* src-release (BINUTILS_SUPPORT_DIRS): Add elfcpp and gold.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h" // for unlink_if_ordinary()
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "output.h"
41
42 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43 #ifndef MAP_ANONYMOUS
44 # define MAP_ANONYMOUS MAP_ANON
45 #endif
46
47 namespace gold
48 {
49
50 // Output_data variables.
51
52 bool Output_data::allocated_sizes_are_fixed;
53
54 // Output_data methods.
55
56 Output_data::~Output_data()
57 {
58 }
59
60 // Return the default alignment for the target size.
61
62 uint64_t
63 Output_data::default_alignment()
64 {
65 return Output_data::default_alignment_for_size(
66 parameters->target().get_size());
67 }
68
69 // Return the default alignment for a size--32 or 64.
70
71 uint64_t
72 Output_data::default_alignment_for_size(int size)
73 {
74 if (size == 32)
75 return 4;
76 else if (size == 64)
77 return 8;
78 else
79 gold_unreachable();
80 }
81
82 // Output_section_header methods. This currently assumes that the
83 // segment and section lists are complete at construction time.
84
85 Output_section_headers::Output_section_headers(
86 const Layout* layout,
87 const Layout::Segment_list* segment_list,
88 const Layout::Section_list* section_list,
89 const Layout::Section_list* unattached_section_list,
90 const Stringpool* secnamepool,
91 const Output_section* shstrtab_section)
92 : layout_(layout),
93 segment_list_(segment_list),
94 section_list_(section_list),
95 unattached_section_list_(unattached_section_list),
96 secnamepool_(secnamepool),
97 shstrtab_section_(shstrtab_section)
98 {
99 // Count all the sections. Start with 1 for the null section.
100 off_t count = 1;
101 if (!parameters->options().relocatable())
102 {
103 for (Layout::Segment_list::const_iterator p = segment_list->begin();
104 p != segment_list->end();
105 ++p)
106 if ((*p)->type() == elfcpp::PT_LOAD)
107 count += (*p)->output_section_count();
108 }
109 else
110 {
111 for (Layout::Section_list::const_iterator p = section_list->begin();
112 p != section_list->end();
113 ++p)
114 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
115 ++count;
116 }
117 count += unattached_section_list->size();
118
119 const int size = parameters->target().get_size();
120 int shdr_size;
121 if (size == 32)
122 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
123 else if (size == 64)
124 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
125 else
126 gold_unreachable();
127
128 this->set_data_size(count * shdr_size);
129 }
130
131 // Write out the section headers.
132
133 void
134 Output_section_headers::do_write(Output_file* of)
135 {
136 switch (parameters->size_and_endianness())
137 {
138 #ifdef HAVE_TARGET_32_LITTLE
139 case Parameters::TARGET_32_LITTLE:
140 this->do_sized_write<32, false>(of);
141 break;
142 #endif
143 #ifdef HAVE_TARGET_32_BIG
144 case Parameters::TARGET_32_BIG:
145 this->do_sized_write<32, true>(of);
146 break;
147 #endif
148 #ifdef HAVE_TARGET_64_LITTLE
149 case Parameters::TARGET_64_LITTLE:
150 this->do_sized_write<64, false>(of);
151 break;
152 #endif
153 #ifdef HAVE_TARGET_64_BIG
154 case Parameters::TARGET_64_BIG:
155 this->do_sized_write<64, true>(of);
156 break;
157 #endif
158 default:
159 gold_unreachable();
160 }
161 }
162
163 template<int size, bool big_endian>
164 void
165 Output_section_headers::do_sized_write(Output_file* of)
166 {
167 off_t all_shdrs_size = this->data_size();
168 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
169
170 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
171 unsigned char* v = view;
172
173 {
174 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
175 oshdr.put_sh_name(0);
176 oshdr.put_sh_type(elfcpp::SHT_NULL);
177 oshdr.put_sh_flags(0);
178 oshdr.put_sh_addr(0);
179 oshdr.put_sh_offset(0);
180
181 size_t section_count = (this->data_size()
182 / elfcpp::Elf_sizes<size>::shdr_size);
183 if (section_count < elfcpp::SHN_LORESERVE)
184 oshdr.put_sh_size(0);
185 else
186 oshdr.put_sh_size(section_count);
187
188 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
189 if (shstrndx < elfcpp::SHN_LORESERVE)
190 oshdr.put_sh_link(0);
191 else
192 oshdr.put_sh_link(shstrndx);
193
194 oshdr.put_sh_info(0);
195 oshdr.put_sh_addralign(0);
196 oshdr.put_sh_entsize(0);
197 }
198
199 v += shdr_size;
200
201 unsigned int shndx = 1;
202 if (!parameters->options().relocatable())
203 {
204 for (Layout::Segment_list::const_iterator p =
205 this->segment_list_->begin();
206 p != this->segment_list_->end();
207 ++p)
208 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
209 this->secnamepool_,
210 v,
211 &shndx);
212 }
213 else
214 {
215 for (Layout::Section_list::const_iterator p =
216 this->section_list_->begin();
217 p != this->section_list_->end();
218 ++p)
219 {
220 // We do unallocated sections below, except that group
221 // sections have to come first.
222 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
223 && (*p)->type() != elfcpp::SHT_GROUP)
224 continue;
225 gold_assert(shndx == (*p)->out_shndx());
226 elfcpp::Shdr_write<size, big_endian> oshdr(v);
227 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
228 v += shdr_size;
229 ++shndx;
230 }
231 }
232
233 for (Layout::Section_list::const_iterator p =
234 this->unattached_section_list_->begin();
235 p != this->unattached_section_list_->end();
236 ++p)
237 {
238 // For a relocatable link, we did unallocated group sections
239 // above, since they have to come first.
240 if ((*p)->type() == elfcpp::SHT_GROUP
241 && parameters->options().relocatable())
242 continue;
243 gold_assert(shndx == (*p)->out_shndx());
244 elfcpp::Shdr_write<size, big_endian> oshdr(v);
245 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
246 v += shdr_size;
247 ++shndx;
248 }
249
250 of->write_output_view(this->offset(), all_shdrs_size, view);
251 }
252
253 // Output_segment_header methods.
254
255 Output_segment_headers::Output_segment_headers(
256 const Layout::Segment_list& segment_list)
257 : segment_list_(segment_list)
258 {
259 const int size = parameters->target().get_size();
260 int phdr_size;
261 if (size == 32)
262 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
263 else if (size == 64)
264 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
265 else
266 gold_unreachable();
267
268 this->set_data_size(segment_list.size() * phdr_size);
269 }
270
271 void
272 Output_segment_headers::do_write(Output_file* of)
273 {
274 switch (parameters->size_and_endianness())
275 {
276 #ifdef HAVE_TARGET_32_LITTLE
277 case Parameters::TARGET_32_LITTLE:
278 this->do_sized_write<32, false>(of);
279 break;
280 #endif
281 #ifdef HAVE_TARGET_32_BIG
282 case Parameters::TARGET_32_BIG:
283 this->do_sized_write<32, true>(of);
284 break;
285 #endif
286 #ifdef HAVE_TARGET_64_LITTLE
287 case Parameters::TARGET_64_LITTLE:
288 this->do_sized_write<64, false>(of);
289 break;
290 #endif
291 #ifdef HAVE_TARGET_64_BIG
292 case Parameters::TARGET_64_BIG:
293 this->do_sized_write<64, true>(of);
294 break;
295 #endif
296 default:
297 gold_unreachable();
298 }
299 }
300
301 template<int size, bool big_endian>
302 void
303 Output_segment_headers::do_sized_write(Output_file* of)
304 {
305 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
306 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
307 gold_assert(all_phdrs_size == this->data_size());
308 unsigned char* view = of->get_output_view(this->offset(),
309 all_phdrs_size);
310 unsigned char* v = view;
311 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
312 p != this->segment_list_.end();
313 ++p)
314 {
315 elfcpp::Phdr_write<size, big_endian> ophdr(v);
316 (*p)->write_header(&ophdr);
317 v += phdr_size;
318 }
319
320 gold_assert(v - view == all_phdrs_size);
321
322 of->write_output_view(this->offset(), all_phdrs_size, view);
323 }
324
325 // Output_file_header methods.
326
327 Output_file_header::Output_file_header(const Target* target,
328 const Symbol_table* symtab,
329 const Output_segment_headers* osh,
330 const char* entry)
331 : target_(target),
332 symtab_(symtab),
333 segment_header_(osh),
334 section_header_(NULL),
335 shstrtab_(NULL),
336 entry_(entry)
337 {
338 const int size = parameters->target().get_size();
339 int ehdr_size;
340 if (size == 32)
341 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
342 else if (size == 64)
343 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
344 else
345 gold_unreachable();
346
347 this->set_data_size(ehdr_size);
348 }
349
350 // Set the section table information for a file header.
351
352 void
353 Output_file_header::set_section_info(const Output_section_headers* shdrs,
354 const Output_section* shstrtab)
355 {
356 this->section_header_ = shdrs;
357 this->shstrtab_ = shstrtab;
358 }
359
360 // Write out the file header.
361
362 void
363 Output_file_header::do_write(Output_file* of)
364 {
365 gold_assert(this->offset() == 0);
366
367 switch (parameters->size_and_endianness())
368 {
369 #ifdef HAVE_TARGET_32_LITTLE
370 case Parameters::TARGET_32_LITTLE:
371 this->do_sized_write<32, false>(of);
372 break;
373 #endif
374 #ifdef HAVE_TARGET_32_BIG
375 case Parameters::TARGET_32_BIG:
376 this->do_sized_write<32, true>(of);
377 break;
378 #endif
379 #ifdef HAVE_TARGET_64_LITTLE
380 case Parameters::TARGET_64_LITTLE:
381 this->do_sized_write<64, false>(of);
382 break;
383 #endif
384 #ifdef HAVE_TARGET_64_BIG
385 case Parameters::TARGET_64_BIG:
386 this->do_sized_write<64, true>(of);
387 break;
388 #endif
389 default:
390 gold_unreachable();
391 }
392 }
393
394 // Write out the file header with appropriate size and endianess.
395
396 template<int size, bool big_endian>
397 void
398 Output_file_header::do_sized_write(Output_file* of)
399 {
400 gold_assert(this->offset() == 0);
401
402 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
403 unsigned char* view = of->get_output_view(0, ehdr_size);
404 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
405
406 unsigned char e_ident[elfcpp::EI_NIDENT];
407 memset(e_ident, 0, elfcpp::EI_NIDENT);
408 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
409 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
410 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
411 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
412 if (size == 32)
413 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
414 else if (size == 64)
415 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
416 else
417 gold_unreachable();
418 e_ident[elfcpp::EI_DATA] = (big_endian
419 ? elfcpp::ELFDATA2MSB
420 : elfcpp::ELFDATA2LSB);
421 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
422 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
423 oehdr.put_e_ident(e_ident);
424
425 elfcpp::ET e_type;
426 if (parameters->options().relocatable())
427 e_type = elfcpp::ET_REL;
428 else if (parameters->options().shared())
429 e_type = elfcpp::ET_DYN;
430 else
431 e_type = elfcpp::ET_EXEC;
432 oehdr.put_e_type(e_type);
433
434 oehdr.put_e_machine(this->target_->machine_code());
435 oehdr.put_e_version(elfcpp::EV_CURRENT);
436
437 oehdr.put_e_entry(this->entry<size>());
438
439 if (this->segment_header_ == NULL)
440 oehdr.put_e_phoff(0);
441 else
442 oehdr.put_e_phoff(this->segment_header_->offset());
443
444 oehdr.put_e_shoff(this->section_header_->offset());
445
446 // FIXME: The target needs to set the flags.
447 oehdr.put_e_flags(0);
448
449 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
450
451 if (this->segment_header_ == NULL)
452 {
453 oehdr.put_e_phentsize(0);
454 oehdr.put_e_phnum(0);
455 }
456 else
457 {
458 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
459 oehdr.put_e_phnum(this->segment_header_->data_size()
460 / elfcpp::Elf_sizes<size>::phdr_size);
461 }
462
463 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
464 size_t section_count = (this->section_header_->data_size()
465 / elfcpp::Elf_sizes<size>::shdr_size);
466
467 if (section_count < elfcpp::SHN_LORESERVE)
468 oehdr.put_e_shnum(this->section_header_->data_size()
469 / elfcpp::Elf_sizes<size>::shdr_size);
470 else
471 oehdr.put_e_shnum(0);
472
473 unsigned int shstrndx = this->shstrtab_->out_shndx();
474 if (shstrndx < elfcpp::SHN_LORESERVE)
475 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
476 else
477 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
478
479 of->write_output_view(0, ehdr_size, view);
480 }
481
482 // Return the value to use for the entry address. THIS->ENTRY_ is the
483 // symbol specified on the command line, if any.
484
485 template<int size>
486 typename elfcpp::Elf_types<size>::Elf_Addr
487 Output_file_header::entry()
488 {
489 const bool should_issue_warning = (this->entry_ != NULL
490 && !parameters->options().relocatable()
491 && !parameters->options().shared());
492
493 // FIXME: Need to support target specific entry symbol.
494 const char* entry = this->entry_;
495 if (entry == NULL)
496 entry = "_start";
497
498 Symbol* sym = this->symtab_->lookup(entry);
499
500 typename Sized_symbol<size>::Value_type v;
501 if (sym != NULL)
502 {
503 Sized_symbol<size>* ssym;
504 ssym = this->symtab_->get_sized_symbol<size>(sym);
505 if (!ssym->is_defined() && should_issue_warning)
506 gold_warning("entry symbol '%s' exists but is not defined", entry);
507 v = ssym->value();
508 }
509 else
510 {
511 // We couldn't find the entry symbol. See if we can parse it as
512 // a number. This supports, e.g., -e 0x1000.
513 char* endptr;
514 v = strtoull(entry, &endptr, 0);
515 if (*endptr != '\0')
516 {
517 if (should_issue_warning)
518 gold_warning("cannot find entry symbol '%s'", entry);
519 v = 0;
520 }
521 }
522
523 return v;
524 }
525
526 // Output_data_const methods.
527
528 void
529 Output_data_const::do_write(Output_file* of)
530 {
531 of->write(this->offset(), this->data_.data(), this->data_.size());
532 }
533
534 // Output_data_const_buffer methods.
535
536 void
537 Output_data_const_buffer::do_write(Output_file* of)
538 {
539 of->write(this->offset(), this->p_, this->data_size());
540 }
541
542 // Output_section_data methods.
543
544 // Record the output section, and set the entry size and such.
545
546 void
547 Output_section_data::set_output_section(Output_section* os)
548 {
549 gold_assert(this->output_section_ == NULL);
550 this->output_section_ = os;
551 this->do_adjust_output_section(os);
552 }
553
554 // Return the section index of the output section.
555
556 unsigned int
557 Output_section_data::do_out_shndx() const
558 {
559 gold_assert(this->output_section_ != NULL);
560 return this->output_section_->out_shndx();
561 }
562
563 // Set the alignment, which means we may need to update the alignment
564 // of the output section.
565
566 void
567 Output_section_data::set_addralign(uint64_t addralign)
568 {
569 this->addralign_ = addralign;
570 if (this->output_section_ != NULL
571 && this->output_section_->addralign() < addralign)
572 this->output_section_->set_addralign(addralign);
573 }
574
575 // Output_data_strtab methods.
576
577 // Set the final data size.
578
579 void
580 Output_data_strtab::set_final_data_size()
581 {
582 this->strtab_->set_string_offsets();
583 this->set_data_size(this->strtab_->get_strtab_size());
584 }
585
586 // Write out a string table.
587
588 void
589 Output_data_strtab::do_write(Output_file* of)
590 {
591 this->strtab_->write(of, this->offset());
592 }
593
594 // Output_reloc methods.
595
596 // A reloc against a global symbol.
597
598 template<bool dynamic, int size, bool big_endian>
599 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
600 Symbol* gsym,
601 unsigned int type,
602 Output_data* od,
603 Address address,
604 bool is_relative)
605 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
606 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
607 {
608 // this->type_ is a bitfield; make sure TYPE fits.
609 gold_assert(this->type_ == type);
610 this->u1_.gsym = gsym;
611 this->u2_.od = od;
612 if (dynamic)
613 this->set_needs_dynsym_index();
614 }
615
616 template<bool dynamic, int size, bool big_endian>
617 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
618 Symbol* gsym,
619 unsigned int type,
620 Relobj* relobj,
621 unsigned int shndx,
622 Address address,
623 bool is_relative)
624 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
625 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
626 {
627 gold_assert(shndx != INVALID_CODE);
628 // this->type_ is a bitfield; make sure TYPE fits.
629 gold_assert(this->type_ == type);
630 this->u1_.gsym = gsym;
631 this->u2_.relobj = relobj;
632 if (dynamic)
633 this->set_needs_dynsym_index();
634 }
635
636 // A reloc against a local symbol.
637
638 template<bool dynamic, int size, bool big_endian>
639 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
640 Sized_relobj<size, big_endian>* relobj,
641 unsigned int local_sym_index,
642 unsigned int type,
643 Output_data* od,
644 Address address,
645 bool is_relative,
646 bool is_section_symbol)
647 : address_(address), local_sym_index_(local_sym_index), type_(type),
648 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
649 shndx_(INVALID_CODE)
650 {
651 gold_assert(local_sym_index != GSYM_CODE
652 && local_sym_index != INVALID_CODE);
653 // this->type_ is a bitfield; make sure TYPE fits.
654 gold_assert(this->type_ == type);
655 this->u1_.relobj = relobj;
656 this->u2_.od = od;
657 if (dynamic)
658 this->set_needs_dynsym_index();
659 }
660
661 template<bool dynamic, int size, bool big_endian>
662 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
663 Sized_relobj<size, big_endian>* relobj,
664 unsigned int local_sym_index,
665 unsigned int type,
666 unsigned int shndx,
667 Address address,
668 bool is_relative,
669 bool is_section_symbol)
670 : address_(address), local_sym_index_(local_sym_index), type_(type),
671 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
672 shndx_(shndx)
673 {
674 gold_assert(local_sym_index != GSYM_CODE
675 && local_sym_index != INVALID_CODE);
676 gold_assert(shndx != INVALID_CODE);
677 // this->type_ is a bitfield; make sure TYPE fits.
678 gold_assert(this->type_ == type);
679 this->u1_.relobj = relobj;
680 this->u2_.relobj = relobj;
681 if (dynamic)
682 this->set_needs_dynsym_index();
683 }
684
685 // A reloc against the STT_SECTION symbol of an output section.
686
687 template<bool dynamic, int size, bool big_endian>
688 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
689 Output_section* os,
690 unsigned int type,
691 Output_data* od,
692 Address address)
693 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
694 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
695 {
696 // this->type_ is a bitfield; make sure TYPE fits.
697 gold_assert(this->type_ == type);
698 this->u1_.os = os;
699 this->u2_.od = od;
700 if (dynamic)
701 this->set_needs_dynsym_index();
702 else
703 os->set_needs_symtab_index();
704 }
705
706 template<bool dynamic, int size, bool big_endian>
707 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
708 Output_section* os,
709 unsigned int type,
710 Relobj* relobj,
711 unsigned int shndx,
712 Address address)
713 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
714 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
715 {
716 gold_assert(shndx != INVALID_CODE);
717 // this->type_ is a bitfield; make sure TYPE fits.
718 gold_assert(this->type_ == type);
719 this->u1_.os = os;
720 this->u2_.relobj = relobj;
721 if (dynamic)
722 this->set_needs_dynsym_index();
723 else
724 os->set_needs_symtab_index();
725 }
726
727 // Record that we need a dynamic symbol index for this relocation.
728
729 template<bool dynamic, int size, bool big_endian>
730 void
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
732 set_needs_dynsym_index()
733 {
734 if (this->is_relative_)
735 return;
736 switch (this->local_sym_index_)
737 {
738 case INVALID_CODE:
739 gold_unreachable();
740
741 case GSYM_CODE:
742 this->u1_.gsym->set_needs_dynsym_entry();
743 break;
744
745 case SECTION_CODE:
746 this->u1_.os->set_needs_dynsym_index();
747 break;
748
749 case 0:
750 break;
751
752 default:
753 {
754 const unsigned int lsi = this->local_sym_index_;
755 if (!this->is_section_symbol_)
756 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
757 else
758 {
759 section_offset_type dummy;
760 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
761 gold_assert(os != NULL);
762 os->set_needs_dynsym_index();
763 }
764 }
765 break;
766 }
767 }
768
769 // Get the symbol index of a relocation.
770
771 template<bool dynamic, int size, bool big_endian>
772 unsigned int
773 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
774 const
775 {
776 unsigned int index;
777 switch (this->local_sym_index_)
778 {
779 case INVALID_CODE:
780 gold_unreachable();
781
782 case GSYM_CODE:
783 if (this->u1_.gsym == NULL)
784 index = 0;
785 else if (dynamic)
786 index = this->u1_.gsym->dynsym_index();
787 else
788 index = this->u1_.gsym->symtab_index();
789 break;
790
791 case SECTION_CODE:
792 if (dynamic)
793 index = this->u1_.os->dynsym_index();
794 else
795 index = this->u1_.os->symtab_index();
796 break;
797
798 case 0:
799 // Relocations without symbols use a symbol index of 0.
800 index = 0;
801 break;
802
803 default:
804 {
805 const unsigned int lsi = this->local_sym_index_;
806 if (!this->is_section_symbol_)
807 {
808 if (dynamic)
809 index = this->u1_.relobj->dynsym_index(lsi);
810 else
811 index = this->u1_.relobj->symtab_index(lsi);
812 }
813 else
814 {
815 section_offset_type dummy;
816 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
817 gold_assert(os != NULL);
818 if (dynamic)
819 index = os->dynsym_index();
820 else
821 index = os->symtab_index();
822 }
823 }
824 break;
825 }
826 gold_assert(index != -1U);
827 return index;
828 }
829
830 // For a local section symbol, get the address of the offset ADDEND
831 // within the input section.
832
833 template<bool dynamic, int size, bool big_endian>
834 section_offset_type
835 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
836 local_section_offset(Addend addend) const
837 {
838 gold_assert(this->local_sym_index_ != GSYM_CODE
839 && this->local_sym_index_ != SECTION_CODE
840 && this->local_sym_index_ != INVALID_CODE
841 && this->is_section_symbol_);
842 const unsigned int lsi = this->local_sym_index_;
843 section_offset_type offset;
844 Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
845 gold_assert(os != NULL);
846 if (offset != -1)
847 return offset + addend;
848 // This is a merge section.
849 offset = os->output_address(this->u1_.relobj, lsi, addend);
850 gold_assert(offset != -1);
851 return offset;
852 }
853
854 // Get the output address of a relocation.
855
856 template<bool dynamic, int size, bool big_endian>
857 section_offset_type
858 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
859 {
860 Address address = this->address_;
861 if (this->shndx_ != INVALID_CODE)
862 {
863 section_offset_type off;
864 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
865 &off);
866 gold_assert(os != NULL);
867 if (off != -1)
868 address += os->address() + off;
869 else
870 {
871 address = os->output_address(this->u2_.relobj, this->shndx_,
872 address);
873 gold_assert(address != -1U);
874 }
875 }
876 else if (this->u2_.od != NULL)
877 address += this->u2_.od->address();
878 return address;
879 }
880
881 // Write out the offset and info fields of a Rel or Rela relocation
882 // entry.
883
884 template<bool dynamic, int size, bool big_endian>
885 template<typename Write_rel>
886 void
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
888 Write_rel* wr) const
889 {
890 wr->put_r_offset(this->get_address());
891 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
892 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
893 }
894
895 // Write out a Rel relocation.
896
897 template<bool dynamic, int size, bool big_endian>
898 void
899 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
900 unsigned char* pov) const
901 {
902 elfcpp::Rel_write<size, big_endian> orel(pov);
903 this->write_rel(&orel);
904 }
905
906 // Get the value of the symbol referred to by a Rel relocation.
907
908 template<bool dynamic, int size, bool big_endian>
909 typename elfcpp::Elf_types<size>::Elf_Addr
910 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
911 Addend addend) const
912 {
913 if (this->local_sym_index_ == GSYM_CODE)
914 {
915 const Sized_symbol<size>* sym;
916 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
917 return sym->value() + addend;
918 }
919 gold_assert(this->local_sym_index_ != SECTION_CODE
920 && this->local_sym_index_ != INVALID_CODE
921 && !this->is_section_symbol_);
922 const unsigned int lsi = this->local_sym_index_;
923 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
924 return symval->value(this->u1_.relobj, addend);
925 }
926
927 // Reloc comparison. This function sorts the dynamic relocs for the
928 // benefit of the dynamic linker. First we sort all relative relocs
929 // to the front. Among relative relocs, we sort by output address.
930 // Among non-relative relocs, we sort by symbol index, then by output
931 // address.
932
933 template<bool dynamic, int size, bool big_endian>
934 int
935 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
936 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
937 const
938 {
939 if (this->is_relative_)
940 {
941 if (!r2.is_relative_)
942 return -1;
943 // Otherwise sort by reloc address below.
944 }
945 else if (r2.is_relative_)
946 return 1;
947 else
948 {
949 unsigned int sym1 = this->get_symbol_index();
950 unsigned int sym2 = r2.get_symbol_index();
951 if (sym1 < sym2)
952 return -1;
953 else if (sym1 > sym2)
954 return 1;
955 // Otherwise sort by reloc address.
956 }
957
958 section_offset_type addr1 = this->get_address();
959 section_offset_type addr2 = r2.get_address();
960 if (addr1 < addr2)
961 return -1;
962 else if (addr1 > addr2)
963 return 1;
964
965 // Final tie breaker, in order to generate the same output on any
966 // host: reloc type.
967 unsigned int type1 = this->type_;
968 unsigned int type2 = r2.type_;
969 if (type1 < type2)
970 return -1;
971 else if (type1 > type2)
972 return 1;
973
974 // These relocs appear to be exactly the same.
975 return 0;
976 }
977
978 // Write out a Rela relocation.
979
980 template<bool dynamic, int size, bool big_endian>
981 void
982 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
983 unsigned char* pov) const
984 {
985 elfcpp::Rela_write<size, big_endian> orel(pov);
986 this->rel_.write_rel(&orel);
987 Addend addend = this->addend_;
988 if (this->rel_.is_relative())
989 addend = this->rel_.symbol_value(addend);
990 else if (this->rel_.is_local_section_symbol())
991 addend = this->rel_.local_section_offset(addend);
992 orel.put_r_addend(addend);
993 }
994
995 // Output_data_reloc_base methods.
996
997 // Adjust the output section.
998
999 template<int sh_type, bool dynamic, int size, bool big_endian>
1000 void
1001 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1002 ::do_adjust_output_section(Output_section* os)
1003 {
1004 if (sh_type == elfcpp::SHT_REL)
1005 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1006 else if (sh_type == elfcpp::SHT_RELA)
1007 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1008 else
1009 gold_unreachable();
1010 if (dynamic)
1011 os->set_should_link_to_dynsym();
1012 else
1013 os->set_should_link_to_symtab();
1014 }
1015
1016 // Write out relocation data.
1017
1018 template<int sh_type, bool dynamic, int size, bool big_endian>
1019 void
1020 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1021 Output_file* of)
1022 {
1023 const off_t off = this->offset();
1024 const off_t oview_size = this->data_size();
1025 unsigned char* const oview = of->get_output_view(off, oview_size);
1026
1027 if (this->sort_relocs_)
1028 {
1029 gold_assert(dynamic);
1030 std::sort(this->relocs_.begin(), this->relocs_.end(),
1031 Sort_relocs_comparison());
1032 }
1033
1034 unsigned char* pov = oview;
1035 for (typename Relocs::const_iterator p = this->relocs_.begin();
1036 p != this->relocs_.end();
1037 ++p)
1038 {
1039 p->write(pov);
1040 pov += reloc_size;
1041 }
1042
1043 gold_assert(pov - oview == oview_size);
1044
1045 of->write_output_view(off, oview_size, oview);
1046
1047 // We no longer need the relocation entries.
1048 this->relocs_.clear();
1049 }
1050
1051 // Class Output_relocatable_relocs.
1052
1053 template<int sh_type, int size, bool big_endian>
1054 void
1055 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1056 {
1057 this->set_data_size(this->rr_->output_reloc_count()
1058 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1059 }
1060
1061 // class Output_data_group.
1062
1063 template<int size, bool big_endian>
1064 Output_data_group<size, big_endian>::Output_data_group(
1065 Sized_relobj<size, big_endian>* relobj,
1066 section_size_type entry_count,
1067 elfcpp::Elf_Word flags,
1068 std::vector<unsigned int>* input_shndxes)
1069 : Output_section_data(entry_count * 4, 4),
1070 relobj_(relobj),
1071 flags_(flags)
1072 {
1073 this->input_shndxes_.swap(*input_shndxes);
1074 }
1075
1076 // Write out the section group, which means translating the section
1077 // indexes to apply to the output file.
1078
1079 template<int size, bool big_endian>
1080 void
1081 Output_data_group<size, big_endian>::do_write(Output_file* of)
1082 {
1083 const off_t off = this->offset();
1084 const section_size_type oview_size =
1085 convert_to_section_size_type(this->data_size());
1086 unsigned char* const oview = of->get_output_view(off, oview_size);
1087
1088 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1089 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1090 ++contents;
1091
1092 for (std::vector<unsigned int>::const_iterator p =
1093 this->input_shndxes_.begin();
1094 p != this->input_shndxes_.end();
1095 ++p, ++contents)
1096 {
1097 section_offset_type dummy;
1098 Output_section* os = this->relobj_->output_section(*p, &dummy);
1099
1100 unsigned int output_shndx;
1101 if (os != NULL)
1102 output_shndx = os->out_shndx();
1103 else
1104 {
1105 this->relobj_->error(_("section group retained but "
1106 "group element discarded"));
1107 output_shndx = 0;
1108 }
1109
1110 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1111 }
1112
1113 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1114 gold_assert(wrote == oview_size);
1115
1116 of->write_output_view(off, oview_size, oview);
1117
1118 // We no longer need this information.
1119 this->input_shndxes_.clear();
1120 }
1121
1122 // Output_data_got::Got_entry methods.
1123
1124 // Write out the entry.
1125
1126 template<int size, bool big_endian>
1127 void
1128 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1129 {
1130 Valtype val = 0;
1131
1132 switch (this->local_sym_index_)
1133 {
1134 case GSYM_CODE:
1135 {
1136 // If the symbol is resolved locally, we need to write out the
1137 // link-time value, which will be relocated dynamically by a
1138 // RELATIVE relocation.
1139 Symbol* gsym = this->u_.gsym;
1140 Sized_symbol<size>* sgsym;
1141 // This cast is a bit ugly. We don't want to put a
1142 // virtual method in Symbol, because we want Symbol to be
1143 // as small as possible.
1144 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1145 val = sgsym->value();
1146 }
1147 break;
1148
1149 case CONSTANT_CODE:
1150 val = this->u_.constant;
1151 break;
1152
1153 default:
1154 {
1155 const unsigned int lsi = this->local_sym_index_;
1156 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1157 val = symval->value(this->u_.object, 0);
1158 }
1159 break;
1160 }
1161
1162 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1163 }
1164
1165 // Output_data_got methods.
1166
1167 // Add an entry for a global symbol to the GOT. This returns true if
1168 // this is a new GOT entry, false if the symbol already had a GOT
1169 // entry.
1170
1171 template<int size, bool big_endian>
1172 bool
1173 Output_data_got<size, big_endian>::add_global(
1174 Symbol* gsym,
1175 unsigned int got_type)
1176 {
1177 if (gsym->has_got_offset(got_type))
1178 return false;
1179
1180 this->entries_.push_back(Got_entry(gsym));
1181 this->set_got_size();
1182 gsym->set_got_offset(got_type, this->last_got_offset());
1183 return true;
1184 }
1185
1186 // Add an entry for a global symbol to the GOT, and add a dynamic
1187 // relocation of type R_TYPE for the GOT entry.
1188 template<int size, bool big_endian>
1189 void
1190 Output_data_got<size, big_endian>::add_global_with_rel(
1191 Symbol* gsym,
1192 unsigned int got_type,
1193 Rel_dyn* rel_dyn,
1194 unsigned int r_type)
1195 {
1196 if (gsym->has_got_offset(got_type))
1197 return;
1198
1199 this->entries_.push_back(Got_entry());
1200 this->set_got_size();
1201 unsigned int got_offset = this->last_got_offset();
1202 gsym->set_got_offset(got_type, got_offset);
1203 rel_dyn->add_global(gsym, r_type, this, got_offset);
1204 }
1205
1206 template<int size, bool big_endian>
1207 void
1208 Output_data_got<size, big_endian>::add_global_with_rela(
1209 Symbol* gsym,
1210 unsigned int got_type,
1211 Rela_dyn* rela_dyn,
1212 unsigned int r_type)
1213 {
1214 if (gsym->has_got_offset(got_type))
1215 return;
1216
1217 this->entries_.push_back(Got_entry());
1218 this->set_got_size();
1219 unsigned int got_offset = this->last_got_offset();
1220 gsym->set_got_offset(got_type, got_offset);
1221 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1222 }
1223
1224 // Add a pair of entries for a global symbol to the GOT, and add
1225 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1226 // If R_TYPE_2 == 0, add the second entry with no relocation.
1227 template<int size, bool big_endian>
1228 void
1229 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1230 Symbol* gsym,
1231 unsigned int got_type,
1232 Rel_dyn* rel_dyn,
1233 unsigned int r_type_1,
1234 unsigned int r_type_2)
1235 {
1236 if (gsym->has_got_offset(got_type))
1237 return;
1238
1239 this->entries_.push_back(Got_entry());
1240 unsigned int got_offset = this->last_got_offset();
1241 gsym->set_got_offset(got_type, got_offset);
1242 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1243
1244 this->entries_.push_back(Got_entry());
1245 if (r_type_2 != 0)
1246 {
1247 got_offset = this->last_got_offset();
1248 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1249 }
1250
1251 this->set_got_size();
1252 }
1253
1254 template<int size, bool big_endian>
1255 void
1256 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1257 Symbol* gsym,
1258 unsigned int got_type,
1259 Rela_dyn* rela_dyn,
1260 unsigned int r_type_1,
1261 unsigned int r_type_2)
1262 {
1263 if (gsym->has_got_offset(got_type))
1264 return;
1265
1266 this->entries_.push_back(Got_entry());
1267 unsigned int got_offset = this->last_got_offset();
1268 gsym->set_got_offset(got_type, got_offset);
1269 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1270
1271 this->entries_.push_back(Got_entry());
1272 if (r_type_2 != 0)
1273 {
1274 got_offset = this->last_got_offset();
1275 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1276 }
1277
1278 this->set_got_size();
1279 }
1280
1281 // Add an entry for a local symbol to the GOT. This returns true if
1282 // this is a new GOT entry, false if the symbol already has a GOT
1283 // entry.
1284
1285 template<int size, bool big_endian>
1286 bool
1287 Output_data_got<size, big_endian>::add_local(
1288 Sized_relobj<size, big_endian>* object,
1289 unsigned int symndx,
1290 unsigned int got_type)
1291 {
1292 if (object->local_has_got_offset(symndx, got_type))
1293 return false;
1294
1295 this->entries_.push_back(Got_entry(object, symndx));
1296 this->set_got_size();
1297 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1298 return true;
1299 }
1300
1301 // Add an entry for a local symbol to the GOT, and add a dynamic
1302 // relocation of type R_TYPE for the GOT entry.
1303 template<int size, bool big_endian>
1304 void
1305 Output_data_got<size, big_endian>::add_local_with_rel(
1306 Sized_relobj<size, big_endian>* object,
1307 unsigned int symndx,
1308 unsigned int got_type,
1309 Rel_dyn* rel_dyn,
1310 unsigned int r_type)
1311 {
1312 if (object->local_has_got_offset(symndx, got_type))
1313 return;
1314
1315 this->entries_.push_back(Got_entry());
1316 this->set_got_size();
1317 unsigned int got_offset = this->last_got_offset();
1318 object->set_local_got_offset(symndx, got_type, got_offset);
1319 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1320 }
1321
1322 template<int size, bool big_endian>
1323 void
1324 Output_data_got<size, big_endian>::add_local_with_rela(
1325 Sized_relobj<size, big_endian>* object,
1326 unsigned int symndx,
1327 unsigned int got_type,
1328 Rela_dyn* rela_dyn,
1329 unsigned int r_type)
1330 {
1331 if (object->local_has_got_offset(symndx, got_type))
1332 return;
1333
1334 this->entries_.push_back(Got_entry());
1335 this->set_got_size();
1336 unsigned int got_offset = this->last_got_offset();
1337 object->set_local_got_offset(symndx, got_type, got_offset);
1338 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1339 }
1340
1341 // Add a pair of entries for a local symbol to the GOT, and add
1342 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1343 // If R_TYPE_2 == 0, add the second entry with no relocation.
1344 template<int size, bool big_endian>
1345 void
1346 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1347 Sized_relobj<size, big_endian>* object,
1348 unsigned int symndx,
1349 unsigned int shndx,
1350 unsigned int got_type,
1351 Rel_dyn* rel_dyn,
1352 unsigned int r_type_1,
1353 unsigned int r_type_2)
1354 {
1355 if (object->local_has_got_offset(symndx, got_type))
1356 return;
1357
1358 this->entries_.push_back(Got_entry());
1359 unsigned int got_offset = this->last_got_offset();
1360 object->set_local_got_offset(symndx, got_type, got_offset);
1361 section_offset_type off;
1362 Output_section* os = object->output_section(shndx, &off);
1363 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1364
1365 this->entries_.push_back(Got_entry(object, symndx));
1366 if (r_type_2 != 0)
1367 {
1368 got_offset = this->last_got_offset();
1369 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1370 }
1371
1372 this->set_got_size();
1373 }
1374
1375 template<int size, bool big_endian>
1376 void
1377 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1378 Sized_relobj<size, big_endian>* object,
1379 unsigned int symndx,
1380 unsigned int shndx,
1381 unsigned int got_type,
1382 Rela_dyn* rela_dyn,
1383 unsigned int r_type_1,
1384 unsigned int r_type_2)
1385 {
1386 if (object->local_has_got_offset(symndx, got_type))
1387 return;
1388
1389 this->entries_.push_back(Got_entry());
1390 unsigned int got_offset = this->last_got_offset();
1391 object->set_local_got_offset(symndx, got_type, got_offset);
1392 section_offset_type off;
1393 Output_section* os = object->output_section(shndx, &off);
1394 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1395
1396 this->entries_.push_back(Got_entry(object, symndx));
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1401 }
1402
1403 this->set_got_size();
1404 }
1405
1406 // Write out the GOT.
1407
1408 template<int size, bool big_endian>
1409 void
1410 Output_data_got<size, big_endian>::do_write(Output_file* of)
1411 {
1412 const int add = size / 8;
1413
1414 const off_t off = this->offset();
1415 const off_t oview_size = this->data_size();
1416 unsigned char* const oview = of->get_output_view(off, oview_size);
1417
1418 unsigned char* pov = oview;
1419 for (typename Got_entries::const_iterator p = this->entries_.begin();
1420 p != this->entries_.end();
1421 ++p)
1422 {
1423 p->write(pov);
1424 pov += add;
1425 }
1426
1427 gold_assert(pov - oview == oview_size);
1428
1429 of->write_output_view(off, oview_size, oview);
1430
1431 // We no longer need the GOT entries.
1432 this->entries_.clear();
1433 }
1434
1435 // Output_data_dynamic::Dynamic_entry methods.
1436
1437 // Write out the entry.
1438
1439 template<int size, bool big_endian>
1440 void
1441 Output_data_dynamic::Dynamic_entry::write(
1442 unsigned char* pov,
1443 const Stringpool* pool) const
1444 {
1445 typename elfcpp::Elf_types<size>::Elf_WXword val;
1446 switch (this->offset_)
1447 {
1448 case DYNAMIC_NUMBER:
1449 val = this->u_.val;
1450 break;
1451
1452 case DYNAMIC_SECTION_SIZE:
1453 val = this->u_.od->data_size();
1454 break;
1455
1456 case DYNAMIC_SYMBOL:
1457 {
1458 const Sized_symbol<size>* s =
1459 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1460 val = s->value();
1461 }
1462 break;
1463
1464 case DYNAMIC_STRING:
1465 val = pool->get_offset(this->u_.str);
1466 break;
1467
1468 default:
1469 val = this->u_.od->address() + this->offset_;
1470 break;
1471 }
1472
1473 elfcpp::Dyn_write<size, big_endian> dw(pov);
1474 dw.put_d_tag(this->tag_);
1475 dw.put_d_val(val);
1476 }
1477
1478 // Output_data_dynamic methods.
1479
1480 // Adjust the output section to set the entry size.
1481
1482 void
1483 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1484 {
1485 if (parameters->target().get_size() == 32)
1486 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1487 else if (parameters->target().get_size() == 64)
1488 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1489 else
1490 gold_unreachable();
1491 }
1492
1493 // Set the final data size.
1494
1495 void
1496 Output_data_dynamic::set_final_data_size()
1497 {
1498 // Add the terminating entry.
1499 this->add_constant(elfcpp::DT_NULL, 0);
1500
1501 int dyn_size;
1502 if (parameters->target().get_size() == 32)
1503 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1504 else if (parameters->target().get_size() == 64)
1505 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1506 else
1507 gold_unreachable();
1508 this->set_data_size(this->entries_.size() * dyn_size);
1509 }
1510
1511 // Write out the dynamic entries.
1512
1513 void
1514 Output_data_dynamic::do_write(Output_file* of)
1515 {
1516 switch (parameters->size_and_endianness())
1517 {
1518 #ifdef HAVE_TARGET_32_LITTLE
1519 case Parameters::TARGET_32_LITTLE:
1520 this->sized_write<32, false>(of);
1521 break;
1522 #endif
1523 #ifdef HAVE_TARGET_32_BIG
1524 case Parameters::TARGET_32_BIG:
1525 this->sized_write<32, true>(of);
1526 break;
1527 #endif
1528 #ifdef HAVE_TARGET_64_LITTLE
1529 case Parameters::TARGET_64_LITTLE:
1530 this->sized_write<64, false>(of);
1531 break;
1532 #endif
1533 #ifdef HAVE_TARGET_64_BIG
1534 case Parameters::TARGET_64_BIG:
1535 this->sized_write<64, true>(of);
1536 break;
1537 #endif
1538 default:
1539 gold_unreachable();
1540 }
1541 }
1542
1543 template<int size, bool big_endian>
1544 void
1545 Output_data_dynamic::sized_write(Output_file* of)
1546 {
1547 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1548
1549 const off_t offset = this->offset();
1550 const off_t oview_size = this->data_size();
1551 unsigned char* const oview = of->get_output_view(offset, oview_size);
1552
1553 unsigned char* pov = oview;
1554 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1555 p != this->entries_.end();
1556 ++p)
1557 {
1558 p->write<size, big_endian>(pov, this->pool_);
1559 pov += dyn_size;
1560 }
1561
1562 gold_assert(pov - oview == oview_size);
1563
1564 of->write_output_view(offset, oview_size, oview);
1565
1566 // We no longer need the dynamic entries.
1567 this->entries_.clear();
1568 }
1569
1570 // Class Output_symtab_xindex.
1571
1572 void
1573 Output_symtab_xindex::do_write(Output_file* of)
1574 {
1575 const off_t offset = this->offset();
1576 const off_t oview_size = this->data_size();
1577 unsigned char* const oview = of->get_output_view(offset, oview_size);
1578
1579 memset(oview, 0, oview_size);
1580
1581 if (parameters->target().is_big_endian())
1582 this->endian_do_write<true>(oview);
1583 else
1584 this->endian_do_write<false>(oview);
1585
1586 of->write_output_view(offset, oview_size, oview);
1587
1588 // We no longer need the data.
1589 this->entries_.clear();
1590 }
1591
1592 template<bool big_endian>
1593 void
1594 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1595 {
1596 for (Xindex_entries::const_iterator p = this->entries_.begin();
1597 p != this->entries_.end();
1598 ++p)
1599 elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1600 }
1601
1602 // Output_section::Input_section methods.
1603
1604 // Return the data size. For an input section we store the size here.
1605 // For an Output_section_data, we have to ask it for the size.
1606
1607 off_t
1608 Output_section::Input_section::data_size() const
1609 {
1610 if (this->is_input_section())
1611 return this->u1_.data_size;
1612 else
1613 return this->u2_.posd->data_size();
1614 }
1615
1616 // Set the address and file offset.
1617
1618 void
1619 Output_section::Input_section::set_address_and_file_offset(
1620 uint64_t address,
1621 off_t file_offset,
1622 off_t section_file_offset)
1623 {
1624 if (this->is_input_section())
1625 this->u2_.object->set_section_offset(this->shndx_,
1626 file_offset - section_file_offset);
1627 else
1628 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1629 }
1630
1631 // Reset the address and file offset.
1632
1633 void
1634 Output_section::Input_section::reset_address_and_file_offset()
1635 {
1636 if (!this->is_input_section())
1637 this->u2_.posd->reset_address_and_file_offset();
1638 }
1639
1640 // Finalize the data size.
1641
1642 void
1643 Output_section::Input_section::finalize_data_size()
1644 {
1645 if (!this->is_input_section())
1646 this->u2_.posd->finalize_data_size();
1647 }
1648
1649 // Try to turn an input offset into an output offset. We want to
1650 // return the output offset relative to the start of this
1651 // Input_section in the output section.
1652
1653 inline bool
1654 Output_section::Input_section::output_offset(
1655 const Relobj* object,
1656 unsigned int shndx,
1657 section_offset_type offset,
1658 section_offset_type *poutput) const
1659 {
1660 if (!this->is_input_section())
1661 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1662 else
1663 {
1664 if (this->shndx_ != shndx || this->u2_.object != object)
1665 return false;
1666 *poutput = offset;
1667 return true;
1668 }
1669 }
1670
1671 // Return whether this is the merge section for the input section
1672 // SHNDX in OBJECT.
1673
1674 inline bool
1675 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1676 unsigned int shndx) const
1677 {
1678 if (this->is_input_section())
1679 return false;
1680 return this->u2_.posd->is_merge_section_for(object, shndx);
1681 }
1682
1683 // Write out the data. We don't have to do anything for an input
1684 // section--they are handled via Object::relocate--but this is where
1685 // we write out the data for an Output_section_data.
1686
1687 void
1688 Output_section::Input_section::write(Output_file* of)
1689 {
1690 if (!this->is_input_section())
1691 this->u2_.posd->write(of);
1692 }
1693
1694 // Write the data to a buffer. As for write(), we don't have to do
1695 // anything for an input section.
1696
1697 void
1698 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1699 {
1700 if (!this->is_input_section())
1701 this->u2_.posd->write_to_buffer(buffer);
1702 }
1703
1704 // Output_section methods.
1705
1706 // Construct an Output_section. NAME will point into a Stringpool.
1707
1708 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1709 elfcpp::Elf_Xword flags)
1710 : name_(name),
1711 addralign_(0),
1712 entsize_(0),
1713 load_address_(0),
1714 link_section_(NULL),
1715 link_(0),
1716 info_section_(NULL),
1717 info_symndx_(NULL),
1718 info_(0),
1719 type_(type),
1720 flags_(flags),
1721 out_shndx_(-1U),
1722 symtab_index_(0),
1723 dynsym_index_(0),
1724 input_sections_(),
1725 first_input_offset_(0),
1726 fills_(),
1727 postprocessing_buffer_(NULL),
1728 needs_symtab_index_(false),
1729 needs_dynsym_index_(false),
1730 should_link_to_symtab_(false),
1731 should_link_to_dynsym_(false),
1732 after_input_sections_(false),
1733 requires_postprocessing_(false),
1734 found_in_sections_clause_(false),
1735 has_load_address_(false),
1736 info_uses_section_index_(false),
1737 may_sort_attached_input_sections_(false),
1738 must_sort_attached_input_sections_(false),
1739 attached_input_sections_are_sorted_(false),
1740 tls_offset_(0)
1741 {
1742 // An unallocated section has no address. Forcing this means that
1743 // we don't need special treatment for symbols defined in debug
1744 // sections.
1745 if ((flags & elfcpp::SHF_ALLOC) == 0)
1746 this->set_address(0);
1747 }
1748
1749 Output_section::~Output_section()
1750 {
1751 }
1752
1753 // Set the entry size.
1754
1755 void
1756 Output_section::set_entsize(uint64_t v)
1757 {
1758 if (this->entsize_ == 0)
1759 this->entsize_ = v;
1760 else
1761 gold_assert(this->entsize_ == v);
1762 }
1763
1764 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1765 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1766 // relocation section which applies to this section, or 0 if none, or
1767 // -1U if more than one. Return the offset of the input section
1768 // within the output section. Return -1 if the input section will
1769 // receive special handling. In the normal case we don't always keep
1770 // track of input sections for an Output_section. Instead, each
1771 // Object keeps track of the Output_section for each of its input
1772 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1773 // track of input sections here; this is used when SECTIONS appears in
1774 // a linker script.
1775
1776 template<int size, bool big_endian>
1777 off_t
1778 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1779 unsigned int shndx,
1780 const char* secname,
1781 const elfcpp::Shdr<size, big_endian>& shdr,
1782 unsigned int reloc_shndx,
1783 bool have_sections_script)
1784 {
1785 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1786 if ((addralign & (addralign - 1)) != 0)
1787 {
1788 object->error(_("invalid alignment %lu for section \"%s\""),
1789 static_cast<unsigned long>(addralign), secname);
1790 addralign = 1;
1791 }
1792
1793 if (addralign > this->addralign_)
1794 this->addralign_ = addralign;
1795
1796 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1797 this->update_flags_for_input_section(sh_flags);
1798
1799 uint64_t entsize = shdr.get_sh_entsize();
1800
1801 // .debug_str is a mergeable string section, but is not always so
1802 // marked by compilers. Mark manually here so we can optimize.
1803 if (strcmp(secname, ".debug_str") == 0)
1804 {
1805 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1806 entsize = 1;
1807 }
1808
1809 // If this is a SHF_MERGE section, we pass all the input sections to
1810 // a Output_data_merge. We don't try to handle relocations for such
1811 // a section.
1812 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1813 && reloc_shndx == 0)
1814 {
1815 if (this->add_merge_input_section(object, shndx, sh_flags,
1816 entsize, addralign))
1817 {
1818 // Tell the relocation routines that they need to call the
1819 // output_offset method to determine the final address.
1820 return -1;
1821 }
1822 }
1823
1824 off_t offset_in_section = this->current_data_size_for_child();
1825 off_t aligned_offset_in_section = align_address(offset_in_section,
1826 addralign);
1827
1828 if (aligned_offset_in_section > offset_in_section
1829 && !have_sections_script
1830 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1831 && object->target()->has_code_fill())
1832 {
1833 // We need to add some fill data. Using fill_list_ when
1834 // possible is an optimization, since we will often have fill
1835 // sections without input sections.
1836 off_t fill_len = aligned_offset_in_section - offset_in_section;
1837 if (this->input_sections_.empty())
1838 this->fills_.push_back(Fill(offset_in_section, fill_len));
1839 else
1840 {
1841 // FIXME: When relaxing, the size needs to adjust to
1842 // maintain a constant alignment.
1843 std::string fill_data(object->target()->code_fill(fill_len));
1844 Output_data_const* odc = new Output_data_const(fill_data, 1);
1845 this->input_sections_.push_back(Input_section(odc));
1846 }
1847 }
1848
1849 this->set_current_data_size_for_child(aligned_offset_in_section
1850 + shdr.get_sh_size());
1851
1852 // We need to keep track of this section if we are already keeping
1853 // track of sections, or if we are relaxing. Also, if this is a
1854 // section which requires sorting, or which may require sorting in
1855 // the future, we keep track of the sections. FIXME: Add test for
1856 // relaxing.
1857 if (have_sections_script
1858 || !this->input_sections_.empty()
1859 || this->may_sort_attached_input_sections()
1860 || this->must_sort_attached_input_sections())
1861 this->input_sections_.push_back(Input_section(object, shndx,
1862 shdr.get_sh_size(),
1863 addralign));
1864
1865 return aligned_offset_in_section;
1866 }
1867
1868 // Add arbitrary data to an output section.
1869
1870 void
1871 Output_section::add_output_section_data(Output_section_data* posd)
1872 {
1873 Input_section inp(posd);
1874 this->add_output_section_data(&inp);
1875
1876 if (posd->is_data_size_valid())
1877 {
1878 off_t offset_in_section = this->current_data_size_for_child();
1879 off_t aligned_offset_in_section = align_address(offset_in_section,
1880 posd->addralign());
1881 this->set_current_data_size_for_child(aligned_offset_in_section
1882 + posd->data_size());
1883 }
1884 }
1885
1886 // Add arbitrary data to an output section by Input_section.
1887
1888 void
1889 Output_section::add_output_section_data(Input_section* inp)
1890 {
1891 if (this->input_sections_.empty())
1892 this->first_input_offset_ = this->current_data_size_for_child();
1893
1894 this->input_sections_.push_back(*inp);
1895
1896 uint64_t addralign = inp->addralign();
1897 if (addralign > this->addralign_)
1898 this->addralign_ = addralign;
1899
1900 inp->set_output_section(this);
1901 }
1902
1903 // Add a merge section to an output section.
1904
1905 void
1906 Output_section::add_output_merge_section(Output_section_data* posd,
1907 bool is_string, uint64_t entsize)
1908 {
1909 Input_section inp(posd, is_string, entsize);
1910 this->add_output_section_data(&inp);
1911 }
1912
1913 // Add an input section to a SHF_MERGE section.
1914
1915 bool
1916 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1917 uint64_t flags, uint64_t entsize,
1918 uint64_t addralign)
1919 {
1920 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1921
1922 // We only merge strings if the alignment is not more than the
1923 // character size. This could be handled, but it's unusual.
1924 if (is_string && addralign > entsize)
1925 return false;
1926
1927 Input_section_list::iterator p;
1928 for (p = this->input_sections_.begin();
1929 p != this->input_sections_.end();
1930 ++p)
1931 if (p->is_merge_section(is_string, entsize, addralign))
1932 {
1933 p->add_input_section(object, shndx);
1934 return true;
1935 }
1936
1937 // We handle the actual constant merging in Output_merge_data or
1938 // Output_merge_string_data.
1939 Output_section_data* posd;
1940 if (!is_string)
1941 posd = new Output_merge_data(entsize, addralign);
1942 else
1943 {
1944 switch (entsize)
1945 {
1946 case 1:
1947 posd = new Output_merge_string<char>(addralign);
1948 break;
1949 case 2:
1950 posd = new Output_merge_string<uint16_t>(addralign);
1951 break;
1952 case 4:
1953 posd = new Output_merge_string<uint32_t>(addralign);
1954 break;
1955 default:
1956 return false;
1957 }
1958 }
1959
1960 this->add_output_merge_section(posd, is_string, entsize);
1961 posd->add_input_section(object, shndx);
1962
1963 return true;
1964 }
1965
1966 // Given an address OFFSET relative to the start of input section
1967 // SHNDX in OBJECT, return whether this address is being included in
1968 // the final link. This should only be called if SHNDX in OBJECT has
1969 // a special mapping.
1970
1971 bool
1972 Output_section::is_input_address_mapped(const Relobj* object,
1973 unsigned int shndx,
1974 off_t offset) const
1975 {
1976 gold_assert(object->is_section_specially_mapped(shndx));
1977
1978 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1979 p != this->input_sections_.end();
1980 ++p)
1981 {
1982 section_offset_type output_offset;
1983 if (p->output_offset(object, shndx, offset, &output_offset))
1984 return output_offset != -1;
1985 }
1986
1987 // By default we assume that the address is mapped. This should
1988 // only be called after we have passed all sections to Layout. At
1989 // that point we should know what we are discarding.
1990 return true;
1991 }
1992
1993 // Given an address OFFSET relative to the start of input section
1994 // SHNDX in object OBJECT, return the output offset relative to the
1995 // start of the input section in the output section. This should only
1996 // be called if SHNDX in OBJECT has a special mapping.
1997
1998 section_offset_type
1999 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2000 section_offset_type offset) const
2001 {
2002 gold_assert(object->is_section_specially_mapped(shndx));
2003 // This can only be called meaningfully when layout is complete.
2004 gold_assert(Output_data::is_layout_complete());
2005
2006 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2007 p != this->input_sections_.end();
2008 ++p)
2009 {
2010 section_offset_type output_offset;
2011 if (p->output_offset(object, shndx, offset, &output_offset))
2012 return output_offset;
2013 }
2014 gold_unreachable();
2015 }
2016
2017 // Return the output virtual address of OFFSET relative to the start
2018 // of input section SHNDX in object OBJECT.
2019
2020 uint64_t
2021 Output_section::output_address(const Relobj* object, unsigned int shndx,
2022 off_t offset) const
2023 {
2024 gold_assert(object->is_section_specially_mapped(shndx));
2025
2026 uint64_t addr = this->address() + this->first_input_offset_;
2027 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2028 p != this->input_sections_.end();
2029 ++p)
2030 {
2031 addr = align_address(addr, p->addralign());
2032 section_offset_type output_offset;
2033 if (p->output_offset(object, shndx, offset, &output_offset))
2034 {
2035 if (output_offset == -1)
2036 return -1U;
2037 return addr + output_offset;
2038 }
2039 addr += p->data_size();
2040 }
2041
2042 // If we get here, it means that we don't know the mapping for this
2043 // input section. This might happen in principle if
2044 // add_input_section were called before add_output_section_data.
2045 // But it should never actually happen.
2046
2047 gold_unreachable();
2048 }
2049
2050 // Return the output address of the start of the merged section for
2051 // input section SHNDX in object OBJECT.
2052
2053 uint64_t
2054 Output_section::starting_output_address(const Relobj* object,
2055 unsigned int shndx) const
2056 {
2057 gold_assert(object->is_section_specially_mapped(shndx));
2058
2059 uint64_t addr = this->address() + this->first_input_offset_;
2060 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2061 p != this->input_sections_.end();
2062 ++p)
2063 {
2064 addr = align_address(addr, p->addralign());
2065
2066 // It would be nice if we could use the existing output_offset
2067 // method to get the output offset of input offset 0.
2068 // Unfortunately we don't know for sure that input offset 0 is
2069 // mapped at all.
2070 if (p->is_merge_section_for(object, shndx))
2071 return addr;
2072
2073 addr += p->data_size();
2074 }
2075 gold_unreachable();
2076 }
2077
2078 // Set the data size of an Output_section. This is where we handle
2079 // setting the addresses of any Output_section_data objects.
2080
2081 void
2082 Output_section::set_final_data_size()
2083 {
2084 if (this->input_sections_.empty())
2085 {
2086 this->set_data_size(this->current_data_size_for_child());
2087 return;
2088 }
2089
2090 if (this->must_sort_attached_input_sections())
2091 this->sort_attached_input_sections();
2092
2093 uint64_t address = this->address();
2094 off_t startoff = this->offset();
2095 off_t off = startoff + this->first_input_offset_;
2096 for (Input_section_list::iterator p = this->input_sections_.begin();
2097 p != this->input_sections_.end();
2098 ++p)
2099 {
2100 off = align_address(off, p->addralign());
2101 p->set_address_and_file_offset(address + (off - startoff), off,
2102 startoff);
2103 off += p->data_size();
2104 }
2105
2106 this->set_data_size(off - startoff);
2107 }
2108
2109 // Reset the address and file offset.
2110
2111 void
2112 Output_section::do_reset_address_and_file_offset()
2113 {
2114 for (Input_section_list::iterator p = this->input_sections_.begin();
2115 p != this->input_sections_.end();
2116 ++p)
2117 p->reset_address_and_file_offset();
2118 }
2119
2120 // Set the TLS offset. Called only for SHT_TLS sections.
2121
2122 void
2123 Output_section::do_set_tls_offset(uint64_t tls_base)
2124 {
2125 this->tls_offset_ = this->address() - tls_base;
2126 }
2127
2128 // In a few cases we need to sort the input sections attached to an
2129 // output section. This is used to implement the type of constructor
2130 // priority ordering implemented by the GNU linker, in which the
2131 // priority becomes part of the section name and the sections are
2132 // sorted by name. We only do this for an output section if we see an
2133 // attached input section matching ".ctor.*", ".dtor.*",
2134 // ".init_array.*" or ".fini_array.*".
2135
2136 class Output_section::Input_section_sort_entry
2137 {
2138 public:
2139 Input_section_sort_entry()
2140 : input_section_(), index_(-1U), section_has_name_(false),
2141 section_name_()
2142 { }
2143
2144 Input_section_sort_entry(const Input_section& input_section,
2145 unsigned int index)
2146 : input_section_(input_section), index_(index),
2147 section_has_name_(input_section.is_input_section())
2148 {
2149 if (this->section_has_name_)
2150 {
2151 // This is only called single-threaded from Layout::finalize,
2152 // so it is OK to lock. Unfortunately we have no way to pass
2153 // in a Task token.
2154 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2155 Object* obj = input_section.relobj();
2156 Task_lock_obj<Object> tl(dummy_task, obj);
2157
2158 // This is a slow operation, which should be cached in
2159 // Layout::layout if this becomes a speed problem.
2160 this->section_name_ = obj->section_name(input_section.shndx());
2161 }
2162 }
2163
2164 // Return the Input_section.
2165 const Input_section&
2166 input_section() const
2167 {
2168 gold_assert(this->index_ != -1U);
2169 return this->input_section_;
2170 }
2171
2172 // The index of this entry in the original list. This is used to
2173 // make the sort stable.
2174 unsigned int
2175 index() const
2176 {
2177 gold_assert(this->index_ != -1U);
2178 return this->index_;
2179 }
2180
2181 // Whether there is a section name.
2182 bool
2183 section_has_name() const
2184 { return this->section_has_name_; }
2185
2186 // The section name.
2187 const std::string&
2188 section_name() const
2189 {
2190 gold_assert(this->section_has_name_);
2191 return this->section_name_;
2192 }
2193
2194 // Return true if the section name has a priority. This is assumed
2195 // to be true if it has a dot after the initial dot.
2196 bool
2197 has_priority() const
2198 {
2199 gold_assert(this->section_has_name_);
2200 return this->section_name_.find('.', 1);
2201 }
2202
2203 // Return true if this an input file whose base name matches
2204 // FILE_NAME. The base name must have an extension of ".o", and
2205 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2206 // This is to match crtbegin.o as well as crtbeginS.o without
2207 // getting confused by other possibilities. Overall matching the
2208 // file name this way is a dreadful hack, but the GNU linker does it
2209 // in order to better support gcc, and we need to be compatible.
2210 bool
2211 match_file_name(const char* match_file_name) const
2212 {
2213 const std::string& file_name(this->input_section_.relobj()->name());
2214 const char* base_name = lbasename(file_name.c_str());
2215 size_t match_len = strlen(match_file_name);
2216 if (strncmp(base_name, match_file_name, match_len) != 0)
2217 return false;
2218 size_t base_len = strlen(base_name);
2219 if (base_len != match_len + 2 && base_len != match_len + 3)
2220 return false;
2221 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2222 }
2223
2224 private:
2225 // The Input_section we are sorting.
2226 Input_section input_section_;
2227 // The index of this Input_section in the original list.
2228 unsigned int index_;
2229 // Whether this Input_section has a section name--it won't if this
2230 // is some random Output_section_data.
2231 bool section_has_name_;
2232 // The section name if there is one.
2233 std::string section_name_;
2234 };
2235
2236 // Return true if S1 should come before S2 in the output section.
2237
2238 bool
2239 Output_section::Input_section_sort_compare::operator()(
2240 const Output_section::Input_section_sort_entry& s1,
2241 const Output_section::Input_section_sort_entry& s2) const
2242 {
2243 // crtbegin.o must come first.
2244 bool s1_begin = s1.match_file_name("crtbegin");
2245 bool s2_begin = s2.match_file_name("crtbegin");
2246 if (s1_begin || s2_begin)
2247 {
2248 if (!s1_begin)
2249 return false;
2250 if (!s2_begin)
2251 return true;
2252 return s1.index() < s2.index();
2253 }
2254
2255 // crtend.o must come last.
2256 bool s1_end = s1.match_file_name("crtend");
2257 bool s2_end = s2.match_file_name("crtend");
2258 if (s1_end || s2_end)
2259 {
2260 if (!s1_end)
2261 return true;
2262 if (!s2_end)
2263 return false;
2264 return s1.index() < s2.index();
2265 }
2266
2267 // We sort all the sections with no names to the end.
2268 if (!s1.section_has_name() || !s2.section_has_name())
2269 {
2270 if (s1.section_has_name())
2271 return true;
2272 if (s2.section_has_name())
2273 return false;
2274 return s1.index() < s2.index();
2275 }
2276
2277 // A section with a priority follows a section without a priority.
2278 // The GNU linker does this for all but .init_array sections; until
2279 // further notice we'll assume that that is an mistake.
2280 bool s1_has_priority = s1.has_priority();
2281 bool s2_has_priority = s2.has_priority();
2282 if (s1_has_priority && !s2_has_priority)
2283 return false;
2284 if (!s1_has_priority && s2_has_priority)
2285 return true;
2286
2287 // Otherwise we sort by name.
2288 int compare = s1.section_name().compare(s2.section_name());
2289 if (compare != 0)
2290 return compare < 0;
2291
2292 // Otherwise we keep the input order.
2293 return s1.index() < s2.index();
2294 }
2295
2296 // Sort the input sections attached to an output section.
2297
2298 void
2299 Output_section::sort_attached_input_sections()
2300 {
2301 if (this->attached_input_sections_are_sorted_)
2302 return;
2303
2304 // The only thing we know about an input section is the object and
2305 // the section index. We need the section name. Recomputing this
2306 // is slow but this is an unusual case. If this becomes a speed
2307 // problem we can cache the names as required in Layout::layout.
2308
2309 // We start by building a larger vector holding a copy of each
2310 // Input_section, plus its current index in the list and its name.
2311 std::vector<Input_section_sort_entry> sort_list;
2312
2313 unsigned int i = 0;
2314 for (Input_section_list::iterator p = this->input_sections_.begin();
2315 p != this->input_sections_.end();
2316 ++p, ++i)
2317 sort_list.push_back(Input_section_sort_entry(*p, i));
2318
2319 // Sort the input sections.
2320 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2321
2322 // Copy the sorted input sections back to our list.
2323 this->input_sections_.clear();
2324 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2325 p != sort_list.end();
2326 ++p)
2327 this->input_sections_.push_back(p->input_section());
2328
2329 // Remember that we sorted the input sections, since we might get
2330 // called again.
2331 this->attached_input_sections_are_sorted_ = true;
2332 }
2333
2334 // Write the section header to *OSHDR.
2335
2336 template<int size, bool big_endian>
2337 void
2338 Output_section::write_header(const Layout* layout,
2339 const Stringpool* secnamepool,
2340 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2341 {
2342 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2343 oshdr->put_sh_type(this->type_);
2344
2345 elfcpp::Elf_Xword flags = this->flags_;
2346 if (this->info_section_ != NULL && this->info_uses_section_index_)
2347 flags |= elfcpp::SHF_INFO_LINK;
2348 oshdr->put_sh_flags(flags);
2349
2350 oshdr->put_sh_addr(this->address());
2351 oshdr->put_sh_offset(this->offset());
2352 oshdr->put_sh_size(this->data_size());
2353 if (this->link_section_ != NULL)
2354 oshdr->put_sh_link(this->link_section_->out_shndx());
2355 else if (this->should_link_to_symtab_)
2356 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2357 else if (this->should_link_to_dynsym_)
2358 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2359 else
2360 oshdr->put_sh_link(this->link_);
2361
2362 elfcpp::Elf_Word info;
2363 if (this->info_section_ != NULL)
2364 {
2365 if (this->info_uses_section_index_)
2366 info = this->info_section_->out_shndx();
2367 else
2368 info = this->info_section_->symtab_index();
2369 }
2370 else if (this->info_symndx_ != NULL)
2371 info = this->info_symndx_->symtab_index();
2372 else
2373 info = this->info_;
2374 oshdr->put_sh_info(info);
2375
2376 oshdr->put_sh_addralign(this->addralign_);
2377 oshdr->put_sh_entsize(this->entsize_);
2378 }
2379
2380 // Write out the data. For input sections the data is written out by
2381 // Object::relocate, but we have to handle Output_section_data objects
2382 // here.
2383
2384 void
2385 Output_section::do_write(Output_file* of)
2386 {
2387 gold_assert(!this->requires_postprocessing());
2388
2389 off_t output_section_file_offset = this->offset();
2390 for (Fill_list::iterator p = this->fills_.begin();
2391 p != this->fills_.end();
2392 ++p)
2393 {
2394 std::string fill_data(parameters->target().code_fill(p->length()));
2395 of->write(output_section_file_offset + p->section_offset(),
2396 fill_data.data(), fill_data.size());
2397 }
2398
2399 for (Input_section_list::iterator p = this->input_sections_.begin();
2400 p != this->input_sections_.end();
2401 ++p)
2402 p->write(of);
2403 }
2404
2405 // If a section requires postprocessing, create the buffer to use.
2406
2407 void
2408 Output_section::create_postprocessing_buffer()
2409 {
2410 gold_assert(this->requires_postprocessing());
2411
2412 if (this->postprocessing_buffer_ != NULL)
2413 return;
2414
2415 if (!this->input_sections_.empty())
2416 {
2417 off_t off = this->first_input_offset_;
2418 for (Input_section_list::iterator p = this->input_sections_.begin();
2419 p != this->input_sections_.end();
2420 ++p)
2421 {
2422 off = align_address(off, p->addralign());
2423 p->finalize_data_size();
2424 off += p->data_size();
2425 }
2426 this->set_current_data_size_for_child(off);
2427 }
2428
2429 off_t buffer_size = this->current_data_size_for_child();
2430 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2431 }
2432
2433 // Write all the data of an Output_section into the postprocessing
2434 // buffer. This is used for sections which require postprocessing,
2435 // such as compression. Input sections are handled by
2436 // Object::Relocate.
2437
2438 void
2439 Output_section::write_to_postprocessing_buffer()
2440 {
2441 gold_assert(this->requires_postprocessing());
2442
2443 unsigned char* buffer = this->postprocessing_buffer();
2444 for (Fill_list::iterator p = this->fills_.begin();
2445 p != this->fills_.end();
2446 ++p)
2447 {
2448 std::string fill_data(parameters->target().code_fill(p->length()));
2449 memcpy(buffer + p->section_offset(), fill_data.data(),
2450 fill_data.size());
2451 }
2452
2453 off_t off = this->first_input_offset_;
2454 for (Input_section_list::iterator p = this->input_sections_.begin();
2455 p != this->input_sections_.end();
2456 ++p)
2457 {
2458 off = align_address(off, p->addralign());
2459 p->write_to_buffer(buffer + off);
2460 off += p->data_size();
2461 }
2462 }
2463
2464 // Get the input sections for linker script processing. We leave
2465 // behind the Output_section_data entries. Note that this may be
2466 // slightly incorrect for merge sections. We will leave them behind,
2467 // but it is possible that the script says that they should follow
2468 // some other input sections, as in:
2469 // .rodata { *(.rodata) *(.rodata.cst*) }
2470 // For that matter, we don't handle this correctly:
2471 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2472 // With luck this will never matter.
2473
2474 uint64_t
2475 Output_section::get_input_sections(
2476 uint64_t address,
2477 const std::string& fill,
2478 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2479 {
2480 uint64_t orig_address = address;
2481
2482 address = align_address(address, this->addralign());
2483
2484 Input_section_list remaining;
2485 for (Input_section_list::iterator p = this->input_sections_.begin();
2486 p != this->input_sections_.end();
2487 ++p)
2488 {
2489 if (p->is_input_section())
2490 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2491 else
2492 {
2493 uint64_t aligned_address = align_address(address, p->addralign());
2494 if (aligned_address != address && !fill.empty())
2495 {
2496 section_size_type length =
2497 convert_to_section_size_type(aligned_address - address);
2498 std::string this_fill;
2499 this_fill.reserve(length);
2500 while (this_fill.length() + fill.length() <= length)
2501 this_fill += fill;
2502 if (this_fill.length() < length)
2503 this_fill.append(fill, 0, length - this_fill.length());
2504
2505 Output_section_data* posd = new Output_data_const(this_fill, 0);
2506 remaining.push_back(Input_section(posd));
2507 }
2508 address = aligned_address;
2509
2510 remaining.push_back(*p);
2511
2512 p->finalize_data_size();
2513 address += p->data_size();
2514 }
2515 }
2516
2517 this->input_sections_.swap(remaining);
2518 this->first_input_offset_ = 0;
2519
2520 uint64_t data_size = address - orig_address;
2521 this->set_current_data_size_for_child(data_size);
2522 return data_size;
2523 }
2524
2525 // Add an input section from a script.
2526
2527 void
2528 Output_section::add_input_section_for_script(Relobj* object,
2529 unsigned int shndx,
2530 off_t data_size,
2531 uint64_t addralign)
2532 {
2533 if (addralign > this->addralign_)
2534 this->addralign_ = addralign;
2535
2536 off_t offset_in_section = this->current_data_size_for_child();
2537 off_t aligned_offset_in_section = align_address(offset_in_section,
2538 addralign);
2539
2540 this->set_current_data_size_for_child(aligned_offset_in_section
2541 + data_size);
2542
2543 this->input_sections_.push_back(Input_section(object, shndx,
2544 data_size, addralign));
2545 }
2546
2547 // Print stats for merge sections to stderr.
2548
2549 void
2550 Output_section::print_merge_stats()
2551 {
2552 Input_section_list::iterator p;
2553 for (p = this->input_sections_.begin();
2554 p != this->input_sections_.end();
2555 ++p)
2556 p->print_merge_stats(this->name_);
2557 }
2558
2559 // Output segment methods.
2560
2561 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2562 : output_data_(),
2563 output_bss_(),
2564 vaddr_(0),
2565 paddr_(0),
2566 memsz_(0),
2567 max_align_(0),
2568 min_p_align_(0),
2569 offset_(0),
2570 filesz_(0),
2571 type_(type),
2572 flags_(flags),
2573 is_max_align_known_(false),
2574 are_addresses_set_(false)
2575 {
2576 }
2577
2578 // Add an Output_section to an Output_segment.
2579
2580 void
2581 Output_segment::add_output_section(Output_section* os,
2582 elfcpp::Elf_Word seg_flags,
2583 bool front)
2584 {
2585 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2586 gold_assert(!this->is_max_align_known_);
2587
2588 // Update the segment flags.
2589 this->flags_ |= seg_flags;
2590
2591 Output_segment::Output_data_list* pdl;
2592 if (os->type() == elfcpp::SHT_NOBITS)
2593 pdl = &this->output_bss_;
2594 else
2595 pdl = &this->output_data_;
2596
2597 // So that PT_NOTE segments will work correctly, we need to ensure
2598 // that all SHT_NOTE sections are adjacent. This will normally
2599 // happen automatically, because all the SHT_NOTE input sections
2600 // will wind up in the same output section. However, it is possible
2601 // for multiple SHT_NOTE input sections to have different section
2602 // flags, and thus be in different output sections, but for the
2603 // different section flags to map into the same segment flags and
2604 // thus the same output segment.
2605
2606 // Note that while there may be many input sections in an output
2607 // section, there are normally only a few output sections in an
2608 // output segment. This loop is expected to be fast.
2609
2610 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2611 {
2612 Output_segment::Output_data_list::iterator p = pdl->end();
2613 do
2614 {
2615 --p;
2616 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2617 {
2618 // We don't worry about the FRONT parameter.
2619 ++p;
2620 pdl->insert(p, os);
2621 return;
2622 }
2623 }
2624 while (p != pdl->begin());
2625 }
2626
2627 // Similarly, so that PT_TLS segments will work, we need to group
2628 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2629 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2630 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2631 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2632 // and the PT_TLS segment -- we do this grouping only for the
2633 // PT_LOAD segment.
2634 if (this->type_ != elfcpp::PT_TLS
2635 && (os->flags() & elfcpp::SHF_TLS) != 0
2636 && !this->output_data_.empty())
2637 {
2638 pdl = &this->output_data_;
2639 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2640 bool sawtls = false;
2641 Output_segment::Output_data_list::iterator p = pdl->end();
2642 do
2643 {
2644 --p;
2645 bool insert;
2646 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2647 {
2648 sawtls = true;
2649 // Put a NOBITS section after the first TLS section.
2650 // But a PROGBITS section after the first TLS/PROGBITS
2651 // section.
2652 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2653 }
2654 else
2655 {
2656 // If we've gone past the TLS sections, but we've seen a
2657 // TLS section, then we need to insert this section now.
2658 insert = sawtls;
2659 }
2660
2661 if (insert)
2662 {
2663 // We don't worry about the FRONT parameter.
2664 ++p;
2665 pdl->insert(p, os);
2666 return;
2667 }
2668 }
2669 while (p != pdl->begin());
2670
2671 // There are no TLS sections yet; put this one at the requested
2672 // location in the section list.
2673 }
2674
2675 if (front)
2676 pdl->push_front(os);
2677 else
2678 pdl->push_back(os);
2679 }
2680
2681 // Remove an Output_section from this segment. It is an error if it
2682 // is not present.
2683
2684 void
2685 Output_segment::remove_output_section(Output_section* os)
2686 {
2687 // We only need this for SHT_PROGBITS.
2688 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2689 for (Output_data_list::iterator p = this->output_data_.begin();
2690 p != this->output_data_.end();
2691 ++p)
2692 {
2693 if (*p == os)
2694 {
2695 this->output_data_.erase(p);
2696 return;
2697 }
2698 }
2699 gold_unreachable();
2700 }
2701
2702 // Add an Output_data (which is not an Output_section) to the start of
2703 // a segment.
2704
2705 void
2706 Output_segment::add_initial_output_data(Output_data* od)
2707 {
2708 gold_assert(!this->is_max_align_known_);
2709 this->output_data_.push_front(od);
2710 }
2711
2712 // Return the maximum alignment of the Output_data in Output_segment.
2713
2714 uint64_t
2715 Output_segment::maximum_alignment()
2716 {
2717 if (!this->is_max_align_known_)
2718 {
2719 uint64_t addralign;
2720
2721 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2722 if (addralign > this->max_align_)
2723 this->max_align_ = addralign;
2724
2725 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2726 if (addralign > this->max_align_)
2727 this->max_align_ = addralign;
2728
2729 this->is_max_align_known_ = true;
2730 }
2731
2732 return this->max_align_;
2733 }
2734
2735 // Return the maximum alignment of a list of Output_data.
2736
2737 uint64_t
2738 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2739 {
2740 uint64_t ret = 0;
2741 for (Output_data_list::const_iterator p = pdl->begin();
2742 p != pdl->end();
2743 ++p)
2744 {
2745 uint64_t addralign = (*p)->addralign();
2746 if (addralign > ret)
2747 ret = addralign;
2748 }
2749 return ret;
2750 }
2751
2752 // Return the number of dynamic relocs applied to this segment.
2753
2754 unsigned int
2755 Output_segment::dynamic_reloc_count() const
2756 {
2757 return (this->dynamic_reloc_count_list(&this->output_data_)
2758 + this->dynamic_reloc_count_list(&this->output_bss_));
2759 }
2760
2761 // Return the number of dynamic relocs applied to an Output_data_list.
2762
2763 unsigned int
2764 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2765 {
2766 unsigned int count = 0;
2767 for (Output_data_list::const_iterator p = pdl->begin();
2768 p != pdl->end();
2769 ++p)
2770 count += (*p)->dynamic_reloc_count();
2771 return count;
2772 }
2773
2774 // Set the section addresses for an Output_segment. If RESET is true,
2775 // reset the addresses first. ADDR is the address and *POFF is the
2776 // file offset. Set the section indexes starting with *PSHNDX.
2777 // Return the address of the immediately following segment. Update
2778 // *POFF and *PSHNDX.
2779
2780 uint64_t
2781 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2782 uint64_t addr, off_t* poff,
2783 unsigned int* pshndx)
2784 {
2785 gold_assert(this->type_ == elfcpp::PT_LOAD);
2786
2787 if (!reset && this->are_addresses_set_)
2788 {
2789 gold_assert(this->paddr_ == addr);
2790 addr = this->vaddr_;
2791 }
2792 else
2793 {
2794 this->vaddr_ = addr;
2795 this->paddr_ = addr;
2796 this->are_addresses_set_ = true;
2797 }
2798
2799 bool in_tls = false;
2800
2801 off_t orig_off = *poff;
2802 this->offset_ = orig_off;
2803
2804 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2805 addr, poff, pshndx, &in_tls);
2806 this->filesz_ = *poff - orig_off;
2807
2808 off_t off = *poff;
2809
2810 uint64_t ret = this->set_section_list_addresses(layout, reset,
2811 &this->output_bss_,
2812 addr, poff, pshndx,
2813 &in_tls);
2814
2815 // If the last section was a TLS section, align upward to the
2816 // alignment of the TLS segment, so that the overall size of the TLS
2817 // segment is aligned.
2818 if (in_tls)
2819 {
2820 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2821 *poff = align_address(*poff, segment_align);
2822 }
2823
2824 this->memsz_ = *poff - orig_off;
2825
2826 // Ignore the file offset adjustments made by the BSS Output_data
2827 // objects.
2828 *poff = off;
2829
2830 return ret;
2831 }
2832
2833 // Set the addresses and file offsets in a list of Output_data
2834 // structures.
2835
2836 uint64_t
2837 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2838 Output_data_list* pdl,
2839 uint64_t addr, off_t* poff,
2840 unsigned int* pshndx,
2841 bool* in_tls)
2842 {
2843 off_t startoff = *poff;
2844
2845 off_t off = startoff;
2846 for (Output_data_list::iterator p = pdl->begin();
2847 p != pdl->end();
2848 ++p)
2849 {
2850 if (reset)
2851 (*p)->reset_address_and_file_offset();
2852
2853 // When using a linker script the section will most likely
2854 // already have an address.
2855 if (!(*p)->is_address_valid())
2856 {
2857 uint64_t align = (*p)->addralign();
2858
2859 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2860 {
2861 // Give the first TLS section the alignment of the
2862 // entire TLS segment. Otherwise the TLS segment as a
2863 // whole may be misaligned.
2864 if (!*in_tls)
2865 {
2866 Output_segment* tls_segment = layout->tls_segment();
2867 gold_assert(tls_segment != NULL);
2868 uint64_t segment_align = tls_segment->maximum_alignment();
2869 gold_assert(segment_align >= align);
2870 align = segment_align;
2871
2872 *in_tls = true;
2873 }
2874 }
2875 else
2876 {
2877 // If this is the first section after the TLS segment,
2878 // align it to at least the alignment of the TLS
2879 // segment, so that the size of the overall TLS segment
2880 // is aligned.
2881 if (*in_tls)
2882 {
2883 uint64_t segment_align =
2884 layout->tls_segment()->maximum_alignment();
2885 if (segment_align > align)
2886 align = segment_align;
2887
2888 *in_tls = false;
2889 }
2890 }
2891
2892 off = align_address(off, align);
2893 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2894 }
2895 else
2896 {
2897 // The script may have inserted a skip forward, but it
2898 // better not have moved backward.
2899 gold_assert((*p)->address() >= addr + (off - startoff));
2900 off += (*p)->address() - (addr + (off - startoff));
2901 (*p)->set_file_offset(off);
2902 (*p)->finalize_data_size();
2903 }
2904
2905 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2906 // section. Such a section does not affect the size of a
2907 // PT_LOAD segment.
2908 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2909 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2910 off += (*p)->data_size();
2911
2912 if ((*p)->is_section())
2913 {
2914 (*p)->set_out_shndx(*pshndx);
2915 ++*pshndx;
2916 }
2917 }
2918
2919 *poff = off;
2920 return addr + (off - startoff);
2921 }
2922
2923 // For a non-PT_LOAD segment, set the offset from the sections, if
2924 // any.
2925
2926 void
2927 Output_segment::set_offset()
2928 {
2929 gold_assert(this->type_ != elfcpp::PT_LOAD);
2930
2931 gold_assert(!this->are_addresses_set_);
2932
2933 if (this->output_data_.empty() && this->output_bss_.empty())
2934 {
2935 this->vaddr_ = 0;
2936 this->paddr_ = 0;
2937 this->are_addresses_set_ = true;
2938 this->memsz_ = 0;
2939 this->min_p_align_ = 0;
2940 this->offset_ = 0;
2941 this->filesz_ = 0;
2942 return;
2943 }
2944
2945 const Output_data* first;
2946 if (this->output_data_.empty())
2947 first = this->output_bss_.front();
2948 else
2949 first = this->output_data_.front();
2950 this->vaddr_ = first->address();
2951 this->paddr_ = (first->has_load_address()
2952 ? first->load_address()
2953 : this->vaddr_);
2954 this->are_addresses_set_ = true;
2955 this->offset_ = first->offset();
2956
2957 if (this->output_data_.empty())
2958 this->filesz_ = 0;
2959 else
2960 {
2961 const Output_data* last_data = this->output_data_.back();
2962 this->filesz_ = (last_data->address()
2963 + last_data->data_size()
2964 - this->vaddr_);
2965 }
2966
2967 const Output_data* last;
2968 if (this->output_bss_.empty())
2969 last = this->output_data_.back();
2970 else
2971 last = this->output_bss_.back();
2972 this->memsz_ = (last->address()
2973 + last->data_size()
2974 - this->vaddr_);
2975
2976 // If this is a TLS segment, align the memory size. The code in
2977 // set_section_list ensures that the section after the TLS segment
2978 // is aligned to give us room.
2979 if (this->type_ == elfcpp::PT_TLS)
2980 {
2981 uint64_t segment_align = this->maximum_alignment();
2982 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
2983 this->memsz_ = align_address(this->memsz_, segment_align);
2984 }
2985 }
2986
2987 // Set the TLS offsets of the sections in the PT_TLS segment.
2988
2989 void
2990 Output_segment::set_tls_offsets()
2991 {
2992 gold_assert(this->type_ == elfcpp::PT_TLS);
2993
2994 for (Output_data_list::iterator p = this->output_data_.begin();
2995 p != this->output_data_.end();
2996 ++p)
2997 (*p)->set_tls_offset(this->vaddr_);
2998
2999 for (Output_data_list::iterator p = this->output_bss_.begin();
3000 p != this->output_bss_.end();
3001 ++p)
3002 (*p)->set_tls_offset(this->vaddr_);
3003 }
3004
3005 // Return the address of the first section.
3006
3007 uint64_t
3008 Output_segment::first_section_load_address() const
3009 {
3010 for (Output_data_list::const_iterator p = this->output_data_.begin();
3011 p != this->output_data_.end();
3012 ++p)
3013 if ((*p)->is_section())
3014 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3015
3016 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3017 p != this->output_bss_.end();
3018 ++p)
3019 if ((*p)->is_section())
3020 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3021
3022 gold_unreachable();
3023 }
3024
3025 // Return the number of Output_sections in an Output_segment.
3026
3027 unsigned int
3028 Output_segment::output_section_count() const
3029 {
3030 return (this->output_section_count_list(&this->output_data_)
3031 + this->output_section_count_list(&this->output_bss_));
3032 }
3033
3034 // Return the number of Output_sections in an Output_data_list.
3035
3036 unsigned int
3037 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3038 {
3039 unsigned int count = 0;
3040 for (Output_data_list::const_iterator p = pdl->begin();
3041 p != pdl->end();
3042 ++p)
3043 {
3044 if ((*p)->is_section())
3045 ++count;
3046 }
3047 return count;
3048 }
3049
3050 // Return the section attached to the list segment with the lowest
3051 // load address. This is used when handling a PHDRS clause in a
3052 // linker script.
3053
3054 Output_section*
3055 Output_segment::section_with_lowest_load_address() const
3056 {
3057 Output_section* found = NULL;
3058 uint64_t found_lma = 0;
3059 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3060
3061 Output_section* found_data = found;
3062 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3063 if (found != found_data && found_data != NULL)
3064 {
3065 gold_error(_("nobits section %s may not precede progbits section %s "
3066 "in same segment"),
3067 found->name(), found_data->name());
3068 return NULL;
3069 }
3070
3071 return found;
3072 }
3073
3074 // Look through a list for a section with a lower load address.
3075
3076 void
3077 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3078 Output_section** found,
3079 uint64_t* found_lma) const
3080 {
3081 for (Output_data_list::const_iterator p = pdl->begin();
3082 p != pdl->end();
3083 ++p)
3084 {
3085 if (!(*p)->is_section())
3086 continue;
3087 Output_section* os = static_cast<Output_section*>(*p);
3088 uint64_t lma = (os->has_load_address()
3089 ? os->load_address()
3090 : os->address());
3091 if (*found == NULL || lma < *found_lma)
3092 {
3093 *found = os;
3094 *found_lma = lma;
3095 }
3096 }
3097 }
3098
3099 // Write the segment data into *OPHDR.
3100
3101 template<int size, bool big_endian>
3102 void
3103 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3104 {
3105 ophdr->put_p_type(this->type_);
3106 ophdr->put_p_offset(this->offset_);
3107 ophdr->put_p_vaddr(this->vaddr_);
3108 ophdr->put_p_paddr(this->paddr_);
3109 ophdr->put_p_filesz(this->filesz_);
3110 ophdr->put_p_memsz(this->memsz_);
3111 ophdr->put_p_flags(this->flags_);
3112 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3113 }
3114
3115 // Write the section headers into V.
3116
3117 template<int size, bool big_endian>
3118 unsigned char*
3119 Output_segment::write_section_headers(const Layout* layout,
3120 const Stringpool* secnamepool,
3121 unsigned char* v,
3122 unsigned int *pshndx) const
3123 {
3124 // Every section that is attached to a segment must be attached to a
3125 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3126 // segments.
3127 if (this->type_ != elfcpp::PT_LOAD)
3128 return v;
3129
3130 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3131 &this->output_data_,
3132 v, pshndx);
3133 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3134 &this->output_bss_,
3135 v, pshndx);
3136 return v;
3137 }
3138
3139 template<int size, bool big_endian>
3140 unsigned char*
3141 Output_segment::write_section_headers_list(const Layout* layout,
3142 const Stringpool* secnamepool,
3143 const Output_data_list* pdl,
3144 unsigned char* v,
3145 unsigned int* pshndx) const
3146 {
3147 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3148 for (Output_data_list::const_iterator p = pdl->begin();
3149 p != pdl->end();
3150 ++p)
3151 {
3152 if ((*p)->is_section())
3153 {
3154 const Output_section* ps = static_cast<const Output_section*>(*p);
3155 gold_assert(*pshndx == ps->out_shndx());
3156 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3157 ps->write_header(layout, secnamepool, &oshdr);
3158 v += shdr_size;
3159 ++*pshndx;
3160 }
3161 }
3162 return v;
3163 }
3164
3165 // Output_file methods.
3166
3167 Output_file::Output_file(const char* name)
3168 : name_(name),
3169 o_(-1),
3170 file_size_(0),
3171 base_(NULL),
3172 map_is_anonymous_(false),
3173 is_temporary_(false)
3174 {
3175 }
3176
3177 // Open the output file.
3178
3179 void
3180 Output_file::open(off_t file_size)
3181 {
3182 this->file_size_ = file_size;
3183
3184 // Unlink the file first; otherwise the open() may fail if the file
3185 // is busy (e.g. it's an executable that's currently being executed).
3186 //
3187 // However, the linker may be part of a system where a zero-length
3188 // file is created for it to write to, with tight permissions (gcc
3189 // 2.95 did something like this). Unlinking the file would work
3190 // around those permission controls, so we only unlink if the file
3191 // has a non-zero size. We also unlink only regular files to avoid
3192 // trouble with directories/etc.
3193 //
3194 // If we fail, continue; this command is merely a best-effort attempt
3195 // to improve the odds for open().
3196
3197 // We let the name "-" mean "stdout"
3198 if (!this->is_temporary_)
3199 {
3200 if (strcmp(this->name_, "-") == 0)
3201 this->o_ = STDOUT_FILENO;
3202 else
3203 {
3204 struct stat s;
3205 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3206 unlink_if_ordinary(this->name_);
3207
3208 int mode = parameters->options().relocatable() ? 0666 : 0777;
3209 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
3210 if (o < 0)
3211 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3212 this->o_ = o;
3213 }
3214 }
3215
3216 this->map();
3217 }
3218
3219 // Resize the output file.
3220
3221 void
3222 Output_file::resize(off_t file_size)
3223 {
3224 // If the mmap is mapping an anonymous memory buffer, this is easy:
3225 // just mremap to the new size. If it's mapping to a file, we want
3226 // to unmap to flush to the file, then remap after growing the file.
3227 if (this->map_is_anonymous_)
3228 {
3229 void* base = ::mremap(this->base_, this->file_size_, file_size,
3230 MREMAP_MAYMOVE);
3231 if (base == MAP_FAILED)
3232 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3233 this->base_ = static_cast<unsigned char*>(base);
3234 this->file_size_ = file_size;
3235 }
3236 else
3237 {
3238 this->unmap();
3239 this->file_size_ = file_size;
3240 this->map();
3241 }
3242 }
3243
3244 // Map the file into memory.
3245
3246 void
3247 Output_file::map()
3248 {
3249 const int o = this->o_;
3250
3251 // If the output file is not a regular file, don't try to mmap it;
3252 // instead, we'll mmap a block of memory (an anonymous buffer), and
3253 // then later write the buffer to the file.
3254 void* base;
3255 struct stat statbuf;
3256 if (o == STDOUT_FILENO || o == STDERR_FILENO
3257 || ::fstat(o, &statbuf) != 0
3258 || !S_ISREG(statbuf.st_mode)
3259 || this->is_temporary_)
3260 {
3261 this->map_is_anonymous_ = true;
3262 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3263 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3264 }
3265 else
3266 {
3267 // Write out one byte to make the file the right size.
3268 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3269 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3270 char b = 0;
3271 if (::write(o, &b, 1) != 1)
3272 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3273
3274 // Map the file into memory.
3275 this->map_is_anonymous_ = false;
3276 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3277 MAP_SHARED, o, 0);
3278 }
3279 if (base == MAP_FAILED)
3280 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3281 this->base_ = static_cast<unsigned char*>(base);
3282 }
3283
3284 // Unmap the file from memory.
3285
3286 void
3287 Output_file::unmap()
3288 {
3289 if (::munmap(this->base_, this->file_size_) < 0)
3290 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3291 this->base_ = NULL;
3292 }
3293
3294 // Close the output file.
3295
3296 void
3297 Output_file::close()
3298 {
3299 // If the map isn't file-backed, we need to write it now.
3300 if (this->map_is_anonymous_ && !this->is_temporary_)
3301 {
3302 size_t bytes_to_write = this->file_size_;
3303 while (bytes_to_write > 0)
3304 {
3305 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3306 if (bytes_written == 0)
3307 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3308 else if (bytes_written < 0)
3309 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3310 else
3311 bytes_to_write -= bytes_written;
3312 }
3313 }
3314 this->unmap();
3315
3316 // We don't close stdout or stderr
3317 if (this->o_ != STDOUT_FILENO
3318 && this->o_ != STDERR_FILENO
3319 && !this->is_temporary_)
3320 if (::close(this->o_) < 0)
3321 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3322 this->o_ = -1;
3323 }
3324
3325 // Instantiate the templates we need. We could use the configure
3326 // script to restrict this to only the ones for implemented targets.
3327
3328 #ifdef HAVE_TARGET_32_LITTLE
3329 template
3330 off_t
3331 Output_section::add_input_section<32, false>(
3332 Sized_relobj<32, false>* object,
3333 unsigned int shndx,
3334 const char* secname,
3335 const elfcpp::Shdr<32, false>& shdr,
3336 unsigned int reloc_shndx,
3337 bool have_sections_script);
3338 #endif
3339
3340 #ifdef HAVE_TARGET_32_BIG
3341 template
3342 off_t
3343 Output_section::add_input_section<32, true>(
3344 Sized_relobj<32, true>* object,
3345 unsigned int shndx,
3346 const char* secname,
3347 const elfcpp::Shdr<32, true>& shdr,
3348 unsigned int reloc_shndx,
3349 bool have_sections_script);
3350 #endif
3351
3352 #ifdef HAVE_TARGET_64_LITTLE
3353 template
3354 off_t
3355 Output_section::add_input_section<64, false>(
3356 Sized_relobj<64, false>* object,
3357 unsigned int shndx,
3358 const char* secname,
3359 const elfcpp::Shdr<64, false>& shdr,
3360 unsigned int reloc_shndx,
3361 bool have_sections_script);
3362 #endif
3363
3364 #ifdef HAVE_TARGET_64_BIG
3365 template
3366 off_t
3367 Output_section::add_input_section<64, true>(
3368 Sized_relobj<64, true>* object,
3369 unsigned int shndx,
3370 const char* secname,
3371 const elfcpp::Shdr<64, true>& shdr,
3372 unsigned int reloc_shndx,
3373 bool have_sections_script);
3374 #endif
3375
3376 #ifdef HAVE_TARGET_32_LITTLE
3377 template
3378 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3379 #endif
3380
3381 #ifdef HAVE_TARGET_32_BIG
3382 template
3383 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3384 #endif
3385
3386 #ifdef HAVE_TARGET_64_LITTLE
3387 template
3388 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3389 #endif
3390
3391 #ifdef HAVE_TARGET_64_BIG
3392 template
3393 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3394 #endif
3395
3396 #ifdef HAVE_TARGET_32_LITTLE
3397 template
3398 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3399 #endif
3400
3401 #ifdef HAVE_TARGET_32_BIG
3402 template
3403 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3404 #endif
3405
3406 #ifdef HAVE_TARGET_64_LITTLE
3407 template
3408 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3409 #endif
3410
3411 #ifdef HAVE_TARGET_64_BIG
3412 template
3413 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3414 #endif
3415
3416 #ifdef HAVE_TARGET_32_LITTLE
3417 template
3418 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3419 #endif
3420
3421 #ifdef HAVE_TARGET_32_BIG
3422 template
3423 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3424 #endif
3425
3426 #ifdef HAVE_TARGET_64_LITTLE
3427 template
3428 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3429 #endif
3430
3431 #ifdef HAVE_TARGET_64_BIG
3432 template
3433 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3434 #endif
3435
3436 #ifdef HAVE_TARGET_32_LITTLE
3437 template
3438 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3439 #endif
3440
3441 #ifdef HAVE_TARGET_32_BIG
3442 template
3443 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3444 #endif
3445
3446 #ifdef HAVE_TARGET_64_LITTLE
3447 template
3448 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3449 #endif
3450
3451 #ifdef HAVE_TARGET_64_BIG
3452 template
3453 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3454 #endif
3455
3456 #ifdef HAVE_TARGET_32_LITTLE
3457 template
3458 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3459 #endif
3460
3461 #ifdef HAVE_TARGET_32_BIG
3462 template
3463 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3464 #endif
3465
3466 #ifdef HAVE_TARGET_64_LITTLE
3467 template
3468 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3469 #endif
3470
3471 #ifdef HAVE_TARGET_64_BIG
3472 template
3473 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3474 #endif
3475
3476 #ifdef HAVE_TARGET_32_LITTLE
3477 template
3478 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3479 #endif
3480
3481 #ifdef HAVE_TARGET_32_BIG
3482 template
3483 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3484 #endif
3485
3486 #ifdef HAVE_TARGET_64_LITTLE
3487 template
3488 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3489 #endif
3490
3491 #ifdef HAVE_TARGET_64_BIG
3492 template
3493 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3494 #endif
3495
3496 #ifdef HAVE_TARGET_32_LITTLE
3497 template
3498 class Output_data_group<32, false>;
3499 #endif
3500
3501 #ifdef HAVE_TARGET_32_BIG
3502 template
3503 class Output_data_group<32, true>;
3504 #endif
3505
3506 #ifdef HAVE_TARGET_64_LITTLE
3507 template
3508 class Output_data_group<64, false>;
3509 #endif
3510
3511 #ifdef HAVE_TARGET_64_BIG
3512 template
3513 class Output_data_group<64, true>;
3514 #endif
3515
3516 #ifdef HAVE_TARGET_32_LITTLE
3517 template
3518 class Output_data_got<32, false>;
3519 #endif
3520
3521 #ifdef HAVE_TARGET_32_BIG
3522 template
3523 class Output_data_got<32, true>;
3524 #endif
3525
3526 #ifdef HAVE_TARGET_64_LITTLE
3527 template
3528 class Output_data_got<64, false>;
3529 #endif
3530
3531 #ifdef HAVE_TARGET_64_BIG
3532 template
3533 class Output_data_got<64, true>;
3534 #endif
3535
3536 } // End namespace gold.
This page took 0.116614 seconds and 4 git commands to generate.