;
4264 oshdrs = new Output_section_headers(this,
4265 &this->segment_list_,
4266 &this->section_list_,
4267 &this->unattached_section_list_,
4268 &this->namepool_,
4269 shstrtab_section);
4270 off_t off;
4271 if (!parameters->incremental_update())
4272 off = align_address(*poff, oshdrs->addralign());
4273 else
4274 {
4275 oshdrs->pre_finalize_data_size();
4276 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4277 if (off == -1)
4278 gold_fallback(_("out of patch space for section header table; "
4279 "relink with --incremental-full"));
4280 gold_debug(DEBUG_INCREMENTAL,
4281 "create_shdrs: %08lx %08lx (section header table)",
4282 static_cast<long>(off),
4283 static_cast<long>(off + oshdrs->data_size()));
4284 }
4285 oshdrs->set_address_and_file_offset(0, off);
4286 off += oshdrs->data_size();
4287 if (off > *poff)
4288 *poff = off;
4289 this->section_headers_ = oshdrs;
4290 }
4291
4292 // Count the allocated sections.
4293
4294 size_t
4295 Layout::allocated_output_section_count() const
4296 {
4297 size_t section_count = 0;
4298 for (Segment_list::const_iterator p = this->segment_list_.begin();
4299 p != this->segment_list_.end();
4300 ++p)
4301 section_count += (*p)->output_section_count();
4302 return section_count;
4303 }
4304
4305 // Create the dynamic symbol table.
4306 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4307 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4308 // to the number of global symbols that have been forced local.
4309 // We need to remember the former because the forced-local symbols are
4310 // written along with the global symbols in Symtab::write_globals().
4311
4312 void
4313 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4314 Symbol_table* symtab,
4315 Output_section** pdynstr,
4316 unsigned int* plocal_dynamic_count,
4317 unsigned int* pforced_local_dynamic_count,
4318 std::vector<Symbol*>* pdynamic_symbols,
4319 Versions* pversions)
4320 {
4321 // Count all the symbols in the dynamic symbol table, and set the
4322 // dynamic symbol indexes.
4323
4324 // Skip symbol 0, which is always all zeroes.
4325 unsigned int index = 1;
4326
4327 // Add STT_SECTION symbols for each Output section which needs one.
4328 for (Section_list::iterator p = this->section_list_.begin();
4329 p != this->section_list_.end();
4330 ++p)
4331 {
4332 if (!(*p)->needs_dynsym_index())
4333 (*p)->set_dynsym_index(-1U);
4334 else
4335 {
4336 (*p)->set_dynsym_index(index);
4337 ++index;
4338 }
4339 }
4340
4341 // Count the local symbols that need to go in the dynamic symbol table,
4342 // and set the dynamic symbol indexes.
4343 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4344 p != input_objects->relobj_end();
4345 ++p)
4346 {
4347 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4348 index = new_index;
4349 }
4350
4351 unsigned int local_symcount = index;
4352 unsigned int forced_local_count = 0;
4353
4354 index = symtab->set_dynsym_indexes(index, &forced_local_count,
4355 pdynamic_symbols, &this->dynpool_,
4356 pversions);
4357
4358 *plocal_dynamic_count = local_symcount;
4359 *pforced_local_dynamic_count = forced_local_count;
4360
4361 int symsize;
4362 unsigned int align;
4363 const int size = parameters->target().get_size();
4364 if (size == 32)
4365 {
4366 symsize = elfcpp::Elf_sizes<32>::sym_size;
4367 align = 4;
4368 }
4369 else if (size == 64)
4370 {
4371 symsize = elfcpp::Elf_sizes<64>::sym_size;
4372 align = 8;
4373 }
4374 else
4375 gold_unreachable();
4376
4377 // Create the dynamic symbol table section.
4378
4379 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4380 elfcpp::SHT_DYNSYM,
4381 elfcpp::SHF_ALLOC,
4382 false,
4383 ORDER_DYNAMIC_LINKER,
4384 false, false, false);
4385
4386 // Check for NULL as a linker script may discard .dynsym.
4387 if (dynsym != NULL)
4388 {
4389 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4390 align,
4391 "** dynsym");
4392 dynsym->add_output_section_data(odata);
4393
4394 dynsym->set_info(local_symcount + forced_local_count);
4395 dynsym->set_entsize(symsize);
4396 dynsym->set_addralign(align);
4397
4398 this->dynsym_section_ = dynsym;
4399 }
4400
4401 Output_data_dynamic* const odyn = this->dynamic_data_;
4402 if (odyn != NULL)
4403 {
4404 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4405 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4406 }
4407
4408 // If there are more than SHN_LORESERVE allocated sections, we
4409 // create a .dynsym_shndx section. It is possible that we don't
4410 // need one, because it is possible that there are no dynamic
4411 // symbols in any of the sections with indexes larger than
4412 // SHN_LORESERVE. This is probably unusual, though, and at this
4413 // time we don't know the actual section indexes so it is
4414 // inconvenient to check.
4415 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4416 {
4417 Output_section* dynsym_xindex =
4418 this->choose_output_section(NULL, ".dynsym_shndx",
4419 elfcpp::SHT_SYMTAB_SHNDX,
4420 elfcpp::SHF_ALLOC,
4421 false, ORDER_DYNAMIC_LINKER, false, false,
4422 false);
4423
4424 if (dynsym_xindex != NULL)
4425 {
4426 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4427
4428 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4429
4430 dynsym_xindex->set_link_section(dynsym);
4431 dynsym_xindex->set_addralign(4);
4432 dynsym_xindex->set_entsize(4);
4433
4434 dynsym_xindex->set_after_input_sections();
4435
4436 // This tells the driver code to wait until the symbol table
4437 // has written out before writing out the postprocessing
4438 // sections, including the .dynsym_shndx section.
4439 this->any_postprocessing_sections_ = true;
4440 }
4441 }
4442
4443 // Create the dynamic string table section.
4444
4445 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4446 elfcpp::SHT_STRTAB,
4447 elfcpp::SHF_ALLOC,
4448 false,
4449 ORDER_DYNAMIC_LINKER,
4450 false, false, false);
4451 *pdynstr = dynstr;
4452 if (dynstr != NULL)
4453 {
4454 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4455 dynstr->add_output_section_data(strdata);
4456
4457 if (dynsym != NULL)
4458 dynsym->set_link_section(dynstr);
4459 if (this->dynamic_section_ != NULL)
4460 this->dynamic_section_->set_link_section(dynstr);
4461
4462 if (odyn != NULL)
4463 {
4464 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4465 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4466 }
4467 }
4468
4469 // Create the hash tables. The Gnu-style hash table must be
4470 // built first, because it changes the order of the symbols
4471 // in the dynamic symbol table.
4472
4473 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4474 || strcmp(parameters->options().hash_style(), "both") == 0)
4475 {
4476 unsigned char* phash;
4477 unsigned int hashlen;
4478 Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4479 local_symcount + forced_local_count,
4480 &phash, &hashlen);
4481
4482 Output_section* hashsec =
4483 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4484 elfcpp::SHF_ALLOC, false,
4485 ORDER_DYNAMIC_LINKER, false, false,
4486 false);
4487
4488 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4489 hashlen,
4490 align,
4491 "** hash");
4492 if (hashsec != NULL && hashdata != NULL)
4493 hashsec->add_output_section_data(hashdata);
4494
4495 if (hashsec != NULL)
4496 {
4497 if (dynsym != NULL)
4498 hashsec->set_link_section(dynsym);
4499
4500 // For a 64-bit target, the entries in .gnu.hash do not have
4501 // a uniform size, so we only set the entry size for a
4502 // 32-bit target.
4503 if (parameters->target().get_size() == 32)
4504 hashsec->set_entsize(4);
4505
4506 if (odyn != NULL)
4507 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4508 }
4509 }
4510
4511 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4512 || strcmp(parameters->options().hash_style(), "both") == 0)
4513 {
4514 unsigned char* phash;
4515 unsigned int hashlen;
4516 Dynobj::create_elf_hash_table(*pdynamic_symbols,
4517 local_symcount + forced_local_count,
4518 &phash, &hashlen);
4519
4520 Output_section* hashsec =
4521 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4522 elfcpp::SHF_ALLOC, false,
4523 ORDER_DYNAMIC_LINKER, false, false,
4524 false);
4525
4526 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4527 hashlen,
4528 align,
4529 "** hash");
4530 if (hashsec != NULL && hashdata != NULL)
4531 hashsec->add_output_section_data(hashdata);
4532
4533 if (hashsec != NULL)
4534 {
4535 if (dynsym != NULL)
4536 hashsec->set_link_section(dynsym);
4537 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4538 }
4539
4540 if (odyn != NULL)
4541 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4542 }
4543 }
4544
4545 // Assign offsets to each local portion of the dynamic symbol table.
4546
4547 void
4548 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4549 {
4550 Output_section* dynsym = this->dynsym_section_;
4551 if (dynsym == NULL)
4552 return;
4553
4554 off_t off = dynsym->offset();
4555
4556 // Skip the dummy symbol at the start of the section.
4557 off += dynsym->entsize();
4558
4559 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4560 p != input_objects->relobj_end();
4561 ++p)
4562 {
4563 unsigned int count = (*p)->set_local_dynsym_offset(off);
4564 off += count * dynsym->entsize();
4565 }
4566 }
4567
4568 // Create the version sections.
4569
4570 void
4571 Layout::create_version_sections(const Versions* versions,
4572 const Symbol_table* symtab,
4573 unsigned int local_symcount,
4574 const std::vector<Symbol*>& dynamic_symbols,
4575 const Output_section* dynstr)
4576 {
4577 if (!versions->any_defs() && !versions->any_needs())
4578 return;
4579
4580 switch (parameters->size_and_endianness())
4581 {
4582 #ifdef HAVE_TARGET_32_LITTLE
4583 case Parameters::TARGET_32_LITTLE:
4584 this->sized_create_version_sections<32, false>(versions, symtab,
4585 local_symcount,
4586 dynamic_symbols, dynstr);
4587 break;
4588 #endif
4589 #ifdef HAVE_TARGET_32_BIG
4590 case Parameters::TARGET_32_BIG:
4591 this->sized_create_version_sections<32, true>(versions, symtab,
4592 local_symcount,
4593 dynamic_symbols, dynstr);
4594 break;
4595 #endif
4596 #ifdef HAVE_TARGET_64_LITTLE
4597 case Parameters::TARGET_64_LITTLE:
4598 this->sized_create_version_sections<64, false>(versions, symtab,
4599 local_symcount,
4600 dynamic_symbols, dynstr);
4601 break;
4602 #endif
4603 #ifdef HAVE_TARGET_64_BIG
4604 case Parameters::TARGET_64_BIG:
4605 this->sized_create_version_sections<64, true>(versions, symtab,
4606 local_symcount,
4607 dynamic_symbols, dynstr);
4608 break;
4609 #endif
4610 default:
4611 gold_unreachable();
4612 }
4613 }
4614
4615 // Create the version sections, sized version.
4616
4617 template<int size, bool big_endian>
4618 void
4619 Layout::sized_create_version_sections(
4620 const Versions* versions,
4621 const Symbol_table* symtab,
4622 unsigned int local_symcount,
4623 const std::vector<Symbol*>& dynamic_symbols,
4624 const Output_section* dynstr)
4625 {
4626 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4627 elfcpp::SHT_GNU_versym,
4628 elfcpp::SHF_ALLOC,
4629 false,
4630 ORDER_DYNAMIC_LINKER,
4631 false, false, false);
4632
4633 // Check for NULL since a linker script may discard this section.
4634 if (vsec != NULL)
4635 {
4636 unsigned char* vbuf;
4637 unsigned int vsize;
4638 versions->symbol_section_contents<size, big_endian>(symtab,
4639 &this->dynpool_,
4640 local_symcount,
4641 dynamic_symbols,
4642 &vbuf, &vsize);
4643
4644 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4645 "** versions");
4646
4647 vsec->add_output_section_data(vdata);
4648 vsec->set_entsize(2);
4649 vsec->set_link_section(this->dynsym_section_);
4650 }
4651
4652 Output_data_dynamic* const odyn = this->dynamic_data_;
4653 if (odyn != NULL && vsec != NULL)
4654 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4655
4656 if (versions->any_defs())
4657 {
4658 Output_section* vdsec;
4659 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4660 elfcpp::SHT_GNU_verdef,
4661 elfcpp::SHF_ALLOC,
4662 false, ORDER_DYNAMIC_LINKER, false,
4663 false, false);
4664
4665 if (vdsec != NULL)
4666 {
4667 unsigned char* vdbuf;
4668 unsigned int vdsize;
4669 unsigned int vdentries;
4670 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4671 &vdbuf, &vdsize,
4672 &vdentries);
4673
4674 Output_section_data* vddata =
4675 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4676
4677 vdsec->add_output_section_data(vddata);
4678 vdsec->set_link_section(dynstr);
4679 vdsec->set_info(vdentries);
4680
4681 if (odyn != NULL)
4682 {
4683 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4684 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4685 }
4686 }
4687 }
4688
4689 if (versions->any_needs())
4690 {
4691 Output_section* vnsec;
4692 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4693 elfcpp::SHT_GNU_verneed,
4694 elfcpp::SHF_ALLOC,
4695 false, ORDER_DYNAMIC_LINKER, false,
4696 false, false);
4697
4698 if (vnsec != NULL)
4699 {
4700 unsigned char* vnbuf;
4701 unsigned int vnsize;
4702 unsigned int vnentries;
4703 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4704 &vnbuf, &vnsize,
4705 &vnentries);
4706
4707 Output_section_data* vndata =
4708 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4709
4710 vnsec->add_output_section_data(vndata);
4711 vnsec->set_link_section(dynstr);
4712 vnsec->set_info(vnentries);
4713
4714 if (odyn != NULL)
4715 {
4716 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4717 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4718 }
4719 }
4720 }
4721 }
4722
4723 // Create the .interp section and PT_INTERP segment.
4724
4725 void
4726 Layout::create_interp(const Target* target)
4727 {
4728 gold_assert(this->interp_segment_ == NULL);
4729
4730 const char* interp = parameters->options().dynamic_linker();
4731 if (interp == NULL)
4732 {
4733 interp = target->dynamic_linker();
4734 gold_assert(interp != NULL);
4735 }
4736
4737 size_t len = strlen(interp) + 1;
4738
4739 Output_section_data* odata = new Output_data_const(interp, len, 1);
4740
4741 Output_section* osec = this->choose_output_section(NULL, ".interp",
4742 elfcpp::SHT_PROGBITS,
4743 elfcpp::SHF_ALLOC,
4744 false, ORDER_INTERP,
4745 false, false, false);
4746 if (osec != NULL)
4747 osec->add_output_section_data(odata);
4748 }
4749
4750 // Add dynamic tags for the PLT and the dynamic relocs. This is
4751 // called by the target-specific code. This does nothing if not doing
4752 // a dynamic link.
4753
4754 // USE_REL is true for REL relocs rather than RELA relocs.
4755
4756 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4757
4758 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4759 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4760 // some targets have multiple reloc sections in PLT_REL.
4761
4762 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4763 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4764 // section.
4765
4766 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4767 // executable.
4768
4769 void
4770 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4771 const Output_data* plt_rel,
4772 const Output_data_reloc_generic* dyn_rel,
4773 bool add_debug, bool dynrel_includes_plt)
4774 {
4775 Output_data_dynamic* odyn = this->dynamic_data_;
4776 if (odyn == NULL)
4777 return;
4778
4779 if (plt_got != NULL && plt_got->output_section() != NULL)
4780 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4781
4782 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4783 {
4784 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4785 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4786 odyn->add_constant(elfcpp::DT_PLTREL,
4787 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4788 }
4789
4790 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4791 || (dynrel_includes_plt
4792 && plt_rel != NULL
4793 && plt_rel->output_section() != NULL))
4794 {
4795 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4796 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4797 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4798 (have_dyn_rel
4799 ? dyn_rel->output_section()
4800 : plt_rel->output_section()));
4801 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4802 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4803 odyn->add_section_size(size_tag,
4804 dyn_rel->output_section(),
4805 plt_rel->output_section());
4806 else if (have_dyn_rel)
4807 odyn->add_section_size(size_tag, dyn_rel->output_section());
4808 else
4809 odyn->add_section_size(size_tag, plt_rel->output_section());
4810 const int size = parameters->target().get_size();
4811 elfcpp::DT rel_tag;
4812 int rel_size;
4813 if (use_rel)
4814 {
4815 rel_tag = elfcpp::DT_RELENT;
4816 if (size == 32)
4817 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4818 else if (size == 64)
4819 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4820 else
4821 gold_unreachable();
4822 }
4823 else
4824 {
4825 rel_tag = elfcpp::DT_RELAENT;
4826 if (size == 32)
4827 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4828 else if (size == 64)
4829 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4830 else
4831 gold_unreachable();
4832 }
4833 odyn->add_constant(rel_tag, rel_size);
4834
4835 if (parameters->options().combreloc() && have_dyn_rel)
4836 {
4837 size_t c = dyn_rel->relative_reloc_count();
4838 if (c > 0)
4839 odyn->add_constant((use_rel
4840 ? elfcpp::DT_RELCOUNT
4841 : elfcpp::DT_RELACOUNT),
4842 c);
4843 }
4844 }
4845
4846 if (add_debug && !parameters->options().shared())
4847 {
4848 // The value of the DT_DEBUG tag is filled in by the dynamic
4849 // linker at run time, and used by the debugger.
4850 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4851 }
4852 }
4853
4854 void
4855 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4856 {
4857 Output_data_dynamic* odyn = this->dynamic_data_;
4858 if (odyn == NULL)
4859 return;
4860 odyn->add_constant(tag, val);
4861 }
4862
4863 // Finish the .dynamic section and PT_DYNAMIC segment.
4864
4865 void
4866 Layout::finish_dynamic_section(const Input_objects* input_objects,
4867 const Symbol_table* symtab)
4868 {
4869 if (!this->script_options_->saw_phdrs_clause()
4870 && this->dynamic_section_ != NULL)
4871 {
4872 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4873 (elfcpp::PF_R
4874 | elfcpp::PF_W));
4875 oseg->add_output_section_to_nonload(this->dynamic_section_,
4876 elfcpp::PF_R | elfcpp::PF_W);
4877 }
4878
4879 Output_data_dynamic* const odyn = this->dynamic_data_;
4880 if (odyn == NULL)
4881 return;
4882
4883 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4884 p != input_objects->dynobj_end();
4885 ++p)
4886 {
4887 if (!(*p)->is_needed() && (*p)->as_needed())
4888 {
4889 // This dynamic object was linked with --as-needed, but it
4890 // is not needed.
4891 continue;
4892 }
4893
4894 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4895 }
4896
4897 if (parameters->options().shared())
4898 {
4899 const char* soname = parameters->options().soname();
4900 if (soname != NULL)
4901 odyn->add_string(elfcpp::DT_SONAME, soname);
4902 }
4903
4904 Symbol* sym = symtab->lookup(parameters->options().init());
4905 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4906 odyn->add_symbol(elfcpp::DT_INIT, sym);
4907
4908 sym = symtab->lookup(parameters->options().fini());
4909 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4910 odyn->add_symbol(elfcpp::DT_FINI, sym);
4911
4912 // Look for .init_array, .preinit_array and .fini_array by checking
4913 // section types.
4914 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4915 p != this->section_list_.end();
4916 ++p)
4917 switch((*p)->type())
4918 {
4919 case elfcpp::SHT_FINI_ARRAY:
4920 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4921 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4922 break;
4923 case elfcpp::SHT_INIT_ARRAY:
4924 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4925 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4926 break;
4927 case elfcpp::SHT_PREINIT_ARRAY:
4928 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4929 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4930 break;
4931 default:
4932 break;
4933 }
4934
4935 // Add a DT_RPATH entry if needed.
4936 const General_options::Dir_list& rpath(parameters->options().rpath());
4937 if (!rpath.empty())
4938 {
4939 std::string rpath_val;
4940 for (General_options::Dir_list::const_iterator p = rpath.begin();
4941 p != rpath.end();
4942 ++p)
4943 {
4944 if (rpath_val.empty())
4945 rpath_val = p->name();
4946 else
4947 {
4948 // Eliminate duplicates.
4949 General_options::Dir_list::const_iterator q;
4950 for (q = rpath.begin(); q != p; ++q)
4951 if (q->name() == p->name())
4952 break;
4953 if (q == p)
4954 {
4955 rpath_val += ':';
4956 rpath_val += p->name();
4957 }
4958 }
4959 }
4960
4961 if (!parameters->options().enable_new_dtags())
4962 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4963 else
4964 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4965 }
4966
4967 // Look for text segments that have dynamic relocations.
4968 bool have_textrel = false;
4969 if (!this->script_options_->saw_sections_clause())
4970 {
4971 for (Segment_list::const_iterator p = this->segment_list_.begin();
4972 p != this->segment_list_.end();
4973 ++p)
4974 {
4975 if ((*p)->type() == elfcpp::PT_LOAD
4976 && ((*p)->flags() & elfcpp::PF_W) == 0
4977 && (*p)->has_dynamic_reloc())
4978 {
4979 have_textrel = true;
4980 break;
4981 }
4982 }
4983 }
4984 else
4985 {
4986 // We don't know the section -> segment mapping, so we are
4987 // conservative and just look for readonly sections with
4988 // relocations. If those sections wind up in writable segments,
4989 // then we have created an unnecessary DT_TEXTREL entry.
4990 for (Section_list::const_iterator p = this->section_list_.begin();
4991 p != this->section_list_.end();
4992 ++p)
4993 {
4994 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4995 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4996 && (*p)->has_dynamic_reloc())
4997 {
4998 have_textrel = true;
4999 break;
5000 }
5001 }
5002 }
5003
5004 if (parameters->options().filter() != NULL)
5005 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5006 if (parameters->options().any_auxiliary())
5007 {
5008 for (options::String_set::const_iterator p =
5009 parameters->options().auxiliary_begin();
5010 p != parameters->options().auxiliary_end();
5011 ++p)
5012 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5013 }
5014
5015 // Add a DT_FLAGS entry if necessary.
5016 unsigned int flags = 0;
5017 if (have_textrel)
5018 {
5019 // Add a DT_TEXTREL for compatibility with older loaders.
5020 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5021 flags |= elfcpp::DF_TEXTREL;
5022
5023 if (parameters->options().text())
5024 gold_error(_("read-only segment has dynamic relocations"));
5025 else if (parameters->options().warn_shared_textrel()
5026 && parameters->options().shared())
5027 gold_warning(_("shared library text segment is not shareable"));
5028 }
5029 if (parameters->options().shared() && this->has_static_tls())
5030 flags |= elfcpp::DF_STATIC_TLS;
5031 if (parameters->options().origin())
5032 flags |= elfcpp::DF_ORIGIN;
5033 if (parameters->options().Bsymbolic()
5034 && !parameters->options().have_dynamic_list())
5035 {
5036 flags |= elfcpp::DF_SYMBOLIC;
5037 // Add DT_SYMBOLIC for compatibility with older loaders.
5038 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5039 }
5040 if (parameters->options().now())
5041 flags |= elfcpp::DF_BIND_NOW;
5042 if (flags != 0)
5043 odyn->add_constant(elfcpp::DT_FLAGS, flags);
5044
5045 flags = 0;
5046 if (parameters->options().global())
5047 flags |= elfcpp::DF_1_GLOBAL;
5048 if (parameters->options().initfirst())
5049 flags |= elfcpp::DF_1_INITFIRST;
5050 if (parameters->options().interpose())
5051 flags |= elfcpp::DF_1_INTERPOSE;
5052 if (parameters->options().loadfltr())
5053 flags |= elfcpp::DF_1_LOADFLTR;
5054 if (parameters->options().nodefaultlib())
5055 flags |= elfcpp::DF_1_NODEFLIB;
5056 if (parameters->options().nodelete())
5057 flags |= elfcpp::DF_1_NODELETE;
5058 if (parameters->options().nodlopen())
5059 flags |= elfcpp::DF_1_NOOPEN;
5060 if (parameters->options().nodump())
5061 flags |= elfcpp::DF_1_NODUMP;
5062 if (!parameters->options().shared())
5063 flags &= ~(elfcpp::DF_1_INITFIRST
5064 | elfcpp::DF_1_NODELETE
5065 | elfcpp::DF_1_NOOPEN);
5066 if (parameters->options().origin())
5067 flags |= elfcpp::DF_1_ORIGIN;
5068 if (parameters->options().now())
5069 flags |= elfcpp::DF_1_NOW;
5070 if (parameters->options().Bgroup())
5071 flags |= elfcpp::DF_1_GROUP;
5072 if (flags != 0)
5073 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5074 }
5075
5076 // Set the size of the _DYNAMIC symbol table to be the size of the
5077 // dynamic data.
5078
5079 void
5080 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5081 {
5082 Output_data_dynamic* const odyn = this->dynamic_data_;
5083 if (odyn == NULL)
5084 return;
5085 odyn->finalize_data_size();
5086 if (this->dynamic_symbol_ == NULL)
5087 return;
5088 off_t data_size = odyn->data_size();
5089 const int size = parameters->target().get_size();
5090 if (size == 32)
5091 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5092 else if (size == 64)
5093 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5094 else
5095 gold_unreachable();
5096 }
5097
5098 // The mapping of input section name prefixes to output section names.
5099 // In some cases one prefix is itself a prefix of another prefix; in
5100 // such a case the longer prefix must come first. These prefixes are
5101 // based on the GNU linker default ELF linker script.
5102
5103 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5104 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5105 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5106 {
5107 MAPPING_INIT(".text.", ".text"),
5108 MAPPING_INIT(".rodata.", ".rodata"),
5109 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5110 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5111 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5112 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5113 MAPPING_INIT(".data.", ".data"),
5114 MAPPING_INIT(".bss.", ".bss"),
5115 MAPPING_INIT(".tdata.", ".tdata"),
5116 MAPPING_INIT(".tbss.", ".tbss"),
5117 MAPPING_INIT(".init_array.", ".init_array"),
5118 MAPPING_INIT(".fini_array.", ".fini_array"),
5119 MAPPING_INIT(".sdata.", ".sdata"),
5120 MAPPING_INIT(".sbss.", ".sbss"),
5121 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5122 // differently depending on whether it is creating a shared library.
5123 MAPPING_INIT(".sdata2.", ".sdata"),
5124 MAPPING_INIT(".sbss2.", ".sbss"),
5125 MAPPING_INIT(".lrodata.", ".lrodata"),
5126 MAPPING_INIT(".ldata.", ".ldata"),
5127 MAPPING_INIT(".lbss.", ".lbss"),
5128 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5129 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5130 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5131 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5132 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5133 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5134 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5135 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5136 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5137 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5138 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5139 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5140 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5141 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5142 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5143 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5144 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5145 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5146 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5147 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5148 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5149 };
5150
5151 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5152 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5153 {
5154 MAPPING_INIT(".text.hot.", ".text.hot"),
5155 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5156 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5157 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5158 MAPPING_INIT(".text.startup.", ".text.startup"),
5159 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5160 MAPPING_INIT(".text.exit.", ".text.exit"),
5161 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5162 MAPPING_INIT(".text.", ".text"),
5163 };
5164 #undef MAPPING_INIT
5165 #undef MAPPING_INIT_EXACT
5166
5167 const int Layout::section_name_mapping_count =
5168 (sizeof(Layout::section_name_mapping)
5169 / sizeof(Layout::section_name_mapping[0]));
5170
5171 const int Layout::text_section_name_mapping_count =
5172 (sizeof(Layout::text_section_name_mapping)
5173 / sizeof(Layout::text_section_name_mapping[0]));
5174
5175 // Find section name NAME in PSNM and return the mapped name if found
5176 // with the length set in PLEN.
5177 const char *
5178 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5179 const int count,
5180 const char* name, size_t* plen)
5181 {
5182 for (int i = 0; i < count; ++i, ++psnm)
5183 {
5184 if (psnm->fromlen > 0)
5185 {
5186 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5187 {
5188 *plen = psnm->tolen;
5189 return psnm->to;
5190 }
5191 }
5192 else
5193 {
5194 if (strcmp(name, psnm->from) == 0)
5195 {
5196 *plen = psnm->tolen;
5197 return psnm->to;
5198 }
5199 }
5200 }
5201 return NULL;
5202 }
5203
5204 // Choose the output section name to use given an input section name.
5205 // Set *PLEN to the length of the name. *PLEN is initialized to the
5206 // length of NAME.
5207
5208 const char*
5209 Layout::output_section_name(const Relobj* relobj, const char* name,
5210 size_t* plen)
5211 {
5212 // gcc 4.3 generates the following sorts of section names when it
5213 // needs a section name specific to a function:
5214 // .text.FN
5215 // .rodata.FN
5216 // .sdata2.FN
5217 // .data.FN
5218 // .data.rel.FN
5219 // .data.rel.local.FN
5220 // .data.rel.ro.FN
5221 // .data.rel.ro.local.FN
5222 // .sdata.FN
5223 // .bss.FN
5224 // .sbss.FN
5225 // .tdata.FN
5226 // .tbss.FN
5227
5228 // The GNU linker maps all of those to the part before the .FN,
5229 // except that .data.rel.local.FN is mapped to .data, and
5230 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5231 // beginning with .data.rel.ro.local are grouped together.
5232
5233 // For an anonymous namespace, the string FN can contain a '.'.
5234
5235 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5236 // GNU linker maps to .rodata.
5237
5238 // The .data.rel.ro sections are used with -z relro. The sections
5239 // are recognized by name. We use the same names that the GNU
5240 // linker does for these sections.
5241
5242 // It is hard to handle this in a principled way, so we don't even
5243 // try. We use a table of mappings. If the input section name is
5244 // not found in the table, we simply use it as the output section
5245 // name.
5246
5247 if (parameters->options().keep_text_section_prefix()
5248 && is_prefix_of(".text", name))
5249 {
5250 const char* match = match_section_name(text_section_name_mapping,
5251 text_section_name_mapping_count,
5252 name, plen);
5253 if (match != NULL)
5254 return match;
5255 }
5256
5257 const char* match = match_section_name(section_name_mapping,
5258 section_name_mapping_count, name, plen);
5259 if (match != NULL)
5260 return match;
5261
5262 // As an additional complication, .ctors sections are output in
5263 // either .ctors or .init_array sections, and .dtors sections are
5264 // output in either .dtors or .fini_array sections.
5265 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5266 {
5267 if (parameters->options().ctors_in_init_array())
5268 {
5269 *plen = 11;
5270 return name[1] == 'c' ? ".init_array" : ".fini_array";
5271 }
5272 else
5273 {
5274 *plen = 6;
5275 return name[1] == 'c' ? ".ctors" : ".dtors";
5276 }
5277 }
5278 if (parameters->options().ctors_in_init_array()
5279 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5280 {
5281 // To make .init_array/.fini_array work with gcc we must exclude
5282 // .ctors and .dtors sections from the crtbegin and crtend
5283 // files.
5284 if (relobj == NULL
5285 || (!Layout::match_file_name(relobj, "crtbegin")
5286 && !Layout::match_file_name(relobj, "crtend")))
5287 {
5288 *plen = 11;
5289 return name[1] == 'c' ? ".init_array" : ".fini_array";
5290 }
5291 }
5292
5293 return name;
5294 }
5295
5296 // Return true if RELOBJ is an input file whose base name matches
5297 // FILE_NAME. The base name must have an extension of ".o", and must
5298 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5299 // to match crtbegin.o as well as crtbeginS.o without getting confused
5300 // by other possibilities. Overall matching the file name this way is
5301 // a dreadful hack, but the GNU linker does it in order to better
5302 // support gcc, and we need to be compatible.
5303
5304 bool
5305 Layout::match_file_name(const Relobj* relobj, const char* match)
5306 {
5307 const std::string& file_name(relobj->name());
5308 const char* base_name = lbasename(file_name.c_str());
5309 size_t match_len = strlen(match);
5310 if (strncmp(base_name, match, match_len) != 0)
5311 return false;
5312 size_t base_len = strlen(base_name);
5313 if (base_len != match_len + 2 && base_len != match_len + 3)
5314 return false;
5315 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5316 }
5317
5318 // Check if a comdat group or .gnu.linkonce section with the given
5319 // NAME is selected for the link. If there is already a section,
5320 // *KEPT_SECTION is set to point to the existing section and the
5321 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5322 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5323 // *KEPT_SECTION is set to the internal copy and the function returns
5324 // true.
5325
5326 bool
5327 Layout::find_or_add_kept_section(const std::string& name,
5328 Relobj* object,
5329 unsigned int shndx,
5330 bool is_comdat,
5331 bool is_group_name,
5332 Kept_section** kept_section)
5333 {
5334 // It's normal to see a couple of entries here, for the x86 thunk
5335 // sections. If we see more than a few, we're linking a C++
5336 // program, and we resize to get more space to minimize rehashing.
5337 if (this->signatures_.size() > 4
5338 && !this->resized_signatures_)
5339 {
5340 reserve_unordered_map(&this->signatures_,
5341 this->number_of_input_files_ * 64);
5342 this->resized_signatures_ = true;
5343 }
5344
5345 Kept_section candidate;
5346 std::pair<Signatures::iterator, bool> ins =
5347 this->signatures_.insert(std::make_pair(name, candidate));
5348
5349 if (kept_section != NULL)
5350 *kept_section = &ins.first->second;
5351 if (ins.second)
5352 {
5353 // This is the first time we've seen this signature.
5354 ins.first->second.set_object(object);
5355 ins.first->second.set_shndx(shndx);
5356 if (is_comdat)
5357 ins.first->second.set_is_comdat();
5358 if (is_group_name)
5359 ins.first->second.set_is_group_name();
5360 return true;
5361 }
5362
5363 // We have already seen this signature.
5364
5365 if (ins.first->second.is_group_name())
5366 {
5367 // We've already seen a real section group with this signature.
5368 // If the kept group is from a plugin object, and we're in the
5369 // replacement phase, accept the new one as a replacement.
5370 if (ins.first->second.object() == NULL
5371 && parameters->options().plugins()->in_replacement_phase())
5372 {
5373 ins.first->second.set_object(object);
5374 ins.first->second.set_shndx(shndx);
5375 return true;
5376 }
5377 return false;
5378 }
5379 else if (is_group_name)
5380 {
5381 // This is a real section group, and we've already seen a
5382 // linkonce section with this signature. Record that we've seen
5383 // a section group, and don't include this section group.
5384 ins.first->second.set_is_group_name();
5385 return false;
5386 }
5387 else
5388 {
5389 // We've already seen a linkonce section and this is a linkonce
5390 // section. These don't block each other--this may be the same
5391 // symbol name with different section types.
5392 return true;
5393 }
5394 }
5395
5396 // Store the allocated sections into the section list.
5397
5398 void
5399 Layout::get_allocated_sections(Section_list* section_list) const
5400 {
5401 for (Section_list::const_iterator p = this->section_list_.begin();
5402 p != this->section_list_.end();
5403 ++p)
5404 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5405 section_list->push_back(*p);
5406 }
5407
5408 // Store the executable sections into the section list.
5409
5410 void
5411 Layout::get_executable_sections(Section_list* section_list) const
5412 {
5413 for (Section_list::const_iterator p = this->section_list_.begin();
5414 p != this->section_list_.end();
5415 ++p)
5416 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5417 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5418 section_list->push_back(*p);
5419 }
5420
5421 // Create an output segment.
5422
5423 Output_segment*
5424 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5425 {
5426 gold_assert(!parameters->options().relocatable());
5427 Output_segment* oseg = new Output_segment(type, flags);
5428 this->segment_list_.push_back(oseg);
5429
5430 if (type == elfcpp::PT_TLS)
5431 this->tls_segment_ = oseg;
5432 else if (type == elfcpp::PT_GNU_RELRO)
5433 this->relro_segment_ = oseg;
5434 else if (type == elfcpp::PT_INTERP)
5435 this->interp_segment_ = oseg;
5436
5437 return oseg;
5438 }
5439
5440 // Return the file offset of the normal symbol table.
5441
5442 off_t
5443 Layout::symtab_section_offset() const
5444 {
5445 if (this->symtab_section_ != NULL)
5446 return this->symtab_section_->offset();
5447 return 0;
5448 }
5449
5450 // Return the section index of the normal symbol table. It may have
5451 // been stripped by the -s/--strip-all option.
5452
5453 unsigned int
5454 Layout::symtab_section_shndx() const
5455 {
5456 if (this->symtab_section_ != NULL)
5457 return this->symtab_section_->out_shndx();
5458 return 0;
5459 }
5460
5461 // Write out the Output_sections. Most won't have anything to write,
5462 // since most of the data will come from input sections which are
5463 // handled elsewhere. But some Output_sections do have Output_data.
5464
5465 void
5466 Layout::write_output_sections(Output_file* of) const
5467 {
5468 for (Section_list::const_iterator p = this->section_list_.begin();
5469 p != this->section_list_.end();
5470 ++p)
5471 {
5472 if (!(*p)->after_input_sections())
5473 (*p)->write(of);
5474 }
5475 }
5476
5477 // Write out data not associated with a section or the symbol table.
5478
5479 void
5480 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5481 {
5482 if (!parameters->options().strip_all())
5483 {
5484 const Output_section* symtab_section = this->symtab_section_;
5485 for (Section_list::const_iterator p = this->section_list_.begin();
5486 p != this->section_list_.end();
5487 ++p)
5488 {
5489 if ((*p)->needs_symtab_index())
5490 {
5491 gold_assert(symtab_section != NULL);
5492 unsigned int index = (*p)->symtab_index();
5493 gold_assert(index > 0 && index != -1U);
5494 off_t off = (symtab_section->offset()
5495 + index * symtab_section->entsize());
5496 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5497 }
5498 }
5499 }
5500
5501 const Output_section* dynsym_section = this->dynsym_section_;
5502 for (Section_list::const_iterator p = this->section_list_.begin();
5503 p != this->section_list_.end();
5504 ++p)
5505 {
5506 if ((*p)->needs_dynsym_index())
5507 {
5508 gold_assert(dynsym_section != NULL);
5509 unsigned int index = (*p)->dynsym_index();
5510 gold_assert(index > 0 && index != -1U);
5511 off_t off = (dynsym_section->offset()
5512 + index * dynsym_section->entsize());
5513 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5514 }
5515 }
5516
5517 // Write out the Output_data which are not in an Output_section.
5518 for (Data_list::const_iterator p = this->special_output_list_.begin();
5519 p != this->special_output_list_.end();
5520 ++p)
5521 (*p)->write(of);
5522
5523 // Write out the Output_data which are not in an Output_section
5524 // and are regenerated in each iteration of relaxation.
5525 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5526 p != this->relax_output_list_.end();
5527 ++p)
5528 (*p)->write(of);
5529 }
5530
5531 // Write out the Output_sections which can only be written after the
5532 // input sections are complete.
5533
5534 void
5535 Layout::write_sections_after_input_sections(Output_file* of)
5536 {
5537 // Determine the final section offsets, and thus the final output
5538 // file size. Note we finalize the .shstrab last, to allow the
5539 // after_input_section sections to modify their section-names before
5540 // writing.
5541 if (this->any_postprocessing_sections_)
5542 {
5543 off_t off = this->output_file_size_;
5544 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5545
5546 // Now that we've finalized the names, we can finalize the shstrab.
5547 off =
5548 this->set_section_offsets(off,
5549 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5550
5551 if (off > this->output_file_size_)
5552 {
5553 of->resize(off);
5554 this->output_file_size_ = off;
5555 }
5556 }
5557
5558 for (Section_list::const_iterator p = this->section_list_.begin();
5559 p != this->section_list_.end();
5560 ++p)
5561 {
5562 if ((*p)->after_input_sections())
5563 (*p)->write(of);
5564 }
5565
5566 this->section_headers_->write(of);
5567 }
5568
5569 // If a tree-style build ID was requested, the parallel part of that computation
5570 // is already done, and the final hash-of-hashes is computed here. For other
5571 // types of build IDs, all the work is done here.
5572
5573 void
5574 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5575 size_t size_of_hashes) const
5576 {
5577 if (this->build_id_note_ == NULL)
5578 return;
5579
5580 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5581 this->build_id_note_->data_size());
5582
5583 if (array_of_hashes == NULL)
5584 {
5585 const size_t output_file_size = this->output_file_size();
5586 const unsigned char* iv = of->get_input_view(0, output_file_size);
5587 const char* style = parameters->options().build_id();
5588
5589 // If we get here with style == "tree" then the output must be
5590 // too small for chunking, and we use SHA-1 in that case.
5591 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5592 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5593 else if (strcmp(style, "md5") == 0)
5594 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5595 else
5596 gold_unreachable();
5597
5598 of->free_input_view(0, output_file_size, iv);
5599 }
5600 else
5601 {
5602 // Non-overlapping substrings of the output file have been hashed.
5603 // Compute SHA-1 hash of the hashes.
5604 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5605 size_of_hashes, ov);
5606 delete[] array_of_hashes;
5607 }
5608
5609 of->write_output_view(this->build_id_note_->offset(),
5610 this->build_id_note_->data_size(),
5611 ov);
5612 }
5613
5614 // Write out a binary file. This is called after the link is
5615 // complete. IN is the temporary output file we used to generate the
5616 // ELF code. We simply walk through the segments, read them from
5617 // their file offset in IN, and write them to their load address in
5618 // the output file. FIXME: with a bit more work, we could support
5619 // S-records and/or Intel hex format here.
5620
5621 void
5622 Layout::write_binary(Output_file* in) const
5623 {
5624 gold_assert(parameters->options().oformat_enum()
5625 == General_options::OBJECT_FORMAT_BINARY);
5626
5627 // Get the size of the binary file.
5628 uint64_t max_load_address = 0;
5629 for (Segment_list::const_iterator p = this->segment_list_.begin();
5630 p != this->segment_list_.end();
5631 ++p)
5632 {
5633 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5634 {
5635 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5636 if (max_paddr > max_load_address)
5637 max_load_address = max_paddr;
5638 }
5639 }
5640
5641 Output_file out(parameters->options().output_file_name());
5642 out.open(max_load_address);
5643
5644 for (Segment_list::const_iterator p = this->segment_list_.begin();
5645 p != this->segment_list_.end();
5646 ++p)
5647 {
5648 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5649 {
5650 const unsigned char* vin = in->get_input_view((*p)->offset(),
5651 (*p)->filesz());
5652 unsigned char* vout = out.get_output_view((*p)->paddr(),
5653 (*p)->filesz());
5654 memcpy(vout, vin, (*p)->filesz());
5655 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5656 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5657 }
5658 }
5659
5660 out.close();
5661 }
5662
5663 // Print the output sections to the map file.
5664
5665 void
5666 Layout::print_to_mapfile(Mapfile* mapfile) const
5667 {
5668 for (Segment_list::const_iterator p = this->segment_list_.begin();
5669 p != this->segment_list_.end();
5670 ++p)
5671 (*p)->print_sections_to_mapfile(mapfile);
5672 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5673 p != this->unattached_section_list_.end();
5674 ++p)
5675 (*p)->print_to_mapfile(mapfile);
5676 }
5677
5678 // Print statistical information to stderr. This is used for --stats.
5679
5680 void
5681 Layout::print_stats() const
5682 {
5683 this->namepool_.print_stats("section name pool");
5684 this->sympool_.print_stats("output symbol name pool");
5685 this->dynpool_.print_stats("dynamic name pool");
5686
5687 for (Section_list::const_iterator p = this->section_list_.begin();
5688 p != this->section_list_.end();
5689 ++p)
5690 (*p)->print_merge_stats();
5691 }
5692
5693 // Write_sections_task methods.
5694
5695 // We can always run this task.
5696
5697 Task_token*
5698 Write_sections_task::is_runnable()
5699 {
5700 return NULL;
5701 }
5702
5703 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5704 // when finished.
5705
5706 void
5707 Write_sections_task::locks(Task_locker* tl)
5708 {
5709 tl->add(this, this->output_sections_blocker_);
5710 if (this->input_sections_blocker_ != NULL)
5711 tl->add(this, this->input_sections_blocker_);
5712 tl->add(this, this->final_blocker_);
5713 }
5714
5715 // Run the task--write out the data.
5716
5717 void
5718 Write_sections_task::run(Workqueue*)
5719 {
5720 this->layout_->write_output_sections(this->of_);
5721 }
5722
5723 // Write_data_task methods.
5724
5725 // We can always run this task.
5726
5727 Task_token*
5728 Write_data_task::is_runnable()
5729 {
5730 return NULL;
5731 }
5732
5733 // We need to unlock FINAL_BLOCKER when finished.
5734
5735 void
5736 Write_data_task::locks(Task_locker* tl)
5737 {
5738 tl->add(this, this->final_blocker_);
5739 }
5740
5741 // Run the task--write out the data.
5742
5743 void
5744 Write_data_task::run(Workqueue*)
5745 {
5746 this->layout_->write_data(this->symtab_, this->of_);
5747 }
5748
5749 // Write_symbols_task methods.
5750
5751 // We can always run this task.
5752
5753 Task_token*
5754 Write_symbols_task::is_runnable()
5755 {
5756 return NULL;
5757 }
5758
5759 // We need to unlock FINAL_BLOCKER when finished.
5760
5761 void
5762 Write_symbols_task::locks(Task_locker* tl)
5763 {
5764 tl->add(this, this->final_blocker_);
5765 }
5766
5767 // Run the task--write out the symbols.
5768
5769 void
5770 Write_symbols_task::run(Workqueue*)
5771 {
5772 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5773 this->layout_->symtab_xindex(),
5774 this->layout_->dynsym_xindex(), this->of_);
5775 }
5776
5777 // Write_after_input_sections_task methods.
5778
5779 // We can only run this task after the input sections have completed.
5780
5781 Task_token*
5782 Write_after_input_sections_task::is_runnable()
5783 {
5784 if (this->input_sections_blocker_->is_blocked())
5785 return this->input_sections_blocker_;
5786 return NULL;
5787 }
5788
5789 // We need to unlock FINAL_BLOCKER when finished.
5790
5791 void
5792 Write_after_input_sections_task::locks(Task_locker* tl)
5793 {
5794 tl->add(this, this->final_blocker_);
5795 }
5796
5797 // Run the task.
5798
5799 void
5800 Write_after_input_sections_task::run(Workqueue*)
5801 {
5802 this->layout_->write_sections_after_input_sections(this->of_);
5803 }
5804
5805 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5806 // or as a "tree" where each chunk of the string is hashed and then those
5807 // hashes are put into a (much smaller) string which is hashed with sha1.
5808 // We compute a checksum over the entire file because that is simplest.
5809
5810 void
5811 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5812 {
5813 Task_token* post_hash_tasks_blocker = new Task_token(true);
5814 const Layout* layout = this->layout_;
5815 Output_file* of = this->of_;
5816 const size_t filesize = (layout->output_file_size() <= 0 ? 0
5817 : static_cast<size_t>(layout->output_file_size()));
5818 unsigned char* array_of_hashes = NULL;
5819 size_t size_of_hashes = 0;
5820
5821 if (strcmp(this->options_->build_id(), "tree") == 0
5822 && this->options_->build_id_chunk_size_for_treehash() > 0
5823 && filesize > 0
5824 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5825 {
5826 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5827 const size_t chunk_size =
5828 this->options_->build_id_chunk_size_for_treehash();
5829 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5830 post_hash_tasks_blocker->add_blockers(num_hashes);
5831 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5832 array_of_hashes = new unsigned char[size_of_hashes];
5833 unsigned char *dst = array_of_hashes;
5834 for (size_t i = 0, src_offset = 0; i < num_hashes;
5835 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5836 {
5837 size_t size = std::min(chunk_size, filesize - src_offset);
5838 workqueue->queue(new Hash_task(of,
5839 src_offset,
5840 size,
5841 dst,
5842 post_hash_tasks_blocker));
5843 }
5844 }
5845
5846 // Queue the final task to write the build id and close the output file.
5847 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5848 layout,
5849 of,
5850 array_of_hashes,
5851 size_of_hashes),
5852 post_hash_tasks_blocker,
5853 "Task_function Close_task_runner"));
5854 }
5855
5856 // Close_task_runner methods.
5857
5858 // Finish up the build ID computation, if necessary, and write a binary file,
5859 // if necessary. Then close the output file.
5860
5861 void
5862 Close_task_runner::run(Workqueue*, const Task*)
5863 {
5864 // At this point the multi-threaded part of the build ID computation,
5865 // if any, is done. See Build_id_task_runner.
5866 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5867 this->size_of_hashes_);
5868
5869 // If we've been asked to create a binary file, we do so here.
5870 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5871 this->layout_->write_binary(this->of_);
5872
5873 this->of_->close();
5874 }
5875
5876 // Instantiate the templates we need. We could use the configure
5877 // script to restrict this to only the ones for implemented targets.
5878
5879 #ifdef HAVE_TARGET_32_LITTLE
5880 template
5881 Output_section*
5882 Layout::init_fixed_output_section<32, false>(
5883 const char* name,
5884 elfcpp::Shdr<32, false>& shdr);
5885 #endif
5886
5887 #ifdef HAVE_TARGET_32_BIG
5888 template
5889 Output_section*
5890 Layout::init_fixed_output_section<32, true>(
5891 const char* name,
5892 elfcpp::Shdr<32, true>& shdr);
5893 #endif
5894
5895 #ifdef HAVE_TARGET_64_LITTLE
5896 template
5897 Output_section*
5898 Layout::init_fixed_output_section<64, false>(
5899 const char* name,
5900 elfcpp::Shdr<64, false>& shdr);
5901 #endif
5902
5903 #ifdef HAVE_TARGET_64_BIG
5904 template
5905 Output_section*
5906 Layout::init_fixed_output_section<64, true>(
5907 const char* name,
5908 elfcpp::Shdr<64, true>& shdr);
5909 #endif
5910
5911 #ifdef HAVE_TARGET_32_LITTLE
5912 template
5913 Output_section*
5914 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5915 unsigned int shndx,
5916 const char* name,
5917 const elfcpp::Shdr<32, false>& shdr,
5918 unsigned int, unsigned int, off_t*);
5919 #endif
5920
5921 #ifdef HAVE_TARGET_32_BIG
5922 template
5923 Output_section*
5924 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5925 unsigned int shndx,
5926 const char* name,
5927 const elfcpp::Shdr<32, true>& shdr,
5928 unsigned int, unsigned int, off_t*);
5929 #endif
5930
5931 #ifdef HAVE_TARGET_64_LITTLE
5932 template
5933 Output_section*
5934 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5935 unsigned int shndx,
5936 const char* name,
5937 const elfcpp::Shdr<64, false>& shdr,
5938 unsigned int, unsigned int, off_t*);
5939 #endif
5940
5941 #ifdef HAVE_TARGET_64_BIG
5942 template
5943 Output_section*
5944 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5945 unsigned int shndx,
5946 const char* name,
5947 const elfcpp::Shdr<64, true>& shdr,
5948 unsigned int, unsigned int, off_t*);
5949 #endif
5950
5951 #ifdef HAVE_TARGET_32_LITTLE
5952 template
5953 Output_section*
5954 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5955 unsigned int reloc_shndx,
5956 const elfcpp::Shdr<32, false>& shdr,
5957 Output_section* data_section,
5958 Relocatable_relocs* rr);
5959 #endif
5960
5961 #ifdef HAVE_TARGET_32_BIG
5962 template
5963 Output_section*
5964 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5965 unsigned int reloc_shndx,
5966 const elfcpp::Shdr<32, true>& shdr,
5967 Output_section* data_section,
5968 Relocatable_relocs* rr);
5969 #endif
5970
5971 #ifdef HAVE_TARGET_64_LITTLE
5972 template
5973 Output_section*
5974 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5975 unsigned int reloc_shndx,
5976 const elfcpp::Shdr<64, false>& shdr,
5977 Output_section* data_section,
5978 Relocatable_relocs* rr);
5979 #endif
5980
5981 #ifdef HAVE_TARGET_64_BIG
5982 template
5983 Output_section*
5984 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5985 unsigned int reloc_shndx,
5986 const elfcpp::Shdr<64, true>& shdr,
5987 Output_section* data_section,
5988 Relocatable_relocs* rr);
5989 #endif
5990
5991 #ifdef HAVE_TARGET_32_LITTLE
5992 template
5993 void
5994 Layout::layout_group<32, false>(Symbol_table* symtab,
5995 Sized_relobj_file<32, false>* object,
5996 unsigned int,
5997 const char* group_section_name,
5998 const char* signature,
5999 const elfcpp::Shdr<32, false>& shdr,
6000 elfcpp::Elf_Word flags,
6001 std::vector<unsigned int>* shndxes);
6002 #endif
6003
6004 #ifdef HAVE_TARGET_32_BIG
6005 template
6006 void
6007 Layout::layout_group<32, true>(Symbol_table* symtab,
6008 Sized_relobj_file<32, true>* object,
6009 unsigned int,
6010 const char* group_section_name,
6011 const char* signature,
6012 const elfcpp::Shdr<32, true>& shdr,
6013 elfcpp::Elf_Word flags,
6014 std::vector<unsigned int>* shndxes);
6015 #endif
6016
6017 #ifdef HAVE_TARGET_64_LITTLE
6018 template
6019 void
6020 Layout::layout_group<64, false>(Symbol_table* symtab,
6021 Sized_relobj_file<64, false>* object,
6022 unsigned int,
6023 const char* group_section_name,
6024 const char* signature,
6025 const elfcpp::Shdr<64, false>& shdr,
6026 elfcpp::Elf_Word flags,
6027 std::vector<unsigned int>* shndxes);
6028 #endif
6029
6030 #ifdef HAVE_TARGET_64_BIG
6031 template
6032 void
6033 Layout::layout_group<64, true>(Symbol_table* symtab,
6034 Sized_relobj_file<64, true>* object,
6035 unsigned int,
6036 const char* group_section_name,
6037 const char* signature,
6038 const elfcpp::Shdr<64, true>& shdr,
6039 elfcpp::Elf_Word flags,
6040 std::vector<unsigned int>* shndxes);
6041 #endif
6042
6043 #ifdef HAVE_TARGET_32_LITTLE
6044 template
6045 Output_section*
6046 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6047 const unsigned char* symbols,
6048 off_t symbols_size,
6049 const unsigned char* symbol_names,
6050 off_t symbol_names_size,
6051 unsigned int shndx,
6052 const elfcpp::Shdr<32, false>& shdr,
6053 unsigned int reloc_shndx,
6054 unsigned int reloc_type,
6055 off_t* off);
6056 #endif
6057
6058 #ifdef HAVE_TARGET_32_BIG
6059 template
6060 Output_section*
6061 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6062 const unsigned char* symbols,
6063 off_t symbols_size,
6064 const unsigned char* symbol_names,
6065 off_t symbol_names_size,
6066 unsigned int shndx,
6067 const elfcpp::Shdr<32, true>& shdr,
6068 unsigned int reloc_shndx,
6069 unsigned int reloc_type,
6070 off_t* off);
6071 #endif
6072
6073 #ifdef HAVE_TARGET_64_LITTLE
6074 template
6075 Output_section*
6076 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6077 const unsigned char* symbols,
6078 off_t symbols_size,
6079 const unsigned char* symbol_names,
6080 off_t symbol_names_size,
6081 unsigned int shndx,
6082 const elfcpp::Shdr<64, false>& shdr,
6083 unsigned int reloc_shndx,
6084 unsigned int reloc_type,
6085 off_t* off);
6086 #endif
6087
6088 #ifdef HAVE_TARGET_64_BIG
6089 template
6090 Output_section*
6091 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6092 const unsigned char* symbols,
6093 off_t symbols_size,
6094 const unsigned char* symbol_names,
6095 off_t symbol_names_size,
6096 unsigned int shndx,
6097 const elfcpp::Shdr<64, true>& shdr,
6098 unsigned int reloc_shndx,
6099 unsigned int reloc_type,
6100 off_t* off);
6101 #endif
6102
6103 #ifdef HAVE_TARGET_32_LITTLE
6104 template
6105 void
6106 Layout::add_to_gdb_index(bool is_type_unit,
6107 Sized_relobj<32, false>* object,
6108 const unsigned char* symbols,
6109 off_t symbols_size,
6110 unsigned int shndx,
6111 unsigned int reloc_shndx,
6112 unsigned int reloc_type);
6113 #endif
6114
6115 #ifdef HAVE_TARGET_32_BIG
6116 template
6117 void
6118 Layout::add_to_gdb_index(bool is_type_unit,
6119 Sized_relobj<32, true>* object,
6120 const unsigned char* symbols,
6121 off_t symbols_size,
6122 unsigned int shndx,
6123 unsigned int reloc_shndx,
6124 unsigned int reloc_type);
6125 #endif
6126
6127 #ifdef HAVE_TARGET_64_LITTLE
6128 template
6129 void
6130 Layout::add_to_gdb_index(bool is_type_unit,
6131 Sized_relobj<64, false>* object,
6132 const unsigned char* symbols,
6133 off_t symbols_size,
6134 unsigned int shndx,
6135 unsigned int reloc_shndx,
6136 unsigned int reloc_type);
6137 #endif
6138
6139 #ifdef HAVE_TARGET_64_BIG
6140 template
6141 void
6142 Layout::add_to_gdb_index(bool is_type_unit,
6143 Sized_relobj<64, true>* object,
6144 const unsigned char* symbols,
6145 off_t symbols_size,
6146 unsigned int shndx,
6147 unsigned int reloc_shndx,
6148 unsigned int reloc_type);
6149 #endif
6150
6151 } // End namespace gold.
This page took 0.15682 seconds and 4 git commands to generate.