* gdb.pascal/floats.pas: New test program.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h" // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42 #ifndef MAP_ANONYMOUS
43 # define MAP_ANONYMOUS MAP_ANON
44 #endif
45
46 namespace gold
47 {
48
49 // Output_data variables.
50
51 bool Output_data::allocated_sizes_are_fixed;
52
53 // Output_data methods.
54
55 Output_data::~Output_data()
56 {
57 }
58
59 // Return the default alignment for the target size.
60
61 uint64_t
62 Output_data::default_alignment()
63 {
64 return Output_data::default_alignment_for_size(parameters->get_size());
65 }
66
67 // Return the default alignment for a size--32 or 64.
68
69 uint64_t
70 Output_data::default_alignment_for_size(int size)
71 {
72 if (size == 32)
73 return 4;
74 else if (size == 64)
75 return 8;
76 else
77 gold_unreachable();
78 }
79
80 // Output_section_header methods. This currently assumes that the
81 // segment and section lists are complete at construction time.
82
83 Output_section_headers::Output_section_headers(
84 const Layout* layout,
85 const Layout::Segment_list* segment_list,
86 const Layout::Section_list* section_list,
87 const Layout::Section_list* unattached_section_list,
88 const Stringpool* secnamepool)
89 : layout_(layout),
90 segment_list_(segment_list),
91 section_list_(section_list),
92 unattached_section_list_(unattached_section_list),
93 secnamepool_(secnamepool)
94 {
95 // Count all the sections. Start with 1 for the null section.
96 off_t count = 1;
97 if (!parameters->output_is_object())
98 {
99 for (Layout::Segment_list::const_iterator p = segment_list->begin();
100 p != segment_list->end();
101 ++p)
102 if ((*p)->type() == elfcpp::PT_LOAD)
103 count += (*p)->output_section_count();
104 }
105 else
106 {
107 for (Layout::Section_list::const_iterator p = section_list->begin();
108 p != section_list->end();
109 ++p)
110 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
111 ++count;
112 }
113 count += unattached_section_list->size();
114
115 const int size = parameters->get_size();
116 int shdr_size;
117 if (size == 32)
118 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
119 else if (size == 64)
120 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
121 else
122 gold_unreachable();
123
124 this->set_data_size(count * shdr_size);
125 }
126
127 // Write out the section headers.
128
129 void
130 Output_section_headers::do_write(Output_file* of)
131 {
132 if (parameters->get_size() == 32)
133 {
134 if (parameters->is_big_endian())
135 {
136 #ifdef HAVE_TARGET_32_BIG
137 this->do_sized_write<32, true>(of);
138 #else
139 gold_unreachable();
140 #endif
141 }
142 else
143 {
144 #ifdef HAVE_TARGET_32_LITTLE
145 this->do_sized_write<32, false>(of);
146 #else
147 gold_unreachable();
148 #endif
149 }
150 }
151 else if (parameters->get_size() == 64)
152 {
153 if (parameters->is_big_endian())
154 {
155 #ifdef HAVE_TARGET_64_BIG
156 this->do_sized_write<64, true>(of);
157 #else
158 gold_unreachable();
159 #endif
160 }
161 else
162 {
163 #ifdef HAVE_TARGET_64_LITTLE
164 this->do_sized_write<64, false>(of);
165 #else
166 gold_unreachable();
167 #endif
168 }
169 }
170 else
171 gold_unreachable();
172 }
173
174 template<int size, bool big_endian>
175 void
176 Output_section_headers::do_sized_write(Output_file* of)
177 {
178 off_t all_shdrs_size = this->data_size();
179 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
180
181 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
182 unsigned char* v = view;
183
184 {
185 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
186 oshdr.put_sh_name(0);
187 oshdr.put_sh_type(elfcpp::SHT_NULL);
188 oshdr.put_sh_flags(0);
189 oshdr.put_sh_addr(0);
190 oshdr.put_sh_offset(0);
191 oshdr.put_sh_size(0);
192 oshdr.put_sh_link(0);
193 oshdr.put_sh_info(0);
194 oshdr.put_sh_addralign(0);
195 oshdr.put_sh_entsize(0);
196 }
197
198 v += shdr_size;
199
200 unsigned int shndx = 1;
201 if (!parameters->output_is_object())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
208 this->secnamepool_,
209 v,
210 &shndx);
211 }
212 else
213 {
214 for (Layout::Section_list::const_iterator p =
215 this->section_list_->begin();
216 p != this->section_list_->end();
217 ++p)
218 {
219 // We do unallocated sections below, except that group
220 // sections have to come first.
221 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
222 && (*p)->type() != elfcpp::SHT_GROUP)
223 continue;
224 gold_assert(shndx == (*p)->out_shndx());
225 elfcpp::Shdr_write<size, big_endian> oshdr(v);
226 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
227 v += shdr_size;
228 ++shndx;
229 }
230 }
231
232 for (Layout::Section_list::const_iterator p =
233 this->unattached_section_list_->begin();
234 p != this->unattached_section_list_->end();
235 ++p)
236 {
237 // For a relocatable link, we did unallocated group sections
238 // above, since they have to come first.
239 if ((*p)->type() == elfcpp::SHT_GROUP
240 && parameters->output_is_object())
241 continue;
242 gold_assert(shndx == (*p)->out_shndx());
243 elfcpp::Shdr_write<size, big_endian> oshdr(v);
244 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
245 v += shdr_size;
246 ++shndx;
247 }
248
249 of->write_output_view(this->offset(), all_shdrs_size, view);
250 }
251
252 // Output_segment_header methods.
253
254 Output_segment_headers::Output_segment_headers(
255 const Layout::Segment_list& segment_list)
256 : segment_list_(segment_list)
257 {
258 const int size = parameters->get_size();
259 int phdr_size;
260 if (size == 32)
261 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
262 else if (size == 64)
263 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
264 else
265 gold_unreachable();
266
267 this->set_data_size(segment_list.size() * phdr_size);
268 }
269
270 void
271 Output_segment_headers::do_write(Output_file* of)
272 {
273 if (parameters->get_size() == 32)
274 {
275 if (parameters->is_big_endian())
276 {
277 #ifdef HAVE_TARGET_32_BIG
278 this->do_sized_write<32, true>(of);
279 #else
280 gold_unreachable();
281 #endif
282 }
283 else
284 {
285 #ifdef HAVE_TARGET_32_LITTLE
286 this->do_sized_write<32, false>(of);
287 #else
288 gold_unreachable();
289 #endif
290 }
291 }
292 else if (parameters->get_size() == 64)
293 {
294 if (parameters->is_big_endian())
295 {
296 #ifdef HAVE_TARGET_64_BIG
297 this->do_sized_write<64, true>(of);
298 #else
299 gold_unreachable();
300 #endif
301 }
302 else
303 {
304 #ifdef HAVE_TARGET_64_LITTLE
305 this->do_sized_write<64, false>(of);
306 #else
307 gold_unreachable();
308 #endif
309 }
310 }
311 else
312 gold_unreachable();
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 // Output_file_header methods.
340
341 Output_file_header::Output_file_header(const Target* target,
342 const Symbol_table* symtab,
343 const Output_segment_headers* osh,
344 const char* entry)
345 : target_(target),
346 symtab_(symtab),
347 segment_header_(osh),
348 section_header_(NULL),
349 shstrtab_(NULL),
350 entry_(entry)
351 {
352 const int size = parameters->get_size();
353 int ehdr_size;
354 if (size == 32)
355 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
356 else if (size == 64)
357 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
358 else
359 gold_unreachable();
360
361 this->set_data_size(ehdr_size);
362 }
363
364 // Set the section table information for a file header.
365
366 void
367 Output_file_header::set_section_info(const Output_section_headers* shdrs,
368 const Output_section* shstrtab)
369 {
370 this->section_header_ = shdrs;
371 this->shstrtab_ = shstrtab;
372 }
373
374 // Write out the file header.
375
376 void
377 Output_file_header::do_write(Output_file* of)
378 {
379 gold_assert(this->offset() == 0);
380
381 if (parameters->get_size() == 32)
382 {
383 if (parameters->is_big_endian())
384 {
385 #ifdef HAVE_TARGET_32_BIG
386 this->do_sized_write<32, true>(of);
387 #else
388 gold_unreachable();
389 #endif
390 }
391 else
392 {
393 #ifdef HAVE_TARGET_32_LITTLE
394 this->do_sized_write<32, false>(of);
395 #else
396 gold_unreachable();
397 #endif
398 }
399 }
400 else if (parameters->get_size() == 64)
401 {
402 if (parameters->is_big_endian())
403 {
404 #ifdef HAVE_TARGET_64_BIG
405 this->do_sized_write<64, true>(of);
406 #else
407 gold_unreachable();
408 #endif
409 }
410 else
411 {
412 #ifdef HAVE_TARGET_64_LITTLE
413 this->do_sized_write<64, false>(of);
414 #else
415 gold_unreachable();
416 #endif
417 }
418 }
419 else
420 gold_unreachable();
421 }
422
423 // Write out the file header with appropriate size and endianess.
424
425 template<int size, bool big_endian>
426 void
427 Output_file_header::do_sized_write(Output_file* of)
428 {
429 gold_assert(this->offset() == 0);
430
431 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
432 unsigned char* view = of->get_output_view(0, ehdr_size);
433 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
434
435 unsigned char e_ident[elfcpp::EI_NIDENT];
436 memset(e_ident, 0, elfcpp::EI_NIDENT);
437 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
438 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
439 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
440 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
441 if (size == 32)
442 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
443 else if (size == 64)
444 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
445 else
446 gold_unreachable();
447 e_ident[elfcpp::EI_DATA] = (big_endian
448 ? elfcpp::ELFDATA2MSB
449 : elfcpp::ELFDATA2LSB);
450 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
451 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
452 oehdr.put_e_ident(e_ident);
453
454 elfcpp::ET e_type;
455 if (parameters->output_is_object())
456 e_type = elfcpp::ET_REL;
457 else if (parameters->output_is_shared())
458 e_type = elfcpp::ET_DYN;
459 else
460 e_type = elfcpp::ET_EXEC;
461 oehdr.put_e_type(e_type);
462
463 oehdr.put_e_machine(this->target_->machine_code());
464 oehdr.put_e_version(elfcpp::EV_CURRENT);
465
466 oehdr.put_e_entry(this->entry<size>());
467
468 if (this->segment_header_ == NULL)
469 oehdr.put_e_phoff(0);
470 else
471 oehdr.put_e_phoff(this->segment_header_->offset());
472
473 oehdr.put_e_shoff(this->section_header_->offset());
474
475 // FIXME: The target needs to set the flags.
476 oehdr.put_e_flags(0);
477
478 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
479
480 if (this->segment_header_ == NULL)
481 {
482 oehdr.put_e_phentsize(0);
483 oehdr.put_e_phnum(0);
484 }
485 else
486 {
487 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
488 oehdr.put_e_phnum(this->segment_header_->data_size()
489 / elfcpp::Elf_sizes<size>::phdr_size);
490 }
491
492 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
493 oehdr.put_e_shnum(this->section_header_->data_size()
494 / elfcpp::Elf_sizes<size>::shdr_size);
495 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
496
497 of->write_output_view(0, ehdr_size, view);
498 }
499
500 // Return the value to use for the entry address. THIS->ENTRY_ is the
501 // symbol specified on the command line, if any.
502
503 template<int size>
504 typename elfcpp::Elf_types<size>::Elf_Addr
505 Output_file_header::entry()
506 {
507 const bool should_issue_warning = (this->entry_ != NULL
508 && parameters->output_is_executable());
509
510 // FIXME: Need to support target specific entry symbol.
511 const char* entry = this->entry_;
512 if (entry == NULL)
513 entry = "_start";
514
515 Symbol* sym = this->symtab_->lookup(entry);
516
517 typename Sized_symbol<size>::Value_type v;
518 if (sym != NULL)
519 {
520 Sized_symbol<size>* ssym;
521 ssym = this->symtab_->get_sized_symbol<size>(sym);
522 if (!ssym->is_defined() && should_issue_warning)
523 gold_warning("entry symbol '%s' exists but is not defined", entry);
524 v = ssym->value();
525 }
526 else
527 {
528 // We couldn't find the entry symbol. See if we can parse it as
529 // a number. This supports, e.g., -e 0x1000.
530 char* endptr;
531 v = strtoull(entry, &endptr, 0);
532 if (*endptr != '\0')
533 {
534 if (should_issue_warning)
535 gold_warning("cannot find entry symbol '%s'", entry);
536 v = 0;
537 }
538 }
539
540 return v;
541 }
542
543 // Output_data_const methods.
544
545 void
546 Output_data_const::do_write(Output_file* of)
547 {
548 of->write(this->offset(), this->data_.data(), this->data_.size());
549 }
550
551 // Output_data_const_buffer methods.
552
553 void
554 Output_data_const_buffer::do_write(Output_file* of)
555 {
556 of->write(this->offset(), this->p_, this->data_size());
557 }
558
559 // Output_section_data methods.
560
561 // Record the output section, and set the entry size and such.
562
563 void
564 Output_section_data::set_output_section(Output_section* os)
565 {
566 gold_assert(this->output_section_ == NULL);
567 this->output_section_ = os;
568 this->do_adjust_output_section(os);
569 }
570
571 // Return the section index of the output section.
572
573 unsigned int
574 Output_section_data::do_out_shndx() const
575 {
576 gold_assert(this->output_section_ != NULL);
577 return this->output_section_->out_shndx();
578 }
579
580 // Output_data_strtab methods.
581
582 // Set the final data size.
583
584 void
585 Output_data_strtab::set_final_data_size()
586 {
587 this->strtab_->set_string_offsets();
588 this->set_data_size(this->strtab_->get_strtab_size());
589 }
590
591 // Write out a string table.
592
593 void
594 Output_data_strtab::do_write(Output_file* of)
595 {
596 this->strtab_->write(of, this->offset());
597 }
598
599 // Output_reloc methods.
600
601 // A reloc against a global symbol.
602
603 template<bool dynamic, int size, bool big_endian>
604 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
605 Symbol* gsym,
606 unsigned int type,
607 Output_data* od,
608 Address address,
609 bool is_relative)
610 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
611 is_relative_(is_relative), shndx_(INVALID_CODE)
612 {
613 this->u1_.gsym = gsym;
614 this->u2_.od = od;
615 if (dynamic && !is_relative)
616 gsym->set_needs_dynsym_entry();
617 }
618
619 template<bool dynamic, int size, bool big_endian>
620 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
621 Symbol* gsym,
622 unsigned int type,
623 Relobj* relobj,
624 unsigned int shndx,
625 Address address,
626 bool is_relative)
627 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
628 is_relative_(is_relative), shndx_(shndx)
629 {
630 gold_assert(shndx != INVALID_CODE);
631 this->u1_.gsym = gsym;
632 this->u2_.relobj = relobj;
633 if (dynamic && !is_relative)
634 gsym->set_needs_dynsym_entry();
635 }
636
637 // A reloc against a local symbol.
638
639 template<bool dynamic, int size, bool big_endian>
640 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
641 Sized_relobj<size, big_endian>* relobj,
642 unsigned int local_sym_index,
643 unsigned int type,
644 Output_data* od,
645 Address address,
646 bool is_relative)
647 : address_(address), local_sym_index_(local_sym_index), type_(type),
648 is_relative_(is_relative), shndx_(INVALID_CODE)
649 {
650 gold_assert(local_sym_index != GSYM_CODE
651 && local_sym_index != INVALID_CODE);
652 this->u1_.relobj = relobj;
653 this->u2_.od = od;
654 if (dynamic && !is_relative)
655 relobj->set_needs_output_dynsym_entry(local_sym_index);
656 }
657
658 template<bool dynamic, int size, bool big_endian>
659 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
660 Sized_relobj<size, big_endian>* relobj,
661 unsigned int local_sym_index,
662 unsigned int type,
663 unsigned int shndx,
664 Address address,
665 bool is_relative)
666 : address_(address), local_sym_index_(local_sym_index), type_(type),
667 is_relative_(is_relative), shndx_(shndx)
668 {
669 gold_assert(local_sym_index != GSYM_CODE
670 && local_sym_index != INVALID_CODE);
671 gold_assert(shndx != INVALID_CODE);
672 this->u1_.relobj = relobj;
673 this->u2_.relobj = relobj;
674 if (dynamic && !is_relative)
675 relobj->set_needs_output_dynsym_entry(local_sym_index);
676 }
677
678 // A reloc against the STT_SECTION symbol of an output section.
679
680 template<bool dynamic, int size, bool big_endian>
681 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
682 Output_section* os,
683 unsigned int type,
684 Output_data* od,
685 Address address)
686 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
687 is_relative_(false), shndx_(INVALID_CODE)
688 {
689 this->u1_.os = os;
690 this->u2_.od = od;
691 if (dynamic)
692 os->set_needs_dynsym_index();
693 }
694
695 template<bool dynamic, int size, bool big_endian>
696 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
697 Output_section* os,
698 unsigned int type,
699 Relobj* relobj,
700 unsigned int shndx,
701 Address address)
702 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703 is_relative_(false), shndx_(shndx)
704 {
705 gold_assert(shndx != INVALID_CODE);
706 this->u1_.os = os;
707 this->u2_.relobj = relobj;
708 if (dynamic)
709 os->set_needs_dynsym_index();
710 }
711
712 // Get the symbol index of a relocation.
713
714 template<bool dynamic, int size, bool big_endian>
715 unsigned int
716 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
717 const
718 {
719 unsigned int index;
720 switch (this->local_sym_index_)
721 {
722 case INVALID_CODE:
723 gold_unreachable();
724
725 case GSYM_CODE:
726 if (this->u1_.gsym == NULL)
727 index = 0;
728 else if (dynamic)
729 index = this->u1_.gsym->dynsym_index();
730 else
731 index = this->u1_.gsym->symtab_index();
732 break;
733
734 case SECTION_CODE:
735 if (dynamic)
736 index = this->u1_.os->dynsym_index();
737 else
738 index = this->u1_.os->symtab_index();
739 break;
740
741 case 0:
742 // Relocations without symbols use a symbol index of 0.
743 index = 0;
744 break;
745
746 default:
747 if (dynamic)
748 index = this->u1_.relobj->dynsym_index(this->local_sym_index_);
749 else
750 index = this->u1_.relobj->symtab_index(this->local_sym_index_);
751 break;
752 }
753 gold_assert(index != -1U);
754 return index;
755 }
756
757 // Write out the offset and info fields of a Rel or Rela relocation
758 // entry.
759
760 template<bool dynamic, int size, bool big_endian>
761 template<typename Write_rel>
762 void
763 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
764 Write_rel* wr) const
765 {
766 Address address = this->address_;
767 if (this->shndx_ != INVALID_CODE)
768 {
769 section_offset_type off;
770 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
771 &off);
772 gold_assert(os != NULL);
773 if (off != -1)
774 address += os->address() + off;
775 else
776 {
777 address = os->output_address(this->u2_.relobj, this->shndx_,
778 address);
779 gold_assert(address != -1U);
780 }
781 }
782 else if (this->u2_.od != NULL)
783 address += this->u2_.od->address();
784 wr->put_r_offset(address);
785 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
786 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
787 }
788
789 // Write out a Rel relocation.
790
791 template<bool dynamic, int size, bool big_endian>
792 void
793 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
794 unsigned char* pov) const
795 {
796 elfcpp::Rel_write<size, big_endian> orel(pov);
797 this->write_rel(&orel);
798 }
799
800 // Get the value of the symbol referred to by a Rel relocation.
801
802 template<bool dynamic, int size, bool big_endian>
803 typename elfcpp::Elf_types<size>::Elf_Addr
804 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value() const
805 {
806 if (this->local_sym_index_ == GSYM_CODE)
807 {
808 const Sized_symbol<size>* sym;
809 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
810 return sym->value();
811 }
812 gold_assert(this->local_sym_index_ != SECTION_CODE
813 && this->local_sym_index_ != INVALID_CODE);
814 const Sized_relobj<size, big_endian>* relobj = this->u1_.relobj;
815 return relobj->local_symbol_value(this->local_sym_index_);
816 }
817
818 // Write out a Rela relocation.
819
820 template<bool dynamic, int size, bool big_endian>
821 void
822 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
823 unsigned char* pov) const
824 {
825 elfcpp::Rela_write<size, big_endian> orel(pov);
826 this->rel_.write_rel(&orel);
827 Addend addend = this->addend_;
828 if (rel_.is_relative())
829 addend += rel_.symbol_value();
830 orel.put_r_addend(addend);
831 }
832
833 // Output_data_reloc_base methods.
834
835 // Adjust the output section.
836
837 template<int sh_type, bool dynamic, int size, bool big_endian>
838 void
839 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
840 ::do_adjust_output_section(Output_section* os)
841 {
842 if (sh_type == elfcpp::SHT_REL)
843 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
844 else if (sh_type == elfcpp::SHT_RELA)
845 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
846 else
847 gold_unreachable();
848 if (dynamic)
849 os->set_should_link_to_dynsym();
850 else
851 os->set_should_link_to_symtab();
852 }
853
854 // Write out relocation data.
855
856 template<int sh_type, bool dynamic, int size, bool big_endian>
857 void
858 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
859 Output_file* of)
860 {
861 const off_t off = this->offset();
862 const off_t oview_size = this->data_size();
863 unsigned char* const oview = of->get_output_view(off, oview_size);
864
865 unsigned char* pov = oview;
866 for (typename Relocs::const_iterator p = this->relocs_.begin();
867 p != this->relocs_.end();
868 ++p)
869 {
870 p->write(pov);
871 pov += reloc_size;
872 }
873
874 gold_assert(pov - oview == oview_size);
875
876 of->write_output_view(off, oview_size, oview);
877
878 // We no longer need the relocation entries.
879 this->relocs_.clear();
880 }
881
882 // Class Output_relocatable_relocs.
883
884 template<int sh_type, int size, bool big_endian>
885 void
886 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
887 {
888 this->set_data_size(this->rr_->output_reloc_count()
889 * Reloc_types<sh_type, size, big_endian>::reloc_size);
890 }
891
892 // class Output_data_group.
893
894 template<int size, bool big_endian>
895 Output_data_group<size, big_endian>::Output_data_group(
896 Sized_relobj<size, big_endian>* relobj,
897 section_size_type entry_count,
898 const elfcpp::Elf_Word* contents)
899 : Output_section_data(entry_count * 4, 4),
900 relobj_(relobj)
901 {
902 this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
903 for (section_size_type i = 1; i < entry_count; ++i)
904 {
905 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
906 this->input_sections_.push_back(shndx);
907 }
908 }
909
910 // Write out the section group, which means translating the section
911 // indexes to apply to the output file.
912
913 template<int size, bool big_endian>
914 void
915 Output_data_group<size, big_endian>::do_write(Output_file* of)
916 {
917 const off_t off = this->offset();
918 const section_size_type oview_size =
919 convert_to_section_size_type(this->data_size());
920 unsigned char* const oview = of->get_output_view(off, oview_size);
921
922 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
923 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
924 ++contents;
925
926 for (std::vector<unsigned int>::const_iterator p =
927 this->input_sections_.begin();
928 p != this->input_sections_.end();
929 ++p, ++contents)
930 {
931 section_offset_type dummy;
932 Output_section* os = this->relobj_->output_section(*p, &dummy);
933
934 unsigned int output_shndx;
935 if (os != NULL)
936 output_shndx = os->out_shndx();
937 else
938 {
939 this->relobj_->error(_("section group retained but "
940 "group element discarded"));
941 output_shndx = 0;
942 }
943
944 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
945 }
946
947 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
948 gold_assert(wrote == oview_size);
949
950 of->write_output_view(off, oview_size, oview);
951
952 // We no longer need this information.
953 this->input_sections_.clear();
954 }
955
956 // Output_data_got::Got_entry methods.
957
958 // Write out the entry.
959
960 template<int size, bool big_endian>
961 void
962 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
963 {
964 Valtype val = 0;
965
966 switch (this->local_sym_index_)
967 {
968 case GSYM_CODE:
969 {
970 // If the symbol is resolved locally, we need to write out the
971 // link-time value, which will be relocated dynamically by a
972 // RELATIVE relocation.
973 Symbol* gsym = this->u_.gsym;
974 Sized_symbol<size>* sgsym;
975 // This cast is a bit ugly. We don't want to put a
976 // virtual method in Symbol, because we want Symbol to be
977 // as small as possible.
978 sgsym = static_cast<Sized_symbol<size>*>(gsym);
979 val = sgsym->value();
980 }
981 break;
982
983 case CONSTANT_CODE:
984 val = this->u_.constant;
985 break;
986
987 default:
988 val = this->u_.object->local_symbol_value(this->local_sym_index_);
989 break;
990 }
991
992 elfcpp::Swap<size, big_endian>::writeval(pov, val);
993 }
994
995 // Output_data_got methods.
996
997 // Add an entry for a global symbol to the GOT. This returns true if
998 // this is a new GOT entry, false if the symbol already had a GOT
999 // entry.
1000
1001 template<int size, bool big_endian>
1002 bool
1003 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
1004 {
1005 if (gsym->has_got_offset())
1006 return false;
1007
1008 this->entries_.push_back(Got_entry(gsym));
1009 this->set_got_size();
1010 gsym->set_got_offset(this->last_got_offset());
1011 return true;
1012 }
1013
1014 // Add an entry for a global symbol to the GOT, and add a dynamic
1015 // relocation of type R_TYPE for the GOT entry.
1016 template<int size, bool big_endian>
1017 void
1018 Output_data_got<size, big_endian>::add_global_with_rel(
1019 Symbol* gsym,
1020 Rel_dyn* rel_dyn,
1021 unsigned int r_type)
1022 {
1023 if (gsym->has_got_offset())
1024 return;
1025
1026 this->entries_.push_back(Got_entry());
1027 this->set_got_size();
1028 unsigned int got_offset = this->last_got_offset();
1029 gsym->set_got_offset(got_offset);
1030 rel_dyn->add_global(gsym, r_type, this, got_offset);
1031 }
1032
1033 template<int size, bool big_endian>
1034 void
1035 Output_data_got<size, big_endian>::add_global_with_rela(
1036 Symbol* gsym,
1037 Rela_dyn* rela_dyn,
1038 unsigned int r_type)
1039 {
1040 if (gsym->has_got_offset())
1041 return;
1042
1043 this->entries_.push_back(Got_entry());
1044 this->set_got_size();
1045 unsigned int got_offset = this->last_got_offset();
1046 gsym->set_got_offset(got_offset);
1047 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1048 }
1049
1050 // Add an entry for a local symbol to the GOT. This returns true if
1051 // this is a new GOT entry, false if the symbol already has a GOT
1052 // entry.
1053
1054 template<int size, bool big_endian>
1055 bool
1056 Output_data_got<size, big_endian>::add_local(
1057 Sized_relobj<size, big_endian>* object,
1058 unsigned int symndx)
1059 {
1060 if (object->local_has_got_offset(symndx))
1061 return false;
1062
1063 this->entries_.push_back(Got_entry(object, symndx));
1064 this->set_got_size();
1065 object->set_local_got_offset(symndx, this->last_got_offset());
1066 return true;
1067 }
1068
1069 // Add an entry for a local symbol to the GOT, and add a dynamic
1070 // relocation of type R_TYPE for the GOT entry.
1071 template<int size, bool big_endian>
1072 void
1073 Output_data_got<size, big_endian>::add_local_with_rel(
1074 Sized_relobj<size, big_endian>* object,
1075 unsigned int symndx,
1076 Rel_dyn* rel_dyn,
1077 unsigned int r_type)
1078 {
1079 if (object->local_has_got_offset(symndx))
1080 return;
1081
1082 this->entries_.push_back(Got_entry());
1083 this->set_got_size();
1084 unsigned int got_offset = this->last_got_offset();
1085 object->set_local_got_offset(symndx, got_offset);
1086 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1087 }
1088
1089 template<int size, bool big_endian>
1090 void
1091 Output_data_got<size, big_endian>::add_local_with_rela(
1092 Sized_relobj<size, big_endian>* object,
1093 unsigned int symndx,
1094 Rela_dyn* rela_dyn,
1095 unsigned int r_type)
1096 {
1097 if (object->local_has_got_offset(symndx))
1098 return;
1099
1100 this->entries_.push_back(Got_entry());
1101 this->set_got_size();
1102 unsigned int got_offset = this->last_got_offset();
1103 object->set_local_got_offset(symndx, got_offset);
1104 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1105 }
1106
1107 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
1108 // In a pair of entries, the first value in the pair will be used for the
1109 // module index, and the second value will be used for the dtv-relative
1110 // offset. This returns true if this is a new GOT entry, false if the symbol
1111 // already has a GOT entry.
1112
1113 template<int size, bool big_endian>
1114 bool
1115 Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym, bool need_pair)
1116 {
1117 if (gsym->has_tls_got_offset(need_pair))
1118 return false;
1119
1120 this->entries_.push_back(Got_entry(gsym));
1121 gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
1122 if (need_pair)
1123 this->entries_.push_back(Got_entry(gsym));
1124 this->set_got_size();
1125 return true;
1126 }
1127
1128 // Add an entry for a global TLS symbol to the GOT, and add a dynamic
1129 // relocation of type R_TYPE.
1130 template<int size, bool big_endian>
1131 void
1132 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1133 Symbol* gsym,
1134 Rel_dyn* rel_dyn,
1135 unsigned int r_type)
1136 {
1137 if (gsym->has_tls_got_offset(false))
1138 return;
1139
1140 this->entries_.push_back(Got_entry());
1141 this->set_got_size();
1142 unsigned int got_offset = this->last_got_offset();
1143 gsym->set_tls_got_offset(got_offset, false);
1144 rel_dyn->add_global(gsym, r_type, this, got_offset);
1145 }
1146
1147 template<int size, bool big_endian>
1148 void
1149 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1150 Symbol* gsym,
1151 Rela_dyn* rela_dyn,
1152 unsigned int r_type)
1153 {
1154 if (gsym->has_tls_got_offset(false))
1155 return;
1156
1157 this->entries_.push_back(Got_entry());
1158 this->set_got_size();
1159 unsigned int got_offset = this->last_got_offset();
1160 gsym->set_tls_got_offset(got_offset, false);
1161 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1162 }
1163
1164 // Add a pair of entries for a global TLS symbol to the GOT, and add
1165 // dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
1166 template<int size, bool big_endian>
1167 void
1168 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1169 Symbol* gsym,
1170 Rel_dyn* rel_dyn,
1171 unsigned int mod_r_type,
1172 unsigned int dtv_r_type)
1173 {
1174 if (gsym->has_tls_got_offset(true))
1175 return;
1176
1177 this->entries_.push_back(Got_entry());
1178 unsigned int got_offset = this->last_got_offset();
1179 gsym->set_tls_got_offset(got_offset, true);
1180 rel_dyn->add_global(gsym, mod_r_type, this, got_offset);
1181
1182 this->entries_.push_back(Got_entry());
1183 this->set_got_size();
1184 got_offset = this->last_got_offset();
1185 rel_dyn->add_global(gsym, dtv_r_type, this, got_offset);
1186 }
1187
1188 template<int size, bool big_endian>
1189 void
1190 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1191 Symbol* gsym,
1192 Rela_dyn* rela_dyn,
1193 unsigned int mod_r_type,
1194 unsigned int dtv_r_type)
1195 {
1196 if (gsym->has_tls_got_offset(true))
1197 return;
1198
1199 this->entries_.push_back(Got_entry());
1200 unsigned int got_offset = this->last_got_offset();
1201 gsym->set_tls_got_offset(got_offset, true);
1202 rela_dyn->add_global(gsym, mod_r_type, this, got_offset, 0);
1203
1204 this->entries_.push_back(Got_entry());
1205 this->set_got_size();
1206 got_offset = this->last_got_offset();
1207 rela_dyn->add_global(gsym, dtv_r_type, this, got_offset, 0);
1208 }
1209
1210 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
1211 // In a pair of entries, the first value in the pair will be used for the
1212 // module index, and the second value will be used for the dtv-relative
1213 // offset. This returns true if this is a new GOT entry, false if the symbol
1214 // already has a GOT entry.
1215
1216 template<int size, bool big_endian>
1217 bool
1218 Output_data_got<size, big_endian>::add_local_tls(
1219 Sized_relobj<size, big_endian>* object,
1220 unsigned int symndx,
1221 bool need_pair)
1222 {
1223 if (object->local_has_tls_got_offset(symndx, need_pair))
1224 return false;
1225
1226 this->entries_.push_back(Got_entry(object, symndx));
1227 object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
1228 if (need_pair)
1229 this->entries_.push_back(Got_entry(object, symndx));
1230 this->set_got_size();
1231 return true;
1232 }
1233
1234 // Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1235 // and add a dynamic relocation of type R_TYPE for the first GOT entry.
1236 // Because this is a local symbol, the first GOT entry can be relocated
1237 // relative to a section symbol, and the second GOT entry will have an
1238 // dtv-relative value that can be computed at link time.
1239 template<int size, bool big_endian>
1240 void
1241 Output_data_got<size, big_endian>::add_local_tls_with_rel(
1242 Sized_relobj<size, big_endian>* object,
1243 unsigned int symndx,
1244 unsigned int shndx,
1245 bool need_pair,
1246 Rel_dyn* rel_dyn,
1247 unsigned int r_type)
1248 {
1249 if (object->local_has_tls_got_offset(symndx, need_pair))
1250 return;
1251
1252 this->entries_.push_back(Got_entry());
1253 unsigned int got_offset = this->last_got_offset();
1254 object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1255 section_offset_type off;
1256 Output_section* os = object->output_section(shndx, &off);
1257 rel_dyn->add_output_section(os, r_type, this, got_offset);
1258
1259 // The second entry of the pair will be statically initialized
1260 // with the TLS offset of the symbol.
1261 if (need_pair)
1262 this->entries_.push_back(Got_entry(object, symndx));
1263
1264 this->set_got_size();
1265 }
1266
1267 template<int size, bool big_endian>
1268 void
1269 Output_data_got<size, big_endian>::add_local_tls_with_rela(
1270 Sized_relobj<size, big_endian>* object,
1271 unsigned int symndx,
1272 unsigned int shndx,
1273 bool need_pair,
1274 Rela_dyn* rela_dyn,
1275 unsigned int r_type)
1276 {
1277 if (object->local_has_tls_got_offset(symndx, need_pair))
1278 return;
1279
1280 this->entries_.push_back(Got_entry());
1281 unsigned int got_offset = this->last_got_offset();
1282 object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1283 section_offset_type off;
1284 Output_section* os = object->output_section(shndx, &off);
1285 rela_dyn->add_output_section(os, r_type, this, got_offset, 0);
1286
1287 // The second entry of the pair will be statically initialized
1288 // with the TLS offset of the symbol.
1289 if (need_pair)
1290 this->entries_.push_back(Got_entry(object, symndx));
1291
1292 this->set_got_size();
1293 }
1294
1295 // Write out the GOT.
1296
1297 template<int size, bool big_endian>
1298 void
1299 Output_data_got<size, big_endian>::do_write(Output_file* of)
1300 {
1301 const int add = size / 8;
1302
1303 const off_t off = this->offset();
1304 const off_t oview_size = this->data_size();
1305 unsigned char* const oview = of->get_output_view(off, oview_size);
1306
1307 unsigned char* pov = oview;
1308 for (typename Got_entries::const_iterator p = this->entries_.begin();
1309 p != this->entries_.end();
1310 ++p)
1311 {
1312 p->write(pov);
1313 pov += add;
1314 }
1315
1316 gold_assert(pov - oview == oview_size);
1317
1318 of->write_output_view(off, oview_size, oview);
1319
1320 // We no longer need the GOT entries.
1321 this->entries_.clear();
1322 }
1323
1324 // Output_data_dynamic::Dynamic_entry methods.
1325
1326 // Write out the entry.
1327
1328 template<int size, bool big_endian>
1329 void
1330 Output_data_dynamic::Dynamic_entry::write(
1331 unsigned char* pov,
1332 const Stringpool* pool
1333 ACCEPT_SIZE_ENDIAN) const
1334 {
1335 typename elfcpp::Elf_types<size>::Elf_WXword val;
1336 switch (this->classification_)
1337 {
1338 case DYNAMIC_NUMBER:
1339 val = this->u_.val;
1340 break;
1341
1342 case DYNAMIC_SECTION_ADDRESS:
1343 val = this->u_.od->address();
1344 break;
1345
1346 case DYNAMIC_SECTION_SIZE:
1347 val = this->u_.od->data_size();
1348 break;
1349
1350 case DYNAMIC_SYMBOL:
1351 {
1352 const Sized_symbol<size>* s =
1353 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1354 val = s->value();
1355 }
1356 break;
1357
1358 case DYNAMIC_STRING:
1359 val = pool->get_offset(this->u_.str);
1360 break;
1361
1362 default:
1363 gold_unreachable();
1364 }
1365
1366 elfcpp::Dyn_write<size, big_endian> dw(pov);
1367 dw.put_d_tag(this->tag_);
1368 dw.put_d_val(val);
1369 }
1370
1371 // Output_data_dynamic methods.
1372
1373 // Adjust the output section to set the entry size.
1374
1375 void
1376 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1377 {
1378 if (parameters->get_size() == 32)
1379 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1380 else if (parameters->get_size() == 64)
1381 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1382 else
1383 gold_unreachable();
1384 }
1385
1386 // Set the final data size.
1387
1388 void
1389 Output_data_dynamic::set_final_data_size()
1390 {
1391 // Add the terminating entry.
1392 this->add_constant(elfcpp::DT_NULL, 0);
1393
1394 int dyn_size;
1395 if (parameters->get_size() == 32)
1396 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1397 else if (parameters->get_size() == 64)
1398 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1399 else
1400 gold_unreachable();
1401 this->set_data_size(this->entries_.size() * dyn_size);
1402 }
1403
1404 // Write out the dynamic entries.
1405
1406 void
1407 Output_data_dynamic::do_write(Output_file* of)
1408 {
1409 if (parameters->get_size() == 32)
1410 {
1411 if (parameters->is_big_endian())
1412 {
1413 #ifdef HAVE_TARGET_32_BIG
1414 this->sized_write<32, true>(of);
1415 #else
1416 gold_unreachable();
1417 #endif
1418 }
1419 else
1420 {
1421 #ifdef HAVE_TARGET_32_LITTLE
1422 this->sized_write<32, false>(of);
1423 #else
1424 gold_unreachable();
1425 #endif
1426 }
1427 }
1428 else if (parameters->get_size() == 64)
1429 {
1430 if (parameters->is_big_endian())
1431 {
1432 #ifdef HAVE_TARGET_64_BIG
1433 this->sized_write<64, true>(of);
1434 #else
1435 gold_unreachable();
1436 #endif
1437 }
1438 else
1439 {
1440 #ifdef HAVE_TARGET_64_LITTLE
1441 this->sized_write<64, false>(of);
1442 #else
1443 gold_unreachable();
1444 #endif
1445 }
1446 }
1447 else
1448 gold_unreachable();
1449 }
1450
1451 template<int size, bool big_endian>
1452 void
1453 Output_data_dynamic::sized_write(Output_file* of)
1454 {
1455 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1456
1457 const off_t offset = this->offset();
1458 const off_t oview_size = this->data_size();
1459 unsigned char* const oview = of->get_output_view(offset, oview_size);
1460
1461 unsigned char* pov = oview;
1462 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1463 p != this->entries_.end();
1464 ++p)
1465 {
1466 p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1467 pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
1468 pov += dyn_size;
1469 }
1470
1471 gold_assert(pov - oview == oview_size);
1472
1473 of->write_output_view(offset, oview_size, oview);
1474
1475 // We no longer need the dynamic entries.
1476 this->entries_.clear();
1477 }
1478
1479 // Output_section::Input_section methods.
1480
1481 // Return the data size. For an input section we store the size here.
1482 // For an Output_section_data, we have to ask it for the size.
1483
1484 off_t
1485 Output_section::Input_section::data_size() const
1486 {
1487 if (this->is_input_section())
1488 return this->u1_.data_size;
1489 else
1490 return this->u2_.posd->data_size();
1491 }
1492
1493 // Set the address and file offset.
1494
1495 void
1496 Output_section::Input_section::set_address_and_file_offset(
1497 uint64_t address,
1498 off_t file_offset,
1499 off_t section_file_offset)
1500 {
1501 if (this->is_input_section())
1502 this->u2_.object->set_section_offset(this->shndx_,
1503 file_offset - section_file_offset);
1504 else
1505 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1506 }
1507
1508 // Reset the address and file offset.
1509
1510 void
1511 Output_section::Input_section::reset_address_and_file_offset()
1512 {
1513 if (!this->is_input_section())
1514 this->u2_.posd->reset_address_and_file_offset();
1515 }
1516
1517 // Finalize the data size.
1518
1519 void
1520 Output_section::Input_section::finalize_data_size()
1521 {
1522 if (!this->is_input_section())
1523 this->u2_.posd->finalize_data_size();
1524 }
1525
1526 // Try to turn an input offset into an output offset. We want to
1527 // return the output offset relative to the start of this
1528 // Input_section in the output section.
1529
1530 inline bool
1531 Output_section::Input_section::output_offset(
1532 const Relobj* object,
1533 unsigned int shndx,
1534 section_offset_type offset,
1535 section_offset_type *poutput) const
1536 {
1537 if (!this->is_input_section())
1538 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1539 else
1540 {
1541 if (this->shndx_ != shndx || this->u2_.object != object)
1542 return false;
1543 *poutput = offset;
1544 return true;
1545 }
1546 }
1547
1548 // Return whether this is the merge section for the input section
1549 // SHNDX in OBJECT.
1550
1551 inline bool
1552 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1553 unsigned int shndx) const
1554 {
1555 if (this->is_input_section())
1556 return false;
1557 return this->u2_.posd->is_merge_section_for(object, shndx);
1558 }
1559
1560 // Write out the data. We don't have to do anything for an input
1561 // section--they are handled via Object::relocate--but this is where
1562 // we write out the data for an Output_section_data.
1563
1564 void
1565 Output_section::Input_section::write(Output_file* of)
1566 {
1567 if (!this->is_input_section())
1568 this->u2_.posd->write(of);
1569 }
1570
1571 // Write the data to a buffer. As for write(), we don't have to do
1572 // anything for an input section.
1573
1574 void
1575 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1576 {
1577 if (!this->is_input_section())
1578 this->u2_.posd->write_to_buffer(buffer);
1579 }
1580
1581 // Output_section methods.
1582
1583 // Construct an Output_section. NAME will point into a Stringpool.
1584
1585 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1586 elfcpp::Elf_Xword flags)
1587 : name_(name),
1588 addralign_(0),
1589 entsize_(0),
1590 load_address_(0),
1591 link_section_(NULL),
1592 link_(0),
1593 info_section_(NULL),
1594 info_symndx_(NULL),
1595 info_(0),
1596 type_(type),
1597 flags_(flags),
1598 out_shndx_(-1U),
1599 symtab_index_(0),
1600 dynsym_index_(0),
1601 input_sections_(),
1602 first_input_offset_(0),
1603 fills_(),
1604 postprocessing_buffer_(NULL),
1605 needs_symtab_index_(false),
1606 needs_dynsym_index_(false),
1607 should_link_to_symtab_(false),
1608 should_link_to_dynsym_(false),
1609 after_input_sections_(false),
1610 requires_postprocessing_(false),
1611 found_in_sections_clause_(false),
1612 has_load_address_(false),
1613 info_uses_section_index_(false),
1614 tls_offset_(0)
1615 {
1616 // An unallocated section has no address. Forcing this means that
1617 // we don't need special treatment for symbols defined in debug
1618 // sections.
1619 if ((flags & elfcpp::SHF_ALLOC) == 0)
1620 this->set_address(0);
1621 }
1622
1623 Output_section::~Output_section()
1624 {
1625 }
1626
1627 // Set the entry size.
1628
1629 void
1630 Output_section::set_entsize(uint64_t v)
1631 {
1632 if (this->entsize_ == 0)
1633 this->entsize_ = v;
1634 else
1635 gold_assert(this->entsize_ == v);
1636 }
1637
1638 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1639 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1640 // relocation section which applies to this section, or 0 if none, or
1641 // -1U if more than one. Return the offset of the input section
1642 // within the output section. Return -1 if the input section will
1643 // receive special handling. In the normal case we don't always keep
1644 // track of input sections for an Output_section. Instead, each
1645 // Object keeps track of the Output_section for each of its input
1646 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1647 // track of input sections here; this is used when SECTIONS appears in
1648 // a linker script.
1649
1650 template<int size, bool big_endian>
1651 off_t
1652 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1653 unsigned int shndx,
1654 const char* secname,
1655 const elfcpp::Shdr<size, big_endian>& shdr,
1656 unsigned int reloc_shndx,
1657 bool have_sections_script)
1658 {
1659 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1660 if ((addralign & (addralign - 1)) != 0)
1661 {
1662 object->error(_("invalid alignment %lu for section \"%s\""),
1663 static_cast<unsigned long>(addralign), secname);
1664 addralign = 1;
1665 }
1666
1667 if (addralign > this->addralign_)
1668 this->addralign_ = addralign;
1669
1670 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1671 this->flags_ |= (sh_flags
1672 & (elfcpp::SHF_WRITE
1673 | elfcpp::SHF_ALLOC
1674 | elfcpp::SHF_EXECINSTR));
1675
1676 uint64_t entsize = shdr.get_sh_entsize();
1677
1678 // .debug_str is a mergeable string section, but is not always so
1679 // marked by compilers. Mark manually here so we can optimize.
1680 if (strcmp(secname, ".debug_str") == 0)
1681 {
1682 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1683 entsize = 1;
1684 }
1685
1686 // If this is a SHF_MERGE section, we pass all the input sections to
1687 // a Output_data_merge. We don't try to handle relocations for such
1688 // a section.
1689 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1690 && reloc_shndx == 0)
1691 {
1692 if (this->add_merge_input_section(object, shndx, sh_flags,
1693 entsize, addralign))
1694 {
1695 // Tell the relocation routines that they need to call the
1696 // output_offset method to determine the final address.
1697 return -1;
1698 }
1699 }
1700
1701 off_t offset_in_section = this->current_data_size_for_child();
1702 off_t aligned_offset_in_section = align_address(offset_in_section,
1703 addralign);
1704
1705 if (aligned_offset_in_section > offset_in_section
1706 && !have_sections_script
1707 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1708 && object->target()->has_code_fill())
1709 {
1710 // We need to add some fill data. Using fill_list_ when
1711 // possible is an optimization, since we will often have fill
1712 // sections without input sections.
1713 off_t fill_len = aligned_offset_in_section - offset_in_section;
1714 if (this->input_sections_.empty())
1715 this->fills_.push_back(Fill(offset_in_section, fill_len));
1716 else
1717 {
1718 // FIXME: When relaxing, the size needs to adjust to
1719 // maintain a constant alignment.
1720 std::string fill_data(object->target()->code_fill(fill_len));
1721 Output_data_const* odc = new Output_data_const(fill_data, 1);
1722 this->input_sections_.push_back(Input_section(odc));
1723 }
1724 }
1725
1726 this->set_current_data_size_for_child(aligned_offset_in_section
1727 + shdr.get_sh_size());
1728
1729 // We need to keep track of this section if we are already keeping
1730 // track of sections, or if we are relaxing. FIXME: Add test for
1731 // relaxing.
1732 if (have_sections_script || !this->input_sections_.empty())
1733 this->input_sections_.push_back(Input_section(object, shndx,
1734 shdr.get_sh_size(),
1735 addralign));
1736
1737 return aligned_offset_in_section;
1738 }
1739
1740 // Add arbitrary data to an output section.
1741
1742 void
1743 Output_section::add_output_section_data(Output_section_data* posd)
1744 {
1745 Input_section inp(posd);
1746 this->add_output_section_data(&inp);
1747
1748 if (posd->is_data_size_valid())
1749 {
1750 off_t offset_in_section = this->current_data_size_for_child();
1751 off_t aligned_offset_in_section = align_address(offset_in_section,
1752 posd->addralign());
1753 this->set_current_data_size_for_child(aligned_offset_in_section
1754 + posd->data_size());
1755 }
1756 }
1757
1758 // Add arbitrary data to an output section by Input_section.
1759
1760 void
1761 Output_section::add_output_section_data(Input_section* inp)
1762 {
1763 if (this->input_sections_.empty())
1764 this->first_input_offset_ = this->current_data_size_for_child();
1765
1766 this->input_sections_.push_back(*inp);
1767
1768 uint64_t addralign = inp->addralign();
1769 if (addralign > this->addralign_)
1770 this->addralign_ = addralign;
1771
1772 inp->set_output_section(this);
1773 }
1774
1775 // Add a merge section to an output section.
1776
1777 void
1778 Output_section::add_output_merge_section(Output_section_data* posd,
1779 bool is_string, uint64_t entsize)
1780 {
1781 Input_section inp(posd, is_string, entsize);
1782 this->add_output_section_data(&inp);
1783 }
1784
1785 // Add an input section to a SHF_MERGE section.
1786
1787 bool
1788 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1789 uint64_t flags, uint64_t entsize,
1790 uint64_t addralign)
1791 {
1792 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1793
1794 // We only merge strings if the alignment is not more than the
1795 // character size. This could be handled, but it's unusual.
1796 if (is_string && addralign > entsize)
1797 return false;
1798
1799 Input_section_list::iterator p;
1800 for (p = this->input_sections_.begin();
1801 p != this->input_sections_.end();
1802 ++p)
1803 if (p->is_merge_section(is_string, entsize, addralign))
1804 {
1805 p->add_input_section(object, shndx);
1806 return true;
1807 }
1808
1809 // We handle the actual constant merging in Output_merge_data or
1810 // Output_merge_string_data.
1811 Output_section_data* posd;
1812 if (!is_string)
1813 posd = new Output_merge_data(entsize, addralign);
1814 else
1815 {
1816 switch (entsize)
1817 {
1818 case 1:
1819 posd = new Output_merge_string<char>(addralign);
1820 break;
1821 case 2:
1822 posd = new Output_merge_string<uint16_t>(addralign);
1823 break;
1824 case 4:
1825 posd = new Output_merge_string<uint32_t>(addralign);
1826 break;
1827 default:
1828 return false;
1829 }
1830 }
1831
1832 this->add_output_merge_section(posd, is_string, entsize);
1833 posd->add_input_section(object, shndx);
1834
1835 return true;
1836 }
1837
1838 // Given an address OFFSET relative to the start of input section
1839 // SHNDX in OBJECT, return whether this address is being included in
1840 // the final link. This should only be called if SHNDX in OBJECT has
1841 // a special mapping.
1842
1843 bool
1844 Output_section::is_input_address_mapped(const Relobj* object,
1845 unsigned int shndx,
1846 off_t offset) const
1847 {
1848 gold_assert(object->is_section_specially_mapped(shndx));
1849
1850 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1851 p != this->input_sections_.end();
1852 ++p)
1853 {
1854 section_offset_type output_offset;
1855 if (p->output_offset(object, shndx, offset, &output_offset))
1856 return output_offset != -1;
1857 }
1858
1859 // By default we assume that the address is mapped. This should
1860 // only be called after we have passed all sections to Layout. At
1861 // that point we should know what we are discarding.
1862 return true;
1863 }
1864
1865 // Given an address OFFSET relative to the start of input section
1866 // SHNDX in object OBJECT, return the output offset relative to the
1867 // start of the input section in the output section. This should only
1868 // be called if SHNDX in OBJECT has a special mapping.
1869
1870 section_offset_type
1871 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1872 section_offset_type offset) const
1873 {
1874 gold_assert(object->is_section_specially_mapped(shndx));
1875 // This can only be called meaningfully when layout is complete.
1876 gold_assert(Output_data::is_layout_complete());
1877
1878 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1879 p != this->input_sections_.end();
1880 ++p)
1881 {
1882 section_offset_type output_offset;
1883 if (p->output_offset(object, shndx, offset, &output_offset))
1884 return output_offset;
1885 }
1886 gold_unreachable();
1887 }
1888
1889 // Return the output virtual address of OFFSET relative to the start
1890 // of input section SHNDX in object OBJECT.
1891
1892 uint64_t
1893 Output_section::output_address(const Relobj* object, unsigned int shndx,
1894 off_t offset) const
1895 {
1896 gold_assert(object->is_section_specially_mapped(shndx));
1897
1898 uint64_t addr = this->address() + this->first_input_offset_;
1899 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1900 p != this->input_sections_.end();
1901 ++p)
1902 {
1903 addr = align_address(addr, p->addralign());
1904 section_offset_type output_offset;
1905 if (p->output_offset(object, shndx, offset, &output_offset))
1906 {
1907 if (output_offset == -1)
1908 return -1U;
1909 return addr + output_offset;
1910 }
1911 addr += p->data_size();
1912 }
1913
1914 // If we get here, it means that we don't know the mapping for this
1915 // input section. This might happen in principle if
1916 // add_input_section were called before add_output_section_data.
1917 // But it should never actually happen.
1918
1919 gold_unreachable();
1920 }
1921
1922 // Return the output address of the start of the merged section for
1923 // input section SHNDX in object OBJECT.
1924
1925 uint64_t
1926 Output_section::starting_output_address(const Relobj* object,
1927 unsigned int shndx) const
1928 {
1929 gold_assert(object->is_section_specially_mapped(shndx));
1930
1931 uint64_t addr = this->address() + this->first_input_offset_;
1932 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1933 p != this->input_sections_.end();
1934 ++p)
1935 {
1936 addr = align_address(addr, p->addralign());
1937
1938 // It would be nice if we could use the existing output_offset
1939 // method to get the output offset of input offset 0.
1940 // Unfortunately we don't know for sure that input offset 0 is
1941 // mapped at all.
1942 if (p->is_merge_section_for(object, shndx))
1943 return addr;
1944
1945 addr += p->data_size();
1946 }
1947 gold_unreachable();
1948 }
1949
1950 // Set the data size of an Output_section. This is where we handle
1951 // setting the addresses of any Output_section_data objects.
1952
1953 void
1954 Output_section::set_final_data_size()
1955 {
1956 if (this->input_sections_.empty())
1957 {
1958 this->set_data_size(this->current_data_size_for_child());
1959 return;
1960 }
1961
1962 uint64_t address = this->address();
1963 off_t startoff = this->offset();
1964 off_t off = startoff + this->first_input_offset_;
1965 for (Input_section_list::iterator p = this->input_sections_.begin();
1966 p != this->input_sections_.end();
1967 ++p)
1968 {
1969 off = align_address(off, p->addralign());
1970 p->set_address_and_file_offset(address + (off - startoff), off,
1971 startoff);
1972 off += p->data_size();
1973 }
1974
1975 this->set_data_size(off - startoff);
1976 }
1977
1978 // Reset the address and file offset.
1979
1980 void
1981 Output_section::do_reset_address_and_file_offset()
1982 {
1983 for (Input_section_list::iterator p = this->input_sections_.begin();
1984 p != this->input_sections_.end();
1985 ++p)
1986 p->reset_address_and_file_offset();
1987 }
1988
1989 // Set the TLS offset. Called only for SHT_TLS sections.
1990
1991 void
1992 Output_section::do_set_tls_offset(uint64_t tls_base)
1993 {
1994 this->tls_offset_ = this->address() - tls_base;
1995 }
1996
1997 // Write the section header to *OSHDR.
1998
1999 template<int size, bool big_endian>
2000 void
2001 Output_section::write_header(const Layout* layout,
2002 const Stringpool* secnamepool,
2003 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2004 {
2005 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2006 oshdr->put_sh_type(this->type_);
2007
2008 elfcpp::Elf_Xword flags = this->flags_;
2009 if (this->info_section_ != NULL && this->info_uses_section_index_)
2010 flags |= elfcpp::SHF_INFO_LINK;
2011 oshdr->put_sh_flags(flags);
2012
2013 oshdr->put_sh_addr(this->address());
2014 oshdr->put_sh_offset(this->offset());
2015 oshdr->put_sh_size(this->data_size());
2016 if (this->link_section_ != NULL)
2017 oshdr->put_sh_link(this->link_section_->out_shndx());
2018 else if (this->should_link_to_symtab_)
2019 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2020 else if (this->should_link_to_dynsym_)
2021 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2022 else
2023 oshdr->put_sh_link(this->link_);
2024
2025 elfcpp::Elf_Word info;
2026 if (this->info_section_ != NULL)
2027 {
2028 if (this->info_uses_section_index_)
2029 info = this->info_section_->out_shndx();
2030 else
2031 info = this->info_section_->symtab_index();
2032 }
2033 else if (this->info_symndx_ != NULL)
2034 info = this->info_symndx_->symtab_index();
2035 else
2036 info = this->info_;
2037 oshdr->put_sh_info(info);
2038
2039 oshdr->put_sh_addralign(this->addralign_);
2040 oshdr->put_sh_entsize(this->entsize_);
2041 }
2042
2043 // Write out the data. For input sections the data is written out by
2044 // Object::relocate, but we have to handle Output_section_data objects
2045 // here.
2046
2047 void
2048 Output_section::do_write(Output_file* of)
2049 {
2050 gold_assert(!this->requires_postprocessing());
2051
2052 off_t output_section_file_offset = this->offset();
2053 for (Fill_list::iterator p = this->fills_.begin();
2054 p != this->fills_.end();
2055 ++p)
2056 {
2057 std::string fill_data(parameters->target()->code_fill(p->length()));
2058 of->write(output_section_file_offset + p->section_offset(),
2059 fill_data.data(), fill_data.size());
2060 }
2061
2062 for (Input_section_list::iterator p = this->input_sections_.begin();
2063 p != this->input_sections_.end();
2064 ++p)
2065 p->write(of);
2066 }
2067
2068 // If a section requires postprocessing, create the buffer to use.
2069
2070 void
2071 Output_section::create_postprocessing_buffer()
2072 {
2073 gold_assert(this->requires_postprocessing());
2074
2075 if (this->postprocessing_buffer_ != NULL)
2076 return;
2077
2078 if (!this->input_sections_.empty())
2079 {
2080 off_t off = this->first_input_offset_;
2081 for (Input_section_list::iterator p = this->input_sections_.begin();
2082 p != this->input_sections_.end();
2083 ++p)
2084 {
2085 off = align_address(off, p->addralign());
2086 p->finalize_data_size();
2087 off += p->data_size();
2088 }
2089 this->set_current_data_size_for_child(off);
2090 }
2091
2092 off_t buffer_size = this->current_data_size_for_child();
2093 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2094 }
2095
2096 // Write all the data of an Output_section into the postprocessing
2097 // buffer. This is used for sections which require postprocessing,
2098 // such as compression. Input sections are handled by
2099 // Object::Relocate.
2100
2101 void
2102 Output_section::write_to_postprocessing_buffer()
2103 {
2104 gold_assert(this->requires_postprocessing());
2105
2106 Target* target = parameters->target();
2107 unsigned char* buffer = this->postprocessing_buffer();
2108 for (Fill_list::iterator p = this->fills_.begin();
2109 p != this->fills_.end();
2110 ++p)
2111 {
2112 std::string fill_data(target->code_fill(p->length()));
2113 memcpy(buffer + p->section_offset(), fill_data.data(),
2114 fill_data.size());
2115 }
2116
2117 off_t off = this->first_input_offset_;
2118 for (Input_section_list::iterator p = this->input_sections_.begin();
2119 p != this->input_sections_.end();
2120 ++p)
2121 {
2122 off = align_address(off, p->addralign());
2123 p->write_to_buffer(buffer + off);
2124 off += p->data_size();
2125 }
2126 }
2127
2128 // Get the input sections for linker script processing. We leave
2129 // behind the Output_section_data entries. Note that this may be
2130 // slightly incorrect for merge sections. We will leave them behind,
2131 // but it is possible that the script says that they should follow
2132 // some other input sections, as in:
2133 // .rodata { *(.rodata) *(.rodata.cst*) }
2134 // For that matter, we don't handle this correctly:
2135 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2136 // With luck this will never matter.
2137
2138 uint64_t
2139 Output_section::get_input_sections(
2140 uint64_t address,
2141 const std::string& fill,
2142 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2143 {
2144 uint64_t orig_address = address;
2145
2146 address = align_address(address, this->addralign());
2147
2148 Input_section_list remaining;
2149 for (Input_section_list::iterator p = this->input_sections_.begin();
2150 p != this->input_sections_.end();
2151 ++p)
2152 {
2153 if (p->is_input_section())
2154 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2155 else
2156 {
2157 uint64_t aligned_address = align_address(address, p->addralign());
2158 if (aligned_address != address && !fill.empty())
2159 {
2160 section_size_type length =
2161 convert_to_section_size_type(aligned_address - address);
2162 std::string this_fill;
2163 this_fill.reserve(length);
2164 while (this_fill.length() + fill.length() <= length)
2165 this_fill += fill;
2166 if (this_fill.length() < length)
2167 this_fill.append(fill, 0, length - this_fill.length());
2168
2169 Output_section_data* posd = new Output_data_const(this_fill, 0);
2170 remaining.push_back(Input_section(posd));
2171 }
2172 address = aligned_address;
2173
2174 remaining.push_back(*p);
2175
2176 p->finalize_data_size();
2177 address += p->data_size();
2178 }
2179 }
2180
2181 this->input_sections_.swap(remaining);
2182 this->first_input_offset_ = 0;
2183
2184 uint64_t data_size = address - orig_address;
2185 this->set_current_data_size_for_child(data_size);
2186 return data_size;
2187 }
2188
2189 // Add an input section from a script.
2190
2191 void
2192 Output_section::add_input_section_for_script(Relobj* object,
2193 unsigned int shndx,
2194 off_t data_size,
2195 uint64_t addralign)
2196 {
2197 if (addralign > this->addralign_)
2198 this->addralign_ = addralign;
2199
2200 off_t offset_in_section = this->current_data_size_for_child();
2201 off_t aligned_offset_in_section = align_address(offset_in_section,
2202 addralign);
2203
2204 this->set_current_data_size_for_child(aligned_offset_in_section
2205 + data_size);
2206
2207 this->input_sections_.push_back(Input_section(object, shndx,
2208 data_size, addralign));
2209 }
2210
2211 // Print stats for merge sections to stderr.
2212
2213 void
2214 Output_section::print_merge_stats()
2215 {
2216 Input_section_list::iterator p;
2217 for (p = this->input_sections_.begin();
2218 p != this->input_sections_.end();
2219 ++p)
2220 p->print_merge_stats(this->name_);
2221 }
2222
2223 // Output segment methods.
2224
2225 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2226 : output_data_(),
2227 output_bss_(),
2228 vaddr_(0),
2229 paddr_(0),
2230 memsz_(0),
2231 max_align_(0),
2232 min_p_align_(0),
2233 offset_(0),
2234 filesz_(0),
2235 type_(type),
2236 flags_(flags),
2237 is_max_align_known_(false),
2238 are_addresses_set_(false)
2239 {
2240 }
2241
2242 // Add an Output_section to an Output_segment.
2243
2244 void
2245 Output_segment::add_output_section(Output_section* os,
2246 elfcpp::Elf_Word seg_flags,
2247 bool front)
2248 {
2249 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2250 gold_assert(!this->is_max_align_known_);
2251
2252 // Update the segment flags.
2253 this->flags_ |= seg_flags;
2254
2255 Output_segment::Output_data_list* pdl;
2256 if (os->type() == elfcpp::SHT_NOBITS)
2257 pdl = &this->output_bss_;
2258 else
2259 pdl = &this->output_data_;
2260
2261 // So that PT_NOTE segments will work correctly, we need to ensure
2262 // that all SHT_NOTE sections are adjacent. This will normally
2263 // happen automatically, because all the SHT_NOTE input sections
2264 // will wind up in the same output section. However, it is possible
2265 // for multiple SHT_NOTE input sections to have different section
2266 // flags, and thus be in different output sections, but for the
2267 // different section flags to map into the same segment flags and
2268 // thus the same output segment.
2269
2270 // Note that while there may be many input sections in an output
2271 // section, there are normally only a few output sections in an
2272 // output segment. This loop is expected to be fast.
2273
2274 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2275 {
2276 Output_segment::Output_data_list::iterator p = pdl->end();
2277 do
2278 {
2279 --p;
2280 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2281 {
2282 // We don't worry about the FRONT parameter.
2283 ++p;
2284 pdl->insert(p, os);
2285 return;
2286 }
2287 }
2288 while (p != pdl->begin());
2289 }
2290
2291 // Similarly, so that PT_TLS segments will work, we need to group
2292 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2293 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2294 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2295 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2296 // and the PT_TLS segment -- we do this grouping only for the
2297 // PT_LOAD segment.
2298 if (this->type_ != elfcpp::PT_TLS
2299 && (os->flags() & elfcpp::SHF_TLS) != 0
2300 && !this->output_data_.empty())
2301 {
2302 pdl = &this->output_data_;
2303 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2304 bool sawtls = false;
2305 Output_segment::Output_data_list::iterator p = pdl->end();
2306 do
2307 {
2308 --p;
2309 bool insert;
2310 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2311 {
2312 sawtls = true;
2313 // Put a NOBITS section after the first TLS section.
2314 // But a PROGBITS section after the first TLS/PROGBITS
2315 // section.
2316 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2317 }
2318 else
2319 {
2320 // If we've gone past the TLS sections, but we've seen a
2321 // TLS section, then we need to insert this section now.
2322 insert = sawtls;
2323 }
2324
2325 if (insert)
2326 {
2327 // We don't worry about the FRONT parameter.
2328 ++p;
2329 pdl->insert(p, os);
2330 return;
2331 }
2332 }
2333 while (p != pdl->begin());
2334
2335 // There are no TLS sections yet; put this one at the requested
2336 // location in the section list.
2337 }
2338
2339 if (front)
2340 pdl->push_front(os);
2341 else
2342 pdl->push_back(os);
2343 }
2344
2345 // Add an Output_data (which is not an Output_section) to the start of
2346 // a segment.
2347
2348 void
2349 Output_segment::add_initial_output_data(Output_data* od)
2350 {
2351 gold_assert(!this->is_max_align_known_);
2352 this->output_data_.push_front(od);
2353 }
2354
2355 // Return the maximum alignment of the Output_data in Output_segment.
2356
2357 uint64_t
2358 Output_segment::maximum_alignment()
2359 {
2360 if (!this->is_max_align_known_)
2361 {
2362 uint64_t addralign;
2363
2364 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2365 if (addralign > this->max_align_)
2366 this->max_align_ = addralign;
2367
2368 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2369 if (addralign > this->max_align_)
2370 this->max_align_ = addralign;
2371
2372 this->is_max_align_known_ = true;
2373 }
2374
2375 return this->max_align_;
2376 }
2377
2378 // Return the maximum alignment of a list of Output_data.
2379
2380 uint64_t
2381 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2382 {
2383 uint64_t ret = 0;
2384 for (Output_data_list::const_iterator p = pdl->begin();
2385 p != pdl->end();
2386 ++p)
2387 {
2388 uint64_t addralign = (*p)->addralign();
2389 if (addralign > ret)
2390 ret = addralign;
2391 }
2392 return ret;
2393 }
2394
2395 // Return the number of dynamic relocs applied to this segment.
2396
2397 unsigned int
2398 Output_segment::dynamic_reloc_count() const
2399 {
2400 return (this->dynamic_reloc_count_list(&this->output_data_)
2401 + this->dynamic_reloc_count_list(&this->output_bss_));
2402 }
2403
2404 // Return the number of dynamic relocs applied to an Output_data_list.
2405
2406 unsigned int
2407 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2408 {
2409 unsigned int count = 0;
2410 for (Output_data_list::const_iterator p = pdl->begin();
2411 p != pdl->end();
2412 ++p)
2413 count += (*p)->dynamic_reloc_count();
2414 return count;
2415 }
2416
2417 // Set the section addresses for an Output_segment. If RESET is true,
2418 // reset the addresses first. ADDR is the address and *POFF is the
2419 // file offset. Set the section indexes starting with *PSHNDX.
2420 // Return the address of the immediately following segment. Update
2421 // *POFF and *PSHNDX.
2422
2423 uint64_t
2424 Output_segment::set_section_addresses(bool reset, uint64_t addr, off_t* poff,
2425 unsigned int* pshndx)
2426 {
2427 gold_assert(this->type_ == elfcpp::PT_LOAD);
2428
2429 if (!reset && this->are_addresses_set_)
2430 {
2431 gold_assert(this->paddr_ == addr);
2432 addr = this->vaddr_;
2433 }
2434 else
2435 {
2436 this->vaddr_ = addr;
2437 this->paddr_ = addr;
2438 this->are_addresses_set_ = true;
2439 }
2440
2441 off_t orig_off = *poff;
2442 this->offset_ = orig_off;
2443
2444 addr = this->set_section_list_addresses(reset, &this->output_data_,
2445 addr, poff, pshndx);
2446 this->filesz_ = *poff - orig_off;
2447
2448 off_t off = *poff;
2449
2450 uint64_t ret = this->set_section_list_addresses(reset, &this->output_bss_,
2451 addr, poff, pshndx);
2452 this->memsz_ = *poff - orig_off;
2453
2454 // Ignore the file offset adjustments made by the BSS Output_data
2455 // objects.
2456 *poff = off;
2457
2458 return ret;
2459 }
2460
2461 // Set the addresses and file offsets in a list of Output_data
2462 // structures.
2463
2464 uint64_t
2465 Output_segment::set_section_list_addresses(bool reset, Output_data_list* pdl,
2466 uint64_t addr, off_t* poff,
2467 unsigned int* pshndx)
2468 {
2469 off_t startoff = *poff;
2470
2471 off_t off = startoff;
2472 for (Output_data_list::iterator p = pdl->begin();
2473 p != pdl->end();
2474 ++p)
2475 {
2476 if (reset)
2477 (*p)->reset_address_and_file_offset();
2478
2479 // When using a linker script the section will most likely
2480 // already have an address.
2481 if (!(*p)->is_address_valid())
2482 {
2483 off = align_address(off, (*p)->addralign());
2484 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2485 }
2486 else
2487 {
2488 // The script may have inserted a skip forward, but it
2489 // better not have moved backward.
2490 gold_assert((*p)->address() >= addr + (off - startoff));
2491 off += (*p)->address() - (addr + (off - startoff));
2492 (*p)->set_file_offset(off);
2493 (*p)->finalize_data_size();
2494 }
2495
2496 // Unless this is a PT_TLS segment, we want to ignore the size
2497 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
2498 // affect the size of a PT_LOAD segment.
2499 if (this->type_ == elfcpp::PT_TLS
2500 || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2501 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2502 off += (*p)->data_size();
2503
2504 if ((*p)->is_section())
2505 {
2506 (*p)->set_out_shndx(*pshndx);
2507 ++*pshndx;
2508 }
2509 }
2510
2511 *poff = off;
2512 return addr + (off - startoff);
2513 }
2514
2515 // For a non-PT_LOAD segment, set the offset from the sections, if
2516 // any.
2517
2518 void
2519 Output_segment::set_offset()
2520 {
2521 gold_assert(this->type_ != elfcpp::PT_LOAD);
2522
2523 gold_assert(!this->are_addresses_set_);
2524
2525 if (this->output_data_.empty() && this->output_bss_.empty())
2526 {
2527 this->vaddr_ = 0;
2528 this->paddr_ = 0;
2529 this->are_addresses_set_ = true;
2530 this->memsz_ = 0;
2531 this->min_p_align_ = 0;
2532 this->offset_ = 0;
2533 this->filesz_ = 0;
2534 return;
2535 }
2536
2537 const Output_data* first;
2538 if (this->output_data_.empty())
2539 first = this->output_bss_.front();
2540 else
2541 first = this->output_data_.front();
2542 this->vaddr_ = first->address();
2543 this->paddr_ = (first->has_load_address()
2544 ? first->load_address()
2545 : this->vaddr_);
2546 this->are_addresses_set_ = true;
2547 this->offset_ = first->offset();
2548
2549 if (this->output_data_.empty())
2550 this->filesz_ = 0;
2551 else
2552 {
2553 const Output_data* last_data = this->output_data_.back();
2554 this->filesz_ = (last_data->address()
2555 + last_data->data_size()
2556 - this->vaddr_);
2557 }
2558
2559 const Output_data* last;
2560 if (this->output_bss_.empty())
2561 last = this->output_data_.back();
2562 else
2563 last = this->output_bss_.back();
2564 this->memsz_ = (last->address()
2565 + last->data_size()
2566 - this->vaddr_);
2567 }
2568
2569 // Set the TLS offsets of the sections in the PT_TLS segment.
2570
2571 void
2572 Output_segment::set_tls_offsets()
2573 {
2574 gold_assert(this->type_ == elfcpp::PT_TLS);
2575
2576 for (Output_data_list::iterator p = this->output_data_.begin();
2577 p != this->output_data_.end();
2578 ++p)
2579 (*p)->set_tls_offset(this->vaddr_);
2580
2581 for (Output_data_list::iterator p = this->output_bss_.begin();
2582 p != this->output_bss_.end();
2583 ++p)
2584 (*p)->set_tls_offset(this->vaddr_);
2585 }
2586
2587 // Return the address of the first section.
2588
2589 uint64_t
2590 Output_segment::first_section_load_address() const
2591 {
2592 for (Output_data_list::const_iterator p = this->output_data_.begin();
2593 p != this->output_data_.end();
2594 ++p)
2595 if ((*p)->is_section())
2596 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2597
2598 for (Output_data_list::const_iterator p = this->output_bss_.begin();
2599 p != this->output_bss_.end();
2600 ++p)
2601 if ((*p)->is_section())
2602 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2603
2604 gold_unreachable();
2605 }
2606
2607 // Return the number of Output_sections in an Output_segment.
2608
2609 unsigned int
2610 Output_segment::output_section_count() const
2611 {
2612 return (this->output_section_count_list(&this->output_data_)
2613 + this->output_section_count_list(&this->output_bss_));
2614 }
2615
2616 // Return the number of Output_sections in an Output_data_list.
2617
2618 unsigned int
2619 Output_segment::output_section_count_list(const Output_data_list* pdl) const
2620 {
2621 unsigned int count = 0;
2622 for (Output_data_list::const_iterator p = pdl->begin();
2623 p != pdl->end();
2624 ++p)
2625 {
2626 if ((*p)->is_section())
2627 ++count;
2628 }
2629 return count;
2630 }
2631
2632 // Return the section attached to the list segment with the lowest
2633 // load address. This is used when handling a PHDRS clause in a
2634 // linker script.
2635
2636 Output_section*
2637 Output_segment::section_with_lowest_load_address() const
2638 {
2639 Output_section* found = NULL;
2640 uint64_t found_lma = 0;
2641 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2642
2643 Output_section* found_data = found;
2644 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2645 if (found != found_data && found_data != NULL)
2646 {
2647 gold_error(_("nobits section %s may not precede progbits section %s "
2648 "in same segment"),
2649 found->name(), found_data->name());
2650 return NULL;
2651 }
2652
2653 return found;
2654 }
2655
2656 // Look through a list for a section with a lower load address.
2657
2658 void
2659 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2660 Output_section** found,
2661 uint64_t* found_lma) const
2662 {
2663 for (Output_data_list::const_iterator p = pdl->begin();
2664 p != pdl->end();
2665 ++p)
2666 {
2667 if (!(*p)->is_section())
2668 continue;
2669 Output_section* os = static_cast<Output_section*>(*p);
2670 uint64_t lma = (os->has_load_address()
2671 ? os->load_address()
2672 : os->address());
2673 if (*found == NULL || lma < *found_lma)
2674 {
2675 *found = os;
2676 *found_lma = lma;
2677 }
2678 }
2679 }
2680
2681 // Write the segment data into *OPHDR.
2682
2683 template<int size, bool big_endian>
2684 void
2685 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
2686 {
2687 ophdr->put_p_type(this->type_);
2688 ophdr->put_p_offset(this->offset_);
2689 ophdr->put_p_vaddr(this->vaddr_);
2690 ophdr->put_p_paddr(this->paddr_);
2691 ophdr->put_p_filesz(this->filesz_);
2692 ophdr->put_p_memsz(this->memsz_);
2693 ophdr->put_p_flags(this->flags_);
2694 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
2695 }
2696
2697 // Write the section headers into V.
2698
2699 template<int size, bool big_endian>
2700 unsigned char*
2701 Output_segment::write_section_headers(const Layout* layout,
2702 const Stringpool* secnamepool,
2703 unsigned char* v,
2704 unsigned int *pshndx
2705 ACCEPT_SIZE_ENDIAN) const
2706 {
2707 // Every section that is attached to a segment must be attached to a
2708 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2709 // segments.
2710 if (this->type_ != elfcpp::PT_LOAD)
2711 return v;
2712
2713 v = this->write_section_headers_list
2714 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
2715 layout, secnamepool, &this->output_data_, v, pshndx
2716 SELECT_SIZE_ENDIAN(size, big_endian));
2717 v = this->write_section_headers_list
2718 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
2719 layout, secnamepool, &this->output_bss_, v, pshndx
2720 SELECT_SIZE_ENDIAN(size, big_endian));
2721 return v;
2722 }
2723
2724 template<int size, bool big_endian>
2725 unsigned char*
2726 Output_segment::write_section_headers_list(const Layout* layout,
2727 const Stringpool* secnamepool,
2728 const Output_data_list* pdl,
2729 unsigned char* v,
2730 unsigned int* pshndx
2731 ACCEPT_SIZE_ENDIAN) const
2732 {
2733 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2734 for (Output_data_list::const_iterator p = pdl->begin();
2735 p != pdl->end();
2736 ++p)
2737 {
2738 if ((*p)->is_section())
2739 {
2740 const Output_section* ps = static_cast<const Output_section*>(*p);
2741 gold_assert(*pshndx == ps->out_shndx());
2742 elfcpp::Shdr_write<size, big_endian> oshdr(v);
2743 ps->write_header(layout, secnamepool, &oshdr);
2744 v += shdr_size;
2745 ++*pshndx;
2746 }
2747 }
2748 return v;
2749 }
2750
2751 // Output_file methods.
2752
2753 Output_file::Output_file(const char* name)
2754 : name_(name),
2755 o_(-1),
2756 file_size_(0),
2757 base_(NULL),
2758 map_is_anonymous_(false)
2759 {
2760 }
2761
2762 // Open the output file.
2763
2764 void
2765 Output_file::open(off_t file_size)
2766 {
2767 this->file_size_ = file_size;
2768
2769 // Unlink the file first; otherwise the open() may fail if the file
2770 // is busy (e.g. it's an executable that's currently being executed).
2771 //
2772 // However, the linker may be part of a system where a zero-length
2773 // file is created for it to write to, with tight permissions (gcc
2774 // 2.95 did something like this). Unlinking the file would work
2775 // around those permission controls, so we only unlink if the file
2776 // has a non-zero size. We also unlink only regular files to avoid
2777 // trouble with directories/etc.
2778 //
2779 // If we fail, continue; this command is merely a best-effort attempt
2780 // to improve the odds for open().
2781
2782 // We let the name "-" mean "stdout"
2783 if (strcmp(this->name_, "-") == 0)
2784 this->o_ = STDOUT_FILENO;
2785 else
2786 {
2787 struct stat s;
2788 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2789 unlink_if_ordinary(this->name_);
2790
2791 int mode = parameters->output_is_object() ? 0666 : 0777;
2792 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2793 if (o < 0)
2794 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2795 this->o_ = o;
2796 }
2797
2798 this->map();
2799 }
2800
2801 // Resize the output file.
2802
2803 void
2804 Output_file::resize(off_t file_size)
2805 {
2806 // If the mmap is mapping an anonymous memory buffer, this is easy:
2807 // just mremap to the new size. If it's mapping to a file, we want
2808 // to unmap to flush to the file, then remap after growing the file.
2809 if (this->map_is_anonymous_)
2810 {
2811 void* base = ::mremap(this->base_, this->file_size_, file_size,
2812 MREMAP_MAYMOVE);
2813 if (base == MAP_FAILED)
2814 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2815 this->base_ = static_cast<unsigned char*>(base);
2816 this->file_size_ = file_size;
2817 }
2818 else
2819 {
2820 this->unmap();
2821 this->file_size_ = file_size;
2822 this->map();
2823 }
2824 }
2825
2826 // Map the file into memory.
2827
2828 void
2829 Output_file::map()
2830 {
2831 const int o = this->o_;
2832
2833 // If the output file is not a regular file, don't try to mmap it;
2834 // instead, we'll mmap a block of memory (an anonymous buffer), and
2835 // then later write the buffer to the file.
2836 void* base;
2837 struct stat statbuf;
2838 if (o == STDOUT_FILENO || o == STDERR_FILENO
2839 || ::fstat(o, &statbuf) != 0
2840 || !S_ISREG(statbuf.st_mode))
2841 {
2842 this->map_is_anonymous_ = true;
2843 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2844 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2845 }
2846 else
2847 {
2848 // Write out one byte to make the file the right size.
2849 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2850 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2851 char b = 0;
2852 if (::write(o, &b, 1) != 1)
2853 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2854
2855 // Map the file into memory.
2856 this->map_is_anonymous_ = false;
2857 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2858 MAP_SHARED, o, 0);
2859 }
2860 if (base == MAP_FAILED)
2861 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
2862 this->base_ = static_cast<unsigned char*>(base);
2863 }
2864
2865 // Unmap the file from memory.
2866
2867 void
2868 Output_file::unmap()
2869 {
2870 if (::munmap(this->base_, this->file_size_) < 0)
2871 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
2872 this->base_ = NULL;
2873 }
2874
2875 // Close the output file.
2876
2877 void
2878 Output_file::close()
2879 {
2880 // If the map isn't file-backed, we need to write it now.
2881 if (this->map_is_anonymous_)
2882 {
2883 size_t bytes_to_write = this->file_size_;
2884 while (bytes_to_write > 0)
2885 {
2886 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2887 if (bytes_written == 0)
2888 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2889 else if (bytes_written < 0)
2890 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2891 else
2892 bytes_to_write -= bytes_written;
2893 }
2894 }
2895 this->unmap();
2896
2897 // We don't close stdout or stderr
2898 if (this->o_ != STDOUT_FILENO && this->o_ != STDERR_FILENO)
2899 if (::close(this->o_) < 0)
2900 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
2901 this->o_ = -1;
2902 }
2903
2904 // Instantiate the templates we need. We could use the configure
2905 // script to restrict this to only the ones for implemented targets.
2906
2907 #ifdef HAVE_TARGET_32_LITTLE
2908 template
2909 off_t
2910 Output_section::add_input_section<32, false>(
2911 Sized_relobj<32, false>* object,
2912 unsigned int shndx,
2913 const char* secname,
2914 const elfcpp::Shdr<32, false>& shdr,
2915 unsigned int reloc_shndx,
2916 bool have_sections_script);
2917 #endif
2918
2919 #ifdef HAVE_TARGET_32_BIG
2920 template
2921 off_t
2922 Output_section::add_input_section<32, true>(
2923 Sized_relobj<32, true>* object,
2924 unsigned int shndx,
2925 const char* secname,
2926 const elfcpp::Shdr<32, true>& shdr,
2927 unsigned int reloc_shndx,
2928 bool have_sections_script);
2929 #endif
2930
2931 #ifdef HAVE_TARGET_64_LITTLE
2932 template
2933 off_t
2934 Output_section::add_input_section<64, false>(
2935 Sized_relobj<64, false>* object,
2936 unsigned int shndx,
2937 const char* secname,
2938 const elfcpp::Shdr<64, false>& shdr,
2939 unsigned int reloc_shndx,
2940 bool have_sections_script);
2941 #endif
2942
2943 #ifdef HAVE_TARGET_64_BIG
2944 template
2945 off_t
2946 Output_section::add_input_section<64, true>(
2947 Sized_relobj<64, true>* object,
2948 unsigned int shndx,
2949 const char* secname,
2950 const elfcpp::Shdr<64, true>& shdr,
2951 unsigned int reloc_shndx,
2952 bool have_sections_script);
2953 #endif
2954
2955 #ifdef HAVE_TARGET_32_LITTLE
2956 template
2957 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
2958 #endif
2959
2960 #ifdef HAVE_TARGET_32_BIG
2961 template
2962 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
2963 #endif
2964
2965 #ifdef HAVE_TARGET_64_LITTLE
2966 template
2967 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
2968 #endif
2969
2970 #ifdef HAVE_TARGET_64_BIG
2971 template
2972 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
2973 #endif
2974
2975 #ifdef HAVE_TARGET_32_LITTLE
2976 template
2977 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
2978 #endif
2979
2980 #ifdef HAVE_TARGET_32_BIG
2981 template
2982 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
2983 #endif
2984
2985 #ifdef HAVE_TARGET_64_LITTLE
2986 template
2987 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
2988 #endif
2989
2990 #ifdef HAVE_TARGET_64_BIG
2991 template
2992 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
2993 #endif
2994
2995 #ifdef HAVE_TARGET_32_LITTLE
2996 template
2997 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
2998 #endif
2999
3000 #ifdef HAVE_TARGET_32_BIG
3001 template
3002 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3003 #endif
3004
3005 #ifdef HAVE_TARGET_64_LITTLE
3006 template
3007 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3008 #endif
3009
3010 #ifdef HAVE_TARGET_64_BIG
3011 template
3012 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3013 #endif
3014
3015 #ifdef HAVE_TARGET_32_LITTLE
3016 template
3017 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3018 #endif
3019
3020 #ifdef HAVE_TARGET_32_BIG
3021 template
3022 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3023 #endif
3024
3025 #ifdef HAVE_TARGET_64_LITTLE
3026 template
3027 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3028 #endif
3029
3030 #ifdef HAVE_TARGET_64_BIG
3031 template
3032 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3033 #endif
3034
3035 #ifdef HAVE_TARGET_32_LITTLE
3036 template
3037 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3038 #endif
3039
3040 #ifdef HAVE_TARGET_32_BIG
3041 template
3042 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3043 #endif
3044
3045 #ifdef HAVE_TARGET_64_LITTLE
3046 template
3047 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3048 #endif
3049
3050 #ifdef HAVE_TARGET_64_BIG
3051 template
3052 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3053 #endif
3054
3055 #ifdef HAVE_TARGET_32_LITTLE
3056 template
3057 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3058 #endif
3059
3060 #ifdef HAVE_TARGET_32_BIG
3061 template
3062 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3063 #endif
3064
3065 #ifdef HAVE_TARGET_64_LITTLE
3066 template
3067 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3068 #endif
3069
3070 #ifdef HAVE_TARGET_64_BIG
3071 template
3072 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3073 #endif
3074
3075 #ifdef HAVE_TARGET_32_LITTLE
3076 template
3077 class Output_data_group<32, false>;
3078 #endif
3079
3080 #ifdef HAVE_TARGET_32_BIG
3081 template
3082 class Output_data_group<32, true>;
3083 #endif
3084
3085 #ifdef HAVE_TARGET_64_LITTLE
3086 template
3087 class Output_data_group<64, false>;
3088 #endif
3089
3090 #ifdef HAVE_TARGET_64_BIG
3091 template
3092 class Output_data_group<64, true>;
3093 #endif
3094
3095 #ifdef HAVE_TARGET_32_LITTLE
3096 template
3097 class Output_data_got<32, false>;
3098 #endif
3099
3100 #ifdef HAVE_TARGET_32_BIG
3101 template
3102 class Output_data_got<32, true>;
3103 #endif
3104
3105 #ifdef HAVE_TARGET_64_LITTLE
3106 template
3107 class Output_data_got<64, false>;
3108 #endif
3109
3110 #ifdef HAVE_TARGET_64_BIG
3111 template
3112 class Output_data_got<64, true>;
3113 #endif
3114
3115 } // End namespace gold.
This page took 0.093737 seconds and 4 git commands to generate.