Properly install gold as default linker
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57
58 namespace gold
59 {
60
61 // Class Free_list.
62
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75
76 // Initialize the free list. Creates a single free list node that
77 // describes the entire region of length LEN. If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84 this->list_.push_front(Free_list_node(0, len));
85 this->last_remove_ = this->list_.begin();
86 this->extend_ = extend;
87 this->length_ = len;
88 ++Free_list::num_lists;
89 ++Free_list::num_nodes;
90 }
91
92 // Remove a chunk from the free list. Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node. We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104 if (start == end)
105 return;
106 gold_assert(start < end);
107
108 ++Free_list::num_removes;
109
110 Iterator p = this->last_remove_;
111 if (p->start_ > start)
112 p = this->list_.begin();
113
114 for (; p != this->list_.end(); ++p)
115 {
116 ++Free_list::num_remove_visits;
117 // Find a node that wholly contains the indicated region.
118 if (p->start_ <= start && p->end_ >= end)
119 {
120 // Case 1: the indicated region spans the whole node.
121 // Add some fuzz to avoid creating tiny free chunks.
122 if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 p = this->list_.erase(p);
124 // Case 2: remove a chunk from the start of the node.
125 else if (p->start_ + 3 >= start)
126 p->start_ = end;
127 // Case 3: remove a chunk from the end of the node.
128 else if (p->end_ <= end + 3)
129 p->end_ = start;
130 // Case 4: remove a chunk from the middle, and split
131 // the node into two.
132 else
133 {
134 Free_list_node newnode(p->start_, start);
135 p->start_ = end;
136 this->list_.insert(p, newnode);
137 ++Free_list::num_nodes;
138 }
139 this->last_remove_ = p;
140 return;
141 }
142 }
143
144 // Did not find a node containing the given chunk. This could happen
145 // because a small chunk was already removed due to the fuzz.
146 gold_debug(DEBUG_INCREMENTAL,
147 "Free_list::remove(%d,%d) not found",
148 static_cast<int>(start), static_cast<int>(end));
149 }
150
151 // Allocate a chunk of size LEN from the free list. Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158 gold_debug(DEBUG_INCREMENTAL,
159 "Free_list::allocate(%08lx, %d, %08lx)",
160 static_cast<long>(len), static_cast<int>(align),
161 static_cast<long>(minoff));
162 if (len == 0)
163 return align_address(minoff, align);
164
165 ++Free_list::num_allocates;
166
167 // We usually want to drop free chunks smaller than 4 bytes.
168 // If we need to guarantee a minimum hole size, though, we need
169 // to keep track of all free chunks.
170 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171
172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173 {
174 ++Free_list::num_allocate_visits;
175 off_t start = p->start_ > minoff ? p->start_ : minoff;
176 start = align_address(start, align);
177 off_t end = start + len;
178 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 {
180 this->length_ = end;
181 p->end_ = end;
182 }
183 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 {
185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 this->list_.erase(p);
187 else if (p->start_ + fuzz >= start)
188 p->start_ = end;
189 else if (p->end_ <= end + fuzz)
190 p->end_ = start;
191 else
192 {
193 Free_list_node newnode(p->start_, start);
194 p->start_ = end;
195 this->list_.insert(p, newnode);
196 ++Free_list::num_nodes;
197 }
198 return start;
199 }
200 }
201 if (this->extend_)
202 {
203 off_t start = align_address(this->length_, align);
204 this->length_ = start + len;
205 return start;
206 }
207 return -1;
208 }
209
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214 gold_info("Free list:\n start end length\n");
215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
217 static_cast<long>(p->end_),
218 static_cast<long>(p->end_ - p->start_));
219 }
220
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225 fprintf(stderr, _("%s: total free lists: %u\n"),
226 program_name, Free_list::num_lists);
227 fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 program_name, Free_list::num_nodes);
229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 program_name, Free_list::num_removes);
231 fprintf(stderr, _("%s: nodes visited: %u\n"),
232 program_name, Free_list::num_remove_visits);
233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 program_name, Free_list::num_allocates);
235 fprintf(stderr, _("%s: nodes visited: %u\n"),
236 program_name, Free_list::num_allocate_visits);
237 }
238
239 // Layout::Relaxation_debug_check methods.
240
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247 const Layout::Section_list& sections,
248 const Layout::Data_list& special_outputs)
249 {
250 for(Layout::Section_list::const_iterator p = sections.begin();
251 p != sections.end();
252 ++p)
253 gold_assert((*p)->address_and_file_offset_have_reset_values());
254
255 for(Layout::Data_list::const_iterator p = special_outputs.begin();
256 p != special_outputs.end();
257 ++p)
258 gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260
261 // Save information of SECTIONS for checking later.
262
263 void
264 Layout::Relaxation_debug_check::read_sections(
265 const Layout::Section_list& sections)
266 {
267 for(Layout::Section_list::const_iterator p = sections.begin();
268 p != sections.end();
269 ++p)
270 {
271 Output_section* os = *p;
272 Section_info info;
273 info.output_section = os;
274 info.address = os->is_address_valid() ? os->address() : 0;
275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 info.offset = os->is_offset_valid()? os->offset() : -1 ;
277 this->section_infos_.push_back(info);
278 }
279 }
280
281 // Verify SECTIONS using previously recorded information.
282
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285 const Layout::Section_list& sections)
286 {
287 size_t i = 0;
288 for(Layout::Section_list::const_iterator p = sections.begin();
289 p != sections.end();
290 ++p, ++i)
291 {
292 Output_section* os = *p;
293 uint64_t address = os->is_address_valid() ? os->address() : 0;
294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296
297 if (i >= this->section_infos_.size())
298 {
299 gold_fatal("Section_info of %s missing.\n", os->name());
300 }
301 const Section_info& info = this->section_infos_[i];
302 if (os != info.output_section)
303 gold_fatal("Section order changed. Expecting %s but see %s\n",
304 info.output_section->name(), os->name());
305 if (address != info.address
306 || data_size != info.data_size
307 || offset != info.offset)
308 gold_fatal("Section %s changed.\n", os->name());
309 }
310 }
311
312 // Layout_task_runner methods.
313
314 // Lay out the sections. This is called after all the input objects
315 // have been read.
316
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320 Layout* layout = this->layout_;
321 off_t file_size = layout->finalize(this->input_objects_,
322 this->symtab_,
323 this->target_,
324 task);
325
326 // Now we know the final size of the output file and we know where
327 // each piece of information goes.
328
329 if (this->mapfile_ != NULL)
330 {
331 this->mapfile_->print_discarded_sections(this->input_objects_);
332 layout->print_to_mapfile(this->mapfile_);
333 }
334
335 Output_file* of;
336 if (layout->incremental_base() == NULL)
337 {
338 of = new Output_file(parameters->options().output_file_name());
339 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340 of->set_is_temporary();
341 of->open(file_size);
342 }
343 else
344 {
345 of = layout->incremental_base()->output_file();
346
347 // Apply the incremental relocations for symbols whose values
348 // have changed. We do this before we resize the file and start
349 // writing anything else to it, so that we can read the old
350 // incremental information from the file before (possibly)
351 // overwriting it.
352 if (parameters->incremental_update())
353 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354 this->layout_,
355 of);
356
357 of->resize(file_size);
358 }
359
360 // Queue up the final set of tasks.
361 gold::queue_final_tasks(this->options_, this->input_objects_,
362 this->symtab_, layout, workqueue, of);
363 }
364
365 // Layout methods.
366
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368 : number_of_input_files_(number_of_input_files),
369 script_options_(script_options),
370 namepool_(),
371 sympool_(),
372 dynpool_(),
373 signatures_(),
374 section_name_map_(),
375 segment_list_(),
376 section_list_(),
377 unattached_section_list_(),
378 special_output_list_(),
379 section_headers_(NULL),
380 tls_segment_(NULL),
381 relro_segment_(NULL),
382 interp_segment_(NULL),
383 increase_relro_(0),
384 symtab_section_(NULL),
385 symtab_xindex_(NULL),
386 dynsym_section_(NULL),
387 dynsym_xindex_(NULL),
388 dynamic_section_(NULL),
389 dynamic_symbol_(NULL),
390 dynamic_data_(NULL),
391 eh_frame_section_(NULL),
392 eh_frame_data_(NULL),
393 added_eh_frame_data_(false),
394 eh_frame_hdr_section_(NULL),
395 gdb_index_data_(NULL),
396 build_id_note_(NULL),
397 debug_abbrev_(NULL),
398 debug_info_(NULL),
399 group_signatures_(),
400 output_file_size_(-1),
401 have_added_input_section_(false),
402 sections_are_attached_(false),
403 input_requires_executable_stack_(false),
404 input_with_gnu_stack_note_(false),
405 input_without_gnu_stack_note_(false),
406 has_static_tls_(false),
407 any_postprocessing_sections_(false),
408 resized_signatures_(false),
409 have_stabstr_section_(false),
410 section_ordering_specified_(false),
411 unique_segment_for_sections_specified_(false),
412 incremental_inputs_(NULL),
413 record_output_section_data_from_script_(false),
414 script_output_section_data_list_(),
415 segment_states_(NULL),
416 relaxation_debug_check_(NULL),
417 section_order_map_(),
418 section_segment_map_(),
419 input_section_position_(),
420 input_section_glob_(),
421 incremental_base_(NULL),
422 free_list_()
423 {
424 // Make space for more than enough segments for a typical file.
425 // This is just for efficiency--it's OK if we wind up needing more.
426 this->segment_list_.reserve(12);
427
428 // We expect two unattached Output_data objects: the file header and
429 // the segment headers.
430 this->special_output_list_.reserve(2);
431
432 // Initialize structure needed for an incremental build.
433 if (parameters->incremental())
434 this->incremental_inputs_ = new Incremental_inputs;
435
436 // The section name pool is worth optimizing in all cases, because
437 // it is small, but there are often overlaps due to .rel sections.
438 this->namepool_.set_optimize();
439 }
440
441 // For incremental links, record the base file to be modified.
442
443 void
444 Layout::set_incremental_base(Incremental_binary* base)
445 {
446 this->incremental_base_ = base;
447 this->free_list_.init(base->output_file()->filesize(), true);
448 }
449
450 // Hash a key we use to look up an output section mapping.
451
452 size_t
453 Layout::Hash_key::operator()(const Layout::Key& k) const
454 {
455 return k.first + k.second.first + k.second.second;
456 }
457
458 // These are the debug sections that are actually used by gdb.
459 // Currently, we've checked versions of gdb up to and including 7.4.
460 // We only check the part of the name that follows ".debug_" or
461 // ".zdebug_".
462
463 static const char* gdb_sections[] =
464 {
465 "abbrev",
466 "addr", // Fission extension
467 // "aranges", // not used by gdb as of 7.4
468 "frame",
469 "info",
470 "types",
471 "line",
472 "loc",
473 "macinfo",
474 "macro",
475 // "pubnames", // not used by gdb as of 7.4
476 // "pubtypes", // not used by gdb as of 7.4
477 "ranges",
478 "str",
479 };
480
481 // This is the minimum set of sections needed for line numbers.
482
483 static const char* lines_only_debug_sections[] =
484 {
485 "abbrev",
486 // "addr", // Fission extension
487 // "aranges", // not used by gdb as of 7.4
488 // "frame",
489 "info",
490 // "types",
491 "line",
492 // "loc",
493 // "macinfo",
494 // "macro",
495 // "pubnames", // not used by gdb as of 7.4
496 // "pubtypes", // not used by gdb as of 7.4
497 // "ranges",
498 "str",
499 };
500
501 // These sections are the DWARF fast-lookup tables, and are not needed
502 // when building a .gdb_index section.
503
504 static const char* gdb_fast_lookup_sections[] =
505 {
506 "aranges",
507 "pubnames",
508 "pubtypes",
509 };
510
511 // Returns whether the given debug section is in the list of
512 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
513 // portion of the name following ".debug_" or ".zdebug_".
514
515 static inline bool
516 is_gdb_debug_section(const char* suffix)
517 {
518 // We can do this faster: binary search or a hashtable. But why bother?
519 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
520 if (strcmp(suffix, gdb_sections[i]) == 0)
521 return true;
522 return false;
523 }
524
525 // Returns whether the given section is needed for lines-only debugging.
526
527 static inline bool
528 is_lines_only_debug_section(const char* suffix)
529 {
530 // We can do this faster: binary search or a hashtable. But why bother?
531 for (size_t i = 0;
532 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
533 ++i)
534 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
535 return true;
536 return false;
537 }
538
539 // Returns whether the given section is a fast-lookup section that
540 // will not be needed when building a .gdb_index section.
541
542 static inline bool
543 is_gdb_fast_lookup_section(const char* suffix)
544 {
545 // We can do this faster: binary search or a hashtable. But why bother?
546 for (size_t i = 0;
547 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
548 ++i)
549 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
550 return true;
551 return false;
552 }
553
554 // Sometimes we compress sections. This is typically done for
555 // sections that are not part of normal program execution (such as
556 // .debug_* sections), and where the readers of these sections know
557 // how to deal with compressed sections. This routine doesn't say for
558 // certain whether we'll compress -- it depends on commandline options
559 // as well -- just whether this section is a candidate for compression.
560 // (The Output_compressed_section class decides whether to compress
561 // a given section, and picks the name of the compressed section.)
562
563 static bool
564 is_compressible_debug_section(const char* secname)
565 {
566 return (is_prefix_of(".debug", secname));
567 }
568
569 // We may see compressed debug sections in input files. Return TRUE
570 // if this is the name of a compressed debug section.
571
572 bool
573 is_compressed_debug_section(const char* secname)
574 {
575 return (is_prefix_of(".zdebug", secname));
576 }
577
578 // Whether to include this section in the link.
579
580 template<int size, bool big_endian>
581 bool
582 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
583 const elfcpp::Shdr<size, big_endian>& shdr)
584 {
585 if (!parameters->options().relocatable()
586 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
587 return false;
588
589 switch (shdr.get_sh_type())
590 {
591 case elfcpp::SHT_NULL:
592 case elfcpp::SHT_SYMTAB:
593 case elfcpp::SHT_DYNSYM:
594 case elfcpp::SHT_HASH:
595 case elfcpp::SHT_DYNAMIC:
596 case elfcpp::SHT_SYMTAB_SHNDX:
597 return false;
598
599 case elfcpp::SHT_STRTAB:
600 // Discard the sections which have special meanings in the ELF
601 // ABI. Keep others (e.g., .stabstr). We could also do this by
602 // checking the sh_link fields of the appropriate sections.
603 return (strcmp(name, ".dynstr") != 0
604 && strcmp(name, ".strtab") != 0
605 && strcmp(name, ".shstrtab") != 0);
606
607 case elfcpp::SHT_RELA:
608 case elfcpp::SHT_REL:
609 case elfcpp::SHT_GROUP:
610 // If we are emitting relocations these should be handled
611 // elsewhere.
612 gold_assert(!parameters->options().relocatable());
613 return false;
614
615 case elfcpp::SHT_PROGBITS:
616 if (parameters->options().strip_debug()
617 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
618 {
619 if (is_debug_info_section(name))
620 return false;
621 }
622 if (parameters->options().strip_debug_non_line()
623 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
624 {
625 // Debugging sections can only be recognized by name.
626 if (is_prefix_of(".debug_", name)
627 && !is_lines_only_debug_section(name + 7))
628 return false;
629 if (is_prefix_of(".zdebug_", name)
630 && !is_lines_only_debug_section(name + 8))
631 return false;
632 }
633 if (parameters->options().strip_debug_gdb()
634 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
635 {
636 // Debugging sections can only be recognized by name.
637 if (is_prefix_of(".debug_", name)
638 && !is_gdb_debug_section(name + 7))
639 return false;
640 if (is_prefix_of(".zdebug_", name)
641 && !is_gdb_debug_section(name + 8))
642 return false;
643 }
644 if (parameters->options().gdb_index()
645 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
646 {
647 // When building .gdb_index, we can strip .debug_pubnames,
648 // .debug_pubtypes, and .debug_aranges sections.
649 if (is_prefix_of(".debug_", name)
650 && is_gdb_fast_lookup_section(name + 7))
651 return false;
652 if (is_prefix_of(".zdebug_", name)
653 && is_gdb_fast_lookup_section(name + 8))
654 return false;
655 }
656 if (parameters->options().strip_lto_sections()
657 && !parameters->options().relocatable()
658 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
659 {
660 // Ignore LTO sections containing intermediate code.
661 if (is_prefix_of(".gnu.lto_", name))
662 return false;
663 }
664 // The GNU linker strips .gnu_debuglink sections, so we do too.
665 // This is a feature used to keep debugging information in
666 // separate files.
667 if (strcmp(name, ".gnu_debuglink") == 0)
668 return false;
669 return true;
670
671 default:
672 return true;
673 }
674 }
675
676 // Return an output section named NAME, or NULL if there is none.
677
678 Output_section*
679 Layout::find_output_section(const char* name) const
680 {
681 for (Section_list::const_iterator p = this->section_list_.begin();
682 p != this->section_list_.end();
683 ++p)
684 if (strcmp((*p)->name(), name) == 0)
685 return *p;
686 return NULL;
687 }
688
689 // Return an output segment of type TYPE, with segment flags SET set
690 // and segment flags CLEAR clear. Return NULL if there is none.
691
692 Output_segment*
693 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
694 elfcpp::Elf_Word clear) const
695 {
696 for (Segment_list::const_iterator p = this->segment_list_.begin();
697 p != this->segment_list_.end();
698 ++p)
699 if (static_cast<elfcpp::PT>((*p)->type()) == type
700 && ((*p)->flags() & set) == set
701 && ((*p)->flags() & clear) == 0)
702 return *p;
703 return NULL;
704 }
705
706 // When we put a .ctors or .dtors section with more than one word into
707 // a .init_array or .fini_array section, we need to reverse the words
708 // in the .ctors/.dtors section. This is because .init_array executes
709 // constructors front to back, where .ctors executes them back to
710 // front, and vice-versa for .fini_array/.dtors. Although we do want
711 // to remap .ctors/.dtors into .init_array/.fini_array because it can
712 // be more efficient, we don't want to change the order in which
713 // constructors/destructors are run. This set just keeps track of
714 // these sections which need to be reversed. It is only changed by
715 // Layout::layout. It should be a private member of Layout, but that
716 // would require layout.h to #include object.h to get the definition
717 // of Section_id.
718 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
719
720 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
721 // .init_array/.fini_array section.
722
723 bool
724 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
725 {
726 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
727 != ctors_sections_in_init_array.end());
728 }
729
730 // Return the output section to use for section NAME with type TYPE
731 // and section flags FLAGS. NAME must be canonicalized in the string
732 // pool, and NAME_KEY is the key. ORDER is where this should appear
733 // in the output sections. IS_RELRO is true for a relro section.
734
735 Output_section*
736 Layout::get_output_section(const char* name, Stringpool::Key name_key,
737 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
738 Output_section_order order, bool is_relro)
739 {
740 elfcpp::Elf_Word lookup_type = type;
741
742 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
743 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
744 // .init_array, .fini_array, and .preinit_array sections by name
745 // whatever their type in the input file. We do this because the
746 // types are not always right in the input files.
747 if (lookup_type == elfcpp::SHT_INIT_ARRAY
748 || lookup_type == elfcpp::SHT_FINI_ARRAY
749 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
750 lookup_type = elfcpp::SHT_PROGBITS;
751
752 elfcpp::Elf_Xword lookup_flags = flags;
753
754 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
755 // read-write with read-only sections. Some other ELF linkers do
756 // not do this. FIXME: Perhaps there should be an option
757 // controlling this.
758 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
759
760 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
761 const std::pair<Key, Output_section*> v(key, NULL);
762 std::pair<Section_name_map::iterator, bool> ins(
763 this->section_name_map_.insert(v));
764
765 if (!ins.second)
766 return ins.first->second;
767 else
768 {
769 // This is the first time we've seen this name/type/flags
770 // combination. For compatibility with the GNU linker, we
771 // combine sections with contents and zero flags with sections
772 // with non-zero flags. This is a workaround for cases where
773 // assembler code forgets to set section flags. FIXME: Perhaps
774 // there should be an option to control this.
775 Output_section* os = NULL;
776
777 if (lookup_type == elfcpp::SHT_PROGBITS)
778 {
779 if (flags == 0)
780 {
781 Output_section* same_name = this->find_output_section(name);
782 if (same_name != NULL
783 && (same_name->type() == elfcpp::SHT_PROGBITS
784 || same_name->type() == elfcpp::SHT_INIT_ARRAY
785 || same_name->type() == elfcpp::SHT_FINI_ARRAY
786 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
787 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
788 os = same_name;
789 }
790 else if ((flags & elfcpp::SHF_TLS) == 0)
791 {
792 elfcpp::Elf_Xword zero_flags = 0;
793 const Key zero_key(name_key, std::make_pair(lookup_type,
794 zero_flags));
795 Section_name_map::iterator p =
796 this->section_name_map_.find(zero_key);
797 if (p != this->section_name_map_.end())
798 os = p->second;
799 }
800 }
801
802 if (os == NULL)
803 os = this->make_output_section(name, type, flags, order, is_relro);
804
805 ins.first->second = os;
806 return os;
807 }
808 }
809
810 // Returns TRUE iff NAME (an input section from RELOBJ) will
811 // be mapped to an output section that should be KEPT.
812
813 bool
814 Layout::keep_input_section(const Relobj* relobj, const char* name)
815 {
816 if (! this->script_options_->saw_sections_clause())
817 return false;
818
819 Script_sections* ss = this->script_options_->script_sections();
820 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
821 Output_section** output_section_slot;
822 Script_sections::Section_type script_section_type;
823 bool keep;
824
825 name = ss->output_section_name(file_name, name, &output_section_slot,
826 &script_section_type, &keep);
827 return name != NULL && keep;
828 }
829
830 // Clear the input section flags that should not be copied to the
831 // output section.
832
833 elfcpp::Elf_Xword
834 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
835 {
836 // Some flags in the input section should not be automatically
837 // copied to the output section.
838 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
839 | elfcpp::SHF_GROUP
840 | elfcpp::SHF_MERGE
841 | elfcpp::SHF_STRINGS);
842
843 // We only clear the SHF_LINK_ORDER flag in for
844 // a non-relocatable link.
845 if (!parameters->options().relocatable())
846 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
847
848 return input_section_flags;
849 }
850
851 // Pick the output section to use for section NAME, in input file
852 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
853 // linker created section. IS_INPUT_SECTION is true if we are
854 // choosing an output section for an input section found in a input
855 // file. ORDER is where this section should appear in the output
856 // sections. IS_RELRO is true for a relro section. This will return
857 // NULL if the input section should be discarded.
858
859 Output_section*
860 Layout::choose_output_section(const Relobj* relobj, const char* name,
861 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
862 bool is_input_section, Output_section_order order,
863 bool is_relro)
864 {
865 // We should not see any input sections after we have attached
866 // sections to segments.
867 gold_assert(!is_input_section || !this->sections_are_attached_);
868
869 flags = this->get_output_section_flags(flags);
870
871 if (this->script_options_->saw_sections_clause())
872 {
873 // We are using a SECTIONS clause, so the output section is
874 // chosen based only on the name.
875
876 Script_sections* ss = this->script_options_->script_sections();
877 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
878 Output_section** output_section_slot;
879 Script_sections::Section_type script_section_type;
880 const char* orig_name = name;
881 bool keep;
882 name = ss->output_section_name(file_name, name, &output_section_slot,
883 &script_section_type, &keep);
884
885 if (name == NULL)
886 {
887 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
888 "because it is not allowed by the "
889 "SECTIONS clause of the linker script"),
890 orig_name);
891 // The SECTIONS clause says to discard this input section.
892 return NULL;
893 }
894
895 // We can only handle script section types ST_NONE and ST_NOLOAD.
896 switch (script_section_type)
897 {
898 case Script_sections::ST_NONE:
899 break;
900 case Script_sections::ST_NOLOAD:
901 flags &= elfcpp::SHF_ALLOC;
902 break;
903 default:
904 gold_unreachable();
905 }
906
907 // If this is an orphan section--one not mentioned in the linker
908 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
909 // default processing below.
910
911 if (output_section_slot != NULL)
912 {
913 if (*output_section_slot != NULL)
914 {
915 (*output_section_slot)->update_flags_for_input_section(flags);
916 return *output_section_slot;
917 }
918
919 // We don't put sections found in the linker script into
920 // SECTION_NAME_MAP_. That keeps us from getting confused
921 // if an orphan section is mapped to a section with the same
922 // name as one in the linker script.
923
924 name = this->namepool_.add(name, false, NULL);
925
926 Output_section* os = this->make_output_section(name, type, flags,
927 order, is_relro);
928
929 os->set_found_in_sections_clause();
930
931 // Special handling for NOLOAD sections.
932 if (script_section_type == Script_sections::ST_NOLOAD)
933 {
934 os->set_is_noload();
935
936 // The constructor of Output_section sets addresses of non-ALLOC
937 // sections to 0 by default. We don't want that for NOLOAD
938 // sections even if they have no SHF_ALLOC flag.
939 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
940 && os->is_address_valid())
941 {
942 gold_assert(os->address() == 0
943 && !os->is_offset_valid()
944 && !os->is_data_size_valid());
945 os->reset_address_and_file_offset();
946 }
947 }
948
949 *output_section_slot = os;
950 return os;
951 }
952 }
953
954 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
955
956 size_t len = strlen(name);
957 char* uncompressed_name = NULL;
958
959 // Compressed debug sections should be mapped to the corresponding
960 // uncompressed section.
961 if (is_compressed_debug_section(name))
962 {
963 uncompressed_name = new char[len];
964 uncompressed_name[0] = '.';
965 gold_assert(name[0] == '.' && name[1] == 'z');
966 strncpy(&uncompressed_name[1], &name[2], len - 2);
967 uncompressed_name[len - 1] = '\0';
968 len -= 1;
969 name = uncompressed_name;
970 }
971
972 // Turn NAME from the name of the input section into the name of the
973 // output section.
974 if (is_input_section
975 && !this->script_options_->saw_sections_clause()
976 && !parameters->options().relocatable())
977 {
978 const char *orig_name = name;
979 name = parameters->target().output_section_name(relobj, name, &len);
980 if (name == NULL)
981 name = Layout::output_section_name(relobj, orig_name, &len);
982 }
983
984 Stringpool::Key name_key;
985 name = this->namepool_.add_with_length(name, len, true, &name_key);
986
987 if (uncompressed_name != NULL)
988 delete[] uncompressed_name;
989
990 // Find or make the output section. The output section is selected
991 // based on the section name, type, and flags.
992 return this->get_output_section(name, name_key, type, flags, order, is_relro);
993 }
994
995 // For incremental links, record the initial fixed layout of a section
996 // from the base file, and return a pointer to the Output_section.
997
998 template<int size, bool big_endian>
999 Output_section*
1000 Layout::init_fixed_output_section(const char* name,
1001 elfcpp::Shdr<size, big_endian>& shdr)
1002 {
1003 unsigned int sh_type = shdr.get_sh_type();
1004
1005 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1006 // PRE_INIT_ARRAY, and NOTE sections.
1007 // All others will be created from scratch and reallocated.
1008 if (!can_incremental_update(sh_type))
1009 return NULL;
1010
1011 // If we're generating a .gdb_index section, we need to regenerate
1012 // it from scratch.
1013 if (parameters->options().gdb_index()
1014 && sh_type == elfcpp::SHT_PROGBITS
1015 && strcmp(name, ".gdb_index") == 0)
1016 return NULL;
1017
1018 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1019 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1020 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1021 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1022 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1023 shdr.get_sh_addralign();
1024
1025 // Make the output section.
1026 Stringpool::Key name_key;
1027 name = this->namepool_.add(name, true, &name_key);
1028 Output_section* os = this->get_output_section(name, name_key, sh_type,
1029 sh_flags, ORDER_INVALID, false);
1030 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1031 if (sh_type != elfcpp::SHT_NOBITS)
1032 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1033 return os;
1034 }
1035
1036 // Return the index by which an input section should be ordered. This
1037 // is used to sort some .text sections, for compatibility with GNU ld.
1038
1039 int
1040 Layout::special_ordering_of_input_section(const char* name)
1041 {
1042 // The GNU linker has some special handling for some sections that
1043 // wind up in the .text section. Sections that start with these
1044 // prefixes must appear first, and must appear in the order listed
1045 // here.
1046 static const char* const text_section_sort[] =
1047 {
1048 ".text.unlikely",
1049 ".text.exit",
1050 ".text.startup",
1051 ".text.hot"
1052 };
1053
1054 for (size_t i = 0;
1055 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1056 i++)
1057 if (is_prefix_of(text_section_sort[i], name))
1058 return i;
1059
1060 return -1;
1061 }
1062
1063 // Return the output section to use for input section SHNDX, with name
1064 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1065 // index of a relocation section which applies to this section, or 0
1066 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1067 // relocation section if there is one. Set *OFF to the offset of this
1068 // input section without the output section. Return NULL if the
1069 // section should be discarded. Set *OFF to -1 if the section
1070 // contents should not be written directly to the output file, but
1071 // will instead receive special handling.
1072
1073 template<int size, bool big_endian>
1074 Output_section*
1075 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1076 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1077 unsigned int reloc_shndx, unsigned int, off_t* off)
1078 {
1079 *off = 0;
1080
1081 if (!this->include_section(object, name, shdr))
1082 return NULL;
1083
1084 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1085
1086 // In a relocatable link a grouped section must not be combined with
1087 // any other sections.
1088 Output_section* os;
1089 if (parameters->options().relocatable()
1090 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1091 {
1092 name = this->namepool_.add(name, true, NULL);
1093 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1094 ORDER_INVALID, false);
1095 }
1096 else
1097 {
1098 // Plugins can choose to place one or more subsets of sections in
1099 // unique segments and this is done by mapping these section subsets
1100 // to unique output sections. Check if this section needs to be
1101 // remapped to a unique output section.
1102 Section_segment_map::iterator it
1103 = this->section_segment_map_.find(Const_section_id(object, shndx));
1104 if (it == this->section_segment_map_.end())
1105 {
1106 os = this->choose_output_section(object, name, sh_type,
1107 shdr.get_sh_flags(), true,
1108 ORDER_INVALID, false);
1109 }
1110 else
1111 {
1112 // We know the name of the output section, directly call
1113 // get_output_section here by-passing choose_output_section.
1114 elfcpp::Elf_Xword flags
1115 = this->get_output_section_flags(shdr.get_sh_flags());
1116
1117 const char* os_name = it->second->name;
1118 Stringpool::Key name_key;
1119 os_name = this->namepool_.add(os_name, true, &name_key);
1120 os = this->get_output_section(os_name, name_key, sh_type, flags,
1121 ORDER_INVALID, false);
1122 if (!os->is_unique_segment())
1123 {
1124 os->set_is_unique_segment();
1125 os->set_extra_segment_flags(it->second->flags);
1126 os->set_segment_alignment(it->second->align);
1127 }
1128 }
1129 if (os == NULL)
1130 return NULL;
1131 }
1132
1133 // By default the GNU linker sorts input sections whose names match
1134 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1135 // sections are sorted by name. This is used to implement
1136 // constructor priority ordering. We are compatible. When we put
1137 // .ctor sections in .init_array and .dtor sections in .fini_array,
1138 // we must also sort plain .ctor and .dtor sections.
1139 if (!this->script_options_->saw_sections_clause()
1140 && !parameters->options().relocatable()
1141 && (is_prefix_of(".ctors.", name)
1142 || is_prefix_of(".dtors.", name)
1143 || is_prefix_of(".init_array.", name)
1144 || is_prefix_of(".fini_array.", name)
1145 || (parameters->options().ctors_in_init_array()
1146 && (strcmp(name, ".ctors") == 0
1147 || strcmp(name, ".dtors") == 0))))
1148 os->set_must_sort_attached_input_sections();
1149
1150 // By default the GNU linker sorts some special text sections ahead
1151 // of others. We are compatible.
1152 if (!this->script_options_->saw_sections_clause()
1153 && !parameters->options().relocatable()
1154 && Layout::special_ordering_of_input_section(name) >= 0)
1155 os->set_must_sort_attached_input_sections();
1156
1157 // If this is a .ctors or .ctors.* section being mapped to a
1158 // .init_array section, or a .dtors or .dtors.* section being mapped
1159 // to a .fini_array section, we will need to reverse the words if
1160 // there is more than one. Record this section for later. See
1161 // ctors_sections_in_init_array above.
1162 if (!this->script_options_->saw_sections_clause()
1163 && !parameters->options().relocatable()
1164 && shdr.get_sh_size() > size / 8
1165 && (((strcmp(name, ".ctors") == 0
1166 || is_prefix_of(".ctors.", name))
1167 && strcmp(os->name(), ".init_array") == 0)
1168 || ((strcmp(name, ".dtors") == 0
1169 || is_prefix_of(".dtors.", name))
1170 && strcmp(os->name(), ".fini_array") == 0)))
1171 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1172
1173 // FIXME: Handle SHF_LINK_ORDER somewhere.
1174
1175 elfcpp::Elf_Xword orig_flags = os->flags();
1176
1177 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1178 this->script_options_->saw_sections_clause());
1179
1180 // If the flags changed, we may have to change the order.
1181 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1182 {
1183 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1184 elfcpp::Elf_Xword new_flags =
1185 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1186 if (orig_flags != new_flags)
1187 os->set_order(this->default_section_order(os, false));
1188 }
1189
1190 this->have_added_input_section_ = true;
1191
1192 return os;
1193 }
1194
1195 // Maps section SECN to SEGMENT s.
1196 void
1197 Layout::insert_section_segment_map(Const_section_id secn,
1198 Unique_segment_info *s)
1199 {
1200 gold_assert(this->unique_segment_for_sections_specified_);
1201 this->section_segment_map_[secn] = s;
1202 }
1203
1204 // Handle a relocation section when doing a relocatable link.
1205
1206 template<int size, bool big_endian>
1207 Output_section*
1208 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1209 unsigned int,
1210 const elfcpp::Shdr<size, big_endian>& shdr,
1211 Output_section* data_section,
1212 Relocatable_relocs* rr)
1213 {
1214 gold_assert(parameters->options().relocatable()
1215 || parameters->options().emit_relocs());
1216
1217 int sh_type = shdr.get_sh_type();
1218
1219 std::string name;
1220 if (sh_type == elfcpp::SHT_REL)
1221 name = ".rel";
1222 else if (sh_type == elfcpp::SHT_RELA)
1223 name = ".rela";
1224 else
1225 gold_unreachable();
1226 name += data_section->name();
1227
1228 // In a relocatable link relocs for a grouped section must not be
1229 // combined with other reloc sections.
1230 Output_section* os;
1231 if (!parameters->options().relocatable()
1232 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1233 os = this->choose_output_section(object, name.c_str(), sh_type,
1234 shdr.get_sh_flags(), false,
1235 ORDER_INVALID, false);
1236 else
1237 {
1238 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1239 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1240 ORDER_INVALID, false);
1241 }
1242
1243 os->set_should_link_to_symtab();
1244 os->set_info_section(data_section);
1245
1246 Output_section_data* posd;
1247 if (sh_type == elfcpp::SHT_REL)
1248 {
1249 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1250 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1251 size,
1252 big_endian>(rr);
1253 }
1254 else if (sh_type == elfcpp::SHT_RELA)
1255 {
1256 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1257 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1258 size,
1259 big_endian>(rr);
1260 }
1261 else
1262 gold_unreachable();
1263
1264 os->add_output_section_data(posd);
1265 rr->set_output_data(posd);
1266
1267 return os;
1268 }
1269
1270 // Handle a group section when doing a relocatable link.
1271
1272 template<int size, bool big_endian>
1273 void
1274 Layout::layout_group(Symbol_table* symtab,
1275 Sized_relobj_file<size, big_endian>* object,
1276 unsigned int,
1277 const char* group_section_name,
1278 const char* signature,
1279 const elfcpp::Shdr<size, big_endian>& shdr,
1280 elfcpp::Elf_Word flags,
1281 std::vector<unsigned int>* shndxes)
1282 {
1283 gold_assert(parameters->options().relocatable());
1284 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1285 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1286 Output_section* os = this->make_output_section(group_section_name,
1287 elfcpp::SHT_GROUP,
1288 shdr.get_sh_flags(),
1289 ORDER_INVALID, false);
1290
1291 // We need to find a symbol with the signature in the symbol table.
1292 // If we don't find one now, we need to look again later.
1293 Symbol* sym = symtab->lookup(signature, NULL);
1294 if (sym != NULL)
1295 os->set_info_symndx(sym);
1296 else
1297 {
1298 // Reserve some space to minimize reallocations.
1299 if (this->group_signatures_.empty())
1300 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1301
1302 // We will wind up using a symbol whose name is the signature.
1303 // So just put the signature in the symbol name pool to save it.
1304 signature = symtab->canonicalize_name(signature);
1305 this->group_signatures_.push_back(Group_signature(os, signature));
1306 }
1307
1308 os->set_should_link_to_symtab();
1309 os->set_entsize(4);
1310
1311 section_size_type entry_count =
1312 convert_to_section_size_type(shdr.get_sh_size() / 4);
1313 Output_section_data* posd =
1314 new Output_data_group<size, big_endian>(object, entry_count, flags,
1315 shndxes);
1316 os->add_output_section_data(posd);
1317 }
1318
1319 // Special GNU handling of sections name .eh_frame. They will
1320 // normally hold exception frame data as defined by the C++ ABI
1321 // (http://codesourcery.com/cxx-abi/).
1322
1323 template<int size, bool big_endian>
1324 Output_section*
1325 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1326 const unsigned char* symbols,
1327 off_t symbols_size,
1328 const unsigned char* symbol_names,
1329 off_t symbol_names_size,
1330 unsigned int shndx,
1331 const elfcpp::Shdr<size, big_endian>& shdr,
1332 unsigned int reloc_shndx, unsigned int reloc_type,
1333 off_t* off)
1334 {
1335 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1336 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1337 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1338
1339 Output_section* os = this->make_eh_frame_section(object);
1340 if (os == NULL)
1341 return NULL;
1342
1343 gold_assert(this->eh_frame_section_ == os);
1344
1345 elfcpp::Elf_Xword orig_flags = os->flags();
1346
1347 if (!parameters->incremental()
1348 && this->eh_frame_data_->add_ehframe_input_section(object,
1349 symbols,
1350 symbols_size,
1351 symbol_names,
1352 symbol_names_size,
1353 shndx,
1354 reloc_shndx,
1355 reloc_type))
1356 {
1357 os->update_flags_for_input_section(shdr.get_sh_flags());
1358
1359 // A writable .eh_frame section is a RELRO section.
1360 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1361 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1362 {
1363 os->set_is_relro();
1364 os->set_order(ORDER_RELRO);
1365 }
1366
1367 // We found a .eh_frame section we are going to optimize, so now
1368 // we can add the set of optimized sections to the output
1369 // section. We need to postpone adding this until we've found a
1370 // section we can optimize so that the .eh_frame section in
1371 // crtbegin.o winds up at the start of the output section.
1372 if (!this->added_eh_frame_data_)
1373 {
1374 os->add_output_section_data(this->eh_frame_data_);
1375 this->added_eh_frame_data_ = true;
1376 }
1377 *off = -1;
1378 }
1379 else
1380 {
1381 // We couldn't handle this .eh_frame section for some reason.
1382 // Add it as a normal section.
1383 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1384 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1385 reloc_shndx, saw_sections_clause);
1386 this->have_added_input_section_ = true;
1387
1388 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1389 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1390 os->set_order(this->default_section_order(os, false));
1391 }
1392
1393 return os;
1394 }
1395
1396 // Create and return the magic .eh_frame section. Create
1397 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1398 // input .eh_frame section; it may be NULL.
1399
1400 Output_section*
1401 Layout::make_eh_frame_section(const Relobj* object)
1402 {
1403 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1404 // SHT_PROGBITS.
1405 Output_section* os = this->choose_output_section(object, ".eh_frame",
1406 elfcpp::SHT_PROGBITS,
1407 elfcpp::SHF_ALLOC, false,
1408 ORDER_EHFRAME, false);
1409 if (os == NULL)
1410 return NULL;
1411
1412 if (this->eh_frame_section_ == NULL)
1413 {
1414 this->eh_frame_section_ = os;
1415 this->eh_frame_data_ = new Eh_frame();
1416
1417 // For incremental linking, we do not optimize .eh_frame sections
1418 // or create a .eh_frame_hdr section.
1419 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1420 {
1421 Output_section* hdr_os =
1422 this->choose_output_section(NULL, ".eh_frame_hdr",
1423 elfcpp::SHT_PROGBITS,
1424 elfcpp::SHF_ALLOC, false,
1425 ORDER_EHFRAME, false);
1426
1427 if (hdr_os != NULL)
1428 {
1429 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1430 this->eh_frame_data_);
1431 hdr_os->add_output_section_data(hdr_posd);
1432
1433 hdr_os->set_after_input_sections();
1434
1435 if (!this->script_options_->saw_phdrs_clause())
1436 {
1437 Output_segment* hdr_oseg;
1438 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1439 elfcpp::PF_R);
1440 hdr_oseg->add_output_section_to_nonload(hdr_os,
1441 elfcpp::PF_R);
1442 }
1443
1444 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1445 }
1446 }
1447 }
1448
1449 return os;
1450 }
1451
1452 // Add an exception frame for a PLT. This is called from target code.
1453
1454 void
1455 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1456 size_t cie_length, const unsigned char* fde_data,
1457 size_t fde_length)
1458 {
1459 if (parameters->incremental())
1460 {
1461 // FIXME: Maybe this could work some day....
1462 return;
1463 }
1464 Output_section* os = this->make_eh_frame_section(NULL);
1465 if (os == NULL)
1466 return;
1467 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1468 fde_data, fde_length);
1469 if (!this->added_eh_frame_data_)
1470 {
1471 os->add_output_section_data(this->eh_frame_data_);
1472 this->added_eh_frame_data_ = true;
1473 }
1474 }
1475
1476 // Scan a .debug_info or .debug_types section, and add summary
1477 // information to the .gdb_index section.
1478
1479 template<int size, bool big_endian>
1480 void
1481 Layout::add_to_gdb_index(bool is_type_unit,
1482 Sized_relobj<size, big_endian>* object,
1483 const unsigned char* symbols,
1484 off_t symbols_size,
1485 unsigned int shndx,
1486 unsigned int reloc_shndx,
1487 unsigned int reloc_type)
1488 {
1489 if (this->gdb_index_data_ == NULL)
1490 {
1491 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1492 elfcpp::SHT_PROGBITS, 0,
1493 false, ORDER_INVALID,
1494 false);
1495 if (os == NULL)
1496 return;
1497
1498 this->gdb_index_data_ = new Gdb_index(os);
1499 os->add_output_section_data(this->gdb_index_data_);
1500 os->set_after_input_sections();
1501 }
1502
1503 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1504 symbols_size, shndx, reloc_shndx,
1505 reloc_type);
1506 }
1507
1508 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1509 // the output section.
1510
1511 Output_section*
1512 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1513 elfcpp::Elf_Xword flags,
1514 Output_section_data* posd,
1515 Output_section_order order, bool is_relro)
1516 {
1517 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1518 false, order, is_relro);
1519 if (os != NULL)
1520 os->add_output_section_data(posd);
1521 return os;
1522 }
1523
1524 // Map section flags to segment flags.
1525
1526 elfcpp::Elf_Word
1527 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1528 {
1529 elfcpp::Elf_Word ret = elfcpp::PF_R;
1530 if ((flags & elfcpp::SHF_WRITE) != 0)
1531 ret |= elfcpp::PF_W;
1532 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1533 ret |= elfcpp::PF_X;
1534 return ret;
1535 }
1536
1537 // Make a new Output_section, and attach it to segments as
1538 // appropriate. ORDER is the order in which this section should
1539 // appear in the output segment. IS_RELRO is true if this is a relro
1540 // (read-only after relocations) section.
1541
1542 Output_section*
1543 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1544 elfcpp::Elf_Xword flags,
1545 Output_section_order order, bool is_relro)
1546 {
1547 Output_section* os;
1548 if ((flags & elfcpp::SHF_ALLOC) == 0
1549 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1550 && is_compressible_debug_section(name))
1551 os = new Output_compressed_section(&parameters->options(), name, type,
1552 flags);
1553 else if ((flags & elfcpp::SHF_ALLOC) == 0
1554 && parameters->options().strip_debug_non_line()
1555 && strcmp(".debug_abbrev", name) == 0)
1556 {
1557 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1558 name, type, flags);
1559 if (this->debug_info_)
1560 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1561 }
1562 else if ((flags & elfcpp::SHF_ALLOC) == 0
1563 && parameters->options().strip_debug_non_line()
1564 && strcmp(".debug_info", name) == 0)
1565 {
1566 os = this->debug_info_ = new Output_reduced_debug_info_section(
1567 name, type, flags);
1568 if (this->debug_abbrev_)
1569 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1570 }
1571 else
1572 {
1573 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1574 // not have correct section types. Force them here.
1575 if (type == elfcpp::SHT_PROGBITS)
1576 {
1577 if (is_prefix_of(".init_array", name))
1578 type = elfcpp::SHT_INIT_ARRAY;
1579 else if (is_prefix_of(".preinit_array", name))
1580 type = elfcpp::SHT_PREINIT_ARRAY;
1581 else if (is_prefix_of(".fini_array", name))
1582 type = elfcpp::SHT_FINI_ARRAY;
1583 }
1584
1585 // FIXME: const_cast is ugly.
1586 Target* target = const_cast<Target*>(&parameters->target());
1587 os = target->make_output_section(name, type, flags);
1588 }
1589
1590 // With -z relro, we have to recognize the special sections by name.
1591 // There is no other way.
1592 bool is_relro_local = false;
1593 if (!this->script_options_->saw_sections_clause()
1594 && parameters->options().relro()
1595 && (flags & elfcpp::SHF_ALLOC) != 0
1596 && (flags & elfcpp::SHF_WRITE) != 0)
1597 {
1598 if (type == elfcpp::SHT_PROGBITS)
1599 {
1600 if ((flags & elfcpp::SHF_TLS) != 0)
1601 is_relro = true;
1602 else if (strcmp(name, ".data.rel.ro") == 0)
1603 is_relro = true;
1604 else if (strcmp(name, ".data.rel.ro.local") == 0)
1605 {
1606 is_relro = true;
1607 is_relro_local = true;
1608 }
1609 else if (strcmp(name, ".ctors") == 0
1610 || strcmp(name, ".dtors") == 0
1611 || strcmp(name, ".jcr") == 0)
1612 is_relro = true;
1613 }
1614 else if (type == elfcpp::SHT_INIT_ARRAY
1615 || type == elfcpp::SHT_FINI_ARRAY
1616 || type == elfcpp::SHT_PREINIT_ARRAY)
1617 is_relro = true;
1618 }
1619
1620 if (is_relro)
1621 os->set_is_relro();
1622
1623 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1624 order = this->default_section_order(os, is_relro_local);
1625
1626 os->set_order(order);
1627
1628 parameters->target().new_output_section(os);
1629
1630 this->section_list_.push_back(os);
1631
1632 // The GNU linker by default sorts some sections by priority, so we
1633 // do the same. We need to know that this might happen before we
1634 // attach any input sections.
1635 if (!this->script_options_->saw_sections_clause()
1636 && !parameters->options().relocatable()
1637 && (strcmp(name, ".init_array") == 0
1638 || strcmp(name, ".fini_array") == 0
1639 || (!parameters->options().ctors_in_init_array()
1640 && (strcmp(name, ".ctors") == 0
1641 || strcmp(name, ".dtors") == 0))))
1642 os->set_may_sort_attached_input_sections();
1643
1644 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1645 // sections before other .text sections. We are compatible. We
1646 // need to know that this might happen before we attach any input
1647 // sections.
1648 if (!this->script_options_->saw_sections_clause()
1649 && !parameters->options().relocatable()
1650 && strcmp(name, ".text") == 0)
1651 os->set_may_sort_attached_input_sections();
1652
1653 // Check for .stab*str sections, as .stab* sections need to link to
1654 // them.
1655 if (type == elfcpp::SHT_STRTAB
1656 && !this->have_stabstr_section_
1657 && strncmp(name, ".stab", 5) == 0
1658 && strcmp(name + strlen(name) - 3, "str") == 0)
1659 this->have_stabstr_section_ = true;
1660
1661 // During a full incremental link, we add patch space to most
1662 // PROGBITS and NOBITS sections. Flag those that may be
1663 // arbitrarily padded.
1664 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1665 && order != ORDER_INTERP
1666 && order != ORDER_INIT
1667 && order != ORDER_PLT
1668 && order != ORDER_FINI
1669 && order != ORDER_RELRO_LAST
1670 && order != ORDER_NON_RELRO_FIRST
1671 && strcmp(name, ".eh_frame") != 0
1672 && strcmp(name, ".ctors") != 0
1673 && strcmp(name, ".dtors") != 0
1674 && strcmp(name, ".jcr") != 0)
1675 {
1676 os->set_is_patch_space_allowed();
1677
1678 // Certain sections require "holes" to be filled with
1679 // specific fill patterns. These fill patterns may have
1680 // a minimum size, so we must prevent allocations from the
1681 // free list that leave a hole smaller than the minimum.
1682 if (strcmp(name, ".debug_info") == 0)
1683 os->set_free_space_fill(new Output_fill_debug_info(false));
1684 else if (strcmp(name, ".debug_types") == 0)
1685 os->set_free_space_fill(new Output_fill_debug_info(true));
1686 else if (strcmp(name, ".debug_line") == 0)
1687 os->set_free_space_fill(new Output_fill_debug_line());
1688 }
1689
1690 // If we have already attached the sections to segments, then we
1691 // need to attach this one now. This happens for sections created
1692 // directly by the linker.
1693 if (this->sections_are_attached_)
1694 this->attach_section_to_segment(&parameters->target(), os);
1695
1696 return os;
1697 }
1698
1699 // Return the default order in which a section should be placed in an
1700 // output segment. This function captures a lot of the ideas in
1701 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1702 // linker created section is normally set when the section is created;
1703 // this function is used for input sections.
1704
1705 Output_section_order
1706 Layout::default_section_order(Output_section* os, bool is_relro_local)
1707 {
1708 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1709 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1710 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1711 bool is_bss = false;
1712
1713 switch (os->type())
1714 {
1715 default:
1716 case elfcpp::SHT_PROGBITS:
1717 break;
1718 case elfcpp::SHT_NOBITS:
1719 is_bss = true;
1720 break;
1721 case elfcpp::SHT_RELA:
1722 case elfcpp::SHT_REL:
1723 if (!is_write)
1724 return ORDER_DYNAMIC_RELOCS;
1725 break;
1726 case elfcpp::SHT_HASH:
1727 case elfcpp::SHT_DYNAMIC:
1728 case elfcpp::SHT_SHLIB:
1729 case elfcpp::SHT_DYNSYM:
1730 case elfcpp::SHT_GNU_HASH:
1731 case elfcpp::SHT_GNU_verdef:
1732 case elfcpp::SHT_GNU_verneed:
1733 case elfcpp::SHT_GNU_versym:
1734 if (!is_write)
1735 return ORDER_DYNAMIC_LINKER;
1736 break;
1737 case elfcpp::SHT_NOTE:
1738 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1739 }
1740
1741 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1742 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1743
1744 if (!is_bss && !is_write)
1745 {
1746 if (is_execinstr)
1747 {
1748 if (strcmp(os->name(), ".init") == 0)
1749 return ORDER_INIT;
1750 else if (strcmp(os->name(), ".fini") == 0)
1751 return ORDER_FINI;
1752 }
1753 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1754 }
1755
1756 if (os->is_relro())
1757 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1758
1759 if (os->is_small_section())
1760 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1761 if (os->is_large_section())
1762 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1763
1764 return is_bss ? ORDER_BSS : ORDER_DATA;
1765 }
1766
1767 // Attach output sections to segments. This is called after we have
1768 // seen all the input sections.
1769
1770 void
1771 Layout::attach_sections_to_segments(const Target* target)
1772 {
1773 for (Section_list::iterator p = this->section_list_.begin();
1774 p != this->section_list_.end();
1775 ++p)
1776 this->attach_section_to_segment(target, *p);
1777
1778 this->sections_are_attached_ = true;
1779 }
1780
1781 // Attach an output section to a segment.
1782
1783 void
1784 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1785 {
1786 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1787 this->unattached_section_list_.push_back(os);
1788 else
1789 this->attach_allocated_section_to_segment(target, os);
1790 }
1791
1792 // Attach an allocated output section to a segment.
1793
1794 void
1795 Layout::attach_allocated_section_to_segment(const Target* target,
1796 Output_section* os)
1797 {
1798 elfcpp::Elf_Xword flags = os->flags();
1799 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1800
1801 if (parameters->options().relocatable())
1802 return;
1803
1804 // If we have a SECTIONS clause, we can't handle the attachment to
1805 // segments until after we've seen all the sections.
1806 if (this->script_options_->saw_sections_clause())
1807 return;
1808
1809 gold_assert(!this->script_options_->saw_phdrs_clause());
1810
1811 // This output section goes into a PT_LOAD segment.
1812
1813 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1814
1815 // If this output section's segment has extra flags that need to be set,
1816 // coming from a linker plugin, do that.
1817 seg_flags |= os->extra_segment_flags();
1818
1819 // Check for --section-start.
1820 uint64_t addr;
1821 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1822
1823 // In general the only thing we really care about for PT_LOAD
1824 // segments is whether or not they are writable or executable,
1825 // so that is how we search for them.
1826 // Large data sections also go into their own PT_LOAD segment.
1827 // People who need segments sorted on some other basis will
1828 // have to use a linker script.
1829
1830 Segment_list::const_iterator p;
1831 if (!os->is_unique_segment())
1832 {
1833 for (p = this->segment_list_.begin();
1834 p != this->segment_list_.end();
1835 ++p)
1836 {
1837 if ((*p)->type() != elfcpp::PT_LOAD)
1838 continue;
1839 if ((*p)->is_unique_segment())
1840 continue;
1841 if (!parameters->options().omagic()
1842 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1843 continue;
1844 if ((target->isolate_execinstr() || parameters->options().rosegment())
1845 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1846 continue;
1847 // If -Tbss was specified, we need to separate the data and BSS
1848 // segments.
1849 if (parameters->options().user_set_Tbss())
1850 {
1851 if ((os->type() == elfcpp::SHT_NOBITS)
1852 == (*p)->has_any_data_sections())
1853 continue;
1854 }
1855 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1856 continue;
1857
1858 if (is_address_set)
1859 {
1860 if ((*p)->are_addresses_set())
1861 continue;
1862
1863 (*p)->add_initial_output_data(os);
1864 (*p)->update_flags_for_output_section(seg_flags);
1865 (*p)->set_addresses(addr, addr);
1866 break;
1867 }
1868
1869 (*p)->add_output_section_to_load(this, os, seg_flags);
1870 break;
1871 }
1872 }
1873
1874 if (p == this->segment_list_.end()
1875 || os->is_unique_segment())
1876 {
1877 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1878 seg_flags);
1879 if (os->is_large_data_section())
1880 oseg->set_is_large_data_segment();
1881 oseg->add_output_section_to_load(this, os, seg_flags);
1882 if (is_address_set)
1883 oseg->set_addresses(addr, addr);
1884 // Check if segment should be marked unique. For segments marked
1885 // unique by linker plugins, set the new alignment if specified.
1886 if (os->is_unique_segment())
1887 {
1888 oseg->set_is_unique_segment();
1889 if (os->segment_alignment() != 0)
1890 oseg->set_minimum_p_align(os->segment_alignment());
1891 }
1892 }
1893
1894 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1895 // segment.
1896 if (os->type() == elfcpp::SHT_NOTE)
1897 {
1898 // See if we already have an equivalent PT_NOTE segment.
1899 for (p = this->segment_list_.begin();
1900 p != segment_list_.end();
1901 ++p)
1902 {
1903 if ((*p)->type() == elfcpp::PT_NOTE
1904 && (((*p)->flags() & elfcpp::PF_W)
1905 == (seg_flags & elfcpp::PF_W)))
1906 {
1907 (*p)->add_output_section_to_nonload(os, seg_flags);
1908 break;
1909 }
1910 }
1911
1912 if (p == this->segment_list_.end())
1913 {
1914 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1915 seg_flags);
1916 oseg->add_output_section_to_nonload(os, seg_flags);
1917 }
1918 }
1919
1920 // If we see a loadable SHF_TLS section, we create a PT_TLS
1921 // segment. There can only be one such segment.
1922 if ((flags & elfcpp::SHF_TLS) != 0)
1923 {
1924 if (this->tls_segment_ == NULL)
1925 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1926 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1927 }
1928
1929 // If -z relro is in effect, and we see a relro section, we create a
1930 // PT_GNU_RELRO segment. There can only be one such segment.
1931 if (os->is_relro() && parameters->options().relro())
1932 {
1933 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1934 if (this->relro_segment_ == NULL)
1935 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1936 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1937 }
1938
1939 // If we see a section named .interp, put it into a PT_INTERP
1940 // segment. This seems broken to me, but this is what GNU ld does,
1941 // and glibc expects it.
1942 if (strcmp(os->name(), ".interp") == 0
1943 && !this->script_options_->saw_phdrs_clause())
1944 {
1945 if (this->interp_segment_ == NULL)
1946 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1947 else
1948 gold_warning(_("multiple '.interp' sections in input files "
1949 "may cause confusing PT_INTERP segment"));
1950 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1951 }
1952 }
1953
1954 // Make an output section for a script.
1955
1956 Output_section*
1957 Layout::make_output_section_for_script(
1958 const char* name,
1959 Script_sections::Section_type section_type)
1960 {
1961 name = this->namepool_.add(name, false, NULL);
1962 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1963 if (section_type == Script_sections::ST_NOLOAD)
1964 sh_flags = 0;
1965 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1966 sh_flags, ORDER_INVALID,
1967 false);
1968 os->set_found_in_sections_clause();
1969 if (section_type == Script_sections::ST_NOLOAD)
1970 os->set_is_noload();
1971 return os;
1972 }
1973
1974 // Return the number of segments we expect to see.
1975
1976 size_t
1977 Layout::expected_segment_count() const
1978 {
1979 size_t ret = this->segment_list_.size();
1980
1981 // If we didn't see a SECTIONS clause in a linker script, we should
1982 // already have the complete list of segments. Otherwise we ask the
1983 // SECTIONS clause how many segments it expects, and add in the ones
1984 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1985
1986 if (!this->script_options_->saw_sections_clause())
1987 return ret;
1988 else
1989 {
1990 const Script_sections* ss = this->script_options_->script_sections();
1991 return ret + ss->expected_segment_count(this);
1992 }
1993 }
1994
1995 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1996 // is whether we saw a .note.GNU-stack section in the object file.
1997 // GNU_STACK_FLAGS is the section flags. The flags give the
1998 // protection required for stack memory. We record this in an
1999 // executable as a PT_GNU_STACK segment. If an object file does not
2000 // have a .note.GNU-stack segment, we must assume that it is an old
2001 // object. On some targets that will force an executable stack.
2002
2003 void
2004 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2005 const Object* obj)
2006 {
2007 if (!seen_gnu_stack)
2008 {
2009 this->input_without_gnu_stack_note_ = true;
2010 if (parameters->options().warn_execstack()
2011 && parameters->target().is_default_stack_executable())
2012 gold_warning(_("%s: missing .note.GNU-stack section"
2013 " implies executable stack"),
2014 obj->name().c_str());
2015 }
2016 else
2017 {
2018 this->input_with_gnu_stack_note_ = true;
2019 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2020 {
2021 this->input_requires_executable_stack_ = true;
2022 if (parameters->options().warn_execstack()
2023 || parameters->options().is_stack_executable())
2024 gold_warning(_("%s: requires executable stack"),
2025 obj->name().c_str());
2026 }
2027 }
2028 }
2029
2030 // Create automatic note sections.
2031
2032 void
2033 Layout::create_notes()
2034 {
2035 this->create_gold_note();
2036 this->create_executable_stack_info();
2037 this->create_build_id();
2038 }
2039
2040 // Create the dynamic sections which are needed before we read the
2041 // relocs.
2042
2043 void
2044 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2045 {
2046 if (parameters->doing_static_link())
2047 return;
2048
2049 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2050 elfcpp::SHT_DYNAMIC,
2051 (elfcpp::SHF_ALLOC
2052 | elfcpp::SHF_WRITE),
2053 false, ORDER_RELRO,
2054 true);
2055
2056 // A linker script may discard .dynamic, so check for NULL.
2057 if (this->dynamic_section_ != NULL)
2058 {
2059 this->dynamic_symbol_ =
2060 symtab->define_in_output_data("_DYNAMIC", NULL,
2061 Symbol_table::PREDEFINED,
2062 this->dynamic_section_, 0, 0,
2063 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2064 elfcpp::STV_HIDDEN, 0, false, false);
2065
2066 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2067
2068 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2069 }
2070 }
2071
2072 // For each output section whose name can be represented as C symbol,
2073 // define __start and __stop symbols for the section. This is a GNU
2074 // extension.
2075
2076 void
2077 Layout::define_section_symbols(Symbol_table* symtab)
2078 {
2079 for (Section_list::const_iterator p = this->section_list_.begin();
2080 p != this->section_list_.end();
2081 ++p)
2082 {
2083 const char* const name = (*p)->name();
2084 if (is_cident(name))
2085 {
2086 const std::string name_string(name);
2087 const std::string start_name(cident_section_start_prefix
2088 + name_string);
2089 const std::string stop_name(cident_section_stop_prefix
2090 + name_string);
2091
2092 symtab->define_in_output_data(start_name.c_str(),
2093 NULL, // version
2094 Symbol_table::PREDEFINED,
2095 *p,
2096 0, // value
2097 0, // symsize
2098 elfcpp::STT_NOTYPE,
2099 elfcpp::STB_GLOBAL,
2100 elfcpp::STV_DEFAULT,
2101 0, // nonvis
2102 false, // offset_is_from_end
2103 true); // only_if_ref
2104
2105 symtab->define_in_output_data(stop_name.c_str(),
2106 NULL, // version
2107 Symbol_table::PREDEFINED,
2108 *p,
2109 0, // value
2110 0, // symsize
2111 elfcpp::STT_NOTYPE,
2112 elfcpp::STB_GLOBAL,
2113 elfcpp::STV_DEFAULT,
2114 0, // nonvis
2115 true, // offset_is_from_end
2116 true); // only_if_ref
2117 }
2118 }
2119 }
2120
2121 // Define symbols for group signatures.
2122
2123 void
2124 Layout::define_group_signatures(Symbol_table* symtab)
2125 {
2126 for (Group_signatures::iterator p = this->group_signatures_.begin();
2127 p != this->group_signatures_.end();
2128 ++p)
2129 {
2130 Symbol* sym = symtab->lookup(p->signature, NULL);
2131 if (sym != NULL)
2132 p->section->set_info_symndx(sym);
2133 else
2134 {
2135 // Force the name of the group section to the group
2136 // signature, and use the group's section symbol as the
2137 // signature symbol.
2138 if (strcmp(p->section->name(), p->signature) != 0)
2139 {
2140 const char* name = this->namepool_.add(p->signature,
2141 true, NULL);
2142 p->section->set_name(name);
2143 }
2144 p->section->set_needs_symtab_index();
2145 p->section->set_info_section_symndx(p->section);
2146 }
2147 }
2148
2149 this->group_signatures_.clear();
2150 }
2151
2152 // Find the first read-only PT_LOAD segment, creating one if
2153 // necessary.
2154
2155 Output_segment*
2156 Layout::find_first_load_seg(const Target* target)
2157 {
2158 Output_segment* best = NULL;
2159 for (Segment_list::const_iterator p = this->segment_list_.begin();
2160 p != this->segment_list_.end();
2161 ++p)
2162 {
2163 if ((*p)->type() == elfcpp::PT_LOAD
2164 && ((*p)->flags() & elfcpp::PF_R) != 0
2165 && (parameters->options().omagic()
2166 || ((*p)->flags() & elfcpp::PF_W) == 0)
2167 && (!target->isolate_execinstr()
2168 || ((*p)->flags() & elfcpp::PF_X) == 0))
2169 {
2170 if (best == NULL || this->segment_precedes(*p, best))
2171 best = *p;
2172 }
2173 }
2174 if (best != NULL)
2175 return best;
2176
2177 gold_assert(!this->script_options_->saw_phdrs_clause());
2178
2179 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2180 elfcpp::PF_R);
2181 return load_seg;
2182 }
2183
2184 // Save states of all current output segments. Store saved states
2185 // in SEGMENT_STATES.
2186
2187 void
2188 Layout::save_segments(Segment_states* segment_states)
2189 {
2190 for (Segment_list::const_iterator p = this->segment_list_.begin();
2191 p != this->segment_list_.end();
2192 ++p)
2193 {
2194 Output_segment* segment = *p;
2195 // Shallow copy.
2196 Output_segment* copy = new Output_segment(*segment);
2197 (*segment_states)[segment] = copy;
2198 }
2199 }
2200
2201 // Restore states of output segments and delete any segment not found in
2202 // SEGMENT_STATES.
2203
2204 void
2205 Layout::restore_segments(const Segment_states* segment_states)
2206 {
2207 // Go through the segment list and remove any segment added in the
2208 // relaxation loop.
2209 this->tls_segment_ = NULL;
2210 this->relro_segment_ = NULL;
2211 Segment_list::iterator list_iter = this->segment_list_.begin();
2212 while (list_iter != this->segment_list_.end())
2213 {
2214 Output_segment* segment = *list_iter;
2215 Segment_states::const_iterator states_iter =
2216 segment_states->find(segment);
2217 if (states_iter != segment_states->end())
2218 {
2219 const Output_segment* copy = states_iter->second;
2220 // Shallow copy to restore states.
2221 *segment = *copy;
2222
2223 // Also fix up TLS and RELRO segment pointers as appropriate.
2224 if (segment->type() == elfcpp::PT_TLS)
2225 this->tls_segment_ = segment;
2226 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2227 this->relro_segment_ = segment;
2228
2229 ++list_iter;
2230 }
2231 else
2232 {
2233 list_iter = this->segment_list_.erase(list_iter);
2234 // This is a segment created during section layout. It should be
2235 // safe to remove it since we should have removed all pointers to it.
2236 delete segment;
2237 }
2238 }
2239 }
2240
2241 // Clean up after relaxation so that sections can be laid out again.
2242
2243 void
2244 Layout::clean_up_after_relaxation()
2245 {
2246 // Restore the segments to point state just prior to the relaxation loop.
2247 Script_sections* script_section = this->script_options_->script_sections();
2248 script_section->release_segments();
2249 this->restore_segments(this->segment_states_);
2250
2251 // Reset section addresses and file offsets
2252 for (Section_list::iterator p = this->section_list_.begin();
2253 p != this->section_list_.end();
2254 ++p)
2255 {
2256 (*p)->restore_states();
2257
2258 // If an input section changes size because of relaxation,
2259 // we need to adjust the section offsets of all input sections.
2260 // after such a section.
2261 if ((*p)->section_offsets_need_adjustment())
2262 (*p)->adjust_section_offsets();
2263
2264 (*p)->reset_address_and_file_offset();
2265 }
2266
2267 // Reset special output object address and file offsets.
2268 for (Data_list::iterator p = this->special_output_list_.begin();
2269 p != this->special_output_list_.end();
2270 ++p)
2271 (*p)->reset_address_and_file_offset();
2272
2273 // A linker script may have created some output section data objects.
2274 // They are useless now.
2275 for (Output_section_data_list::const_iterator p =
2276 this->script_output_section_data_list_.begin();
2277 p != this->script_output_section_data_list_.end();
2278 ++p)
2279 delete *p;
2280 this->script_output_section_data_list_.clear();
2281 }
2282
2283 // Prepare for relaxation.
2284
2285 void
2286 Layout::prepare_for_relaxation()
2287 {
2288 // Create an relaxation debug check if in debugging mode.
2289 if (is_debugging_enabled(DEBUG_RELAXATION))
2290 this->relaxation_debug_check_ = new Relaxation_debug_check();
2291
2292 // Save segment states.
2293 this->segment_states_ = new Segment_states();
2294 this->save_segments(this->segment_states_);
2295
2296 for(Section_list::const_iterator p = this->section_list_.begin();
2297 p != this->section_list_.end();
2298 ++p)
2299 (*p)->save_states();
2300
2301 if (is_debugging_enabled(DEBUG_RELAXATION))
2302 this->relaxation_debug_check_->check_output_data_for_reset_values(
2303 this->section_list_, this->special_output_list_);
2304
2305 // Also enable recording of output section data from scripts.
2306 this->record_output_section_data_from_script_ = true;
2307 }
2308
2309 // Relaxation loop body: If target has no relaxation, this runs only once
2310 // Otherwise, the target relaxation hook is called at the end of
2311 // each iteration. If the hook returns true, it means re-layout of
2312 // section is required.
2313 //
2314 // The number of segments created by a linking script without a PHDRS
2315 // clause may be affected by section sizes and alignments. There is
2316 // a remote chance that relaxation causes different number of PT_LOAD
2317 // segments are created and sections are attached to different segments.
2318 // Therefore, we always throw away all segments created during section
2319 // layout. In order to be able to restart the section layout, we keep
2320 // a copy of the segment list right before the relaxation loop and use
2321 // that to restore the segments.
2322 //
2323 // PASS is the current relaxation pass number.
2324 // SYMTAB is a symbol table.
2325 // PLOAD_SEG is the address of a pointer for the load segment.
2326 // PHDR_SEG is a pointer to the PHDR segment.
2327 // SEGMENT_HEADERS points to the output segment header.
2328 // FILE_HEADER points to the output file header.
2329 // PSHNDX is the address to store the output section index.
2330
2331 off_t inline
2332 Layout::relaxation_loop_body(
2333 int pass,
2334 Target* target,
2335 Symbol_table* symtab,
2336 Output_segment** pload_seg,
2337 Output_segment* phdr_seg,
2338 Output_segment_headers* segment_headers,
2339 Output_file_header* file_header,
2340 unsigned int* pshndx)
2341 {
2342 // If this is not the first iteration, we need to clean up after
2343 // relaxation so that we can lay out the sections again.
2344 if (pass != 0)
2345 this->clean_up_after_relaxation();
2346
2347 // If there is a SECTIONS clause, put all the input sections into
2348 // the required order.
2349 Output_segment* load_seg;
2350 if (this->script_options_->saw_sections_clause())
2351 load_seg = this->set_section_addresses_from_script(symtab);
2352 else if (parameters->options().relocatable())
2353 load_seg = NULL;
2354 else
2355 load_seg = this->find_first_load_seg(target);
2356
2357 if (parameters->options().oformat_enum()
2358 != General_options::OBJECT_FORMAT_ELF)
2359 load_seg = NULL;
2360
2361 // If the user set the address of the text segment, that may not be
2362 // compatible with putting the segment headers and file headers into
2363 // that segment.
2364 if (parameters->options().user_set_Ttext()
2365 && parameters->options().Ttext() % target->abi_pagesize() != 0)
2366 {
2367 load_seg = NULL;
2368 phdr_seg = NULL;
2369 }
2370
2371 gold_assert(phdr_seg == NULL
2372 || load_seg != NULL
2373 || this->script_options_->saw_sections_clause());
2374
2375 // If the address of the load segment we found has been set by
2376 // --section-start rather than by a script, then adjust the VMA and
2377 // LMA downward if possible to include the file and section headers.
2378 uint64_t header_gap = 0;
2379 if (load_seg != NULL
2380 && load_seg->are_addresses_set()
2381 && !this->script_options_->saw_sections_clause()
2382 && !parameters->options().relocatable())
2383 {
2384 file_header->finalize_data_size();
2385 segment_headers->finalize_data_size();
2386 size_t sizeof_headers = (file_header->data_size()
2387 + segment_headers->data_size());
2388 const uint64_t abi_pagesize = target->abi_pagesize();
2389 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2390 hdr_paddr &= ~(abi_pagesize - 1);
2391 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2392 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2393 load_seg = NULL;
2394 else
2395 {
2396 load_seg->set_addresses(load_seg->vaddr() - subtract,
2397 load_seg->paddr() - subtract);
2398 header_gap = subtract - sizeof_headers;
2399 }
2400 }
2401
2402 // Lay out the segment headers.
2403 if (!parameters->options().relocatable())
2404 {
2405 gold_assert(segment_headers != NULL);
2406 if (header_gap != 0 && load_seg != NULL)
2407 {
2408 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2409 load_seg->add_initial_output_data(z);
2410 }
2411 if (load_seg != NULL)
2412 load_seg->add_initial_output_data(segment_headers);
2413 if (phdr_seg != NULL)
2414 phdr_seg->add_initial_output_data(segment_headers);
2415 }
2416
2417 // Lay out the file header.
2418 if (load_seg != NULL)
2419 load_seg->add_initial_output_data(file_header);
2420
2421 if (this->script_options_->saw_phdrs_clause()
2422 && !parameters->options().relocatable())
2423 {
2424 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2425 // clause in a linker script.
2426 Script_sections* ss = this->script_options_->script_sections();
2427 ss->put_headers_in_phdrs(file_header, segment_headers);
2428 }
2429
2430 // We set the output section indexes in set_segment_offsets and
2431 // set_section_indexes.
2432 *pshndx = 1;
2433
2434 // Set the file offsets of all the segments, and all the sections
2435 // they contain.
2436 off_t off;
2437 if (!parameters->options().relocatable())
2438 off = this->set_segment_offsets(target, load_seg, pshndx);
2439 else
2440 off = this->set_relocatable_section_offsets(file_header, pshndx);
2441
2442 // Verify that the dummy relaxation does not change anything.
2443 if (is_debugging_enabled(DEBUG_RELAXATION))
2444 {
2445 if (pass == 0)
2446 this->relaxation_debug_check_->read_sections(this->section_list_);
2447 else
2448 this->relaxation_debug_check_->verify_sections(this->section_list_);
2449 }
2450
2451 *pload_seg = load_seg;
2452 return off;
2453 }
2454
2455 // Search the list of patterns and find the postion of the given section
2456 // name in the output section. If the section name matches a glob
2457 // pattern and a non-glob name, then the non-glob position takes
2458 // precedence. Return 0 if no match is found.
2459
2460 unsigned int
2461 Layout::find_section_order_index(const std::string& section_name)
2462 {
2463 Unordered_map<std::string, unsigned int>::iterator map_it;
2464 map_it = this->input_section_position_.find(section_name);
2465 if (map_it != this->input_section_position_.end())
2466 return map_it->second;
2467
2468 // Absolute match failed. Linear search the glob patterns.
2469 std::vector<std::string>::iterator it;
2470 for (it = this->input_section_glob_.begin();
2471 it != this->input_section_glob_.end();
2472 ++it)
2473 {
2474 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2475 {
2476 map_it = this->input_section_position_.find(*it);
2477 gold_assert(map_it != this->input_section_position_.end());
2478 return map_it->second;
2479 }
2480 }
2481 return 0;
2482 }
2483
2484 // Read the sequence of input sections from the file specified with
2485 // option --section-ordering-file.
2486
2487 void
2488 Layout::read_layout_from_file()
2489 {
2490 const char* filename = parameters->options().section_ordering_file();
2491 std::ifstream in;
2492 std::string line;
2493
2494 in.open(filename);
2495 if (!in)
2496 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2497 filename, strerror(errno));
2498
2499 std::getline(in, line); // this chops off the trailing \n, if any
2500 unsigned int position = 1;
2501 this->set_section_ordering_specified();
2502
2503 while (in)
2504 {
2505 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2506 line.resize(line.length() - 1);
2507 // Ignore comments, beginning with '#'
2508 if (line[0] == '#')
2509 {
2510 std::getline(in, line);
2511 continue;
2512 }
2513 this->input_section_position_[line] = position;
2514 // Store all glob patterns in a vector.
2515 if (is_wildcard_string(line.c_str()))
2516 this->input_section_glob_.push_back(line);
2517 position++;
2518 std::getline(in, line);
2519 }
2520 }
2521
2522 // Finalize the layout. When this is called, we have created all the
2523 // output sections and all the output segments which are based on
2524 // input sections. We have several things to do, and we have to do
2525 // them in the right order, so that we get the right results correctly
2526 // and efficiently.
2527
2528 // 1) Finalize the list of output segments and create the segment
2529 // table header.
2530
2531 // 2) Finalize the dynamic symbol table and associated sections.
2532
2533 // 3) Determine the final file offset of all the output segments.
2534
2535 // 4) Determine the final file offset of all the SHF_ALLOC output
2536 // sections.
2537
2538 // 5) Create the symbol table sections and the section name table
2539 // section.
2540
2541 // 6) Finalize the symbol table: set symbol values to their final
2542 // value and make a final determination of which symbols are going
2543 // into the output symbol table.
2544
2545 // 7) Create the section table header.
2546
2547 // 8) Determine the final file offset of all the output sections which
2548 // are not SHF_ALLOC, including the section table header.
2549
2550 // 9) Finalize the ELF file header.
2551
2552 // This function returns the size of the output file.
2553
2554 off_t
2555 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2556 Target* target, const Task* task)
2557 {
2558 target->finalize_sections(this, input_objects, symtab);
2559
2560 this->count_local_symbols(task, input_objects);
2561
2562 this->link_stabs_sections();
2563
2564 Output_segment* phdr_seg = NULL;
2565 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2566 {
2567 // There was a dynamic object in the link. We need to create
2568 // some information for the dynamic linker.
2569
2570 // Create the PT_PHDR segment which will hold the program
2571 // headers.
2572 if (!this->script_options_->saw_phdrs_clause())
2573 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2574
2575 // Create the dynamic symbol table, including the hash table.
2576 Output_section* dynstr;
2577 std::vector<Symbol*> dynamic_symbols;
2578 unsigned int local_dynamic_count;
2579 Versions versions(*this->script_options()->version_script_info(),
2580 &this->dynpool_);
2581 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2582 &local_dynamic_count, &dynamic_symbols,
2583 &versions);
2584
2585 // Create the .interp section to hold the name of the
2586 // interpreter, and put it in a PT_INTERP segment. Don't do it
2587 // if we saw a .interp section in an input file.
2588 if ((!parameters->options().shared()
2589 || parameters->options().dynamic_linker() != NULL)
2590 && this->interp_segment_ == NULL)
2591 this->create_interp(target);
2592
2593 // Finish the .dynamic section to hold the dynamic data, and put
2594 // it in a PT_DYNAMIC segment.
2595 this->finish_dynamic_section(input_objects, symtab);
2596
2597 // We should have added everything we need to the dynamic string
2598 // table.
2599 this->dynpool_.set_string_offsets();
2600
2601 // Create the version sections. We can't do this until the
2602 // dynamic string table is complete.
2603 this->create_version_sections(&versions, symtab, local_dynamic_count,
2604 dynamic_symbols, dynstr);
2605
2606 // Set the size of the _DYNAMIC symbol. We can't do this until
2607 // after we call create_version_sections.
2608 this->set_dynamic_symbol_size(symtab);
2609 }
2610
2611 // Create segment headers.
2612 Output_segment_headers* segment_headers =
2613 (parameters->options().relocatable()
2614 ? NULL
2615 : new Output_segment_headers(this->segment_list_));
2616
2617 // Lay out the file header.
2618 Output_file_header* file_header = new Output_file_header(target, symtab,
2619 segment_headers);
2620
2621 this->special_output_list_.push_back(file_header);
2622 if (segment_headers != NULL)
2623 this->special_output_list_.push_back(segment_headers);
2624
2625 // Find approriate places for orphan output sections if we are using
2626 // a linker script.
2627 if (this->script_options_->saw_sections_clause())
2628 this->place_orphan_sections_in_script();
2629
2630 Output_segment* load_seg;
2631 off_t off;
2632 unsigned int shndx;
2633 int pass = 0;
2634
2635 // Take a snapshot of the section layout as needed.
2636 if (target->may_relax())
2637 this->prepare_for_relaxation();
2638
2639 // Run the relaxation loop to lay out sections.
2640 do
2641 {
2642 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2643 phdr_seg, segment_headers, file_header,
2644 &shndx);
2645 pass++;
2646 }
2647 while (target->may_relax()
2648 && target->relax(pass, input_objects, symtab, this, task));
2649
2650 // If there is a load segment that contains the file and program headers,
2651 // provide a symbol __ehdr_start pointing there.
2652 // A program can use this to examine itself robustly.
2653 if (load_seg != NULL)
2654 symtab->define_in_output_segment("__ehdr_start", NULL,
2655 Symbol_table::PREDEFINED, load_seg, 0, 0,
2656 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2657 elfcpp::STV_DEFAULT, 0,
2658 Symbol::SEGMENT_START, true);
2659
2660 // Set the file offsets of all the non-data sections we've seen so
2661 // far which don't have to wait for the input sections. We need
2662 // this in order to finalize local symbols in non-allocated
2663 // sections.
2664 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2665
2666 // Set the section indexes of all unallocated sections seen so far,
2667 // in case any of them are somehow referenced by a symbol.
2668 shndx = this->set_section_indexes(shndx);
2669
2670 // Create the symbol table sections.
2671 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2672 if (!parameters->doing_static_link())
2673 this->assign_local_dynsym_offsets(input_objects);
2674
2675 // Process any symbol assignments from a linker script. This must
2676 // be called after the symbol table has been finalized.
2677 this->script_options_->finalize_symbols(symtab, this);
2678
2679 // Create the incremental inputs sections.
2680 if (this->incremental_inputs_)
2681 {
2682 this->incremental_inputs_->finalize();
2683 this->create_incremental_info_sections(symtab);
2684 }
2685
2686 // Create the .shstrtab section.
2687 Output_section* shstrtab_section = this->create_shstrtab();
2688
2689 // Set the file offsets of the rest of the non-data sections which
2690 // don't have to wait for the input sections.
2691 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2692
2693 // Now that all sections have been created, set the section indexes
2694 // for any sections which haven't been done yet.
2695 shndx = this->set_section_indexes(shndx);
2696
2697 // Create the section table header.
2698 this->create_shdrs(shstrtab_section, &off);
2699
2700 // If there are no sections which require postprocessing, we can
2701 // handle the section names now, and avoid a resize later.
2702 if (!this->any_postprocessing_sections_)
2703 {
2704 off = this->set_section_offsets(off,
2705 POSTPROCESSING_SECTIONS_PASS);
2706 off =
2707 this->set_section_offsets(off,
2708 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2709 }
2710
2711 file_header->set_section_info(this->section_headers_, shstrtab_section);
2712
2713 // Now we know exactly where everything goes in the output file
2714 // (except for non-allocated sections which require postprocessing).
2715 Output_data::layout_complete();
2716
2717 this->output_file_size_ = off;
2718
2719 return off;
2720 }
2721
2722 // Create a note header following the format defined in the ELF ABI.
2723 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2724 // of the section to create, DESCSZ is the size of the descriptor.
2725 // ALLOCATE is true if the section should be allocated in memory.
2726 // This returns the new note section. It sets *TRAILING_PADDING to
2727 // the number of trailing zero bytes required.
2728
2729 Output_section*
2730 Layout::create_note(const char* name, int note_type,
2731 const char* section_name, size_t descsz,
2732 bool allocate, size_t* trailing_padding)
2733 {
2734 // Authorities all agree that the values in a .note field should
2735 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2736 // they differ on what the alignment is for 64-bit binaries.
2737 // The GABI says unambiguously they take 8-byte alignment:
2738 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2739 // Other documentation says alignment should always be 4 bytes:
2740 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2741 // GNU ld and GNU readelf both support the latter (at least as of
2742 // version 2.16.91), and glibc always generates the latter for
2743 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2744 // here.
2745 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2746 const int size = parameters->target().get_size();
2747 #else
2748 const int size = 32;
2749 #endif
2750
2751 // The contents of the .note section.
2752 size_t namesz = strlen(name) + 1;
2753 size_t aligned_namesz = align_address(namesz, size / 8);
2754 size_t aligned_descsz = align_address(descsz, size / 8);
2755
2756 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2757
2758 unsigned char* buffer = new unsigned char[notehdrsz];
2759 memset(buffer, 0, notehdrsz);
2760
2761 bool is_big_endian = parameters->target().is_big_endian();
2762
2763 if (size == 32)
2764 {
2765 if (!is_big_endian)
2766 {
2767 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2768 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2769 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2770 }
2771 else
2772 {
2773 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2774 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2775 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2776 }
2777 }
2778 else if (size == 64)
2779 {
2780 if (!is_big_endian)
2781 {
2782 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2783 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2784 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2785 }
2786 else
2787 {
2788 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2789 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2790 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2791 }
2792 }
2793 else
2794 gold_unreachable();
2795
2796 memcpy(buffer + 3 * (size / 8), name, namesz);
2797
2798 elfcpp::Elf_Xword flags = 0;
2799 Output_section_order order = ORDER_INVALID;
2800 if (allocate)
2801 {
2802 flags = elfcpp::SHF_ALLOC;
2803 order = ORDER_RO_NOTE;
2804 }
2805 Output_section* os = this->choose_output_section(NULL, section_name,
2806 elfcpp::SHT_NOTE,
2807 flags, false, order, false);
2808 if (os == NULL)
2809 return NULL;
2810
2811 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2812 size / 8,
2813 "** note header");
2814 os->add_output_section_data(posd);
2815
2816 *trailing_padding = aligned_descsz - descsz;
2817
2818 return os;
2819 }
2820
2821 // For an executable or shared library, create a note to record the
2822 // version of gold used to create the binary.
2823
2824 void
2825 Layout::create_gold_note()
2826 {
2827 if (parameters->options().relocatable()
2828 || parameters->incremental_update())
2829 return;
2830
2831 std::string desc = std::string("gold ") + gold::get_version_string();
2832
2833 size_t trailing_padding;
2834 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2835 ".note.gnu.gold-version", desc.size(),
2836 false, &trailing_padding);
2837 if (os == NULL)
2838 return;
2839
2840 Output_section_data* posd = new Output_data_const(desc, 4);
2841 os->add_output_section_data(posd);
2842
2843 if (trailing_padding > 0)
2844 {
2845 posd = new Output_data_zero_fill(trailing_padding, 0);
2846 os->add_output_section_data(posd);
2847 }
2848 }
2849
2850 // Record whether the stack should be executable. This can be set
2851 // from the command line using the -z execstack or -z noexecstack
2852 // options. Otherwise, if any input file has a .note.GNU-stack
2853 // section with the SHF_EXECINSTR flag set, the stack should be
2854 // executable. Otherwise, if at least one input file a
2855 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2856 // section, we use the target default for whether the stack should be
2857 // executable. Otherwise, we don't generate a stack note. When
2858 // generating a object file, we create a .note.GNU-stack section with
2859 // the appropriate marking. When generating an executable or shared
2860 // library, we create a PT_GNU_STACK segment.
2861
2862 void
2863 Layout::create_executable_stack_info()
2864 {
2865 bool is_stack_executable;
2866 if (parameters->options().is_execstack_set())
2867 is_stack_executable = parameters->options().is_stack_executable();
2868 else if (!this->input_with_gnu_stack_note_)
2869 return;
2870 else
2871 {
2872 if (this->input_requires_executable_stack_)
2873 is_stack_executable = true;
2874 else if (this->input_without_gnu_stack_note_)
2875 is_stack_executable =
2876 parameters->target().is_default_stack_executable();
2877 else
2878 is_stack_executable = false;
2879 }
2880
2881 if (parameters->options().relocatable())
2882 {
2883 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2884 elfcpp::Elf_Xword flags = 0;
2885 if (is_stack_executable)
2886 flags |= elfcpp::SHF_EXECINSTR;
2887 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2888 ORDER_INVALID, false);
2889 }
2890 else
2891 {
2892 if (this->script_options_->saw_phdrs_clause())
2893 return;
2894 int flags = elfcpp::PF_R | elfcpp::PF_W;
2895 if (is_stack_executable)
2896 flags |= elfcpp::PF_X;
2897 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2898 }
2899 }
2900
2901 // If --build-id was used, set up the build ID note.
2902
2903 void
2904 Layout::create_build_id()
2905 {
2906 if (!parameters->options().user_set_build_id())
2907 return;
2908
2909 const char* style = parameters->options().build_id();
2910 if (strcmp(style, "none") == 0)
2911 return;
2912
2913 // Set DESCSZ to the size of the note descriptor. When possible,
2914 // set DESC to the note descriptor contents.
2915 size_t descsz;
2916 std::string desc;
2917 if (strcmp(style, "md5") == 0)
2918 descsz = 128 / 8;
2919 else if (strcmp(style, "sha1") == 0)
2920 descsz = 160 / 8;
2921 else if (strcmp(style, "uuid") == 0)
2922 {
2923 const size_t uuidsz = 128 / 8;
2924
2925 char buffer[uuidsz];
2926 memset(buffer, 0, uuidsz);
2927
2928 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2929 if (descriptor < 0)
2930 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2931 strerror(errno));
2932 else
2933 {
2934 ssize_t got = ::read(descriptor, buffer, uuidsz);
2935 release_descriptor(descriptor, true);
2936 if (got < 0)
2937 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2938 else if (static_cast<size_t>(got) != uuidsz)
2939 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2940 uuidsz, got);
2941 }
2942
2943 desc.assign(buffer, uuidsz);
2944 descsz = uuidsz;
2945 }
2946 else if (strncmp(style, "0x", 2) == 0)
2947 {
2948 hex_init();
2949 const char* p = style + 2;
2950 while (*p != '\0')
2951 {
2952 if (hex_p(p[0]) && hex_p(p[1]))
2953 {
2954 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2955 desc += c;
2956 p += 2;
2957 }
2958 else if (*p == '-' || *p == ':')
2959 ++p;
2960 else
2961 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2962 style);
2963 }
2964 descsz = desc.size();
2965 }
2966 else
2967 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2968
2969 // Create the note.
2970 size_t trailing_padding;
2971 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2972 ".note.gnu.build-id", descsz, true,
2973 &trailing_padding);
2974 if (os == NULL)
2975 return;
2976
2977 if (!desc.empty())
2978 {
2979 // We know the value already, so we fill it in now.
2980 gold_assert(desc.size() == descsz);
2981
2982 Output_section_data* posd = new Output_data_const(desc, 4);
2983 os->add_output_section_data(posd);
2984
2985 if (trailing_padding != 0)
2986 {
2987 posd = new Output_data_zero_fill(trailing_padding, 0);
2988 os->add_output_section_data(posd);
2989 }
2990 }
2991 else
2992 {
2993 // We need to compute a checksum after we have completed the
2994 // link.
2995 gold_assert(trailing_padding == 0);
2996 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2997 os->add_output_section_data(this->build_id_note_);
2998 }
2999 }
3000
3001 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3002 // field of the former should point to the latter. I'm not sure who
3003 // started this, but the GNU linker does it, and some tools depend
3004 // upon it.
3005
3006 void
3007 Layout::link_stabs_sections()
3008 {
3009 if (!this->have_stabstr_section_)
3010 return;
3011
3012 for (Section_list::iterator p = this->section_list_.begin();
3013 p != this->section_list_.end();
3014 ++p)
3015 {
3016 if ((*p)->type() != elfcpp::SHT_STRTAB)
3017 continue;
3018
3019 const char* name = (*p)->name();
3020 if (strncmp(name, ".stab", 5) != 0)
3021 continue;
3022
3023 size_t len = strlen(name);
3024 if (strcmp(name + len - 3, "str") != 0)
3025 continue;
3026
3027 std::string stab_name(name, len - 3);
3028 Output_section* stab_sec;
3029 stab_sec = this->find_output_section(stab_name.c_str());
3030 if (stab_sec != NULL)
3031 stab_sec->set_link_section(*p);
3032 }
3033 }
3034
3035 // Create .gnu_incremental_inputs and related sections needed
3036 // for the next run of incremental linking to check what has changed.
3037
3038 void
3039 Layout::create_incremental_info_sections(Symbol_table* symtab)
3040 {
3041 Incremental_inputs* incr = this->incremental_inputs_;
3042
3043 gold_assert(incr != NULL);
3044
3045 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3046 incr->create_data_sections(symtab);
3047
3048 // Add the .gnu_incremental_inputs section.
3049 const char* incremental_inputs_name =
3050 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3051 Output_section* incremental_inputs_os =
3052 this->make_output_section(incremental_inputs_name,
3053 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3054 ORDER_INVALID, false);
3055 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3056
3057 // Add the .gnu_incremental_symtab section.
3058 const char* incremental_symtab_name =
3059 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3060 Output_section* incremental_symtab_os =
3061 this->make_output_section(incremental_symtab_name,
3062 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3063 ORDER_INVALID, false);
3064 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3065 incremental_symtab_os->set_entsize(4);
3066
3067 // Add the .gnu_incremental_relocs section.
3068 const char* incremental_relocs_name =
3069 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3070 Output_section* incremental_relocs_os =
3071 this->make_output_section(incremental_relocs_name,
3072 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3073 ORDER_INVALID, false);
3074 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3075 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3076
3077 // Add the .gnu_incremental_got_plt section.
3078 const char* incremental_got_plt_name =
3079 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3080 Output_section* incremental_got_plt_os =
3081 this->make_output_section(incremental_got_plt_name,
3082 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3083 ORDER_INVALID, false);
3084 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3085
3086 // Add the .gnu_incremental_strtab section.
3087 const char* incremental_strtab_name =
3088 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3089 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3090 elfcpp::SHT_STRTAB, 0,
3091 ORDER_INVALID, false);
3092 Output_data_strtab* strtab_data =
3093 new Output_data_strtab(incr->get_stringpool());
3094 incremental_strtab_os->add_output_section_data(strtab_data);
3095
3096 incremental_inputs_os->set_after_input_sections();
3097 incremental_symtab_os->set_after_input_sections();
3098 incremental_relocs_os->set_after_input_sections();
3099 incremental_got_plt_os->set_after_input_sections();
3100
3101 incremental_inputs_os->set_link_section(incremental_strtab_os);
3102 incremental_symtab_os->set_link_section(incremental_inputs_os);
3103 incremental_relocs_os->set_link_section(incremental_inputs_os);
3104 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3105 }
3106
3107 // Return whether SEG1 should be before SEG2 in the output file. This
3108 // is based entirely on the segment type and flags. When this is
3109 // called the segment addresses have normally not yet been set.
3110
3111 bool
3112 Layout::segment_precedes(const Output_segment* seg1,
3113 const Output_segment* seg2)
3114 {
3115 elfcpp::Elf_Word type1 = seg1->type();
3116 elfcpp::Elf_Word type2 = seg2->type();
3117
3118 // The single PT_PHDR segment is required to precede any loadable
3119 // segment. We simply make it always first.
3120 if (type1 == elfcpp::PT_PHDR)
3121 {
3122 gold_assert(type2 != elfcpp::PT_PHDR);
3123 return true;
3124 }
3125 if (type2 == elfcpp::PT_PHDR)
3126 return false;
3127
3128 // The single PT_INTERP segment is required to precede any loadable
3129 // segment. We simply make it always second.
3130 if (type1 == elfcpp::PT_INTERP)
3131 {
3132 gold_assert(type2 != elfcpp::PT_INTERP);
3133 return true;
3134 }
3135 if (type2 == elfcpp::PT_INTERP)
3136 return false;
3137
3138 // We then put PT_LOAD segments before any other segments.
3139 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3140 return true;
3141 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3142 return false;
3143
3144 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3145 // segment, because that is where the dynamic linker expects to find
3146 // it (this is just for efficiency; other positions would also work
3147 // correctly).
3148 if (type1 == elfcpp::PT_TLS
3149 && type2 != elfcpp::PT_TLS
3150 && type2 != elfcpp::PT_GNU_RELRO)
3151 return false;
3152 if (type2 == elfcpp::PT_TLS
3153 && type1 != elfcpp::PT_TLS
3154 && type1 != elfcpp::PT_GNU_RELRO)
3155 return true;
3156
3157 // We put the PT_GNU_RELRO segment last, because that is where the
3158 // dynamic linker expects to find it (as with PT_TLS, this is just
3159 // for efficiency).
3160 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3161 return false;
3162 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3163 return true;
3164
3165 const elfcpp::Elf_Word flags1 = seg1->flags();
3166 const elfcpp::Elf_Word flags2 = seg2->flags();
3167
3168 // The order of non-PT_LOAD segments is unimportant. We simply sort
3169 // by the numeric segment type and flags values. There should not
3170 // be more than one segment with the same type and flags.
3171 if (type1 != elfcpp::PT_LOAD)
3172 {
3173 if (type1 != type2)
3174 return type1 < type2;
3175 gold_assert(flags1 != flags2);
3176 return flags1 < flags2;
3177 }
3178
3179 // If the addresses are set already, sort by load address.
3180 if (seg1->are_addresses_set())
3181 {
3182 if (!seg2->are_addresses_set())
3183 return true;
3184
3185 unsigned int section_count1 = seg1->output_section_count();
3186 unsigned int section_count2 = seg2->output_section_count();
3187 if (section_count1 == 0 && section_count2 > 0)
3188 return true;
3189 if (section_count1 > 0 && section_count2 == 0)
3190 return false;
3191
3192 uint64_t paddr1 = (seg1->are_addresses_set()
3193 ? seg1->paddr()
3194 : seg1->first_section_load_address());
3195 uint64_t paddr2 = (seg2->are_addresses_set()
3196 ? seg2->paddr()
3197 : seg2->first_section_load_address());
3198
3199 if (paddr1 != paddr2)
3200 return paddr1 < paddr2;
3201 }
3202 else if (seg2->are_addresses_set())
3203 return false;
3204
3205 // A segment which holds large data comes after a segment which does
3206 // not hold large data.
3207 if (seg1->is_large_data_segment())
3208 {
3209 if (!seg2->is_large_data_segment())
3210 return false;
3211 }
3212 else if (seg2->is_large_data_segment())
3213 return true;
3214
3215 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3216 // segments come before writable segments. Then writable segments
3217 // with data come before writable segments without data. Then
3218 // executable segments come before non-executable segments. Then
3219 // the unlikely case of a non-readable segment comes before the
3220 // normal case of a readable segment. If there are multiple
3221 // segments with the same type and flags, we require that the
3222 // address be set, and we sort by virtual address and then physical
3223 // address.
3224 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3225 return (flags1 & elfcpp::PF_W) == 0;
3226 if ((flags1 & elfcpp::PF_W) != 0
3227 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3228 return seg1->has_any_data_sections();
3229 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3230 return (flags1 & elfcpp::PF_X) != 0;
3231 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3232 return (flags1 & elfcpp::PF_R) == 0;
3233
3234 // We shouldn't get here--we shouldn't create segments which we
3235 // can't distinguish. Unless of course we are using a weird linker
3236 // script or overlapping --section-start options. We could also get
3237 // here if plugins want unique segments for subsets of sections.
3238 gold_assert(this->script_options_->saw_phdrs_clause()
3239 || parameters->options().any_section_start()
3240 || this->is_unique_segment_for_sections_specified());
3241 return false;
3242 }
3243
3244 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3245
3246 static off_t
3247 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3248 {
3249 uint64_t unsigned_off = off;
3250 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3251 | (addr & (abi_pagesize - 1)));
3252 if (aligned_off < unsigned_off)
3253 aligned_off += abi_pagesize;
3254 return aligned_off;
3255 }
3256
3257 // Set the file offsets of all the segments, and all the sections they
3258 // contain. They have all been created. LOAD_SEG must be be laid out
3259 // first. Return the offset of the data to follow.
3260
3261 off_t
3262 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3263 unsigned int* pshndx)
3264 {
3265 // Sort them into the final order. We use a stable sort so that we
3266 // don't randomize the order of indistinguishable segments created
3267 // by linker scripts.
3268 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3269 Layout::Compare_segments(this));
3270
3271 // Find the PT_LOAD segments, and set their addresses and offsets
3272 // and their section's addresses and offsets.
3273 uint64_t start_addr;
3274 if (parameters->options().user_set_Ttext())
3275 start_addr = parameters->options().Ttext();
3276 else if (parameters->options().output_is_position_independent())
3277 start_addr = 0;
3278 else
3279 start_addr = target->default_text_segment_address();
3280
3281 uint64_t addr = start_addr;
3282 off_t off = 0;
3283
3284 // If LOAD_SEG is NULL, then the file header and segment headers
3285 // will not be loadable. But they still need to be at offset 0 in
3286 // the file. Set their offsets now.
3287 if (load_seg == NULL)
3288 {
3289 for (Data_list::iterator p = this->special_output_list_.begin();
3290 p != this->special_output_list_.end();
3291 ++p)
3292 {
3293 off = align_address(off, (*p)->addralign());
3294 (*p)->set_address_and_file_offset(0, off);
3295 off += (*p)->data_size();
3296 }
3297 }
3298
3299 unsigned int increase_relro = this->increase_relro_;
3300 if (this->script_options_->saw_sections_clause())
3301 increase_relro = 0;
3302
3303 const bool check_sections = parameters->options().check_sections();
3304 Output_segment* last_load_segment = NULL;
3305
3306 unsigned int shndx_begin = *pshndx;
3307 unsigned int shndx_load_seg = *pshndx;
3308
3309 for (Segment_list::iterator p = this->segment_list_.begin();
3310 p != this->segment_list_.end();
3311 ++p)
3312 {
3313 if ((*p)->type() == elfcpp::PT_LOAD)
3314 {
3315 if (target->isolate_execinstr())
3316 {
3317 // When we hit the segment that should contain the
3318 // file headers, reset the file offset so we place
3319 // it and subsequent segments appropriately.
3320 // We'll fix up the preceding segments below.
3321 if (load_seg == *p)
3322 {
3323 if (off == 0)
3324 load_seg = NULL;
3325 else
3326 {
3327 off = 0;
3328 shndx_load_seg = *pshndx;
3329 }
3330 }
3331 }
3332 else
3333 {
3334 // Verify that the file headers fall into the first segment.
3335 if (load_seg != NULL && load_seg != *p)
3336 gold_unreachable();
3337 load_seg = NULL;
3338 }
3339
3340 bool are_addresses_set = (*p)->are_addresses_set();
3341 if (are_addresses_set)
3342 {
3343 // When it comes to setting file offsets, we care about
3344 // the physical address.
3345 addr = (*p)->paddr();
3346 }
3347 else if (parameters->options().user_set_Ttext()
3348 && ((*p)->flags() & elfcpp::PF_W) == 0)
3349 {
3350 are_addresses_set = true;
3351 }
3352 else if (parameters->options().user_set_Tdata()
3353 && ((*p)->flags() & elfcpp::PF_W) != 0
3354 && (!parameters->options().user_set_Tbss()
3355 || (*p)->has_any_data_sections()))
3356 {
3357 addr = parameters->options().Tdata();
3358 are_addresses_set = true;
3359 }
3360 else if (parameters->options().user_set_Tbss()
3361 && ((*p)->flags() & elfcpp::PF_W) != 0
3362 && !(*p)->has_any_data_sections())
3363 {
3364 addr = parameters->options().Tbss();
3365 are_addresses_set = true;
3366 }
3367
3368 uint64_t orig_addr = addr;
3369 uint64_t orig_off = off;
3370
3371 uint64_t aligned_addr = 0;
3372 uint64_t abi_pagesize = target->abi_pagesize();
3373 uint64_t common_pagesize = target->common_pagesize();
3374
3375 if (!parameters->options().nmagic()
3376 && !parameters->options().omagic())
3377 (*p)->set_minimum_p_align(abi_pagesize);
3378
3379 if (!are_addresses_set)
3380 {
3381 // Skip the address forward one page, maintaining the same
3382 // position within the page. This lets us store both segments
3383 // overlapping on a single page in the file, but the loader will
3384 // put them on different pages in memory. We will revisit this
3385 // decision once we know the size of the segment.
3386
3387 addr = align_address(addr, (*p)->maximum_alignment());
3388 aligned_addr = addr;
3389
3390 if (load_seg == *p)
3391 {
3392 // This is the segment that will contain the file
3393 // headers, so its offset will have to be exactly zero.
3394 gold_assert(orig_off == 0);
3395
3396 // If the target wants a fixed minimum distance from the
3397 // text segment to the read-only segment, move up now.
3398 uint64_t min_addr = start_addr + target->rosegment_gap();
3399 if (addr < min_addr)
3400 addr = min_addr;
3401
3402 // But this is not the first segment! To make its
3403 // address congruent with its offset, that address better
3404 // be aligned to the ABI-mandated page size.
3405 addr = align_address(addr, abi_pagesize);
3406 aligned_addr = addr;
3407 }
3408 else
3409 {
3410 if ((addr & (abi_pagesize - 1)) != 0)
3411 addr = addr + abi_pagesize;
3412
3413 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3414 }
3415 }
3416
3417 if (!parameters->options().nmagic()
3418 && !parameters->options().omagic())
3419 off = align_file_offset(off, addr, abi_pagesize);
3420 else
3421 {
3422 // This is -N or -n with a section script which prevents
3423 // us from using a load segment. We need to ensure that
3424 // the file offset is aligned to the alignment of the
3425 // segment. This is because the linker script
3426 // implicitly assumed a zero offset. If we don't align
3427 // here, then the alignment of the sections in the
3428 // linker script may not match the alignment of the
3429 // sections in the set_section_addresses call below,
3430 // causing an error about dot moving backward.
3431 off = align_address(off, (*p)->maximum_alignment());
3432 }
3433
3434 unsigned int shndx_hold = *pshndx;
3435 bool has_relro = false;
3436 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3437 &increase_relro,
3438 &has_relro,
3439 &off, pshndx);
3440
3441 // Now that we know the size of this segment, we may be able
3442 // to save a page in memory, at the cost of wasting some
3443 // file space, by instead aligning to the start of a new
3444 // page. Here we use the real machine page size rather than
3445 // the ABI mandated page size. If the segment has been
3446 // aligned so that the relro data ends at a page boundary,
3447 // we do not try to realign it.
3448
3449 if (!are_addresses_set
3450 && !has_relro
3451 && aligned_addr != addr
3452 && !parameters->incremental())
3453 {
3454 uint64_t first_off = (common_pagesize
3455 - (aligned_addr
3456 & (common_pagesize - 1)));
3457 uint64_t last_off = new_addr & (common_pagesize - 1);
3458 if (first_off > 0
3459 && last_off > 0
3460 && ((aligned_addr & ~ (common_pagesize - 1))
3461 != (new_addr & ~ (common_pagesize - 1)))
3462 && first_off + last_off <= common_pagesize)
3463 {
3464 *pshndx = shndx_hold;
3465 addr = align_address(aligned_addr, common_pagesize);
3466 addr = align_address(addr, (*p)->maximum_alignment());
3467 if ((addr & (abi_pagesize - 1)) != 0)
3468 addr = addr + abi_pagesize;
3469 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3470 off = align_file_offset(off, addr, abi_pagesize);
3471
3472 increase_relro = this->increase_relro_;
3473 if (this->script_options_->saw_sections_clause())
3474 increase_relro = 0;
3475 has_relro = false;
3476
3477 new_addr = (*p)->set_section_addresses(this, true, addr,
3478 &increase_relro,
3479 &has_relro,
3480 &off, pshndx);
3481 }
3482 }
3483
3484 addr = new_addr;
3485
3486 // Implement --check-sections. We know that the segments
3487 // are sorted by LMA.
3488 if (check_sections && last_load_segment != NULL)
3489 {
3490 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3491 if (last_load_segment->paddr() + last_load_segment->memsz()
3492 > (*p)->paddr())
3493 {
3494 unsigned long long lb1 = last_load_segment->paddr();
3495 unsigned long long le1 = lb1 + last_load_segment->memsz();
3496 unsigned long long lb2 = (*p)->paddr();
3497 unsigned long long le2 = lb2 + (*p)->memsz();
3498 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3499 "[0x%llx -> 0x%llx]"),
3500 lb1, le1, lb2, le2);
3501 }
3502 }
3503 last_load_segment = *p;
3504 }
3505 }
3506
3507 if (load_seg != NULL && target->isolate_execinstr())
3508 {
3509 // Process the early segments again, setting their file offsets
3510 // so they land after the segments starting at LOAD_SEG.
3511 off = align_file_offset(off, 0, target->abi_pagesize());
3512
3513 for (Segment_list::iterator p = this->segment_list_.begin();
3514 *p != load_seg;
3515 ++p)
3516 {
3517 if ((*p)->type() == elfcpp::PT_LOAD)
3518 {
3519 // We repeat the whole job of assigning addresses and
3520 // offsets, but we really only want to change the offsets and
3521 // must ensure that the addresses all come out the same as
3522 // they did the first time through.
3523 bool has_relro = false;
3524 const uint64_t old_addr = (*p)->vaddr();
3525 const uint64_t old_end = old_addr + (*p)->memsz();
3526 uint64_t new_addr = (*p)->set_section_addresses(this, true,
3527 old_addr,
3528 &increase_relro,
3529 &has_relro,
3530 &off,
3531 &shndx_begin);
3532 gold_assert(new_addr == old_end);
3533 }
3534 }
3535
3536 gold_assert(shndx_begin == shndx_load_seg);
3537 }
3538
3539 // Handle the non-PT_LOAD segments, setting their offsets from their
3540 // section's offsets.
3541 for (Segment_list::iterator p = this->segment_list_.begin();
3542 p != this->segment_list_.end();
3543 ++p)
3544 {
3545 if ((*p)->type() != elfcpp::PT_LOAD)
3546 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3547 ? increase_relro
3548 : 0);
3549 }
3550
3551 // Set the TLS offsets for each section in the PT_TLS segment.
3552 if (this->tls_segment_ != NULL)
3553 this->tls_segment_->set_tls_offsets();
3554
3555 return off;
3556 }
3557
3558 // Set the offsets of all the allocated sections when doing a
3559 // relocatable link. This does the same jobs as set_segment_offsets,
3560 // only for a relocatable link.
3561
3562 off_t
3563 Layout::set_relocatable_section_offsets(Output_data* file_header,
3564 unsigned int* pshndx)
3565 {
3566 off_t off = 0;
3567
3568 file_header->set_address_and_file_offset(0, 0);
3569 off += file_header->data_size();
3570
3571 for (Section_list::iterator p = this->section_list_.begin();
3572 p != this->section_list_.end();
3573 ++p)
3574 {
3575 // We skip unallocated sections here, except that group sections
3576 // have to come first.
3577 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3578 && (*p)->type() != elfcpp::SHT_GROUP)
3579 continue;
3580
3581 off = align_address(off, (*p)->addralign());
3582
3583 // The linker script might have set the address.
3584 if (!(*p)->is_address_valid())
3585 (*p)->set_address(0);
3586 (*p)->set_file_offset(off);
3587 (*p)->finalize_data_size();
3588 off += (*p)->data_size();
3589
3590 (*p)->set_out_shndx(*pshndx);
3591 ++*pshndx;
3592 }
3593
3594 return off;
3595 }
3596
3597 // Set the file offset of all the sections not associated with a
3598 // segment.
3599
3600 off_t
3601 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3602 {
3603 off_t startoff = off;
3604 off_t maxoff = off;
3605
3606 for (Section_list::iterator p = this->unattached_section_list_.begin();
3607 p != this->unattached_section_list_.end();
3608 ++p)
3609 {
3610 // The symtab section is handled in create_symtab_sections.
3611 if (*p == this->symtab_section_)
3612 continue;
3613
3614 // If we've already set the data size, don't set it again.
3615 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3616 continue;
3617
3618 if (pass == BEFORE_INPUT_SECTIONS_PASS
3619 && (*p)->requires_postprocessing())
3620 {
3621 (*p)->create_postprocessing_buffer();
3622 this->any_postprocessing_sections_ = true;
3623 }
3624
3625 if (pass == BEFORE_INPUT_SECTIONS_PASS
3626 && (*p)->after_input_sections())
3627 continue;
3628 else if (pass == POSTPROCESSING_SECTIONS_PASS
3629 && (!(*p)->after_input_sections()
3630 || (*p)->type() == elfcpp::SHT_STRTAB))
3631 continue;
3632 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3633 && (!(*p)->after_input_sections()
3634 || (*p)->type() != elfcpp::SHT_STRTAB))
3635 continue;
3636
3637 if (!parameters->incremental_update())
3638 {
3639 off = align_address(off, (*p)->addralign());
3640 (*p)->set_file_offset(off);
3641 (*p)->finalize_data_size();
3642 }
3643 else
3644 {
3645 // Incremental update: allocate file space from free list.
3646 (*p)->pre_finalize_data_size();
3647 off_t current_size = (*p)->current_data_size();
3648 off = this->allocate(current_size, (*p)->addralign(), startoff);
3649 if (off == -1)
3650 {
3651 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3652 this->free_list_.dump();
3653 gold_assert((*p)->output_section() != NULL);
3654 gold_fallback(_("out of patch space for section %s; "
3655 "relink with --incremental-full"),
3656 (*p)->output_section()->name());
3657 }
3658 (*p)->set_file_offset(off);
3659 (*p)->finalize_data_size();
3660 if ((*p)->data_size() > current_size)
3661 {
3662 gold_assert((*p)->output_section() != NULL);
3663 gold_fallback(_("%s: section changed size; "
3664 "relink with --incremental-full"),
3665 (*p)->output_section()->name());
3666 }
3667 gold_debug(DEBUG_INCREMENTAL,
3668 "set_section_offsets: %08lx %08lx %s",
3669 static_cast<long>(off),
3670 static_cast<long>((*p)->data_size()),
3671 ((*p)->output_section() != NULL
3672 ? (*p)->output_section()->name() : "(special)"));
3673 }
3674
3675 off += (*p)->data_size();
3676 if (off > maxoff)
3677 maxoff = off;
3678
3679 // At this point the name must be set.
3680 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3681 this->namepool_.add((*p)->name(), false, NULL);
3682 }
3683 return maxoff;
3684 }
3685
3686 // Set the section indexes of all the sections not associated with a
3687 // segment.
3688
3689 unsigned int
3690 Layout::set_section_indexes(unsigned int shndx)
3691 {
3692 for (Section_list::iterator p = this->unattached_section_list_.begin();
3693 p != this->unattached_section_list_.end();
3694 ++p)
3695 {
3696 if (!(*p)->has_out_shndx())
3697 {
3698 (*p)->set_out_shndx(shndx);
3699 ++shndx;
3700 }
3701 }
3702 return shndx;
3703 }
3704
3705 // Set the section addresses according to the linker script. This is
3706 // only called when we see a SECTIONS clause. This returns the
3707 // program segment which should hold the file header and segment
3708 // headers, if any. It will return NULL if they should not be in a
3709 // segment.
3710
3711 Output_segment*
3712 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3713 {
3714 Script_sections* ss = this->script_options_->script_sections();
3715 gold_assert(ss->saw_sections_clause());
3716 return this->script_options_->set_section_addresses(symtab, this);
3717 }
3718
3719 // Place the orphan sections in the linker script.
3720
3721 void
3722 Layout::place_orphan_sections_in_script()
3723 {
3724 Script_sections* ss = this->script_options_->script_sections();
3725 gold_assert(ss->saw_sections_clause());
3726
3727 // Place each orphaned output section in the script.
3728 for (Section_list::iterator p = this->section_list_.begin();
3729 p != this->section_list_.end();
3730 ++p)
3731 {
3732 if (!(*p)->found_in_sections_clause())
3733 ss->place_orphan(*p);
3734 }
3735 }
3736
3737 // Count the local symbols in the regular symbol table and the dynamic
3738 // symbol table, and build the respective string pools.
3739
3740 void
3741 Layout::count_local_symbols(const Task* task,
3742 const Input_objects* input_objects)
3743 {
3744 // First, figure out an upper bound on the number of symbols we'll
3745 // be inserting into each pool. This helps us create the pools with
3746 // the right size, to avoid unnecessary hashtable resizing.
3747 unsigned int symbol_count = 0;
3748 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3749 p != input_objects->relobj_end();
3750 ++p)
3751 symbol_count += (*p)->local_symbol_count();
3752
3753 // Go from "upper bound" to "estimate." We overcount for two
3754 // reasons: we double-count symbols that occur in more than one
3755 // object file, and we count symbols that are dropped from the
3756 // output. Add it all together and assume we overcount by 100%.
3757 symbol_count /= 2;
3758
3759 // We assume all symbols will go into both the sympool and dynpool.
3760 this->sympool_.reserve(symbol_count);
3761 this->dynpool_.reserve(symbol_count);
3762
3763 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3764 p != input_objects->relobj_end();
3765 ++p)
3766 {
3767 Task_lock_obj<Object> tlo(task, *p);
3768 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3769 }
3770 }
3771
3772 // Create the symbol table sections. Here we also set the final
3773 // values of the symbols. At this point all the loadable sections are
3774 // fully laid out. SHNUM is the number of sections so far.
3775
3776 void
3777 Layout::create_symtab_sections(const Input_objects* input_objects,
3778 Symbol_table* symtab,
3779 unsigned int shnum,
3780 off_t* poff)
3781 {
3782 int symsize;
3783 unsigned int align;
3784 if (parameters->target().get_size() == 32)
3785 {
3786 symsize = elfcpp::Elf_sizes<32>::sym_size;
3787 align = 4;
3788 }
3789 else if (parameters->target().get_size() == 64)
3790 {
3791 symsize = elfcpp::Elf_sizes<64>::sym_size;
3792 align = 8;
3793 }
3794 else
3795 gold_unreachable();
3796
3797 // Compute file offsets relative to the start of the symtab section.
3798 off_t off = 0;
3799
3800 // Save space for the dummy symbol at the start of the section. We
3801 // never bother to write this out--it will just be left as zero.
3802 off += symsize;
3803 unsigned int local_symbol_index = 1;
3804
3805 // Add STT_SECTION symbols for each Output section which needs one.
3806 for (Section_list::iterator p = this->section_list_.begin();
3807 p != this->section_list_.end();
3808 ++p)
3809 {
3810 if (!(*p)->needs_symtab_index())
3811 (*p)->set_symtab_index(-1U);
3812 else
3813 {
3814 (*p)->set_symtab_index(local_symbol_index);
3815 ++local_symbol_index;
3816 off += symsize;
3817 }
3818 }
3819
3820 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3821 p != input_objects->relobj_end();
3822 ++p)
3823 {
3824 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3825 off, symtab);
3826 off += (index - local_symbol_index) * symsize;
3827 local_symbol_index = index;
3828 }
3829
3830 unsigned int local_symcount = local_symbol_index;
3831 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3832
3833 off_t dynoff;
3834 size_t dyn_global_index;
3835 size_t dyncount;
3836 if (this->dynsym_section_ == NULL)
3837 {
3838 dynoff = 0;
3839 dyn_global_index = 0;
3840 dyncount = 0;
3841 }
3842 else
3843 {
3844 dyn_global_index = this->dynsym_section_->info();
3845 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3846 dynoff = this->dynsym_section_->offset() + locsize;
3847 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3848 gold_assert(static_cast<off_t>(dyncount * symsize)
3849 == this->dynsym_section_->data_size() - locsize);
3850 }
3851
3852 off_t global_off = off;
3853 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3854 &this->sympool_, &local_symcount);
3855
3856 if (!parameters->options().strip_all())
3857 {
3858 this->sympool_.set_string_offsets();
3859
3860 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3861 Output_section* osymtab = this->make_output_section(symtab_name,
3862 elfcpp::SHT_SYMTAB,
3863 0, ORDER_INVALID,
3864 false);
3865 this->symtab_section_ = osymtab;
3866
3867 Output_section_data* pos = new Output_data_fixed_space(off, align,
3868 "** symtab");
3869 osymtab->add_output_section_data(pos);
3870
3871 // We generate a .symtab_shndx section if we have more than
3872 // SHN_LORESERVE sections. Technically it is possible that we
3873 // don't need one, because it is possible that there are no
3874 // symbols in any of sections with indexes larger than
3875 // SHN_LORESERVE. That is probably unusual, though, and it is
3876 // easier to always create one than to compute section indexes
3877 // twice (once here, once when writing out the symbols).
3878 if (shnum >= elfcpp::SHN_LORESERVE)
3879 {
3880 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3881 false, NULL);
3882 Output_section* osymtab_xindex =
3883 this->make_output_section(symtab_xindex_name,
3884 elfcpp::SHT_SYMTAB_SHNDX, 0,
3885 ORDER_INVALID, false);
3886
3887 size_t symcount = off / symsize;
3888 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3889
3890 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3891
3892 osymtab_xindex->set_link_section(osymtab);
3893 osymtab_xindex->set_addralign(4);
3894 osymtab_xindex->set_entsize(4);
3895
3896 osymtab_xindex->set_after_input_sections();
3897
3898 // This tells the driver code to wait until the symbol table
3899 // has written out before writing out the postprocessing
3900 // sections, including the .symtab_shndx section.
3901 this->any_postprocessing_sections_ = true;
3902 }
3903
3904 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3905 Output_section* ostrtab = this->make_output_section(strtab_name,
3906 elfcpp::SHT_STRTAB,
3907 0, ORDER_INVALID,
3908 false);
3909
3910 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3911 ostrtab->add_output_section_data(pstr);
3912
3913 off_t symtab_off;
3914 if (!parameters->incremental_update())
3915 symtab_off = align_address(*poff, align);
3916 else
3917 {
3918 symtab_off = this->allocate(off, align, *poff);
3919 if (off == -1)
3920 gold_fallback(_("out of patch space for symbol table; "
3921 "relink with --incremental-full"));
3922 gold_debug(DEBUG_INCREMENTAL,
3923 "create_symtab_sections: %08lx %08lx .symtab",
3924 static_cast<long>(symtab_off),
3925 static_cast<long>(off));
3926 }
3927
3928 symtab->set_file_offset(symtab_off + global_off);
3929 osymtab->set_file_offset(symtab_off);
3930 osymtab->finalize_data_size();
3931 osymtab->set_link_section(ostrtab);
3932 osymtab->set_info(local_symcount);
3933 osymtab->set_entsize(symsize);
3934
3935 if (symtab_off + off > *poff)
3936 *poff = symtab_off + off;
3937 }
3938 }
3939
3940 // Create the .shstrtab section, which holds the names of the
3941 // sections. At the time this is called, we have created all the
3942 // output sections except .shstrtab itself.
3943
3944 Output_section*
3945 Layout::create_shstrtab()
3946 {
3947 // FIXME: We don't need to create a .shstrtab section if we are
3948 // stripping everything.
3949
3950 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3951
3952 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3953 ORDER_INVALID, false);
3954
3955 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3956 {
3957 // We can't write out this section until we've set all the
3958 // section names, and we don't set the names of compressed
3959 // output sections until relocations are complete. FIXME: With
3960 // the current names we use, this is unnecessary.
3961 os->set_after_input_sections();
3962 }
3963
3964 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3965 os->add_output_section_data(posd);
3966
3967 return os;
3968 }
3969
3970 // Create the section headers. SIZE is 32 or 64. OFF is the file
3971 // offset.
3972
3973 void
3974 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3975 {
3976 Output_section_headers* oshdrs;
3977 oshdrs = new Output_section_headers(this,
3978 &this->segment_list_,
3979 &this->section_list_,
3980 &this->unattached_section_list_,
3981 &this->namepool_,
3982 shstrtab_section);
3983 off_t off;
3984 if (!parameters->incremental_update())
3985 off = align_address(*poff, oshdrs->addralign());
3986 else
3987 {
3988 oshdrs->pre_finalize_data_size();
3989 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3990 if (off == -1)
3991 gold_fallback(_("out of patch space for section header table; "
3992 "relink with --incremental-full"));
3993 gold_debug(DEBUG_INCREMENTAL,
3994 "create_shdrs: %08lx %08lx (section header table)",
3995 static_cast<long>(off),
3996 static_cast<long>(off + oshdrs->data_size()));
3997 }
3998 oshdrs->set_address_and_file_offset(0, off);
3999 off += oshdrs->data_size();
4000 if (off > *poff)
4001 *poff = off;
4002 this->section_headers_ = oshdrs;
4003 }
4004
4005 // Count the allocated sections.
4006
4007 size_t
4008 Layout::allocated_output_section_count() const
4009 {
4010 size_t section_count = 0;
4011 for (Segment_list::const_iterator p = this->segment_list_.begin();
4012 p != this->segment_list_.end();
4013 ++p)
4014 section_count += (*p)->output_section_count();
4015 return section_count;
4016 }
4017
4018 // Create the dynamic symbol table.
4019
4020 void
4021 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4022 Symbol_table* symtab,
4023 Output_section** pdynstr,
4024 unsigned int* plocal_dynamic_count,
4025 std::vector<Symbol*>* pdynamic_symbols,
4026 Versions* pversions)
4027 {
4028 // Count all the symbols in the dynamic symbol table, and set the
4029 // dynamic symbol indexes.
4030
4031 // Skip symbol 0, which is always all zeroes.
4032 unsigned int index = 1;
4033
4034 // Add STT_SECTION symbols for each Output section which needs one.
4035 for (Section_list::iterator p = this->section_list_.begin();
4036 p != this->section_list_.end();
4037 ++p)
4038 {
4039 if (!(*p)->needs_dynsym_index())
4040 (*p)->set_dynsym_index(-1U);
4041 else
4042 {
4043 (*p)->set_dynsym_index(index);
4044 ++index;
4045 }
4046 }
4047
4048 // Count the local symbols that need to go in the dynamic symbol table,
4049 // and set the dynamic symbol indexes.
4050 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4051 p != input_objects->relobj_end();
4052 ++p)
4053 {
4054 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4055 index = new_index;
4056 }
4057
4058 unsigned int local_symcount = index;
4059 *plocal_dynamic_count = local_symcount;
4060
4061 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4062 &this->dynpool_, pversions);
4063
4064 int symsize;
4065 unsigned int align;
4066 const int size = parameters->target().get_size();
4067 if (size == 32)
4068 {
4069 symsize = elfcpp::Elf_sizes<32>::sym_size;
4070 align = 4;
4071 }
4072 else if (size == 64)
4073 {
4074 symsize = elfcpp::Elf_sizes<64>::sym_size;
4075 align = 8;
4076 }
4077 else
4078 gold_unreachable();
4079
4080 // Create the dynamic symbol table section.
4081
4082 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4083 elfcpp::SHT_DYNSYM,
4084 elfcpp::SHF_ALLOC,
4085 false,
4086 ORDER_DYNAMIC_LINKER,
4087 false);
4088
4089 // Check for NULL as a linker script may discard .dynsym.
4090 if (dynsym != NULL)
4091 {
4092 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4093 align,
4094 "** dynsym");
4095 dynsym->add_output_section_data(odata);
4096
4097 dynsym->set_info(local_symcount);
4098 dynsym->set_entsize(symsize);
4099 dynsym->set_addralign(align);
4100
4101 this->dynsym_section_ = dynsym;
4102 }
4103
4104 Output_data_dynamic* const odyn = this->dynamic_data_;
4105 if (odyn != NULL)
4106 {
4107 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4108 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4109 }
4110
4111 // If there are more than SHN_LORESERVE allocated sections, we
4112 // create a .dynsym_shndx section. It is possible that we don't
4113 // need one, because it is possible that there are no dynamic
4114 // symbols in any of the sections with indexes larger than
4115 // SHN_LORESERVE. This is probably unusual, though, and at this
4116 // time we don't know the actual section indexes so it is
4117 // inconvenient to check.
4118 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4119 {
4120 Output_section* dynsym_xindex =
4121 this->choose_output_section(NULL, ".dynsym_shndx",
4122 elfcpp::SHT_SYMTAB_SHNDX,
4123 elfcpp::SHF_ALLOC,
4124 false, ORDER_DYNAMIC_LINKER, false);
4125
4126 if (dynsym_xindex != NULL)
4127 {
4128 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4129
4130 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4131
4132 dynsym_xindex->set_link_section(dynsym);
4133 dynsym_xindex->set_addralign(4);
4134 dynsym_xindex->set_entsize(4);
4135
4136 dynsym_xindex->set_after_input_sections();
4137
4138 // This tells the driver code to wait until the symbol table
4139 // has written out before writing out the postprocessing
4140 // sections, including the .dynsym_shndx section.
4141 this->any_postprocessing_sections_ = true;
4142 }
4143 }
4144
4145 // Create the dynamic string table section.
4146
4147 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4148 elfcpp::SHT_STRTAB,
4149 elfcpp::SHF_ALLOC,
4150 false,
4151 ORDER_DYNAMIC_LINKER,
4152 false);
4153
4154 if (dynstr != NULL)
4155 {
4156 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4157 dynstr->add_output_section_data(strdata);
4158
4159 if (dynsym != NULL)
4160 dynsym->set_link_section(dynstr);
4161 if (this->dynamic_section_ != NULL)
4162 this->dynamic_section_->set_link_section(dynstr);
4163
4164 if (odyn != NULL)
4165 {
4166 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4167 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4168 }
4169
4170 *pdynstr = dynstr;
4171 }
4172
4173 // Create the hash tables.
4174
4175 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4176 || strcmp(parameters->options().hash_style(), "both") == 0)
4177 {
4178 unsigned char* phash;
4179 unsigned int hashlen;
4180 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4181 &phash, &hashlen);
4182
4183 Output_section* hashsec =
4184 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4185 elfcpp::SHF_ALLOC, false,
4186 ORDER_DYNAMIC_LINKER, false);
4187
4188 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4189 hashlen,
4190 align,
4191 "** hash");
4192 if (hashsec != NULL && hashdata != NULL)
4193 hashsec->add_output_section_data(hashdata);
4194
4195 if (hashsec != NULL)
4196 {
4197 if (dynsym != NULL)
4198 hashsec->set_link_section(dynsym);
4199 hashsec->set_entsize(4);
4200 }
4201
4202 if (odyn != NULL)
4203 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4204 }
4205
4206 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4207 || strcmp(parameters->options().hash_style(), "both") == 0)
4208 {
4209 unsigned char* phash;
4210 unsigned int hashlen;
4211 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4212 &phash, &hashlen);
4213
4214 Output_section* hashsec =
4215 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4216 elfcpp::SHF_ALLOC, false,
4217 ORDER_DYNAMIC_LINKER, false);
4218
4219 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4220 hashlen,
4221 align,
4222 "** hash");
4223 if (hashsec != NULL && hashdata != NULL)
4224 hashsec->add_output_section_data(hashdata);
4225
4226 if (hashsec != NULL)
4227 {
4228 if (dynsym != NULL)
4229 hashsec->set_link_section(dynsym);
4230
4231 // For a 64-bit target, the entries in .gnu.hash do not have
4232 // a uniform size, so we only set the entry size for a
4233 // 32-bit target.
4234 if (parameters->target().get_size() == 32)
4235 hashsec->set_entsize(4);
4236
4237 if (odyn != NULL)
4238 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4239 }
4240 }
4241 }
4242
4243 // Assign offsets to each local portion of the dynamic symbol table.
4244
4245 void
4246 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4247 {
4248 Output_section* dynsym = this->dynsym_section_;
4249 if (dynsym == NULL)
4250 return;
4251
4252 off_t off = dynsym->offset();
4253
4254 // Skip the dummy symbol at the start of the section.
4255 off += dynsym->entsize();
4256
4257 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4258 p != input_objects->relobj_end();
4259 ++p)
4260 {
4261 unsigned int count = (*p)->set_local_dynsym_offset(off);
4262 off += count * dynsym->entsize();
4263 }
4264 }
4265
4266 // Create the version sections.
4267
4268 void
4269 Layout::create_version_sections(const Versions* versions,
4270 const Symbol_table* symtab,
4271 unsigned int local_symcount,
4272 const std::vector<Symbol*>& dynamic_symbols,
4273 const Output_section* dynstr)
4274 {
4275 if (!versions->any_defs() && !versions->any_needs())
4276 return;
4277
4278 switch (parameters->size_and_endianness())
4279 {
4280 #ifdef HAVE_TARGET_32_LITTLE
4281 case Parameters::TARGET_32_LITTLE:
4282 this->sized_create_version_sections<32, false>(versions, symtab,
4283 local_symcount,
4284 dynamic_symbols, dynstr);
4285 break;
4286 #endif
4287 #ifdef HAVE_TARGET_32_BIG
4288 case Parameters::TARGET_32_BIG:
4289 this->sized_create_version_sections<32, true>(versions, symtab,
4290 local_symcount,
4291 dynamic_symbols, dynstr);
4292 break;
4293 #endif
4294 #ifdef HAVE_TARGET_64_LITTLE
4295 case Parameters::TARGET_64_LITTLE:
4296 this->sized_create_version_sections<64, false>(versions, symtab,
4297 local_symcount,
4298 dynamic_symbols, dynstr);
4299 break;
4300 #endif
4301 #ifdef HAVE_TARGET_64_BIG
4302 case Parameters::TARGET_64_BIG:
4303 this->sized_create_version_sections<64, true>(versions, symtab,
4304 local_symcount,
4305 dynamic_symbols, dynstr);
4306 break;
4307 #endif
4308 default:
4309 gold_unreachable();
4310 }
4311 }
4312
4313 // Create the version sections, sized version.
4314
4315 template<int size, bool big_endian>
4316 void
4317 Layout::sized_create_version_sections(
4318 const Versions* versions,
4319 const Symbol_table* symtab,
4320 unsigned int local_symcount,
4321 const std::vector<Symbol*>& dynamic_symbols,
4322 const Output_section* dynstr)
4323 {
4324 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4325 elfcpp::SHT_GNU_versym,
4326 elfcpp::SHF_ALLOC,
4327 false,
4328 ORDER_DYNAMIC_LINKER,
4329 false);
4330
4331 // Check for NULL since a linker script may discard this section.
4332 if (vsec != NULL)
4333 {
4334 unsigned char* vbuf;
4335 unsigned int vsize;
4336 versions->symbol_section_contents<size, big_endian>(symtab,
4337 &this->dynpool_,
4338 local_symcount,
4339 dynamic_symbols,
4340 &vbuf, &vsize);
4341
4342 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4343 "** versions");
4344
4345 vsec->add_output_section_data(vdata);
4346 vsec->set_entsize(2);
4347 vsec->set_link_section(this->dynsym_section_);
4348 }
4349
4350 Output_data_dynamic* const odyn = this->dynamic_data_;
4351 if (odyn != NULL && vsec != NULL)
4352 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4353
4354 if (versions->any_defs())
4355 {
4356 Output_section* vdsec;
4357 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4358 elfcpp::SHT_GNU_verdef,
4359 elfcpp::SHF_ALLOC,
4360 false, ORDER_DYNAMIC_LINKER, false);
4361
4362 if (vdsec != NULL)
4363 {
4364 unsigned char* vdbuf;
4365 unsigned int vdsize;
4366 unsigned int vdentries;
4367 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4368 &vdbuf, &vdsize,
4369 &vdentries);
4370
4371 Output_section_data* vddata =
4372 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4373
4374 vdsec->add_output_section_data(vddata);
4375 vdsec->set_link_section(dynstr);
4376 vdsec->set_info(vdentries);
4377
4378 if (odyn != NULL)
4379 {
4380 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4381 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4382 }
4383 }
4384 }
4385
4386 if (versions->any_needs())
4387 {
4388 Output_section* vnsec;
4389 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4390 elfcpp::SHT_GNU_verneed,
4391 elfcpp::SHF_ALLOC,
4392 false, ORDER_DYNAMIC_LINKER, false);
4393
4394 if (vnsec != NULL)
4395 {
4396 unsigned char* vnbuf;
4397 unsigned int vnsize;
4398 unsigned int vnentries;
4399 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4400 &vnbuf, &vnsize,
4401 &vnentries);
4402
4403 Output_section_data* vndata =
4404 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4405
4406 vnsec->add_output_section_data(vndata);
4407 vnsec->set_link_section(dynstr);
4408 vnsec->set_info(vnentries);
4409
4410 if (odyn != NULL)
4411 {
4412 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4413 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4414 }
4415 }
4416 }
4417 }
4418
4419 // Create the .interp section and PT_INTERP segment.
4420
4421 void
4422 Layout::create_interp(const Target* target)
4423 {
4424 gold_assert(this->interp_segment_ == NULL);
4425
4426 const char* interp = parameters->options().dynamic_linker();
4427 if (interp == NULL)
4428 {
4429 interp = target->dynamic_linker();
4430 gold_assert(interp != NULL);
4431 }
4432
4433 size_t len = strlen(interp) + 1;
4434
4435 Output_section_data* odata = new Output_data_const(interp, len, 1);
4436
4437 Output_section* osec = this->choose_output_section(NULL, ".interp",
4438 elfcpp::SHT_PROGBITS,
4439 elfcpp::SHF_ALLOC,
4440 false, ORDER_INTERP,
4441 false);
4442 if (osec != NULL)
4443 osec->add_output_section_data(odata);
4444 }
4445
4446 // Add dynamic tags for the PLT and the dynamic relocs. This is
4447 // called by the target-specific code. This does nothing if not doing
4448 // a dynamic link.
4449
4450 // USE_REL is true for REL relocs rather than RELA relocs.
4451
4452 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4453
4454 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4455 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4456 // some targets have multiple reloc sections in PLT_REL.
4457
4458 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4459 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4460 // section.
4461
4462 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4463 // executable.
4464
4465 void
4466 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4467 const Output_data* plt_rel,
4468 const Output_data_reloc_generic* dyn_rel,
4469 bool add_debug, bool dynrel_includes_plt)
4470 {
4471 Output_data_dynamic* odyn = this->dynamic_data_;
4472 if (odyn == NULL)
4473 return;
4474
4475 if (plt_got != NULL && plt_got->output_section() != NULL)
4476 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4477
4478 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4479 {
4480 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4481 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4482 odyn->add_constant(elfcpp::DT_PLTREL,
4483 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4484 }
4485
4486 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4487 || (dynrel_includes_plt
4488 && plt_rel != NULL
4489 && plt_rel->output_section() != NULL))
4490 {
4491 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4492 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4493 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4494 (have_dyn_rel
4495 ? dyn_rel->output_section()
4496 : plt_rel->output_section()));
4497 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4498 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4499 odyn->add_section_size(size_tag,
4500 dyn_rel->output_section(),
4501 plt_rel->output_section());
4502 else if (have_dyn_rel)
4503 odyn->add_section_size(size_tag, dyn_rel->output_section());
4504 else
4505 odyn->add_section_size(size_tag, plt_rel->output_section());
4506 const int size = parameters->target().get_size();
4507 elfcpp::DT rel_tag;
4508 int rel_size;
4509 if (use_rel)
4510 {
4511 rel_tag = elfcpp::DT_RELENT;
4512 if (size == 32)
4513 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4514 else if (size == 64)
4515 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4516 else
4517 gold_unreachable();
4518 }
4519 else
4520 {
4521 rel_tag = elfcpp::DT_RELAENT;
4522 if (size == 32)
4523 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4524 else if (size == 64)
4525 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4526 else
4527 gold_unreachable();
4528 }
4529 odyn->add_constant(rel_tag, rel_size);
4530
4531 if (parameters->options().combreloc() && have_dyn_rel)
4532 {
4533 size_t c = dyn_rel->relative_reloc_count();
4534 if (c > 0)
4535 odyn->add_constant((use_rel
4536 ? elfcpp::DT_RELCOUNT
4537 : elfcpp::DT_RELACOUNT),
4538 c);
4539 }
4540 }
4541
4542 if (add_debug && !parameters->options().shared())
4543 {
4544 // The value of the DT_DEBUG tag is filled in by the dynamic
4545 // linker at run time, and used by the debugger.
4546 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4547 }
4548 }
4549
4550 // Finish the .dynamic section and PT_DYNAMIC segment.
4551
4552 void
4553 Layout::finish_dynamic_section(const Input_objects* input_objects,
4554 const Symbol_table* symtab)
4555 {
4556 if (!this->script_options_->saw_phdrs_clause()
4557 && this->dynamic_section_ != NULL)
4558 {
4559 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4560 (elfcpp::PF_R
4561 | elfcpp::PF_W));
4562 oseg->add_output_section_to_nonload(this->dynamic_section_,
4563 elfcpp::PF_R | elfcpp::PF_W);
4564 }
4565
4566 Output_data_dynamic* const odyn = this->dynamic_data_;
4567 if (odyn == NULL)
4568 return;
4569
4570 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4571 p != input_objects->dynobj_end();
4572 ++p)
4573 {
4574 if (!(*p)->is_needed() && (*p)->as_needed())
4575 {
4576 // This dynamic object was linked with --as-needed, but it
4577 // is not needed.
4578 continue;
4579 }
4580
4581 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4582 }
4583
4584 if (parameters->options().shared())
4585 {
4586 const char* soname = parameters->options().soname();
4587 if (soname != NULL)
4588 odyn->add_string(elfcpp::DT_SONAME, soname);
4589 }
4590
4591 Symbol* sym = symtab->lookup(parameters->options().init());
4592 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4593 odyn->add_symbol(elfcpp::DT_INIT, sym);
4594
4595 sym = symtab->lookup(parameters->options().fini());
4596 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4597 odyn->add_symbol(elfcpp::DT_FINI, sym);
4598
4599 // Look for .init_array, .preinit_array and .fini_array by checking
4600 // section types.
4601 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4602 p != this->section_list_.end();
4603 ++p)
4604 switch((*p)->type())
4605 {
4606 case elfcpp::SHT_FINI_ARRAY:
4607 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4608 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4609 break;
4610 case elfcpp::SHT_INIT_ARRAY:
4611 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4612 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4613 break;
4614 case elfcpp::SHT_PREINIT_ARRAY:
4615 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4616 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4617 break;
4618 default:
4619 break;
4620 }
4621
4622 // Add a DT_RPATH entry if needed.
4623 const General_options::Dir_list& rpath(parameters->options().rpath());
4624 if (!rpath.empty())
4625 {
4626 std::string rpath_val;
4627 for (General_options::Dir_list::const_iterator p = rpath.begin();
4628 p != rpath.end();
4629 ++p)
4630 {
4631 if (rpath_val.empty())
4632 rpath_val = p->name();
4633 else
4634 {
4635 // Eliminate duplicates.
4636 General_options::Dir_list::const_iterator q;
4637 for (q = rpath.begin(); q != p; ++q)
4638 if (q->name() == p->name())
4639 break;
4640 if (q == p)
4641 {
4642 rpath_val += ':';
4643 rpath_val += p->name();
4644 }
4645 }
4646 }
4647
4648 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4649 if (parameters->options().enable_new_dtags())
4650 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4651 }
4652
4653 // Look for text segments that have dynamic relocations.
4654 bool have_textrel = false;
4655 if (!this->script_options_->saw_sections_clause())
4656 {
4657 for (Segment_list::const_iterator p = this->segment_list_.begin();
4658 p != this->segment_list_.end();
4659 ++p)
4660 {
4661 if ((*p)->type() == elfcpp::PT_LOAD
4662 && ((*p)->flags() & elfcpp::PF_W) == 0
4663 && (*p)->has_dynamic_reloc())
4664 {
4665 have_textrel = true;
4666 break;
4667 }
4668 }
4669 }
4670 else
4671 {
4672 // We don't know the section -> segment mapping, so we are
4673 // conservative and just look for readonly sections with
4674 // relocations. If those sections wind up in writable segments,
4675 // then we have created an unnecessary DT_TEXTREL entry.
4676 for (Section_list::const_iterator p = this->section_list_.begin();
4677 p != this->section_list_.end();
4678 ++p)
4679 {
4680 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4681 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4682 && (*p)->has_dynamic_reloc())
4683 {
4684 have_textrel = true;
4685 break;
4686 }
4687 }
4688 }
4689
4690 if (parameters->options().filter() != NULL)
4691 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4692 if (parameters->options().any_auxiliary())
4693 {
4694 for (options::String_set::const_iterator p =
4695 parameters->options().auxiliary_begin();
4696 p != parameters->options().auxiliary_end();
4697 ++p)
4698 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4699 }
4700
4701 // Add a DT_FLAGS entry if necessary.
4702 unsigned int flags = 0;
4703 if (have_textrel)
4704 {
4705 // Add a DT_TEXTREL for compatibility with older loaders.
4706 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4707 flags |= elfcpp::DF_TEXTREL;
4708
4709 if (parameters->options().text())
4710 gold_error(_("read-only segment has dynamic relocations"));
4711 else if (parameters->options().warn_shared_textrel()
4712 && parameters->options().shared())
4713 gold_warning(_("shared library text segment is not shareable"));
4714 }
4715 if (parameters->options().shared() && this->has_static_tls())
4716 flags |= elfcpp::DF_STATIC_TLS;
4717 if (parameters->options().origin())
4718 flags |= elfcpp::DF_ORIGIN;
4719 if (parameters->options().Bsymbolic())
4720 {
4721 flags |= elfcpp::DF_SYMBOLIC;
4722 // Add DT_SYMBOLIC for compatibility with older loaders.
4723 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4724 }
4725 if (parameters->options().now())
4726 flags |= elfcpp::DF_BIND_NOW;
4727 if (flags != 0)
4728 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4729
4730 flags = 0;
4731 if (parameters->options().initfirst())
4732 flags |= elfcpp::DF_1_INITFIRST;
4733 if (parameters->options().interpose())
4734 flags |= elfcpp::DF_1_INTERPOSE;
4735 if (parameters->options().loadfltr())
4736 flags |= elfcpp::DF_1_LOADFLTR;
4737 if (parameters->options().nodefaultlib())
4738 flags |= elfcpp::DF_1_NODEFLIB;
4739 if (parameters->options().nodelete())
4740 flags |= elfcpp::DF_1_NODELETE;
4741 if (parameters->options().nodlopen())
4742 flags |= elfcpp::DF_1_NOOPEN;
4743 if (parameters->options().nodump())
4744 flags |= elfcpp::DF_1_NODUMP;
4745 if (!parameters->options().shared())
4746 flags &= ~(elfcpp::DF_1_INITFIRST
4747 | elfcpp::DF_1_NODELETE
4748 | elfcpp::DF_1_NOOPEN);
4749 if (parameters->options().origin())
4750 flags |= elfcpp::DF_1_ORIGIN;
4751 if (parameters->options().now())
4752 flags |= elfcpp::DF_1_NOW;
4753 if (parameters->options().Bgroup())
4754 flags |= elfcpp::DF_1_GROUP;
4755 if (flags != 0)
4756 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4757 }
4758
4759 // Set the size of the _DYNAMIC symbol table to be the size of the
4760 // dynamic data.
4761
4762 void
4763 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4764 {
4765 Output_data_dynamic* const odyn = this->dynamic_data_;
4766 if (odyn == NULL)
4767 return;
4768 odyn->finalize_data_size();
4769 if (this->dynamic_symbol_ == NULL)
4770 return;
4771 off_t data_size = odyn->data_size();
4772 const int size = parameters->target().get_size();
4773 if (size == 32)
4774 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4775 else if (size == 64)
4776 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4777 else
4778 gold_unreachable();
4779 }
4780
4781 // The mapping of input section name prefixes to output section names.
4782 // In some cases one prefix is itself a prefix of another prefix; in
4783 // such a case the longer prefix must come first. These prefixes are
4784 // based on the GNU linker default ELF linker script.
4785
4786 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4787 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4788 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4789 {
4790 MAPPING_INIT(".text.", ".text"),
4791 MAPPING_INIT(".rodata.", ".rodata"),
4792 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4793 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4794 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4795 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4796 MAPPING_INIT(".data.", ".data"),
4797 MAPPING_INIT(".bss.", ".bss"),
4798 MAPPING_INIT(".tdata.", ".tdata"),
4799 MAPPING_INIT(".tbss.", ".tbss"),
4800 MAPPING_INIT(".init_array.", ".init_array"),
4801 MAPPING_INIT(".fini_array.", ".fini_array"),
4802 MAPPING_INIT(".sdata.", ".sdata"),
4803 MAPPING_INIT(".sbss.", ".sbss"),
4804 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4805 // differently depending on whether it is creating a shared library.
4806 MAPPING_INIT(".sdata2.", ".sdata"),
4807 MAPPING_INIT(".sbss2.", ".sbss"),
4808 MAPPING_INIT(".lrodata.", ".lrodata"),
4809 MAPPING_INIT(".ldata.", ".ldata"),
4810 MAPPING_INIT(".lbss.", ".lbss"),
4811 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4812 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4813 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4814 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4815 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4816 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4817 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4818 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4819 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4820 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4821 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4822 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4823 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4824 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4825 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4826 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4827 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4828 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4829 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4830 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4831 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4832 };
4833 #undef MAPPING_INIT
4834 #undef MAPPING_INIT_EXACT
4835
4836 const int Layout::section_name_mapping_count =
4837 (sizeof(Layout::section_name_mapping)
4838 / sizeof(Layout::section_name_mapping[0]));
4839
4840 // Choose the output section name to use given an input section name.
4841 // Set *PLEN to the length of the name. *PLEN is initialized to the
4842 // length of NAME.
4843
4844 const char*
4845 Layout::output_section_name(const Relobj* relobj, const char* name,
4846 size_t* plen)
4847 {
4848 // gcc 4.3 generates the following sorts of section names when it
4849 // needs a section name specific to a function:
4850 // .text.FN
4851 // .rodata.FN
4852 // .sdata2.FN
4853 // .data.FN
4854 // .data.rel.FN
4855 // .data.rel.local.FN
4856 // .data.rel.ro.FN
4857 // .data.rel.ro.local.FN
4858 // .sdata.FN
4859 // .bss.FN
4860 // .sbss.FN
4861 // .tdata.FN
4862 // .tbss.FN
4863
4864 // The GNU linker maps all of those to the part before the .FN,
4865 // except that .data.rel.local.FN is mapped to .data, and
4866 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4867 // beginning with .data.rel.ro.local are grouped together.
4868
4869 // For an anonymous namespace, the string FN can contain a '.'.
4870
4871 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4872 // GNU linker maps to .rodata.
4873
4874 // The .data.rel.ro sections are used with -z relro. The sections
4875 // are recognized by name. We use the same names that the GNU
4876 // linker does for these sections.
4877
4878 // It is hard to handle this in a principled way, so we don't even
4879 // try. We use a table of mappings. If the input section name is
4880 // not found in the table, we simply use it as the output section
4881 // name.
4882
4883 const Section_name_mapping* psnm = section_name_mapping;
4884 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4885 {
4886 if (psnm->fromlen > 0)
4887 {
4888 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4889 {
4890 *plen = psnm->tolen;
4891 return psnm->to;
4892 }
4893 }
4894 else
4895 {
4896 if (strcmp(name, psnm->from) == 0)
4897 {
4898 *plen = psnm->tolen;
4899 return psnm->to;
4900 }
4901 }
4902 }
4903
4904 // As an additional complication, .ctors sections are output in
4905 // either .ctors or .init_array sections, and .dtors sections are
4906 // output in either .dtors or .fini_array sections.
4907 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4908 {
4909 if (parameters->options().ctors_in_init_array())
4910 {
4911 *plen = 11;
4912 return name[1] == 'c' ? ".init_array" : ".fini_array";
4913 }
4914 else
4915 {
4916 *plen = 6;
4917 return name[1] == 'c' ? ".ctors" : ".dtors";
4918 }
4919 }
4920 if (parameters->options().ctors_in_init_array()
4921 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4922 {
4923 // To make .init_array/.fini_array work with gcc we must exclude
4924 // .ctors and .dtors sections from the crtbegin and crtend
4925 // files.
4926 if (relobj == NULL
4927 || (!Layout::match_file_name(relobj, "crtbegin")
4928 && !Layout::match_file_name(relobj, "crtend")))
4929 {
4930 *plen = 11;
4931 return name[1] == 'c' ? ".init_array" : ".fini_array";
4932 }
4933 }
4934
4935 return name;
4936 }
4937
4938 // Return true if RELOBJ is an input file whose base name matches
4939 // FILE_NAME. The base name must have an extension of ".o", and must
4940 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4941 // to match crtbegin.o as well as crtbeginS.o without getting confused
4942 // by other possibilities. Overall matching the file name this way is
4943 // a dreadful hack, but the GNU linker does it in order to better
4944 // support gcc, and we need to be compatible.
4945
4946 bool
4947 Layout::match_file_name(const Relobj* relobj, const char* match)
4948 {
4949 const std::string& file_name(relobj->name());
4950 const char* base_name = lbasename(file_name.c_str());
4951 size_t match_len = strlen(match);
4952 if (strncmp(base_name, match, match_len) != 0)
4953 return false;
4954 size_t base_len = strlen(base_name);
4955 if (base_len != match_len + 2 && base_len != match_len + 3)
4956 return false;
4957 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4958 }
4959
4960 // Check if a comdat group or .gnu.linkonce section with the given
4961 // NAME is selected for the link. If there is already a section,
4962 // *KEPT_SECTION is set to point to the existing section and the
4963 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4964 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4965 // *KEPT_SECTION is set to the internal copy and the function returns
4966 // true.
4967
4968 bool
4969 Layout::find_or_add_kept_section(const std::string& name,
4970 Relobj* object,
4971 unsigned int shndx,
4972 bool is_comdat,
4973 bool is_group_name,
4974 Kept_section** kept_section)
4975 {
4976 // It's normal to see a couple of entries here, for the x86 thunk
4977 // sections. If we see more than a few, we're linking a C++
4978 // program, and we resize to get more space to minimize rehashing.
4979 if (this->signatures_.size() > 4
4980 && !this->resized_signatures_)
4981 {
4982 reserve_unordered_map(&this->signatures_,
4983 this->number_of_input_files_ * 64);
4984 this->resized_signatures_ = true;
4985 }
4986
4987 Kept_section candidate;
4988 std::pair<Signatures::iterator, bool> ins =
4989 this->signatures_.insert(std::make_pair(name, candidate));
4990
4991 if (kept_section != NULL)
4992 *kept_section = &ins.first->second;
4993 if (ins.second)
4994 {
4995 // This is the first time we've seen this signature.
4996 ins.first->second.set_object(object);
4997 ins.first->second.set_shndx(shndx);
4998 if (is_comdat)
4999 ins.first->second.set_is_comdat();
5000 if (is_group_name)
5001 ins.first->second.set_is_group_name();
5002 return true;
5003 }
5004
5005 // We have already seen this signature.
5006
5007 if (ins.first->second.is_group_name())
5008 {
5009 // We've already seen a real section group with this signature.
5010 // If the kept group is from a plugin object, and we're in the
5011 // replacement phase, accept the new one as a replacement.
5012 if (ins.first->second.object() == NULL
5013 && parameters->options().plugins()->in_replacement_phase())
5014 {
5015 ins.first->second.set_object(object);
5016 ins.first->second.set_shndx(shndx);
5017 return true;
5018 }
5019 return false;
5020 }
5021 else if (is_group_name)
5022 {
5023 // This is a real section group, and we've already seen a
5024 // linkonce section with this signature. Record that we've seen
5025 // a section group, and don't include this section group.
5026 ins.first->second.set_is_group_name();
5027 return false;
5028 }
5029 else
5030 {
5031 // We've already seen a linkonce section and this is a linkonce
5032 // section. These don't block each other--this may be the same
5033 // symbol name with different section types.
5034 return true;
5035 }
5036 }
5037
5038 // Store the allocated sections into the section list.
5039
5040 void
5041 Layout::get_allocated_sections(Section_list* section_list) const
5042 {
5043 for (Section_list::const_iterator p = this->section_list_.begin();
5044 p != this->section_list_.end();
5045 ++p)
5046 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5047 section_list->push_back(*p);
5048 }
5049
5050 // Store the executable sections into the section list.
5051
5052 void
5053 Layout::get_executable_sections(Section_list* section_list) const
5054 {
5055 for (Section_list::const_iterator p = this->section_list_.begin();
5056 p != this->section_list_.end();
5057 ++p)
5058 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5059 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5060 section_list->push_back(*p);
5061 }
5062
5063 // Create an output segment.
5064
5065 Output_segment*
5066 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5067 {
5068 gold_assert(!parameters->options().relocatable());
5069 Output_segment* oseg = new Output_segment(type, flags);
5070 this->segment_list_.push_back(oseg);
5071
5072 if (type == elfcpp::PT_TLS)
5073 this->tls_segment_ = oseg;
5074 else if (type == elfcpp::PT_GNU_RELRO)
5075 this->relro_segment_ = oseg;
5076 else if (type == elfcpp::PT_INTERP)
5077 this->interp_segment_ = oseg;
5078
5079 return oseg;
5080 }
5081
5082 // Return the file offset of the normal symbol table.
5083
5084 off_t
5085 Layout::symtab_section_offset() const
5086 {
5087 if (this->symtab_section_ != NULL)
5088 return this->symtab_section_->offset();
5089 return 0;
5090 }
5091
5092 // Return the section index of the normal symbol table. It may have
5093 // been stripped by the -s/--strip-all option.
5094
5095 unsigned int
5096 Layout::symtab_section_shndx() const
5097 {
5098 if (this->symtab_section_ != NULL)
5099 return this->symtab_section_->out_shndx();
5100 return 0;
5101 }
5102
5103 // Write out the Output_sections. Most won't have anything to write,
5104 // since most of the data will come from input sections which are
5105 // handled elsewhere. But some Output_sections do have Output_data.
5106
5107 void
5108 Layout::write_output_sections(Output_file* of) const
5109 {
5110 for (Section_list::const_iterator p = this->section_list_.begin();
5111 p != this->section_list_.end();
5112 ++p)
5113 {
5114 if (!(*p)->after_input_sections())
5115 (*p)->write(of);
5116 }
5117 }
5118
5119 // Write out data not associated with a section or the symbol table.
5120
5121 void
5122 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5123 {
5124 if (!parameters->options().strip_all())
5125 {
5126 const Output_section* symtab_section = this->symtab_section_;
5127 for (Section_list::const_iterator p = this->section_list_.begin();
5128 p != this->section_list_.end();
5129 ++p)
5130 {
5131 if ((*p)->needs_symtab_index())
5132 {
5133 gold_assert(symtab_section != NULL);
5134 unsigned int index = (*p)->symtab_index();
5135 gold_assert(index > 0 && index != -1U);
5136 off_t off = (symtab_section->offset()
5137 + index * symtab_section->entsize());
5138 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5139 }
5140 }
5141 }
5142
5143 const Output_section* dynsym_section = this->dynsym_section_;
5144 for (Section_list::const_iterator p = this->section_list_.begin();
5145 p != this->section_list_.end();
5146 ++p)
5147 {
5148 if ((*p)->needs_dynsym_index())
5149 {
5150 gold_assert(dynsym_section != NULL);
5151 unsigned int index = (*p)->dynsym_index();
5152 gold_assert(index > 0 && index != -1U);
5153 off_t off = (dynsym_section->offset()
5154 + index * dynsym_section->entsize());
5155 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5156 }
5157 }
5158
5159 // Write out the Output_data which are not in an Output_section.
5160 for (Data_list::const_iterator p = this->special_output_list_.begin();
5161 p != this->special_output_list_.end();
5162 ++p)
5163 (*p)->write(of);
5164 }
5165
5166 // Write out the Output_sections which can only be written after the
5167 // input sections are complete.
5168
5169 void
5170 Layout::write_sections_after_input_sections(Output_file* of)
5171 {
5172 // Determine the final section offsets, and thus the final output
5173 // file size. Note we finalize the .shstrab last, to allow the
5174 // after_input_section sections to modify their section-names before
5175 // writing.
5176 if (this->any_postprocessing_sections_)
5177 {
5178 off_t off = this->output_file_size_;
5179 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5180
5181 // Now that we've finalized the names, we can finalize the shstrab.
5182 off =
5183 this->set_section_offsets(off,
5184 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5185
5186 if (off > this->output_file_size_)
5187 {
5188 of->resize(off);
5189 this->output_file_size_ = off;
5190 }
5191 }
5192
5193 for (Section_list::const_iterator p = this->section_list_.begin();
5194 p != this->section_list_.end();
5195 ++p)
5196 {
5197 if ((*p)->after_input_sections())
5198 (*p)->write(of);
5199 }
5200
5201 this->section_headers_->write(of);
5202 }
5203
5204 // If the build ID requires computing a checksum, do so here, and
5205 // write it out. We compute a checksum over the entire file because
5206 // that is simplest.
5207
5208 void
5209 Layout::write_build_id(Output_file* of) const
5210 {
5211 if (this->build_id_note_ == NULL)
5212 return;
5213
5214 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5215
5216 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5217 this->build_id_note_->data_size());
5218
5219 const char* style = parameters->options().build_id();
5220 if (strcmp(style, "sha1") == 0)
5221 {
5222 sha1_ctx ctx;
5223 sha1_init_ctx(&ctx);
5224 sha1_process_bytes(iv, this->output_file_size_, &ctx);
5225 sha1_finish_ctx(&ctx, ov);
5226 }
5227 else if (strcmp(style, "md5") == 0)
5228 {
5229 md5_ctx ctx;
5230 md5_init_ctx(&ctx);
5231 md5_process_bytes(iv, this->output_file_size_, &ctx);
5232 md5_finish_ctx(&ctx, ov);
5233 }
5234 else
5235 gold_unreachable();
5236
5237 of->write_output_view(this->build_id_note_->offset(),
5238 this->build_id_note_->data_size(),
5239 ov);
5240
5241 of->free_input_view(0, this->output_file_size_, iv);
5242 }
5243
5244 // Write out a binary file. This is called after the link is
5245 // complete. IN is the temporary output file we used to generate the
5246 // ELF code. We simply walk through the segments, read them from
5247 // their file offset in IN, and write them to their load address in
5248 // the output file. FIXME: with a bit more work, we could support
5249 // S-records and/or Intel hex format here.
5250
5251 void
5252 Layout::write_binary(Output_file* in) const
5253 {
5254 gold_assert(parameters->options().oformat_enum()
5255 == General_options::OBJECT_FORMAT_BINARY);
5256
5257 // Get the size of the binary file.
5258 uint64_t max_load_address = 0;
5259 for (Segment_list::const_iterator p = this->segment_list_.begin();
5260 p != this->segment_list_.end();
5261 ++p)
5262 {
5263 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5264 {
5265 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5266 if (max_paddr > max_load_address)
5267 max_load_address = max_paddr;
5268 }
5269 }
5270
5271 Output_file out(parameters->options().output_file_name());
5272 out.open(max_load_address);
5273
5274 for (Segment_list::const_iterator p = this->segment_list_.begin();
5275 p != this->segment_list_.end();
5276 ++p)
5277 {
5278 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5279 {
5280 const unsigned char* vin = in->get_input_view((*p)->offset(),
5281 (*p)->filesz());
5282 unsigned char* vout = out.get_output_view((*p)->paddr(),
5283 (*p)->filesz());
5284 memcpy(vout, vin, (*p)->filesz());
5285 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5286 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5287 }
5288 }
5289
5290 out.close();
5291 }
5292
5293 // Print the output sections to the map file.
5294
5295 void
5296 Layout::print_to_mapfile(Mapfile* mapfile) const
5297 {
5298 for (Segment_list::const_iterator p = this->segment_list_.begin();
5299 p != this->segment_list_.end();
5300 ++p)
5301 (*p)->print_sections_to_mapfile(mapfile);
5302 }
5303
5304 // Print statistical information to stderr. This is used for --stats.
5305
5306 void
5307 Layout::print_stats() const
5308 {
5309 this->namepool_.print_stats("section name pool");
5310 this->sympool_.print_stats("output symbol name pool");
5311 this->dynpool_.print_stats("dynamic name pool");
5312
5313 for (Section_list::const_iterator p = this->section_list_.begin();
5314 p != this->section_list_.end();
5315 ++p)
5316 (*p)->print_merge_stats();
5317 }
5318
5319 // Write_sections_task methods.
5320
5321 // We can always run this task.
5322
5323 Task_token*
5324 Write_sections_task::is_runnable()
5325 {
5326 return NULL;
5327 }
5328
5329 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5330 // when finished.
5331
5332 void
5333 Write_sections_task::locks(Task_locker* tl)
5334 {
5335 tl->add(this, this->output_sections_blocker_);
5336 tl->add(this, this->final_blocker_);
5337 }
5338
5339 // Run the task--write out the data.
5340
5341 void
5342 Write_sections_task::run(Workqueue*)
5343 {
5344 this->layout_->write_output_sections(this->of_);
5345 }
5346
5347 // Write_data_task methods.
5348
5349 // We can always run this task.
5350
5351 Task_token*
5352 Write_data_task::is_runnable()
5353 {
5354 return NULL;
5355 }
5356
5357 // We need to unlock FINAL_BLOCKER when finished.
5358
5359 void
5360 Write_data_task::locks(Task_locker* tl)
5361 {
5362 tl->add(this, this->final_blocker_);
5363 }
5364
5365 // Run the task--write out the data.
5366
5367 void
5368 Write_data_task::run(Workqueue*)
5369 {
5370 this->layout_->write_data(this->symtab_, this->of_);
5371 }
5372
5373 // Write_symbols_task methods.
5374
5375 // We can always run this task.
5376
5377 Task_token*
5378 Write_symbols_task::is_runnable()
5379 {
5380 return NULL;
5381 }
5382
5383 // We need to unlock FINAL_BLOCKER when finished.
5384
5385 void
5386 Write_symbols_task::locks(Task_locker* tl)
5387 {
5388 tl->add(this, this->final_blocker_);
5389 }
5390
5391 // Run the task--write out the symbols.
5392
5393 void
5394 Write_symbols_task::run(Workqueue*)
5395 {
5396 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5397 this->layout_->symtab_xindex(),
5398 this->layout_->dynsym_xindex(), this->of_);
5399 }
5400
5401 // Write_after_input_sections_task methods.
5402
5403 // We can only run this task after the input sections have completed.
5404
5405 Task_token*
5406 Write_after_input_sections_task::is_runnable()
5407 {
5408 if (this->input_sections_blocker_->is_blocked())
5409 return this->input_sections_blocker_;
5410 return NULL;
5411 }
5412
5413 // We need to unlock FINAL_BLOCKER when finished.
5414
5415 void
5416 Write_after_input_sections_task::locks(Task_locker* tl)
5417 {
5418 tl->add(this, this->final_blocker_);
5419 }
5420
5421 // Run the task.
5422
5423 void
5424 Write_after_input_sections_task::run(Workqueue*)
5425 {
5426 this->layout_->write_sections_after_input_sections(this->of_);
5427 }
5428
5429 // Close_task_runner methods.
5430
5431 // Run the task--close the file.
5432
5433 void
5434 Close_task_runner::run(Workqueue*, const Task*)
5435 {
5436 // If we need to compute a checksum for the BUILD if, we do so here.
5437 this->layout_->write_build_id(this->of_);
5438
5439 // If we've been asked to create a binary file, we do so here.
5440 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5441 this->layout_->write_binary(this->of_);
5442
5443 this->of_->close();
5444 }
5445
5446 // Instantiate the templates we need. We could use the configure
5447 // script to restrict this to only the ones for implemented targets.
5448
5449 #ifdef HAVE_TARGET_32_LITTLE
5450 template
5451 Output_section*
5452 Layout::init_fixed_output_section<32, false>(
5453 const char* name,
5454 elfcpp::Shdr<32, false>& shdr);
5455 #endif
5456
5457 #ifdef HAVE_TARGET_32_BIG
5458 template
5459 Output_section*
5460 Layout::init_fixed_output_section<32, true>(
5461 const char* name,
5462 elfcpp::Shdr<32, true>& shdr);
5463 #endif
5464
5465 #ifdef HAVE_TARGET_64_LITTLE
5466 template
5467 Output_section*
5468 Layout::init_fixed_output_section<64, false>(
5469 const char* name,
5470 elfcpp::Shdr<64, false>& shdr);
5471 #endif
5472
5473 #ifdef HAVE_TARGET_64_BIG
5474 template
5475 Output_section*
5476 Layout::init_fixed_output_section<64, true>(
5477 const char* name,
5478 elfcpp::Shdr<64, true>& shdr);
5479 #endif
5480
5481 #ifdef HAVE_TARGET_32_LITTLE
5482 template
5483 Output_section*
5484 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5485 unsigned int shndx,
5486 const char* name,
5487 const elfcpp::Shdr<32, false>& shdr,
5488 unsigned int, unsigned int, off_t*);
5489 #endif
5490
5491 #ifdef HAVE_TARGET_32_BIG
5492 template
5493 Output_section*
5494 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5495 unsigned int shndx,
5496 const char* name,
5497 const elfcpp::Shdr<32, true>& shdr,
5498 unsigned int, unsigned int, off_t*);
5499 #endif
5500
5501 #ifdef HAVE_TARGET_64_LITTLE
5502 template
5503 Output_section*
5504 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5505 unsigned int shndx,
5506 const char* name,
5507 const elfcpp::Shdr<64, false>& shdr,
5508 unsigned int, unsigned int, off_t*);
5509 #endif
5510
5511 #ifdef HAVE_TARGET_64_BIG
5512 template
5513 Output_section*
5514 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5515 unsigned int shndx,
5516 const char* name,
5517 const elfcpp::Shdr<64, true>& shdr,
5518 unsigned int, unsigned int, off_t*);
5519 #endif
5520
5521 #ifdef HAVE_TARGET_32_LITTLE
5522 template
5523 Output_section*
5524 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5525 unsigned int reloc_shndx,
5526 const elfcpp::Shdr<32, false>& shdr,
5527 Output_section* data_section,
5528 Relocatable_relocs* rr);
5529 #endif
5530
5531 #ifdef HAVE_TARGET_32_BIG
5532 template
5533 Output_section*
5534 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5535 unsigned int reloc_shndx,
5536 const elfcpp::Shdr<32, true>& shdr,
5537 Output_section* data_section,
5538 Relocatable_relocs* rr);
5539 #endif
5540
5541 #ifdef HAVE_TARGET_64_LITTLE
5542 template
5543 Output_section*
5544 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5545 unsigned int reloc_shndx,
5546 const elfcpp::Shdr<64, false>& shdr,
5547 Output_section* data_section,
5548 Relocatable_relocs* rr);
5549 #endif
5550
5551 #ifdef HAVE_TARGET_64_BIG
5552 template
5553 Output_section*
5554 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5555 unsigned int reloc_shndx,
5556 const elfcpp::Shdr<64, true>& shdr,
5557 Output_section* data_section,
5558 Relocatable_relocs* rr);
5559 #endif
5560
5561 #ifdef HAVE_TARGET_32_LITTLE
5562 template
5563 void
5564 Layout::layout_group<32, false>(Symbol_table* symtab,
5565 Sized_relobj_file<32, false>* object,
5566 unsigned int,
5567 const char* group_section_name,
5568 const char* signature,
5569 const elfcpp::Shdr<32, false>& shdr,
5570 elfcpp::Elf_Word flags,
5571 std::vector<unsigned int>* shndxes);
5572 #endif
5573
5574 #ifdef HAVE_TARGET_32_BIG
5575 template
5576 void
5577 Layout::layout_group<32, true>(Symbol_table* symtab,
5578 Sized_relobj_file<32, true>* object,
5579 unsigned int,
5580 const char* group_section_name,
5581 const char* signature,
5582 const elfcpp::Shdr<32, true>& shdr,
5583 elfcpp::Elf_Word flags,
5584 std::vector<unsigned int>* shndxes);
5585 #endif
5586
5587 #ifdef HAVE_TARGET_64_LITTLE
5588 template
5589 void
5590 Layout::layout_group<64, false>(Symbol_table* symtab,
5591 Sized_relobj_file<64, false>* object,
5592 unsigned int,
5593 const char* group_section_name,
5594 const char* signature,
5595 const elfcpp::Shdr<64, false>& shdr,
5596 elfcpp::Elf_Word flags,
5597 std::vector<unsigned int>* shndxes);
5598 #endif
5599
5600 #ifdef HAVE_TARGET_64_BIG
5601 template
5602 void
5603 Layout::layout_group<64, true>(Symbol_table* symtab,
5604 Sized_relobj_file<64, true>* object,
5605 unsigned int,
5606 const char* group_section_name,
5607 const char* signature,
5608 const elfcpp::Shdr<64, true>& shdr,
5609 elfcpp::Elf_Word flags,
5610 std::vector<unsigned int>* shndxes);
5611 #endif
5612
5613 #ifdef HAVE_TARGET_32_LITTLE
5614 template
5615 Output_section*
5616 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5617 const unsigned char* symbols,
5618 off_t symbols_size,
5619 const unsigned char* symbol_names,
5620 off_t symbol_names_size,
5621 unsigned int shndx,
5622 const elfcpp::Shdr<32, false>& shdr,
5623 unsigned int reloc_shndx,
5624 unsigned int reloc_type,
5625 off_t* off);
5626 #endif
5627
5628 #ifdef HAVE_TARGET_32_BIG
5629 template
5630 Output_section*
5631 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5632 const unsigned char* symbols,
5633 off_t symbols_size,
5634 const unsigned char* symbol_names,
5635 off_t symbol_names_size,
5636 unsigned int shndx,
5637 const elfcpp::Shdr<32, true>& shdr,
5638 unsigned int reloc_shndx,
5639 unsigned int reloc_type,
5640 off_t* off);
5641 #endif
5642
5643 #ifdef HAVE_TARGET_64_LITTLE
5644 template
5645 Output_section*
5646 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5647 const unsigned char* symbols,
5648 off_t symbols_size,
5649 const unsigned char* symbol_names,
5650 off_t symbol_names_size,
5651 unsigned int shndx,
5652 const elfcpp::Shdr<64, false>& shdr,
5653 unsigned int reloc_shndx,
5654 unsigned int reloc_type,
5655 off_t* off);
5656 #endif
5657
5658 #ifdef HAVE_TARGET_64_BIG
5659 template
5660 Output_section*
5661 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5662 const unsigned char* symbols,
5663 off_t symbols_size,
5664 const unsigned char* symbol_names,
5665 off_t symbol_names_size,
5666 unsigned int shndx,
5667 const elfcpp::Shdr<64, true>& shdr,
5668 unsigned int reloc_shndx,
5669 unsigned int reloc_type,
5670 off_t* off);
5671 #endif
5672
5673 #ifdef HAVE_TARGET_32_LITTLE
5674 template
5675 void
5676 Layout::add_to_gdb_index(bool is_type_unit,
5677 Sized_relobj<32, false>* object,
5678 const unsigned char* symbols,
5679 off_t symbols_size,
5680 unsigned int shndx,
5681 unsigned int reloc_shndx,
5682 unsigned int reloc_type);
5683 #endif
5684
5685 #ifdef HAVE_TARGET_32_BIG
5686 template
5687 void
5688 Layout::add_to_gdb_index(bool is_type_unit,
5689 Sized_relobj<32, true>* object,
5690 const unsigned char* symbols,
5691 off_t symbols_size,
5692 unsigned int shndx,
5693 unsigned int reloc_shndx,
5694 unsigned int reloc_type);
5695 #endif
5696
5697 #ifdef HAVE_TARGET_64_LITTLE
5698 template
5699 void
5700 Layout::add_to_gdb_index(bool is_type_unit,
5701 Sized_relobj<64, false>* object,
5702 const unsigned char* symbols,
5703 off_t symbols_size,
5704 unsigned int shndx,
5705 unsigned int reloc_shndx,
5706 unsigned int reloc_type);
5707 #endif
5708
5709 #ifdef HAVE_TARGET_64_BIG
5710 template
5711 void
5712 Layout::add_to_gdb_index(bool is_type_unit,
5713 Sized_relobj<64, true>* object,
5714 const unsigned char* symbols,
5715 off_t symbols_size,
5716 unsigned int shndx,
5717 unsigned int reloc_shndx,
5718 unsigned int reloc_type);
5719 #endif
5720
5721 } // End namespace gold.
This page took 0.251177 seconds and 4 git commands to generate.