Set TEXTREL correctly when using a SECTIONS clause.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <iostream>
28 #include <utility>
29
30 #include "parameters.h"
31 #include "options.h"
32 #include "script.h"
33 #include "script-sections.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "dynobj.h"
37 #include "ehframe.h"
38 #include "compressed_output.h"
39 #include "reloc.h"
40 #include "layout.h"
41
42 namespace gold
43 {
44
45 // Layout_task_runner methods.
46
47 // Lay out the sections. This is called after all the input objects
48 // have been read.
49
50 void
51 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
52 {
53 off_t file_size = this->layout_->finalize(this->input_objects_,
54 this->symtab_,
55 task);
56
57 // Now we know the final size of the output file and we know where
58 // each piece of information goes.
59 Output_file* of = new Output_file(parameters->output_file_name());
60 if (this->options_.output_format() != General_options::OBJECT_FORMAT_ELF)
61 of->set_is_temporary();
62 of->open(file_size);
63
64 // Queue up the final set of tasks.
65 gold::queue_final_tasks(this->options_, this->input_objects_,
66 this->symtab_, this->layout_, workqueue, of);
67 }
68
69 // Layout methods.
70
71 Layout::Layout(const General_options& options, Script_options* script_options)
72 : options_(options), script_options_(script_options), namepool_(),
73 sympool_(), dynpool_(), signatures_(),
74 section_name_map_(), segment_list_(), section_list_(),
75 unattached_section_list_(), special_output_list_(),
76 section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
77 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
78 eh_frame_section_(NULL), group_signatures_(), output_file_size_(-1),
79 input_requires_executable_stack_(false),
80 input_with_gnu_stack_note_(false),
81 input_without_gnu_stack_note_(false),
82 has_static_tls_(false),
83 any_postprocessing_sections_(false)
84 {
85 // Make space for more than enough segments for a typical file.
86 // This is just for efficiency--it's OK if we wind up needing more.
87 this->segment_list_.reserve(12);
88
89 // We expect two unattached Output_data objects: the file header and
90 // the segment headers.
91 this->special_output_list_.reserve(2);
92 }
93
94 // Hash a key we use to look up an output section mapping.
95
96 size_t
97 Layout::Hash_key::operator()(const Layout::Key& k) const
98 {
99 return k.first + k.second.first + k.second.second;
100 }
101
102 // Return whether PREFIX is a prefix of STR.
103
104 static inline bool
105 is_prefix_of(const char* prefix, const char* str)
106 {
107 return strncmp(prefix, str, strlen(prefix)) == 0;
108 }
109
110 // Returns whether the given section is in the list of
111 // debug-sections-used-by-some-version-of-gdb. Currently,
112 // we've checked versions of gdb up to and including 6.7.1.
113
114 static const char* gdb_sections[] =
115 { ".debug_abbrev",
116 // ".debug_aranges", // not used by gdb as of 6.7.1
117 ".debug_frame",
118 ".debug_info",
119 ".debug_line",
120 ".debug_loc",
121 ".debug_macinfo",
122 // ".debug_pubnames", // not used by gdb as of 6.7.1
123 ".debug_ranges",
124 ".debug_str",
125 };
126
127 static inline bool
128 is_gdb_debug_section(const char* str)
129 {
130 // We can do this faster: binary search or a hashtable. But why bother?
131 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
132 if (strcmp(str, gdb_sections[i]) == 0)
133 return true;
134 return false;
135 }
136
137 // Whether to include this section in the link.
138
139 template<int size, bool big_endian>
140 bool
141 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
142 const elfcpp::Shdr<size, big_endian>& shdr)
143 {
144 switch (shdr.get_sh_type())
145 {
146 case elfcpp::SHT_NULL:
147 case elfcpp::SHT_SYMTAB:
148 case elfcpp::SHT_DYNSYM:
149 case elfcpp::SHT_STRTAB:
150 case elfcpp::SHT_HASH:
151 case elfcpp::SHT_DYNAMIC:
152 case elfcpp::SHT_SYMTAB_SHNDX:
153 return false;
154
155 case elfcpp::SHT_RELA:
156 case elfcpp::SHT_REL:
157 case elfcpp::SHT_GROUP:
158 // For a relocatable link these should be handled elsewhere.
159 gold_assert(!parameters->output_is_object());
160 return false;
161
162 case elfcpp::SHT_PROGBITS:
163 if (parameters->strip_debug()
164 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
165 {
166 // Debugging sections can only be recognized by name.
167 if (is_prefix_of(".debug", name)
168 || is_prefix_of(".gnu.linkonce.wi.", name)
169 || is_prefix_of(".line", name)
170 || is_prefix_of(".stab", name))
171 return false;
172 }
173 if (parameters->strip_debug_gdb()
174 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
175 {
176 // Debugging sections can only be recognized by name.
177 if (is_prefix_of(".debug", name)
178 && !is_gdb_debug_section(name))
179 return false;
180 }
181 return true;
182
183 default:
184 return true;
185 }
186 }
187
188 // Return an output section named NAME, or NULL if there is none.
189
190 Output_section*
191 Layout::find_output_section(const char* name) const
192 {
193 for (Section_list::const_iterator p = this->section_list_.begin();
194 p != this->section_list_.end();
195 ++p)
196 if (strcmp((*p)->name(), name) == 0)
197 return *p;
198 return NULL;
199 }
200
201 // Return an output segment of type TYPE, with segment flags SET set
202 // and segment flags CLEAR clear. Return NULL if there is none.
203
204 Output_segment*
205 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
206 elfcpp::Elf_Word clear) const
207 {
208 for (Segment_list::const_iterator p = this->segment_list_.begin();
209 p != this->segment_list_.end();
210 ++p)
211 if (static_cast<elfcpp::PT>((*p)->type()) == type
212 && ((*p)->flags() & set) == set
213 && ((*p)->flags() & clear) == 0)
214 return *p;
215 return NULL;
216 }
217
218 // Return the output section to use for section NAME with type TYPE
219 // and section flags FLAGS. NAME must be canonicalized in the string
220 // pool, and NAME_KEY is the key.
221
222 Output_section*
223 Layout::get_output_section(const char* name, Stringpool::Key name_key,
224 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
225 {
226 const Key key(name_key, std::make_pair(type, flags));
227 const std::pair<Key, Output_section*> v(key, NULL);
228 std::pair<Section_name_map::iterator, bool> ins(
229 this->section_name_map_.insert(v));
230
231 if (!ins.second)
232 return ins.first->second;
233 else
234 {
235 // This is the first time we've seen this name/type/flags
236 // combination.
237 Output_section* os = this->make_output_section(name, type, flags);
238 ins.first->second = os;
239 return os;
240 }
241 }
242
243 // Pick the output section to use for section NAME, in input file
244 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
245 // linker created section. ADJUST_NAME is true if we should apply the
246 // standard name mappings in Layout::output_section_name. This will
247 // return NULL if the input section should be discarded.
248
249 Output_section*
250 Layout::choose_output_section(const Relobj* relobj, const char* name,
251 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
252 bool adjust_name)
253 {
254 // We should ignore some flags. FIXME: This will need some
255 // adjustment for ld -r.
256 flags &= ~ (elfcpp::SHF_INFO_LINK
257 | elfcpp::SHF_LINK_ORDER
258 | elfcpp::SHF_GROUP
259 | elfcpp::SHF_MERGE
260 | elfcpp::SHF_STRINGS);
261
262 if (this->script_options_->saw_sections_clause())
263 {
264 // We are using a SECTIONS clause, so the output section is
265 // chosen based only on the name.
266
267 Script_sections* ss = this->script_options_->script_sections();
268 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
269 Output_section** output_section_slot;
270 name = ss->output_section_name(file_name, name, &output_section_slot);
271 if (name == NULL)
272 {
273 // The SECTIONS clause says to discard this input section.
274 return NULL;
275 }
276
277 // If this is an orphan section--one not mentioned in the linker
278 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
279 // default processing below.
280
281 if (output_section_slot != NULL)
282 {
283 if (*output_section_slot != NULL)
284 return *output_section_slot;
285
286 // We don't put sections found in the linker script into
287 // SECTION_NAME_MAP_. That keeps us from getting confused
288 // if an orphan section is mapped to a section with the same
289 // name as one in the linker script.
290
291 name = this->namepool_.add(name, false, NULL);
292
293 Output_section* os = this->make_output_section(name, type, flags);
294 os->set_found_in_sections_clause();
295 *output_section_slot = os;
296 return os;
297 }
298 }
299
300 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
301
302 // Turn NAME from the name of the input section into the name of the
303 // output section.
304
305 size_t len = strlen(name);
306 if (adjust_name && !parameters->output_is_object())
307 name = Layout::output_section_name(name, &len);
308
309 Stringpool::Key name_key;
310 name = this->namepool_.add_with_length(name, len, true, &name_key);
311
312 // Find or make the output section. The output section is selected
313 // based on the section name, type, and flags.
314 return this->get_output_section(name, name_key, type, flags);
315 }
316
317 // Return the output section to use for input section SHNDX, with name
318 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
319 // index of a relocation section which applies to this section, or 0
320 // if none, or -1U if more than one. RELOC_TYPE is the type of the
321 // relocation section if there is one. Set *OFF to the offset of this
322 // input section without the output section. Return NULL if the
323 // section should be discarded. Set *OFF to -1 if the section
324 // contents should not be written directly to the output file, but
325 // will instead receive special handling.
326
327 template<int size, bool big_endian>
328 Output_section*
329 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
330 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
331 unsigned int reloc_shndx, unsigned int, off_t* off)
332 {
333 if (!this->include_section(object, name, shdr))
334 return NULL;
335
336 Output_section* os;
337
338 // In a relocatable link a grouped section must not be combined with
339 // any other sections.
340 if (parameters->output_is_object()
341 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
342 {
343 name = this->namepool_.add(name, true, NULL);
344 os = this->make_output_section(name, shdr.get_sh_type(),
345 shdr.get_sh_flags());
346 }
347 else
348 {
349 os = this->choose_output_section(object, name, shdr.get_sh_type(),
350 shdr.get_sh_flags(), true);
351 if (os == NULL)
352 return NULL;
353 }
354
355 // FIXME: Handle SHF_LINK_ORDER somewhere.
356
357 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
358 this->script_options_->saw_sections_clause());
359
360 return os;
361 }
362
363 // Handle a relocation section when doing a relocatable link.
364
365 template<int size, bool big_endian>
366 Output_section*
367 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
368 unsigned int,
369 const elfcpp::Shdr<size, big_endian>& shdr,
370 Output_section* data_section,
371 Relocatable_relocs* rr)
372 {
373 gold_assert(parameters->output_is_object());
374
375 int sh_type = shdr.get_sh_type();
376
377 std::string name;
378 if (sh_type == elfcpp::SHT_REL)
379 name = ".rel";
380 else if (sh_type == elfcpp::SHT_RELA)
381 name = ".rela";
382 else
383 gold_unreachable();
384 name += data_section->name();
385
386 Output_section* os = this->choose_output_section(object, name.c_str(),
387 sh_type,
388 shdr.get_sh_flags(),
389 false);
390
391 os->set_should_link_to_symtab();
392 os->set_info_section(data_section);
393
394 Output_section_data* posd;
395 if (sh_type == elfcpp::SHT_REL)
396 {
397 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
398 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
399 size,
400 big_endian>(rr);
401 }
402 else if (sh_type == elfcpp::SHT_RELA)
403 {
404 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
405 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
406 size,
407 big_endian>(rr);
408 }
409 else
410 gold_unreachable();
411
412 os->add_output_section_data(posd);
413 rr->set_output_data(posd);
414
415 return os;
416 }
417
418 // Handle a group section when doing a relocatable link.
419
420 template<int size, bool big_endian>
421 void
422 Layout::layout_group(Symbol_table* symtab,
423 Sized_relobj<size, big_endian>* object,
424 unsigned int,
425 const char* group_section_name,
426 const char* signature,
427 const elfcpp::Shdr<size, big_endian>& shdr,
428 const elfcpp::Elf_Word* contents)
429 {
430 gold_assert(parameters->output_is_object());
431 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
432 group_section_name = this->namepool_.add(group_section_name, true, NULL);
433 Output_section* os = this->make_output_section(group_section_name,
434 elfcpp::SHT_GROUP,
435 shdr.get_sh_flags());
436
437 // We need to find a symbol with the signature in the symbol table.
438 // If we don't find one now, we need to look again later.
439 Symbol* sym = symtab->lookup(signature, NULL);
440 if (sym != NULL)
441 os->set_info_symndx(sym);
442 else
443 {
444 // We will wind up using a symbol whose name is the signature.
445 // So just put the signature in the symbol name pool to save it.
446 signature = symtab->canonicalize_name(signature);
447 this->group_signatures_.push_back(Group_signature(os, signature));
448 }
449
450 os->set_should_link_to_symtab();
451 os->set_entsize(4);
452
453 section_size_type entry_count =
454 convert_to_section_size_type(shdr.get_sh_size() / 4);
455 Output_section_data* posd =
456 new Output_data_group<size, big_endian>(object, entry_count, contents);
457 os->add_output_section_data(posd);
458 }
459
460 // Special GNU handling of sections name .eh_frame. They will
461 // normally hold exception frame data as defined by the C++ ABI
462 // (http://codesourcery.com/cxx-abi/).
463
464 template<int size, bool big_endian>
465 Output_section*
466 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
467 const unsigned char* symbols,
468 off_t symbols_size,
469 const unsigned char* symbol_names,
470 off_t symbol_names_size,
471 unsigned int shndx,
472 const elfcpp::Shdr<size, big_endian>& shdr,
473 unsigned int reloc_shndx, unsigned int reloc_type,
474 off_t* off)
475 {
476 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
477 gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
478
479 const char* const name = ".eh_frame";
480 Output_section* os = this->choose_output_section(object,
481 name,
482 elfcpp::SHT_PROGBITS,
483 elfcpp::SHF_ALLOC,
484 false);
485 if (os == NULL)
486 return NULL;
487
488 if (this->eh_frame_section_ == NULL)
489 {
490 this->eh_frame_section_ = os;
491 this->eh_frame_data_ = new Eh_frame();
492 os->add_output_section_data(this->eh_frame_data_);
493
494 if (this->options_.create_eh_frame_hdr())
495 {
496 Output_section* hdr_os =
497 this->choose_output_section(NULL,
498 ".eh_frame_hdr",
499 elfcpp::SHT_PROGBITS,
500 elfcpp::SHF_ALLOC,
501 false);
502
503 if (hdr_os != NULL)
504 {
505 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
506 this->eh_frame_data_);
507 hdr_os->add_output_section_data(hdr_posd);
508
509 hdr_os->set_after_input_sections();
510
511 if (!this->script_options_->saw_phdrs_clause())
512 {
513 Output_segment* hdr_oseg;
514 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
515 elfcpp::PF_R);
516 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
517 }
518
519 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
520 }
521 }
522 }
523
524 gold_assert(this->eh_frame_section_ == os);
525
526 if (this->eh_frame_data_->add_ehframe_input_section(object,
527 symbols,
528 symbols_size,
529 symbol_names,
530 symbol_names_size,
531 shndx,
532 reloc_shndx,
533 reloc_type))
534 *off = -1;
535 else
536 {
537 // We couldn't handle this .eh_frame section for some reason.
538 // Add it as a normal section.
539 bool saw_sections_clause = this->script_options_->saw_sections_clause();
540 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
541 saw_sections_clause);
542 }
543
544 return os;
545 }
546
547 // Add POSD to an output section using NAME, TYPE, and FLAGS.
548
549 void
550 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
551 elfcpp::Elf_Xword flags,
552 Output_section_data* posd)
553 {
554 Output_section* os = this->choose_output_section(NULL, name, type, flags,
555 false);
556 if (os != NULL)
557 os->add_output_section_data(posd);
558 }
559
560 // Map section flags to segment flags.
561
562 elfcpp::Elf_Word
563 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
564 {
565 elfcpp::Elf_Word ret = elfcpp::PF_R;
566 if ((flags & elfcpp::SHF_WRITE) != 0)
567 ret |= elfcpp::PF_W;
568 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
569 ret |= elfcpp::PF_X;
570 return ret;
571 }
572
573 // Sometimes we compress sections. This is typically done for
574 // sections that are not part of normal program execution (such as
575 // .debug_* sections), and where the readers of these sections know
576 // how to deal with compressed sections. (To make it easier for them,
577 // we will rename the ouput section in such cases from .foo to
578 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
579 // doesn't say for certain whether we'll compress -- it depends on
580 // commandline options as well -- just whether this section is a
581 // candidate for compression.
582
583 static bool
584 is_compressible_debug_section(const char* secname)
585 {
586 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
587 }
588
589 // Make a new Output_section, and attach it to segments as
590 // appropriate.
591
592 Output_section*
593 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
594 elfcpp::Elf_Xword flags)
595 {
596 Output_section* os;
597 if ((flags & elfcpp::SHF_ALLOC) == 0
598 && this->options_.compress_debug_sections()
599 && is_compressible_debug_section(name))
600 os = new Output_compressed_section(&this->options_, name, type, flags);
601 else
602 os = new Output_section(name, type, flags);
603
604 this->section_list_.push_back(os);
605
606 if ((flags & elfcpp::SHF_ALLOC) == 0)
607 this->unattached_section_list_.push_back(os);
608 else
609 {
610 if (parameters->output_is_object())
611 return os;
612
613 // If we have a SECTIONS clause, we can't handle the attachment
614 // to segments until after we've seen all the sections.
615 if (this->script_options_->saw_sections_clause())
616 return os;
617
618 gold_assert(!this->script_options_->saw_phdrs_clause());
619
620 // This output section goes into a PT_LOAD segment.
621
622 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
623
624 // The only thing we really care about for PT_LOAD segments is
625 // whether or not they are writable, so that is how we search
626 // for them. People who need segments sorted on some other
627 // basis will have to wait until we implement a mechanism for
628 // them to describe the segments they want.
629
630 Segment_list::const_iterator p;
631 for (p = this->segment_list_.begin();
632 p != this->segment_list_.end();
633 ++p)
634 {
635 if ((*p)->type() == elfcpp::PT_LOAD
636 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
637 {
638 (*p)->add_output_section(os, seg_flags);
639 break;
640 }
641 }
642
643 if (p == this->segment_list_.end())
644 {
645 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
646 seg_flags);
647 oseg->add_output_section(os, seg_flags);
648 }
649
650 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
651 // segment.
652 if (type == elfcpp::SHT_NOTE)
653 {
654 // See if we already have an equivalent PT_NOTE segment.
655 for (p = this->segment_list_.begin();
656 p != segment_list_.end();
657 ++p)
658 {
659 if ((*p)->type() == elfcpp::PT_NOTE
660 && (((*p)->flags() & elfcpp::PF_W)
661 == (seg_flags & elfcpp::PF_W)))
662 {
663 (*p)->add_output_section(os, seg_flags);
664 break;
665 }
666 }
667
668 if (p == this->segment_list_.end())
669 {
670 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
671 seg_flags);
672 oseg->add_output_section(os, seg_flags);
673 }
674 }
675
676 // If we see a loadable SHF_TLS section, we create a PT_TLS
677 // segment. There can only be one such segment.
678 if ((flags & elfcpp::SHF_TLS) != 0)
679 {
680 if (this->tls_segment_ == NULL)
681 this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
682 seg_flags);
683 this->tls_segment_->add_output_section(os, seg_flags);
684 }
685 }
686
687 return os;
688 }
689
690 // Return the number of segments we expect to see.
691
692 size_t
693 Layout::expected_segment_count() const
694 {
695 size_t ret = this->segment_list_.size();
696
697 // If we didn't see a SECTIONS clause in a linker script, we should
698 // already have the complete list of segments. Otherwise we ask the
699 // SECTIONS clause how many segments it expects, and add in the ones
700 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
701
702 if (!this->script_options_->saw_sections_clause())
703 return ret;
704 else
705 {
706 const Script_sections* ss = this->script_options_->script_sections();
707 return ret + ss->expected_segment_count(this);
708 }
709 }
710
711 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
712 // is whether we saw a .note.GNU-stack section in the object file.
713 // GNU_STACK_FLAGS is the section flags. The flags give the
714 // protection required for stack memory. We record this in an
715 // executable as a PT_GNU_STACK segment. If an object file does not
716 // have a .note.GNU-stack segment, we must assume that it is an old
717 // object. On some targets that will force an executable stack.
718
719 void
720 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
721 {
722 if (!seen_gnu_stack)
723 this->input_without_gnu_stack_note_ = true;
724 else
725 {
726 this->input_with_gnu_stack_note_ = true;
727 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
728 this->input_requires_executable_stack_ = true;
729 }
730 }
731
732 // Create the dynamic sections which are needed before we read the
733 // relocs.
734
735 void
736 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
737 {
738 if (parameters->doing_static_link())
739 return;
740
741 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
742 elfcpp::SHT_DYNAMIC,
743 (elfcpp::SHF_ALLOC
744 | elfcpp::SHF_WRITE),
745 false);
746
747 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
748 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
749 elfcpp::STV_HIDDEN, 0, false, false);
750
751 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
752
753 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
754 }
755
756 // For each output section whose name can be represented as C symbol,
757 // define __start and __stop symbols for the section. This is a GNU
758 // extension.
759
760 void
761 Layout::define_section_symbols(Symbol_table* symtab)
762 {
763 for (Section_list::const_iterator p = this->section_list_.begin();
764 p != this->section_list_.end();
765 ++p)
766 {
767 const char* const name = (*p)->name();
768 if (name[strspn(name,
769 ("0123456789"
770 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
771 "abcdefghijklmnopqrstuvwxyz"
772 "_"))]
773 == '\0')
774 {
775 const std::string name_string(name);
776 const std::string start_name("__start_" + name_string);
777 const std::string stop_name("__stop_" + name_string);
778
779 symtab->define_in_output_data(start_name.c_str(),
780 NULL, // version
781 *p,
782 0, // value
783 0, // symsize
784 elfcpp::STT_NOTYPE,
785 elfcpp::STB_GLOBAL,
786 elfcpp::STV_DEFAULT,
787 0, // nonvis
788 false, // offset_is_from_end
789 true); // only_if_ref
790
791 symtab->define_in_output_data(stop_name.c_str(),
792 NULL, // version
793 *p,
794 0, // value
795 0, // symsize
796 elfcpp::STT_NOTYPE,
797 elfcpp::STB_GLOBAL,
798 elfcpp::STV_DEFAULT,
799 0, // nonvis
800 true, // offset_is_from_end
801 true); // only_if_ref
802 }
803 }
804 }
805
806 // Define symbols for group signatures.
807
808 void
809 Layout::define_group_signatures(Symbol_table* symtab)
810 {
811 for (Group_signatures::iterator p = this->group_signatures_.begin();
812 p != this->group_signatures_.end();
813 ++p)
814 {
815 Symbol* sym = symtab->lookup(p->signature, NULL);
816 if (sym != NULL)
817 p->section->set_info_symndx(sym);
818 else
819 {
820 // Force the name of the group section to the group
821 // signature, and use the group's section symbol as the
822 // signature symbol.
823 if (strcmp(p->section->name(), p->signature) != 0)
824 {
825 const char* name = this->namepool_.add(p->signature,
826 true, NULL);
827 p->section->set_name(name);
828 }
829 p->section->set_needs_symtab_index();
830 p->section->set_info_section_symndx(p->section);
831 }
832 }
833
834 this->group_signatures_.clear();
835 }
836
837 // Find the first read-only PT_LOAD segment, creating one if
838 // necessary.
839
840 Output_segment*
841 Layout::find_first_load_seg()
842 {
843 for (Segment_list::const_iterator p = this->segment_list_.begin();
844 p != this->segment_list_.end();
845 ++p)
846 {
847 if ((*p)->type() == elfcpp::PT_LOAD
848 && ((*p)->flags() & elfcpp::PF_R) != 0
849 && ((*p)->flags() & elfcpp::PF_W) == 0)
850 return *p;
851 }
852
853 gold_assert(!this->script_options_->saw_phdrs_clause());
854
855 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
856 elfcpp::PF_R);
857 return load_seg;
858 }
859
860 // Finalize the layout. When this is called, we have created all the
861 // output sections and all the output segments which are based on
862 // input sections. We have several things to do, and we have to do
863 // them in the right order, so that we get the right results correctly
864 // and efficiently.
865
866 // 1) Finalize the list of output segments and create the segment
867 // table header.
868
869 // 2) Finalize the dynamic symbol table and associated sections.
870
871 // 3) Determine the final file offset of all the output segments.
872
873 // 4) Determine the final file offset of all the SHF_ALLOC output
874 // sections.
875
876 // 5) Create the symbol table sections and the section name table
877 // section.
878
879 // 6) Finalize the symbol table: set symbol values to their final
880 // value and make a final determination of which symbols are going
881 // into the output symbol table.
882
883 // 7) Create the section table header.
884
885 // 8) Determine the final file offset of all the output sections which
886 // are not SHF_ALLOC, including the section table header.
887
888 // 9) Finalize the ELF file header.
889
890 // This function returns the size of the output file.
891
892 off_t
893 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
894 const Task* task)
895 {
896 Target* const target = parameters->target();
897
898 target->finalize_sections(this);
899
900 this->count_local_symbols(task, input_objects);
901
902 this->create_gold_note();
903 this->create_executable_stack_info(target);
904
905 Output_segment* phdr_seg = NULL;
906 if (!parameters->output_is_object() && !parameters->doing_static_link())
907 {
908 // There was a dynamic object in the link. We need to create
909 // some information for the dynamic linker.
910
911 // Create the PT_PHDR segment which will hold the program
912 // headers.
913 if (!this->script_options_->saw_phdrs_clause())
914 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
915
916 // Create the dynamic symbol table, including the hash table.
917 Output_section* dynstr;
918 std::vector<Symbol*> dynamic_symbols;
919 unsigned int local_dynamic_count;
920 Versions versions(this->options_, &this->dynpool_);
921 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
922 &local_dynamic_count, &dynamic_symbols,
923 &versions);
924
925 // Create the .interp section to hold the name of the
926 // interpreter, and put it in a PT_INTERP segment.
927 if (!parameters->output_is_shared())
928 this->create_interp(target);
929
930 // Finish the .dynamic section to hold the dynamic data, and put
931 // it in a PT_DYNAMIC segment.
932 this->finish_dynamic_section(input_objects, symtab);
933
934 // We should have added everything we need to the dynamic string
935 // table.
936 this->dynpool_.set_string_offsets();
937
938 // Create the version sections. We can't do this until the
939 // dynamic string table is complete.
940 this->create_version_sections(&versions, symtab, local_dynamic_count,
941 dynamic_symbols, dynstr);
942 }
943
944 // If there is a SECTIONS clause, put all the input sections into
945 // the required order.
946 Output_segment* load_seg;
947 if (this->script_options_->saw_sections_clause())
948 load_seg = this->set_section_addresses_from_script(symtab);
949 else if (parameters->output_is_object())
950 load_seg = NULL;
951 else
952 load_seg = this->find_first_load_seg();
953
954 if (this->options_.output_format() != General_options::OBJECT_FORMAT_ELF)
955 load_seg = NULL;
956
957 gold_assert(phdr_seg == NULL || load_seg != NULL);
958
959 // Lay out the segment headers.
960 Output_segment_headers* segment_headers;
961 if (parameters->output_is_object())
962 segment_headers = NULL;
963 else
964 {
965 segment_headers = new Output_segment_headers(this->segment_list_);
966 if (load_seg != NULL)
967 load_seg->add_initial_output_data(segment_headers);
968 if (phdr_seg != NULL)
969 phdr_seg->add_initial_output_data(segment_headers);
970 }
971
972 // Lay out the file header.
973 Output_file_header* file_header;
974 file_header = new Output_file_header(target, symtab, segment_headers,
975 this->script_options_->entry());
976 if (load_seg != NULL)
977 load_seg->add_initial_output_data(file_header);
978
979 this->special_output_list_.push_back(file_header);
980 if (segment_headers != NULL)
981 this->special_output_list_.push_back(segment_headers);
982
983 if (this->script_options_->saw_phdrs_clause()
984 && !parameters->output_is_object())
985 {
986 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
987 // clause in a linker script.
988 Script_sections* ss = this->script_options_->script_sections();
989 ss->put_headers_in_phdrs(file_header, segment_headers);
990 }
991
992 // We set the output section indexes in set_segment_offsets and
993 // set_section_indexes.
994 unsigned int shndx = 1;
995
996 // Set the file offsets of all the segments, and all the sections
997 // they contain.
998 off_t off;
999 if (!parameters->output_is_object())
1000 off = this->set_segment_offsets(target, load_seg, &shndx);
1001 else
1002 off = this->set_relocatable_section_offsets(file_header, &shndx);
1003
1004 // Set the file offsets of all the non-data sections we've seen so
1005 // far which don't have to wait for the input sections. We need
1006 // this in order to finalize local symbols in non-allocated
1007 // sections.
1008 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1009
1010 // Create the symbol table sections.
1011 this->create_symtab_sections(input_objects, symtab, &off);
1012 if (!parameters->doing_static_link())
1013 this->assign_local_dynsym_offsets(input_objects);
1014
1015 // Process any symbol assignments from a linker script. This must
1016 // be called after the symbol table has been finalized.
1017 this->script_options_->finalize_symbols(symtab, this);
1018
1019 // Create the .shstrtab section.
1020 Output_section* shstrtab_section = this->create_shstrtab();
1021
1022 // Set the file offsets of the rest of the non-data sections which
1023 // don't have to wait for the input sections.
1024 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1025
1026 // Now that all sections have been created, set the section indexes.
1027 shndx = this->set_section_indexes(shndx);
1028
1029 // Create the section table header.
1030 this->create_shdrs(&off);
1031
1032 // If there are no sections which require postprocessing, we can
1033 // handle the section names now, and avoid a resize later.
1034 if (!this->any_postprocessing_sections_)
1035 off = this->set_section_offsets(off,
1036 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1037
1038 file_header->set_section_info(this->section_headers_, shstrtab_section);
1039
1040 // Now we know exactly where everything goes in the output file
1041 // (except for non-allocated sections which require postprocessing).
1042 Output_data::layout_complete();
1043
1044 this->output_file_size_ = off;
1045
1046 return off;
1047 }
1048
1049 // Create a .note section for an executable or shared library. This
1050 // records the version of gold used to create the binary.
1051
1052 void
1053 Layout::create_gold_note()
1054 {
1055 if (parameters->output_is_object())
1056 return;
1057
1058 // Authorities all agree that the values in a .note field should
1059 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1060 // they differ on what the alignment is for 64-bit binaries.
1061 // The GABI says unambiguously they take 8-byte alignment:
1062 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1063 // Other documentation says alignment should always be 4 bytes:
1064 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1065 // GNU ld and GNU readelf both support the latter (at least as of
1066 // version 2.16.91), and glibc always generates the latter for
1067 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1068 // here.
1069 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1070 const int size = parameters->get_size();
1071 #else
1072 const int size = 32;
1073 #endif
1074
1075 // The contents of the .note section.
1076 const char* name = "GNU";
1077 std::string desc(std::string("gold ") + gold::get_version_string());
1078 size_t namesz = strlen(name) + 1;
1079 size_t aligned_namesz = align_address(namesz, size / 8);
1080 size_t descsz = desc.length() + 1;
1081 size_t aligned_descsz = align_address(descsz, size / 8);
1082 const int note_type = 4;
1083
1084 size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
1085
1086 unsigned char buffer[128];
1087 gold_assert(sizeof buffer >= notesz);
1088 memset(buffer, 0, notesz);
1089
1090 bool is_big_endian = parameters->is_big_endian();
1091
1092 if (size == 32)
1093 {
1094 if (!is_big_endian)
1095 {
1096 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1097 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1098 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1099 }
1100 else
1101 {
1102 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1103 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1104 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1105 }
1106 }
1107 else if (size == 64)
1108 {
1109 if (!is_big_endian)
1110 {
1111 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1112 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1113 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1114 }
1115 else
1116 {
1117 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1118 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1119 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1120 }
1121 }
1122 else
1123 gold_unreachable();
1124
1125 memcpy(buffer + 3 * (size / 8), name, namesz);
1126 memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
1127
1128 const char* note_name = this->namepool_.add(".note", false, NULL);
1129 Output_section* os = this->make_output_section(note_name,
1130 elfcpp::SHT_NOTE,
1131 0);
1132 Output_section_data* posd = new Output_data_const(buffer, notesz,
1133 size / 8);
1134 os->add_output_section_data(posd);
1135 }
1136
1137 // Record whether the stack should be executable. This can be set
1138 // from the command line using the -z execstack or -z noexecstack
1139 // options. Otherwise, if any input file has a .note.GNU-stack
1140 // section with the SHF_EXECINSTR flag set, the stack should be
1141 // executable. Otherwise, if at least one input file a
1142 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1143 // section, we use the target default for whether the stack should be
1144 // executable. Otherwise, we don't generate a stack note. When
1145 // generating a object file, we create a .note.GNU-stack section with
1146 // the appropriate marking. When generating an executable or shared
1147 // library, we create a PT_GNU_STACK segment.
1148
1149 void
1150 Layout::create_executable_stack_info(const Target* target)
1151 {
1152 bool is_stack_executable;
1153 if (this->options_.is_execstack_set())
1154 is_stack_executable = this->options_.is_stack_executable();
1155 else if (!this->input_with_gnu_stack_note_)
1156 return;
1157 else
1158 {
1159 if (this->input_requires_executable_stack_)
1160 is_stack_executable = true;
1161 else if (this->input_without_gnu_stack_note_)
1162 is_stack_executable = target->is_default_stack_executable();
1163 else
1164 is_stack_executable = false;
1165 }
1166
1167 if (parameters->output_is_object())
1168 {
1169 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1170 elfcpp::Elf_Xword flags = 0;
1171 if (is_stack_executable)
1172 flags |= elfcpp::SHF_EXECINSTR;
1173 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1174 }
1175 else
1176 {
1177 if (this->script_options_->saw_phdrs_clause())
1178 return;
1179 int flags = elfcpp::PF_R | elfcpp::PF_W;
1180 if (is_stack_executable)
1181 flags |= elfcpp::PF_X;
1182 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1183 }
1184 }
1185
1186 // Return whether SEG1 should be before SEG2 in the output file. This
1187 // is based entirely on the segment type and flags. When this is
1188 // called the segment addresses has normally not yet been set.
1189
1190 bool
1191 Layout::segment_precedes(const Output_segment* seg1,
1192 const Output_segment* seg2)
1193 {
1194 elfcpp::Elf_Word type1 = seg1->type();
1195 elfcpp::Elf_Word type2 = seg2->type();
1196
1197 // The single PT_PHDR segment is required to precede any loadable
1198 // segment. We simply make it always first.
1199 if (type1 == elfcpp::PT_PHDR)
1200 {
1201 gold_assert(type2 != elfcpp::PT_PHDR);
1202 return true;
1203 }
1204 if (type2 == elfcpp::PT_PHDR)
1205 return false;
1206
1207 // The single PT_INTERP segment is required to precede any loadable
1208 // segment. We simply make it always second.
1209 if (type1 == elfcpp::PT_INTERP)
1210 {
1211 gold_assert(type2 != elfcpp::PT_INTERP);
1212 return true;
1213 }
1214 if (type2 == elfcpp::PT_INTERP)
1215 return false;
1216
1217 // We then put PT_LOAD segments before any other segments.
1218 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1219 return true;
1220 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1221 return false;
1222
1223 // We put the PT_TLS segment last, because that is where the dynamic
1224 // linker expects to find it (this is just for efficiency; other
1225 // positions would also work correctly).
1226 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1227 return false;
1228 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1229 return true;
1230
1231 const elfcpp::Elf_Word flags1 = seg1->flags();
1232 const elfcpp::Elf_Word flags2 = seg2->flags();
1233
1234 // The order of non-PT_LOAD segments is unimportant. We simply sort
1235 // by the numeric segment type and flags values. There should not
1236 // be more than one segment with the same type and flags.
1237 if (type1 != elfcpp::PT_LOAD)
1238 {
1239 if (type1 != type2)
1240 return type1 < type2;
1241 gold_assert(flags1 != flags2);
1242 return flags1 < flags2;
1243 }
1244
1245 // If the addresses are set already, sort by load address.
1246 if (seg1->are_addresses_set())
1247 {
1248 if (!seg2->are_addresses_set())
1249 return true;
1250
1251 unsigned int section_count1 = seg1->output_section_count();
1252 unsigned int section_count2 = seg2->output_section_count();
1253 if (section_count1 == 0 && section_count2 > 0)
1254 return true;
1255 if (section_count1 > 0 && section_count2 == 0)
1256 return false;
1257
1258 uint64_t paddr1 = seg1->first_section_load_address();
1259 uint64_t paddr2 = seg2->first_section_load_address();
1260 if (paddr1 != paddr2)
1261 return paddr1 < paddr2;
1262 }
1263 else if (seg2->are_addresses_set())
1264 return false;
1265
1266 // We sort PT_LOAD segments based on the flags. Readonly segments
1267 // come before writable segments. Then executable segments come
1268 // before non-executable segments. Then the unlikely case of a
1269 // non-readable segment comes before the normal case of a readable
1270 // segment. If there are multiple segments with the same type and
1271 // flags, we require that the address be set, and we sort by
1272 // virtual address and then physical address.
1273 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1274 return (flags1 & elfcpp::PF_W) == 0;
1275 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1276 return (flags1 & elfcpp::PF_X) != 0;
1277 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1278 return (flags1 & elfcpp::PF_R) == 0;
1279
1280 // We shouldn't get here--we shouldn't create segments which we
1281 // can't distinguish.
1282 gold_unreachable();
1283 }
1284
1285 // Set the file offsets of all the segments, and all the sections they
1286 // contain. They have all been created. LOAD_SEG must be be laid out
1287 // first. Return the offset of the data to follow.
1288
1289 off_t
1290 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1291 unsigned int *pshndx)
1292 {
1293 // Sort them into the final order.
1294 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1295 Layout::Compare_segments());
1296
1297 // Find the PT_LOAD segments, and set their addresses and offsets
1298 // and their section's addresses and offsets.
1299 uint64_t addr;
1300 if (this->options_.user_set_text_segment_address())
1301 addr = options_.text_segment_address();
1302 else if (parameters->output_is_shared())
1303 addr = 0;
1304 else
1305 addr = target->default_text_segment_address();
1306 off_t off = 0;
1307
1308 // If LOAD_SEG is NULL, then the file header and segment headers
1309 // will not be loadable. But they still need to be at offset 0 in
1310 // the file. Set their offsets now.
1311 if (load_seg == NULL)
1312 {
1313 for (Data_list::iterator p = this->special_output_list_.begin();
1314 p != this->special_output_list_.end();
1315 ++p)
1316 {
1317 off = align_address(off, (*p)->addralign());
1318 (*p)->set_address_and_file_offset(0, off);
1319 off += (*p)->data_size();
1320 }
1321 }
1322
1323 bool was_readonly = false;
1324 for (Segment_list::iterator p = this->segment_list_.begin();
1325 p != this->segment_list_.end();
1326 ++p)
1327 {
1328 if ((*p)->type() == elfcpp::PT_LOAD)
1329 {
1330 if (load_seg != NULL && load_seg != *p)
1331 gold_unreachable();
1332 load_seg = NULL;
1333
1334 uint64_t orig_addr = addr;
1335 uint64_t orig_off = off;
1336
1337 uint64_t aligned_addr = 0;
1338 uint64_t abi_pagesize = target->abi_pagesize();
1339
1340 // FIXME: This should depend on the -n and -N options.
1341 (*p)->set_minimum_p_align(target->common_pagesize());
1342
1343 bool are_addresses_set = (*p)->are_addresses_set();
1344 if (are_addresses_set)
1345 {
1346 // When it comes to setting file offsets, we care about
1347 // the physical address.
1348 addr = (*p)->paddr();
1349
1350 // Adjust the file offset to the same address modulo the
1351 // page size.
1352 uint64_t unsigned_off = off;
1353 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1354 | (addr & (abi_pagesize - 1)));
1355 if (aligned_off < unsigned_off)
1356 aligned_off += abi_pagesize;
1357 off = aligned_off;
1358 }
1359 else
1360 {
1361 // If the last segment was readonly, and this one is
1362 // not, then skip the address forward one page,
1363 // maintaining the same position within the page. This
1364 // lets us store both segments overlapping on a single
1365 // page in the file, but the loader will put them on
1366 // different pages in memory.
1367
1368 addr = align_address(addr, (*p)->maximum_alignment());
1369 aligned_addr = addr;
1370
1371 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1372 {
1373 if ((addr & (abi_pagesize - 1)) != 0)
1374 addr = addr + abi_pagesize;
1375 }
1376
1377 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1378 }
1379
1380 unsigned int shndx_hold = *pshndx;
1381 uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1382 pshndx);
1383
1384 // Now that we know the size of this segment, we may be able
1385 // to save a page in memory, at the cost of wasting some
1386 // file space, by instead aligning to the start of a new
1387 // page. Here we use the real machine page size rather than
1388 // the ABI mandated page size.
1389
1390 if (!are_addresses_set && aligned_addr != addr)
1391 {
1392 uint64_t common_pagesize = target->common_pagesize();
1393 uint64_t first_off = (common_pagesize
1394 - (aligned_addr
1395 & (common_pagesize - 1)));
1396 uint64_t last_off = new_addr & (common_pagesize - 1);
1397 if (first_off > 0
1398 && last_off > 0
1399 && ((aligned_addr & ~ (common_pagesize - 1))
1400 != (new_addr & ~ (common_pagesize - 1)))
1401 && first_off + last_off <= common_pagesize)
1402 {
1403 *pshndx = shndx_hold;
1404 addr = align_address(aligned_addr, common_pagesize);
1405 addr = align_address(addr, (*p)->maximum_alignment());
1406 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1407 new_addr = (*p)->set_section_addresses(true, addr, &off,
1408 pshndx);
1409 }
1410 }
1411
1412 addr = new_addr;
1413
1414 if (((*p)->flags() & elfcpp::PF_W) == 0)
1415 was_readonly = true;
1416 }
1417 }
1418
1419 // Handle the non-PT_LOAD segments, setting their offsets from their
1420 // section's offsets.
1421 for (Segment_list::iterator p = this->segment_list_.begin();
1422 p != this->segment_list_.end();
1423 ++p)
1424 {
1425 if ((*p)->type() != elfcpp::PT_LOAD)
1426 (*p)->set_offset();
1427 }
1428
1429 // Set the TLS offsets for each section in the PT_TLS segment.
1430 if (this->tls_segment_ != NULL)
1431 this->tls_segment_->set_tls_offsets();
1432
1433 return off;
1434 }
1435
1436 // Set the offsets of all the allocated sections when doing a
1437 // relocatable link. This does the same jobs as set_segment_offsets,
1438 // only for a relocatable link.
1439
1440 off_t
1441 Layout::set_relocatable_section_offsets(Output_data* file_header,
1442 unsigned int *pshndx)
1443 {
1444 off_t off = 0;
1445
1446 file_header->set_address_and_file_offset(0, 0);
1447 off += file_header->data_size();
1448
1449 for (Section_list::iterator p = this->section_list_.begin();
1450 p != this->section_list_.end();
1451 ++p)
1452 {
1453 // We skip unallocated sections here, except that group sections
1454 // have to come first.
1455 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1456 && (*p)->type() != elfcpp::SHT_GROUP)
1457 continue;
1458
1459 off = align_address(off, (*p)->addralign());
1460
1461 // The linker script might have set the address.
1462 if (!(*p)->is_address_valid())
1463 (*p)->set_address(0);
1464 (*p)->set_file_offset(off);
1465 (*p)->finalize_data_size();
1466 off += (*p)->data_size();
1467
1468 (*p)->set_out_shndx(*pshndx);
1469 ++*pshndx;
1470 }
1471
1472 return off;
1473 }
1474
1475 // Set the file offset of all the sections not associated with a
1476 // segment.
1477
1478 off_t
1479 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1480 {
1481 for (Section_list::iterator p = this->unattached_section_list_.begin();
1482 p != this->unattached_section_list_.end();
1483 ++p)
1484 {
1485 // The symtab section is handled in create_symtab_sections.
1486 if (*p == this->symtab_section_)
1487 continue;
1488
1489 // If we've already set the data size, don't set it again.
1490 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1491 continue;
1492
1493 if (pass == BEFORE_INPUT_SECTIONS_PASS
1494 && (*p)->requires_postprocessing())
1495 {
1496 (*p)->create_postprocessing_buffer();
1497 this->any_postprocessing_sections_ = true;
1498 }
1499
1500 if (pass == BEFORE_INPUT_SECTIONS_PASS
1501 && (*p)->after_input_sections())
1502 continue;
1503 else if (pass == POSTPROCESSING_SECTIONS_PASS
1504 && (!(*p)->after_input_sections()
1505 || (*p)->type() == elfcpp::SHT_STRTAB))
1506 continue;
1507 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1508 && (!(*p)->after_input_sections()
1509 || (*p)->type() != elfcpp::SHT_STRTAB))
1510 continue;
1511
1512 off = align_address(off, (*p)->addralign());
1513 (*p)->set_file_offset(off);
1514 (*p)->finalize_data_size();
1515 off += (*p)->data_size();
1516
1517 // At this point the name must be set.
1518 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1519 this->namepool_.add((*p)->name(), false, NULL);
1520 }
1521 return off;
1522 }
1523
1524 // Set the section indexes of all the sections not associated with a
1525 // segment.
1526
1527 unsigned int
1528 Layout::set_section_indexes(unsigned int shndx)
1529 {
1530 const bool output_is_object = parameters->output_is_object();
1531 for (Section_list::iterator p = this->unattached_section_list_.begin();
1532 p != this->unattached_section_list_.end();
1533 ++p)
1534 {
1535 // In a relocatable link, we already did group sections.
1536 if (output_is_object
1537 && (*p)->type() == elfcpp::SHT_GROUP)
1538 continue;
1539
1540 (*p)->set_out_shndx(shndx);
1541 ++shndx;
1542 }
1543 return shndx;
1544 }
1545
1546 // Set the section addresses according to the linker script. This is
1547 // only called when we see a SECTIONS clause. This returns the
1548 // program segment which should hold the file header and segment
1549 // headers, if any. It will return NULL if they should not be in a
1550 // segment.
1551
1552 Output_segment*
1553 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1554 {
1555 Script_sections* ss = this->script_options_->script_sections();
1556 gold_assert(ss->saw_sections_clause());
1557
1558 // Place each orphaned output section in the script.
1559 for (Section_list::iterator p = this->section_list_.begin();
1560 p != this->section_list_.end();
1561 ++p)
1562 {
1563 if (!(*p)->found_in_sections_clause())
1564 ss->place_orphan(*p);
1565 }
1566
1567 return this->script_options_->set_section_addresses(symtab, this);
1568 }
1569
1570 // Count the local symbols in the regular symbol table and the dynamic
1571 // symbol table, and build the respective string pools.
1572
1573 void
1574 Layout::count_local_symbols(const Task* task,
1575 const Input_objects* input_objects)
1576 {
1577 // First, figure out an upper bound on the number of symbols we'll
1578 // be inserting into each pool. This helps us create the pools with
1579 // the right size, to avoid unnecessary hashtable resizing.
1580 unsigned int symbol_count = 0;
1581 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1582 p != input_objects->relobj_end();
1583 ++p)
1584 symbol_count += (*p)->local_symbol_count();
1585
1586 // Go from "upper bound" to "estimate." We overcount for two
1587 // reasons: we double-count symbols that occur in more than one
1588 // object file, and we count symbols that are dropped from the
1589 // output. Add it all together and assume we overcount by 100%.
1590 symbol_count /= 2;
1591
1592 // We assume all symbols will go into both the sympool and dynpool.
1593 this->sympool_.reserve(symbol_count);
1594 this->dynpool_.reserve(symbol_count);
1595
1596 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1597 p != input_objects->relobj_end();
1598 ++p)
1599 {
1600 Task_lock_obj<Object> tlo(task, *p);
1601 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1602 }
1603 }
1604
1605 // Create the symbol table sections. Here we also set the final
1606 // values of the symbols. At this point all the loadable sections are
1607 // fully laid out.
1608
1609 void
1610 Layout::create_symtab_sections(const Input_objects* input_objects,
1611 Symbol_table* symtab,
1612 off_t* poff)
1613 {
1614 int symsize;
1615 unsigned int align;
1616 if (parameters->get_size() == 32)
1617 {
1618 symsize = elfcpp::Elf_sizes<32>::sym_size;
1619 align = 4;
1620 }
1621 else if (parameters->get_size() == 64)
1622 {
1623 symsize = elfcpp::Elf_sizes<64>::sym_size;
1624 align = 8;
1625 }
1626 else
1627 gold_unreachable();
1628
1629 off_t off = *poff;
1630 off = align_address(off, align);
1631 off_t startoff = off;
1632
1633 // Save space for the dummy symbol at the start of the section. We
1634 // never bother to write this out--it will just be left as zero.
1635 off += symsize;
1636 unsigned int local_symbol_index = 1;
1637
1638 // Add STT_SECTION symbols for each Output section which needs one.
1639 for (Section_list::iterator p = this->section_list_.begin();
1640 p != this->section_list_.end();
1641 ++p)
1642 {
1643 if (!(*p)->needs_symtab_index())
1644 (*p)->set_symtab_index(-1U);
1645 else
1646 {
1647 (*p)->set_symtab_index(local_symbol_index);
1648 ++local_symbol_index;
1649 off += symsize;
1650 }
1651 }
1652
1653 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1654 p != input_objects->relobj_end();
1655 ++p)
1656 {
1657 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1658 off);
1659 off += (index - local_symbol_index) * symsize;
1660 local_symbol_index = index;
1661 }
1662
1663 unsigned int local_symcount = local_symbol_index;
1664 gold_assert(local_symcount * symsize == off - startoff);
1665
1666 off_t dynoff;
1667 size_t dyn_global_index;
1668 size_t dyncount;
1669 if (this->dynsym_section_ == NULL)
1670 {
1671 dynoff = 0;
1672 dyn_global_index = 0;
1673 dyncount = 0;
1674 }
1675 else
1676 {
1677 dyn_global_index = this->dynsym_section_->info();
1678 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1679 dynoff = this->dynsym_section_->offset() + locsize;
1680 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
1681 gold_assert(static_cast<off_t>(dyncount * symsize)
1682 == this->dynsym_section_->data_size() - locsize);
1683 }
1684
1685 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1686 &this->sympool_, &local_symcount);
1687
1688 if (!parameters->strip_all())
1689 {
1690 this->sympool_.set_string_offsets();
1691
1692 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
1693 Output_section* osymtab = this->make_output_section(symtab_name,
1694 elfcpp::SHT_SYMTAB,
1695 0);
1696 this->symtab_section_ = osymtab;
1697
1698 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1699 align);
1700 osymtab->add_output_section_data(pos);
1701
1702 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
1703 Output_section* ostrtab = this->make_output_section(strtab_name,
1704 elfcpp::SHT_STRTAB,
1705 0);
1706
1707 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1708 ostrtab->add_output_section_data(pstr);
1709
1710 osymtab->set_file_offset(startoff);
1711 osymtab->finalize_data_size();
1712 osymtab->set_link_section(ostrtab);
1713 osymtab->set_info(local_symcount);
1714 osymtab->set_entsize(symsize);
1715
1716 *poff = off;
1717 }
1718 }
1719
1720 // Create the .shstrtab section, which holds the names of the
1721 // sections. At the time this is called, we have created all the
1722 // output sections except .shstrtab itself.
1723
1724 Output_section*
1725 Layout::create_shstrtab()
1726 {
1727 // FIXME: We don't need to create a .shstrtab section if we are
1728 // stripping everything.
1729
1730 const char* name = this->namepool_.add(".shstrtab", false, NULL);
1731
1732 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
1733
1734 // We can't write out this section until we've set all the section
1735 // names, and we don't set the names of compressed output sections
1736 // until relocations are complete.
1737 os->set_after_input_sections();
1738
1739 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1740 os->add_output_section_data(posd);
1741
1742 return os;
1743 }
1744
1745 // Create the section headers. SIZE is 32 or 64. OFF is the file
1746 // offset.
1747
1748 void
1749 Layout::create_shdrs(off_t* poff)
1750 {
1751 Output_section_headers* oshdrs;
1752 oshdrs = new Output_section_headers(this,
1753 &this->segment_list_,
1754 &this->section_list_,
1755 &this->unattached_section_list_,
1756 &this->namepool_);
1757 off_t off = align_address(*poff, oshdrs->addralign());
1758 oshdrs->set_address_and_file_offset(0, off);
1759 off += oshdrs->data_size();
1760 *poff = off;
1761 this->section_headers_ = oshdrs;
1762 }
1763
1764 // Create the dynamic symbol table.
1765
1766 void
1767 Layout::create_dynamic_symtab(const Input_objects* input_objects,
1768 Symbol_table* symtab,
1769 Output_section **pdynstr,
1770 unsigned int* plocal_dynamic_count,
1771 std::vector<Symbol*>* pdynamic_symbols,
1772 Versions* pversions)
1773 {
1774 // Count all the symbols in the dynamic symbol table, and set the
1775 // dynamic symbol indexes.
1776
1777 // Skip symbol 0, which is always all zeroes.
1778 unsigned int index = 1;
1779
1780 // Add STT_SECTION symbols for each Output section which needs one.
1781 for (Section_list::iterator p = this->section_list_.begin();
1782 p != this->section_list_.end();
1783 ++p)
1784 {
1785 if (!(*p)->needs_dynsym_index())
1786 (*p)->set_dynsym_index(-1U);
1787 else
1788 {
1789 (*p)->set_dynsym_index(index);
1790 ++index;
1791 }
1792 }
1793
1794 // Count the local symbols that need to go in the dynamic symbol table,
1795 // and set the dynamic symbol indexes.
1796 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1797 p != input_objects->relobj_end();
1798 ++p)
1799 {
1800 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1801 index = new_index;
1802 }
1803
1804 unsigned int local_symcount = index;
1805 *plocal_dynamic_count = local_symcount;
1806
1807 // FIXME: We have to tell set_dynsym_indexes whether the
1808 // -E/--export-dynamic option was used.
1809 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
1810 &this->dynpool_, pversions);
1811
1812 int symsize;
1813 unsigned int align;
1814 const int size = parameters->get_size();
1815 if (size == 32)
1816 {
1817 symsize = elfcpp::Elf_sizes<32>::sym_size;
1818 align = 4;
1819 }
1820 else if (size == 64)
1821 {
1822 symsize = elfcpp::Elf_sizes<64>::sym_size;
1823 align = 8;
1824 }
1825 else
1826 gold_unreachable();
1827
1828 // Create the dynamic symbol table section.
1829
1830 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
1831 elfcpp::SHT_DYNSYM,
1832 elfcpp::SHF_ALLOC,
1833 false);
1834
1835 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1836 align);
1837 dynsym->add_output_section_data(odata);
1838
1839 dynsym->set_info(local_symcount);
1840 dynsym->set_entsize(symsize);
1841 dynsym->set_addralign(align);
1842
1843 this->dynsym_section_ = dynsym;
1844
1845 Output_data_dynamic* const odyn = this->dynamic_data_;
1846 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1847 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1848
1849 // Create the dynamic string table section.
1850
1851 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
1852 elfcpp::SHT_STRTAB,
1853 elfcpp::SHF_ALLOC,
1854 false);
1855
1856 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1857 dynstr->add_output_section_data(strdata);
1858
1859 dynsym->set_link_section(dynstr);
1860 this->dynamic_section_->set_link_section(dynstr);
1861
1862 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1863 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1864
1865 *pdynstr = dynstr;
1866
1867 // Create the hash tables.
1868
1869 // FIXME: We need an option to create a GNU hash table.
1870
1871 unsigned char* phash;
1872 unsigned int hashlen;
1873 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
1874 &phash, &hashlen);
1875
1876 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
1877 elfcpp::SHT_HASH,
1878 elfcpp::SHF_ALLOC,
1879 false);
1880
1881 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1882 hashlen,
1883 align);
1884 hashsec->add_output_section_data(hashdata);
1885
1886 hashsec->set_link_section(dynsym);
1887 hashsec->set_entsize(4);
1888
1889 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
1890 }
1891
1892 // Assign offsets to each local portion of the dynamic symbol table.
1893
1894 void
1895 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1896 {
1897 Output_section* dynsym = this->dynsym_section_;
1898 gold_assert(dynsym != NULL);
1899
1900 off_t off = dynsym->offset();
1901
1902 // Skip the dummy symbol at the start of the section.
1903 off += dynsym->entsize();
1904
1905 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1906 p != input_objects->relobj_end();
1907 ++p)
1908 {
1909 unsigned int count = (*p)->set_local_dynsym_offset(off);
1910 off += count * dynsym->entsize();
1911 }
1912 }
1913
1914 // Create the version sections.
1915
1916 void
1917 Layout::create_version_sections(const Versions* versions,
1918 const Symbol_table* symtab,
1919 unsigned int local_symcount,
1920 const std::vector<Symbol*>& dynamic_symbols,
1921 const Output_section* dynstr)
1922 {
1923 if (!versions->any_defs() && !versions->any_needs())
1924 return;
1925
1926 if (parameters->get_size() == 32)
1927 {
1928 if (parameters->is_big_endian())
1929 {
1930 #ifdef HAVE_TARGET_32_BIG
1931 this->sized_create_version_sections
1932 SELECT_SIZE_ENDIAN_NAME(32, true)(
1933 versions, symtab, local_symcount, dynamic_symbols, dynstr
1934 SELECT_SIZE_ENDIAN(32, true));
1935 #else
1936 gold_unreachable();
1937 #endif
1938 }
1939 else
1940 {
1941 #ifdef HAVE_TARGET_32_LITTLE
1942 this->sized_create_version_sections
1943 SELECT_SIZE_ENDIAN_NAME(32, false)(
1944 versions, symtab, local_symcount, dynamic_symbols, dynstr
1945 SELECT_SIZE_ENDIAN(32, false));
1946 #else
1947 gold_unreachable();
1948 #endif
1949 }
1950 }
1951 else if (parameters->get_size() == 64)
1952 {
1953 if (parameters->is_big_endian())
1954 {
1955 #ifdef HAVE_TARGET_64_BIG
1956 this->sized_create_version_sections
1957 SELECT_SIZE_ENDIAN_NAME(64, true)(
1958 versions, symtab, local_symcount, dynamic_symbols, dynstr
1959 SELECT_SIZE_ENDIAN(64, true));
1960 #else
1961 gold_unreachable();
1962 #endif
1963 }
1964 else
1965 {
1966 #ifdef HAVE_TARGET_64_LITTLE
1967 this->sized_create_version_sections
1968 SELECT_SIZE_ENDIAN_NAME(64, false)(
1969 versions, symtab, local_symcount, dynamic_symbols, dynstr
1970 SELECT_SIZE_ENDIAN(64, false));
1971 #else
1972 gold_unreachable();
1973 #endif
1974 }
1975 }
1976 else
1977 gold_unreachable();
1978 }
1979
1980 // Create the version sections, sized version.
1981
1982 template<int size, bool big_endian>
1983 void
1984 Layout::sized_create_version_sections(
1985 const Versions* versions,
1986 const Symbol_table* symtab,
1987 unsigned int local_symcount,
1988 const std::vector<Symbol*>& dynamic_symbols,
1989 const Output_section* dynstr
1990 ACCEPT_SIZE_ENDIAN)
1991 {
1992 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
1993 elfcpp::SHT_GNU_versym,
1994 elfcpp::SHF_ALLOC,
1995 false);
1996
1997 unsigned char* vbuf;
1998 unsigned int vsize;
1999 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2000 symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
2001 SELECT_SIZE_ENDIAN(size, big_endian));
2002
2003 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
2004
2005 vsec->add_output_section_data(vdata);
2006 vsec->set_entsize(2);
2007 vsec->set_link_section(this->dynsym_section_);
2008
2009 Output_data_dynamic* const odyn = this->dynamic_data_;
2010 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2011
2012 if (versions->any_defs())
2013 {
2014 Output_section* vdsec;
2015 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2016 elfcpp::SHT_GNU_verdef,
2017 elfcpp::SHF_ALLOC,
2018 false);
2019
2020 unsigned char* vdbuf;
2021 unsigned int vdsize;
2022 unsigned int vdentries;
2023 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
2024 &this->dynpool_, &vdbuf, &vdsize, &vdentries
2025 SELECT_SIZE_ENDIAN(size, big_endian));
2026
2027 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
2028 vdsize,
2029 4);
2030
2031 vdsec->add_output_section_data(vddata);
2032 vdsec->set_link_section(dynstr);
2033 vdsec->set_info(vdentries);
2034
2035 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2036 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2037 }
2038
2039 if (versions->any_needs())
2040 {
2041 Output_section* vnsec;
2042 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2043 elfcpp::SHT_GNU_verneed,
2044 elfcpp::SHF_ALLOC,
2045 false);
2046
2047 unsigned char* vnbuf;
2048 unsigned int vnsize;
2049 unsigned int vnentries;
2050 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
2051 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
2052 SELECT_SIZE_ENDIAN(size, big_endian));
2053
2054 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
2055 vnsize,
2056 4);
2057
2058 vnsec->add_output_section_data(vndata);
2059 vnsec->set_link_section(dynstr);
2060 vnsec->set_info(vnentries);
2061
2062 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2063 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2064 }
2065 }
2066
2067 // Create the .interp section and PT_INTERP segment.
2068
2069 void
2070 Layout::create_interp(const Target* target)
2071 {
2072 const char* interp = this->options_.dynamic_linker();
2073 if (interp == NULL)
2074 {
2075 interp = target->dynamic_linker();
2076 gold_assert(interp != NULL);
2077 }
2078
2079 size_t len = strlen(interp) + 1;
2080
2081 Output_section_data* odata = new Output_data_const(interp, len, 1);
2082
2083 Output_section* osec = this->choose_output_section(NULL, ".interp",
2084 elfcpp::SHT_PROGBITS,
2085 elfcpp::SHF_ALLOC,
2086 false);
2087 osec->add_output_section_data(odata);
2088
2089 if (!this->script_options_->saw_phdrs_clause())
2090 {
2091 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2092 elfcpp::PF_R);
2093 oseg->add_initial_output_section(osec, elfcpp::PF_R);
2094 }
2095 }
2096
2097 // Finish the .dynamic section and PT_DYNAMIC segment.
2098
2099 void
2100 Layout::finish_dynamic_section(const Input_objects* input_objects,
2101 const Symbol_table* symtab)
2102 {
2103 if (!this->script_options_->saw_phdrs_clause())
2104 {
2105 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2106 (elfcpp::PF_R
2107 | elfcpp::PF_W));
2108 oseg->add_initial_output_section(this->dynamic_section_,
2109 elfcpp::PF_R | elfcpp::PF_W);
2110 }
2111
2112 Output_data_dynamic* const odyn = this->dynamic_data_;
2113
2114 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2115 p != input_objects->dynobj_end();
2116 ++p)
2117 {
2118 // FIXME: Handle --as-needed.
2119 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2120 }
2121
2122 if (parameters->output_is_shared())
2123 {
2124 const char* soname = this->options_.soname();
2125 if (soname != NULL)
2126 odyn->add_string(elfcpp::DT_SONAME, soname);
2127 }
2128
2129 // FIXME: Support --init and --fini.
2130 Symbol* sym = symtab->lookup("_init");
2131 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2132 odyn->add_symbol(elfcpp::DT_INIT, sym);
2133
2134 sym = symtab->lookup("_fini");
2135 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2136 odyn->add_symbol(elfcpp::DT_FINI, sym);
2137
2138 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2139
2140 // Add a DT_RPATH entry if needed.
2141 const General_options::Dir_list& rpath(this->options_.rpath());
2142 if (!rpath.empty())
2143 {
2144 std::string rpath_val;
2145 for (General_options::Dir_list::const_iterator p = rpath.begin();
2146 p != rpath.end();
2147 ++p)
2148 {
2149 if (rpath_val.empty())
2150 rpath_val = p->name();
2151 else
2152 {
2153 // Eliminate duplicates.
2154 General_options::Dir_list::const_iterator q;
2155 for (q = rpath.begin(); q != p; ++q)
2156 if (q->name() == p->name())
2157 break;
2158 if (q == p)
2159 {
2160 rpath_val += ':';
2161 rpath_val += p->name();
2162 }
2163 }
2164 }
2165
2166 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2167 }
2168
2169 // Look for text segments that have dynamic relocations.
2170 bool have_textrel = false;
2171 if (!this->script_options_->saw_sections_clause())
2172 {
2173 for (Segment_list::const_iterator p = this->segment_list_.begin();
2174 p != this->segment_list_.end();
2175 ++p)
2176 {
2177 if (((*p)->flags() & elfcpp::PF_W) == 0
2178 && (*p)->dynamic_reloc_count() > 0)
2179 {
2180 have_textrel = true;
2181 break;
2182 }
2183 }
2184 }
2185 else
2186 {
2187 // We don't know the section -> segment mapping, so we are
2188 // conservative and just look for readonly sections with
2189 // relocations. If those sections wind up in writable segments,
2190 // then we have created an unnecessary DT_TEXTREL entry.
2191 for (Section_list::const_iterator p = this->section_list_.begin();
2192 p != this->section_list_.end();
2193 ++p)
2194 {
2195 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2196 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2197 && ((*p)->dynamic_reloc_count() > 0))
2198 {
2199 have_textrel = true;
2200 break;
2201 }
2202 }
2203 }
2204
2205 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2206 // post-link tools can easily modify these flags if desired.
2207 unsigned int flags = 0;
2208 if (have_textrel)
2209 {
2210 // Add a DT_TEXTREL for compatibility with older loaders.
2211 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2212 flags |= elfcpp::DF_TEXTREL;
2213 }
2214 if (parameters->output_is_shared() && this->has_static_tls())
2215 flags |= elfcpp::DF_STATIC_TLS;
2216 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2217 }
2218
2219 // The mapping of .gnu.linkonce section names to real section names.
2220
2221 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2222 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2223 {
2224 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
2225 MAPPING_INIT("t", ".text"),
2226 MAPPING_INIT("r", ".rodata"),
2227 MAPPING_INIT("d", ".data"),
2228 MAPPING_INIT("b", ".bss"),
2229 MAPPING_INIT("s", ".sdata"),
2230 MAPPING_INIT("sb", ".sbss"),
2231 MAPPING_INIT("s2", ".sdata2"),
2232 MAPPING_INIT("sb2", ".sbss2"),
2233 MAPPING_INIT("wi", ".debug_info"),
2234 MAPPING_INIT("td", ".tdata"),
2235 MAPPING_INIT("tb", ".tbss"),
2236 MAPPING_INIT("lr", ".lrodata"),
2237 MAPPING_INIT("l", ".ldata"),
2238 MAPPING_INIT("lb", ".lbss"),
2239 };
2240 #undef MAPPING_INIT
2241
2242 const int Layout::linkonce_mapping_count =
2243 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2244
2245 // Return the name of the output section to use for a .gnu.linkonce
2246 // section. This is based on the default ELF linker script of the old
2247 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2248 // to ".text". Set *PLEN to the length of the name. *PLEN is
2249 // initialized to the length of NAME.
2250
2251 const char*
2252 Layout::linkonce_output_name(const char* name, size_t *plen)
2253 {
2254 const char* s = name + sizeof(".gnu.linkonce") - 1;
2255 if (*s != '.')
2256 return name;
2257 ++s;
2258 const Linkonce_mapping* plm = linkonce_mapping;
2259 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2260 {
2261 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2262 {
2263 *plen = plm->tolen;
2264 return plm->to;
2265 }
2266 }
2267 return name;
2268 }
2269
2270 // Choose the output section name to use given an input section name.
2271 // Set *PLEN to the length of the name. *PLEN is initialized to the
2272 // length of NAME.
2273
2274 const char*
2275 Layout::output_section_name(const char* name, size_t* plen)
2276 {
2277 if (Layout::is_linkonce(name))
2278 {
2279 // .gnu.linkonce sections are laid out as though they were named
2280 // for the sections are placed into.
2281 return Layout::linkonce_output_name(name, plen);
2282 }
2283
2284 // gcc 4.3 generates the following sorts of section names when it
2285 // needs a section name specific to a function:
2286 // .text.FN
2287 // .rodata.FN
2288 // .sdata2.FN
2289 // .data.FN
2290 // .data.rel.FN
2291 // .data.rel.local.FN
2292 // .data.rel.ro.FN
2293 // .data.rel.ro.local.FN
2294 // .sdata.FN
2295 // .bss.FN
2296 // .sbss.FN
2297 // .tdata.FN
2298 // .tbss.FN
2299
2300 // The GNU linker maps all of those to the part before the .FN,
2301 // except that .data.rel.local.FN is mapped to .data, and
2302 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2303 // beginning with .data.rel.ro.local are grouped together.
2304
2305 // For an anonymous namespace, the string FN can contain a '.'.
2306
2307 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2308 // GNU linker maps to .rodata.
2309
2310 // The .data.rel.ro sections enable a security feature triggered by
2311 // the -z relro option. Section which need to be relocated at
2312 // program startup time but which may be readonly after startup are
2313 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2314 // segment. The dynamic linker will make that segment writable,
2315 // perform relocations, and then make it read-only. FIXME: We do
2316 // not yet implement this optimization.
2317
2318 // It is hard to handle this in a principled way.
2319
2320 // These are the rules we follow:
2321
2322 // If the section name has no initial '.', or no dot other than an
2323 // initial '.', we use the name unchanged (i.e., "mysection" and
2324 // ".text" are unchanged).
2325
2326 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2327
2328 // Otherwise, we drop the second '.' and everything that comes after
2329 // it (i.e., ".text.XXX" becomes ".text").
2330
2331 const char* s = name;
2332 if (*s != '.')
2333 return name;
2334 ++s;
2335 const char* sdot = strchr(s, '.');
2336 if (sdot == NULL)
2337 return name;
2338
2339 const char* const data_rel_ro = ".data.rel.ro";
2340 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2341 {
2342 *plen = strlen(data_rel_ro);
2343 return data_rel_ro;
2344 }
2345
2346 *plen = sdot - name;
2347 return name;
2348 }
2349
2350 // Record the signature of a comdat section, and return whether to
2351 // include it in the link. If GROUP is true, this is a regular
2352 // section group. If GROUP is false, this is a group signature
2353 // derived from the name of a linkonce section. We want linkonce
2354 // signatures and group signatures to block each other, but we don't
2355 // want a linkonce signature to block another linkonce signature.
2356
2357 bool
2358 Layout::add_comdat(const char* signature, bool group)
2359 {
2360 std::string sig(signature);
2361 std::pair<Signatures::iterator, bool> ins(
2362 this->signatures_.insert(std::make_pair(sig, group)));
2363
2364 if (ins.second)
2365 {
2366 // This is the first time we've seen this signature.
2367 return true;
2368 }
2369
2370 if (ins.first->second)
2371 {
2372 // We've already seen a real section group with this signature.
2373 return false;
2374 }
2375 else if (group)
2376 {
2377 // This is a real section group, and we've already seen a
2378 // linkonce section with this signature. Record that we've seen
2379 // a section group, and don't include this section group.
2380 ins.first->second = true;
2381 return false;
2382 }
2383 else
2384 {
2385 // We've already seen a linkonce section and this is a linkonce
2386 // section. These don't block each other--this may be the same
2387 // symbol name with different section types.
2388 return true;
2389 }
2390 }
2391
2392 // Store the allocated sections into the section list.
2393
2394 void
2395 Layout::get_allocated_sections(Section_list* section_list) const
2396 {
2397 for (Section_list::const_iterator p = this->section_list_.begin();
2398 p != this->section_list_.end();
2399 ++p)
2400 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2401 section_list->push_back(*p);
2402 }
2403
2404 // Create an output segment.
2405
2406 Output_segment*
2407 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2408 {
2409 gold_assert(!parameters->output_is_object());
2410 Output_segment* oseg = new Output_segment(type, flags);
2411 this->segment_list_.push_back(oseg);
2412 return oseg;
2413 }
2414
2415 // Write out the Output_sections. Most won't have anything to write,
2416 // since most of the data will come from input sections which are
2417 // handled elsewhere. But some Output_sections do have Output_data.
2418
2419 void
2420 Layout::write_output_sections(Output_file* of) const
2421 {
2422 for (Section_list::const_iterator p = this->section_list_.begin();
2423 p != this->section_list_.end();
2424 ++p)
2425 {
2426 if (!(*p)->after_input_sections())
2427 (*p)->write(of);
2428 }
2429 }
2430
2431 // Write out data not associated with a section or the symbol table.
2432
2433 void
2434 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2435 {
2436 if (!parameters->strip_all())
2437 {
2438 const Output_section* symtab_section = this->symtab_section_;
2439 for (Section_list::const_iterator p = this->section_list_.begin();
2440 p != this->section_list_.end();
2441 ++p)
2442 {
2443 if ((*p)->needs_symtab_index())
2444 {
2445 gold_assert(symtab_section != NULL);
2446 unsigned int index = (*p)->symtab_index();
2447 gold_assert(index > 0 && index != -1U);
2448 off_t off = (symtab_section->offset()
2449 + index * symtab_section->entsize());
2450 symtab->write_section_symbol(*p, of, off);
2451 }
2452 }
2453 }
2454
2455 const Output_section* dynsym_section = this->dynsym_section_;
2456 for (Section_list::const_iterator p = this->section_list_.begin();
2457 p != this->section_list_.end();
2458 ++p)
2459 {
2460 if ((*p)->needs_dynsym_index())
2461 {
2462 gold_assert(dynsym_section != NULL);
2463 unsigned int index = (*p)->dynsym_index();
2464 gold_assert(index > 0 && index != -1U);
2465 off_t off = (dynsym_section->offset()
2466 + index * dynsym_section->entsize());
2467 symtab->write_section_symbol(*p, of, off);
2468 }
2469 }
2470
2471 // Write out the Output_data which are not in an Output_section.
2472 for (Data_list::const_iterator p = this->special_output_list_.begin();
2473 p != this->special_output_list_.end();
2474 ++p)
2475 (*p)->write(of);
2476 }
2477
2478 // Write out the Output_sections which can only be written after the
2479 // input sections are complete.
2480
2481 void
2482 Layout::write_sections_after_input_sections(Output_file* of)
2483 {
2484 // Determine the final section offsets, and thus the final output
2485 // file size. Note we finalize the .shstrab last, to allow the
2486 // after_input_section sections to modify their section-names before
2487 // writing.
2488 if (this->any_postprocessing_sections_)
2489 {
2490 off_t off = this->output_file_size_;
2491 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2492
2493 // Now that we've finalized the names, we can finalize the shstrab.
2494 off =
2495 this->set_section_offsets(off,
2496 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2497
2498 if (off > this->output_file_size_)
2499 {
2500 of->resize(off);
2501 this->output_file_size_ = off;
2502 }
2503 }
2504
2505 for (Section_list::const_iterator p = this->section_list_.begin();
2506 p != this->section_list_.end();
2507 ++p)
2508 {
2509 if ((*p)->after_input_sections())
2510 (*p)->write(of);
2511 }
2512
2513 this->section_headers_->write(of);
2514 }
2515
2516 // Write out a binary file. This is called after the link is
2517 // complete. IN is the temporary output file we used to generate the
2518 // ELF code. We simply walk through the segments, read them from
2519 // their file offset in IN, and write them to their load address in
2520 // the output file. FIXME: with a bit more work, we could support
2521 // S-records and/or Intel hex format here.
2522
2523 void
2524 Layout::write_binary(Output_file* in) const
2525 {
2526 gold_assert(this->options_.output_format()
2527 == General_options::OBJECT_FORMAT_BINARY);
2528
2529 // Get the size of the binary file.
2530 uint64_t max_load_address = 0;
2531 for (Segment_list::const_iterator p = this->segment_list_.begin();
2532 p != this->segment_list_.end();
2533 ++p)
2534 {
2535 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2536 {
2537 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
2538 if (max_paddr > max_load_address)
2539 max_load_address = max_paddr;
2540 }
2541 }
2542
2543 Output_file out(parameters->output_file_name());
2544 out.open(max_load_address);
2545
2546 for (Segment_list::const_iterator p = this->segment_list_.begin();
2547 p != this->segment_list_.end();
2548 ++p)
2549 {
2550 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
2551 {
2552 const unsigned char* vin = in->get_input_view((*p)->offset(),
2553 (*p)->filesz());
2554 unsigned char* vout = out.get_output_view((*p)->paddr(),
2555 (*p)->filesz());
2556 memcpy(vout, vin, (*p)->filesz());
2557 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
2558 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
2559 }
2560 }
2561
2562 out.close();
2563 }
2564
2565 // Print statistical information to stderr. This is used for --stats.
2566
2567 void
2568 Layout::print_stats() const
2569 {
2570 this->namepool_.print_stats("section name pool");
2571 this->sympool_.print_stats("output symbol name pool");
2572 this->dynpool_.print_stats("dynamic name pool");
2573
2574 for (Section_list::const_iterator p = this->section_list_.begin();
2575 p != this->section_list_.end();
2576 ++p)
2577 (*p)->print_merge_stats();
2578 }
2579
2580 // Write_sections_task methods.
2581
2582 // We can always run this task.
2583
2584 Task_token*
2585 Write_sections_task::is_runnable()
2586 {
2587 return NULL;
2588 }
2589
2590 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2591 // when finished.
2592
2593 void
2594 Write_sections_task::locks(Task_locker* tl)
2595 {
2596 tl->add(this, this->output_sections_blocker_);
2597 tl->add(this, this->final_blocker_);
2598 }
2599
2600 // Run the task--write out the data.
2601
2602 void
2603 Write_sections_task::run(Workqueue*)
2604 {
2605 this->layout_->write_output_sections(this->of_);
2606 }
2607
2608 // Write_data_task methods.
2609
2610 // We can always run this task.
2611
2612 Task_token*
2613 Write_data_task::is_runnable()
2614 {
2615 return NULL;
2616 }
2617
2618 // We need to unlock FINAL_BLOCKER when finished.
2619
2620 void
2621 Write_data_task::locks(Task_locker* tl)
2622 {
2623 tl->add(this, this->final_blocker_);
2624 }
2625
2626 // Run the task--write out the data.
2627
2628 void
2629 Write_data_task::run(Workqueue*)
2630 {
2631 this->layout_->write_data(this->symtab_, this->of_);
2632 }
2633
2634 // Write_symbols_task methods.
2635
2636 // We can always run this task.
2637
2638 Task_token*
2639 Write_symbols_task::is_runnable()
2640 {
2641 return NULL;
2642 }
2643
2644 // We need to unlock FINAL_BLOCKER when finished.
2645
2646 void
2647 Write_symbols_task::locks(Task_locker* tl)
2648 {
2649 tl->add(this, this->final_blocker_);
2650 }
2651
2652 // Run the task--write out the symbols.
2653
2654 void
2655 Write_symbols_task::run(Workqueue*)
2656 {
2657 this->symtab_->write_globals(this->input_objects_, this->sympool_,
2658 this->dynpool_, this->of_);
2659 }
2660
2661 // Write_after_input_sections_task methods.
2662
2663 // We can only run this task after the input sections have completed.
2664
2665 Task_token*
2666 Write_after_input_sections_task::is_runnable()
2667 {
2668 if (this->input_sections_blocker_->is_blocked())
2669 return this->input_sections_blocker_;
2670 return NULL;
2671 }
2672
2673 // We need to unlock FINAL_BLOCKER when finished.
2674
2675 void
2676 Write_after_input_sections_task::locks(Task_locker* tl)
2677 {
2678 tl->add(this, this->final_blocker_);
2679 }
2680
2681 // Run the task.
2682
2683 void
2684 Write_after_input_sections_task::run(Workqueue*)
2685 {
2686 this->layout_->write_sections_after_input_sections(this->of_);
2687 }
2688
2689 // Close_task_runner methods.
2690
2691 // Run the task--close the file.
2692
2693 void
2694 Close_task_runner::run(Workqueue*, const Task*)
2695 {
2696 // If we've been asked to create a binary file, we do so here.
2697 if (this->options_->output_format() != General_options::OBJECT_FORMAT_ELF)
2698 this->layout_->write_binary(this->of_);
2699
2700 this->of_->close();
2701 }
2702
2703 // Instantiate the templates we need. We could use the configure
2704 // script to restrict this to only the ones for implemented targets.
2705
2706 #ifdef HAVE_TARGET_32_LITTLE
2707 template
2708 Output_section*
2709 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2710 const char* name,
2711 const elfcpp::Shdr<32, false>& shdr,
2712 unsigned int, unsigned int, off_t*);
2713 #endif
2714
2715 #ifdef HAVE_TARGET_32_BIG
2716 template
2717 Output_section*
2718 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2719 const char* name,
2720 const elfcpp::Shdr<32, true>& shdr,
2721 unsigned int, unsigned int, off_t*);
2722 #endif
2723
2724 #ifdef HAVE_TARGET_64_LITTLE
2725 template
2726 Output_section*
2727 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2728 const char* name,
2729 const elfcpp::Shdr<64, false>& shdr,
2730 unsigned int, unsigned int, off_t*);
2731 #endif
2732
2733 #ifdef HAVE_TARGET_64_BIG
2734 template
2735 Output_section*
2736 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2737 const char* name,
2738 const elfcpp::Shdr<64, true>& shdr,
2739 unsigned int, unsigned int, off_t*);
2740 #endif
2741
2742 #ifdef HAVE_TARGET_32_LITTLE
2743 template
2744 Output_section*
2745 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
2746 unsigned int reloc_shndx,
2747 const elfcpp::Shdr<32, false>& shdr,
2748 Output_section* data_section,
2749 Relocatable_relocs* rr);
2750 #endif
2751
2752 #ifdef HAVE_TARGET_32_BIG
2753 template
2754 Output_section*
2755 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
2756 unsigned int reloc_shndx,
2757 const elfcpp::Shdr<32, true>& shdr,
2758 Output_section* data_section,
2759 Relocatable_relocs* rr);
2760 #endif
2761
2762 #ifdef HAVE_TARGET_64_LITTLE
2763 template
2764 Output_section*
2765 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
2766 unsigned int reloc_shndx,
2767 const elfcpp::Shdr<64, false>& shdr,
2768 Output_section* data_section,
2769 Relocatable_relocs* rr);
2770 #endif
2771
2772 #ifdef HAVE_TARGET_64_BIG
2773 template
2774 Output_section*
2775 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
2776 unsigned int reloc_shndx,
2777 const elfcpp::Shdr<64, true>& shdr,
2778 Output_section* data_section,
2779 Relocatable_relocs* rr);
2780 #endif
2781
2782 #ifdef HAVE_TARGET_32_LITTLE
2783 template
2784 void
2785 Layout::layout_group<32, false>(Symbol_table* symtab,
2786 Sized_relobj<32, false>* object,
2787 unsigned int,
2788 const char* group_section_name,
2789 const char* signature,
2790 const elfcpp::Shdr<32, false>& shdr,
2791 const elfcpp::Elf_Word* contents);
2792 #endif
2793
2794 #ifdef HAVE_TARGET_32_BIG
2795 template
2796 void
2797 Layout::layout_group<32, true>(Symbol_table* symtab,
2798 Sized_relobj<32, true>* object,
2799 unsigned int,
2800 const char* group_section_name,
2801 const char* signature,
2802 const elfcpp::Shdr<32, true>& shdr,
2803 const elfcpp::Elf_Word* contents);
2804 #endif
2805
2806 #ifdef HAVE_TARGET_64_LITTLE
2807 template
2808 void
2809 Layout::layout_group<64, false>(Symbol_table* symtab,
2810 Sized_relobj<64, false>* object,
2811 unsigned int,
2812 const char* group_section_name,
2813 const char* signature,
2814 const elfcpp::Shdr<64, false>& shdr,
2815 const elfcpp::Elf_Word* contents);
2816 #endif
2817
2818 #ifdef HAVE_TARGET_64_BIG
2819 template
2820 void
2821 Layout::layout_group<64, true>(Symbol_table* symtab,
2822 Sized_relobj<64, true>* object,
2823 unsigned int,
2824 const char* group_section_name,
2825 const char* signature,
2826 const elfcpp::Shdr<64, true>& shdr,
2827 const elfcpp::Elf_Word* contents);
2828 #endif
2829
2830 #ifdef HAVE_TARGET_32_LITTLE
2831 template
2832 Output_section*
2833 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2834 const unsigned char* symbols,
2835 off_t symbols_size,
2836 const unsigned char* symbol_names,
2837 off_t symbol_names_size,
2838 unsigned int shndx,
2839 const elfcpp::Shdr<32, false>& shdr,
2840 unsigned int reloc_shndx,
2841 unsigned int reloc_type,
2842 off_t* off);
2843 #endif
2844
2845 #ifdef HAVE_TARGET_32_BIG
2846 template
2847 Output_section*
2848 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2849 const unsigned char* symbols,
2850 off_t symbols_size,
2851 const unsigned char* symbol_names,
2852 off_t symbol_names_size,
2853 unsigned int shndx,
2854 const elfcpp::Shdr<32, true>& shdr,
2855 unsigned int reloc_shndx,
2856 unsigned int reloc_type,
2857 off_t* off);
2858 #endif
2859
2860 #ifdef HAVE_TARGET_64_LITTLE
2861 template
2862 Output_section*
2863 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2864 const unsigned char* symbols,
2865 off_t symbols_size,
2866 const unsigned char* symbol_names,
2867 off_t symbol_names_size,
2868 unsigned int shndx,
2869 const elfcpp::Shdr<64, false>& shdr,
2870 unsigned int reloc_shndx,
2871 unsigned int reloc_type,
2872 off_t* off);
2873 #endif
2874
2875 #ifdef HAVE_TARGET_64_BIG
2876 template
2877 Output_section*
2878 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2879 const unsigned char* symbols,
2880 off_t symbols_size,
2881 const unsigned char* symbol_names,
2882 off_t symbol_names_size,
2883 unsigned int shndx,
2884 const elfcpp::Shdr<64, true>& shdr,
2885 unsigned int reloc_shndx,
2886 unsigned int reloc_type,
2887 off_t* off);
2888 #endif
2889
2890 } // End namespace gold.
This page took 0.089482 seconds and 5 git commands to generate.