Support dynamic relocations against local section symbols.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h" // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42 #ifndef MAP_ANONYMOUS
43 # define MAP_ANONYMOUS MAP_ANON
44 #endif
45
46 namespace gold
47 {
48
49 // Output_data variables.
50
51 bool Output_data::allocated_sizes_are_fixed;
52
53 // Output_data methods.
54
55 Output_data::~Output_data()
56 {
57 }
58
59 // Return the default alignment for the target size.
60
61 uint64_t
62 Output_data::default_alignment()
63 {
64 return Output_data::default_alignment_for_size(parameters->get_size());
65 }
66
67 // Return the default alignment for a size--32 or 64.
68
69 uint64_t
70 Output_data::default_alignment_for_size(int size)
71 {
72 if (size == 32)
73 return 4;
74 else if (size == 64)
75 return 8;
76 else
77 gold_unreachable();
78 }
79
80 // Output_section_header methods. This currently assumes that the
81 // segment and section lists are complete at construction time.
82
83 Output_section_headers::Output_section_headers(
84 const Layout* layout,
85 const Layout::Segment_list* segment_list,
86 const Layout::Section_list* section_list,
87 const Layout::Section_list* unattached_section_list,
88 const Stringpool* secnamepool)
89 : layout_(layout),
90 segment_list_(segment_list),
91 section_list_(section_list),
92 unattached_section_list_(unattached_section_list),
93 secnamepool_(secnamepool)
94 {
95 // Count all the sections. Start with 1 for the null section.
96 off_t count = 1;
97 if (!parameters->output_is_object())
98 {
99 for (Layout::Segment_list::const_iterator p = segment_list->begin();
100 p != segment_list->end();
101 ++p)
102 if ((*p)->type() == elfcpp::PT_LOAD)
103 count += (*p)->output_section_count();
104 }
105 else
106 {
107 for (Layout::Section_list::const_iterator p = section_list->begin();
108 p != section_list->end();
109 ++p)
110 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
111 ++count;
112 }
113 count += unattached_section_list->size();
114
115 const int size = parameters->get_size();
116 int shdr_size;
117 if (size == 32)
118 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
119 else if (size == 64)
120 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
121 else
122 gold_unreachable();
123
124 this->set_data_size(count * shdr_size);
125 }
126
127 // Write out the section headers.
128
129 void
130 Output_section_headers::do_write(Output_file* of)
131 {
132 if (parameters->get_size() == 32)
133 {
134 if (parameters->is_big_endian())
135 {
136 #ifdef HAVE_TARGET_32_BIG
137 this->do_sized_write<32, true>(of);
138 #else
139 gold_unreachable();
140 #endif
141 }
142 else
143 {
144 #ifdef HAVE_TARGET_32_LITTLE
145 this->do_sized_write<32, false>(of);
146 #else
147 gold_unreachable();
148 #endif
149 }
150 }
151 else if (parameters->get_size() == 64)
152 {
153 if (parameters->is_big_endian())
154 {
155 #ifdef HAVE_TARGET_64_BIG
156 this->do_sized_write<64, true>(of);
157 #else
158 gold_unreachable();
159 #endif
160 }
161 else
162 {
163 #ifdef HAVE_TARGET_64_LITTLE
164 this->do_sized_write<64, false>(of);
165 #else
166 gold_unreachable();
167 #endif
168 }
169 }
170 else
171 gold_unreachable();
172 }
173
174 template<int size, bool big_endian>
175 void
176 Output_section_headers::do_sized_write(Output_file* of)
177 {
178 off_t all_shdrs_size = this->data_size();
179 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
180
181 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
182 unsigned char* v = view;
183
184 {
185 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
186 oshdr.put_sh_name(0);
187 oshdr.put_sh_type(elfcpp::SHT_NULL);
188 oshdr.put_sh_flags(0);
189 oshdr.put_sh_addr(0);
190 oshdr.put_sh_offset(0);
191 oshdr.put_sh_size(0);
192 oshdr.put_sh_link(0);
193 oshdr.put_sh_info(0);
194 oshdr.put_sh_addralign(0);
195 oshdr.put_sh_entsize(0);
196 }
197
198 v += shdr_size;
199
200 unsigned int shndx = 1;
201 if (!parameters->output_is_object())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
208 this->secnamepool_,
209 v,
210 &shndx);
211 }
212 else
213 {
214 for (Layout::Section_list::const_iterator p =
215 this->section_list_->begin();
216 p != this->section_list_->end();
217 ++p)
218 {
219 // We do unallocated sections below, except that group
220 // sections have to come first.
221 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
222 && (*p)->type() != elfcpp::SHT_GROUP)
223 continue;
224 gold_assert(shndx == (*p)->out_shndx());
225 elfcpp::Shdr_write<size, big_endian> oshdr(v);
226 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
227 v += shdr_size;
228 ++shndx;
229 }
230 }
231
232 for (Layout::Section_list::const_iterator p =
233 this->unattached_section_list_->begin();
234 p != this->unattached_section_list_->end();
235 ++p)
236 {
237 // For a relocatable link, we did unallocated group sections
238 // above, since they have to come first.
239 if ((*p)->type() == elfcpp::SHT_GROUP
240 && parameters->output_is_object())
241 continue;
242 gold_assert(shndx == (*p)->out_shndx());
243 elfcpp::Shdr_write<size, big_endian> oshdr(v);
244 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
245 v += shdr_size;
246 ++shndx;
247 }
248
249 of->write_output_view(this->offset(), all_shdrs_size, view);
250 }
251
252 // Output_segment_header methods.
253
254 Output_segment_headers::Output_segment_headers(
255 const Layout::Segment_list& segment_list)
256 : segment_list_(segment_list)
257 {
258 const int size = parameters->get_size();
259 int phdr_size;
260 if (size == 32)
261 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
262 else if (size == 64)
263 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
264 else
265 gold_unreachable();
266
267 this->set_data_size(segment_list.size() * phdr_size);
268 }
269
270 void
271 Output_segment_headers::do_write(Output_file* of)
272 {
273 if (parameters->get_size() == 32)
274 {
275 if (parameters->is_big_endian())
276 {
277 #ifdef HAVE_TARGET_32_BIG
278 this->do_sized_write<32, true>(of);
279 #else
280 gold_unreachable();
281 #endif
282 }
283 else
284 {
285 #ifdef HAVE_TARGET_32_LITTLE
286 this->do_sized_write<32, false>(of);
287 #else
288 gold_unreachable();
289 #endif
290 }
291 }
292 else if (parameters->get_size() == 64)
293 {
294 if (parameters->is_big_endian())
295 {
296 #ifdef HAVE_TARGET_64_BIG
297 this->do_sized_write<64, true>(of);
298 #else
299 gold_unreachable();
300 #endif
301 }
302 else
303 {
304 #ifdef HAVE_TARGET_64_LITTLE
305 this->do_sized_write<64, false>(of);
306 #else
307 gold_unreachable();
308 #endif
309 }
310 }
311 else
312 gold_unreachable();
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 // Output_file_header methods.
340
341 Output_file_header::Output_file_header(const Target* target,
342 const Symbol_table* symtab,
343 const Output_segment_headers* osh,
344 const char* entry)
345 : target_(target),
346 symtab_(symtab),
347 segment_header_(osh),
348 section_header_(NULL),
349 shstrtab_(NULL),
350 entry_(entry)
351 {
352 const int size = parameters->get_size();
353 int ehdr_size;
354 if (size == 32)
355 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
356 else if (size == 64)
357 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
358 else
359 gold_unreachable();
360
361 this->set_data_size(ehdr_size);
362 }
363
364 // Set the section table information for a file header.
365
366 void
367 Output_file_header::set_section_info(const Output_section_headers* shdrs,
368 const Output_section* shstrtab)
369 {
370 this->section_header_ = shdrs;
371 this->shstrtab_ = shstrtab;
372 }
373
374 // Write out the file header.
375
376 void
377 Output_file_header::do_write(Output_file* of)
378 {
379 gold_assert(this->offset() == 0);
380
381 if (parameters->get_size() == 32)
382 {
383 if (parameters->is_big_endian())
384 {
385 #ifdef HAVE_TARGET_32_BIG
386 this->do_sized_write<32, true>(of);
387 #else
388 gold_unreachable();
389 #endif
390 }
391 else
392 {
393 #ifdef HAVE_TARGET_32_LITTLE
394 this->do_sized_write<32, false>(of);
395 #else
396 gold_unreachable();
397 #endif
398 }
399 }
400 else if (parameters->get_size() == 64)
401 {
402 if (parameters->is_big_endian())
403 {
404 #ifdef HAVE_TARGET_64_BIG
405 this->do_sized_write<64, true>(of);
406 #else
407 gold_unreachable();
408 #endif
409 }
410 else
411 {
412 #ifdef HAVE_TARGET_64_LITTLE
413 this->do_sized_write<64, false>(of);
414 #else
415 gold_unreachable();
416 #endif
417 }
418 }
419 else
420 gold_unreachable();
421 }
422
423 // Write out the file header with appropriate size and endianess.
424
425 template<int size, bool big_endian>
426 void
427 Output_file_header::do_sized_write(Output_file* of)
428 {
429 gold_assert(this->offset() == 0);
430
431 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
432 unsigned char* view = of->get_output_view(0, ehdr_size);
433 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
434
435 unsigned char e_ident[elfcpp::EI_NIDENT];
436 memset(e_ident, 0, elfcpp::EI_NIDENT);
437 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
438 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
439 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
440 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
441 if (size == 32)
442 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
443 else if (size == 64)
444 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
445 else
446 gold_unreachable();
447 e_ident[elfcpp::EI_DATA] = (big_endian
448 ? elfcpp::ELFDATA2MSB
449 : elfcpp::ELFDATA2LSB);
450 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
451 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
452 oehdr.put_e_ident(e_ident);
453
454 elfcpp::ET e_type;
455 if (parameters->output_is_object())
456 e_type = elfcpp::ET_REL;
457 else if (parameters->output_is_shared())
458 e_type = elfcpp::ET_DYN;
459 else
460 e_type = elfcpp::ET_EXEC;
461 oehdr.put_e_type(e_type);
462
463 oehdr.put_e_machine(this->target_->machine_code());
464 oehdr.put_e_version(elfcpp::EV_CURRENT);
465
466 oehdr.put_e_entry(this->entry<size>());
467
468 if (this->segment_header_ == NULL)
469 oehdr.put_e_phoff(0);
470 else
471 oehdr.put_e_phoff(this->segment_header_->offset());
472
473 oehdr.put_e_shoff(this->section_header_->offset());
474
475 // FIXME: The target needs to set the flags.
476 oehdr.put_e_flags(0);
477
478 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
479
480 if (this->segment_header_ == NULL)
481 {
482 oehdr.put_e_phentsize(0);
483 oehdr.put_e_phnum(0);
484 }
485 else
486 {
487 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
488 oehdr.put_e_phnum(this->segment_header_->data_size()
489 / elfcpp::Elf_sizes<size>::phdr_size);
490 }
491
492 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
493 oehdr.put_e_shnum(this->section_header_->data_size()
494 / elfcpp::Elf_sizes<size>::shdr_size);
495 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
496
497 of->write_output_view(0, ehdr_size, view);
498 }
499
500 // Return the value to use for the entry address. THIS->ENTRY_ is the
501 // symbol specified on the command line, if any.
502
503 template<int size>
504 typename elfcpp::Elf_types<size>::Elf_Addr
505 Output_file_header::entry()
506 {
507 const bool should_issue_warning = (this->entry_ != NULL
508 && parameters->output_is_executable());
509
510 // FIXME: Need to support target specific entry symbol.
511 const char* entry = this->entry_;
512 if (entry == NULL)
513 entry = "_start";
514
515 Symbol* sym = this->symtab_->lookup(entry);
516
517 typename Sized_symbol<size>::Value_type v;
518 if (sym != NULL)
519 {
520 Sized_symbol<size>* ssym;
521 ssym = this->symtab_->get_sized_symbol<size>(sym);
522 if (!ssym->is_defined() && should_issue_warning)
523 gold_warning("entry symbol '%s' exists but is not defined", entry);
524 v = ssym->value();
525 }
526 else
527 {
528 // We couldn't find the entry symbol. See if we can parse it as
529 // a number. This supports, e.g., -e 0x1000.
530 char* endptr;
531 v = strtoull(entry, &endptr, 0);
532 if (*endptr != '\0')
533 {
534 if (should_issue_warning)
535 gold_warning("cannot find entry symbol '%s'", entry);
536 v = 0;
537 }
538 }
539
540 return v;
541 }
542
543 // Output_data_const methods.
544
545 void
546 Output_data_const::do_write(Output_file* of)
547 {
548 of->write(this->offset(), this->data_.data(), this->data_.size());
549 }
550
551 // Output_data_const_buffer methods.
552
553 void
554 Output_data_const_buffer::do_write(Output_file* of)
555 {
556 of->write(this->offset(), this->p_, this->data_size());
557 }
558
559 // Output_section_data methods.
560
561 // Record the output section, and set the entry size and such.
562
563 void
564 Output_section_data::set_output_section(Output_section* os)
565 {
566 gold_assert(this->output_section_ == NULL);
567 this->output_section_ = os;
568 this->do_adjust_output_section(os);
569 }
570
571 // Return the section index of the output section.
572
573 unsigned int
574 Output_section_data::do_out_shndx() const
575 {
576 gold_assert(this->output_section_ != NULL);
577 return this->output_section_->out_shndx();
578 }
579
580 // Output_data_strtab methods.
581
582 // Set the final data size.
583
584 void
585 Output_data_strtab::set_final_data_size()
586 {
587 this->strtab_->set_string_offsets();
588 this->set_data_size(this->strtab_->get_strtab_size());
589 }
590
591 // Write out a string table.
592
593 void
594 Output_data_strtab::do_write(Output_file* of)
595 {
596 this->strtab_->write(of, this->offset());
597 }
598
599 // Output_reloc methods.
600
601 // A reloc against a global symbol.
602
603 template<bool dynamic, int size, bool big_endian>
604 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
605 Symbol* gsym,
606 unsigned int type,
607 Output_data* od,
608 Address address,
609 bool is_relative)
610 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
611 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
612 {
613 // this->type_ is a bitfield; make sure TYPE fits.
614 gold_assert(this->type_ == type);
615 this->u1_.gsym = gsym;
616 this->u2_.od = od;
617 if (dynamic)
618 this->set_needs_dynsym_index();
619 }
620
621 template<bool dynamic, int size, bool big_endian>
622 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
623 Symbol* gsym,
624 unsigned int type,
625 Relobj* relobj,
626 unsigned int shndx,
627 Address address,
628 bool is_relative)
629 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
630 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
631 {
632 gold_assert(shndx != INVALID_CODE);
633 // this->type_ is a bitfield; make sure TYPE fits.
634 gold_assert(this->type_ == type);
635 this->u1_.gsym = gsym;
636 this->u2_.relobj = relobj;
637 if (dynamic)
638 this->set_needs_dynsym_index();
639 }
640
641 // A reloc against a local symbol.
642
643 template<bool dynamic, int size, bool big_endian>
644 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
645 Sized_relobj<size, big_endian>* relobj,
646 unsigned int local_sym_index,
647 unsigned int type,
648 Output_data* od,
649 Address address,
650 bool is_relative,
651 bool is_section_symbol)
652 : address_(address), local_sym_index_(local_sym_index), type_(type),
653 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
654 shndx_(INVALID_CODE)
655 {
656 gold_assert(local_sym_index != GSYM_CODE
657 && local_sym_index != INVALID_CODE);
658 // this->type_ is a bitfield; make sure TYPE fits.
659 gold_assert(this->type_ == type);
660 this->u1_.relobj = relobj;
661 this->u2_.od = od;
662 if (dynamic)
663 this->set_needs_dynsym_index();
664 }
665
666 template<bool dynamic, int size, bool big_endian>
667 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
668 Sized_relobj<size, big_endian>* relobj,
669 unsigned int local_sym_index,
670 unsigned int type,
671 unsigned int shndx,
672 Address address,
673 bool is_relative,
674 bool is_section_symbol)
675 : address_(address), local_sym_index_(local_sym_index), type_(type),
676 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
677 shndx_(shndx)
678 {
679 gold_assert(local_sym_index != GSYM_CODE
680 && local_sym_index != INVALID_CODE);
681 gold_assert(shndx != INVALID_CODE);
682 // this->type_ is a bitfield; make sure TYPE fits.
683 gold_assert(this->type_ == type);
684 this->u1_.relobj = relobj;
685 this->u2_.relobj = relobj;
686 if (dynamic)
687 this->set_needs_dynsym_index();
688 }
689
690 // A reloc against the STT_SECTION symbol of an output section.
691
692 template<bool dynamic, int size, bool big_endian>
693 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
694 Output_section* os,
695 unsigned int type,
696 Output_data* od,
697 Address address)
698 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
699 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
700 {
701 // this->type_ is a bitfield; make sure TYPE fits.
702 gold_assert(this->type_ == type);
703 this->u1_.os = os;
704 this->u2_.od = od;
705 if (dynamic)
706 this->set_needs_dynsym_index();
707 else
708 os->set_needs_symtab_index();
709 }
710
711 template<bool dynamic, int size, bool big_endian>
712 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
713 Output_section* os,
714 unsigned int type,
715 Relobj* relobj,
716 unsigned int shndx,
717 Address address)
718 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
719 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
720 {
721 gold_assert(shndx != INVALID_CODE);
722 // this->type_ is a bitfield; make sure TYPE fits.
723 gold_assert(this->type_ == type);
724 this->u1_.os = os;
725 this->u2_.relobj = relobj;
726 if (dynamic)
727 this->set_needs_dynsym_index();
728 else
729 os->set_needs_symtab_index();
730 }
731
732 // Record that we need a dynamic symbol index for this relocation.
733
734 template<bool dynamic, int size, bool big_endian>
735 void
736 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
737 set_needs_dynsym_index()
738 {
739 if (this->is_relative_)
740 return;
741 switch (this->local_sym_index_)
742 {
743 case INVALID_CODE:
744 gold_unreachable();
745
746 case GSYM_CODE:
747 this->u1_.gsym->set_needs_dynsym_entry();
748 break;
749
750 case SECTION_CODE:
751 this->u1_.os->set_needs_dynsym_index();
752 break;
753
754 case 0:
755 break;
756
757 default:
758 {
759 const unsigned int lsi = this->local_sym_index_;
760 if (!this->is_section_symbol_)
761 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
762 else
763 {
764 section_offset_type dummy;
765 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
766 gold_assert(os != NULL);
767 os->set_needs_dynsym_index();
768 }
769 }
770 break;
771 }
772 }
773
774 // Get the symbol index of a relocation.
775
776 template<bool dynamic, int size, bool big_endian>
777 unsigned int
778 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
779 const
780 {
781 unsigned int index;
782 switch (this->local_sym_index_)
783 {
784 case INVALID_CODE:
785 gold_unreachable();
786
787 case GSYM_CODE:
788 if (this->u1_.gsym == NULL)
789 index = 0;
790 else if (dynamic)
791 index = this->u1_.gsym->dynsym_index();
792 else
793 index = this->u1_.gsym->symtab_index();
794 break;
795
796 case SECTION_CODE:
797 if (dynamic)
798 index = this->u1_.os->dynsym_index();
799 else
800 index = this->u1_.os->symtab_index();
801 break;
802
803 case 0:
804 // Relocations without symbols use a symbol index of 0.
805 index = 0;
806 break;
807
808 default:
809 {
810 const unsigned int lsi = this->local_sym_index_;
811 if (!this->is_section_symbol_)
812 {
813 if (dynamic)
814 index = this->u1_.relobj->dynsym_index(lsi);
815 else
816 index = this->u1_.relobj->symtab_index(lsi);
817 }
818 else
819 {
820 section_offset_type dummy;
821 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
822 gold_assert(os != NULL);
823 if (dynamic)
824 index = os->dynsym_index();
825 else
826 index = os->symtab_index();
827 }
828 }
829 break;
830 }
831 gold_assert(index != -1U);
832 return index;
833 }
834
835 // For a local section symbol, get the section offset of the input
836 // section within the output section.
837
838 template<bool dynamic, int size, bool big_endian>
839 section_offset_type
840 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
841 local_section_offset() const
842 {
843 const unsigned int lsi = this->local_sym_index_;
844 section_offset_type offset;
845 Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
846 gold_assert(os != NULL);
847 return offset;
848 }
849
850 // Write out the offset and info fields of a Rel or Rela relocation
851 // entry.
852
853 template<bool dynamic, int size, bool big_endian>
854 template<typename Write_rel>
855 void
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
857 Write_rel* wr) const
858 {
859 Address address = this->address_;
860 if (this->shndx_ != INVALID_CODE)
861 {
862 section_offset_type off;
863 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
864 &off);
865 gold_assert(os != NULL);
866 if (off != -1)
867 address += os->address() + off;
868 else
869 {
870 address = os->output_address(this->u2_.relobj, this->shndx_,
871 address);
872 gold_assert(address != -1U);
873 }
874 }
875 else if (this->u2_.od != NULL)
876 address += this->u2_.od->address();
877 wr->put_r_offset(address);
878 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
879 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
880 }
881
882 // Write out a Rel relocation.
883
884 template<bool dynamic, int size, bool big_endian>
885 void
886 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
887 unsigned char* pov) const
888 {
889 elfcpp::Rel_write<size, big_endian> orel(pov);
890 this->write_rel(&orel);
891 }
892
893 // Get the value of the symbol referred to by a Rel relocation.
894
895 template<bool dynamic, int size, bool big_endian>
896 typename elfcpp::Elf_types<size>::Elf_Addr
897 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value() const
898 {
899 if (this->local_sym_index_ == GSYM_CODE)
900 {
901 const Sized_symbol<size>* sym;
902 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
903 return sym->value();
904 }
905 gold_assert(this->local_sym_index_ != SECTION_CODE
906 && this->local_sym_index_ != INVALID_CODE);
907 const Sized_relobj<size, big_endian>* relobj = this->u1_.relobj;
908 return relobj->local_symbol_value(this->local_sym_index_);
909 }
910
911 // Write out a Rela relocation.
912
913 template<bool dynamic, int size, bool big_endian>
914 void
915 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
916 unsigned char* pov) const
917 {
918 elfcpp::Rela_write<size, big_endian> orel(pov);
919 this->rel_.write_rel(&orel);
920 Addend addend = this->addend_;
921 if (this->rel_.is_relative())
922 addend += this->rel_.symbol_value();
923 if (this->rel_.is_local_section_symbol())
924 addend += this->rel_.local_section_offset();
925 orel.put_r_addend(addend);
926 }
927
928 // Output_data_reloc_base methods.
929
930 // Adjust the output section.
931
932 template<int sh_type, bool dynamic, int size, bool big_endian>
933 void
934 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
935 ::do_adjust_output_section(Output_section* os)
936 {
937 if (sh_type == elfcpp::SHT_REL)
938 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
939 else if (sh_type == elfcpp::SHT_RELA)
940 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
941 else
942 gold_unreachable();
943 if (dynamic)
944 os->set_should_link_to_dynsym();
945 else
946 os->set_should_link_to_symtab();
947 }
948
949 // Write out relocation data.
950
951 template<int sh_type, bool dynamic, int size, bool big_endian>
952 void
953 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
954 Output_file* of)
955 {
956 const off_t off = this->offset();
957 const off_t oview_size = this->data_size();
958 unsigned char* const oview = of->get_output_view(off, oview_size);
959
960 unsigned char* pov = oview;
961 for (typename Relocs::const_iterator p = this->relocs_.begin();
962 p != this->relocs_.end();
963 ++p)
964 {
965 p->write(pov);
966 pov += reloc_size;
967 }
968
969 gold_assert(pov - oview == oview_size);
970
971 of->write_output_view(off, oview_size, oview);
972
973 // We no longer need the relocation entries.
974 this->relocs_.clear();
975 }
976
977 // Class Output_relocatable_relocs.
978
979 template<int sh_type, int size, bool big_endian>
980 void
981 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
982 {
983 this->set_data_size(this->rr_->output_reloc_count()
984 * Reloc_types<sh_type, size, big_endian>::reloc_size);
985 }
986
987 // class Output_data_group.
988
989 template<int size, bool big_endian>
990 Output_data_group<size, big_endian>::Output_data_group(
991 Sized_relobj<size, big_endian>* relobj,
992 section_size_type entry_count,
993 const elfcpp::Elf_Word* contents)
994 : Output_section_data(entry_count * 4, 4),
995 relobj_(relobj)
996 {
997 this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
998 for (section_size_type i = 1; i < entry_count; ++i)
999 {
1000 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
1001 this->input_sections_.push_back(shndx);
1002 }
1003 }
1004
1005 // Write out the section group, which means translating the section
1006 // indexes to apply to the output file.
1007
1008 template<int size, bool big_endian>
1009 void
1010 Output_data_group<size, big_endian>::do_write(Output_file* of)
1011 {
1012 const off_t off = this->offset();
1013 const section_size_type oview_size =
1014 convert_to_section_size_type(this->data_size());
1015 unsigned char* const oview = of->get_output_view(off, oview_size);
1016
1017 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1018 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1019 ++contents;
1020
1021 for (std::vector<unsigned int>::const_iterator p =
1022 this->input_sections_.begin();
1023 p != this->input_sections_.end();
1024 ++p, ++contents)
1025 {
1026 section_offset_type dummy;
1027 Output_section* os = this->relobj_->output_section(*p, &dummy);
1028
1029 unsigned int output_shndx;
1030 if (os != NULL)
1031 output_shndx = os->out_shndx();
1032 else
1033 {
1034 this->relobj_->error(_("section group retained but "
1035 "group element discarded"));
1036 output_shndx = 0;
1037 }
1038
1039 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1040 }
1041
1042 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1043 gold_assert(wrote == oview_size);
1044
1045 of->write_output_view(off, oview_size, oview);
1046
1047 // We no longer need this information.
1048 this->input_sections_.clear();
1049 }
1050
1051 // Output_data_got::Got_entry methods.
1052
1053 // Write out the entry.
1054
1055 template<int size, bool big_endian>
1056 void
1057 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1058 {
1059 Valtype val = 0;
1060
1061 switch (this->local_sym_index_)
1062 {
1063 case GSYM_CODE:
1064 {
1065 // If the symbol is resolved locally, we need to write out the
1066 // link-time value, which will be relocated dynamically by a
1067 // RELATIVE relocation.
1068 Symbol* gsym = this->u_.gsym;
1069 Sized_symbol<size>* sgsym;
1070 // This cast is a bit ugly. We don't want to put a
1071 // virtual method in Symbol, because we want Symbol to be
1072 // as small as possible.
1073 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1074 val = sgsym->value();
1075 }
1076 break;
1077
1078 case CONSTANT_CODE:
1079 val = this->u_.constant;
1080 break;
1081
1082 default:
1083 val = this->u_.object->local_symbol_value(this->local_sym_index_);
1084 break;
1085 }
1086
1087 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1088 }
1089
1090 // Output_data_got methods.
1091
1092 // Add an entry for a global symbol to the GOT. This returns true if
1093 // this is a new GOT entry, false if the symbol already had a GOT
1094 // entry.
1095
1096 template<int size, bool big_endian>
1097 bool
1098 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
1099 {
1100 if (gsym->has_got_offset())
1101 return false;
1102
1103 this->entries_.push_back(Got_entry(gsym));
1104 this->set_got_size();
1105 gsym->set_got_offset(this->last_got_offset());
1106 return true;
1107 }
1108
1109 // Add an entry for a global symbol to the GOT, and add a dynamic
1110 // relocation of type R_TYPE for the GOT entry.
1111 template<int size, bool big_endian>
1112 void
1113 Output_data_got<size, big_endian>::add_global_with_rel(
1114 Symbol* gsym,
1115 Rel_dyn* rel_dyn,
1116 unsigned int r_type)
1117 {
1118 if (gsym->has_got_offset())
1119 return;
1120
1121 this->entries_.push_back(Got_entry());
1122 this->set_got_size();
1123 unsigned int got_offset = this->last_got_offset();
1124 gsym->set_got_offset(got_offset);
1125 rel_dyn->add_global(gsym, r_type, this, got_offset);
1126 }
1127
1128 template<int size, bool big_endian>
1129 void
1130 Output_data_got<size, big_endian>::add_global_with_rela(
1131 Symbol* gsym,
1132 Rela_dyn* rela_dyn,
1133 unsigned int r_type)
1134 {
1135 if (gsym->has_got_offset())
1136 return;
1137
1138 this->entries_.push_back(Got_entry());
1139 this->set_got_size();
1140 unsigned int got_offset = this->last_got_offset();
1141 gsym->set_got_offset(got_offset);
1142 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1143 }
1144
1145 // Add an entry for a local symbol to the GOT. This returns true if
1146 // this is a new GOT entry, false if the symbol already has a GOT
1147 // entry.
1148
1149 template<int size, bool big_endian>
1150 bool
1151 Output_data_got<size, big_endian>::add_local(
1152 Sized_relobj<size, big_endian>* object,
1153 unsigned int symndx)
1154 {
1155 if (object->local_has_got_offset(symndx))
1156 return false;
1157
1158 this->entries_.push_back(Got_entry(object, symndx));
1159 this->set_got_size();
1160 object->set_local_got_offset(symndx, this->last_got_offset());
1161 return true;
1162 }
1163
1164 // Add an entry for a local symbol to the GOT, and add a dynamic
1165 // relocation of type R_TYPE for the GOT entry.
1166 template<int size, bool big_endian>
1167 void
1168 Output_data_got<size, big_endian>::add_local_with_rel(
1169 Sized_relobj<size, big_endian>* object,
1170 unsigned int symndx,
1171 Rel_dyn* rel_dyn,
1172 unsigned int r_type)
1173 {
1174 if (object->local_has_got_offset(symndx))
1175 return;
1176
1177 this->entries_.push_back(Got_entry());
1178 this->set_got_size();
1179 unsigned int got_offset = this->last_got_offset();
1180 object->set_local_got_offset(symndx, got_offset);
1181 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1182 }
1183
1184 template<int size, bool big_endian>
1185 void
1186 Output_data_got<size, big_endian>::add_local_with_rela(
1187 Sized_relobj<size, big_endian>* object,
1188 unsigned int symndx,
1189 Rela_dyn* rela_dyn,
1190 unsigned int r_type)
1191 {
1192 if (object->local_has_got_offset(symndx))
1193 return;
1194
1195 this->entries_.push_back(Got_entry());
1196 this->set_got_size();
1197 unsigned int got_offset = this->last_got_offset();
1198 object->set_local_got_offset(symndx, got_offset);
1199 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1200 }
1201
1202 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
1203 // In a pair of entries, the first value in the pair will be used for the
1204 // module index, and the second value will be used for the dtv-relative
1205 // offset. This returns true if this is a new GOT entry, false if the symbol
1206 // already has a GOT entry.
1207
1208 template<int size, bool big_endian>
1209 bool
1210 Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym, bool need_pair)
1211 {
1212 if (gsym->has_tls_got_offset(need_pair))
1213 return false;
1214
1215 this->entries_.push_back(Got_entry(gsym));
1216 gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
1217 if (need_pair)
1218 this->entries_.push_back(Got_entry(gsym));
1219 this->set_got_size();
1220 return true;
1221 }
1222
1223 // Add an entry for a global TLS symbol to the GOT, and add a dynamic
1224 // relocation of type R_TYPE.
1225 template<int size, bool big_endian>
1226 void
1227 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1228 Symbol* gsym,
1229 Rel_dyn* rel_dyn,
1230 unsigned int r_type)
1231 {
1232 if (gsym->has_tls_got_offset(false))
1233 return;
1234
1235 this->entries_.push_back(Got_entry());
1236 this->set_got_size();
1237 unsigned int got_offset = this->last_got_offset();
1238 gsym->set_tls_got_offset(got_offset, false);
1239 rel_dyn->add_global(gsym, r_type, this, got_offset);
1240 }
1241
1242 template<int size, bool big_endian>
1243 void
1244 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1245 Symbol* gsym,
1246 Rela_dyn* rela_dyn,
1247 unsigned int r_type)
1248 {
1249 if (gsym->has_tls_got_offset(false))
1250 return;
1251
1252 this->entries_.push_back(Got_entry());
1253 this->set_got_size();
1254 unsigned int got_offset = this->last_got_offset();
1255 gsym->set_tls_got_offset(got_offset, false);
1256 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1257 }
1258
1259 // Add a pair of entries for a global TLS symbol to the GOT, and add
1260 // dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
1261 template<int size, bool big_endian>
1262 void
1263 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1264 Symbol* gsym,
1265 Rel_dyn* rel_dyn,
1266 unsigned int mod_r_type,
1267 unsigned int dtv_r_type)
1268 {
1269 if (gsym->has_tls_got_offset(true))
1270 return;
1271
1272 this->entries_.push_back(Got_entry());
1273 unsigned int got_offset = this->last_got_offset();
1274 gsym->set_tls_got_offset(got_offset, true);
1275 rel_dyn->add_global(gsym, mod_r_type, this, got_offset);
1276
1277 this->entries_.push_back(Got_entry());
1278 this->set_got_size();
1279 got_offset = this->last_got_offset();
1280 rel_dyn->add_global(gsym, dtv_r_type, this, got_offset);
1281 }
1282
1283 template<int size, bool big_endian>
1284 void
1285 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1286 Symbol* gsym,
1287 Rela_dyn* rela_dyn,
1288 unsigned int mod_r_type,
1289 unsigned int dtv_r_type)
1290 {
1291 if (gsym->has_tls_got_offset(true))
1292 return;
1293
1294 this->entries_.push_back(Got_entry());
1295 unsigned int got_offset = this->last_got_offset();
1296 gsym->set_tls_got_offset(got_offset, true);
1297 rela_dyn->add_global(gsym, mod_r_type, this, got_offset, 0);
1298
1299 this->entries_.push_back(Got_entry());
1300 this->set_got_size();
1301 got_offset = this->last_got_offset();
1302 rela_dyn->add_global(gsym, dtv_r_type, this, got_offset, 0);
1303 }
1304
1305 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
1306 // In a pair of entries, the first value in the pair will be used for the
1307 // module index, and the second value will be used for the dtv-relative
1308 // offset. This returns true if this is a new GOT entry, false if the symbol
1309 // already has a GOT entry.
1310
1311 template<int size, bool big_endian>
1312 bool
1313 Output_data_got<size, big_endian>::add_local_tls(
1314 Sized_relobj<size, big_endian>* object,
1315 unsigned int symndx,
1316 bool need_pair)
1317 {
1318 if (object->local_has_tls_got_offset(symndx, need_pair))
1319 return false;
1320
1321 this->entries_.push_back(Got_entry(object, symndx));
1322 object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
1323 if (need_pair)
1324 this->entries_.push_back(Got_entry(object, symndx));
1325 this->set_got_size();
1326 return true;
1327 }
1328
1329 // Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1330 // and add a dynamic relocation of type R_TYPE for the first GOT entry.
1331 // Because this is a local symbol, the first GOT entry can be relocated
1332 // relative to a section symbol, and the second GOT entry will have an
1333 // dtv-relative value that can be computed at link time.
1334 template<int size, bool big_endian>
1335 void
1336 Output_data_got<size, big_endian>::add_local_tls_with_rel(
1337 Sized_relobj<size, big_endian>* object,
1338 unsigned int symndx,
1339 unsigned int shndx,
1340 bool need_pair,
1341 Rel_dyn* rel_dyn,
1342 unsigned int r_type)
1343 {
1344 if (object->local_has_tls_got_offset(symndx, need_pair))
1345 return;
1346
1347 this->entries_.push_back(Got_entry());
1348 unsigned int got_offset = this->last_got_offset();
1349 object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1350 section_offset_type off;
1351 Output_section* os = object->output_section(shndx, &off);
1352 rel_dyn->add_output_section(os, r_type, this, got_offset);
1353
1354 // The second entry of the pair will be statically initialized
1355 // with the TLS offset of the symbol.
1356 if (need_pair)
1357 this->entries_.push_back(Got_entry(object, symndx));
1358
1359 this->set_got_size();
1360 }
1361
1362 template<int size, bool big_endian>
1363 void
1364 Output_data_got<size, big_endian>::add_local_tls_with_rela(
1365 Sized_relobj<size, big_endian>* object,
1366 unsigned int symndx,
1367 unsigned int shndx,
1368 bool need_pair,
1369 Rela_dyn* rela_dyn,
1370 unsigned int r_type)
1371 {
1372 if (object->local_has_tls_got_offset(symndx, need_pair))
1373 return;
1374
1375 this->entries_.push_back(Got_entry());
1376 unsigned int got_offset = this->last_got_offset();
1377 object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1378 section_offset_type off;
1379 Output_section* os = object->output_section(shndx, &off);
1380 rela_dyn->add_output_section(os, r_type, this, got_offset, 0);
1381
1382 // The second entry of the pair will be statically initialized
1383 // with the TLS offset of the symbol.
1384 if (need_pair)
1385 this->entries_.push_back(Got_entry(object, symndx));
1386
1387 this->set_got_size();
1388 }
1389
1390 // Write out the GOT.
1391
1392 template<int size, bool big_endian>
1393 void
1394 Output_data_got<size, big_endian>::do_write(Output_file* of)
1395 {
1396 const int add = size / 8;
1397
1398 const off_t off = this->offset();
1399 const off_t oview_size = this->data_size();
1400 unsigned char* const oview = of->get_output_view(off, oview_size);
1401
1402 unsigned char* pov = oview;
1403 for (typename Got_entries::const_iterator p = this->entries_.begin();
1404 p != this->entries_.end();
1405 ++p)
1406 {
1407 p->write(pov);
1408 pov += add;
1409 }
1410
1411 gold_assert(pov - oview == oview_size);
1412
1413 of->write_output_view(off, oview_size, oview);
1414
1415 // We no longer need the GOT entries.
1416 this->entries_.clear();
1417 }
1418
1419 // Output_data_dynamic::Dynamic_entry methods.
1420
1421 // Write out the entry.
1422
1423 template<int size, bool big_endian>
1424 void
1425 Output_data_dynamic::Dynamic_entry::write(
1426 unsigned char* pov,
1427 const Stringpool* pool
1428 ACCEPT_SIZE_ENDIAN) const
1429 {
1430 typename elfcpp::Elf_types<size>::Elf_WXword val;
1431 switch (this->classification_)
1432 {
1433 case DYNAMIC_NUMBER:
1434 val = this->u_.val;
1435 break;
1436
1437 case DYNAMIC_SECTION_ADDRESS:
1438 val = this->u_.od->address();
1439 break;
1440
1441 case DYNAMIC_SECTION_SIZE:
1442 val = this->u_.od->data_size();
1443 break;
1444
1445 case DYNAMIC_SYMBOL:
1446 {
1447 const Sized_symbol<size>* s =
1448 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1449 val = s->value();
1450 }
1451 break;
1452
1453 case DYNAMIC_STRING:
1454 val = pool->get_offset(this->u_.str);
1455 break;
1456
1457 default:
1458 gold_unreachable();
1459 }
1460
1461 elfcpp::Dyn_write<size, big_endian> dw(pov);
1462 dw.put_d_tag(this->tag_);
1463 dw.put_d_val(val);
1464 }
1465
1466 // Output_data_dynamic methods.
1467
1468 // Adjust the output section to set the entry size.
1469
1470 void
1471 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1472 {
1473 if (parameters->get_size() == 32)
1474 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1475 else if (parameters->get_size() == 64)
1476 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1477 else
1478 gold_unreachable();
1479 }
1480
1481 // Set the final data size.
1482
1483 void
1484 Output_data_dynamic::set_final_data_size()
1485 {
1486 // Add the terminating entry.
1487 this->add_constant(elfcpp::DT_NULL, 0);
1488
1489 int dyn_size;
1490 if (parameters->get_size() == 32)
1491 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1492 else if (parameters->get_size() == 64)
1493 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1494 else
1495 gold_unreachable();
1496 this->set_data_size(this->entries_.size() * dyn_size);
1497 }
1498
1499 // Write out the dynamic entries.
1500
1501 void
1502 Output_data_dynamic::do_write(Output_file* of)
1503 {
1504 if (parameters->get_size() == 32)
1505 {
1506 if (parameters->is_big_endian())
1507 {
1508 #ifdef HAVE_TARGET_32_BIG
1509 this->sized_write<32, true>(of);
1510 #else
1511 gold_unreachable();
1512 #endif
1513 }
1514 else
1515 {
1516 #ifdef HAVE_TARGET_32_LITTLE
1517 this->sized_write<32, false>(of);
1518 #else
1519 gold_unreachable();
1520 #endif
1521 }
1522 }
1523 else if (parameters->get_size() == 64)
1524 {
1525 if (parameters->is_big_endian())
1526 {
1527 #ifdef HAVE_TARGET_64_BIG
1528 this->sized_write<64, true>(of);
1529 #else
1530 gold_unreachable();
1531 #endif
1532 }
1533 else
1534 {
1535 #ifdef HAVE_TARGET_64_LITTLE
1536 this->sized_write<64, false>(of);
1537 #else
1538 gold_unreachable();
1539 #endif
1540 }
1541 }
1542 else
1543 gold_unreachable();
1544 }
1545
1546 template<int size, bool big_endian>
1547 void
1548 Output_data_dynamic::sized_write(Output_file* of)
1549 {
1550 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1551
1552 const off_t offset = this->offset();
1553 const off_t oview_size = this->data_size();
1554 unsigned char* const oview = of->get_output_view(offset, oview_size);
1555
1556 unsigned char* pov = oview;
1557 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1558 p != this->entries_.end();
1559 ++p)
1560 {
1561 p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1562 pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
1563 pov += dyn_size;
1564 }
1565
1566 gold_assert(pov - oview == oview_size);
1567
1568 of->write_output_view(offset, oview_size, oview);
1569
1570 // We no longer need the dynamic entries.
1571 this->entries_.clear();
1572 }
1573
1574 // Output_section::Input_section methods.
1575
1576 // Return the data size. For an input section we store the size here.
1577 // For an Output_section_data, we have to ask it for the size.
1578
1579 off_t
1580 Output_section::Input_section::data_size() const
1581 {
1582 if (this->is_input_section())
1583 return this->u1_.data_size;
1584 else
1585 return this->u2_.posd->data_size();
1586 }
1587
1588 // Set the address and file offset.
1589
1590 void
1591 Output_section::Input_section::set_address_and_file_offset(
1592 uint64_t address,
1593 off_t file_offset,
1594 off_t section_file_offset)
1595 {
1596 if (this->is_input_section())
1597 this->u2_.object->set_section_offset(this->shndx_,
1598 file_offset - section_file_offset);
1599 else
1600 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1601 }
1602
1603 // Reset the address and file offset.
1604
1605 void
1606 Output_section::Input_section::reset_address_and_file_offset()
1607 {
1608 if (!this->is_input_section())
1609 this->u2_.posd->reset_address_and_file_offset();
1610 }
1611
1612 // Finalize the data size.
1613
1614 void
1615 Output_section::Input_section::finalize_data_size()
1616 {
1617 if (!this->is_input_section())
1618 this->u2_.posd->finalize_data_size();
1619 }
1620
1621 // Try to turn an input offset into an output offset. We want to
1622 // return the output offset relative to the start of this
1623 // Input_section in the output section.
1624
1625 inline bool
1626 Output_section::Input_section::output_offset(
1627 const Relobj* object,
1628 unsigned int shndx,
1629 section_offset_type offset,
1630 section_offset_type *poutput) const
1631 {
1632 if (!this->is_input_section())
1633 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1634 else
1635 {
1636 if (this->shndx_ != shndx || this->u2_.object != object)
1637 return false;
1638 *poutput = offset;
1639 return true;
1640 }
1641 }
1642
1643 // Return whether this is the merge section for the input section
1644 // SHNDX in OBJECT.
1645
1646 inline bool
1647 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1648 unsigned int shndx) const
1649 {
1650 if (this->is_input_section())
1651 return false;
1652 return this->u2_.posd->is_merge_section_for(object, shndx);
1653 }
1654
1655 // Write out the data. We don't have to do anything for an input
1656 // section--they are handled via Object::relocate--but this is where
1657 // we write out the data for an Output_section_data.
1658
1659 void
1660 Output_section::Input_section::write(Output_file* of)
1661 {
1662 if (!this->is_input_section())
1663 this->u2_.posd->write(of);
1664 }
1665
1666 // Write the data to a buffer. As for write(), we don't have to do
1667 // anything for an input section.
1668
1669 void
1670 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1671 {
1672 if (!this->is_input_section())
1673 this->u2_.posd->write_to_buffer(buffer);
1674 }
1675
1676 // Output_section methods.
1677
1678 // Construct an Output_section. NAME will point into a Stringpool.
1679
1680 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1681 elfcpp::Elf_Xword flags)
1682 : name_(name),
1683 addralign_(0),
1684 entsize_(0),
1685 load_address_(0),
1686 link_section_(NULL),
1687 link_(0),
1688 info_section_(NULL),
1689 info_symndx_(NULL),
1690 info_(0),
1691 type_(type),
1692 flags_(flags),
1693 out_shndx_(-1U),
1694 symtab_index_(0),
1695 dynsym_index_(0),
1696 input_sections_(),
1697 first_input_offset_(0),
1698 fills_(),
1699 postprocessing_buffer_(NULL),
1700 needs_symtab_index_(false),
1701 needs_dynsym_index_(false),
1702 should_link_to_symtab_(false),
1703 should_link_to_dynsym_(false),
1704 after_input_sections_(false),
1705 requires_postprocessing_(false),
1706 found_in_sections_clause_(false),
1707 has_load_address_(false),
1708 info_uses_section_index_(false),
1709 tls_offset_(0)
1710 {
1711 // An unallocated section has no address. Forcing this means that
1712 // we don't need special treatment for symbols defined in debug
1713 // sections.
1714 if ((flags & elfcpp::SHF_ALLOC) == 0)
1715 this->set_address(0);
1716 }
1717
1718 Output_section::~Output_section()
1719 {
1720 }
1721
1722 // Set the entry size.
1723
1724 void
1725 Output_section::set_entsize(uint64_t v)
1726 {
1727 if (this->entsize_ == 0)
1728 this->entsize_ = v;
1729 else
1730 gold_assert(this->entsize_ == v);
1731 }
1732
1733 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1734 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1735 // relocation section which applies to this section, or 0 if none, or
1736 // -1U if more than one. Return the offset of the input section
1737 // within the output section. Return -1 if the input section will
1738 // receive special handling. In the normal case we don't always keep
1739 // track of input sections for an Output_section. Instead, each
1740 // Object keeps track of the Output_section for each of its input
1741 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1742 // track of input sections here; this is used when SECTIONS appears in
1743 // a linker script.
1744
1745 template<int size, bool big_endian>
1746 off_t
1747 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1748 unsigned int shndx,
1749 const char* secname,
1750 const elfcpp::Shdr<size, big_endian>& shdr,
1751 unsigned int reloc_shndx,
1752 bool have_sections_script)
1753 {
1754 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1755 if ((addralign & (addralign - 1)) != 0)
1756 {
1757 object->error(_("invalid alignment %lu for section \"%s\""),
1758 static_cast<unsigned long>(addralign), secname);
1759 addralign = 1;
1760 }
1761
1762 if (addralign > this->addralign_)
1763 this->addralign_ = addralign;
1764
1765 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1766 this->flags_ |= (sh_flags
1767 & (elfcpp::SHF_WRITE
1768 | elfcpp::SHF_ALLOC
1769 | elfcpp::SHF_EXECINSTR));
1770
1771 uint64_t entsize = shdr.get_sh_entsize();
1772
1773 // .debug_str is a mergeable string section, but is not always so
1774 // marked by compilers. Mark manually here so we can optimize.
1775 if (strcmp(secname, ".debug_str") == 0)
1776 {
1777 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1778 entsize = 1;
1779 }
1780
1781 // If this is a SHF_MERGE section, we pass all the input sections to
1782 // a Output_data_merge. We don't try to handle relocations for such
1783 // a section.
1784 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1785 && reloc_shndx == 0)
1786 {
1787 if (this->add_merge_input_section(object, shndx, sh_flags,
1788 entsize, addralign))
1789 {
1790 // Tell the relocation routines that they need to call the
1791 // output_offset method to determine the final address.
1792 return -1;
1793 }
1794 }
1795
1796 off_t offset_in_section = this->current_data_size_for_child();
1797 off_t aligned_offset_in_section = align_address(offset_in_section,
1798 addralign);
1799
1800 if (aligned_offset_in_section > offset_in_section
1801 && !have_sections_script
1802 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1803 && object->target()->has_code_fill())
1804 {
1805 // We need to add some fill data. Using fill_list_ when
1806 // possible is an optimization, since we will often have fill
1807 // sections without input sections.
1808 off_t fill_len = aligned_offset_in_section - offset_in_section;
1809 if (this->input_sections_.empty())
1810 this->fills_.push_back(Fill(offset_in_section, fill_len));
1811 else
1812 {
1813 // FIXME: When relaxing, the size needs to adjust to
1814 // maintain a constant alignment.
1815 std::string fill_data(object->target()->code_fill(fill_len));
1816 Output_data_const* odc = new Output_data_const(fill_data, 1);
1817 this->input_sections_.push_back(Input_section(odc));
1818 }
1819 }
1820
1821 this->set_current_data_size_for_child(aligned_offset_in_section
1822 + shdr.get_sh_size());
1823
1824 // We need to keep track of this section if we are already keeping
1825 // track of sections, or if we are relaxing. FIXME: Add test for
1826 // relaxing.
1827 if (have_sections_script || !this->input_sections_.empty())
1828 this->input_sections_.push_back(Input_section(object, shndx,
1829 shdr.get_sh_size(),
1830 addralign));
1831
1832 return aligned_offset_in_section;
1833 }
1834
1835 // Add arbitrary data to an output section.
1836
1837 void
1838 Output_section::add_output_section_data(Output_section_data* posd)
1839 {
1840 Input_section inp(posd);
1841 this->add_output_section_data(&inp);
1842
1843 if (posd->is_data_size_valid())
1844 {
1845 off_t offset_in_section = this->current_data_size_for_child();
1846 off_t aligned_offset_in_section = align_address(offset_in_section,
1847 posd->addralign());
1848 this->set_current_data_size_for_child(aligned_offset_in_section
1849 + posd->data_size());
1850 }
1851 }
1852
1853 // Add arbitrary data to an output section by Input_section.
1854
1855 void
1856 Output_section::add_output_section_data(Input_section* inp)
1857 {
1858 if (this->input_sections_.empty())
1859 this->first_input_offset_ = this->current_data_size_for_child();
1860
1861 this->input_sections_.push_back(*inp);
1862
1863 uint64_t addralign = inp->addralign();
1864 if (addralign > this->addralign_)
1865 this->addralign_ = addralign;
1866
1867 inp->set_output_section(this);
1868 }
1869
1870 // Add a merge section to an output section.
1871
1872 void
1873 Output_section::add_output_merge_section(Output_section_data* posd,
1874 bool is_string, uint64_t entsize)
1875 {
1876 Input_section inp(posd, is_string, entsize);
1877 this->add_output_section_data(&inp);
1878 }
1879
1880 // Add an input section to a SHF_MERGE section.
1881
1882 bool
1883 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1884 uint64_t flags, uint64_t entsize,
1885 uint64_t addralign)
1886 {
1887 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1888
1889 // We only merge strings if the alignment is not more than the
1890 // character size. This could be handled, but it's unusual.
1891 if (is_string && addralign > entsize)
1892 return false;
1893
1894 Input_section_list::iterator p;
1895 for (p = this->input_sections_.begin();
1896 p != this->input_sections_.end();
1897 ++p)
1898 if (p->is_merge_section(is_string, entsize, addralign))
1899 {
1900 p->add_input_section(object, shndx);
1901 return true;
1902 }
1903
1904 // We handle the actual constant merging in Output_merge_data or
1905 // Output_merge_string_data.
1906 Output_section_data* posd;
1907 if (!is_string)
1908 posd = new Output_merge_data(entsize, addralign);
1909 else
1910 {
1911 switch (entsize)
1912 {
1913 case 1:
1914 posd = new Output_merge_string<char>(addralign);
1915 break;
1916 case 2:
1917 posd = new Output_merge_string<uint16_t>(addralign);
1918 break;
1919 case 4:
1920 posd = new Output_merge_string<uint32_t>(addralign);
1921 break;
1922 default:
1923 return false;
1924 }
1925 }
1926
1927 this->add_output_merge_section(posd, is_string, entsize);
1928 posd->add_input_section(object, shndx);
1929
1930 return true;
1931 }
1932
1933 // Given an address OFFSET relative to the start of input section
1934 // SHNDX in OBJECT, return whether this address is being included in
1935 // the final link. This should only be called if SHNDX in OBJECT has
1936 // a special mapping.
1937
1938 bool
1939 Output_section::is_input_address_mapped(const Relobj* object,
1940 unsigned int shndx,
1941 off_t offset) const
1942 {
1943 gold_assert(object->is_section_specially_mapped(shndx));
1944
1945 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1946 p != this->input_sections_.end();
1947 ++p)
1948 {
1949 section_offset_type output_offset;
1950 if (p->output_offset(object, shndx, offset, &output_offset))
1951 return output_offset != -1;
1952 }
1953
1954 // By default we assume that the address is mapped. This should
1955 // only be called after we have passed all sections to Layout. At
1956 // that point we should know what we are discarding.
1957 return true;
1958 }
1959
1960 // Given an address OFFSET relative to the start of input section
1961 // SHNDX in object OBJECT, return the output offset relative to the
1962 // start of the input section in the output section. This should only
1963 // be called if SHNDX in OBJECT has a special mapping.
1964
1965 section_offset_type
1966 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1967 section_offset_type offset) const
1968 {
1969 gold_assert(object->is_section_specially_mapped(shndx));
1970 // This can only be called meaningfully when layout is complete.
1971 gold_assert(Output_data::is_layout_complete());
1972
1973 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1974 p != this->input_sections_.end();
1975 ++p)
1976 {
1977 section_offset_type output_offset;
1978 if (p->output_offset(object, shndx, offset, &output_offset))
1979 return output_offset;
1980 }
1981 gold_unreachable();
1982 }
1983
1984 // Return the output virtual address of OFFSET relative to the start
1985 // of input section SHNDX in object OBJECT.
1986
1987 uint64_t
1988 Output_section::output_address(const Relobj* object, unsigned int shndx,
1989 off_t offset) const
1990 {
1991 gold_assert(object->is_section_specially_mapped(shndx));
1992
1993 uint64_t addr = this->address() + this->first_input_offset_;
1994 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1995 p != this->input_sections_.end();
1996 ++p)
1997 {
1998 addr = align_address(addr, p->addralign());
1999 section_offset_type output_offset;
2000 if (p->output_offset(object, shndx, offset, &output_offset))
2001 {
2002 if (output_offset == -1)
2003 return -1U;
2004 return addr + output_offset;
2005 }
2006 addr += p->data_size();
2007 }
2008
2009 // If we get here, it means that we don't know the mapping for this
2010 // input section. This might happen in principle if
2011 // add_input_section were called before add_output_section_data.
2012 // But it should never actually happen.
2013
2014 gold_unreachable();
2015 }
2016
2017 // Return the output address of the start of the merged section for
2018 // input section SHNDX in object OBJECT.
2019
2020 uint64_t
2021 Output_section::starting_output_address(const Relobj* object,
2022 unsigned int shndx) const
2023 {
2024 gold_assert(object->is_section_specially_mapped(shndx));
2025
2026 uint64_t addr = this->address() + this->first_input_offset_;
2027 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2028 p != this->input_sections_.end();
2029 ++p)
2030 {
2031 addr = align_address(addr, p->addralign());
2032
2033 // It would be nice if we could use the existing output_offset
2034 // method to get the output offset of input offset 0.
2035 // Unfortunately we don't know for sure that input offset 0 is
2036 // mapped at all.
2037 if (p->is_merge_section_for(object, shndx))
2038 return addr;
2039
2040 addr += p->data_size();
2041 }
2042 gold_unreachable();
2043 }
2044
2045 // Set the data size of an Output_section. This is where we handle
2046 // setting the addresses of any Output_section_data objects.
2047
2048 void
2049 Output_section::set_final_data_size()
2050 {
2051 if (this->input_sections_.empty())
2052 {
2053 this->set_data_size(this->current_data_size_for_child());
2054 return;
2055 }
2056
2057 uint64_t address = this->address();
2058 off_t startoff = this->offset();
2059 off_t off = startoff + this->first_input_offset_;
2060 for (Input_section_list::iterator p = this->input_sections_.begin();
2061 p != this->input_sections_.end();
2062 ++p)
2063 {
2064 off = align_address(off, p->addralign());
2065 p->set_address_and_file_offset(address + (off - startoff), off,
2066 startoff);
2067 off += p->data_size();
2068 }
2069
2070 this->set_data_size(off - startoff);
2071 }
2072
2073 // Reset the address and file offset.
2074
2075 void
2076 Output_section::do_reset_address_and_file_offset()
2077 {
2078 for (Input_section_list::iterator p = this->input_sections_.begin();
2079 p != this->input_sections_.end();
2080 ++p)
2081 p->reset_address_and_file_offset();
2082 }
2083
2084 // Set the TLS offset. Called only for SHT_TLS sections.
2085
2086 void
2087 Output_section::do_set_tls_offset(uint64_t tls_base)
2088 {
2089 this->tls_offset_ = this->address() - tls_base;
2090 }
2091
2092 // Write the section header to *OSHDR.
2093
2094 template<int size, bool big_endian>
2095 void
2096 Output_section::write_header(const Layout* layout,
2097 const Stringpool* secnamepool,
2098 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2099 {
2100 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2101 oshdr->put_sh_type(this->type_);
2102
2103 elfcpp::Elf_Xword flags = this->flags_;
2104 if (this->info_section_ != NULL && this->info_uses_section_index_)
2105 flags |= elfcpp::SHF_INFO_LINK;
2106 oshdr->put_sh_flags(flags);
2107
2108 oshdr->put_sh_addr(this->address());
2109 oshdr->put_sh_offset(this->offset());
2110 oshdr->put_sh_size(this->data_size());
2111 if (this->link_section_ != NULL)
2112 oshdr->put_sh_link(this->link_section_->out_shndx());
2113 else if (this->should_link_to_symtab_)
2114 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2115 else if (this->should_link_to_dynsym_)
2116 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2117 else
2118 oshdr->put_sh_link(this->link_);
2119
2120 elfcpp::Elf_Word info;
2121 if (this->info_section_ != NULL)
2122 {
2123 if (this->info_uses_section_index_)
2124 info = this->info_section_->out_shndx();
2125 else
2126 info = this->info_section_->symtab_index();
2127 }
2128 else if (this->info_symndx_ != NULL)
2129 info = this->info_symndx_->symtab_index();
2130 else
2131 info = this->info_;
2132 oshdr->put_sh_info(info);
2133
2134 oshdr->put_sh_addralign(this->addralign_);
2135 oshdr->put_sh_entsize(this->entsize_);
2136 }
2137
2138 // Write out the data. For input sections the data is written out by
2139 // Object::relocate, but we have to handle Output_section_data objects
2140 // here.
2141
2142 void
2143 Output_section::do_write(Output_file* of)
2144 {
2145 gold_assert(!this->requires_postprocessing());
2146
2147 off_t output_section_file_offset = this->offset();
2148 for (Fill_list::iterator p = this->fills_.begin();
2149 p != this->fills_.end();
2150 ++p)
2151 {
2152 std::string fill_data(parameters->target()->code_fill(p->length()));
2153 of->write(output_section_file_offset + p->section_offset(),
2154 fill_data.data(), fill_data.size());
2155 }
2156
2157 for (Input_section_list::iterator p = this->input_sections_.begin();
2158 p != this->input_sections_.end();
2159 ++p)
2160 p->write(of);
2161 }
2162
2163 // If a section requires postprocessing, create the buffer to use.
2164
2165 void
2166 Output_section::create_postprocessing_buffer()
2167 {
2168 gold_assert(this->requires_postprocessing());
2169
2170 if (this->postprocessing_buffer_ != NULL)
2171 return;
2172
2173 if (!this->input_sections_.empty())
2174 {
2175 off_t off = this->first_input_offset_;
2176 for (Input_section_list::iterator p = this->input_sections_.begin();
2177 p != this->input_sections_.end();
2178 ++p)
2179 {
2180 off = align_address(off, p->addralign());
2181 p->finalize_data_size();
2182 off += p->data_size();
2183 }
2184 this->set_current_data_size_for_child(off);
2185 }
2186
2187 off_t buffer_size = this->current_data_size_for_child();
2188 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2189 }
2190
2191 // Write all the data of an Output_section into the postprocessing
2192 // buffer. This is used for sections which require postprocessing,
2193 // such as compression. Input sections are handled by
2194 // Object::Relocate.
2195
2196 void
2197 Output_section::write_to_postprocessing_buffer()
2198 {
2199 gold_assert(this->requires_postprocessing());
2200
2201 Target* target = parameters->target();
2202 unsigned char* buffer = this->postprocessing_buffer();
2203 for (Fill_list::iterator p = this->fills_.begin();
2204 p != this->fills_.end();
2205 ++p)
2206 {
2207 std::string fill_data(target->code_fill(p->length()));
2208 memcpy(buffer + p->section_offset(), fill_data.data(),
2209 fill_data.size());
2210 }
2211
2212 off_t off = this->first_input_offset_;
2213 for (Input_section_list::iterator p = this->input_sections_.begin();
2214 p != this->input_sections_.end();
2215 ++p)
2216 {
2217 off = align_address(off, p->addralign());
2218 p->write_to_buffer(buffer + off);
2219 off += p->data_size();
2220 }
2221 }
2222
2223 // Get the input sections for linker script processing. We leave
2224 // behind the Output_section_data entries. Note that this may be
2225 // slightly incorrect for merge sections. We will leave them behind,
2226 // but it is possible that the script says that they should follow
2227 // some other input sections, as in:
2228 // .rodata { *(.rodata) *(.rodata.cst*) }
2229 // For that matter, we don't handle this correctly:
2230 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2231 // With luck this will never matter.
2232
2233 uint64_t
2234 Output_section::get_input_sections(
2235 uint64_t address,
2236 const std::string& fill,
2237 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2238 {
2239 uint64_t orig_address = address;
2240
2241 address = align_address(address, this->addralign());
2242
2243 Input_section_list remaining;
2244 for (Input_section_list::iterator p = this->input_sections_.begin();
2245 p != this->input_sections_.end();
2246 ++p)
2247 {
2248 if (p->is_input_section())
2249 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2250 else
2251 {
2252 uint64_t aligned_address = align_address(address, p->addralign());
2253 if (aligned_address != address && !fill.empty())
2254 {
2255 section_size_type length =
2256 convert_to_section_size_type(aligned_address - address);
2257 std::string this_fill;
2258 this_fill.reserve(length);
2259 while (this_fill.length() + fill.length() <= length)
2260 this_fill += fill;
2261 if (this_fill.length() < length)
2262 this_fill.append(fill, 0, length - this_fill.length());
2263
2264 Output_section_data* posd = new Output_data_const(this_fill, 0);
2265 remaining.push_back(Input_section(posd));
2266 }
2267 address = aligned_address;
2268
2269 remaining.push_back(*p);
2270
2271 p->finalize_data_size();
2272 address += p->data_size();
2273 }
2274 }
2275
2276 this->input_sections_.swap(remaining);
2277 this->first_input_offset_ = 0;
2278
2279 uint64_t data_size = address - orig_address;
2280 this->set_current_data_size_for_child(data_size);
2281 return data_size;
2282 }
2283
2284 // Add an input section from a script.
2285
2286 void
2287 Output_section::add_input_section_for_script(Relobj* object,
2288 unsigned int shndx,
2289 off_t data_size,
2290 uint64_t addralign)
2291 {
2292 if (addralign > this->addralign_)
2293 this->addralign_ = addralign;
2294
2295 off_t offset_in_section = this->current_data_size_for_child();
2296 off_t aligned_offset_in_section = align_address(offset_in_section,
2297 addralign);
2298
2299 this->set_current_data_size_for_child(aligned_offset_in_section
2300 + data_size);
2301
2302 this->input_sections_.push_back(Input_section(object, shndx,
2303 data_size, addralign));
2304 }
2305
2306 // Print stats for merge sections to stderr.
2307
2308 void
2309 Output_section::print_merge_stats()
2310 {
2311 Input_section_list::iterator p;
2312 for (p = this->input_sections_.begin();
2313 p != this->input_sections_.end();
2314 ++p)
2315 p->print_merge_stats(this->name_);
2316 }
2317
2318 // Output segment methods.
2319
2320 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2321 : output_data_(),
2322 output_bss_(),
2323 vaddr_(0),
2324 paddr_(0),
2325 memsz_(0),
2326 max_align_(0),
2327 min_p_align_(0),
2328 offset_(0),
2329 filesz_(0),
2330 type_(type),
2331 flags_(flags),
2332 is_max_align_known_(false),
2333 are_addresses_set_(false)
2334 {
2335 }
2336
2337 // Add an Output_section to an Output_segment.
2338
2339 void
2340 Output_segment::add_output_section(Output_section* os,
2341 elfcpp::Elf_Word seg_flags,
2342 bool front)
2343 {
2344 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2345 gold_assert(!this->is_max_align_known_);
2346
2347 // Update the segment flags.
2348 this->flags_ |= seg_flags;
2349
2350 Output_segment::Output_data_list* pdl;
2351 if (os->type() == elfcpp::SHT_NOBITS)
2352 pdl = &this->output_bss_;
2353 else
2354 pdl = &this->output_data_;
2355
2356 // So that PT_NOTE segments will work correctly, we need to ensure
2357 // that all SHT_NOTE sections are adjacent. This will normally
2358 // happen automatically, because all the SHT_NOTE input sections
2359 // will wind up in the same output section. However, it is possible
2360 // for multiple SHT_NOTE input sections to have different section
2361 // flags, and thus be in different output sections, but for the
2362 // different section flags to map into the same segment flags and
2363 // thus the same output segment.
2364
2365 // Note that while there may be many input sections in an output
2366 // section, there are normally only a few output sections in an
2367 // output segment. This loop is expected to be fast.
2368
2369 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2370 {
2371 Output_segment::Output_data_list::iterator p = pdl->end();
2372 do
2373 {
2374 --p;
2375 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2376 {
2377 // We don't worry about the FRONT parameter.
2378 ++p;
2379 pdl->insert(p, os);
2380 return;
2381 }
2382 }
2383 while (p != pdl->begin());
2384 }
2385
2386 // Similarly, so that PT_TLS segments will work, we need to group
2387 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2388 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2389 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2390 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2391 // and the PT_TLS segment -- we do this grouping only for the
2392 // PT_LOAD segment.
2393 if (this->type_ != elfcpp::PT_TLS
2394 && (os->flags() & elfcpp::SHF_TLS) != 0
2395 && !this->output_data_.empty())
2396 {
2397 pdl = &this->output_data_;
2398 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2399 bool sawtls = false;
2400 Output_segment::Output_data_list::iterator p = pdl->end();
2401 do
2402 {
2403 --p;
2404 bool insert;
2405 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2406 {
2407 sawtls = true;
2408 // Put a NOBITS section after the first TLS section.
2409 // But a PROGBITS section after the first TLS/PROGBITS
2410 // section.
2411 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2412 }
2413 else
2414 {
2415 // If we've gone past the TLS sections, but we've seen a
2416 // TLS section, then we need to insert this section now.
2417 insert = sawtls;
2418 }
2419
2420 if (insert)
2421 {
2422 // We don't worry about the FRONT parameter.
2423 ++p;
2424 pdl->insert(p, os);
2425 return;
2426 }
2427 }
2428 while (p != pdl->begin());
2429
2430 // There are no TLS sections yet; put this one at the requested
2431 // location in the section list.
2432 }
2433
2434 if (front)
2435 pdl->push_front(os);
2436 else
2437 pdl->push_back(os);
2438 }
2439
2440 // Add an Output_data (which is not an Output_section) to the start of
2441 // a segment.
2442
2443 void
2444 Output_segment::add_initial_output_data(Output_data* od)
2445 {
2446 gold_assert(!this->is_max_align_known_);
2447 this->output_data_.push_front(od);
2448 }
2449
2450 // Return the maximum alignment of the Output_data in Output_segment.
2451
2452 uint64_t
2453 Output_segment::maximum_alignment()
2454 {
2455 if (!this->is_max_align_known_)
2456 {
2457 uint64_t addralign;
2458
2459 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2460 if (addralign > this->max_align_)
2461 this->max_align_ = addralign;
2462
2463 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2464 if (addralign > this->max_align_)
2465 this->max_align_ = addralign;
2466
2467 this->is_max_align_known_ = true;
2468 }
2469
2470 return this->max_align_;
2471 }
2472
2473 // Return the maximum alignment of a list of Output_data.
2474
2475 uint64_t
2476 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2477 {
2478 uint64_t ret = 0;
2479 for (Output_data_list::const_iterator p = pdl->begin();
2480 p != pdl->end();
2481 ++p)
2482 {
2483 uint64_t addralign = (*p)->addralign();
2484 if (addralign > ret)
2485 ret = addralign;
2486 }
2487 return ret;
2488 }
2489
2490 // Return the number of dynamic relocs applied to this segment.
2491
2492 unsigned int
2493 Output_segment::dynamic_reloc_count() const
2494 {
2495 return (this->dynamic_reloc_count_list(&this->output_data_)
2496 + this->dynamic_reloc_count_list(&this->output_bss_));
2497 }
2498
2499 // Return the number of dynamic relocs applied to an Output_data_list.
2500
2501 unsigned int
2502 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2503 {
2504 unsigned int count = 0;
2505 for (Output_data_list::const_iterator p = pdl->begin();
2506 p != pdl->end();
2507 ++p)
2508 count += (*p)->dynamic_reloc_count();
2509 return count;
2510 }
2511
2512 // Set the section addresses for an Output_segment. If RESET is true,
2513 // reset the addresses first. ADDR is the address and *POFF is the
2514 // file offset. Set the section indexes starting with *PSHNDX.
2515 // Return the address of the immediately following segment. Update
2516 // *POFF and *PSHNDX.
2517
2518 uint64_t
2519 Output_segment::set_section_addresses(bool reset, uint64_t addr, off_t* poff,
2520 unsigned int* pshndx)
2521 {
2522 gold_assert(this->type_ == elfcpp::PT_LOAD);
2523
2524 if (!reset && this->are_addresses_set_)
2525 {
2526 gold_assert(this->paddr_ == addr);
2527 addr = this->vaddr_;
2528 }
2529 else
2530 {
2531 this->vaddr_ = addr;
2532 this->paddr_ = addr;
2533 this->are_addresses_set_ = true;
2534 }
2535
2536 off_t orig_off = *poff;
2537 this->offset_ = orig_off;
2538
2539 addr = this->set_section_list_addresses(reset, &this->output_data_,
2540 addr, poff, pshndx);
2541 this->filesz_ = *poff - orig_off;
2542
2543 off_t off = *poff;
2544
2545 uint64_t ret = this->set_section_list_addresses(reset, &this->output_bss_,
2546 addr, poff, pshndx);
2547 this->memsz_ = *poff - orig_off;
2548
2549 // Ignore the file offset adjustments made by the BSS Output_data
2550 // objects.
2551 *poff = off;
2552
2553 return ret;
2554 }
2555
2556 // Set the addresses and file offsets in a list of Output_data
2557 // structures.
2558
2559 uint64_t
2560 Output_segment::set_section_list_addresses(bool reset, Output_data_list* pdl,
2561 uint64_t addr, off_t* poff,
2562 unsigned int* pshndx)
2563 {
2564 off_t startoff = *poff;
2565
2566 off_t off = startoff;
2567 for (Output_data_list::iterator p = pdl->begin();
2568 p != pdl->end();
2569 ++p)
2570 {
2571 if (reset)
2572 (*p)->reset_address_and_file_offset();
2573
2574 // When using a linker script the section will most likely
2575 // already have an address.
2576 if (!(*p)->is_address_valid())
2577 {
2578 off = align_address(off, (*p)->addralign());
2579 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2580 }
2581 else
2582 {
2583 // The script may have inserted a skip forward, but it
2584 // better not have moved backward.
2585 gold_assert((*p)->address() >= addr + (off - startoff));
2586 off += (*p)->address() - (addr + (off - startoff));
2587 (*p)->set_file_offset(off);
2588 (*p)->finalize_data_size();
2589 }
2590
2591 // Unless this is a PT_TLS segment, we want to ignore the size
2592 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
2593 // affect the size of a PT_LOAD segment.
2594 if (this->type_ == elfcpp::PT_TLS
2595 || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2596 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2597 off += (*p)->data_size();
2598
2599 if ((*p)->is_section())
2600 {
2601 (*p)->set_out_shndx(*pshndx);
2602 ++*pshndx;
2603 }
2604 }
2605
2606 *poff = off;
2607 return addr + (off - startoff);
2608 }
2609
2610 // For a non-PT_LOAD segment, set the offset from the sections, if
2611 // any.
2612
2613 void
2614 Output_segment::set_offset()
2615 {
2616 gold_assert(this->type_ != elfcpp::PT_LOAD);
2617
2618 gold_assert(!this->are_addresses_set_);
2619
2620 if (this->output_data_.empty() && this->output_bss_.empty())
2621 {
2622 this->vaddr_ = 0;
2623 this->paddr_ = 0;
2624 this->are_addresses_set_ = true;
2625 this->memsz_ = 0;
2626 this->min_p_align_ = 0;
2627 this->offset_ = 0;
2628 this->filesz_ = 0;
2629 return;
2630 }
2631
2632 const Output_data* first;
2633 if (this->output_data_.empty())
2634 first = this->output_bss_.front();
2635 else
2636 first = this->output_data_.front();
2637 this->vaddr_ = first->address();
2638 this->paddr_ = (first->has_load_address()
2639 ? first->load_address()
2640 : this->vaddr_);
2641 this->are_addresses_set_ = true;
2642 this->offset_ = first->offset();
2643
2644 if (this->output_data_.empty())
2645 this->filesz_ = 0;
2646 else
2647 {
2648 const Output_data* last_data = this->output_data_.back();
2649 this->filesz_ = (last_data->address()
2650 + last_data->data_size()
2651 - this->vaddr_);
2652 }
2653
2654 const Output_data* last;
2655 if (this->output_bss_.empty())
2656 last = this->output_data_.back();
2657 else
2658 last = this->output_bss_.back();
2659 this->memsz_ = (last->address()
2660 + last->data_size()
2661 - this->vaddr_);
2662 }
2663
2664 // Set the TLS offsets of the sections in the PT_TLS segment.
2665
2666 void
2667 Output_segment::set_tls_offsets()
2668 {
2669 gold_assert(this->type_ == elfcpp::PT_TLS);
2670
2671 for (Output_data_list::iterator p = this->output_data_.begin();
2672 p != this->output_data_.end();
2673 ++p)
2674 (*p)->set_tls_offset(this->vaddr_);
2675
2676 for (Output_data_list::iterator p = this->output_bss_.begin();
2677 p != this->output_bss_.end();
2678 ++p)
2679 (*p)->set_tls_offset(this->vaddr_);
2680 }
2681
2682 // Return the address of the first section.
2683
2684 uint64_t
2685 Output_segment::first_section_load_address() const
2686 {
2687 for (Output_data_list::const_iterator p = this->output_data_.begin();
2688 p != this->output_data_.end();
2689 ++p)
2690 if ((*p)->is_section())
2691 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2692
2693 for (Output_data_list::const_iterator p = this->output_bss_.begin();
2694 p != this->output_bss_.end();
2695 ++p)
2696 if ((*p)->is_section())
2697 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2698
2699 gold_unreachable();
2700 }
2701
2702 // Return the number of Output_sections in an Output_segment.
2703
2704 unsigned int
2705 Output_segment::output_section_count() const
2706 {
2707 return (this->output_section_count_list(&this->output_data_)
2708 + this->output_section_count_list(&this->output_bss_));
2709 }
2710
2711 // Return the number of Output_sections in an Output_data_list.
2712
2713 unsigned int
2714 Output_segment::output_section_count_list(const Output_data_list* pdl) const
2715 {
2716 unsigned int count = 0;
2717 for (Output_data_list::const_iterator p = pdl->begin();
2718 p != pdl->end();
2719 ++p)
2720 {
2721 if ((*p)->is_section())
2722 ++count;
2723 }
2724 return count;
2725 }
2726
2727 // Return the section attached to the list segment with the lowest
2728 // load address. This is used when handling a PHDRS clause in a
2729 // linker script.
2730
2731 Output_section*
2732 Output_segment::section_with_lowest_load_address() const
2733 {
2734 Output_section* found = NULL;
2735 uint64_t found_lma = 0;
2736 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2737
2738 Output_section* found_data = found;
2739 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2740 if (found != found_data && found_data != NULL)
2741 {
2742 gold_error(_("nobits section %s may not precede progbits section %s "
2743 "in same segment"),
2744 found->name(), found_data->name());
2745 return NULL;
2746 }
2747
2748 return found;
2749 }
2750
2751 // Look through a list for a section with a lower load address.
2752
2753 void
2754 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2755 Output_section** found,
2756 uint64_t* found_lma) const
2757 {
2758 for (Output_data_list::const_iterator p = pdl->begin();
2759 p != pdl->end();
2760 ++p)
2761 {
2762 if (!(*p)->is_section())
2763 continue;
2764 Output_section* os = static_cast<Output_section*>(*p);
2765 uint64_t lma = (os->has_load_address()
2766 ? os->load_address()
2767 : os->address());
2768 if (*found == NULL || lma < *found_lma)
2769 {
2770 *found = os;
2771 *found_lma = lma;
2772 }
2773 }
2774 }
2775
2776 // Write the segment data into *OPHDR.
2777
2778 template<int size, bool big_endian>
2779 void
2780 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
2781 {
2782 ophdr->put_p_type(this->type_);
2783 ophdr->put_p_offset(this->offset_);
2784 ophdr->put_p_vaddr(this->vaddr_);
2785 ophdr->put_p_paddr(this->paddr_);
2786 ophdr->put_p_filesz(this->filesz_);
2787 ophdr->put_p_memsz(this->memsz_);
2788 ophdr->put_p_flags(this->flags_);
2789 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
2790 }
2791
2792 // Write the section headers into V.
2793
2794 template<int size, bool big_endian>
2795 unsigned char*
2796 Output_segment::write_section_headers(const Layout* layout,
2797 const Stringpool* secnamepool,
2798 unsigned char* v,
2799 unsigned int *pshndx
2800 ACCEPT_SIZE_ENDIAN) const
2801 {
2802 // Every section that is attached to a segment must be attached to a
2803 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2804 // segments.
2805 if (this->type_ != elfcpp::PT_LOAD)
2806 return v;
2807
2808 v = this->write_section_headers_list
2809 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
2810 layout, secnamepool, &this->output_data_, v, pshndx
2811 SELECT_SIZE_ENDIAN(size, big_endian));
2812 v = this->write_section_headers_list
2813 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
2814 layout, secnamepool, &this->output_bss_, v, pshndx
2815 SELECT_SIZE_ENDIAN(size, big_endian));
2816 return v;
2817 }
2818
2819 template<int size, bool big_endian>
2820 unsigned char*
2821 Output_segment::write_section_headers_list(const Layout* layout,
2822 const Stringpool* secnamepool,
2823 const Output_data_list* pdl,
2824 unsigned char* v,
2825 unsigned int* pshndx
2826 ACCEPT_SIZE_ENDIAN) const
2827 {
2828 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2829 for (Output_data_list::const_iterator p = pdl->begin();
2830 p != pdl->end();
2831 ++p)
2832 {
2833 if ((*p)->is_section())
2834 {
2835 const Output_section* ps = static_cast<const Output_section*>(*p);
2836 gold_assert(*pshndx == ps->out_shndx());
2837 elfcpp::Shdr_write<size, big_endian> oshdr(v);
2838 ps->write_header(layout, secnamepool, &oshdr);
2839 v += shdr_size;
2840 ++*pshndx;
2841 }
2842 }
2843 return v;
2844 }
2845
2846 // Output_file methods.
2847
2848 Output_file::Output_file(const char* name)
2849 : name_(name),
2850 o_(-1),
2851 file_size_(0),
2852 base_(NULL),
2853 map_is_anonymous_(false),
2854 is_temporary_(false)
2855 {
2856 }
2857
2858 // Open the output file.
2859
2860 void
2861 Output_file::open(off_t file_size)
2862 {
2863 this->file_size_ = file_size;
2864
2865 // Unlink the file first; otherwise the open() may fail if the file
2866 // is busy (e.g. it's an executable that's currently being executed).
2867 //
2868 // However, the linker may be part of a system where a zero-length
2869 // file is created for it to write to, with tight permissions (gcc
2870 // 2.95 did something like this). Unlinking the file would work
2871 // around those permission controls, so we only unlink if the file
2872 // has a non-zero size. We also unlink only regular files to avoid
2873 // trouble with directories/etc.
2874 //
2875 // If we fail, continue; this command is merely a best-effort attempt
2876 // to improve the odds for open().
2877
2878 // We let the name "-" mean "stdout"
2879 if (!this->is_temporary_)
2880 {
2881 if (strcmp(this->name_, "-") == 0)
2882 this->o_ = STDOUT_FILENO;
2883 else
2884 {
2885 struct stat s;
2886 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2887 unlink_if_ordinary(this->name_);
2888
2889 int mode = parameters->output_is_object() ? 0666 : 0777;
2890 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2891 if (o < 0)
2892 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2893 this->o_ = o;
2894 }
2895 }
2896
2897 this->map();
2898 }
2899
2900 // Resize the output file.
2901
2902 void
2903 Output_file::resize(off_t file_size)
2904 {
2905 // If the mmap is mapping an anonymous memory buffer, this is easy:
2906 // just mremap to the new size. If it's mapping to a file, we want
2907 // to unmap to flush to the file, then remap after growing the file.
2908 if (this->map_is_anonymous_)
2909 {
2910 void* base = ::mremap(this->base_, this->file_size_, file_size,
2911 MREMAP_MAYMOVE);
2912 if (base == MAP_FAILED)
2913 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2914 this->base_ = static_cast<unsigned char*>(base);
2915 this->file_size_ = file_size;
2916 }
2917 else
2918 {
2919 this->unmap();
2920 this->file_size_ = file_size;
2921 this->map();
2922 }
2923 }
2924
2925 // Map the file into memory.
2926
2927 void
2928 Output_file::map()
2929 {
2930 const int o = this->o_;
2931
2932 // If the output file is not a regular file, don't try to mmap it;
2933 // instead, we'll mmap a block of memory (an anonymous buffer), and
2934 // then later write the buffer to the file.
2935 void* base;
2936 struct stat statbuf;
2937 if (o == STDOUT_FILENO || o == STDERR_FILENO
2938 || ::fstat(o, &statbuf) != 0
2939 || !S_ISREG(statbuf.st_mode)
2940 || this->is_temporary_)
2941 {
2942 this->map_is_anonymous_ = true;
2943 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2944 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2945 }
2946 else
2947 {
2948 // Write out one byte to make the file the right size.
2949 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2950 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2951 char b = 0;
2952 if (::write(o, &b, 1) != 1)
2953 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2954
2955 // Map the file into memory.
2956 this->map_is_anonymous_ = false;
2957 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2958 MAP_SHARED, o, 0);
2959 }
2960 if (base == MAP_FAILED)
2961 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
2962 this->base_ = static_cast<unsigned char*>(base);
2963 }
2964
2965 // Unmap the file from memory.
2966
2967 void
2968 Output_file::unmap()
2969 {
2970 if (::munmap(this->base_, this->file_size_) < 0)
2971 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
2972 this->base_ = NULL;
2973 }
2974
2975 // Close the output file.
2976
2977 void
2978 Output_file::close()
2979 {
2980 // If the map isn't file-backed, we need to write it now.
2981 if (this->map_is_anonymous_ && !this->is_temporary_)
2982 {
2983 size_t bytes_to_write = this->file_size_;
2984 while (bytes_to_write > 0)
2985 {
2986 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2987 if (bytes_written == 0)
2988 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2989 else if (bytes_written < 0)
2990 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2991 else
2992 bytes_to_write -= bytes_written;
2993 }
2994 }
2995 this->unmap();
2996
2997 // We don't close stdout or stderr
2998 if (this->o_ != STDOUT_FILENO
2999 && this->o_ != STDERR_FILENO
3000 && !this->is_temporary_)
3001 if (::close(this->o_) < 0)
3002 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3003 this->o_ = -1;
3004 }
3005
3006 // Instantiate the templates we need. We could use the configure
3007 // script to restrict this to only the ones for implemented targets.
3008
3009 #ifdef HAVE_TARGET_32_LITTLE
3010 template
3011 off_t
3012 Output_section::add_input_section<32, false>(
3013 Sized_relobj<32, false>* object,
3014 unsigned int shndx,
3015 const char* secname,
3016 const elfcpp::Shdr<32, false>& shdr,
3017 unsigned int reloc_shndx,
3018 bool have_sections_script);
3019 #endif
3020
3021 #ifdef HAVE_TARGET_32_BIG
3022 template
3023 off_t
3024 Output_section::add_input_section<32, true>(
3025 Sized_relobj<32, true>* object,
3026 unsigned int shndx,
3027 const char* secname,
3028 const elfcpp::Shdr<32, true>& shdr,
3029 unsigned int reloc_shndx,
3030 bool have_sections_script);
3031 #endif
3032
3033 #ifdef HAVE_TARGET_64_LITTLE
3034 template
3035 off_t
3036 Output_section::add_input_section<64, false>(
3037 Sized_relobj<64, false>* object,
3038 unsigned int shndx,
3039 const char* secname,
3040 const elfcpp::Shdr<64, false>& shdr,
3041 unsigned int reloc_shndx,
3042 bool have_sections_script);
3043 #endif
3044
3045 #ifdef HAVE_TARGET_64_BIG
3046 template
3047 off_t
3048 Output_section::add_input_section<64, true>(
3049 Sized_relobj<64, true>* object,
3050 unsigned int shndx,
3051 const char* secname,
3052 const elfcpp::Shdr<64, true>& shdr,
3053 unsigned int reloc_shndx,
3054 bool have_sections_script);
3055 #endif
3056
3057 #ifdef HAVE_TARGET_32_LITTLE
3058 template
3059 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3060 #endif
3061
3062 #ifdef HAVE_TARGET_32_BIG
3063 template
3064 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3065 #endif
3066
3067 #ifdef HAVE_TARGET_64_LITTLE
3068 template
3069 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3070 #endif
3071
3072 #ifdef HAVE_TARGET_64_BIG
3073 template
3074 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3075 #endif
3076
3077 #ifdef HAVE_TARGET_32_LITTLE
3078 template
3079 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3080 #endif
3081
3082 #ifdef HAVE_TARGET_32_BIG
3083 template
3084 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3085 #endif
3086
3087 #ifdef HAVE_TARGET_64_LITTLE
3088 template
3089 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3090 #endif
3091
3092 #ifdef HAVE_TARGET_64_BIG
3093 template
3094 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3095 #endif
3096
3097 #ifdef HAVE_TARGET_32_LITTLE
3098 template
3099 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3100 #endif
3101
3102 #ifdef HAVE_TARGET_32_BIG
3103 template
3104 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3105 #endif
3106
3107 #ifdef HAVE_TARGET_64_LITTLE
3108 template
3109 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3110 #endif
3111
3112 #ifdef HAVE_TARGET_64_BIG
3113 template
3114 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3115 #endif
3116
3117 #ifdef HAVE_TARGET_32_LITTLE
3118 template
3119 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3120 #endif
3121
3122 #ifdef HAVE_TARGET_32_BIG
3123 template
3124 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3125 #endif
3126
3127 #ifdef HAVE_TARGET_64_LITTLE
3128 template
3129 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3130 #endif
3131
3132 #ifdef HAVE_TARGET_64_BIG
3133 template
3134 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3135 #endif
3136
3137 #ifdef HAVE_TARGET_32_LITTLE
3138 template
3139 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3140 #endif
3141
3142 #ifdef HAVE_TARGET_32_BIG
3143 template
3144 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3145 #endif
3146
3147 #ifdef HAVE_TARGET_64_LITTLE
3148 template
3149 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3150 #endif
3151
3152 #ifdef HAVE_TARGET_64_BIG
3153 template
3154 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3155 #endif
3156
3157 #ifdef HAVE_TARGET_32_LITTLE
3158 template
3159 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3160 #endif
3161
3162 #ifdef HAVE_TARGET_32_BIG
3163 template
3164 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3165 #endif
3166
3167 #ifdef HAVE_TARGET_64_LITTLE
3168 template
3169 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3170 #endif
3171
3172 #ifdef HAVE_TARGET_64_BIG
3173 template
3174 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3175 #endif
3176
3177 #ifdef HAVE_TARGET_32_LITTLE
3178 template
3179 class Output_data_group<32, false>;
3180 #endif
3181
3182 #ifdef HAVE_TARGET_32_BIG
3183 template
3184 class Output_data_group<32, true>;
3185 #endif
3186
3187 #ifdef HAVE_TARGET_64_LITTLE
3188 template
3189 class Output_data_group<64, false>;
3190 #endif
3191
3192 #ifdef HAVE_TARGET_64_BIG
3193 template
3194 class Output_data_group<64, true>;
3195 #endif
3196
3197 #ifdef HAVE_TARGET_32_LITTLE
3198 template
3199 class Output_data_got<32, false>;
3200 #endif
3201
3202 #ifdef HAVE_TARGET_32_BIG
3203 template
3204 class Output_data_got<32, true>;
3205 #endif
3206
3207 #ifdef HAVE_TARGET_64_LITTLE
3208 template
3209 class Output_data_got<64, false>;
3210 #endif
3211
3212 #ifdef HAVE_TARGET_64_BIG
3213 template
3214 class Output_data_got<64, true>;
3215 #endif
3216
3217 } // End namespace gold.
This page took 0.096629 seconds and 4 git commands to generate.