Implement SIZEOF_HEADERS, section constraints, other minor linker
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "layout.h"
40
41 namespace gold
42 {
43
44 // Layout_task_runner methods.
45
46 // Lay out the sections. This is called after all the input objects
47 // have been read.
48
49 void
50 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
51 {
52 off_t file_size = this->layout_->finalize(this->input_objects_,
53 this->symtab_,
54 task);
55
56 // Now we know the final size of the output file and we know where
57 // each piece of information goes.
58 Output_file* of = new Output_file(parameters->output_file_name());
59 of->open(file_size);
60
61 // Queue up the final set of tasks.
62 gold::queue_final_tasks(this->options_, this->input_objects_,
63 this->symtab_, this->layout_, workqueue, of);
64 }
65
66 // Layout methods.
67
68 Layout::Layout(const General_options& options, Script_options* script_options)
69 : options_(options), script_options_(script_options), namepool_(),
70 sympool_(), dynpool_(), signatures_(),
71 section_name_map_(), segment_list_(), section_list_(),
72 unattached_section_list_(), special_output_list_(),
73 section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
74 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
75 eh_frame_section_(NULL), output_file_size_(-1),
76 input_requires_executable_stack_(false),
77 input_with_gnu_stack_note_(false),
78 input_without_gnu_stack_note_(false),
79 has_static_tls_(false),
80 any_postprocessing_sections_(false)
81 {
82 // Make space for more than enough segments for a typical file.
83 // This is just for efficiency--it's OK if we wind up needing more.
84 this->segment_list_.reserve(12);
85
86 // We expect two unattached Output_data objects: the file header and
87 // the segment headers.
88 this->special_output_list_.reserve(2);
89 }
90
91 // Hash a key we use to look up an output section mapping.
92
93 size_t
94 Layout::Hash_key::operator()(const Layout::Key& k) const
95 {
96 return k.first + k.second.first + k.second.second;
97 }
98
99 // Return whether PREFIX is a prefix of STR.
100
101 static inline bool
102 is_prefix_of(const char* prefix, const char* str)
103 {
104 return strncmp(prefix, str, strlen(prefix)) == 0;
105 }
106
107 // Returns whether the given section is in the list of
108 // debug-sections-used-by-some-version-of-gdb. Currently,
109 // we've checked versions of gdb up to and including 6.7.1.
110
111 static const char* gdb_sections[] =
112 { ".debug_abbrev",
113 // ".debug_aranges", // not used by gdb as of 6.7.1
114 ".debug_frame",
115 ".debug_info",
116 ".debug_line",
117 ".debug_loc",
118 ".debug_macinfo",
119 // ".debug_pubnames", // not used by gdb as of 6.7.1
120 ".debug_ranges",
121 ".debug_str",
122 };
123
124 static inline bool
125 is_gdb_debug_section(const char* str)
126 {
127 // We can do this faster: binary search or a hashtable. But why bother?
128 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
129 if (strcmp(str, gdb_sections[i]) == 0)
130 return true;
131 return false;
132 }
133
134 // Whether to include this section in the link.
135
136 template<int size, bool big_endian>
137 bool
138 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
139 const elfcpp::Shdr<size, big_endian>& shdr)
140 {
141 // Some section types are never linked. Some are only linked when
142 // doing a relocateable link.
143 switch (shdr.get_sh_type())
144 {
145 case elfcpp::SHT_NULL:
146 case elfcpp::SHT_SYMTAB:
147 case elfcpp::SHT_DYNSYM:
148 case elfcpp::SHT_STRTAB:
149 case elfcpp::SHT_HASH:
150 case elfcpp::SHT_DYNAMIC:
151 case elfcpp::SHT_SYMTAB_SHNDX:
152 return false;
153
154 case elfcpp::SHT_RELA:
155 case elfcpp::SHT_REL:
156 case elfcpp::SHT_GROUP:
157 return parameters->output_is_object();
158
159 case elfcpp::SHT_PROGBITS:
160 if (parameters->strip_debug()
161 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
162 {
163 // Debugging sections can only be recognized by name.
164 if (is_prefix_of(".debug", name)
165 || is_prefix_of(".gnu.linkonce.wi.", name)
166 || is_prefix_of(".line", name)
167 || is_prefix_of(".stab", name))
168 return false;
169 }
170 if (parameters->strip_debug_gdb()
171 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
172 {
173 // Debugging sections can only be recognized by name.
174 if (is_prefix_of(".debug", name)
175 && !is_gdb_debug_section(name))
176 return false;
177 }
178 return true;
179
180 default:
181 return true;
182 }
183 }
184
185 // Return an output section named NAME, or NULL if there is none.
186
187 Output_section*
188 Layout::find_output_section(const char* name) const
189 {
190 for (Section_list::const_iterator p = this->section_list_.begin();
191 p != this->section_list_.end();
192 ++p)
193 if (strcmp((*p)->name(), name) == 0)
194 return *p;
195 return NULL;
196 }
197
198 // Return an output segment of type TYPE, with segment flags SET set
199 // and segment flags CLEAR clear. Return NULL if there is none.
200
201 Output_segment*
202 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
203 elfcpp::Elf_Word clear) const
204 {
205 for (Segment_list::const_iterator p = this->segment_list_.begin();
206 p != this->segment_list_.end();
207 ++p)
208 if (static_cast<elfcpp::PT>((*p)->type()) == type
209 && ((*p)->flags() & set) == set
210 && ((*p)->flags() & clear) == 0)
211 return *p;
212 return NULL;
213 }
214
215 // Return the output section to use for section NAME with type TYPE
216 // and section flags FLAGS. NAME must be canonicalized in the string
217 // pool, and NAME_KEY is the key.
218
219 Output_section*
220 Layout::get_output_section(const char* name, Stringpool::Key name_key,
221 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
222 {
223 const Key key(name_key, std::make_pair(type, flags));
224 const std::pair<Key, Output_section*> v(key, NULL);
225 std::pair<Section_name_map::iterator, bool> ins(
226 this->section_name_map_.insert(v));
227
228 if (!ins.second)
229 return ins.first->second;
230 else
231 {
232 // This is the first time we've seen this name/type/flags
233 // combination.
234 Output_section* os = this->make_output_section(name, type, flags);
235 ins.first->second = os;
236 return os;
237 }
238 }
239
240 // Pick the output section to use for section NAME, in input file
241 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
242 // linker created section. ADJUST_NAME is true if we should apply the
243 // standard name mappings in Layout::output_section_name. This will
244 // return NULL if the input section should be discarded.
245
246 Output_section*
247 Layout::choose_output_section(const Relobj* relobj, const char* name,
248 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
249 bool adjust_name)
250 {
251 // We should ignore some flags. FIXME: This will need some
252 // adjustment for ld -r.
253 flags &= ~ (elfcpp::SHF_INFO_LINK
254 | elfcpp::SHF_LINK_ORDER
255 | elfcpp::SHF_GROUP
256 | elfcpp::SHF_MERGE
257 | elfcpp::SHF_STRINGS);
258
259 if (this->script_options_->saw_sections_clause())
260 {
261 // We are using a SECTIONS clause, so the output section is
262 // chosen based only on the name.
263
264 Script_sections* ss = this->script_options_->script_sections();
265 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
266 Output_section** output_section_slot;
267 name = ss->output_section_name(file_name, name, &output_section_slot);
268 if (name == NULL)
269 {
270 // The SECTIONS clause says to discard this input section.
271 return NULL;
272 }
273
274 // If this is an orphan section--one not mentioned in the linker
275 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
276 // default processing below.
277
278 if (output_section_slot != NULL)
279 {
280 if (*output_section_slot != NULL)
281 return *output_section_slot;
282
283 // We don't put sections found in the linker script into
284 // SECTION_NAME_MAP_. That keeps us from getting confused
285 // if an orphan section is mapped to a section with the same
286 // name as one in the linker script.
287
288 name = this->namepool_.add(name, false, NULL);
289
290 Output_section* os = this->make_output_section(name, type, flags);
291 os->set_found_in_sections_clause();
292 *output_section_slot = os;
293 return os;
294 }
295 }
296
297 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
298
299 // Turn NAME from the name of the input section into the name of the
300 // output section.
301
302 size_t len = strlen(name);
303 if (adjust_name && !parameters->output_is_object())
304 name = Layout::output_section_name(name, &len);
305
306 Stringpool::Key name_key;
307 name = this->namepool_.add_with_length(name, len, true, &name_key);
308
309 // Find or make the output section. The output section is selected
310 // based on the section name, type, and flags.
311 return this->get_output_section(name, name_key, type, flags);
312 }
313
314 // Return the output section to use for input section SHNDX, with name
315 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
316 // index of a relocation section which applies to this section, or 0
317 // if none, or -1U if more than one. RELOC_TYPE is the type of the
318 // relocation section if there is one. Set *OFF to the offset of this
319 // input section without the output section. Return NULL if the
320 // section should be discarded. Set *OFF to -1 if the section
321 // contents should not be written directly to the output file, but
322 // will instead receive special handling.
323
324 template<int size, bool big_endian>
325 Output_section*
326 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
327 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
328 unsigned int reloc_shndx, unsigned int, off_t* off)
329 {
330 if (!this->include_section(object, name, shdr))
331 return NULL;
332
333 Output_section* os = this->choose_output_section(object,
334 name,
335 shdr.get_sh_type(),
336 shdr.get_sh_flags(),
337 true);
338 if (os == NULL)
339 return NULL;
340
341 // FIXME: Handle SHF_LINK_ORDER somewhere.
342
343 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
344 this->script_options_->saw_sections_clause());
345
346 return os;
347 }
348
349 // Special GNU handling of sections name .eh_frame. They will
350 // normally hold exception frame data as defined by the C++ ABI
351 // (http://codesourcery.com/cxx-abi/).
352
353 template<int size, bool big_endian>
354 Output_section*
355 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
356 const unsigned char* symbols,
357 off_t symbols_size,
358 const unsigned char* symbol_names,
359 off_t symbol_names_size,
360 unsigned int shndx,
361 const elfcpp::Shdr<size, big_endian>& shdr,
362 unsigned int reloc_shndx, unsigned int reloc_type,
363 off_t* off)
364 {
365 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
366 gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
367
368 const char* const name = ".eh_frame";
369 Output_section* os = this->choose_output_section(object,
370 name,
371 elfcpp::SHT_PROGBITS,
372 elfcpp::SHF_ALLOC,
373 false);
374 if (os == NULL)
375 return NULL;
376
377 if (this->eh_frame_section_ == NULL)
378 {
379 this->eh_frame_section_ = os;
380 this->eh_frame_data_ = new Eh_frame();
381 os->add_output_section_data(this->eh_frame_data_);
382
383 if (this->options_.create_eh_frame_hdr())
384 {
385 Output_section* hdr_os =
386 this->choose_output_section(NULL,
387 ".eh_frame_hdr",
388 elfcpp::SHT_PROGBITS,
389 elfcpp::SHF_ALLOC,
390 false);
391
392 if (hdr_os != NULL)
393 {
394 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
395 this->eh_frame_data_);
396 hdr_os->add_output_section_data(hdr_posd);
397
398 hdr_os->set_after_input_sections();
399
400 Output_segment* hdr_oseg;
401 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
402 elfcpp::PF_R);
403 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
404
405 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
406 }
407 }
408 }
409
410 gold_assert(this->eh_frame_section_ == os);
411
412 if (this->eh_frame_data_->add_ehframe_input_section(object,
413 symbols,
414 symbols_size,
415 symbol_names,
416 symbol_names_size,
417 shndx,
418 reloc_shndx,
419 reloc_type))
420 *off = -1;
421 else
422 {
423 // We couldn't handle this .eh_frame section for some reason.
424 // Add it as a normal section.
425 bool saw_sections_clause = this->script_options_->saw_sections_clause();
426 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
427 saw_sections_clause);
428 }
429
430 return os;
431 }
432
433 // Add POSD to an output section using NAME, TYPE, and FLAGS.
434
435 void
436 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
437 elfcpp::Elf_Xword flags,
438 Output_section_data* posd)
439 {
440 Output_section* os = this->choose_output_section(NULL, name, type, flags,
441 false);
442 if (os != NULL)
443 os->add_output_section_data(posd);
444 }
445
446 // Map section flags to segment flags.
447
448 elfcpp::Elf_Word
449 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
450 {
451 elfcpp::Elf_Word ret = elfcpp::PF_R;
452 if ((flags & elfcpp::SHF_WRITE) != 0)
453 ret |= elfcpp::PF_W;
454 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
455 ret |= elfcpp::PF_X;
456 return ret;
457 }
458
459 // Sometimes we compress sections. This is typically done for
460 // sections that are not part of normal program execution (such as
461 // .debug_* sections), and where the readers of these sections know
462 // how to deal with compressed sections. (To make it easier for them,
463 // we will rename the ouput section in such cases from .foo to
464 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
465 // doesn't say for certain whether we'll compress -- it depends on
466 // commandline options as well -- just whether this section is a
467 // candidate for compression.
468
469 static bool
470 is_compressible_debug_section(const char* secname)
471 {
472 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
473 }
474
475 // Make a new Output_section, and attach it to segments as
476 // appropriate.
477
478 Output_section*
479 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
480 elfcpp::Elf_Xword flags)
481 {
482 Output_section* os;
483 if ((flags & elfcpp::SHF_ALLOC) == 0
484 && this->options_.compress_debug_sections()
485 && is_compressible_debug_section(name))
486 os = new Output_compressed_section(&this->options_, name, type, flags);
487 else
488 os = new Output_section(name, type, flags);
489
490 this->section_list_.push_back(os);
491
492 if ((flags & elfcpp::SHF_ALLOC) == 0)
493 this->unattached_section_list_.push_back(os);
494 else
495 {
496 // If we have a SECTIONS clause, we can't handle the attachment
497 // to segments until after we've seen all the sections.
498 if (this->script_options_->saw_sections_clause())
499 return os;
500
501 // This output section goes into a PT_LOAD segment.
502
503 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
504
505 // The only thing we really care about for PT_LOAD segments is
506 // whether or not they are writable, so that is how we search
507 // for them. People who need segments sorted on some other
508 // basis will have to wait until we implement a mechanism for
509 // them to describe the segments they want.
510
511 Segment_list::const_iterator p;
512 for (p = this->segment_list_.begin();
513 p != this->segment_list_.end();
514 ++p)
515 {
516 if ((*p)->type() == elfcpp::PT_LOAD
517 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
518 {
519 (*p)->add_output_section(os, seg_flags);
520 break;
521 }
522 }
523
524 if (p == this->segment_list_.end())
525 {
526 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
527 seg_flags);
528 oseg->add_output_section(os, seg_flags);
529 }
530
531 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
532 // segment.
533 if (type == elfcpp::SHT_NOTE)
534 {
535 // See if we already have an equivalent PT_NOTE segment.
536 for (p = this->segment_list_.begin();
537 p != segment_list_.end();
538 ++p)
539 {
540 if ((*p)->type() == elfcpp::PT_NOTE
541 && (((*p)->flags() & elfcpp::PF_W)
542 == (seg_flags & elfcpp::PF_W)))
543 {
544 (*p)->add_output_section(os, seg_flags);
545 break;
546 }
547 }
548
549 if (p == this->segment_list_.end())
550 {
551 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
552 seg_flags);
553 oseg->add_output_section(os, seg_flags);
554 }
555 }
556
557 // If we see a loadable SHF_TLS section, we create a PT_TLS
558 // segment. There can only be one such segment.
559 if ((flags & elfcpp::SHF_TLS) != 0)
560 {
561 if (this->tls_segment_ == NULL)
562 this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
563 seg_flags);
564 this->tls_segment_->add_output_section(os, seg_flags);
565 }
566 }
567
568 return os;
569 }
570
571 // Return the number of segments we expect to see.
572
573 size_t
574 Layout::expected_segment_count() const
575 {
576 size_t ret = this->segment_list_.size();
577
578 // If we didn't see a SECTIONS clause in a linker script, we should
579 // already have the complete list of segments. Otherwise we ask the
580 // SECTIONS clause how many segments it expects, and add in the ones
581 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
582
583 if (!this->script_options_->saw_sections_clause())
584 return ret;
585 else
586 {
587 const Script_sections* ss = this->script_options_->script_sections();
588 return ret + ss->expected_segment_count(this);
589 }
590 }
591
592 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
593 // is whether we saw a .note.GNU-stack section in the object file.
594 // GNU_STACK_FLAGS is the section flags. The flags give the
595 // protection required for stack memory. We record this in an
596 // executable as a PT_GNU_STACK segment. If an object file does not
597 // have a .note.GNU-stack segment, we must assume that it is an old
598 // object. On some targets that will force an executable stack.
599
600 void
601 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
602 {
603 if (!seen_gnu_stack)
604 this->input_without_gnu_stack_note_ = true;
605 else
606 {
607 this->input_with_gnu_stack_note_ = true;
608 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
609 this->input_requires_executable_stack_ = true;
610 }
611 }
612
613 // Create the dynamic sections which are needed before we read the
614 // relocs.
615
616 void
617 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
618 {
619 if (parameters->doing_static_link())
620 return;
621
622 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
623 elfcpp::SHT_DYNAMIC,
624 (elfcpp::SHF_ALLOC
625 | elfcpp::SHF_WRITE),
626 false);
627
628 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
629 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
630 elfcpp::STV_HIDDEN, 0, false, false);
631
632 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
633
634 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
635 }
636
637 // For each output section whose name can be represented as C symbol,
638 // define __start and __stop symbols for the section. This is a GNU
639 // extension.
640
641 void
642 Layout::define_section_symbols(Symbol_table* symtab)
643 {
644 for (Section_list::const_iterator p = this->section_list_.begin();
645 p != this->section_list_.end();
646 ++p)
647 {
648 const char* const name = (*p)->name();
649 if (name[strspn(name,
650 ("0123456789"
651 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
652 "abcdefghijklmnopqrstuvwxyz"
653 "_"))]
654 == '\0')
655 {
656 const std::string name_string(name);
657 const std::string start_name("__start_" + name_string);
658 const std::string stop_name("__stop_" + name_string);
659
660 symtab->define_in_output_data(start_name.c_str(),
661 NULL, // version
662 *p,
663 0, // value
664 0, // symsize
665 elfcpp::STT_NOTYPE,
666 elfcpp::STB_GLOBAL,
667 elfcpp::STV_DEFAULT,
668 0, // nonvis
669 false, // offset_is_from_end
670 true); // only_if_ref
671
672 symtab->define_in_output_data(stop_name.c_str(),
673 NULL, // version
674 *p,
675 0, // value
676 0, // symsize
677 elfcpp::STT_NOTYPE,
678 elfcpp::STB_GLOBAL,
679 elfcpp::STV_DEFAULT,
680 0, // nonvis
681 true, // offset_is_from_end
682 true); // only_if_ref
683 }
684 }
685 }
686
687 // Find the first read-only PT_LOAD segment, creating one if
688 // necessary.
689
690 Output_segment*
691 Layout::find_first_load_seg()
692 {
693 for (Segment_list::const_iterator p = this->segment_list_.begin();
694 p != this->segment_list_.end();
695 ++p)
696 {
697 if ((*p)->type() == elfcpp::PT_LOAD
698 && ((*p)->flags() & elfcpp::PF_R) != 0
699 && ((*p)->flags() & elfcpp::PF_W) == 0)
700 return *p;
701 }
702
703 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
704 elfcpp::PF_R);
705 return load_seg;
706 }
707
708 // Finalize the layout. When this is called, we have created all the
709 // output sections and all the output segments which are based on
710 // input sections. We have several things to do, and we have to do
711 // them in the right order, so that we get the right results correctly
712 // and efficiently.
713
714 // 1) Finalize the list of output segments and create the segment
715 // table header.
716
717 // 2) Finalize the dynamic symbol table and associated sections.
718
719 // 3) Determine the final file offset of all the output segments.
720
721 // 4) Determine the final file offset of all the SHF_ALLOC output
722 // sections.
723
724 // 5) Create the symbol table sections and the section name table
725 // section.
726
727 // 6) Finalize the symbol table: set symbol values to their final
728 // value and make a final determination of which symbols are going
729 // into the output symbol table.
730
731 // 7) Create the section table header.
732
733 // 8) Determine the final file offset of all the output sections which
734 // are not SHF_ALLOC, including the section table header.
735
736 // 9) Finalize the ELF file header.
737
738 // This function returns the size of the output file.
739
740 off_t
741 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
742 const Task* task)
743 {
744 Target* const target = input_objects->target();
745
746 target->finalize_sections(this);
747
748 this->count_local_symbols(task, input_objects);
749
750 this->create_gold_note();
751 this->create_executable_stack_info(target);
752
753 Output_segment* phdr_seg = NULL;
754 if (!parameters->output_is_object() && !parameters->doing_static_link())
755 {
756 // There was a dynamic object in the link. We need to create
757 // some information for the dynamic linker.
758
759 // Create the PT_PHDR segment which will hold the program
760 // headers.
761 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
762
763 // Create the dynamic symbol table, including the hash table.
764 Output_section* dynstr;
765 std::vector<Symbol*> dynamic_symbols;
766 unsigned int local_dynamic_count;
767 Versions versions(this->options_, &this->dynpool_);
768 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
769 &local_dynamic_count, &dynamic_symbols,
770 &versions);
771
772 // Create the .interp section to hold the name of the
773 // interpreter, and put it in a PT_INTERP segment.
774 if (!parameters->output_is_shared())
775 this->create_interp(target);
776
777 // Finish the .dynamic section to hold the dynamic data, and put
778 // it in a PT_DYNAMIC segment.
779 this->finish_dynamic_section(input_objects, symtab);
780
781 // We should have added everything we need to the dynamic string
782 // table.
783 this->dynpool_.set_string_offsets();
784
785 // Create the version sections. We can't do this until the
786 // dynamic string table is complete.
787 this->create_version_sections(&versions, symtab, local_dynamic_count,
788 dynamic_symbols, dynstr);
789 }
790
791 // If there is a SECTIONS clause, put all the input sections into
792 // the required order.
793 Output_segment* load_seg;
794 if (this->script_options_->saw_sections_clause())
795 load_seg = this->set_section_addresses_from_script(symtab);
796 else
797 load_seg = this->find_first_load_seg();
798
799 gold_assert(phdr_seg == NULL || load_seg != NULL);
800
801 // Lay out the segment headers.
802 Output_segment_headers* segment_headers;
803 segment_headers = new Output_segment_headers(this->segment_list_);
804 if (load_seg != NULL)
805 load_seg->add_initial_output_data(segment_headers);
806 if (phdr_seg != NULL)
807 phdr_seg->add_initial_output_data(segment_headers);
808
809 // Lay out the file header.
810 Output_file_header* file_header;
811 file_header = new Output_file_header(target, symtab, segment_headers,
812 this->script_options_->entry());
813 if (load_seg != NULL)
814 load_seg->add_initial_output_data(file_header);
815
816 this->special_output_list_.push_back(file_header);
817 this->special_output_list_.push_back(segment_headers);
818
819 // We set the output section indexes in set_segment_offsets and
820 // set_section_indexes.
821 unsigned int shndx = 1;
822
823 // Set the file offsets of all the segments, and all the sections
824 // they contain.
825 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
826
827 // Set the file offsets of all the non-data sections we've seen so
828 // far which don't have to wait for the input sections. We need
829 // this in order to finalize local symbols in non-allocated
830 // sections.
831 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
832
833 // Create the symbol table sections.
834 this->create_symtab_sections(input_objects, symtab, &off);
835 if (!parameters->doing_static_link())
836 this->assign_local_dynsym_offsets(input_objects);
837
838 // Process any symbol assignments from a linker script. This must
839 // be called after the symbol table has been finalized.
840 this->script_options_->finalize_symbols(symtab, this);
841
842 // Create the .shstrtab section.
843 Output_section* shstrtab_section = this->create_shstrtab();
844
845 // Set the file offsets of the rest of the non-data sections which
846 // don't have to wait for the input sections.
847 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
848
849 // Now that all sections have been created, set the section indexes.
850 shndx = this->set_section_indexes(shndx);
851
852 // Create the section table header.
853 this->create_shdrs(&off);
854
855 // If there are no sections which require postprocessing, we can
856 // handle the section names now, and avoid a resize later.
857 if (!this->any_postprocessing_sections_)
858 off = this->set_section_offsets(off,
859 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
860
861 file_header->set_section_info(this->section_headers_, shstrtab_section);
862
863 // Now we know exactly where everything goes in the output file
864 // (except for non-allocated sections which require postprocessing).
865 Output_data::layout_complete();
866
867 this->output_file_size_ = off;
868
869 return off;
870 }
871
872 // Create a .note section for an executable or shared library. This
873 // records the version of gold used to create the binary.
874
875 void
876 Layout::create_gold_note()
877 {
878 if (parameters->output_is_object())
879 return;
880
881 // Authorities all agree that the values in a .note field should
882 // be aligned on 4-byte boundaries for 32-bit binaries. However,
883 // they differ on what the alignment is for 64-bit binaries.
884 // The GABI says unambiguously they take 8-byte alignment:
885 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
886 // Other documentation says alignment should always be 4 bytes:
887 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
888 // GNU ld and GNU readelf both support the latter (at least as of
889 // version 2.16.91), and glibc always generates the latter for
890 // .note.ABI-tag (as of version 1.6), so that's the one we go with
891 // here.
892 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
893 const int size = parameters->get_size();
894 #else
895 const int size = 32;
896 #endif
897
898 // The contents of the .note section.
899 const char* name = "GNU";
900 std::string desc(std::string("gold ") + gold::get_version_string());
901 size_t namesz = strlen(name) + 1;
902 size_t aligned_namesz = align_address(namesz, size / 8);
903 size_t descsz = desc.length() + 1;
904 size_t aligned_descsz = align_address(descsz, size / 8);
905 const int note_type = 4;
906
907 size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
908
909 unsigned char buffer[128];
910 gold_assert(sizeof buffer >= notesz);
911 memset(buffer, 0, notesz);
912
913 bool is_big_endian = parameters->is_big_endian();
914
915 if (size == 32)
916 {
917 if (!is_big_endian)
918 {
919 elfcpp::Swap<32, false>::writeval(buffer, namesz);
920 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
921 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
922 }
923 else
924 {
925 elfcpp::Swap<32, true>::writeval(buffer, namesz);
926 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
927 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
928 }
929 }
930 else if (size == 64)
931 {
932 if (!is_big_endian)
933 {
934 elfcpp::Swap<64, false>::writeval(buffer, namesz);
935 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
936 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
937 }
938 else
939 {
940 elfcpp::Swap<64, true>::writeval(buffer, namesz);
941 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
942 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
943 }
944 }
945 else
946 gold_unreachable();
947
948 memcpy(buffer + 3 * (size / 8), name, namesz);
949 memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
950
951 const char* note_name = this->namepool_.add(".note", false, NULL);
952 Output_section* os = this->make_output_section(note_name,
953 elfcpp::SHT_NOTE,
954 0);
955 Output_section_data* posd = new Output_data_const(buffer, notesz,
956 size / 8);
957 os->add_output_section_data(posd);
958 }
959
960 // Record whether the stack should be executable. This can be set
961 // from the command line using the -z execstack or -z noexecstack
962 // options. Otherwise, if any input file has a .note.GNU-stack
963 // section with the SHF_EXECINSTR flag set, the stack should be
964 // executable. Otherwise, if at least one input file a
965 // .note.GNU-stack section, and some input file has no .note.GNU-stack
966 // section, we use the target default for whether the stack should be
967 // executable. Otherwise, we don't generate a stack note. When
968 // generating a object file, we create a .note.GNU-stack section with
969 // the appropriate marking. When generating an executable or shared
970 // library, we create a PT_GNU_STACK segment.
971
972 void
973 Layout::create_executable_stack_info(const Target* target)
974 {
975 bool is_stack_executable;
976 if (this->options_.is_execstack_set())
977 is_stack_executable = this->options_.is_stack_executable();
978 else if (!this->input_with_gnu_stack_note_)
979 return;
980 else
981 {
982 if (this->input_requires_executable_stack_)
983 is_stack_executable = true;
984 else if (this->input_without_gnu_stack_note_)
985 is_stack_executable = target->is_default_stack_executable();
986 else
987 is_stack_executable = false;
988 }
989
990 if (parameters->output_is_object())
991 {
992 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
993 elfcpp::Elf_Xword flags = 0;
994 if (is_stack_executable)
995 flags |= elfcpp::SHF_EXECINSTR;
996 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
997 }
998 else
999 {
1000 int flags = elfcpp::PF_R | elfcpp::PF_W;
1001 if (is_stack_executable)
1002 flags |= elfcpp::PF_X;
1003 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1004 }
1005 }
1006
1007 // Return whether SEG1 should be before SEG2 in the output file. This
1008 // is based entirely on the segment type and flags. When this is
1009 // called the segment addresses has normally not yet been set.
1010
1011 bool
1012 Layout::segment_precedes(const Output_segment* seg1,
1013 const Output_segment* seg2)
1014 {
1015 elfcpp::Elf_Word type1 = seg1->type();
1016 elfcpp::Elf_Word type2 = seg2->type();
1017
1018 // The single PT_PHDR segment is required to precede any loadable
1019 // segment. We simply make it always first.
1020 if (type1 == elfcpp::PT_PHDR)
1021 {
1022 gold_assert(type2 != elfcpp::PT_PHDR);
1023 return true;
1024 }
1025 if (type2 == elfcpp::PT_PHDR)
1026 return false;
1027
1028 // The single PT_INTERP segment is required to precede any loadable
1029 // segment. We simply make it always second.
1030 if (type1 == elfcpp::PT_INTERP)
1031 {
1032 gold_assert(type2 != elfcpp::PT_INTERP);
1033 return true;
1034 }
1035 if (type2 == elfcpp::PT_INTERP)
1036 return false;
1037
1038 // We then put PT_LOAD segments before any other segments.
1039 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1040 return true;
1041 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1042 return false;
1043
1044 // We put the PT_TLS segment last, because that is where the dynamic
1045 // linker expects to find it (this is just for efficiency; other
1046 // positions would also work correctly).
1047 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1048 return false;
1049 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1050 return true;
1051
1052 const elfcpp::Elf_Word flags1 = seg1->flags();
1053 const elfcpp::Elf_Word flags2 = seg2->flags();
1054
1055 // The order of non-PT_LOAD segments is unimportant. We simply sort
1056 // by the numeric segment type and flags values. There should not
1057 // be more than one segment with the same type and flags.
1058 if (type1 != elfcpp::PT_LOAD)
1059 {
1060 if (type1 != type2)
1061 return type1 < type2;
1062 gold_assert(flags1 != flags2);
1063 return flags1 < flags2;
1064 }
1065
1066 // If the addresses are set already, sort by load address.
1067 if (seg1->are_addresses_set())
1068 {
1069 if (!seg2->are_addresses_set())
1070 return true;
1071
1072 unsigned int section_count1 = seg1->output_section_count();
1073 unsigned int section_count2 = seg2->output_section_count();
1074 if (section_count1 == 0 && section_count2 > 0)
1075 return true;
1076 if (section_count1 > 0 && section_count2 == 0)
1077 return false;
1078
1079 uint64_t paddr1 = seg1->first_section_load_address();
1080 uint64_t paddr2 = seg2->first_section_load_address();
1081 if (paddr1 != paddr2)
1082 return paddr1 < paddr2;
1083 }
1084 else if (seg2->are_addresses_set())
1085 return false;
1086
1087 // We sort PT_LOAD segments based on the flags. Readonly segments
1088 // come before writable segments. Then executable segments come
1089 // before non-executable segments. Then the unlikely case of a
1090 // non-readable segment comes before the normal case of a readable
1091 // segment. If there are multiple segments with the same type and
1092 // flags, we require that the address be set, and we sort by
1093 // virtual address and then physical address.
1094 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1095 return (flags1 & elfcpp::PF_W) == 0;
1096 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1097 return (flags1 & elfcpp::PF_X) != 0;
1098 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1099 return (flags1 & elfcpp::PF_R) == 0;
1100
1101 // We shouldn't get here--we shouldn't create segments which we
1102 // can't distinguish.
1103 gold_unreachable();
1104 }
1105
1106 // Set the file offsets of all the segments, and all the sections they
1107 // contain. They have all been created. LOAD_SEG must be be laid out
1108 // first. Return the offset of the data to follow.
1109
1110 off_t
1111 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1112 unsigned int *pshndx)
1113 {
1114 // Sort them into the final order.
1115 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1116 Layout::Compare_segments());
1117
1118 // Find the PT_LOAD segments, and set their addresses and offsets
1119 // and their section's addresses and offsets.
1120 uint64_t addr;
1121 if (this->options_.user_set_text_segment_address())
1122 addr = options_.text_segment_address();
1123 else if (parameters->output_is_shared())
1124 addr = 0;
1125 else
1126 addr = target->default_text_segment_address();
1127 off_t off = 0;
1128
1129 // If LOAD_SEG is NULL, then the file header and segment headers
1130 // will not be loadable. But they still need to be at offset 0 in
1131 // the file. Set their offsets now.
1132 if (load_seg == NULL)
1133 {
1134 for (Data_list::iterator p = this->special_output_list_.begin();
1135 p != this->special_output_list_.end();
1136 ++p)
1137 {
1138 off = align_address(off, (*p)->addralign());
1139 (*p)->set_address_and_file_offset(0, off);
1140 off += (*p)->data_size();
1141 }
1142 }
1143
1144 bool was_readonly = false;
1145 for (Segment_list::iterator p = this->segment_list_.begin();
1146 p != this->segment_list_.end();
1147 ++p)
1148 {
1149 if ((*p)->type() == elfcpp::PT_LOAD)
1150 {
1151 if (load_seg != NULL && load_seg != *p)
1152 gold_unreachable();
1153 load_seg = NULL;
1154
1155 uint64_t orig_addr = addr;
1156 uint64_t orig_off = off;
1157
1158 uint64_t aligned_addr = 0;
1159 uint64_t abi_pagesize = target->abi_pagesize();
1160
1161 // FIXME: This should depend on the -n and -N options.
1162 (*p)->set_minimum_p_align(target->common_pagesize());
1163
1164 bool are_addresses_set = (*p)->are_addresses_set();
1165 if (are_addresses_set)
1166 {
1167 // When it comes to setting file offsets, we care about
1168 // the physical address.
1169 addr = (*p)->paddr();
1170
1171 // Adjust the file offset to the same address modulo the
1172 // page size.
1173 uint64_t unsigned_off = off;
1174 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1175 | (addr & (abi_pagesize - 1)));
1176 if (aligned_off < unsigned_off)
1177 aligned_off += abi_pagesize;
1178 off = aligned_off;
1179 }
1180 else
1181 {
1182 // If the last segment was readonly, and this one is
1183 // not, then skip the address forward one page,
1184 // maintaining the same position within the page. This
1185 // lets us store both segments overlapping on a single
1186 // page in the file, but the loader will put them on
1187 // different pages in memory.
1188
1189 addr = align_address(addr, (*p)->maximum_alignment());
1190 aligned_addr = addr;
1191
1192 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1193 {
1194 if ((addr & (abi_pagesize - 1)) != 0)
1195 addr = addr + abi_pagesize;
1196 }
1197
1198 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1199 }
1200
1201 unsigned int shndx_hold = *pshndx;
1202 uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1203 pshndx);
1204
1205 // Now that we know the size of this segment, we may be able
1206 // to save a page in memory, at the cost of wasting some
1207 // file space, by instead aligning to the start of a new
1208 // page. Here we use the real machine page size rather than
1209 // the ABI mandated page size.
1210
1211 if (!are_addresses_set && aligned_addr != addr)
1212 {
1213 uint64_t common_pagesize = target->common_pagesize();
1214 uint64_t first_off = (common_pagesize
1215 - (aligned_addr
1216 & (common_pagesize - 1)));
1217 uint64_t last_off = new_addr & (common_pagesize - 1);
1218 if (first_off > 0
1219 && last_off > 0
1220 && ((aligned_addr & ~ (common_pagesize - 1))
1221 != (new_addr & ~ (common_pagesize - 1)))
1222 && first_off + last_off <= common_pagesize)
1223 {
1224 *pshndx = shndx_hold;
1225 addr = align_address(aligned_addr, common_pagesize);
1226 addr = align_address(addr, (*p)->maximum_alignment());
1227 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1228 new_addr = (*p)->set_section_addresses(true, addr, &off,
1229 pshndx);
1230 }
1231 }
1232
1233 addr = new_addr;
1234
1235 if (((*p)->flags() & elfcpp::PF_W) == 0)
1236 was_readonly = true;
1237 }
1238 }
1239
1240 // Handle the non-PT_LOAD segments, setting their offsets from their
1241 // section's offsets.
1242 for (Segment_list::iterator p = this->segment_list_.begin();
1243 p != this->segment_list_.end();
1244 ++p)
1245 {
1246 if ((*p)->type() != elfcpp::PT_LOAD)
1247 (*p)->set_offset();
1248 }
1249
1250 // Set the TLS offsets for each section in the PT_TLS segment.
1251 if (this->tls_segment_ != NULL)
1252 this->tls_segment_->set_tls_offsets();
1253
1254 return off;
1255 }
1256
1257 // Set the file offset of all the sections not associated with a
1258 // segment.
1259
1260 off_t
1261 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1262 {
1263 for (Section_list::iterator p = this->unattached_section_list_.begin();
1264 p != this->unattached_section_list_.end();
1265 ++p)
1266 {
1267 // The symtab section is handled in create_symtab_sections.
1268 if (*p == this->symtab_section_)
1269 continue;
1270
1271 // If we've already set the data size, don't set it again.
1272 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1273 continue;
1274
1275 if (pass == BEFORE_INPUT_SECTIONS_PASS
1276 && (*p)->requires_postprocessing())
1277 {
1278 (*p)->create_postprocessing_buffer();
1279 this->any_postprocessing_sections_ = true;
1280 }
1281
1282 if (pass == BEFORE_INPUT_SECTIONS_PASS
1283 && (*p)->after_input_sections())
1284 continue;
1285 else if (pass == POSTPROCESSING_SECTIONS_PASS
1286 && (!(*p)->after_input_sections()
1287 || (*p)->type() == elfcpp::SHT_STRTAB))
1288 continue;
1289 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1290 && (!(*p)->after_input_sections()
1291 || (*p)->type() != elfcpp::SHT_STRTAB))
1292 continue;
1293
1294 off = align_address(off, (*p)->addralign());
1295 (*p)->set_file_offset(off);
1296 (*p)->finalize_data_size();
1297 off += (*p)->data_size();
1298
1299 // At this point the name must be set.
1300 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1301 this->namepool_.add((*p)->name(), false, NULL);
1302 }
1303 return off;
1304 }
1305
1306 // Set the section indexes of all the sections not associated with a
1307 // segment.
1308
1309 unsigned int
1310 Layout::set_section_indexes(unsigned int shndx)
1311 {
1312 for (Section_list::iterator p = this->unattached_section_list_.begin();
1313 p != this->unattached_section_list_.end();
1314 ++p)
1315 {
1316 (*p)->set_out_shndx(shndx);
1317 ++shndx;
1318 }
1319 return shndx;
1320 }
1321
1322 // Set the section addresses according to the linker script. This is
1323 // only called when we see a SECTIONS clause. This returns the
1324 // program segment which should hold the file header and segment
1325 // headers, if any. It will return NULL if they should not be in a
1326 // segment.
1327
1328 Output_segment*
1329 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1330 {
1331 Script_sections* ss = this->script_options_->script_sections();
1332 gold_assert(ss->saw_sections_clause());
1333
1334 // Place each orphaned output section in the script.
1335 for (Section_list::iterator p = this->section_list_.begin();
1336 p != this->section_list_.end();
1337 ++p)
1338 {
1339 if (!(*p)->found_in_sections_clause())
1340 ss->place_orphan(*p);
1341 }
1342
1343 return this->script_options_->set_section_addresses(symtab, this);
1344 }
1345
1346 // Count the local symbols in the regular symbol table and the dynamic
1347 // symbol table, and build the respective string pools.
1348
1349 void
1350 Layout::count_local_symbols(const Task* task,
1351 const Input_objects* input_objects)
1352 {
1353 // First, figure out an upper bound on the number of symbols we'll
1354 // be inserting into each pool. This helps us create the pools with
1355 // the right size, to avoid unnecessary hashtable resizing.
1356 unsigned int symbol_count = 0;
1357 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1358 p != input_objects->relobj_end();
1359 ++p)
1360 symbol_count += (*p)->local_symbol_count();
1361
1362 // Go from "upper bound" to "estimate." We overcount for two
1363 // reasons: we double-count symbols that occur in more than one
1364 // object file, and we count symbols that are dropped from the
1365 // output. Add it all together and assume we overcount by 100%.
1366 symbol_count /= 2;
1367
1368 // We assume all symbols will go into both the sympool and dynpool.
1369 this->sympool_.reserve(symbol_count);
1370 this->dynpool_.reserve(symbol_count);
1371
1372 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1373 p != input_objects->relobj_end();
1374 ++p)
1375 {
1376 Task_lock_obj<Object> tlo(task, *p);
1377 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1378 }
1379 }
1380
1381 // Create the symbol table sections. Here we also set the final
1382 // values of the symbols. At this point all the loadable sections are
1383 // fully laid out.
1384
1385 void
1386 Layout::create_symtab_sections(const Input_objects* input_objects,
1387 Symbol_table* symtab,
1388 off_t* poff)
1389 {
1390 int symsize;
1391 unsigned int align;
1392 if (parameters->get_size() == 32)
1393 {
1394 symsize = elfcpp::Elf_sizes<32>::sym_size;
1395 align = 4;
1396 }
1397 else if (parameters->get_size() == 64)
1398 {
1399 symsize = elfcpp::Elf_sizes<64>::sym_size;
1400 align = 8;
1401 }
1402 else
1403 gold_unreachable();
1404
1405 off_t off = *poff;
1406 off = align_address(off, align);
1407 off_t startoff = off;
1408
1409 // Save space for the dummy symbol at the start of the section. We
1410 // never bother to write this out--it will just be left as zero.
1411 off += symsize;
1412 unsigned int local_symbol_index = 1;
1413
1414 // Add STT_SECTION symbols for each Output section which needs one.
1415 for (Section_list::iterator p = this->section_list_.begin();
1416 p != this->section_list_.end();
1417 ++p)
1418 {
1419 if (!(*p)->needs_symtab_index())
1420 (*p)->set_symtab_index(-1U);
1421 else
1422 {
1423 (*p)->set_symtab_index(local_symbol_index);
1424 ++local_symbol_index;
1425 off += symsize;
1426 }
1427 }
1428
1429 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1430 p != input_objects->relobj_end();
1431 ++p)
1432 {
1433 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1434 off);
1435 off += (index - local_symbol_index) * symsize;
1436 local_symbol_index = index;
1437 }
1438
1439 unsigned int local_symcount = local_symbol_index;
1440 gold_assert(local_symcount * symsize == off - startoff);
1441
1442 off_t dynoff;
1443 size_t dyn_global_index;
1444 size_t dyncount;
1445 if (this->dynsym_section_ == NULL)
1446 {
1447 dynoff = 0;
1448 dyn_global_index = 0;
1449 dyncount = 0;
1450 }
1451 else
1452 {
1453 dyn_global_index = this->dynsym_section_->info();
1454 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1455 dynoff = this->dynsym_section_->offset() + locsize;
1456 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1457 gold_assert(static_cast<off_t>(dyncount * symsize)
1458 == this->dynsym_section_->data_size() - locsize);
1459 }
1460
1461 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1462 &this->sympool_, &local_symcount);
1463
1464 if (!parameters->strip_all())
1465 {
1466 this->sympool_.set_string_offsets();
1467
1468 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1469 Output_section* osymtab = this->make_output_section(symtab_name,
1470 elfcpp::SHT_SYMTAB,
1471 0);
1472 this->symtab_section_ = osymtab;
1473
1474 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1475 align);
1476 osymtab->add_output_section_data(pos);
1477
1478 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1479 Output_section* ostrtab = this->make_output_section(strtab_name,
1480 elfcpp::SHT_STRTAB,
1481 0);
1482
1483 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1484 ostrtab->add_output_section_data(pstr);
1485
1486 osymtab->set_file_offset(startoff);
1487 osymtab->finalize_data_size();
1488 osymtab->set_link_section(ostrtab);
1489 osymtab->set_info(local_symcount);
1490 osymtab->set_entsize(symsize);
1491
1492 *poff = off;
1493 }
1494 }
1495
1496 // Create the .shstrtab section, which holds the names of the
1497 // sections. At the time this is called, we have created all the
1498 // output sections except .shstrtab itself.
1499
1500 Output_section*
1501 Layout::create_shstrtab()
1502 {
1503 // FIXME: We don't need to create a .shstrtab section if we are
1504 // stripping everything.
1505
1506 const char* name = this->namepool_.add(".shstrtab", false, NULL);
1507
1508 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1509
1510 // We can't write out this section until we've set all the section
1511 // names, and we don't set the names of compressed output sections
1512 // until relocations are complete.
1513 os->set_after_input_sections();
1514
1515 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1516 os->add_output_section_data(posd);
1517
1518 return os;
1519 }
1520
1521 // Create the section headers. SIZE is 32 or 64. OFF is the file
1522 // offset.
1523
1524 void
1525 Layout::create_shdrs(off_t* poff)
1526 {
1527 Output_section_headers* oshdrs;
1528 oshdrs = new Output_section_headers(this,
1529 &this->segment_list_,
1530 &this->unattached_section_list_,
1531 &this->namepool_);
1532 off_t off = align_address(*poff, oshdrs->addralign());
1533 oshdrs->set_address_and_file_offset(0, off);
1534 off += oshdrs->data_size();
1535 *poff = off;
1536 this->section_headers_ = oshdrs;
1537 }
1538
1539 // Create the dynamic symbol table.
1540
1541 void
1542 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1543 Symbol_table* symtab,
1544 Output_section **pdynstr,
1545 unsigned int* plocal_dynamic_count,
1546 std::vector<Symbol*>* pdynamic_symbols,
1547 Versions* pversions)
1548 {
1549 // Count all the symbols in the dynamic symbol table, and set the
1550 // dynamic symbol indexes.
1551
1552 // Skip symbol 0, which is always all zeroes.
1553 unsigned int index = 1;
1554
1555 // Add STT_SECTION symbols for each Output section which needs one.
1556 for (Section_list::iterator p = this->section_list_.begin();
1557 p != this->section_list_.end();
1558 ++p)
1559 {
1560 if (!(*p)->needs_dynsym_index())
1561 (*p)->set_dynsym_index(-1U);
1562 else
1563 {
1564 (*p)->set_dynsym_index(index);
1565 ++index;
1566 }
1567 }
1568
1569 // Count the local symbols that need to go in the dynamic symbol table,
1570 // and set the dynamic symbol indexes.
1571 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1572 p != input_objects->relobj_end();
1573 ++p)
1574 {
1575 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1576 index = new_index;
1577 }
1578
1579 unsigned int local_symcount = index;
1580 *plocal_dynamic_count = local_symcount;
1581
1582 // FIXME: We have to tell set_dynsym_indexes whether the
1583 // -E/--export-dynamic option was used.
1584 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1585 &this->dynpool_, pversions);
1586
1587 int symsize;
1588 unsigned int align;
1589 const int size = parameters->get_size();
1590 if (size == 32)
1591 {
1592 symsize = elfcpp::Elf_sizes<32>::sym_size;
1593 align = 4;
1594 }
1595 else if (size == 64)
1596 {
1597 symsize = elfcpp::Elf_sizes<64>::sym_size;
1598 align = 8;
1599 }
1600 else
1601 gold_unreachable();
1602
1603 // Create the dynamic symbol table section.
1604
1605 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
1606 elfcpp::SHT_DYNSYM,
1607 elfcpp::SHF_ALLOC,
1608 false);
1609
1610 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1611 align);
1612 dynsym->add_output_section_data(odata);
1613
1614 dynsym->set_info(local_symcount);
1615 dynsym->set_entsize(symsize);
1616 dynsym->set_addralign(align);
1617
1618 this->dynsym_section_ = dynsym;
1619
1620 Output_data_dynamic* const odyn = this->dynamic_data_;
1621 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1622 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1623
1624 // Create the dynamic string table section.
1625
1626 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
1627 elfcpp::SHT_STRTAB,
1628 elfcpp::SHF_ALLOC,
1629 false);
1630
1631 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1632 dynstr->add_output_section_data(strdata);
1633
1634 dynsym->set_link_section(dynstr);
1635 this->dynamic_section_->set_link_section(dynstr);
1636
1637 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1638 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1639
1640 *pdynstr = dynstr;
1641
1642 // Create the hash tables.
1643
1644 // FIXME: We need an option to create a GNU hash table.
1645
1646 unsigned char* phash;
1647 unsigned int hashlen;
1648 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1649 &phash, &hashlen);
1650
1651 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
1652 elfcpp::SHT_HASH,
1653 elfcpp::SHF_ALLOC,
1654 false);
1655
1656 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1657 hashlen,
1658 align);
1659 hashsec->add_output_section_data(hashdata);
1660
1661 hashsec->set_link_section(dynsym);
1662 hashsec->set_entsize(4);
1663
1664 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1665 }
1666
1667 // Assign offsets to each local portion of the dynamic symbol table.
1668
1669 void
1670 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1671 {
1672 Output_section* dynsym = this->dynsym_section_;
1673 gold_assert(dynsym != NULL);
1674
1675 off_t off = dynsym->offset();
1676
1677 // Skip the dummy symbol at the start of the section.
1678 off += dynsym->entsize();
1679
1680 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1681 p != input_objects->relobj_end();
1682 ++p)
1683 {
1684 unsigned int count = (*p)->set_local_dynsym_offset(off);
1685 off += count * dynsym->entsize();
1686 }
1687 }
1688
1689 // Create the version sections.
1690
1691 void
1692 Layout::create_version_sections(const Versions* versions,
1693 const Symbol_table* symtab,
1694 unsigned int local_symcount,
1695 const std::vector<Symbol*>& dynamic_symbols,
1696 const Output_section* dynstr)
1697 {
1698 if (!versions->any_defs() && !versions->any_needs())
1699 return;
1700
1701 if (parameters->get_size() == 32)
1702 {
1703 if (parameters->is_big_endian())
1704 {
1705 #ifdef HAVE_TARGET_32_BIG
1706 this->sized_create_version_sections
1707 SELECT_SIZE_ENDIAN_NAME(32, true)(
1708 versions, symtab, local_symcount, dynamic_symbols, dynstr
1709 SELECT_SIZE_ENDIAN(32, true));
1710 #else
1711 gold_unreachable();
1712 #endif
1713 }
1714 else
1715 {
1716 #ifdef HAVE_TARGET_32_LITTLE
1717 this->sized_create_version_sections
1718 SELECT_SIZE_ENDIAN_NAME(32, false)(
1719 versions, symtab, local_symcount, dynamic_symbols, dynstr
1720 SELECT_SIZE_ENDIAN(32, false));
1721 #else
1722 gold_unreachable();
1723 #endif
1724 }
1725 }
1726 else if (parameters->get_size() == 64)
1727 {
1728 if (parameters->is_big_endian())
1729 {
1730 #ifdef HAVE_TARGET_64_BIG
1731 this->sized_create_version_sections
1732 SELECT_SIZE_ENDIAN_NAME(64, true)(
1733 versions, symtab, local_symcount, dynamic_symbols, dynstr
1734 SELECT_SIZE_ENDIAN(64, true));
1735 #else
1736 gold_unreachable();
1737 #endif
1738 }
1739 else
1740 {
1741 #ifdef HAVE_TARGET_64_LITTLE
1742 this->sized_create_version_sections
1743 SELECT_SIZE_ENDIAN_NAME(64, false)(
1744 versions, symtab, local_symcount, dynamic_symbols, dynstr
1745 SELECT_SIZE_ENDIAN(64, false));
1746 #else
1747 gold_unreachable();
1748 #endif
1749 }
1750 }
1751 else
1752 gold_unreachable();
1753 }
1754
1755 // Create the version sections, sized version.
1756
1757 template<int size, bool big_endian>
1758 void
1759 Layout::sized_create_version_sections(
1760 const Versions* versions,
1761 const Symbol_table* symtab,
1762 unsigned int local_symcount,
1763 const std::vector<Symbol*>& dynamic_symbols,
1764 const Output_section* dynstr
1765 ACCEPT_SIZE_ENDIAN)
1766 {
1767 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
1768 elfcpp::SHT_GNU_versym,
1769 elfcpp::SHF_ALLOC,
1770 false);
1771
1772 unsigned char* vbuf;
1773 unsigned int vsize;
1774 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1775 symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
1776 SELECT_SIZE_ENDIAN(size, big_endian));
1777
1778 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1779
1780 vsec->add_output_section_data(vdata);
1781 vsec->set_entsize(2);
1782 vsec->set_link_section(this->dynsym_section_);
1783
1784 Output_data_dynamic* const odyn = this->dynamic_data_;
1785 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1786
1787 if (versions->any_defs())
1788 {
1789 Output_section* vdsec;
1790 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
1791 elfcpp::SHT_GNU_verdef,
1792 elfcpp::SHF_ALLOC,
1793 false);
1794
1795 unsigned char* vdbuf;
1796 unsigned int vdsize;
1797 unsigned int vdentries;
1798 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1799 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1800 SELECT_SIZE_ENDIAN(size, big_endian));
1801
1802 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1803 vdsize,
1804 4);
1805
1806 vdsec->add_output_section_data(vddata);
1807 vdsec->set_link_section(dynstr);
1808 vdsec->set_info(vdentries);
1809
1810 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1811 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1812 }
1813
1814 if (versions->any_needs())
1815 {
1816 Output_section* vnsec;
1817 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
1818 elfcpp::SHT_GNU_verneed,
1819 elfcpp::SHF_ALLOC,
1820 false);
1821
1822 unsigned char* vnbuf;
1823 unsigned int vnsize;
1824 unsigned int vnentries;
1825 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1826 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1827 SELECT_SIZE_ENDIAN(size, big_endian));
1828
1829 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1830 vnsize,
1831 4);
1832
1833 vnsec->add_output_section_data(vndata);
1834 vnsec->set_link_section(dynstr);
1835 vnsec->set_info(vnentries);
1836
1837 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1838 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1839 }
1840 }
1841
1842 // Create the .interp section and PT_INTERP segment.
1843
1844 void
1845 Layout::create_interp(const Target* target)
1846 {
1847 const char* interp = this->options_.dynamic_linker();
1848 if (interp == NULL)
1849 {
1850 interp = target->dynamic_linker();
1851 gold_assert(interp != NULL);
1852 }
1853
1854 size_t len = strlen(interp) + 1;
1855
1856 Output_section_data* odata = new Output_data_const(interp, len, 1);
1857
1858 Output_section* osec = this->choose_output_section(NULL, ".interp",
1859 elfcpp::SHT_PROGBITS,
1860 elfcpp::SHF_ALLOC,
1861 false);
1862 osec->add_output_section_data(odata);
1863
1864 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
1865 elfcpp::PF_R);
1866 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1867 }
1868
1869 // Finish the .dynamic section and PT_DYNAMIC segment.
1870
1871 void
1872 Layout::finish_dynamic_section(const Input_objects* input_objects,
1873 const Symbol_table* symtab)
1874 {
1875 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
1876 (elfcpp::PF_R
1877 | elfcpp::PF_W));
1878 oseg->add_initial_output_section(this->dynamic_section_,
1879 elfcpp::PF_R | elfcpp::PF_W);
1880
1881 Output_data_dynamic* const odyn = this->dynamic_data_;
1882
1883 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1884 p != input_objects->dynobj_end();
1885 ++p)
1886 {
1887 // FIXME: Handle --as-needed.
1888 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1889 }
1890
1891 if (parameters->output_is_shared())
1892 {
1893 const char* soname = this->options_.soname();
1894 if (soname != NULL)
1895 odyn->add_string(elfcpp::DT_SONAME, soname);
1896 }
1897
1898 // FIXME: Support --init and --fini.
1899 Symbol* sym = symtab->lookup("_init");
1900 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1901 odyn->add_symbol(elfcpp::DT_INIT, sym);
1902
1903 sym = symtab->lookup("_fini");
1904 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
1905 odyn->add_symbol(elfcpp::DT_FINI, sym);
1906
1907 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1908
1909 // Add a DT_RPATH entry if needed.
1910 const General_options::Dir_list& rpath(this->options_.rpath());
1911 if (!rpath.empty())
1912 {
1913 std::string rpath_val;
1914 for (General_options::Dir_list::const_iterator p = rpath.begin();
1915 p != rpath.end();
1916 ++p)
1917 {
1918 if (rpath_val.empty())
1919 rpath_val = p->name();
1920 else
1921 {
1922 // Eliminate duplicates.
1923 General_options::Dir_list::const_iterator q;
1924 for (q = rpath.begin(); q != p; ++q)
1925 if (q->name() == p->name())
1926 break;
1927 if (q == p)
1928 {
1929 rpath_val += ':';
1930 rpath_val += p->name();
1931 }
1932 }
1933 }
1934
1935 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1936 }
1937
1938 // Look for text segments that have dynamic relocations.
1939 bool have_textrel = false;
1940 for (Segment_list::const_iterator p = this->segment_list_.begin();
1941 p != this->segment_list_.end();
1942 ++p)
1943 {
1944 if (((*p)->flags() & elfcpp::PF_W) == 0
1945 && (*p)->dynamic_reloc_count() > 0)
1946 {
1947 have_textrel = true;
1948 break;
1949 }
1950 }
1951
1952 // Add a DT_FLAGS entry. We add it even if no flags are set so that
1953 // post-link tools can easily modify these flags if desired.
1954 unsigned int flags = 0;
1955 if (have_textrel)
1956 {
1957 // Add a DT_TEXTREL for compatibility with older loaders.
1958 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
1959 flags |= elfcpp::DF_TEXTREL;
1960 }
1961 if (parameters->output_is_shared() && this->has_static_tls())
1962 flags |= elfcpp::DF_STATIC_TLS;
1963 odyn->add_constant(elfcpp::DT_FLAGS, flags);
1964 }
1965
1966 // The mapping of .gnu.linkonce section names to real section names.
1967
1968 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
1969 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1970 {
1971 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1972 MAPPING_INIT("t", ".text"),
1973 MAPPING_INIT("r", ".rodata"),
1974 MAPPING_INIT("d", ".data"),
1975 MAPPING_INIT("b", ".bss"),
1976 MAPPING_INIT("s", ".sdata"),
1977 MAPPING_INIT("sb", ".sbss"),
1978 MAPPING_INIT("s2", ".sdata2"),
1979 MAPPING_INIT("sb2", ".sbss2"),
1980 MAPPING_INIT("wi", ".debug_info"),
1981 MAPPING_INIT("td", ".tdata"),
1982 MAPPING_INIT("tb", ".tbss"),
1983 MAPPING_INIT("lr", ".lrodata"),
1984 MAPPING_INIT("l", ".ldata"),
1985 MAPPING_INIT("lb", ".lbss"),
1986 };
1987 #undef MAPPING_INIT
1988
1989 const int Layout::linkonce_mapping_count =
1990 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1991
1992 // Return the name of the output section to use for a .gnu.linkonce
1993 // section. This is based on the default ELF linker script of the old
1994 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
1995 // to ".text". Set *PLEN to the length of the name. *PLEN is
1996 // initialized to the length of NAME.
1997
1998 const char*
1999 Layout::linkonce_output_name(const char* name, size_t *plen)
2000 {
2001 const char* s = name + sizeof(".gnu.linkonce") - 1;
2002 if (*s != '.')
2003 return name;
2004 ++s;
2005 const Linkonce_mapping* plm = linkonce_mapping;
2006 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2007 {
2008 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2009 {
2010 *plen = plm->tolen;
2011 return plm->to;
2012 }
2013 }
2014 return name;
2015 }
2016
2017 // Choose the output section name to use given an input section name.
2018 // Set *PLEN to the length of the name. *PLEN is initialized to the
2019 // length of NAME.
2020
2021 const char*
2022 Layout::output_section_name(const char* name, size_t* plen)
2023 {
2024 if (Layout::is_linkonce(name))
2025 {
2026 // .gnu.linkonce sections are laid out as though they were named
2027 // for the sections are placed into.
2028 return Layout::linkonce_output_name(name, plen);
2029 }
2030
2031 // gcc 4.3 generates the following sorts of section names when it
2032 // needs a section name specific to a function:
2033 // .text.FN
2034 // .rodata.FN
2035 // .sdata2.FN
2036 // .data.FN
2037 // .data.rel.FN
2038 // .data.rel.local.FN
2039 // .data.rel.ro.FN
2040 // .data.rel.ro.local.FN
2041 // .sdata.FN
2042 // .bss.FN
2043 // .sbss.FN
2044 // .tdata.FN
2045 // .tbss.FN
2046
2047 // The GNU linker maps all of those to the part before the .FN,
2048 // except that .data.rel.local.FN is mapped to .data, and
2049 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2050 // beginning with .data.rel.ro.local are grouped together.
2051
2052 // For an anonymous namespace, the string FN can contain a '.'.
2053
2054 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2055 // GNU linker maps to .rodata.
2056
2057 // The .data.rel.ro sections enable a security feature triggered by
2058 // the -z relro option. Section which need to be relocated at
2059 // program startup time but which may be readonly after startup are
2060 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2061 // segment. The dynamic linker will make that segment writable,
2062 // perform relocations, and then make it read-only. FIXME: We do
2063 // not yet implement this optimization.
2064
2065 // It is hard to handle this in a principled way.
2066
2067 // These are the rules we follow:
2068
2069 // If the section name has no initial '.', or no dot other than an
2070 // initial '.', we use the name unchanged (i.e., "mysection" and
2071 // ".text" are unchanged).
2072
2073 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2074
2075 // Otherwise, we drop the second '.' and everything that comes after
2076 // it (i.e., ".text.XXX" becomes ".text").
2077
2078 const char* s = name;
2079 if (*s != '.')
2080 return name;
2081 ++s;
2082 const char* sdot = strchr(s, '.');
2083 if (sdot == NULL)
2084 return name;
2085
2086 const char* const data_rel_ro = ".data.rel.ro";
2087 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2088 {
2089 *plen = strlen(data_rel_ro);
2090 return data_rel_ro;
2091 }
2092
2093 *plen = sdot - name;
2094 return name;
2095 }
2096
2097 // Record the signature of a comdat section, and return whether to
2098 // include it in the link. If GROUP is true, this is a regular
2099 // section group. If GROUP is false, this is a group signature
2100 // derived from the name of a linkonce section. We want linkonce
2101 // signatures and group signatures to block each other, but we don't
2102 // want a linkonce signature to block another linkonce signature.
2103
2104 bool
2105 Layout::add_comdat(const char* signature, bool group)
2106 {
2107 std::string sig(signature);
2108 std::pair<Signatures::iterator, bool> ins(
2109 this->signatures_.insert(std::make_pair(sig, group)));
2110
2111 if (ins.second)
2112 {
2113 // This is the first time we've seen this signature.
2114 return true;
2115 }
2116
2117 if (ins.first->second)
2118 {
2119 // We've already seen a real section group with this signature.
2120 return false;
2121 }
2122 else if (group)
2123 {
2124 // This is a real section group, and we've already seen a
2125 // linkonce section with this signature. Record that we've seen
2126 // a section group, and don't include this section group.
2127 ins.first->second = true;
2128 return false;
2129 }
2130 else
2131 {
2132 // We've already seen a linkonce section and this is a linkonce
2133 // section. These don't block each other--this may be the same
2134 // symbol name with different section types.
2135 return true;
2136 }
2137 }
2138
2139 // Store the allocated sections into the section list.
2140
2141 void
2142 Layout::get_allocated_sections(Section_list* section_list) const
2143 {
2144 for (Section_list::const_iterator p = this->section_list_.begin();
2145 p != this->section_list_.end();
2146 ++p)
2147 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2148 section_list->push_back(*p);
2149 }
2150
2151 // Create an output segment.
2152
2153 Output_segment*
2154 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2155 {
2156 Output_segment* oseg = new Output_segment(type, flags);
2157 this->segment_list_.push_back(oseg);
2158 return oseg;
2159 }
2160
2161 // Write out the Output_sections. Most won't have anything to write,
2162 // since most of the data will come from input sections which are
2163 // handled elsewhere. But some Output_sections do have Output_data.
2164
2165 void
2166 Layout::write_output_sections(Output_file* of) const
2167 {
2168 for (Section_list::const_iterator p = this->section_list_.begin();
2169 p != this->section_list_.end();
2170 ++p)
2171 {
2172 if (!(*p)->after_input_sections())
2173 (*p)->write(of);
2174 }
2175 }
2176
2177 // Write out data not associated with a section or the symbol table.
2178
2179 void
2180 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2181 {
2182 if (!parameters->strip_all())
2183 {
2184 const Output_section* symtab_section = this->symtab_section_;
2185 for (Section_list::const_iterator p = this->section_list_.begin();
2186 p != this->section_list_.end();
2187 ++p)
2188 {
2189 if ((*p)->needs_symtab_index())
2190 {
2191 gold_assert(symtab_section != NULL);
2192 unsigned int index = (*p)->symtab_index();
2193 gold_assert(index > 0 && index != -1U);
2194 off_t off = (symtab_section->offset()
2195 + index * symtab_section->entsize());
2196 symtab->write_section_symbol(*p, of, off);
2197 }
2198 }
2199 }
2200
2201 const Output_section* dynsym_section = this->dynsym_section_;
2202 for (Section_list::const_iterator p = this->section_list_.begin();
2203 p != this->section_list_.end();
2204 ++p)
2205 {
2206 if ((*p)->needs_dynsym_index())
2207 {
2208 gold_assert(dynsym_section != NULL);
2209 unsigned int index = (*p)->dynsym_index();
2210 gold_assert(index > 0 && index != -1U);
2211 off_t off = (dynsym_section->offset()
2212 + index * dynsym_section->entsize());
2213 symtab->write_section_symbol(*p, of, off);
2214 }
2215 }
2216
2217 // Write out the Output_data which are not in an Output_section.
2218 for (Data_list::const_iterator p = this->special_output_list_.begin();
2219 p != this->special_output_list_.end();
2220 ++p)
2221 (*p)->write(of);
2222 }
2223
2224 // Write out the Output_sections which can only be written after the
2225 // input sections are complete.
2226
2227 void
2228 Layout::write_sections_after_input_sections(Output_file* of)
2229 {
2230 // Determine the final section offsets, and thus the final output
2231 // file size. Note we finalize the .shstrab last, to allow the
2232 // after_input_section sections to modify their section-names before
2233 // writing.
2234 if (this->any_postprocessing_sections_)
2235 {
2236 off_t off = this->output_file_size_;
2237 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2238
2239 // Now that we've finalized the names, we can finalize the shstrab.
2240 off =
2241 this->set_section_offsets(off,
2242 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2243
2244 if (off > this->output_file_size_)
2245 {
2246 of->resize(off);
2247 this->output_file_size_ = off;
2248 }
2249 }
2250
2251 for (Section_list::const_iterator p = this->section_list_.begin();
2252 p != this->section_list_.end();
2253 ++p)
2254 {
2255 if ((*p)->after_input_sections())
2256 (*p)->write(of);
2257 }
2258
2259 this->section_headers_->write(of);
2260 }
2261
2262 // Print statistical information to stderr. This is used for --stats.
2263
2264 void
2265 Layout::print_stats() const
2266 {
2267 this->namepool_.print_stats("section name pool");
2268 this->sympool_.print_stats("output symbol name pool");
2269 this->dynpool_.print_stats("dynamic name pool");
2270
2271 for (Section_list::const_iterator p = this->section_list_.begin();
2272 p != this->section_list_.end();
2273 ++p)
2274 (*p)->print_merge_stats();
2275 }
2276
2277 // Write_sections_task methods.
2278
2279 // We can always run this task.
2280
2281 Task_token*
2282 Write_sections_task::is_runnable()
2283 {
2284 return NULL;
2285 }
2286
2287 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2288 // when finished.
2289
2290 void
2291 Write_sections_task::locks(Task_locker* tl)
2292 {
2293 tl->add(this, this->output_sections_blocker_);
2294 tl->add(this, this->final_blocker_);
2295 }
2296
2297 // Run the task--write out the data.
2298
2299 void
2300 Write_sections_task::run(Workqueue*)
2301 {
2302 this->layout_->write_output_sections(this->of_);
2303 }
2304
2305 // Write_data_task methods.
2306
2307 // We can always run this task.
2308
2309 Task_token*
2310 Write_data_task::is_runnable()
2311 {
2312 return NULL;
2313 }
2314
2315 // We need to unlock FINAL_BLOCKER when finished.
2316
2317 void
2318 Write_data_task::locks(Task_locker* tl)
2319 {
2320 tl->add(this, this->final_blocker_);
2321 }
2322
2323 // Run the task--write out the data.
2324
2325 void
2326 Write_data_task::run(Workqueue*)
2327 {
2328 this->layout_->write_data(this->symtab_, this->of_);
2329 }
2330
2331 // Write_symbols_task methods.
2332
2333 // We can always run this task.
2334
2335 Task_token*
2336 Write_symbols_task::is_runnable()
2337 {
2338 return NULL;
2339 }
2340
2341 // We need to unlock FINAL_BLOCKER when finished.
2342
2343 void
2344 Write_symbols_task::locks(Task_locker* tl)
2345 {
2346 tl->add(this, this->final_blocker_);
2347 }
2348
2349 // Run the task--write out the symbols.
2350
2351 void
2352 Write_symbols_task::run(Workqueue*)
2353 {
2354 this->symtab_->write_globals(this->input_objects_, this->sympool_,
2355 this->dynpool_, this->of_);
2356 }
2357
2358 // Write_after_input_sections_task methods.
2359
2360 // We can only run this task after the input sections have completed.
2361
2362 Task_token*
2363 Write_after_input_sections_task::is_runnable()
2364 {
2365 if (this->input_sections_blocker_->is_blocked())
2366 return this->input_sections_blocker_;
2367 return NULL;
2368 }
2369
2370 // We need to unlock FINAL_BLOCKER when finished.
2371
2372 void
2373 Write_after_input_sections_task::locks(Task_locker* tl)
2374 {
2375 tl->add(this, this->final_blocker_);
2376 }
2377
2378 // Run the task.
2379
2380 void
2381 Write_after_input_sections_task::run(Workqueue*)
2382 {
2383 this->layout_->write_sections_after_input_sections(this->of_);
2384 }
2385
2386 // Close_task_runner methods.
2387
2388 // Run the task--close the file.
2389
2390 void
2391 Close_task_runner::run(Workqueue*, const Task*)
2392 {
2393 this->of_->close();
2394 }
2395
2396 // Instantiate the templates we need. We could use the configure
2397 // script to restrict this to only the ones for implemented targets.
2398
2399 #ifdef HAVE_TARGET_32_LITTLE
2400 template
2401 Output_section*
2402 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2403 const char* name,
2404 const elfcpp::Shdr<32, false>& shdr,
2405 unsigned int, unsigned int, off_t*);
2406 #endif
2407
2408 #ifdef HAVE_TARGET_32_BIG
2409 template
2410 Output_section*
2411 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2412 const char* name,
2413 const elfcpp::Shdr<32, true>& shdr,
2414 unsigned int, unsigned int, off_t*);
2415 #endif
2416
2417 #ifdef HAVE_TARGET_64_LITTLE
2418 template
2419 Output_section*
2420 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2421 const char* name,
2422 const elfcpp::Shdr<64, false>& shdr,
2423 unsigned int, unsigned int, off_t*);
2424 #endif
2425
2426 #ifdef HAVE_TARGET_64_BIG
2427 template
2428 Output_section*
2429 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2430 const char* name,
2431 const elfcpp::Shdr<64, true>& shdr,
2432 unsigned int, unsigned int, off_t*);
2433 #endif
2434
2435 #ifdef HAVE_TARGET_32_LITTLE
2436 template
2437 Output_section*
2438 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2439 const unsigned char* symbols,
2440 off_t symbols_size,
2441 const unsigned char* symbol_names,
2442 off_t symbol_names_size,
2443 unsigned int shndx,
2444 const elfcpp::Shdr<32, false>& shdr,
2445 unsigned int reloc_shndx,
2446 unsigned int reloc_type,
2447 off_t* off);
2448 #endif
2449
2450 #ifdef HAVE_TARGET_32_BIG
2451 template
2452 Output_section*
2453 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2454 const unsigned char* symbols,
2455 off_t symbols_size,
2456 const unsigned char* symbol_names,
2457 off_t symbol_names_size,
2458 unsigned int shndx,
2459 const elfcpp::Shdr<32, true>& shdr,
2460 unsigned int reloc_shndx,
2461 unsigned int reloc_type,
2462 off_t* off);
2463 #endif
2464
2465 #ifdef HAVE_TARGET_64_LITTLE
2466 template
2467 Output_section*
2468 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2469 const unsigned char* symbols,
2470 off_t symbols_size,
2471 const unsigned char* symbol_names,
2472 off_t symbol_names_size,
2473 unsigned int shndx,
2474 const elfcpp::Shdr<64, false>& shdr,
2475 unsigned int reloc_shndx,
2476 unsigned int reloc_type,
2477 off_t* off);
2478 #endif
2479
2480 #ifdef HAVE_TARGET_64_BIG
2481 template
2482 Output_section*
2483 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2484 const unsigned char* symbols,
2485 off_t symbols_size,
2486 const unsigned char* symbol_names,
2487 off_t symbol_names_size,
2488 unsigned int shndx,
2489 const elfcpp::Shdr<64, true>& shdr,
2490 unsigned int reloc_shndx,
2491 unsigned int reloc_type,
2492 off_t* off);
2493 #endif
2494
2495 } // End namespace gold.
This page took 0.07899 seconds and 5 git commands to generate.