* dynobj.h (Dynobj::do_dynobj): New function.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Class Free_list.
59
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists = 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes = 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes = 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits = 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates = 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits = 0;
72
73 // Initialize the free list. Creates a single free list node that
74 // describes the entire region of length LEN. If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
76 // length.
77
78 void
79 Free_list::init(off_t len, bool extend)
80 {
81 this->list_.push_front(Free_list_node(0, len));
82 this->last_remove_ = this->list_.begin();
83 this->extend_ = extend;
84 this->length_ = len;
85 ++Free_list::num_lists;
86 ++Free_list::num_nodes;
87 }
88
89 // Remove a chunk from the free list. Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node. We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
96 // performance.
97
98 void
99 Free_list::remove(off_t start, off_t end)
100 {
101 if (start == end)
102 return;
103 gold_assert(start < end);
104
105 ++Free_list::num_removes;
106
107 Iterator p = this->last_remove_;
108 if (p->start_ > start)
109 p = this->list_.begin();
110
111 for (; p != this->list_.end(); ++p)
112 {
113 ++Free_list::num_remove_visits;
114 // Find a node that wholly contains the indicated region.
115 if (p->start_ <= start && p->end_ >= end)
116 {
117 // Case 1: the indicated region spans the whole node.
118 // Add some fuzz to avoid creating tiny free chunks.
119 if (p->start_ + 3 >= start && p->end_ <= end + 3)
120 p = this->list_.erase(p);
121 // Case 2: remove a chunk from the start of the node.
122 else if (p->start_ + 3 >= start)
123 p->start_ = end;
124 // Case 3: remove a chunk from the end of the node.
125 else if (p->end_ <= end + 3)
126 p->end_ = start;
127 // Case 4: remove a chunk from the middle, and split
128 // the node into two.
129 else
130 {
131 Free_list_node newnode(p->start_, start);
132 p->start_ = end;
133 this->list_.insert(p, newnode);
134 ++Free_list::num_nodes;
135 }
136 this->last_remove_ = p;
137 return;
138 }
139 }
140
141 // Did not find a node containing the given chunk. This could happen
142 // because a small chunk was already removed due to the fuzz.
143 gold_debug(DEBUG_INCREMENTAL,
144 "Free_list::remove(%d,%d) not found",
145 static_cast<int>(start), static_cast<int>(end));
146 }
147
148 // Allocate a chunk of size LEN from the free list. Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
151
152 off_t
153 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
154 {
155 gold_debug(DEBUG_INCREMENTAL,
156 "Free_list::allocate(%08lx, %d, %08lx)",
157 static_cast<long>(len), static_cast<int>(align),
158 static_cast<long>(minoff));
159 if (len == 0)
160 return align_address(minoff, align);
161
162 ++Free_list::num_allocates;
163
164 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
165 {
166 ++Free_list::num_allocate_visits;
167 off_t start = p->start_ > minoff ? p->start_ : minoff;
168 start = align_address(start, align);
169 off_t end = start + len;
170 if (end <= p->end_)
171 {
172 if (p->start_ + 3 >= start && p->end_ <= end + 3)
173 this->list_.erase(p);
174 else if (p->start_ + 3 >= start)
175 p->start_ = end;
176 else if (p->end_ <= end + 3)
177 p->end_ = start;
178 else
179 {
180 Free_list_node newnode(p->start_, start);
181 p->start_ = end;
182 this->list_.insert(p, newnode);
183 ++Free_list::num_nodes;
184 }
185 return start;
186 }
187 }
188 return -1;
189 }
190
191 // Dump the free list (for debugging).
192 void
193 Free_list::dump()
194 {
195 gold_info("Free list:\n start end length\n");
196 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
197 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
198 static_cast<long>(p->end_),
199 static_cast<long>(p->end_ - p->start_));
200 }
201
202 // Print the statistics for the free lists.
203 void
204 Free_list::print_stats()
205 {
206 fprintf(stderr, _("%s: total free lists: %u\n"),
207 program_name, Free_list::num_lists);
208 fprintf(stderr, _("%s: total free list nodes: %u\n"),
209 program_name, Free_list::num_nodes);
210 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
211 program_name, Free_list::num_removes);
212 fprintf(stderr, _("%s: nodes visited: %u\n"),
213 program_name, Free_list::num_remove_visits);
214 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
215 program_name, Free_list::num_allocates);
216 fprintf(stderr, _("%s: nodes visited: %u\n"),
217 program_name, Free_list::num_allocate_visits);
218 }
219
220 // Layout::Relaxation_debug_check methods.
221
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
226 void
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228 const Layout::Section_list& sections,
229 const Layout::Data_list& special_outputs)
230 {
231 for(Layout::Section_list::const_iterator p = sections.begin();
232 p != sections.end();
233 ++p)
234 gold_assert((*p)->address_and_file_offset_have_reset_values());
235
236 for(Layout::Data_list::const_iterator p = special_outputs.begin();
237 p != special_outputs.end();
238 ++p)
239 gold_assert((*p)->address_and_file_offset_have_reset_values());
240 }
241
242 // Save information of SECTIONS for checking later.
243
244 void
245 Layout::Relaxation_debug_check::read_sections(
246 const Layout::Section_list& sections)
247 {
248 for(Layout::Section_list::const_iterator p = sections.begin();
249 p != sections.end();
250 ++p)
251 {
252 Output_section* os = *p;
253 Section_info info;
254 info.output_section = os;
255 info.address = os->is_address_valid() ? os->address() : 0;
256 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
257 info.offset = os->is_offset_valid()? os->offset() : -1 ;
258 this->section_infos_.push_back(info);
259 }
260 }
261
262 // Verify SECTIONS using previously recorded information.
263
264 void
265 Layout::Relaxation_debug_check::verify_sections(
266 const Layout::Section_list& sections)
267 {
268 size_t i = 0;
269 for(Layout::Section_list::const_iterator p = sections.begin();
270 p != sections.end();
271 ++p, ++i)
272 {
273 Output_section* os = *p;
274 uint64_t address = os->is_address_valid() ? os->address() : 0;
275 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
277
278 if (i >= this->section_infos_.size())
279 {
280 gold_fatal("Section_info of %s missing.\n", os->name());
281 }
282 const Section_info& info = this->section_infos_[i];
283 if (os != info.output_section)
284 gold_fatal("Section order changed. Expecting %s but see %s\n",
285 info.output_section->name(), os->name());
286 if (address != info.address
287 || data_size != info.data_size
288 || offset != info.offset)
289 gold_fatal("Section %s changed.\n", os->name());
290 }
291 }
292
293 // Layout_task_runner methods.
294
295 // Lay out the sections. This is called after all the input objects
296 // have been read.
297
298 void
299 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
300 {
301 Layout* layout = this->layout_;
302 off_t file_size = layout->finalize(this->input_objects_,
303 this->symtab_,
304 this->target_,
305 task);
306
307 // Now we know the final size of the output file and we know where
308 // each piece of information goes.
309
310 if (this->mapfile_ != NULL)
311 {
312 this->mapfile_->print_discarded_sections(this->input_objects_);
313 layout->print_to_mapfile(this->mapfile_);
314 }
315
316 Output_file* of;
317 if (layout->incremental_base() == NULL)
318 {
319 of = new Output_file(parameters->options().output_file_name());
320 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
321 of->set_is_temporary();
322 of->open(file_size);
323 }
324 else
325 {
326 of = layout->incremental_base()->output_file();
327
328 // Apply the incremental relocations for symbols whose values
329 // have changed. We do this before we resize the file and start
330 // writing anything else to it, so that we can read the old
331 // incremental information from the file before (possibly)
332 // overwriting it.
333 if (parameters->incremental_update())
334 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
335 this->layout_,
336 of);
337
338 of->resize(file_size);
339 }
340
341 // Queue up the final set of tasks.
342 gold::queue_final_tasks(this->options_, this->input_objects_,
343 this->symtab_, layout, workqueue, of);
344 }
345
346 // Layout methods.
347
348 Layout::Layout(int number_of_input_files, Script_options* script_options)
349 : number_of_input_files_(number_of_input_files),
350 script_options_(script_options),
351 namepool_(),
352 sympool_(),
353 dynpool_(),
354 signatures_(),
355 section_name_map_(),
356 segment_list_(),
357 section_list_(),
358 unattached_section_list_(),
359 special_output_list_(),
360 section_headers_(NULL),
361 tls_segment_(NULL),
362 relro_segment_(NULL),
363 increase_relro_(0),
364 symtab_section_(NULL),
365 symtab_xindex_(NULL),
366 dynsym_section_(NULL),
367 dynsym_xindex_(NULL),
368 dynamic_section_(NULL),
369 dynamic_symbol_(NULL),
370 dynamic_data_(NULL),
371 eh_frame_section_(NULL),
372 eh_frame_data_(NULL),
373 added_eh_frame_data_(false),
374 eh_frame_hdr_section_(NULL),
375 build_id_note_(NULL),
376 debug_abbrev_(NULL),
377 debug_info_(NULL),
378 group_signatures_(),
379 output_file_size_(-1),
380 have_added_input_section_(false),
381 sections_are_attached_(false),
382 input_requires_executable_stack_(false),
383 input_with_gnu_stack_note_(false),
384 input_without_gnu_stack_note_(false),
385 has_static_tls_(false),
386 any_postprocessing_sections_(false),
387 resized_signatures_(false),
388 have_stabstr_section_(false),
389 incremental_inputs_(NULL),
390 record_output_section_data_from_script_(false),
391 script_output_section_data_list_(),
392 segment_states_(NULL),
393 relaxation_debug_check_(NULL),
394 incremental_base_(NULL),
395 free_list_()
396 {
397 // Make space for more than enough segments for a typical file.
398 // This is just for efficiency--it's OK if we wind up needing more.
399 this->segment_list_.reserve(12);
400
401 // We expect two unattached Output_data objects: the file header and
402 // the segment headers.
403 this->special_output_list_.reserve(2);
404
405 // Initialize structure needed for an incremental build.
406 if (parameters->incremental())
407 this->incremental_inputs_ = new Incremental_inputs;
408
409 // The section name pool is worth optimizing in all cases, because
410 // it is small, but there are often overlaps due to .rel sections.
411 this->namepool_.set_optimize();
412 }
413
414 // For incremental links, record the base file to be modified.
415
416 void
417 Layout::set_incremental_base(Incremental_binary* base)
418 {
419 this->incremental_base_ = base;
420 this->free_list_.init(base->output_file()->filesize(), true);
421 }
422
423 // Hash a key we use to look up an output section mapping.
424
425 size_t
426 Layout::Hash_key::operator()(const Layout::Key& k) const
427 {
428 return k.first + k.second.first + k.second.second;
429 }
430
431 // Returns whether the given section is in the list of
432 // debug-sections-used-by-some-version-of-gdb. Currently,
433 // we've checked versions of gdb up to and including 6.7.1.
434
435 static const char* gdb_sections[] =
436 { ".debug_abbrev",
437 // ".debug_aranges", // not used by gdb as of 6.7.1
438 ".debug_frame",
439 ".debug_info",
440 ".debug_types",
441 ".debug_line",
442 ".debug_loc",
443 ".debug_macinfo",
444 // ".debug_pubnames", // not used by gdb as of 6.7.1
445 ".debug_ranges",
446 ".debug_str",
447 };
448
449 static const char* lines_only_debug_sections[] =
450 { ".debug_abbrev",
451 // ".debug_aranges", // not used by gdb as of 6.7.1
452 // ".debug_frame",
453 ".debug_info",
454 // ".debug_types",
455 ".debug_line",
456 // ".debug_loc",
457 // ".debug_macinfo",
458 // ".debug_pubnames", // not used by gdb as of 6.7.1
459 // ".debug_ranges",
460 ".debug_str",
461 };
462
463 static inline bool
464 is_gdb_debug_section(const char* str)
465 {
466 // We can do this faster: binary search or a hashtable. But why bother?
467 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
468 if (strcmp(str, gdb_sections[i]) == 0)
469 return true;
470 return false;
471 }
472
473 static inline bool
474 is_lines_only_debug_section(const char* str)
475 {
476 // We can do this faster: binary search or a hashtable. But why bother?
477 for (size_t i = 0;
478 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
479 ++i)
480 if (strcmp(str, lines_only_debug_sections[i]) == 0)
481 return true;
482 return false;
483 }
484
485 // Sometimes we compress sections. This is typically done for
486 // sections that are not part of normal program execution (such as
487 // .debug_* sections), and where the readers of these sections know
488 // how to deal with compressed sections. This routine doesn't say for
489 // certain whether we'll compress -- it depends on commandline options
490 // as well -- just whether this section is a candidate for compression.
491 // (The Output_compressed_section class decides whether to compress
492 // a given section, and picks the name of the compressed section.)
493
494 static bool
495 is_compressible_debug_section(const char* secname)
496 {
497 return (is_prefix_of(".debug", secname));
498 }
499
500 // We may see compressed debug sections in input files. Return TRUE
501 // if this is the name of a compressed debug section.
502
503 bool
504 is_compressed_debug_section(const char* secname)
505 {
506 return (is_prefix_of(".zdebug", secname));
507 }
508
509 // Whether to include this section in the link.
510
511 template<int size, bool big_endian>
512 bool
513 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
514 const elfcpp::Shdr<size, big_endian>& shdr)
515 {
516 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
517 return false;
518
519 switch (shdr.get_sh_type())
520 {
521 case elfcpp::SHT_NULL:
522 case elfcpp::SHT_SYMTAB:
523 case elfcpp::SHT_DYNSYM:
524 case elfcpp::SHT_HASH:
525 case elfcpp::SHT_DYNAMIC:
526 case elfcpp::SHT_SYMTAB_SHNDX:
527 return false;
528
529 case elfcpp::SHT_STRTAB:
530 // Discard the sections which have special meanings in the ELF
531 // ABI. Keep others (e.g., .stabstr). We could also do this by
532 // checking the sh_link fields of the appropriate sections.
533 return (strcmp(name, ".dynstr") != 0
534 && strcmp(name, ".strtab") != 0
535 && strcmp(name, ".shstrtab") != 0);
536
537 case elfcpp::SHT_RELA:
538 case elfcpp::SHT_REL:
539 case elfcpp::SHT_GROUP:
540 // If we are emitting relocations these should be handled
541 // elsewhere.
542 gold_assert(!parameters->options().relocatable()
543 && !parameters->options().emit_relocs());
544 return false;
545
546 case elfcpp::SHT_PROGBITS:
547 if (parameters->options().strip_debug()
548 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
549 {
550 if (is_debug_info_section(name))
551 return false;
552 }
553 if (parameters->options().strip_debug_non_line()
554 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
555 {
556 // Debugging sections can only be recognized by name.
557 if (is_prefix_of(".debug", name)
558 && !is_lines_only_debug_section(name))
559 return false;
560 }
561 if (parameters->options().strip_debug_gdb()
562 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
563 {
564 // Debugging sections can only be recognized by name.
565 if (is_prefix_of(".debug", name)
566 && !is_gdb_debug_section(name))
567 return false;
568 }
569 if (parameters->options().strip_lto_sections()
570 && !parameters->options().relocatable()
571 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
572 {
573 // Ignore LTO sections containing intermediate code.
574 if (is_prefix_of(".gnu.lto_", name))
575 return false;
576 }
577 // The GNU linker strips .gnu_debuglink sections, so we do too.
578 // This is a feature used to keep debugging information in
579 // separate files.
580 if (strcmp(name, ".gnu_debuglink") == 0)
581 return false;
582 return true;
583
584 default:
585 return true;
586 }
587 }
588
589 // Return an output section named NAME, or NULL if there is none.
590
591 Output_section*
592 Layout::find_output_section(const char* name) const
593 {
594 for (Section_list::const_iterator p = this->section_list_.begin();
595 p != this->section_list_.end();
596 ++p)
597 if (strcmp((*p)->name(), name) == 0)
598 return *p;
599 return NULL;
600 }
601
602 // Return an output segment of type TYPE, with segment flags SET set
603 // and segment flags CLEAR clear. Return NULL if there is none.
604
605 Output_segment*
606 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
607 elfcpp::Elf_Word clear) const
608 {
609 for (Segment_list::const_iterator p = this->segment_list_.begin();
610 p != this->segment_list_.end();
611 ++p)
612 if (static_cast<elfcpp::PT>((*p)->type()) == type
613 && ((*p)->flags() & set) == set
614 && ((*p)->flags() & clear) == 0)
615 return *p;
616 return NULL;
617 }
618
619 // Return the output section to use for section NAME with type TYPE
620 // and section flags FLAGS. NAME must be canonicalized in the string
621 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
622 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
623 // is used by the dynamic linker. IS_RELRO is true for a relro
624 // section. IS_LAST_RELRO is true for the last relro section.
625 // IS_FIRST_NON_RELRO is true for the first non-relro section.
626
627 Output_section*
628 Layout::get_output_section(const char* name, Stringpool::Key name_key,
629 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
630 Output_section_order order, bool is_relro)
631 {
632 elfcpp::Elf_Xword lookup_flags = flags;
633
634 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
635 // read-write with read-only sections. Some other ELF linkers do
636 // not do this. FIXME: Perhaps there should be an option
637 // controlling this.
638 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
639
640 const Key key(name_key, std::make_pair(type, lookup_flags));
641 const std::pair<Key, Output_section*> v(key, NULL);
642 std::pair<Section_name_map::iterator, bool> ins(
643 this->section_name_map_.insert(v));
644
645 if (!ins.second)
646 return ins.first->second;
647 else
648 {
649 // This is the first time we've seen this name/type/flags
650 // combination. For compatibility with the GNU linker, we
651 // combine sections with contents and zero flags with sections
652 // with non-zero flags. This is a workaround for cases where
653 // assembler code forgets to set section flags. FIXME: Perhaps
654 // there should be an option to control this.
655 Output_section* os = NULL;
656
657 if (type == elfcpp::SHT_PROGBITS)
658 {
659 if (flags == 0)
660 {
661 Output_section* same_name = this->find_output_section(name);
662 if (same_name != NULL
663 && same_name->type() == elfcpp::SHT_PROGBITS
664 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
665 os = same_name;
666 }
667 else if ((flags & elfcpp::SHF_TLS) == 0)
668 {
669 elfcpp::Elf_Xword zero_flags = 0;
670 const Key zero_key(name_key, std::make_pair(type, zero_flags));
671 Section_name_map::iterator p =
672 this->section_name_map_.find(zero_key);
673 if (p != this->section_name_map_.end())
674 os = p->second;
675 }
676 }
677
678 if (os == NULL)
679 os = this->make_output_section(name, type, flags, order, is_relro);
680
681 ins.first->second = os;
682 return os;
683 }
684 }
685
686 // Pick the output section to use for section NAME, in input file
687 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
688 // linker created section. IS_INPUT_SECTION is true if we are
689 // choosing an output section for an input section found in a input
690 // file. IS_INTERP is true if this is the .interp section.
691 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
692 // dynamic linker. IS_RELRO is true for a relro section.
693 // IS_LAST_RELRO is true for the last relro section.
694 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
695 // will return NULL if the input section should be discarded.
696
697 Output_section*
698 Layout::choose_output_section(const Relobj* relobj, const char* name,
699 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
700 bool is_input_section, Output_section_order order,
701 bool is_relro)
702 {
703 // We should not see any input sections after we have attached
704 // sections to segments.
705 gold_assert(!is_input_section || !this->sections_are_attached_);
706
707 // Some flags in the input section should not be automatically
708 // copied to the output section.
709 flags &= ~ (elfcpp::SHF_INFO_LINK
710 | elfcpp::SHF_GROUP
711 | elfcpp::SHF_MERGE
712 | elfcpp::SHF_STRINGS);
713
714 // We only clear the SHF_LINK_ORDER flag in for
715 // a non-relocatable link.
716 if (!parameters->options().relocatable())
717 flags &= ~elfcpp::SHF_LINK_ORDER;
718
719 if (this->script_options_->saw_sections_clause())
720 {
721 // We are using a SECTIONS clause, so the output section is
722 // chosen based only on the name.
723
724 Script_sections* ss = this->script_options_->script_sections();
725 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
726 Output_section** output_section_slot;
727 Script_sections::Section_type script_section_type;
728 const char* orig_name = name;
729 name = ss->output_section_name(file_name, name, &output_section_slot,
730 &script_section_type);
731 if (name == NULL)
732 {
733 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
734 "because it is not allowed by the "
735 "SECTIONS clause of the linker script"),
736 orig_name);
737 // The SECTIONS clause says to discard this input section.
738 return NULL;
739 }
740
741 // We can only handle script section types ST_NONE and ST_NOLOAD.
742 switch (script_section_type)
743 {
744 case Script_sections::ST_NONE:
745 break;
746 case Script_sections::ST_NOLOAD:
747 flags &= elfcpp::SHF_ALLOC;
748 break;
749 default:
750 gold_unreachable();
751 }
752
753 // If this is an orphan section--one not mentioned in the linker
754 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
755 // default processing below.
756
757 if (output_section_slot != NULL)
758 {
759 if (*output_section_slot != NULL)
760 {
761 (*output_section_slot)->update_flags_for_input_section(flags);
762 return *output_section_slot;
763 }
764
765 // We don't put sections found in the linker script into
766 // SECTION_NAME_MAP_. That keeps us from getting confused
767 // if an orphan section is mapped to a section with the same
768 // name as one in the linker script.
769
770 name = this->namepool_.add(name, false, NULL);
771
772 Output_section* os = this->make_output_section(name, type, flags,
773 order, is_relro);
774
775 os->set_found_in_sections_clause();
776
777 // Special handling for NOLOAD sections.
778 if (script_section_type == Script_sections::ST_NOLOAD)
779 {
780 os->set_is_noload();
781
782 // The constructor of Output_section sets addresses of non-ALLOC
783 // sections to 0 by default. We don't want that for NOLOAD
784 // sections even if they have no SHF_ALLOC flag.
785 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
786 && os->is_address_valid())
787 {
788 gold_assert(os->address() == 0
789 && !os->is_offset_valid()
790 && !os->is_data_size_valid());
791 os->reset_address_and_file_offset();
792 }
793 }
794
795 *output_section_slot = os;
796 return os;
797 }
798 }
799
800 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
801
802 size_t len = strlen(name);
803 char* uncompressed_name = NULL;
804
805 // Compressed debug sections should be mapped to the corresponding
806 // uncompressed section.
807 if (is_compressed_debug_section(name))
808 {
809 uncompressed_name = new char[len];
810 uncompressed_name[0] = '.';
811 gold_assert(name[0] == '.' && name[1] == 'z');
812 strncpy(&uncompressed_name[1], &name[2], len - 2);
813 uncompressed_name[len - 1] = '\0';
814 len -= 1;
815 name = uncompressed_name;
816 }
817
818 // Turn NAME from the name of the input section into the name of the
819 // output section.
820 if (is_input_section
821 && !this->script_options_->saw_sections_clause()
822 && !parameters->options().relocatable())
823 name = Layout::output_section_name(name, &len);
824
825 Stringpool::Key name_key;
826 name = this->namepool_.add_with_length(name, len, true, &name_key);
827
828 if (uncompressed_name != NULL)
829 delete[] uncompressed_name;
830
831 // Find or make the output section. The output section is selected
832 // based on the section name, type, and flags.
833 return this->get_output_section(name, name_key, type, flags, order, is_relro);
834 }
835
836 // For incremental links, record the initial fixed layout of a section
837 // from the base file, and return a pointer to the Output_section.
838
839 template<int size, bool big_endian>
840 Output_section*
841 Layout::init_fixed_output_section(const char* name,
842 elfcpp::Shdr<size, big_endian>& shdr)
843 {
844 unsigned int sh_type = shdr.get_sh_type();
845
846 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
847 // All others will be created from scratch and reallocated.
848 if (sh_type != elfcpp::SHT_PROGBITS
849 && sh_type != elfcpp::SHT_NOBITS
850 && sh_type != elfcpp::SHT_NOTE)
851 return NULL;
852
853 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
854 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
855 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
856 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
857 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
858 shdr.get_sh_addralign();
859
860 // Make the output section.
861 Stringpool::Key name_key;
862 name = this->namepool_.add(name, true, &name_key);
863 Output_section* os = this->get_output_section(name, name_key, sh_type,
864 sh_flags, ORDER_INVALID, false);
865 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
866 if (sh_type != elfcpp::SHT_NOBITS)
867 this->free_list_.remove(sh_offset, sh_offset + sh_size);
868 return os;
869 }
870
871 // Return the output section to use for input section SHNDX, with name
872 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
873 // index of a relocation section which applies to this section, or 0
874 // if none, or -1U if more than one. RELOC_TYPE is the type of the
875 // relocation section if there is one. Set *OFF to the offset of this
876 // input section without the output section. Return NULL if the
877 // section should be discarded. Set *OFF to -1 if the section
878 // contents should not be written directly to the output file, but
879 // will instead receive special handling.
880
881 template<int size, bool big_endian>
882 Output_section*
883 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
884 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
885 unsigned int reloc_shndx, unsigned int, off_t* off)
886 {
887 *off = 0;
888
889 if (!this->include_section(object, name, shdr))
890 return NULL;
891
892 Output_section* os;
893
894 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
895 // correct section types. Force them here.
896 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
897 if (sh_type == elfcpp::SHT_PROGBITS)
898 {
899 static const char init_array_prefix[] = ".init_array";
900 static const char preinit_array_prefix[] = ".preinit_array";
901 static const char fini_array_prefix[] = ".fini_array";
902 static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
903 static size_t preinit_array_prefix_size =
904 sizeof(preinit_array_prefix) - 1;
905 static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
906
907 if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
908 sh_type = elfcpp::SHT_INIT_ARRAY;
909 else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
910 == 0)
911 sh_type = elfcpp::SHT_PREINIT_ARRAY;
912 else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
913 sh_type = elfcpp::SHT_FINI_ARRAY;
914 }
915
916 // In a relocatable link a grouped section must not be combined with
917 // any other sections.
918 if (parameters->options().relocatable()
919 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
920 {
921 name = this->namepool_.add(name, true, NULL);
922 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
923 ORDER_INVALID, false);
924 }
925 else
926 {
927 os = this->choose_output_section(object, name, sh_type,
928 shdr.get_sh_flags(), true,
929 ORDER_INVALID, false);
930 if (os == NULL)
931 return NULL;
932 }
933
934 // By default the GNU linker sorts input sections whose names match
935 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
936 // are sorted by name. This is used to implement constructor
937 // priority ordering. We are compatible.
938 if (!this->script_options_->saw_sections_clause()
939 && (is_prefix_of(".ctors.", name)
940 || is_prefix_of(".dtors.", name)
941 || is_prefix_of(".init_array.", name)
942 || is_prefix_of(".fini_array.", name)))
943 os->set_must_sort_attached_input_sections();
944
945 // FIXME: Handle SHF_LINK_ORDER somewhere.
946
947 elfcpp::Elf_Xword orig_flags = os->flags();
948
949 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
950 this->script_options_->saw_sections_clause());
951
952 // If the flags changed, we may have to change the order.
953 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
954 {
955 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
956 elfcpp::Elf_Xword new_flags =
957 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
958 if (orig_flags != new_flags)
959 os->set_order(this->default_section_order(os, false));
960 }
961
962 this->have_added_input_section_ = true;
963
964 return os;
965 }
966
967 // Handle a relocation section when doing a relocatable link.
968
969 template<int size, bool big_endian>
970 Output_section*
971 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
972 unsigned int,
973 const elfcpp::Shdr<size, big_endian>& shdr,
974 Output_section* data_section,
975 Relocatable_relocs* rr)
976 {
977 gold_assert(parameters->options().relocatable()
978 || parameters->options().emit_relocs());
979
980 int sh_type = shdr.get_sh_type();
981
982 std::string name;
983 if (sh_type == elfcpp::SHT_REL)
984 name = ".rel";
985 else if (sh_type == elfcpp::SHT_RELA)
986 name = ".rela";
987 else
988 gold_unreachable();
989 name += data_section->name();
990
991 // In a relocatable link relocs for a grouped section must not be
992 // combined with other reloc sections.
993 Output_section* os;
994 if (!parameters->options().relocatable()
995 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
996 os = this->choose_output_section(object, name.c_str(), sh_type,
997 shdr.get_sh_flags(), false,
998 ORDER_INVALID, false);
999 else
1000 {
1001 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1002 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1003 ORDER_INVALID, false);
1004 }
1005
1006 os->set_should_link_to_symtab();
1007 os->set_info_section(data_section);
1008
1009 Output_section_data* posd;
1010 if (sh_type == elfcpp::SHT_REL)
1011 {
1012 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1013 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1014 size,
1015 big_endian>(rr);
1016 }
1017 else if (sh_type == elfcpp::SHT_RELA)
1018 {
1019 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1020 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1021 size,
1022 big_endian>(rr);
1023 }
1024 else
1025 gold_unreachable();
1026
1027 os->add_output_section_data(posd);
1028 rr->set_output_data(posd);
1029
1030 return os;
1031 }
1032
1033 // Handle a group section when doing a relocatable link.
1034
1035 template<int size, bool big_endian>
1036 void
1037 Layout::layout_group(Symbol_table* symtab,
1038 Sized_relobj_file<size, big_endian>* object,
1039 unsigned int,
1040 const char* group_section_name,
1041 const char* signature,
1042 const elfcpp::Shdr<size, big_endian>& shdr,
1043 elfcpp::Elf_Word flags,
1044 std::vector<unsigned int>* shndxes)
1045 {
1046 gold_assert(parameters->options().relocatable());
1047 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1048 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1049 Output_section* os = this->make_output_section(group_section_name,
1050 elfcpp::SHT_GROUP,
1051 shdr.get_sh_flags(),
1052 ORDER_INVALID, false);
1053
1054 // We need to find a symbol with the signature in the symbol table.
1055 // If we don't find one now, we need to look again later.
1056 Symbol* sym = symtab->lookup(signature, NULL);
1057 if (sym != NULL)
1058 os->set_info_symndx(sym);
1059 else
1060 {
1061 // Reserve some space to minimize reallocations.
1062 if (this->group_signatures_.empty())
1063 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1064
1065 // We will wind up using a symbol whose name is the signature.
1066 // So just put the signature in the symbol name pool to save it.
1067 signature = symtab->canonicalize_name(signature);
1068 this->group_signatures_.push_back(Group_signature(os, signature));
1069 }
1070
1071 os->set_should_link_to_symtab();
1072 os->set_entsize(4);
1073
1074 section_size_type entry_count =
1075 convert_to_section_size_type(shdr.get_sh_size() / 4);
1076 Output_section_data* posd =
1077 new Output_data_group<size, big_endian>(object, entry_count, flags,
1078 shndxes);
1079 os->add_output_section_data(posd);
1080 }
1081
1082 // Special GNU handling of sections name .eh_frame. They will
1083 // normally hold exception frame data as defined by the C++ ABI
1084 // (http://codesourcery.com/cxx-abi/).
1085
1086 template<int size, bool big_endian>
1087 Output_section*
1088 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1089 const unsigned char* symbols,
1090 off_t symbols_size,
1091 const unsigned char* symbol_names,
1092 off_t symbol_names_size,
1093 unsigned int shndx,
1094 const elfcpp::Shdr<size, big_endian>& shdr,
1095 unsigned int reloc_shndx, unsigned int reloc_type,
1096 off_t* off)
1097 {
1098 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1099 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1100
1101 const char* const name = ".eh_frame";
1102 Output_section* os = this->choose_output_section(object, name,
1103 elfcpp::SHT_PROGBITS,
1104 elfcpp::SHF_ALLOC, false,
1105 ORDER_EHFRAME, false);
1106 if (os == NULL)
1107 return NULL;
1108
1109 if (this->eh_frame_section_ == NULL)
1110 {
1111 this->eh_frame_section_ = os;
1112 this->eh_frame_data_ = new Eh_frame();
1113
1114 // For incremental linking, we do not optimize .eh_frame sections
1115 // or create a .eh_frame_hdr section.
1116 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1117 {
1118 Output_section* hdr_os =
1119 this->choose_output_section(NULL, ".eh_frame_hdr",
1120 elfcpp::SHT_PROGBITS,
1121 elfcpp::SHF_ALLOC, false,
1122 ORDER_EHFRAME, false);
1123
1124 if (hdr_os != NULL)
1125 {
1126 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1127 this->eh_frame_data_);
1128 hdr_os->add_output_section_data(hdr_posd);
1129
1130 hdr_os->set_after_input_sections();
1131
1132 if (!this->script_options_->saw_phdrs_clause())
1133 {
1134 Output_segment* hdr_oseg;
1135 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1136 elfcpp::PF_R);
1137 hdr_oseg->add_output_section_to_nonload(hdr_os,
1138 elfcpp::PF_R);
1139 }
1140
1141 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1142 }
1143 }
1144 }
1145
1146 gold_assert(this->eh_frame_section_ == os);
1147
1148 if (!parameters->incremental()
1149 && this->eh_frame_data_->add_ehframe_input_section(object,
1150 symbols,
1151 symbols_size,
1152 symbol_names,
1153 symbol_names_size,
1154 shndx,
1155 reloc_shndx,
1156 reloc_type))
1157 {
1158 os->update_flags_for_input_section(shdr.get_sh_flags());
1159
1160 // A writable .eh_frame section is a RELRO section.
1161 if ((shdr.get_sh_flags() & elfcpp::SHF_WRITE) != 0)
1162 os->set_is_relro();
1163
1164 // We found a .eh_frame section we are going to optimize, so now
1165 // we can add the set of optimized sections to the output
1166 // section. We need to postpone adding this until we've found a
1167 // section we can optimize so that the .eh_frame section in
1168 // crtbegin.o winds up at the start of the output section.
1169 if (!this->added_eh_frame_data_)
1170 {
1171 os->add_output_section_data(this->eh_frame_data_);
1172 this->added_eh_frame_data_ = true;
1173 }
1174 *off = -1;
1175 }
1176 else
1177 {
1178 // We couldn't handle this .eh_frame section for some reason.
1179 // Add it as a normal section.
1180 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1181 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1182 saw_sections_clause);
1183 this->have_added_input_section_ = true;
1184 }
1185
1186 return os;
1187 }
1188
1189 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1190 // the output section.
1191
1192 Output_section*
1193 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1194 elfcpp::Elf_Xword flags,
1195 Output_section_data* posd,
1196 Output_section_order order, bool is_relro)
1197 {
1198 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1199 false, order, is_relro);
1200 if (os != NULL)
1201 os->add_output_section_data(posd);
1202 return os;
1203 }
1204
1205 // Map section flags to segment flags.
1206
1207 elfcpp::Elf_Word
1208 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1209 {
1210 elfcpp::Elf_Word ret = elfcpp::PF_R;
1211 if ((flags & elfcpp::SHF_WRITE) != 0)
1212 ret |= elfcpp::PF_W;
1213 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1214 ret |= elfcpp::PF_X;
1215 return ret;
1216 }
1217
1218 // Make a new Output_section, and attach it to segments as
1219 // appropriate. ORDER is the order in which this section should
1220 // appear in the output segment. IS_RELRO is true if this is a relro
1221 // (read-only after relocations) section.
1222
1223 Output_section*
1224 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1225 elfcpp::Elf_Xword flags,
1226 Output_section_order order, bool is_relro)
1227 {
1228 Output_section* os;
1229 if ((flags & elfcpp::SHF_ALLOC) == 0
1230 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1231 && is_compressible_debug_section(name))
1232 os = new Output_compressed_section(&parameters->options(), name, type,
1233 flags);
1234 else if ((flags & elfcpp::SHF_ALLOC) == 0
1235 && parameters->options().strip_debug_non_line()
1236 && strcmp(".debug_abbrev", name) == 0)
1237 {
1238 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1239 name, type, flags);
1240 if (this->debug_info_)
1241 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1242 }
1243 else if ((flags & elfcpp::SHF_ALLOC) == 0
1244 && parameters->options().strip_debug_non_line()
1245 && strcmp(".debug_info", name) == 0)
1246 {
1247 os = this->debug_info_ = new Output_reduced_debug_info_section(
1248 name, type, flags);
1249 if (this->debug_abbrev_)
1250 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1251 }
1252 else
1253 {
1254 // FIXME: const_cast is ugly.
1255 Target* target = const_cast<Target*>(&parameters->target());
1256 os = target->make_output_section(name, type, flags);
1257 }
1258
1259 // With -z relro, we have to recognize the special sections by name.
1260 // There is no other way.
1261 bool is_relro_local = false;
1262 if (!this->script_options_->saw_sections_clause()
1263 && parameters->options().relro()
1264 && type == elfcpp::SHT_PROGBITS
1265 && (flags & elfcpp::SHF_ALLOC) != 0
1266 && (flags & elfcpp::SHF_WRITE) != 0)
1267 {
1268 if (strcmp(name, ".data.rel.ro") == 0)
1269 is_relro = true;
1270 else if (strcmp(name, ".data.rel.ro.local") == 0)
1271 {
1272 is_relro = true;
1273 is_relro_local = true;
1274 }
1275 else if (type == elfcpp::SHT_INIT_ARRAY
1276 || type == elfcpp::SHT_FINI_ARRAY
1277 || type == elfcpp::SHT_PREINIT_ARRAY)
1278 is_relro = true;
1279 else if (strcmp(name, ".ctors") == 0
1280 || strcmp(name, ".dtors") == 0
1281 || strcmp(name, ".jcr") == 0)
1282 is_relro = true;
1283 }
1284
1285 if (is_relro)
1286 os->set_is_relro();
1287
1288 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1289 order = this->default_section_order(os, is_relro_local);
1290
1291 os->set_order(order);
1292
1293 parameters->target().new_output_section(os);
1294
1295 this->section_list_.push_back(os);
1296
1297 // The GNU linker by default sorts some sections by priority, so we
1298 // do the same. We need to know that this might happen before we
1299 // attach any input sections.
1300 if (!this->script_options_->saw_sections_clause()
1301 && (strcmp(name, ".ctors") == 0
1302 || strcmp(name, ".dtors") == 0
1303 || strcmp(name, ".init_array") == 0
1304 || strcmp(name, ".fini_array") == 0))
1305 os->set_may_sort_attached_input_sections();
1306
1307 // Check for .stab*str sections, as .stab* sections need to link to
1308 // them.
1309 if (type == elfcpp::SHT_STRTAB
1310 && !this->have_stabstr_section_
1311 && strncmp(name, ".stab", 5) == 0
1312 && strcmp(name + strlen(name) - 3, "str") == 0)
1313 this->have_stabstr_section_ = true;
1314
1315 // If we have already attached the sections to segments, then we
1316 // need to attach this one now. This happens for sections created
1317 // directly by the linker.
1318 if (this->sections_are_attached_)
1319 this->attach_section_to_segment(os);
1320
1321 return os;
1322 }
1323
1324 // Return the default order in which a section should be placed in an
1325 // output segment. This function captures a lot of the ideas in
1326 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1327 // linker created section is normally set when the section is created;
1328 // this function is used for input sections.
1329
1330 Output_section_order
1331 Layout::default_section_order(Output_section* os, bool is_relro_local)
1332 {
1333 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1334 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1335 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1336 bool is_bss = false;
1337
1338 switch (os->type())
1339 {
1340 default:
1341 case elfcpp::SHT_PROGBITS:
1342 break;
1343 case elfcpp::SHT_NOBITS:
1344 is_bss = true;
1345 break;
1346 case elfcpp::SHT_RELA:
1347 case elfcpp::SHT_REL:
1348 if (!is_write)
1349 return ORDER_DYNAMIC_RELOCS;
1350 break;
1351 case elfcpp::SHT_HASH:
1352 case elfcpp::SHT_DYNAMIC:
1353 case elfcpp::SHT_SHLIB:
1354 case elfcpp::SHT_DYNSYM:
1355 case elfcpp::SHT_GNU_HASH:
1356 case elfcpp::SHT_GNU_verdef:
1357 case elfcpp::SHT_GNU_verneed:
1358 case elfcpp::SHT_GNU_versym:
1359 if (!is_write)
1360 return ORDER_DYNAMIC_LINKER;
1361 break;
1362 case elfcpp::SHT_NOTE:
1363 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1364 }
1365
1366 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1367 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1368
1369 if (!is_bss && !is_write)
1370 {
1371 if (is_execinstr)
1372 {
1373 if (strcmp(os->name(), ".init") == 0)
1374 return ORDER_INIT;
1375 else if (strcmp(os->name(), ".fini") == 0)
1376 return ORDER_FINI;
1377 }
1378 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1379 }
1380
1381 if (os->is_relro())
1382 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1383
1384 if (os->is_small_section())
1385 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1386 if (os->is_large_section())
1387 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1388
1389 return is_bss ? ORDER_BSS : ORDER_DATA;
1390 }
1391
1392 // Attach output sections to segments. This is called after we have
1393 // seen all the input sections.
1394
1395 void
1396 Layout::attach_sections_to_segments()
1397 {
1398 for (Section_list::iterator p = this->section_list_.begin();
1399 p != this->section_list_.end();
1400 ++p)
1401 this->attach_section_to_segment(*p);
1402
1403 this->sections_are_attached_ = true;
1404 }
1405
1406 // Attach an output section to a segment.
1407
1408 void
1409 Layout::attach_section_to_segment(Output_section* os)
1410 {
1411 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1412 this->unattached_section_list_.push_back(os);
1413 else
1414 this->attach_allocated_section_to_segment(os);
1415 }
1416
1417 // Attach an allocated output section to a segment.
1418
1419 void
1420 Layout::attach_allocated_section_to_segment(Output_section* os)
1421 {
1422 elfcpp::Elf_Xword flags = os->flags();
1423 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1424
1425 if (parameters->options().relocatable())
1426 return;
1427
1428 // If we have a SECTIONS clause, we can't handle the attachment to
1429 // segments until after we've seen all the sections.
1430 if (this->script_options_->saw_sections_clause())
1431 return;
1432
1433 gold_assert(!this->script_options_->saw_phdrs_clause());
1434
1435 // This output section goes into a PT_LOAD segment.
1436
1437 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1438
1439 // Check for --section-start.
1440 uint64_t addr;
1441 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1442
1443 // In general the only thing we really care about for PT_LOAD
1444 // segments is whether or not they are writable or executable,
1445 // so that is how we search for them.
1446 // Large data sections also go into their own PT_LOAD segment.
1447 // People who need segments sorted on some other basis will
1448 // have to use a linker script.
1449
1450 Segment_list::const_iterator p;
1451 for (p = this->segment_list_.begin();
1452 p != this->segment_list_.end();
1453 ++p)
1454 {
1455 if ((*p)->type() != elfcpp::PT_LOAD)
1456 continue;
1457 if (!parameters->options().omagic()
1458 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1459 continue;
1460 if (parameters->options().rosegment()
1461 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1462 continue;
1463 // If -Tbss was specified, we need to separate the data and BSS
1464 // segments.
1465 if (parameters->options().user_set_Tbss())
1466 {
1467 if ((os->type() == elfcpp::SHT_NOBITS)
1468 == (*p)->has_any_data_sections())
1469 continue;
1470 }
1471 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1472 continue;
1473
1474 if (is_address_set)
1475 {
1476 if ((*p)->are_addresses_set())
1477 continue;
1478
1479 (*p)->add_initial_output_data(os);
1480 (*p)->update_flags_for_output_section(seg_flags);
1481 (*p)->set_addresses(addr, addr);
1482 break;
1483 }
1484
1485 (*p)->add_output_section_to_load(this, os, seg_flags);
1486 break;
1487 }
1488
1489 if (p == this->segment_list_.end())
1490 {
1491 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1492 seg_flags);
1493 if (os->is_large_data_section())
1494 oseg->set_is_large_data_segment();
1495 oseg->add_output_section_to_load(this, os, seg_flags);
1496 if (is_address_set)
1497 oseg->set_addresses(addr, addr);
1498 }
1499
1500 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1501 // segment.
1502 if (os->type() == elfcpp::SHT_NOTE)
1503 {
1504 // See if we already have an equivalent PT_NOTE segment.
1505 for (p = this->segment_list_.begin();
1506 p != segment_list_.end();
1507 ++p)
1508 {
1509 if ((*p)->type() == elfcpp::PT_NOTE
1510 && (((*p)->flags() & elfcpp::PF_W)
1511 == (seg_flags & elfcpp::PF_W)))
1512 {
1513 (*p)->add_output_section_to_nonload(os, seg_flags);
1514 break;
1515 }
1516 }
1517
1518 if (p == this->segment_list_.end())
1519 {
1520 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1521 seg_flags);
1522 oseg->add_output_section_to_nonload(os, seg_flags);
1523 }
1524 }
1525
1526 // If we see a loadable SHF_TLS section, we create a PT_TLS
1527 // segment. There can only be one such segment.
1528 if ((flags & elfcpp::SHF_TLS) != 0)
1529 {
1530 if (this->tls_segment_ == NULL)
1531 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1532 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1533 }
1534
1535 // If -z relro is in effect, and we see a relro section, we create a
1536 // PT_GNU_RELRO segment. There can only be one such segment.
1537 if (os->is_relro() && parameters->options().relro())
1538 {
1539 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1540 if (this->relro_segment_ == NULL)
1541 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1542 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1543 }
1544 }
1545
1546 // Make an output section for a script.
1547
1548 Output_section*
1549 Layout::make_output_section_for_script(
1550 const char* name,
1551 Script_sections::Section_type section_type)
1552 {
1553 name = this->namepool_.add(name, false, NULL);
1554 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1555 if (section_type == Script_sections::ST_NOLOAD)
1556 sh_flags = 0;
1557 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1558 sh_flags, ORDER_INVALID,
1559 false);
1560 os->set_found_in_sections_clause();
1561 if (section_type == Script_sections::ST_NOLOAD)
1562 os->set_is_noload();
1563 return os;
1564 }
1565
1566 // Return the number of segments we expect to see.
1567
1568 size_t
1569 Layout::expected_segment_count() const
1570 {
1571 size_t ret = this->segment_list_.size();
1572
1573 // If we didn't see a SECTIONS clause in a linker script, we should
1574 // already have the complete list of segments. Otherwise we ask the
1575 // SECTIONS clause how many segments it expects, and add in the ones
1576 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1577
1578 if (!this->script_options_->saw_sections_clause())
1579 return ret;
1580 else
1581 {
1582 const Script_sections* ss = this->script_options_->script_sections();
1583 return ret + ss->expected_segment_count(this);
1584 }
1585 }
1586
1587 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1588 // is whether we saw a .note.GNU-stack section in the object file.
1589 // GNU_STACK_FLAGS is the section flags. The flags give the
1590 // protection required for stack memory. We record this in an
1591 // executable as a PT_GNU_STACK segment. If an object file does not
1592 // have a .note.GNU-stack segment, we must assume that it is an old
1593 // object. On some targets that will force an executable stack.
1594
1595 void
1596 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1597 const Object* obj)
1598 {
1599 if (!seen_gnu_stack)
1600 {
1601 this->input_without_gnu_stack_note_ = true;
1602 if (parameters->options().warn_execstack()
1603 && parameters->target().is_default_stack_executable())
1604 gold_warning(_("%s: missing .note.GNU-stack section"
1605 " implies executable stack"),
1606 obj->name().c_str());
1607 }
1608 else
1609 {
1610 this->input_with_gnu_stack_note_ = true;
1611 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1612 {
1613 this->input_requires_executable_stack_ = true;
1614 if (parameters->options().warn_execstack()
1615 || parameters->options().is_stack_executable())
1616 gold_warning(_("%s: requires executable stack"),
1617 obj->name().c_str());
1618 }
1619 }
1620 }
1621
1622 // Create automatic note sections.
1623
1624 void
1625 Layout::create_notes()
1626 {
1627 this->create_gold_note();
1628 this->create_executable_stack_info();
1629 this->create_build_id();
1630 }
1631
1632 // Create the dynamic sections which are needed before we read the
1633 // relocs.
1634
1635 void
1636 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1637 {
1638 if (parameters->doing_static_link())
1639 return;
1640
1641 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1642 elfcpp::SHT_DYNAMIC,
1643 (elfcpp::SHF_ALLOC
1644 | elfcpp::SHF_WRITE),
1645 false, ORDER_RELRO,
1646 true);
1647
1648 this->dynamic_symbol_ =
1649 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1650 this->dynamic_section_, 0, 0,
1651 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1652 elfcpp::STV_HIDDEN, 0, false, false);
1653
1654 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1655
1656 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1657 }
1658
1659 // For each output section whose name can be represented as C symbol,
1660 // define __start and __stop symbols for the section. This is a GNU
1661 // extension.
1662
1663 void
1664 Layout::define_section_symbols(Symbol_table* symtab)
1665 {
1666 for (Section_list::const_iterator p = this->section_list_.begin();
1667 p != this->section_list_.end();
1668 ++p)
1669 {
1670 const char* const name = (*p)->name();
1671 if (is_cident(name))
1672 {
1673 const std::string name_string(name);
1674 const std::string start_name(cident_section_start_prefix
1675 + name_string);
1676 const std::string stop_name(cident_section_stop_prefix
1677 + name_string);
1678
1679 symtab->define_in_output_data(start_name.c_str(),
1680 NULL, // version
1681 Symbol_table::PREDEFINED,
1682 *p,
1683 0, // value
1684 0, // symsize
1685 elfcpp::STT_NOTYPE,
1686 elfcpp::STB_GLOBAL,
1687 elfcpp::STV_DEFAULT,
1688 0, // nonvis
1689 false, // offset_is_from_end
1690 true); // only_if_ref
1691
1692 symtab->define_in_output_data(stop_name.c_str(),
1693 NULL, // version
1694 Symbol_table::PREDEFINED,
1695 *p,
1696 0, // value
1697 0, // symsize
1698 elfcpp::STT_NOTYPE,
1699 elfcpp::STB_GLOBAL,
1700 elfcpp::STV_DEFAULT,
1701 0, // nonvis
1702 true, // offset_is_from_end
1703 true); // only_if_ref
1704 }
1705 }
1706 }
1707
1708 // Define symbols for group signatures.
1709
1710 void
1711 Layout::define_group_signatures(Symbol_table* symtab)
1712 {
1713 for (Group_signatures::iterator p = this->group_signatures_.begin();
1714 p != this->group_signatures_.end();
1715 ++p)
1716 {
1717 Symbol* sym = symtab->lookup(p->signature, NULL);
1718 if (sym != NULL)
1719 p->section->set_info_symndx(sym);
1720 else
1721 {
1722 // Force the name of the group section to the group
1723 // signature, and use the group's section symbol as the
1724 // signature symbol.
1725 if (strcmp(p->section->name(), p->signature) != 0)
1726 {
1727 const char* name = this->namepool_.add(p->signature,
1728 true, NULL);
1729 p->section->set_name(name);
1730 }
1731 p->section->set_needs_symtab_index();
1732 p->section->set_info_section_symndx(p->section);
1733 }
1734 }
1735
1736 this->group_signatures_.clear();
1737 }
1738
1739 // Find the first read-only PT_LOAD segment, creating one if
1740 // necessary.
1741
1742 Output_segment*
1743 Layout::find_first_load_seg()
1744 {
1745 Output_segment* best = NULL;
1746 for (Segment_list::const_iterator p = this->segment_list_.begin();
1747 p != this->segment_list_.end();
1748 ++p)
1749 {
1750 if ((*p)->type() == elfcpp::PT_LOAD
1751 && ((*p)->flags() & elfcpp::PF_R) != 0
1752 && (parameters->options().omagic()
1753 || ((*p)->flags() & elfcpp::PF_W) == 0))
1754 {
1755 if (best == NULL || this->segment_precedes(*p, best))
1756 best = *p;
1757 }
1758 }
1759 if (best != NULL)
1760 return best;
1761
1762 gold_assert(!this->script_options_->saw_phdrs_clause());
1763
1764 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1765 elfcpp::PF_R);
1766 return load_seg;
1767 }
1768
1769 // Save states of all current output segments. Store saved states
1770 // in SEGMENT_STATES.
1771
1772 void
1773 Layout::save_segments(Segment_states* segment_states)
1774 {
1775 for (Segment_list::const_iterator p = this->segment_list_.begin();
1776 p != this->segment_list_.end();
1777 ++p)
1778 {
1779 Output_segment* segment = *p;
1780 // Shallow copy.
1781 Output_segment* copy = new Output_segment(*segment);
1782 (*segment_states)[segment] = copy;
1783 }
1784 }
1785
1786 // Restore states of output segments and delete any segment not found in
1787 // SEGMENT_STATES.
1788
1789 void
1790 Layout::restore_segments(const Segment_states* segment_states)
1791 {
1792 // Go through the segment list and remove any segment added in the
1793 // relaxation loop.
1794 this->tls_segment_ = NULL;
1795 this->relro_segment_ = NULL;
1796 Segment_list::iterator list_iter = this->segment_list_.begin();
1797 while (list_iter != this->segment_list_.end())
1798 {
1799 Output_segment* segment = *list_iter;
1800 Segment_states::const_iterator states_iter =
1801 segment_states->find(segment);
1802 if (states_iter != segment_states->end())
1803 {
1804 const Output_segment* copy = states_iter->second;
1805 // Shallow copy to restore states.
1806 *segment = *copy;
1807
1808 // Also fix up TLS and RELRO segment pointers as appropriate.
1809 if (segment->type() == elfcpp::PT_TLS)
1810 this->tls_segment_ = segment;
1811 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1812 this->relro_segment_ = segment;
1813
1814 ++list_iter;
1815 }
1816 else
1817 {
1818 list_iter = this->segment_list_.erase(list_iter);
1819 // This is a segment created during section layout. It should be
1820 // safe to remove it since we should have removed all pointers to it.
1821 delete segment;
1822 }
1823 }
1824 }
1825
1826 // Clean up after relaxation so that sections can be laid out again.
1827
1828 void
1829 Layout::clean_up_after_relaxation()
1830 {
1831 // Restore the segments to point state just prior to the relaxation loop.
1832 Script_sections* script_section = this->script_options_->script_sections();
1833 script_section->release_segments();
1834 this->restore_segments(this->segment_states_);
1835
1836 // Reset section addresses and file offsets
1837 for (Section_list::iterator p = this->section_list_.begin();
1838 p != this->section_list_.end();
1839 ++p)
1840 {
1841 (*p)->restore_states();
1842
1843 // If an input section changes size because of relaxation,
1844 // we need to adjust the section offsets of all input sections.
1845 // after such a section.
1846 if ((*p)->section_offsets_need_adjustment())
1847 (*p)->adjust_section_offsets();
1848
1849 (*p)->reset_address_and_file_offset();
1850 }
1851
1852 // Reset special output object address and file offsets.
1853 for (Data_list::iterator p = this->special_output_list_.begin();
1854 p != this->special_output_list_.end();
1855 ++p)
1856 (*p)->reset_address_and_file_offset();
1857
1858 // A linker script may have created some output section data objects.
1859 // They are useless now.
1860 for (Output_section_data_list::const_iterator p =
1861 this->script_output_section_data_list_.begin();
1862 p != this->script_output_section_data_list_.end();
1863 ++p)
1864 delete *p;
1865 this->script_output_section_data_list_.clear();
1866 }
1867
1868 // Prepare for relaxation.
1869
1870 void
1871 Layout::prepare_for_relaxation()
1872 {
1873 // Create an relaxation debug check if in debugging mode.
1874 if (is_debugging_enabled(DEBUG_RELAXATION))
1875 this->relaxation_debug_check_ = new Relaxation_debug_check();
1876
1877 // Save segment states.
1878 this->segment_states_ = new Segment_states();
1879 this->save_segments(this->segment_states_);
1880
1881 for(Section_list::const_iterator p = this->section_list_.begin();
1882 p != this->section_list_.end();
1883 ++p)
1884 (*p)->save_states();
1885
1886 if (is_debugging_enabled(DEBUG_RELAXATION))
1887 this->relaxation_debug_check_->check_output_data_for_reset_values(
1888 this->section_list_, this->special_output_list_);
1889
1890 // Also enable recording of output section data from scripts.
1891 this->record_output_section_data_from_script_ = true;
1892 }
1893
1894 // Relaxation loop body: If target has no relaxation, this runs only once
1895 // Otherwise, the target relaxation hook is called at the end of
1896 // each iteration. If the hook returns true, it means re-layout of
1897 // section is required.
1898 //
1899 // The number of segments created by a linking script without a PHDRS
1900 // clause may be affected by section sizes and alignments. There is
1901 // a remote chance that relaxation causes different number of PT_LOAD
1902 // segments are created and sections are attached to different segments.
1903 // Therefore, we always throw away all segments created during section
1904 // layout. In order to be able to restart the section layout, we keep
1905 // a copy of the segment list right before the relaxation loop and use
1906 // that to restore the segments.
1907 //
1908 // PASS is the current relaxation pass number.
1909 // SYMTAB is a symbol table.
1910 // PLOAD_SEG is the address of a pointer for the load segment.
1911 // PHDR_SEG is a pointer to the PHDR segment.
1912 // SEGMENT_HEADERS points to the output segment header.
1913 // FILE_HEADER points to the output file header.
1914 // PSHNDX is the address to store the output section index.
1915
1916 off_t inline
1917 Layout::relaxation_loop_body(
1918 int pass,
1919 Target* target,
1920 Symbol_table* symtab,
1921 Output_segment** pload_seg,
1922 Output_segment* phdr_seg,
1923 Output_segment_headers* segment_headers,
1924 Output_file_header* file_header,
1925 unsigned int* pshndx)
1926 {
1927 // If this is not the first iteration, we need to clean up after
1928 // relaxation so that we can lay out the sections again.
1929 if (pass != 0)
1930 this->clean_up_after_relaxation();
1931
1932 // If there is a SECTIONS clause, put all the input sections into
1933 // the required order.
1934 Output_segment* load_seg;
1935 if (this->script_options_->saw_sections_clause())
1936 load_seg = this->set_section_addresses_from_script(symtab);
1937 else if (parameters->options().relocatable())
1938 load_seg = NULL;
1939 else
1940 load_seg = this->find_first_load_seg();
1941
1942 if (parameters->options().oformat_enum()
1943 != General_options::OBJECT_FORMAT_ELF)
1944 load_seg = NULL;
1945
1946 // If the user set the address of the text segment, that may not be
1947 // compatible with putting the segment headers and file headers into
1948 // that segment.
1949 if (parameters->options().user_set_Ttext())
1950 load_seg = NULL;
1951
1952 gold_assert(phdr_seg == NULL
1953 || load_seg != NULL
1954 || this->script_options_->saw_sections_clause());
1955
1956 // If the address of the load segment we found has been set by
1957 // --section-start rather than by a script, then adjust the VMA and
1958 // LMA downward if possible to include the file and section headers.
1959 uint64_t header_gap = 0;
1960 if (load_seg != NULL
1961 && load_seg->are_addresses_set()
1962 && !this->script_options_->saw_sections_clause()
1963 && !parameters->options().relocatable())
1964 {
1965 file_header->finalize_data_size();
1966 segment_headers->finalize_data_size();
1967 size_t sizeof_headers = (file_header->data_size()
1968 + segment_headers->data_size());
1969 const uint64_t abi_pagesize = target->abi_pagesize();
1970 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1971 hdr_paddr &= ~(abi_pagesize - 1);
1972 uint64_t subtract = load_seg->paddr() - hdr_paddr;
1973 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1974 load_seg = NULL;
1975 else
1976 {
1977 load_seg->set_addresses(load_seg->vaddr() - subtract,
1978 load_seg->paddr() - subtract);
1979 header_gap = subtract - sizeof_headers;
1980 }
1981 }
1982
1983 // Lay out the segment headers.
1984 if (!parameters->options().relocatable())
1985 {
1986 gold_assert(segment_headers != NULL);
1987 if (header_gap != 0 && load_seg != NULL)
1988 {
1989 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
1990 load_seg->add_initial_output_data(z);
1991 }
1992 if (load_seg != NULL)
1993 load_seg->add_initial_output_data(segment_headers);
1994 if (phdr_seg != NULL)
1995 phdr_seg->add_initial_output_data(segment_headers);
1996 }
1997
1998 // Lay out the file header.
1999 if (load_seg != NULL)
2000 load_seg->add_initial_output_data(file_header);
2001
2002 if (this->script_options_->saw_phdrs_clause()
2003 && !parameters->options().relocatable())
2004 {
2005 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2006 // clause in a linker script.
2007 Script_sections* ss = this->script_options_->script_sections();
2008 ss->put_headers_in_phdrs(file_header, segment_headers);
2009 }
2010
2011 // We set the output section indexes in set_segment_offsets and
2012 // set_section_indexes.
2013 *pshndx = 1;
2014
2015 // Set the file offsets of all the segments, and all the sections
2016 // they contain.
2017 off_t off;
2018 if (!parameters->options().relocatable())
2019 off = this->set_segment_offsets(target, load_seg, pshndx);
2020 else
2021 off = this->set_relocatable_section_offsets(file_header, pshndx);
2022
2023 // Verify that the dummy relaxation does not change anything.
2024 if (is_debugging_enabled(DEBUG_RELAXATION))
2025 {
2026 if (pass == 0)
2027 this->relaxation_debug_check_->read_sections(this->section_list_);
2028 else
2029 this->relaxation_debug_check_->verify_sections(this->section_list_);
2030 }
2031
2032 *pload_seg = load_seg;
2033 return off;
2034 }
2035
2036 // Search the list of patterns and find the postion of the given section
2037 // name in the output section. If the section name matches a glob
2038 // pattern and a non-glob name, then the non-glob position takes
2039 // precedence. Return 0 if no match is found.
2040
2041 unsigned int
2042 Layout::find_section_order_index(const std::string& section_name)
2043 {
2044 Unordered_map<std::string, unsigned int>::iterator map_it;
2045 map_it = this->input_section_position_.find(section_name);
2046 if (map_it != this->input_section_position_.end())
2047 return map_it->second;
2048
2049 // Absolute match failed. Linear search the glob patterns.
2050 std::vector<std::string>::iterator it;
2051 for (it = this->input_section_glob_.begin();
2052 it != this->input_section_glob_.end();
2053 ++it)
2054 {
2055 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2056 {
2057 map_it = this->input_section_position_.find(*it);
2058 gold_assert(map_it != this->input_section_position_.end());
2059 return map_it->second;
2060 }
2061 }
2062 return 0;
2063 }
2064
2065 // Read the sequence of input sections from the file specified with
2066 // --section-ordering-file.
2067
2068 void
2069 Layout::read_layout_from_file()
2070 {
2071 const char* filename = parameters->options().section_ordering_file();
2072 std::ifstream in;
2073 std::string line;
2074
2075 in.open(filename);
2076 if (!in)
2077 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2078 filename, strerror(errno));
2079
2080 std::getline(in, line); // this chops off the trailing \n, if any
2081 unsigned int position = 1;
2082
2083 while (in)
2084 {
2085 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2086 line.resize(line.length() - 1);
2087 // Ignore comments, beginning with '#'
2088 if (line[0] == '#')
2089 {
2090 std::getline(in, line);
2091 continue;
2092 }
2093 this->input_section_position_[line] = position;
2094 // Store all glob patterns in a vector.
2095 if (is_wildcard_string(line.c_str()))
2096 this->input_section_glob_.push_back(line);
2097 position++;
2098 std::getline(in, line);
2099 }
2100 }
2101
2102 // Finalize the layout. When this is called, we have created all the
2103 // output sections and all the output segments which are based on
2104 // input sections. We have several things to do, and we have to do
2105 // them in the right order, so that we get the right results correctly
2106 // and efficiently.
2107
2108 // 1) Finalize the list of output segments and create the segment
2109 // table header.
2110
2111 // 2) Finalize the dynamic symbol table and associated sections.
2112
2113 // 3) Determine the final file offset of all the output segments.
2114
2115 // 4) Determine the final file offset of all the SHF_ALLOC output
2116 // sections.
2117
2118 // 5) Create the symbol table sections and the section name table
2119 // section.
2120
2121 // 6) Finalize the symbol table: set symbol values to their final
2122 // value and make a final determination of which symbols are going
2123 // into the output symbol table.
2124
2125 // 7) Create the section table header.
2126
2127 // 8) Determine the final file offset of all the output sections which
2128 // are not SHF_ALLOC, including the section table header.
2129
2130 // 9) Finalize the ELF file header.
2131
2132 // This function returns the size of the output file.
2133
2134 off_t
2135 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2136 Target* target, const Task* task)
2137 {
2138 target->finalize_sections(this, input_objects, symtab);
2139
2140 this->count_local_symbols(task, input_objects);
2141
2142 this->link_stabs_sections();
2143
2144 Output_segment* phdr_seg = NULL;
2145 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2146 {
2147 // There was a dynamic object in the link. We need to create
2148 // some information for the dynamic linker.
2149
2150 // Create the PT_PHDR segment which will hold the program
2151 // headers.
2152 if (!this->script_options_->saw_phdrs_clause())
2153 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2154
2155 // Create the dynamic symbol table, including the hash table.
2156 Output_section* dynstr;
2157 std::vector<Symbol*> dynamic_symbols;
2158 unsigned int local_dynamic_count;
2159 Versions versions(*this->script_options()->version_script_info(),
2160 &this->dynpool_);
2161 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2162 &local_dynamic_count, &dynamic_symbols,
2163 &versions);
2164
2165 // Create the .interp section to hold the name of the
2166 // interpreter, and put it in a PT_INTERP segment.
2167 if (!parameters->options().shared())
2168 this->create_interp(target);
2169
2170 // Finish the .dynamic section to hold the dynamic data, and put
2171 // it in a PT_DYNAMIC segment.
2172 this->finish_dynamic_section(input_objects, symtab);
2173
2174 // We should have added everything we need to the dynamic string
2175 // table.
2176 this->dynpool_.set_string_offsets();
2177
2178 // Create the version sections. We can't do this until the
2179 // dynamic string table is complete.
2180 this->create_version_sections(&versions, symtab, local_dynamic_count,
2181 dynamic_symbols, dynstr);
2182
2183 // Set the size of the _DYNAMIC symbol. We can't do this until
2184 // after we call create_version_sections.
2185 this->set_dynamic_symbol_size(symtab);
2186 }
2187
2188 // Create segment headers.
2189 Output_segment_headers* segment_headers =
2190 (parameters->options().relocatable()
2191 ? NULL
2192 : new Output_segment_headers(this->segment_list_));
2193
2194 // Lay out the file header.
2195 Output_file_header* file_header
2196 = new Output_file_header(target, symtab, segment_headers,
2197 parameters->options().entry());
2198
2199 this->special_output_list_.push_back(file_header);
2200 if (segment_headers != NULL)
2201 this->special_output_list_.push_back(segment_headers);
2202
2203 // Find approriate places for orphan output sections if we are using
2204 // a linker script.
2205 if (this->script_options_->saw_sections_clause())
2206 this->place_orphan_sections_in_script();
2207
2208 Output_segment* load_seg;
2209 off_t off;
2210 unsigned int shndx;
2211 int pass = 0;
2212
2213 // Take a snapshot of the section layout as needed.
2214 if (target->may_relax())
2215 this->prepare_for_relaxation();
2216
2217 // Run the relaxation loop to lay out sections.
2218 do
2219 {
2220 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2221 phdr_seg, segment_headers, file_header,
2222 &shndx);
2223 pass++;
2224 }
2225 while (target->may_relax()
2226 && target->relax(pass, input_objects, symtab, this, task));
2227
2228 // Set the file offsets of all the non-data sections we've seen so
2229 // far which don't have to wait for the input sections. We need
2230 // this in order to finalize local symbols in non-allocated
2231 // sections.
2232 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2233
2234 // Set the section indexes of all unallocated sections seen so far,
2235 // in case any of them are somehow referenced by a symbol.
2236 shndx = this->set_section_indexes(shndx);
2237
2238 // Create the symbol table sections.
2239 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2240 if (!parameters->doing_static_link())
2241 this->assign_local_dynsym_offsets(input_objects);
2242
2243 // Process any symbol assignments from a linker script. This must
2244 // be called after the symbol table has been finalized.
2245 this->script_options_->finalize_symbols(symtab, this);
2246
2247 // Create the incremental inputs sections.
2248 if (this->incremental_inputs_)
2249 {
2250 this->incremental_inputs_->finalize();
2251 this->create_incremental_info_sections(symtab);
2252 }
2253
2254 // Create the .shstrtab section.
2255 Output_section* shstrtab_section = this->create_shstrtab();
2256
2257 // Set the file offsets of the rest of the non-data sections which
2258 // don't have to wait for the input sections.
2259 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2260
2261 // Now that all sections have been created, set the section indexes
2262 // for any sections which haven't been done yet.
2263 shndx = this->set_section_indexes(shndx);
2264
2265 // Create the section table header.
2266 this->create_shdrs(shstrtab_section, &off);
2267
2268 // If there are no sections which require postprocessing, we can
2269 // handle the section names now, and avoid a resize later.
2270 if (!this->any_postprocessing_sections_)
2271 {
2272 off = this->set_section_offsets(off,
2273 POSTPROCESSING_SECTIONS_PASS);
2274 off =
2275 this->set_section_offsets(off,
2276 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2277 }
2278
2279 file_header->set_section_info(this->section_headers_, shstrtab_section);
2280
2281 // Now we know exactly where everything goes in the output file
2282 // (except for non-allocated sections which require postprocessing).
2283 Output_data::layout_complete();
2284
2285 this->output_file_size_ = off;
2286
2287 return off;
2288 }
2289
2290 // Create a note header following the format defined in the ELF ABI.
2291 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2292 // of the section to create, DESCSZ is the size of the descriptor.
2293 // ALLOCATE is true if the section should be allocated in memory.
2294 // This returns the new note section. It sets *TRAILING_PADDING to
2295 // the number of trailing zero bytes required.
2296
2297 Output_section*
2298 Layout::create_note(const char* name, int note_type,
2299 const char* section_name, size_t descsz,
2300 bool allocate, size_t* trailing_padding)
2301 {
2302 // Authorities all agree that the values in a .note field should
2303 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2304 // they differ on what the alignment is for 64-bit binaries.
2305 // The GABI says unambiguously they take 8-byte alignment:
2306 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2307 // Other documentation says alignment should always be 4 bytes:
2308 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2309 // GNU ld and GNU readelf both support the latter (at least as of
2310 // version 2.16.91), and glibc always generates the latter for
2311 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2312 // here.
2313 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2314 const int size = parameters->target().get_size();
2315 #else
2316 const int size = 32;
2317 #endif
2318
2319 // The contents of the .note section.
2320 size_t namesz = strlen(name) + 1;
2321 size_t aligned_namesz = align_address(namesz, size / 8);
2322 size_t aligned_descsz = align_address(descsz, size / 8);
2323
2324 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2325
2326 unsigned char* buffer = new unsigned char[notehdrsz];
2327 memset(buffer, 0, notehdrsz);
2328
2329 bool is_big_endian = parameters->target().is_big_endian();
2330
2331 if (size == 32)
2332 {
2333 if (!is_big_endian)
2334 {
2335 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2336 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2337 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2338 }
2339 else
2340 {
2341 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2342 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2343 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2344 }
2345 }
2346 else if (size == 64)
2347 {
2348 if (!is_big_endian)
2349 {
2350 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2351 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2352 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2353 }
2354 else
2355 {
2356 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2357 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2358 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2359 }
2360 }
2361 else
2362 gold_unreachable();
2363
2364 memcpy(buffer + 3 * (size / 8), name, namesz);
2365
2366 elfcpp::Elf_Xword flags = 0;
2367 Output_section_order order = ORDER_INVALID;
2368 if (allocate)
2369 {
2370 flags = elfcpp::SHF_ALLOC;
2371 order = ORDER_RO_NOTE;
2372 }
2373 Output_section* os = this->choose_output_section(NULL, section_name,
2374 elfcpp::SHT_NOTE,
2375 flags, false, order, false);
2376 if (os == NULL)
2377 return NULL;
2378
2379 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2380 size / 8,
2381 "** note header");
2382 os->add_output_section_data(posd);
2383
2384 *trailing_padding = aligned_descsz - descsz;
2385
2386 return os;
2387 }
2388
2389 // For an executable or shared library, create a note to record the
2390 // version of gold used to create the binary.
2391
2392 void
2393 Layout::create_gold_note()
2394 {
2395 if (parameters->options().relocatable()
2396 || parameters->incremental_update())
2397 return;
2398
2399 std::string desc = std::string("gold ") + gold::get_version_string();
2400
2401 size_t trailing_padding;
2402 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2403 ".note.gnu.gold-version", desc.size(),
2404 false, &trailing_padding);
2405 if (os == NULL)
2406 return;
2407
2408 Output_section_data* posd = new Output_data_const(desc, 4);
2409 os->add_output_section_data(posd);
2410
2411 if (trailing_padding > 0)
2412 {
2413 posd = new Output_data_zero_fill(trailing_padding, 0);
2414 os->add_output_section_data(posd);
2415 }
2416 }
2417
2418 // Record whether the stack should be executable. This can be set
2419 // from the command line using the -z execstack or -z noexecstack
2420 // options. Otherwise, if any input file has a .note.GNU-stack
2421 // section with the SHF_EXECINSTR flag set, the stack should be
2422 // executable. Otherwise, if at least one input file a
2423 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2424 // section, we use the target default for whether the stack should be
2425 // executable. Otherwise, we don't generate a stack note. When
2426 // generating a object file, we create a .note.GNU-stack section with
2427 // the appropriate marking. When generating an executable or shared
2428 // library, we create a PT_GNU_STACK segment.
2429
2430 void
2431 Layout::create_executable_stack_info()
2432 {
2433 bool is_stack_executable;
2434 if (parameters->options().is_execstack_set())
2435 is_stack_executable = parameters->options().is_stack_executable();
2436 else if (!this->input_with_gnu_stack_note_)
2437 return;
2438 else
2439 {
2440 if (this->input_requires_executable_stack_)
2441 is_stack_executable = true;
2442 else if (this->input_without_gnu_stack_note_)
2443 is_stack_executable =
2444 parameters->target().is_default_stack_executable();
2445 else
2446 is_stack_executable = false;
2447 }
2448
2449 if (parameters->options().relocatable())
2450 {
2451 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2452 elfcpp::Elf_Xword flags = 0;
2453 if (is_stack_executable)
2454 flags |= elfcpp::SHF_EXECINSTR;
2455 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2456 ORDER_INVALID, false);
2457 }
2458 else
2459 {
2460 if (this->script_options_->saw_phdrs_clause())
2461 return;
2462 int flags = elfcpp::PF_R | elfcpp::PF_W;
2463 if (is_stack_executable)
2464 flags |= elfcpp::PF_X;
2465 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2466 }
2467 }
2468
2469 // If --build-id was used, set up the build ID note.
2470
2471 void
2472 Layout::create_build_id()
2473 {
2474 if (!parameters->options().user_set_build_id())
2475 return;
2476
2477 const char* style = parameters->options().build_id();
2478 if (strcmp(style, "none") == 0)
2479 return;
2480
2481 // Set DESCSZ to the size of the note descriptor. When possible,
2482 // set DESC to the note descriptor contents.
2483 size_t descsz;
2484 std::string desc;
2485 if (strcmp(style, "md5") == 0)
2486 descsz = 128 / 8;
2487 else if (strcmp(style, "sha1") == 0)
2488 descsz = 160 / 8;
2489 else if (strcmp(style, "uuid") == 0)
2490 {
2491 const size_t uuidsz = 128 / 8;
2492
2493 char buffer[uuidsz];
2494 memset(buffer, 0, uuidsz);
2495
2496 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2497 if (descriptor < 0)
2498 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2499 strerror(errno));
2500 else
2501 {
2502 ssize_t got = ::read(descriptor, buffer, uuidsz);
2503 release_descriptor(descriptor, true);
2504 if (got < 0)
2505 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2506 else if (static_cast<size_t>(got) != uuidsz)
2507 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2508 uuidsz, got);
2509 }
2510
2511 desc.assign(buffer, uuidsz);
2512 descsz = uuidsz;
2513 }
2514 else if (strncmp(style, "0x", 2) == 0)
2515 {
2516 hex_init();
2517 const char* p = style + 2;
2518 while (*p != '\0')
2519 {
2520 if (hex_p(p[0]) && hex_p(p[1]))
2521 {
2522 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2523 desc += c;
2524 p += 2;
2525 }
2526 else if (*p == '-' || *p == ':')
2527 ++p;
2528 else
2529 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2530 style);
2531 }
2532 descsz = desc.size();
2533 }
2534 else
2535 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2536
2537 // Create the note.
2538 size_t trailing_padding;
2539 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2540 ".note.gnu.build-id", descsz, true,
2541 &trailing_padding);
2542 if (os == NULL)
2543 return;
2544
2545 if (!desc.empty())
2546 {
2547 // We know the value already, so we fill it in now.
2548 gold_assert(desc.size() == descsz);
2549
2550 Output_section_data* posd = new Output_data_const(desc, 4);
2551 os->add_output_section_data(posd);
2552
2553 if (trailing_padding != 0)
2554 {
2555 posd = new Output_data_zero_fill(trailing_padding, 0);
2556 os->add_output_section_data(posd);
2557 }
2558 }
2559 else
2560 {
2561 // We need to compute a checksum after we have completed the
2562 // link.
2563 gold_assert(trailing_padding == 0);
2564 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2565 os->add_output_section_data(this->build_id_note_);
2566 }
2567 }
2568
2569 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2570 // field of the former should point to the latter. I'm not sure who
2571 // started this, but the GNU linker does it, and some tools depend
2572 // upon it.
2573
2574 void
2575 Layout::link_stabs_sections()
2576 {
2577 if (!this->have_stabstr_section_)
2578 return;
2579
2580 for (Section_list::iterator p = this->section_list_.begin();
2581 p != this->section_list_.end();
2582 ++p)
2583 {
2584 if ((*p)->type() != elfcpp::SHT_STRTAB)
2585 continue;
2586
2587 const char* name = (*p)->name();
2588 if (strncmp(name, ".stab", 5) != 0)
2589 continue;
2590
2591 size_t len = strlen(name);
2592 if (strcmp(name + len - 3, "str") != 0)
2593 continue;
2594
2595 std::string stab_name(name, len - 3);
2596 Output_section* stab_sec;
2597 stab_sec = this->find_output_section(stab_name.c_str());
2598 if (stab_sec != NULL)
2599 stab_sec->set_link_section(*p);
2600 }
2601 }
2602
2603 // Create .gnu_incremental_inputs and related sections needed
2604 // for the next run of incremental linking to check what has changed.
2605
2606 void
2607 Layout::create_incremental_info_sections(Symbol_table* symtab)
2608 {
2609 Incremental_inputs* incr = this->incremental_inputs_;
2610
2611 gold_assert(incr != NULL);
2612
2613 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2614 incr->create_data_sections(symtab);
2615
2616 // Add the .gnu_incremental_inputs section.
2617 const char* incremental_inputs_name =
2618 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2619 Output_section* incremental_inputs_os =
2620 this->make_output_section(incremental_inputs_name,
2621 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2622 ORDER_INVALID, false);
2623 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2624
2625 // Add the .gnu_incremental_symtab section.
2626 const char* incremental_symtab_name =
2627 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2628 Output_section* incremental_symtab_os =
2629 this->make_output_section(incremental_symtab_name,
2630 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2631 ORDER_INVALID, false);
2632 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2633 incremental_symtab_os->set_entsize(4);
2634
2635 // Add the .gnu_incremental_relocs section.
2636 const char* incremental_relocs_name =
2637 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2638 Output_section* incremental_relocs_os =
2639 this->make_output_section(incremental_relocs_name,
2640 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2641 ORDER_INVALID, false);
2642 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2643 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2644
2645 // Add the .gnu_incremental_got_plt section.
2646 const char* incremental_got_plt_name =
2647 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2648 Output_section* incremental_got_plt_os =
2649 this->make_output_section(incremental_got_plt_name,
2650 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2651 ORDER_INVALID, false);
2652 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2653
2654 // Add the .gnu_incremental_strtab section.
2655 const char* incremental_strtab_name =
2656 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2657 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2658 elfcpp::SHT_STRTAB, 0,
2659 ORDER_INVALID, false);
2660 Output_data_strtab* strtab_data =
2661 new Output_data_strtab(incr->get_stringpool());
2662 incremental_strtab_os->add_output_section_data(strtab_data);
2663
2664 incremental_inputs_os->set_after_input_sections();
2665 incremental_symtab_os->set_after_input_sections();
2666 incremental_relocs_os->set_after_input_sections();
2667 incremental_got_plt_os->set_after_input_sections();
2668
2669 incremental_inputs_os->set_link_section(incremental_strtab_os);
2670 incremental_symtab_os->set_link_section(incremental_inputs_os);
2671 incremental_relocs_os->set_link_section(incremental_inputs_os);
2672 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2673 }
2674
2675 // Return whether SEG1 should be before SEG2 in the output file. This
2676 // is based entirely on the segment type and flags. When this is
2677 // called the segment addresses has normally not yet been set.
2678
2679 bool
2680 Layout::segment_precedes(const Output_segment* seg1,
2681 const Output_segment* seg2)
2682 {
2683 elfcpp::Elf_Word type1 = seg1->type();
2684 elfcpp::Elf_Word type2 = seg2->type();
2685
2686 // The single PT_PHDR segment is required to precede any loadable
2687 // segment. We simply make it always first.
2688 if (type1 == elfcpp::PT_PHDR)
2689 {
2690 gold_assert(type2 != elfcpp::PT_PHDR);
2691 return true;
2692 }
2693 if (type2 == elfcpp::PT_PHDR)
2694 return false;
2695
2696 // The single PT_INTERP segment is required to precede any loadable
2697 // segment. We simply make it always second.
2698 if (type1 == elfcpp::PT_INTERP)
2699 {
2700 gold_assert(type2 != elfcpp::PT_INTERP);
2701 return true;
2702 }
2703 if (type2 == elfcpp::PT_INTERP)
2704 return false;
2705
2706 // We then put PT_LOAD segments before any other segments.
2707 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2708 return true;
2709 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2710 return false;
2711
2712 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2713 // segment, because that is where the dynamic linker expects to find
2714 // it (this is just for efficiency; other positions would also work
2715 // correctly).
2716 if (type1 == elfcpp::PT_TLS
2717 && type2 != elfcpp::PT_TLS
2718 && type2 != elfcpp::PT_GNU_RELRO)
2719 return false;
2720 if (type2 == elfcpp::PT_TLS
2721 && type1 != elfcpp::PT_TLS
2722 && type1 != elfcpp::PT_GNU_RELRO)
2723 return true;
2724
2725 // We put the PT_GNU_RELRO segment last, because that is where the
2726 // dynamic linker expects to find it (as with PT_TLS, this is just
2727 // for efficiency).
2728 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2729 return false;
2730 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2731 return true;
2732
2733 const elfcpp::Elf_Word flags1 = seg1->flags();
2734 const elfcpp::Elf_Word flags2 = seg2->flags();
2735
2736 // The order of non-PT_LOAD segments is unimportant. We simply sort
2737 // by the numeric segment type and flags values. There should not
2738 // be more than one segment with the same type and flags.
2739 if (type1 != elfcpp::PT_LOAD)
2740 {
2741 if (type1 != type2)
2742 return type1 < type2;
2743 gold_assert(flags1 != flags2);
2744 return flags1 < flags2;
2745 }
2746
2747 // If the addresses are set already, sort by load address.
2748 if (seg1->are_addresses_set())
2749 {
2750 if (!seg2->are_addresses_set())
2751 return true;
2752
2753 unsigned int section_count1 = seg1->output_section_count();
2754 unsigned int section_count2 = seg2->output_section_count();
2755 if (section_count1 == 0 && section_count2 > 0)
2756 return true;
2757 if (section_count1 > 0 && section_count2 == 0)
2758 return false;
2759
2760 uint64_t paddr1 = (seg1->are_addresses_set()
2761 ? seg1->paddr()
2762 : seg1->first_section_load_address());
2763 uint64_t paddr2 = (seg2->are_addresses_set()
2764 ? seg2->paddr()
2765 : seg2->first_section_load_address());
2766
2767 if (paddr1 != paddr2)
2768 return paddr1 < paddr2;
2769 }
2770 else if (seg2->are_addresses_set())
2771 return false;
2772
2773 // A segment which holds large data comes after a segment which does
2774 // not hold large data.
2775 if (seg1->is_large_data_segment())
2776 {
2777 if (!seg2->is_large_data_segment())
2778 return false;
2779 }
2780 else if (seg2->is_large_data_segment())
2781 return true;
2782
2783 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2784 // segments come before writable segments. Then writable segments
2785 // with data come before writable segments without data. Then
2786 // executable segments come before non-executable segments. Then
2787 // the unlikely case of a non-readable segment comes before the
2788 // normal case of a readable segment. If there are multiple
2789 // segments with the same type and flags, we require that the
2790 // address be set, and we sort by virtual address and then physical
2791 // address.
2792 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2793 return (flags1 & elfcpp::PF_W) == 0;
2794 if ((flags1 & elfcpp::PF_W) != 0
2795 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2796 return seg1->has_any_data_sections();
2797 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2798 return (flags1 & elfcpp::PF_X) != 0;
2799 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2800 return (flags1 & elfcpp::PF_R) == 0;
2801
2802 // We shouldn't get here--we shouldn't create segments which we
2803 // can't distinguish.
2804 gold_unreachable();
2805 }
2806
2807 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2808
2809 static off_t
2810 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2811 {
2812 uint64_t unsigned_off = off;
2813 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2814 | (addr & (abi_pagesize - 1)));
2815 if (aligned_off < unsigned_off)
2816 aligned_off += abi_pagesize;
2817 return aligned_off;
2818 }
2819
2820 // Set the file offsets of all the segments, and all the sections they
2821 // contain. They have all been created. LOAD_SEG must be be laid out
2822 // first. Return the offset of the data to follow.
2823
2824 off_t
2825 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2826 unsigned int* pshndx)
2827 {
2828 // Sort them into the final order.
2829 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2830 Layout::Compare_segments());
2831
2832 // Find the PT_LOAD segments, and set their addresses and offsets
2833 // and their section's addresses and offsets.
2834 uint64_t addr;
2835 if (parameters->options().user_set_Ttext())
2836 addr = parameters->options().Ttext();
2837 else if (parameters->options().output_is_position_independent())
2838 addr = 0;
2839 else
2840 addr = target->default_text_segment_address();
2841 off_t off = 0;
2842
2843 // If LOAD_SEG is NULL, then the file header and segment headers
2844 // will not be loadable. But they still need to be at offset 0 in
2845 // the file. Set their offsets now.
2846 if (load_seg == NULL)
2847 {
2848 for (Data_list::iterator p = this->special_output_list_.begin();
2849 p != this->special_output_list_.end();
2850 ++p)
2851 {
2852 off = align_address(off, (*p)->addralign());
2853 (*p)->set_address_and_file_offset(0, off);
2854 off += (*p)->data_size();
2855 }
2856 }
2857
2858 unsigned int increase_relro = this->increase_relro_;
2859 if (this->script_options_->saw_sections_clause())
2860 increase_relro = 0;
2861
2862 const bool check_sections = parameters->options().check_sections();
2863 Output_segment* last_load_segment = NULL;
2864
2865 for (Segment_list::iterator p = this->segment_list_.begin();
2866 p != this->segment_list_.end();
2867 ++p)
2868 {
2869 if ((*p)->type() == elfcpp::PT_LOAD)
2870 {
2871 if (load_seg != NULL && load_seg != *p)
2872 gold_unreachable();
2873 load_seg = NULL;
2874
2875 bool are_addresses_set = (*p)->are_addresses_set();
2876 if (are_addresses_set)
2877 {
2878 // When it comes to setting file offsets, we care about
2879 // the physical address.
2880 addr = (*p)->paddr();
2881 }
2882 else if (parameters->options().user_set_Tdata()
2883 && ((*p)->flags() & elfcpp::PF_W) != 0
2884 && (!parameters->options().user_set_Tbss()
2885 || (*p)->has_any_data_sections()))
2886 {
2887 addr = parameters->options().Tdata();
2888 are_addresses_set = true;
2889 }
2890 else if (parameters->options().user_set_Tbss()
2891 && ((*p)->flags() & elfcpp::PF_W) != 0
2892 && !(*p)->has_any_data_sections())
2893 {
2894 addr = parameters->options().Tbss();
2895 are_addresses_set = true;
2896 }
2897
2898 uint64_t orig_addr = addr;
2899 uint64_t orig_off = off;
2900
2901 uint64_t aligned_addr = 0;
2902 uint64_t abi_pagesize = target->abi_pagesize();
2903 uint64_t common_pagesize = target->common_pagesize();
2904
2905 if (!parameters->options().nmagic()
2906 && !parameters->options().omagic())
2907 (*p)->set_minimum_p_align(common_pagesize);
2908
2909 if (!are_addresses_set)
2910 {
2911 // Skip the address forward one page, maintaining the same
2912 // position within the page. This lets us store both segments
2913 // overlapping on a single page in the file, but the loader will
2914 // put them on different pages in memory. We will revisit this
2915 // decision once we know the size of the segment.
2916
2917 addr = align_address(addr, (*p)->maximum_alignment());
2918 aligned_addr = addr;
2919
2920 if ((addr & (abi_pagesize - 1)) != 0)
2921 addr = addr + abi_pagesize;
2922
2923 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2924 }
2925
2926 if (!parameters->options().nmagic()
2927 && !parameters->options().omagic())
2928 off = align_file_offset(off, addr, abi_pagesize);
2929 else if (load_seg == NULL)
2930 {
2931 // This is -N or -n with a section script which prevents
2932 // us from using a load segment. We need to ensure that
2933 // the file offset is aligned to the alignment of the
2934 // segment. This is because the linker script
2935 // implicitly assumed a zero offset. If we don't align
2936 // here, then the alignment of the sections in the
2937 // linker script may not match the alignment of the
2938 // sections in the set_section_addresses call below,
2939 // causing an error about dot moving backward.
2940 off = align_address(off, (*p)->maximum_alignment());
2941 }
2942
2943 unsigned int shndx_hold = *pshndx;
2944 bool has_relro = false;
2945 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2946 &increase_relro,
2947 &has_relro,
2948 &off, pshndx);
2949
2950 // Now that we know the size of this segment, we may be able
2951 // to save a page in memory, at the cost of wasting some
2952 // file space, by instead aligning to the start of a new
2953 // page. Here we use the real machine page size rather than
2954 // the ABI mandated page size. If the segment has been
2955 // aligned so that the relro data ends at a page boundary,
2956 // we do not try to realign it.
2957
2958 if (!are_addresses_set
2959 && !has_relro
2960 && aligned_addr != addr
2961 && !parameters->incremental_update())
2962 {
2963 uint64_t first_off = (common_pagesize
2964 - (aligned_addr
2965 & (common_pagesize - 1)));
2966 uint64_t last_off = new_addr & (common_pagesize - 1);
2967 if (first_off > 0
2968 && last_off > 0
2969 && ((aligned_addr & ~ (common_pagesize - 1))
2970 != (new_addr & ~ (common_pagesize - 1)))
2971 && first_off + last_off <= common_pagesize)
2972 {
2973 *pshndx = shndx_hold;
2974 addr = align_address(aligned_addr, common_pagesize);
2975 addr = align_address(addr, (*p)->maximum_alignment());
2976 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2977 off = align_file_offset(off, addr, abi_pagesize);
2978
2979 increase_relro = this->increase_relro_;
2980 if (this->script_options_->saw_sections_clause())
2981 increase_relro = 0;
2982 has_relro = false;
2983
2984 new_addr = (*p)->set_section_addresses(this, true, addr,
2985 &increase_relro,
2986 &has_relro,
2987 &off, pshndx);
2988 }
2989 }
2990
2991 addr = new_addr;
2992
2993 // Implement --check-sections. We know that the segments
2994 // are sorted by LMA.
2995 if (check_sections && last_load_segment != NULL)
2996 {
2997 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2998 if (last_load_segment->paddr() + last_load_segment->memsz()
2999 > (*p)->paddr())
3000 {
3001 unsigned long long lb1 = last_load_segment->paddr();
3002 unsigned long long le1 = lb1 + last_load_segment->memsz();
3003 unsigned long long lb2 = (*p)->paddr();
3004 unsigned long long le2 = lb2 + (*p)->memsz();
3005 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3006 "[0x%llx -> 0x%llx]"),
3007 lb1, le1, lb2, le2);
3008 }
3009 }
3010 last_load_segment = *p;
3011 }
3012 }
3013
3014 // Handle the non-PT_LOAD segments, setting their offsets from their
3015 // section's offsets.
3016 for (Segment_list::iterator p = this->segment_list_.begin();
3017 p != this->segment_list_.end();
3018 ++p)
3019 {
3020 if ((*p)->type() != elfcpp::PT_LOAD)
3021 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3022 ? increase_relro
3023 : 0);
3024 }
3025
3026 // Set the TLS offsets for each section in the PT_TLS segment.
3027 if (this->tls_segment_ != NULL)
3028 this->tls_segment_->set_tls_offsets();
3029
3030 return off;
3031 }
3032
3033 // Set the offsets of all the allocated sections when doing a
3034 // relocatable link. This does the same jobs as set_segment_offsets,
3035 // only for a relocatable link.
3036
3037 off_t
3038 Layout::set_relocatable_section_offsets(Output_data* file_header,
3039 unsigned int* pshndx)
3040 {
3041 off_t off = 0;
3042
3043 file_header->set_address_and_file_offset(0, 0);
3044 off += file_header->data_size();
3045
3046 for (Section_list::iterator p = this->section_list_.begin();
3047 p != this->section_list_.end();
3048 ++p)
3049 {
3050 // We skip unallocated sections here, except that group sections
3051 // have to come first.
3052 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3053 && (*p)->type() != elfcpp::SHT_GROUP)
3054 continue;
3055
3056 off = align_address(off, (*p)->addralign());
3057
3058 // The linker script might have set the address.
3059 if (!(*p)->is_address_valid())
3060 (*p)->set_address(0);
3061 (*p)->set_file_offset(off);
3062 (*p)->finalize_data_size();
3063 off += (*p)->data_size();
3064
3065 (*p)->set_out_shndx(*pshndx);
3066 ++*pshndx;
3067 }
3068
3069 return off;
3070 }
3071
3072 // Set the file offset of all the sections not associated with a
3073 // segment.
3074
3075 off_t
3076 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3077 {
3078 off_t startoff = off;
3079 off_t maxoff = off;
3080
3081 for (Section_list::iterator p = this->unattached_section_list_.begin();
3082 p != this->unattached_section_list_.end();
3083 ++p)
3084 {
3085 // The symtab section is handled in create_symtab_sections.
3086 if (*p == this->symtab_section_)
3087 continue;
3088
3089 // If we've already set the data size, don't set it again.
3090 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3091 continue;
3092
3093 if (pass == BEFORE_INPUT_SECTIONS_PASS
3094 && (*p)->requires_postprocessing())
3095 {
3096 (*p)->create_postprocessing_buffer();
3097 this->any_postprocessing_sections_ = true;
3098 }
3099
3100 if (pass == BEFORE_INPUT_SECTIONS_PASS
3101 && (*p)->after_input_sections())
3102 continue;
3103 else if (pass == POSTPROCESSING_SECTIONS_PASS
3104 && (!(*p)->after_input_sections()
3105 || (*p)->type() == elfcpp::SHT_STRTAB))
3106 continue;
3107 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3108 && (!(*p)->after_input_sections()
3109 || (*p)->type() != elfcpp::SHT_STRTAB))
3110 continue;
3111
3112 if (!parameters->incremental_update())
3113 {
3114 off = align_address(off, (*p)->addralign());
3115 (*p)->set_file_offset(off);
3116 (*p)->finalize_data_size();
3117 }
3118 else
3119 {
3120 // Incremental update: allocate file space from free list.
3121 (*p)->pre_finalize_data_size();
3122 off_t current_size = (*p)->current_data_size();
3123 off = this->allocate(current_size, (*p)->addralign(), startoff);
3124 if (off == -1)
3125 {
3126 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3127 this->free_list_.dump();
3128 gold_assert((*p)->output_section() != NULL);
3129 gold_fatal(_("out of patch space for section %s; "
3130 "relink with --incremental-full"),
3131 (*p)->output_section()->name());
3132 }
3133 (*p)->set_file_offset(off);
3134 (*p)->finalize_data_size();
3135 if ((*p)->data_size() > current_size)
3136 {
3137 gold_assert((*p)->output_section() != NULL);
3138 gold_fatal(_("%s: section changed size; "
3139 "relink with --incremental-full"),
3140 (*p)->output_section()->name());
3141 }
3142 gold_debug(DEBUG_INCREMENTAL,
3143 "set_section_offsets: %08lx %08lx %s",
3144 static_cast<long>(off),
3145 static_cast<long>((*p)->data_size()),
3146 ((*p)->output_section() != NULL
3147 ? (*p)->output_section()->name() : "(special)"));
3148 }
3149
3150 off += (*p)->data_size();
3151 if (off > maxoff)
3152 maxoff = off;
3153
3154 // At this point the name must be set.
3155 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3156 this->namepool_.add((*p)->name(), false, NULL);
3157 }
3158 return maxoff;
3159 }
3160
3161 // Set the section indexes of all the sections not associated with a
3162 // segment.
3163
3164 unsigned int
3165 Layout::set_section_indexes(unsigned int shndx)
3166 {
3167 for (Section_list::iterator p = this->unattached_section_list_.begin();
3168 p != this->unattached_section_list_.end();
3169 ++p)
3170 {
3171 if (!(*p)->has_out_shndx())
3172 {
3173 (*p)->set_out_shndx(shndx);
3174 ++shndx;
3175 }
3176 }
3177 return shndx;
3178 }
3179
3180 // Set the section addresses according to the linker script. This is
3181 // only called when we see a SECTIONS clause. This returns the
3182 // program segment which should hold the file header and segment
3183 // headers, if any. It will return NULL if they should not be in a
3184 // segment.
3185
3186 Output_segment*
3187 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3188 {
3189 Script_sections* ss = this->script_options_->script_sections();
3190 gold_assert(ss->saw_sections_clause());
3191 return this->script_options_->set_section_addresses(symtab, this);
3192 }
3193
3194 // Place the orphan sections in the linker script.
3195
3196 void
3197 Layout::place_orphan_sections_in_script()
3198 {
3199 Script_sections* ss = this->script_options_->script_sections();
3200 gold_assert(ss->saw_sections_clause());
3201
3202 // Place each orphaned output section in the script.
3203 for (Section_list::iterator p = this->section_list_.begin();
3204 p != this->section_list_.end();
3205 ++p)
3206 {
3207 if (!(*p)->found_in_sections_clause())
3208 ss->place_orphan(*p);
3209 }
3210 }
3211
3212 // Count the local symbols in the regular symbol table and the dynamic
3213 // symbol table, and build the respective string pools.
3214
3215 void
3216 Layout::count_local_symbols(const Task* task,
3217 const Input_objects* input_objects)
3218 {
3219 // First, figure out an upper bound on the number of symbols we'll
3220 // be inserting into each pool. This helps us create the pools with
3221 // the right size, to avoid unnecessary hashtable resizing.
3222 unsigned int symbol_count = 0;
3223 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3224 p != input_objects->relobj_end();
3225 ++p)
3226 symbol_count += (*p)->local_symbol_count();
3227
3228 // Go from "upper bound" to "estimate." We overcount for two
3229 // reasons: we double-count symbols that occur in more than one
3230 // object file, and we count symbols that are dropped from the
3231 // output. Add it all together and assume we overcount by 100%.
3232 symbol_count /= 2;
3233
3234 // We assume all symbols will go into both the sympool and dynpool.
3235 this->sympool_.reserve(symbol_count);
3236 this->dynpool_.reserve(symbol_count);
3237
3238 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3239 p != input_objects->relobj_end();
3240 ++p)
3241 {
3242 Task_lock_obj<Object> tlo(task, *p);
3243 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3244 }
3245 }
3246
3247 // Create the symbol table sections. Here we also set the final
3248 // values of the symbols. At this point all the loadable sections are
3249 // fully laid out. SHNUM is the number of sections so far.
3250
3251 void
3252 Layout::create_symtab_sections(const Input_objects* input_objects,
3253 Symbol_table* symtab,
3254 unsigned int shnum,
3255 off_t* poff)
3256 {
3257 int symsize;
3258 unsigned int align;
3259 if (parameters->target().get_size() == 32)
3260 {
3261 symsize = elfcpp::Elf_sizes<32>::sym_size;
3262 align = 4;
3263 }
3264 else if (parameters->target().get_size() == 64)
3265 {
3266 symsize = elfcpp::Elf_sizes<64>::sym_size;
3267 align = 8;
3268 }
3269 else
3270 gold_unreachable();
3271
3272 // Compute file offsets relative to the start of the symtab section.
3273 off_t off = 0;
3274
3275 // Save space for the dummy symbol at the start of the section. We
3276 // never bother to write this out--it will just be left as zero.
3277 off += symsize;
3278 unsigned int local_symbol_index = 1;
3279
3280 // Add STT_SECTION symbols for each Output section which needs one.
3281 for (Section_list::iterator p = this->section_list_.begin();
3282 p != this->section_list_.end();
3283 ++p)
3284 {
3285 if (!(*p)->needs_symtab_index())
3286 (*p)->set_symtab_index(-1U);
3287 else
3288 {
3289 (*p)->set_symtab_index(local_symbol_index);
3290 ++local_symbol_index;
3291 off += symsize;
3292 }
3293 }
3294
3295 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3296 p != input_objects->relobj_end();
3297 ++p)
3298 {
3299 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3300 off, symtab);
3301 off += (index - local_symbol_index) * symsize;
3302 local_symbol_index = index;
3303 }
3304
3305 unsigned int local_symcount = local_symbol_index;
3306 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3307
3308 off_t dynoff;
3309 size_t dyn_global_index;
3310 size_t dyncount;
3311 if (this->dynsym_section_ == NULL)
3312 {
3313 dynoff = 0;
3314 dyn_global_index = 0;
3315 dyncount = 0;
3316 }
3317 else
3318 {
3319 dyn_global_index = this->dynsym_section_->info();
3320 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3321 dynoff = this->dynsym_section_->offset() + locsize;
3322 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3323 gold_assert(static_cast<off_t>(dyncount * symsize)
3324 == this->dynsym_section_->data_size() - locsize);
3325 }
3326
3327 off_t global_off = off;
3328 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3329 &this->sympool_, &local_symcount);
3330
3331 if (!parameters->options().strip_all())
3332 {
3333 this->sympool_.set_string_offsets();
3334
3335 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3336 Output_section* osymtab = this->make_output_section(symtab_name,
3337 elfcpp::SHT_SYMTAB,
3338 0, ORDER_INVALID,
3339 false);
3340 this->symtab_section_ = osymtab;
3341
3342 Output_section_data* pos = new Output_data_fixed_space(off, align,
3343 "** symtab");
3344 osymtab->add_output_section_data(pos);
3345
3346 // We generate a .symtab_shndx section if we have more than
3347 // SHN_LORESERVE sections. Technically it is possible that we
3348 // don't need one, because it is possible that there are no
3349 // symbols in any of sections with indexes larger than
3350 // SHN_LORESERVE. That is probably unusual, though, and it is
3351 // easier to always create one than to compute section indexes
3352 // twice (once here, once when writing out the symbols).
3353 if (shnum >= elfcpp::SHN_LORESERVE)
3354 {
3355 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3356 false, NULL);
3357 Output_section* osymtab_xindex =
3358 this->make_output_section(symtab_xindex_name,
3359 elfcpp::SHT_SYMTAB_SHNDX, 0,
3360 ORDER_INVALID, false);
3361
3362 size_t symcount = off / symsize;
3363 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3364
3365 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3366
3367 osymtab_xindex->set_link_section(osymtab);
3368 osymtab_xindex->set_addralign(4);
3369 osymtab_xindex->set_entsize(4);
3370
3371 osymtab_xindex->set_after_input_sections();
3372
3373 // This tells the driver code to wait until the symbol table
3374 // has written out before writing out the postprocessing
3375 // sections, including the .symtab_shndx section.
3376 this->any_postprocessing_sections_ = true;
3377 }
3378
3379 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3380 Output_section* ostrtab = this->make_output_section(strtab_name,
3381 elfcpp::SHT_STRTAB,
3382 0, ORDER_INVALID,
3383 false);
3384
3385 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3386 ostrtab->add_output_section_data(pstr);
3387
3388 off_t symtab_off;
3389 if (!parameters->incremental_update())
3390 symtab_off = align_address(*poff, align);
3391 else
3392 {
3393 symtab_off = this->allocate(off, align, *poff);
3394 if (off == -1)
3395 gold_fatal(_("out of patch space for symbol table; "
3396 "relink with --incremental-full"));
3397 gold_debug(DEBUG_INCREMENTAL,
3398 "create_symtab_sections: %08lx %08lx .symtab",
3399 static_cast<long>(symtab_off),
3400 static_cast<long>(off));
3401 }
3402
3403 symtab->set_file_offset(symtab_off + global_off);
3404 osymtab->set_file_offset(symtab_off);
3405 osymtab->finalize_data_size();
3406 osymtab->set_link_section(ostrtab);
3407 osymtab->set_info(local_symcount);
3408 osymtab->set_entsize(symsize);
3409
3410 if (symtab_off + off > *poff)
3411 *poff = symtab_off + off;
3412 }
3413 }
3414
3415 // Create the .shstrtab section, which holds the names of the
3416 // sections. At the time this is called, we have created all the
3417 // output sections except .shstrtab itself.
3418
3419 Output_section*
3420 Layout::create_shstrtab()
3421 {
3422 // FIXME: We don't need to create a .shstrtab section if we are
3423 // stripping everything.
3424
3425 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3426
3427 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3428 ORDER_INVALID, false);
3429
3430 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3431 {
3432 // We can't write out this section until we've set all the
3433 // section names, and we don't set the names of compressed
3434 // output sections until relocations are complete. FIXME: With
3435 // the current names we use, this is unnecessary.
3436 os->set_after_input_sections();
3437 }
3438
3439 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3440 os->add_output_section_data(posd);
3441
3442 return os;
3443 }
3444
3445 // Create the section headers. SIZE is 32 or 64. OFF is the file
3446 // offset.
3447
3448 void
3449 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3450 {
3451 Output_section_headers* oshdrs;
3452 oshdrs = new Output_section_headers(this,
3453 &this->segment_list_,
3454 &this->section_list_,
3455 &this->unattached_section_list_,
3456 &this->namepool_,
3457 shstrtab_section);
3458 off_t off;
3459 if (!parameters->incremental_update())
3460 off = align_address(*poff, oshdrs->addralign());
3461 else
3462 {
3463 oshdrs->pre_finalize_data_size();
3464 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3465 if (off == -1)
3466 gold_fatal(_("out of patch space for section header table; "
3467 "relink with --incremental-full"));
3468 gold_debug(DEBUG_INCREMENTAL,
3469 "create_shdrs: %08lx %08lx (section header table)",
3470 static_cast<long>(off),
3471 static_cast<long>(off + oshdrs->data_size()));
3472 }
3473 oshdrs->set_address_and_file_offset(0, off);
3474 off += oshdrs->data_size();
3475 if (off > *poff)
3476 *poff = off;
3477 this->section_headers_ = oshdrs;
3478 }
3479
3480 // Count the allocated sections.
3481
3482 size_t
3483 Layout::allocated_output_section_count() const
3484 {
3485 size_t section_count = 0;
3486 for (Segment_list::const_iterator p = this->segment_list_.begin();
3487 p != this->segment_list_.end();
3488 ++p)
3489 section_count += (*p)->output_section_count();
3490 return section_count;
3491 }
3492
3493 // Create the dynamic symbol table.
3494
3495 void
3496 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3497 Symbol_table* symtab,
3498 Output_section** pdynstr,
3499 unsigned int* plocal_dynamic_count,
3500 std::vector<Symbol*>* pdynamic_symbols,
3501 Versions* pversions)
3502 {
3503 // Count all the symbols in the dynamic symbol table, and set the
3504 // dynamic symbol indexes.
3505
3506 // Skip symbol 0, which is always all zeroes.
3507 unsigned int index = 1;
3508
3509 // Add STT_SECTION symbols for each Output section which needs one.
3510 for (Section_list::iterator p = this->section_list_.begin();
3511 p != this->section_list_.end();
3512 ++p)
3513 {
3514 if (!(*p)->needs_dynsym_index())
3515 (*p)->set_dynsym_index(-1U);
3516 else
3517 {
3518 (*p)->set_dynsym_index(index);
3519 ++index;
3520 }
3521 }
3522
3523 // Count the local symbols that need to go in the dynamic symbol table,
3524 // and set the dynamic symbol indexes.
3525 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3526 p != input_objects->relobj_end();
3527 ++p)
3528 {
3529 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3530 index = new_index;
3531 }
3532
3533 unsigned int local_symcount = index;
3534 *plocal_dynamic_count = local_symcount;
3535
3536 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3537 &this->dynpool_, pversions);
3538
3539 int symsize;
3540 unsigned int align;
3541 const int size = parameters->target().get_size();
3542 if (size == 32)
3543 {
3544 symsize = elfcpp::Elf_sizes<32>::sym_size;
3545 align = 4;
3546 }
3547 else if (size == 64)
3548 {
3549 symsize = elfcpp::Elf_sizes<64>::sym_size;
3550 align = 8;
3551 }
3552 else
3553 gold_unreachable();
3554
3555 // Create the dynamic symbol table section.
3556
3557 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3558 elfcpp::SHT_DYNSYM,
3559 elfcpp::SHF_ALLOC,
3560 false,
3561 ORDER_DYNAMIC_LINKER,
3562 false);
3563
3564 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3565 align,
3566 "** dynsym");
3567 dynsym->add_output_section_data(odata);
3568
3569 dynsym->set_info(local_symcount);
3570 dynsym->set_entsize(symsize);
3571 dynsym->set_addralign(align);
3572
3573 this->dynsym_section_ = dynsym;
3574
3575 Output_data_dynamic* const odyn = this->dynamic_data_;
3576 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3577 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3578
3579 // If there are more than SHN_LORESERVE allocated sections, we
3580 // create a .dynsym_shndx section. It is possible that we don't
3581 // need one, because it is possible that there are no dynamic
3582 // symbols in any of the sections with indexes larger than
3583 // SHN_LORESERVE. This is probably unusual, though, and at this
3584 // time we don't know the actual section indexes so it is
3585 // inconvenient to check.
3586 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3587 {
3588 Output_section* dynsym_xindex =
3589 this->choose_output_section(NULL, ".dynsym_shndx",
3590 elfcpp::SHT_SYMTAB_SHNDX,
3591 elfcpp::SHF_ALLOC,
3592 false, ORDER_DYNAMIC_LINKER, false);
3593
3594 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3595
3596 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3597
3598 dynsym_xindex->set_link_section(dynsym);
3599 dynsym_xindex->set_addralign(4);
3600 dynsym_xindex->set_entsize(4);
3601
3602 dynsym_xindex->set_after_input_sections();
3603
3604 // This tells the driver code to wait until the symbol table has
3605 // written out before writing out the postprocessing sections,
3606 // including the .dynsym_shndx section.
3607 this->any_postprocessing_sections_ = true;
3608 }
3609
3610 // Create the dynamic string table section.
3611
3612 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3613 elfcpp::SHT_STRTAB,
3614 elfcpp::SHF_ALLOC,
3615 false,
3616 ORDER_DYNAMIC_LINKER,
3617 false);
3618
3619 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3620 dynstr->add_output_section_data(strdata);
3621
3622 dynsym->set_link_section(dynstr);
3623 this->dynamic_section_->set_link_section(dynstr);
3624
3625 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3626 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3627
3628 *pdynstr = dynstr;
3629
3630 // Create the hash tables.
3631
3632 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3633 || strcmp(parameters->options().hash_style(), "both") == 0)
3634 {
3635 unsigned char* phash;
3636 unsigned int hashlen;
3637 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3638 &phash, &hashlen);
3639
3640 Output_section* hashsec =
3641 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3642 elfcpp::SHF_ALLOC, false,
3643 ORDER_DYNAMIC_LINKER, false);
3644
3645 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3646 hashlen,
3647 align,
3648 "** hash");
3649 hashsec->add_output_section_data(hashdata);
3650
3651 hashsec->set_link_section(dynsym);
3652 hashsec->set_entsize(4);
3653
3654 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3655 }
3656
3657 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3658 || strcmp(parameters->options().hash_style(), "both") == 0)
3659 {
3660 unsigned char* phash;
3661 unsigned int hashlen;
3662 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3663 &phash, &hashlen);
3664
3665 Output_section* hashsec =
3666 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3667 elfcpp::SHF_ALLOC, false,
3668 ORDER_DYNAMIC_LINKER, false);
3669
3670 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3671 hashlen,
3672 align,
3673 "** hash");
3674 hashsec->add_output_section_data(hashdata);
3675
3676 hashsec->set_link_section(dynsym);
3677
3678 // For a 64-bit target, the entries in .gnu.hash do not have a
3679 // uniform size, so we only set the entry size for a 32-bit
3680 // target.
3681 if (parameters->target().get_size() == 32)
3682 hashsec->set_entsize(4);
3683
3684 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3685 }
3686 }
3687
3688 // Assign offsets to each local portion of the dynamic symbol table.
3689
3690 void
3691 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3692 {
3693 Output_section* dynsym = this->dynsym_section_;
3694 gold_assert(dynsym != NULL);
3695
3696 off_t off = dynsym->offset();
3697
3698 // Skip the dummy symbol at the start of the section.
3699 off += dynsym->entsize();
3700
3701 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3702 p != input_objects->relobj_end();
3703 ++p)
3704 {
3705 unsigned int count = (*p)->set_local_dynsym_offset(off);
3706 off += count * dynsym->entsize();
3707 }
3708 }
3709
3710 // Create the version sections.
3711
3712 void
3713 Layout::create_version_sections(const Versions* versions,
3714 const Symbol_table* symtab,
3715 unsigned int local_symcount,
3716 const std::vector<Symbol*>& dynamic_symbols,
3717 const Output_section* dynstr)
3718 {
3719 if (!versions->any_defs() && !versions->any_needs())
3720 return;
3721
3722 switch (parameters->size_and_endianness())
3723 {
3724 #ifdef HAVE_TARGET_32_LITTLE
3725 case Parameters::TARGET_32_LITTLE:
3726 this->sized_create_version_sections<32, false>(versions, symtab,
3727 local_symcount,
3728 dynamic_symbols, dynstr);
3729 break;
3730 #endif
3731 #ifdef HAVE_TARGET_32_BIG
3732 case Parameters::TARGET_32_BIG:
3733 this->sized_create_version_sections<32, true>(versions, symtab,
3734 local_symcount,
3735 dynamic_symbols, dynstr);
3736 break;
3737 #endif
3738 #ifdef HAVE_TARGET_64_LITTLE
3739 case Parameters::TARGET_64_LITTLE:
3740 this->sized_create_version_sections<64, false>(versions, symtab,
3741 local_symcount,
3742 dynamic_symbols, dynstr);
3743 break;
3744 #endif
3745 #ifdef HAVE_TARGET_64_BIG
3746 case Parameters::TARGET_64_BIG:
3747 this->sized_create_version_sections<64, true>(versions, symtab,
3748 local_symcount,
3749 dynamic_symbols, dynstr);
3750 break;
3751 #endif
3752 default:
3753 gold_unreachable();
3754 }
3755 }
3756
3757 // Create the version sections, sized version.
3758
3759 template<int size, bool big_endian>
3760 void
3761 Layout::sized_create_version_sections(
3762 const Versions* versions,
3763 const Symbol_table* symtab,
3764 unsigned int local_symcount,
3765 const std::vector<Symbol*>& dynamic_symbols,
3766 const Output_section* dynstr)
3767 {
3768 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3769 elfcpp::SHT_GNU_versym,
3770 elfcpp::SHF_ALLOC,
3771 false,
3772 ORDER_DYNAMIC_LINKER,
3773 false);
3774
3775 unsigned char* vbuf;
3776 unsigned int vsize;
3777 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3778 local_symcount,
3779 dynamic_symbols,
3780 &vbuf, &vsize);
3781
3782 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3783 "** versions");
3784
3785 vsec->add_output_section_data(vdata);
3786 vsec->set_entsize(2);
3787 vsec->set_link_section(this->dynsym_section_);
3788
3789 Output_data_dynamic* const odyn = this->dynamic_data_;
3790 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3791
3792 if (versions->any_defs())
3793 {
3794 Output_section* vdsec;
3795 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3796 elfcpp::SHT_GNU_verdef,
3797 elfcpp::SHF_ALLOC,
3798 false, ORDER_DYNAMIC_LINKER, false);
3799
3800 unsigned char* vdbuf;
3801 unsigned int vdsize;
3802 unsigned int vdentries;
3803 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3804 &vdsize, &vdentries);
3805
3806 Output_section_data* vddata =
3807 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3808
3809 vdsec->add_output_section_data(vddata);
3810 vdsec->set_link_section(dynstr);
3811 vdsec->set_info(vdentries);
3812
3813 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3814 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3815 }
3816
3817 if (versions->any_needs())
3818 {
3819 Output_section* vnsec;
3820 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3821 elfcpp::SHT_GNU_verneed,
3822 elfcpp::SHF_ALLOC,
3823 false, ORDER_DYNAMIC_LINKER, false);
3824
3825 unsigned char* vnbuf;
3826 unsigned int vnsize;
3827 unsigned int vnentries;
3828 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3829 &vnbuf, &vnsize,
3830 &vnentries);
3831
3832 Output_section_data* vndata =
3833 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3834
3835 vnsec->add_output_section_data(vndata);
3836 vnsec->set_link_section(dynstr);
3837 vnsec->set_info(vnentries);
3838
3839 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3840 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3841 }
3842 }
3843
3844 // Create the .interp section and PT_INTERP segment.
3845
3846 void
3847 Layout::create_interp(const Target* target)
3848 {
3849 const char* interp = parameters->options().dynamic_linker();
3850 if (interp == NULL)
3851 {
3852 interp = target->dynamic_linker();
3853 gold_assert(interp != NULL);
3854 }
3855
3856 size_t len = strlen(interp) + 1;
3857
3858 Output_section_data* odata = new Output_data_const(interp, len, 1);
3859
3860 Output_section* osec = this->choose_output_section(NULL, ".interp",
3861 elfcpp::SHT_PROGBITS,
3862 elfcpp::SHF_ALLOC,
3863 false, ORDER_INTERP,
3864 false);
3865 osec->add_output_section_data(odata);
3866
3867 if (!this->script_options_->saw_phdrs_clause())
3868 {
3869 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3870 elfcpp::PF_R);
3871 oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3872 }
3873 }
3874
3875 // Add dynamic tags for the PLT and the dynamic relocs. This is
3876 // called by the target-specific code. This does nothing if not doing
3877 // a dynamic link.
3878
3879 // USE_REL is true for REL relocs rather than RELA relocs.
3880
3881 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3882
3883 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3884 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3885 // some targets have multiple reloc sections in PLT_REL.
3886
3887 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3888 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3889
3890 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3891 // executable.
3892
3893 void
3894 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3895 const Output_data* plt_rel,
3896 const Output_data_reloc_generic* dyn_rel,
3897 bool add_debug, bool dynrel_includes_plt)
3898 {
3899 Output_data_dynamic* odyn = this->dynamic_data_;
3900 if (odyn == NULL)
3901 return;
3902
3903 if (plt_got != NULL && plt_got->output_section() != NULL)
3904 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3905
3906 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3907 {
3908 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3909 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3910 odyn->add_constant(elfcpp::DT_PLTREL,
3911 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3912 }
3913
3914 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3915 {
3916 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3917 dyn_rel);
3918 if (plt_rel != NULL && dynrel_includes_plt)
3919 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3920 dyn_rel, plt_rel);
3921 else
3922 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3923 dyn_rel);
3924 const int size = parameters->target().get_size();
3925 elfcpp::DT rel_tag;
3926 int rel_size;
3927 if (use_rel)
3928 {
3929 rel_tag = elfcpp::DT_RELENT;
3930 if (size == 32)
3931 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3932 else if (size == 64)
3933 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3934 else
3935 gold_unreachable();
3936 }
3937 else
3938 {
3939 rel_tag = elfcpp::DT_RELAENT;
3940 if (size == 32)
3941 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3942 else if (size == 64)
3943 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3944 else
3945 gold_unreachable();
3946 }
3947 odyn->add_constant(rel_tag, rel_size);
3948
3949 if (parameters->options().combreloc())
3950 {
3951 size_t c = dyn_rel->relative_reloc_count();
3952 if (c > 0)
3953 odyn->add_constant((use_rel
3954 ? elfcpp::DT_RELCOUNT
3955 : elfcpp::DT_RELACOUNT),
3956 c);
3957 }
3958 }
3959
3960 if (add_debug && !parameters->options().shared())
3961 {
3962 // The value of the DT_DEBUG tag is filled in by the dynamic
3963 // linker at run time, and used by the debugger.
3964 odyn->add_constant(elfcpp::DT_DEBUG, 0);
3965 }
3966 }
3967
3968 // Finish the .dynamic section and PT_DYNAMIC segment.
3969
3970 void
3971 Layout::finish_dynamic_section(const Input_objects* input_objects,
3972 const Symbol_table* symtab)
3973 {
3974 if (!this->script_options_->saw_phdrs_clause())
3975 {
3976 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3977 (elfcpp::PF_R
3978 | elfcpp::PF_W));
3979 oseg->add_output_section_to_nonload(this->dynamic_section_,
3980 elfcpp::PF_R | elfcpp::PF_W);
3981 }
3982
3983 Output_data_dynamic* const odyn = this->dynamic_data_;
3984
3985 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3986 p != input_objects->dynobj_end();
3987 ++p)
3988 {
3989 if (!(*p)->is_needed() && (*p)->as_needed())
3990 {
3991 // This dynamic object was linked with --as-needed, but it
3992 // is not needed.
3993 continue;
3994 }
3995
3996 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3997 }
3998
3999 if (parameters->options().shared())
4000 {
4001 const char* soname = parameters->options().soname();
4002 if (soname != NULL)
4003 odyn->add_string(elfcpp::DT_SONAME, soname);
4004 }
4005
4006 Symbol* sym = symtab->lookup(parameters->options().init());
4007 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4008 odyn->add_symbol(elfcpp::DT_INIT, sym);
4009
4010 sym = symtab->lookup(parameters->options().fini());
4011 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4012 odyn->add_symbol(elfcpp::DT_FINI, sym);
4013
4014 // Look for .init_array, .preinit_array and .fini_array by checking
4015 // section types.
4016 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4017 p != this->section_list_.end();
4018 ++p)
4019 switch((*p)->type())
4020 {
4021 case elfcpp::SHT_FINI_ARRAY:
4022 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4023 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4024 break;
4025 case elfcpp::SHT_INIT_ARRAY:
4026 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4027 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4028 break;
4029 case elfcpp::SHT_PREINIT_ARRAY:
4030 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4031 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4032 break;
4033 default:
4034 break;
4035 }
4036
4037 // Add a DT_RPATH entry if needed.
4038 const General_options::Dir_list& rpath(parameters->options().rpath());
4039 if (!rpath.empty())
4040 {
4041 std::string rpath_val;
4042 for (General_options::Dir_list::const_iterator p = rpath.begin();
4043 p != rpath.end();
4044 ++p)
4045 {
4046 if (rpath_val.empty())
4047 rpath_val = p->name();
4048 else
4049 {
4050 // Eliminate duplicates.
4051 General_options::Dir_list::const_iterator q;
4052 for (q = rpath.begin(); q != p; ++q)
4053 if (q->name() == p->name())
4054 break;
4055 if (q == p)
4056 {
4057 rpath_val += ':';
4058 rpath_val += p->name();
4059 }
4060 }
4061 }
4062
4063 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4064 if (parameters->options().enable_new_dtags())
4065 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4066 }
4067
4068 // Look for text segments that have dynamic relocations.
4069 bool have_textrel = false;
4070 if (!this->script_options_->saw_sections_clause())
4071 {
4072 for (Segment_list::const_iterator p = this->segment_list_.begin();
4073 p != this->segment_list_.end();
4074 ++p)
4075 {
4076 if (((*p)->flags() & elfcpp::PF_W) == 0
4077 && (*p)->has_dynamic_reloc())
4078 {
4079 have_textrel = true;
4080 break;
4081 }
4082 }
4083 }
4084 else
4085 {
4086 // We don't know the section -> segment mapping, so we are
4087 // conservative and just look for readonly sections with
4088 // relocations. If those sections wind up in writable segments,
4089 // then we have created an unnecessary DT_TEXTREL entry.
4090 for (Section_list::const_iterator p = this->section_list_.begin();
4091 p != this->section_list_.end();
4092 ++p)
4093 {
4094 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4095 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4096 && ((*p)->has_dynamic_reloc()))
4097 {
4098 have_textrel = true;
4099 break;
4100 }
4101 }
4102 }
4103
4104 // Add a DT_FLAGS entry. We add it even if no flags are set so that
4105 // post-link tools can easily modify these flags if desired.
4106 unsigned int flags = 0;
4107 if (have_textrel)
4108 {
4109 // Add a DT_TEXTREL for compatibility with older loaders.
4110 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4111 flags |= elfcpp::DF_TEXTREL;
4112
4113 if (parameters->options().text())
4114 gold_error(_("read-only segment has dynamic relocations"));
4115 else if (parameters->options().warn_shared_textrel()
4116 && parameters->options().shared())
4117 gold_warning(_("shared library text segment is not shareable"));
4118 }
4119 if (parameters->options().shared() && this->has_static_tls())
4120 flags |= elfcpp::DF_STATIC_TLS;
4121 if (parameters->options().origin())
4122 flags |= elfcpp::DF_ORIGIN;
4123 if (parameters->options().Bsymbolic())
4124 {
4125 flags |= elfcpp::DF_SYMBOLIC;
4126 // Add DT_SYMBOLIC for compatibility with older loaders.
4127 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4128 }
4129 if (parameters->options().now())
4130 flags |= elfcpp::DF_BIND_NOW;
4131 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4132
4133 flags = 0;
4134 if (parameters->options().initfirst())
4135 flags |= elfcpp::DF_1_INITFIRST;
4136 if (parameters->options().interpose())
4137 flags |= elfcpp::DF_1_INTERPOSE;
4138 if (parameters->options().loadfltr())
4139 flags |= elfcpp::DF_1_LOADFLTR;
4140 if (parameters->options().nodefaultlib())
4141 flags |= elfcpp::DF_1_NODEFLIB;
4142 if (parameters->options().nodelete())
4143 flags |= elfcpp::DF_1_NODELETE;
4144 if (parameters->options().nodlopen())
4145 flags |= elfcpp::DF_1_NOOPEN;
4146 if (parameters->options().nodump())
4147 flags |= elfcpp::DF_1_NODUMP;
4148 if (!parameters->options().shared())
4149 flags &= ~(elfcpp::DF_1_INITFIRST
4150 | elfcpp::DF_1_NODELETE
4151 | elfcpp::DF_1_NOOPEN);
4152 if (parameters->options().origin())
4153 flags |= elfcpp::DF_1_ORIGIN;
4154 if (parameters->options().now())
4155 flags |= elfcpp::DF_1_NOW;
4156 if (flags)
4157 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4158 }
4159
4160 // Set the size of the _DYNAMIC symbol table to be the size of the
4161 // dynamic data.
4162
4163 void
4164 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4165 {
4166 Output_data_dynamic* const odyn = this->dynamic_data_;
4167 odyn->finalize_data_size();
4168 off_t data_size = odyn->data_size();
4169 const int size = parameters->target().get_size();
4170 if (size == 32)
4171 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4172 else if (size == 64)
4173 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4174 else
4175 gold_unreachable();
4176 }
4177
4178 // The mapping of input section name prefixes to output section names.
4179 // In some cases one prefix is itself a prefix of another prefix; in
4180 // such a case the longer prefix must come first. These prefixes are
4181 // based on the GNU linker default ELF linker script.
4182
4183 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4184 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4185 {
4186 MAPPING_INIT(".text.", ".text"),
4187 MAPPING_INIT(".ctors.", ".ctors"),
4188 MAPPING_INIT(".dtors.", ".dtors"),
4189 MAPPING_INIT(".rodata.", ".rodata"),
4190 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4191 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4192 MAPPING_INIT(".data.", ".data"),
4193 MAPPING_INIT(".bss.", ".bss"),
4194 MAPPING_INIT(".tdata.", ".tdata"),
4195 MAPPING_INIT(".tbss.", ".tbss"),
4196 MAPPING_INIT(".init_array.", ".init_array"),
4197 MAPPING_INIT(".fini_array.", ".fini_array"),
4198 MAPPING_INIT(".sdata.", ".sdata"),
4199 MAPPING_INIT(".sbss.", ".sbss"),
4200 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4201 // differently depending on whether it is creating a shared library.
4202 MAPPING_INIT(".sdata2.", ".sdata"),
4203 MAPPING_INIT(".sbss2.", ".sbss"),
4204 MAPPING_INIT(".lrodata.", ".lrodata"),
4205 MAPPING_INIT(".ldata.", ".ldata"),
4206 MAPPING_INIT(".lbss.", ".lbss"),
4207 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4208 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4209 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4210 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4211 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4212 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4213 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4214 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4215 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4216 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4217 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4218 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4219 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4220 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4221 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4222 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4223 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4224 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4225 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4226 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4227 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4228 };
4229 #undef MAPPING_INIT
4230
4231 const int Layout::section_name_mapping_count =
4232 (sizeof(Layout::section_name_mapping)
4233 / sizeof(Layout::section_name_mapping[0]));
4234
4235 // Choose the output section name to use given an input section name.
4236 // Set *PLEN to the length of the name. *PLEN is initialized to the
4237 // length of NAME.
4238
4239 const char*
4240 Layout::output_section_name(const char* name, size_t* plen)
4241 {
4242 // gcc 4.3 generates the following sorts of section names when it
4243 // needs a section name specific to a function:
4244 // .text.FN
4245 // .rodata.FN
4246 // .sdata2.FN
4247 // .data.FN
4248 // .data.rel.FN
4249 // .data.rel.local.FN
4250 // .data.rel.ro.FN
4251 // .data.rel.ro.local.FN
4252 // .sdata.FN
4253 // .bss.FN
4254 // .sbss.FN
4255 // .tdata.FN
4256 // .tbss.FN
4257
4258 // The GNU linker maps all of those to the part before the .FN,
4259 // except that .data.rel.local.FN is mapped to .data, and
4260 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4261 // beginning with .data.rel.ro.local are grouped together.
4262
4263 // For an anonymous namespace, the string FN can contain a '.'.
4264
4265 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4266 // GNU linker maps to .rodata.
4267
4268 // The .data.rel.ro sections are used with -z relro. The sections
4269 // are recognized by name. We use the same names that the GNU
4270 // linker does for these sections.
4271
4272 // It is hard to handle this in a principled way, so we don't even
4273 // try. We use a table of mappings. If the input section name is
4274 // not found in the table, we simply use it as the output section
4275 // name.
4276
4277 const Section_name_mapping* psnm = section_name_mapping;
4278 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4279 {
4280 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4281 {
4282 *plen = psnm->tolen;
4283 return psnm->to;
4284 }
4285 }
4286
4287 return name;
4288 }
4289
4290 // Check if a comdat group or .gnu.linkonce section with the given
4291 // NAME is selected for the link. If there is already a section,
4292 // *KEPT_SECTION is set to point to the existing section and the
4293 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4294 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4295 // *KEPT_SECTION is set to the internal copy and the function returns
4296 // true.
4297
4298 bool
4299 Layout::find_or_add_kept_section(const std::string& name,
4300 Relobj* object,
4301 unsigned int shndx,
4302 bool is_comdat,
4303 bool is_group_name,
4304 Kept_section** kept_section)
4305 {
4306 // It's normal to see a couple of entries here, for the x86 thunk
4307 // sections. If we see more than a few, we're linking a C++
4308 // program, and we resize to get more space to minimize rehashing.
4309 if (this->signatures_.size() > 4
4310 && !this->resized_signatures_)
4311 {
4312 reserve_unordered_map(&this->signatures_,
4313 this->number_of_input_files_ * 64);
4314 this->resized_signatures_ = true;
4315 }
4316
4317 Kept_section candidate;
4318 std::pair<Signatures::iterator, bool> ins =
4319 this->signatures_.insert(std::make_pair(name, candidate));
4320
4321 if (kept_section != NULL)
4322 *kept_section = &ins.first->second;
4323 if (ins.second)
4324 {
4325 // This is the first time we've seen this signature.
4326 ins.first->second.set_object(object);
4327 ins.first->second.set_shndx(shndx);
4328 if (is_comdat)
4329 ins.first->second.set_is_comdat();
4330 if (is_group_name)
4331 ins.first->second.set_is_group_name();
4332 return true;
4333 }
4334
4335 // We have already seen this signature.
4336
4337 if (ins.first->second.is_group_name())
4338 {
4339 // We've already seen a real section group with this signature.
4340 // If the kept group is from a plugin object, and we're in the
4341 // replacement phase, accept the new one as a replacement.
4342 if (ins.first->second.object() == NULL
4343 && parameters->options().plugins()->in_replacement_phase())
4344 {
4345 ins.first->second.set_object(object);
4346 ins.first->second.set_shndx(shndx);
4347 return true;
4348 }
4349 return false;
4350 }
4351 else if (is_group_name)
4352 {
4353 // This is a real section group, and we've already seen a
4354 // linkonce section with this signature. Record that we've seen
4355 // a section group, and don't include this section group.
4356 ins.first->second.set_is_group_name();
4357 return false;
4358 }
4359 else
4360 {
4361 // We've already seen a linkonce section and this is a linkonce
4362 // section. These don't block each other--this may be the same
4363 // symbol name with different section types.
4364 return true;
4365 }
4366 }
4367
4368 // Store the allocated sections into the section list.
4369
4370 void
4371 Layout::get_allocated_sections(Section_list* section_list) const
4372 {
4373 for (Section_list::const_iterator p = this->section_list_.begin();
4374 p != this->section_list_.end();
4375 ++p)
4376 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4377 section_list->push_back(*p);
4378 }
4379
4380 // Create an output segment.
4381
4382 Output_segment*
4383 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4384 {
4385 gold_assert(!parameters->options().relocatable());
4386 Output_segment* oseg = new Output_segment(type, flags);
4387 this->segment_list_.push_back(oseg);
4388
4389 if (type == elfcpp::PT_TLS)
4390 this->tls_segment_ = oseg;
4391 else if (type == elfcpp::PT_GNU_RELRO)
4392 this->relro_segment_ = oseg;
4393
4394 return oseg;
4395 }
4396
4397 // Return the file offset of the normal symbol table.
4398
4399 off_t
4400 Layout::symtab_section_offset() const
4401 {
4402 if (this->symtab_section_ != NULL)
4403 return this->symtab_section_->offset();
4404 return 0;
4405 }
4406
4407 // Write out the Output_sections. Most won't have anything to write,
4408 // since most of the data will come from input sections which are
4409 // handled elsewhere. But some Output_sections do have Output_data.
4410
4411 void
4412 Layout::write_output_sections(Output_file* of) const
4413 {
4414 for (Section_list::const_iterator p = this->section_list_.begin();
4415 p != this->section_list_.end();
4416 ++p)
4417 {
4418 if (!(*p)->after_input_sections())
4419 (*p)->write(of);
4420 }
4421 }
4422
4423 // Write out data not associated with a section or the symbol table.
4424
4425 void
4426 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4427 {
4428 if (!parameters->options().strip_all())
4429 {
4430 const Output_section* symtab_section = this->symtab_section_;
4431 for (Section_list::const_iterator p = this->section_list_.begin();
4432 p != this->section_list_.end();
4433 ++p)
4434 {
4435 if ((*p)->needs_symtab_index())
4436 {
4437 gold_assert(symtab_section != NULL);
4438 unsigned int index = (*p)->symtab_index();
4439 gold_assert(index > 0 && index != -1U);
4440 off_t off = (symtab_section->offset()
4441 + index * symtab_section->entsize());
4442 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4443 }
4444 }
4445 }
4446
4447 const Output_section* dynsym_section = this->dynsym_section_;
4448 for (Section_list::const_iterator p = this->section_list_.begin();
4449 p != this->section_list_.end();
4450 ++p)
4451 {
4452 if ((*p)->needs_dynsym_index())
4453 {
4454 gold_assert(dynsym_section != NULL);
4455 unsigned int index = (*p)->dynsym_index();
4456 gold_assert(index > 0 && index != -1U);
4457 off_t off = (dynsym_section->offset()
4458 + index * dynsym_section->entsize());
4459 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4460 }
4461 }
4462
4463 // Write out the Output_data which are not in an Output_section.
4464 for (Data_list::const_iterator p = this->special_output_list_.begin();
4465 p != this->special_output_list_.end();
4466 ++p)
4467 (*p)->write(of);
4468 }
4469
4470 // Write out the Output_sections which can only be written after the
4471 // input sections are complete.
4472
4473 void
4474 Layout::write_sections_after_input_sections(Output_file* of)
4475 {
4476 // Determine the final section offsets, and thus the final output
4477 // file size. Note we finalize the .shstrab last, to allow the
4478 // after_input_section sections to modify their section-names before
4479 // writing.
4480 if (this->any_postprocessing_sections_)
4481 {
4482 off_t off = this->output_file_size_;
4483 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4484
4485 // Now that we've finalized the names, we can finalize the shstrab.
4486 off =
4487 this->set_section_offsets(off,
4488 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4489
4490 if (off > this->output_file_size_)
4491 {
4492 of->resize(off);
4493 this->output_file_size_ = off;
4494 }
4495 }
4496
4497 for (Section_list::const_iterator p = this->section_list_.begin();
4498 p != this->section_list_.end();
4499 ++p)
4500 {
4501 if ((*p)->after_input_sections())
4502 (*p)->write(of);
4503 }
4504
4505 this->section_headers_->write(of);
4506 }
4507
4508 // If the build ID requires computing a checksum, do so here, and
4509 // write it out. We compute a checksum over the entire file because
4510 // that is simplest.
4511
4512 void
4513 Layout::write_build_id(Output_file* of) const
4514 {
4515 if (this->build_id_note_ == NULL)
4516 return;
4517
4518 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4519
4520 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4521 this->build_id_note_->data_size());
4522
4523 const char* style = parameters->options().build_id();
4524 if (strcmp(style, "sha1") == 0)
4525 {
4526 sha1_ctx ctx;
4527 sha1_init_ctx(&ctx);
4528 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4529 sha1_finish_ctx(&ctx, ov);
4530 }
4531 else if (strcmp(style, "md5") == 0)
4532 {
4533 md5_ctx ctx;
4534 md5_init_ctx(&ctx);
4535 md5_process_bytes(iv, this->output_file_size_, &ctx);
4536 md5_finish_ctx(&ctx, ov);
4537 }
4538 else
4539 gold_unreachable();
4540
4541 of->write_output_view(this->build_id_note_->offset(),
4542 this->build_id_note_->data_size(),
4543 ov);
4544
4545 of->free_input_view(0, this->output_file_size_, iv);
4546 }
4547
4548 // Write out a binary file. This is called after the link is
4549 // complete. IN is the temporary output file we used to generate the
4550 // ELF code. We simply walk through the segments, read them from
4551 // their file offset in IN, and write them to their load address in
4552 // the output file. FIXME: with a bit more work, we could support
4553 // S-records and/or Intel hex format here.
4554
4555 void
4556 Layout::write_binary(Output_file* in) const
4557 {
4558 gold_assert(parameters->options().oformat_enum()
4559 == General_options::OBJECT_FORMAT_BINARY);
4560
4561 // Get the size of the binary file.
4562 uint64_t max_load_address = 0;
4563 for (Segment_list::const_iterator p = this->segment_list_.begin();
4564 p != this->segment_list_.end();
4565 ++p)
4566 {
4567 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4568 {
4569 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4570 if (max_paddr > max_load_address)
4571 max_load_address = max_paddr;
4572 }
4573 }
4574
4575 Output_file out(parameters->options().output_file_name());
4576 out.open(max_load_address);
4577
4578 for (Segment_list::const_iterator p = this->segment_list_.begin();
4579 p != this->segment_list_.end();
4580 ++p)
4581 {
4582 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4583 {
4584 const unsigned char* vin = in->get_input_view((*p)->offset(),
4585 (*p)->filesz());
4586 unsigned char* vout = out.get_output_view((*p)->paddr(),
4587 (*p)->filesz());
4588 memcpy(vout, vin, (*p)->filesz());
4589 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4590 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4591 }
4592 }
4593
4594 out.close();
4595 }
4596
4597 // Print the output sections to the map file.
4598
4599 void
4600 Layout::print_to_mapfile(Mapfile* mapfile) const
4601 {
4602 for (Segment_list::const_iterator p = this->segment_list_.begin();
4603 p != this->segment_list_.end();
4604 ++p)
4605 (*p)->print_sections_to_mapfile(mapfile);
4606 }
4607
4608 // Print statistical information to stderr. This is used for --stats.
4609
4610 void
4611 Layout::print_stats() const
4612 {
4613 this->namepool_.print_stats("section name pool");
4614 this->sympool_.print_stats("output symbol name pool");
4615 this->dynpool_.print_stats("dynamic name pool");
4616
4617 for (Section_list::const_iterator p = this->section_list_.begin();
4618 p != this->section_list_.end();
4619 ++p)
4620 (*p)->print_merge_stats();
4621 }
4622
4623 // Write_sections_task methods.
4624
4625 // We can always run this task.
4626
4627 Task_token*
4628 Write_sections_task::is_runnable()
4629 {
4630 return NULL;
4631 }
4632
4633 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4634 // when finished.
4635
4636 void
4637 Write_sections_task::locks(Task_locker* tl)
4638 {
4639 tl->add(this, this->output_sections_blocker_);
4640 tl->add(this, this->final_blocker_);
4641 }
4642
4643 // Run the task--write out the data.
4644
4645 void
4646 Write_sections_task::run(Workqueue*)
4647 {
4648 this->layout_->write_output_sections(this->of_);
4649 }
4650
4651 // Write_data_task methods.
4652
4653 // We can always run this task.
4654
4655 Task_token*
4656 Write_data_task::is_runnable()
4657 {
4658 return NULL;
4659 }
4660
4661 // We need to unlock FINAL_BLOCKER when finished.
4662
4663 void
4664 Write_data_task::locks(Task_locker* tl)
4665 {
4666 tl->add(this, this->final_blocker_);
4667 }
4668
4669 // Run the task--write out the data.
4670
4671 void
4672 Write_data_task::run(Workqueue*)
4673 {
4674 this->layout_->write_data(this->symtab_, this->of_);
4675 }
4676
4677 // Write_symbols_task methods.
4678
4679 // We can always run this task.
4680
4681 Task_token*
4682 Write_symbols_task::is_runnable()
4683 {
4684 return NULL;
4685 }
4686
4687 // We need to unlock FINAL_BLOCKER when finished.
4688
4689 void
4690 Write_symbols_task::locks(Task_locker* tl)
4691 {
4692 tl->add(this, this->final_blocker_);
4693 }
4694
4695 // Run the task--write out the symbols.
4696
4697 void
4698 Write_symbols_task::run(Workqueue*)
4699 {
4700 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4701 this->layout_->symtab_xindex(),
4702 this->layout_->dynsym_xindex(), this->of_);
4703 }
4704
4705 // Write_after_input_sections_task methods.
4706
4707 // We can only run this task after the input sections have completed.
4708
4709 Task_token*
4710 Write_after_input_sections_task::is_runnable()
4711 {
4712 if (this->input_sections_blocker_->is_blocked())
4713 return this->input_sections_blocker_;
4714 return NULL;
4715 }
4716
4717 // We need to unlock FINAL_BLOCKER when finished.
4718
4719 void
4720 Write_after_input_sections_task::locks(Task_locker* tl)
4721 {
4722 tl->add(this, this->final_blocker_);
4723 }
4724
4725 // Run the task.
4726
4727 void
4728 Write_after_input_sections_task::run(Workqueue*)
4729 {
4730 this->layout_->write_sections_after_input_sections(this->of_);
4731 }
4732
4733 // Close_task_runner methods.
4734
4735 // Run the task--close the file.
4736
4737 void
4738 Close_task_runner::run(Workqueue*, const Task*)
4739 {
4740 // If we need to compute a checksum for the BUILD if, we do so here.
4741 this->layout_->write_build_id(this->of_);
4742
4743 // If we've been asked to create a binary file, we do so here.
4744 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4745 this->layout_->write_binary(this->of_);
4746
4747 this->of_->close();
4748 }
4749
4750 // Instantiate the templates we need. We could use the configure
4751 // script to restrict this to only the ones for implemented targets.
4752
4753 #ifdef HAVE_TARGET_32_LITTLE
4754 template
4755 Output_section*
4756 Layout::init_fixed_output_section<32, false>(
4757 const char* name,
4758 elfcpp::Shdr<32, false>& shdr);
4759 #endif
4760
4761 #ifdef HAVE_TARGET_32_BIG
4762 template
4763 Output_section*
4764 Layout::init_fixed_output_section<32, true>(
4765 const char* name,
4766 elfcpp::Shdr<32, true>& shdr);
4767 #endif
4768
4769 #ifdef HAVE_TARGET_64_LITTLE
4770 template
4771 Output_section*
4772 Layout::init_fixed_output_section<64, false>(
4773 const char* name,
4774 elfcpp::Shdr<64, false>& shdr);
4775 #endif
4776
4777 #ifdef HAVE_TARGET_64_BIG
4778 template
4779 Output_section*
4780 Layout::init_fixed_output_section<64, true>(
4781 const char* name,
4782 elfcpp::Shdr<64, true>& shdr);
4783 #endif
4784
4785 #ifdef HAVE_TARGET_32_LITTLE
4786 template
4787 Output_section*
4788 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4789 unsigned int shndx,
4790 const char* name,
4791 const elfcpp::Shdr<32, false>& shdr,
4792 unsigned int, unsigned int, off_t*);
4793 #endif
4794
4795 #ifdef HAVE_TARGET_32_BIG
4796 template
4797 Output_section*
4798 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4799 unsigned int shndx,
4800 const char* name,
4801 const elfcpp::Shdr<32, true>& shdr,
4802 unsigned int, unsigned int, off_t*);
4803 #endif
4804
4805 #ifdef HAVE_TARGET_64_LITTLE
4806 template
4807 Output_section*
4808 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
4809 unsigned int shndx,
4810 const char* name,
4811 const elfcpp::Shdr<64, false>& shdr,
4812 unsigned int, unsigned int, off_t*);
4813 #endif
4814
4815 #ifdef HAVE_TARGET_64_BIG
4816 template
4817 Output_section*
4818 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
4819 unsigned int shndx,
4820 const char* name,
4821 const elfcpp::Shdr<64, true>& shdr,
4822 unsigned int, unsigned int, off_t*);
4823 #endif
4824
4825 #ifdef HAVE_TARGET_32_LITTLE
4826 template
4827 Output_section*
4828 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
4829 unsigned int reloc_shndx,
4830 const elfcpp::Shdr<32, false>& shdr,
4831 Output_section* data_section,
4832 Relocatable_relocs* rr);
4833 #endif
4834
4835 #ifdef HAVE_TARGET_32_BIG
4836 template
4837 Output_section*
4838 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
4839 unsigned int reloc_shndx,
4840 const elfcpp::Shdr<32, true>& shdr,
4841 Output_section* data_section,
4842 Relocatable_relocs* rr);
4843 #endif
4844
4845 #ifdef HAVE_TARGET_64_LITTLE
4846 template
4847 Output_section*
4848 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
4849 unsigned int reloc_shndx,
4850 const elfcpp::Shdr<64, false>& shdr,
4851 Output_section* data_section,
4852 Relocatable_relocs* rr);
4853 #endif
4854
4855 #ifdef HAVE_TARGET_64_BIG
4856 template
4857 Output_section*
4858 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
4859 unsigned int reloc_shndx,
4860 const elfcpp::Shdr<64, true>& shdr,
4861 Output_section* data_section,
4862 Relocatable_relocs* rr);
4863 #endif
4864
4865 #ifdef HAVE_TARGET_32_LITTLE
4866 template
4867 void
4868 Layout::layout_group<32, false>(Symbol_table* symtab,
4869 Sized_relobj_file<32, false>* object,
4870 unsigned int,
4871 const char* group_section_name,
4872 const char* signature,
4873 const elfcpp::Shdr<32, false>& shdr,
4874 elfcpp::Elf_Word flags,
4875 std::vector<unsigned int>* shndxes);
4876 #endif
4877
4878 #ifdef HAVE_TARGET_32_BIG
4879 template
4880 void
4881 Layout::layout_group<32, true>(Symbol_table* symtab,
4882 Sized_relobj_file<32, true>* object,
4883 unsigned int,
4884 const char* group_section_name,
4885 const char* signature,
4886 const elfcpp::Shdr<32, true>& shdr,
4887 elfcpp::Elf_Word flags,
4888 std::vector<unsigned int>* shndxes);
4889 #endif
4890
4891 #ifdef HAVE_TARGET_64_LITTLE
4892 template
4893 void
4894 Layout::layout_group<64, false>(Symbol_table* symtab,
4895 Sized_relobj_file<64, false>* object,
4896 unsigned int,
4897 const char* group_section_name,
4898 const char* signature,
4899 const elfcpp::Shdr<64, false>& shdr,
4900 elfcpp::Elf_Word flags,
4901 std::vector<unsigned int>* shndxes);
4902 #endif
4903
4904 #ifdef HAVE_TARGET_64_BIG
4905 template
4906 void
4907 Layout::layout_group<64, true>(Symbol_table* symtab,
4908 Sized_relobj_file<64, true>* object,
4909 unsigned int,
4910 const char* group_section_name,
4911 const char* signature,
4912 const elfcpp::Shdr<64, true>& shdr,
4913 elfcpp::Elf_Word flags,
4914 std::vector<unsigned int>* shndxes);
4915 #endif
4916
4917 #ifdef HAVE_TARGET_32_LITTLE
4918 template
4919 Output_section*
4920 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
4921 const unsigned char* symbols,
4922 off_t symbols_size,
4923 const unsigned char* symbol_names,
4924 off_t symbol_names_size,
4925 unsigned int shndx,
4926 const elfcpp::Shdr<32, false>& shdr,
4927 unsigned int reloc_shndx,
4928 unsigned int reloc_type,
4929 off_t* off);
4930 #endif
4931
4932 #ifdef HAVE_TARGET_32_BIG
4933 template
4934 Output_section*
4935 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
4936 const unsigned char* symbols,
4937 off_t symbols_size,
4938 const unsigned char* symbol_names,
4939 off_t symbol_names_size,
4940 unsigned int shndx,
4941 const elfcpp::Shdr<32, true>& shdr,
4942 unsigned int reloc_shndx,
4943 unsigned int reloc_type,
4944 off_t* off);
4945 #endif
4946
4947 #ifdef HAVE_TARGET_64_LITTLE
4948 template
4949 Output_section*
4950 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
4951 const unsigned char* symbols,
4952 off_t symbols_size,
4953 const unsigned char* symbol_names,
4954 off_t symbol_names_size,
4955 unsigned int shndx,
4956 const elfcpp::Shdr<64, false>& shdr,
4957 unsigned int reloc_shndx,
4958 unsigned int reloc_type,
4959 off_t* off);
4960 #endif
4961
4962 #ifdef HAVE_TARGET_64_BIG
4963 template
4964 Output_section*
4965 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
4966 const unsigned char* symbols,
4967 off_t symbols_size,
4968 const unsigned char* symbol_names,
4969 off_t symbol_names_size,
4970 unsigned int shndx,
4971 const elfcpp::Shdr<64, true>& shdr,
4972 unsigned int reloc_shndx,
4973 unsigned int reloc_type,
4974 off_t* off);
4975 #endif
4976
4977 } // End namespace gold.
This page took 0.171986 seconds and 5 git commands to generate.