daily update
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136
1137 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1138 // static link. The backends will generate a dynamic reloc section
1139 // to hold this. In that case we don't want to link to the dynsym
1140 // section, because there isn't one.
1141 if (!dynamic)
1142 os->set_should_link_to_symtab();
1143 else if (parameters->doing_static_link())
1144 ;
1145 else
1146 os->set_should_link_to_dynsym();
1147 }
1148
1149 // Write out relocation data.
1150
1151 template<int sh_type, bool dynamic, int size, bool big_endian>
1152 void
1153 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1154 Output_file* of)
1155 {
1156 const off_t off = this->offset();
1157 const off_t oview_size = this->data_size();
1158 unsigned char* const oview = of->get_output_view(off, oview_size);
1159
1160 if (this->sort_relocs())
1161 {
1162 gold_assert(dynamic);
1163 std::sort(this->relocs_.begin(), this->relocs_.end(),
1164 Sort_relocs_comparison());
1165 }
1166
1167 unsigned char* pov = oview;
1168 for (typename Relocs::const_iterator p = this->relocs_.begin();
1169 p != this->relocs_.end();
1170 ++p)
1171 {
1172 p->write(pov);
1173 pov += reloc_size;
1174 }
1175
1176 gold_assert(pov - oview == oview_size);
1177
1178 of->write_output_view(off, oview_size, oview);
1179
1180 // We no longer need the relocation entries.
1181 this->relocs_.clear();
1182 }
1183
1184 // Class Output_relocatable_relocs.
1185
1186 template<int sh_type, int size, bool big_endian>
1187 void
1188 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1189 {
1190 this->set_data_size(this->rr_->output_reloc_count()
1191 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1192 }
1193
1194 // class Output_data_group.
1195
1196 template<int size, bool big_endian>
1197 Output_data_group<size, big_endian>::Output_data_group(
1198 Sized_relobj<size, big_endian>* relobj,
1199 section_size_type entry_count,
1200 elfcpp::Elf_Word flags,
1201 std::vector<unsigned int>* input_shndxes)
1202 : Output_section_data(entry_count * 4, 4, false),
1203 relobj_(relobj),
1204 flags_(flags)
1205 {
1206 this->input_shndxes_.swap(*input_shndxes);
1207 }
1208
1209 // Write out the section group, which means translating the section
1210 // indexes to apply to the output file.
1211
1212 template<int size, bool big_endian>
1213 void
1214 Output_data_group<size, big_endian>::do_write(Output_file* of)
1215 {
1216 const off_t off = this->offset();
1217 const section_size_type oview_size =
1218 convert_to_section_size_type(this->data_size());
1219 unsigned char* const oview = of->get_output_view(off, oview_size);
1220
1221 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1222 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1223 ++contents;
1224
1225 for (std::vector<unsigned int>::const_iterator p =
1226 this->input_shndxes_.begin();
1227 p != this->input_shndxes_.end();
1228 ++p, ++contents)
1229 {
1230 Output_section* os = this->relobj_->output_section(*p);
1231
1232 unsigned int output_shndx;
1233 if (os != NULL)
1234 output_shndx = os->out_shndx();
1235 else
1236 {
1237 this->relobj_->error(_("section group retained but "
1238 "group element discarded"));
1239 output_shndx = 0;
1240 }
1241
1242 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1243 }
1244
1245 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1246 gold_assert(wrote == oview_size);
1247
1248 of->write_output_view(off, oview_size, oview);
1249
1250 // We no longer need this information.
1251 this->input_shndxes_.clear();
1252 }
1253
1254 // Output_data_got::Got_entry methods.
1255
1256 // Write out the entry.
1257
1258 template<int size, bool big_endian>
1259 void
1260 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1261 {
1262 Valtype val = 0;
1263
1264 switch (this->local_sym_index_)
1265 {
1266 case GSYM_CODE:
1267 {
1268 // If the symbol is resolved locally, we need to write out the
1269 // link-time value, which will be relocated dynamically by a
1270 // RELATIVE relocation.
1271 Symbol* gsym = this->u_.gsym;
1272 if (this->use_plt_offset_ && gsym->has_plt_offset())
1273 val = (parameters->target().plt_section_for_global(gsym)->address()
1274 + gsym->plt_offset());
1275 else
1276 {
1277 Sized_symbol<size>* sgsym;
1278 // This cast is a bit ugly. We don't want to put a
1279 // virtual method in Symbol, because we want Symbol to be
1280 // as small as possible.
1281 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1282 val = sgsym->value();
1283 }
1284 }
1285 break;
1286
1287 case CONSTANT_CODE:
1288 val = this->u_.constant;
1289 break;
1290
1291 default:
1292 {
1293 const Sized_relobj<size, big_endian>* object = this->u_.object;
1294 const unsigned int lsi = this->local_sym_index_;
1295 const Symbol_value<size>* symval = object->local_symbol(lsi);
1296 if (!this->use_plt_offset_)
1297 val = symval->value(this->u_.object, 0);
1298 else
1299 {
1300 const Output_data* plt =
1301 parameters->target().plt_section_for_local(object, lsi);
1302 val = plt->address() + object->local_plt_offset(lsi);
1303 }
1304 }
1305 break;
1306 }
1307
1308 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1309 }
1310
1311 // Output_data_got methods.
1312
1313 // Add an entry for a global symbol to the GOT. This returns true if
1314 // this is a new GOT entry, false if the symbol already had a GOT
1315 // entry.
1316
1317 template<int size, bool big_endian>
1318 bool
1319 Output_data_got<size, big_endian>::add_global(
1320 Symbol* gsym,
1321 unsigned int got_type)
1322 {
1323 if (gsym->has_got_offset(got_type))
1324 return false;
1325
1326 this->entries_.push_back(Got_entry(gsym, false));
1327 this->set_got_size();
1328 gsym->set_got_offset(got_type, this->last_got_offset());
1329 return true;
1330 }
1331
1332 // Like add_global, but use the PLT offset.
1333
1334 template<int size, bool big_endian>
1335 bool
1336 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1337 unsigned int got_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return false;
1341
1342 this->entries_.push_back(Got_entry(gsym, true));
1343 this->set_got_size();
1344 gsym->set_got_offset(got_type, this->last_got_offset());
1345 return true;
1346 }
1347
1348 // Add an entry for a global symbol to the GOT, and add a dynamic
1349 // relocation of type R_TYPE for the GOT entry.
1350
1351 template<int size, bool big_endian>
1352 void
1353 Output_data_got<size, big_endian>::add_global_with_rel(
1354 Symbol* gsym,
1355 unsigned int got_type,
1356 Rel_dyn* rel_dyn,
1357 unsigned int r_type)
1358 {
1359 if (gsym->has_got_offset(got_type))
1360 return;
1361
1362 this->entries_.push_back(Got_entry());
1363 this->set_got_size();
1364 unsigned int got_offset = this->last_got_offset();
1365 gsym->set_got_offset(got_type, got_offset);
1366 rel_dyn->add_global(gsym, r_type, this, got_offset);
1367 }
1368
1369 template<int size, bool big_endian>
1370 void
1371 Output_data_got<size, big_endian>::add_global_with_rela(
1372 Symbol* gsym,
1373 unsigned int got_type,
1374 Rela_dyn* rela_dyn,
1375 unsigned int r_type)
1376 {
1377 if (gsym->has_got_offset(got_type))
1378 return;
1379
1380 this->entries_.push_back(Got_entry());
1381 this->set_got_size();
1382 unsigned int got_offset = this->last_got_offset();
1383 gsym->set_got_offset(got_type, got_offset);
1384 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1385 }
1386
1387 // Add a pair of entries for a global symbol to the GOT, and add
1388 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1389 // If R_TYPE_2 == 0, add the second entry with no relocation.
1390 template<int size, bool big_endian>
1391 void
1392 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1393 Symbol* gsym,
1394 unsigned int got_type,
1395 Rel_dyn* rel_dyn,
1396 unsigned int r_type_1,
1397 unsigned int r_type_2)
1398 {
1399 if (gsym->has_got_offset(got_type))
1400 return;
1401
1402 this->entries_.push_back(Got_entry());
1403 unsigned int got_offset = this->last_got_offset();
1404 gsym->set_got_offset(got_type, got_offset);
1405 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1406
1407 this->entries_.push_back(Got_entry());
1408 if (r_type_2 != 0)
1409 {
1410 got_offset = this->last_got_offset();
1411 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1412 }
1413
1414 this->set_got_size();
1415 }
1416
1417 template<int size, bool big_endian>
1418 void
1419 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1420 Symbol* gsym,
1421 unsigned int got_type,
1422 Rela_dyn* rela_dyn,
1423 unsigned int r_type_1,
1424 unsigned int r_type_2)
1425 {
1426 if (gsym->has_got_offset(got_type))
1427 return;
1428
1429 this->entries_.push_back(Got_entry());
1430 unsigned int got_offset = this->last_got_offset();
1431 gsym->set_got_offset(got_type, got_offset);
1432 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1433
1434 this->entries_.push_back(Got_entry());
1435 if (r_type_2 != 0)
1436 {
1437 got_offset = this->last_got_offset();
1438 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1439 }
1440
1441 this->set_got_size();
1442 }
1443
1444 // Add an entry for a local symbol to the GOT. This returns true if
1445 // this is a new GOT entry, false if the symbol already has a GOT
1446 // entry.
1447
1448 template<int size, bool big_endian>
1449 bool
1450 Output_data_got<size, big_endian>::add_local(
1451 Sized_relobj<size, big_endian>* object,
1452 unsigned int symndx,
1453 unsigned int got_type)
1454 {
1455 if (object->local_has_got_offset(symndx, got_type))
1456 return false;
1457
1458 this->entries_.push_back(Got_entry(object, symndx, false));
1459 this->set_got_size();
1460 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1461 return true;
1462 }
1463
1464 // Like add_local, but use the PLT offset.
1465
1466 template<int size, bool big_endian>
1467 bool
1468 Output_data_got<size, big_endian>::add_local_plt(
1469 Sized_relobj<size, big_endian>* object,
1470 unsigned int symndx,
1471 unsigned int got_type)
1472 {
1473 if (object->local_has_got_offset(symndx, got_type))
1474 return false;
1475
1476 this->entries_.push_back(Got_entry(object, symndx, true));
1477 this->set_got_size();
1478 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1479 return true;
1480 }
1481
1482 // Add an entry for a local symbol to the GOT, and add a dynamic
1483 // relocation of type R_TYPE for the GOT entry.
1484
1485 template<int size, bool big_endian>
1486 void
1487 Output_data_got<size, big_endian>::add_local_with_rel(
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1490 unsigned int got_type,
1491 Rel_dyn* rel_dyn,
1492 unsigned int r_type)
1493 {
1494 if (object->local_has_got_offset(symndx, got_type))
1495 return;
1496
1497 this->entries_.push_back(Got_entry());
1498 this->set_got_size();
1499 unsigned int got_offset = this->last_got_offset();
1500 object->set_local_got_offset(symndx, got_type, got_offset);
1501 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1502 }
1503
1504 template<int size, bool big_endian>
1505 void
1506 Output_data_got<size, big_endian>::add_local_with_rela(
1507 Sized_relobj<size, big_endian>* object,
1508 unsigned int symndx,
1509 unsigned int got_type,
1510 Rela_dyn* rela_dyn,
1511 unsigned int r_type)
1512 {
1513 if (object->local_has_got_offset(symndx, got_type))
1514 return;
1515
1516 this->entries_.push_back(Got_entry());
1517 this->set_got_size();
1518 unsigned int got_offset = this->last_got_offset();
1519 object->set_local_got_offset(symndx, got_type, got_offset);
1520 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1521 }
1522
1523 // Add a pair of entries for a local symbol to the GOT, and add
1524 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1525 // If R_TYPE_2 == 0, add the second entry with no relocation.
1526 template<int size, bool big_endian>
1527 void
1528 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1529 Sized_relobj<size, big_endian>* object,
1530 unsigned int symndx,
1531 unsigned int shndx,
1532 unsigned int got_type,
1533 Rel_dyn* rel_dyn,
1534 unsigned int r_type_1,
1535 unsigned int r_type_2)
1536 {
1537 if (object->local_has_got_offset(symndx, got_type))
1538 return;
1539
1540 this->entries_.push_back(Got_entry());
1541 unsigned int got_offset = this->last_got_offset();
1542 object->set_local_got_offset(symndx, got_type, got_offset);
1543 Output_section* os = object->output_section(shndx);
1544 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1545
1546 this->entries_.push_back(Got_entry(object, symndx, false));
1547 if (r_type_2 != 0)
1548 {
1549 got_offset = this->last_got_offset();
1550 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1551 }
1552
1553 this->set_got_size();
1554 }
1555
1556 template<int size, bool big_endian>
1557 void
1558 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1559 Sized_relobj<size, big_endian>* object,
1560 unsigned int symndx,
1561 unsigned int shndx,
1562 unsigned int got_type,
1563 Rela_dyn* rela_dyn,
1564 unsigned int r_type_1,
1565 unsigned int r_type_2)
1566 {
1567 if (object->local_has_got_offset(symndx, got_type))
1568 return;
1569
1570 this->entries_.push_back(Got_entry());
1571 unsigned int got_offset = this->last_got_offset();
1572 object->set_local_got_offset(symndx, got_type, got_offset);
1573 Output_section* os = object->output_section(shndx);
1574 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1575
1576 this->entries_.push_back(Got_entry(object, symndx, false));
1577 if (r_type_2 != 0)
1578 {
1579 got_offset = this->last_got_offset();
1580 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1581 }
1582
1583 this->set_got_size();
1584 }
1585
1586 // Write out the GOT.
1587
1588 template<int size, bool big_endian>
1589 void
1590 Output_data_got<size, big_endian>::do_write(Output_file* of)
1591 {
1592 const int add = size / 8;
1593
1594 const off_t off = this->offset();
1595 const off_t oview_size = this->data_size();
1596 unsigned char* const oview = of->get_output_view(off, oview_size);
1597
1598 unsigned char* pov = oview;
1599 for (typename Got_entries::const_iterator p = this->entries_.begin();
1600 p != this->entries_.end();
1601 ++p)
1602 {
1603 p->write(pov);
1604 pov += add;
1605 }
1606
1607 gold_assert(pov - oview == oview_size);
1608
1609 of->write_output_view(off, oview_size, oview);
1610
1611 // We no longer need the GOT entries.
1612 this->entries_.clear();
1613 }
1614
1615 // Output_data_dynamic::Dynamic_entry methods.
1616
1617 // Write out the entry.
1618
1619 template<int size, bool big_endian>
1620 void
1621 Output_data_dynamic::Dynamic_entry::write(
1622 unsigned char* pov,
1623 const Stringpool* pool) const
1624 {
1625 typename elfcpp::Elf_types<size>::Elf_WXword val;
1626 switch (this->offset_)
1627 {
1628 case DYNAMIC_NUMBER:
1629 val = this->u_.val;
1630 break;
1631
1632 case DYNAMIC_SECTION_SIZE:
1633 val = this->u_.od->data_size();
1634 if (this->od2 != NULL)
1635 val += this->od2->data_size();
1636 break;
1637
1638 case DYNAMIC_SYMBOL:
1639 {
1640 const Sized_symbol<size>* s =
1641 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1642 val = s->value();
1643 }
1644 break;
1645
1646 case DYNAMIC_STRING:
1647 val = pool->get_offset(this->u_.str);
1648 break;
1649
1650 default:
1651 val = this->u_.od->address() + this->offset_;
1652 break;
1653 }
1654
1655 elfcpp::Dyn_write<size, big_endian> dw(pov);
1656 dw.put_d_tag(this->tag_);
1657 dw.put_d_val(val);
1658 }
1659
1660 // Output_data_dynamic methods.
1661
1662 // Adjust the output section to set the entry size.
1663
1664 void
1665 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1666 {
1667 if (parameters->target().get_size() == 32)
1668 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1669 else if (parameters->target().get_size() == 64)
1670 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1671 else
1672 gold_unreachable();
1673 }
1674
1675 // Set the final data size.
1676
1677 void
1678 Output_data_dynamic::set_final_data_size()
1679 {
1680 // Add the terminating entry if it hasn't been added.
1681 // Because of relaxation, we can run this multiple times.
1682 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1683 {
1684 int extra = parameters->options().spare_dynamic_tags();
1685 for (int i = 0; i < extra; ++i)
1686 this->add_constant(elfcpp::DT_NULL, 0);
1687 this->add_constant(elfcpp::DT_NULL, 0);
1688 }
1689
1690 int dyn_size;
1691 if (parameters->target().get_size() == 32)
1692 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1693 else if (parameters->target().get_size() == 64)
1694 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1695 else
1696 gold_unreachable();
1697 this->set_data_size(this->entries_.size() * dyn_size);
1698 }
1699
1700 // Write out the dynamic entries.
1701
1702 void
1703 Output_data_dynamic::do_write(Output_file* of)
1704 {
1705 switch (parameters->size_and_endianness())
1706 {
1707 #ifdef HAVE_TARGET_32_LITTLE
1708 case Parameters::TARGET_32_LITTLE:
1709 this->sized_write<32, false>(of);
1710 break;
1711 #endif
1712 #ifdef HAVE_TARGET_32_BIG
1713 case Parameters::TARGET_32_BIG:
1714 this->sized_write<32, true>(of);
1715 break;
1716 #endif
1717 #ifdef HAVE_TARGET_64_LITTLE
1718 case Parameters::TARGET_64_LITTLE:
1719 this->sized_write<64, false>(of);
1720 break;
1721 #endif
1722 #ifdef HAVE_TARGET_64_BIG
1723 case Parameters::TARGET_64_BIG:
1724 this->sized_write<64, true>(of);
1725 break;
1726 #endif
1727 default:
1728 gold_unreachable();
1729 }
1730 }
1731
1732 template<int size, bool big_endian>
1733 void
1734 Output_data_dynamic::sized_write(Output_file* of)
1735 {
1736 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1737
1738 const off_t offset = this->offset();
1739 const off_t oview_size = this->data_size();
1740 unsigned char* const oview = of->get_output_view(offset, oview_size);
1741
1742 unsigned char* pov = oview;
1743 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1744 p != this->entries_.end();
1745 ++p)
1746 {
1747 p->write<size, big_endian>(pov, this->pool_);
1748 pov += dyn_size;
1749 }
1750
1751 gold_assert(pov - oview == oview_size);
1752
1753 of->write_output_view(offset, oview_size, oview);
1754
1755 // We no longer need the dynamic entries.
1756 this->entries_.clear();
1757 }
1758
1759 // Class Output_symtab_xindex.
1760
1761 void
1762 Output_symtab_xindex::do_write(Output_file* of)
1763 {
1764 const off_t offset = this->offset();
1765 const off_t oview_size = this->data_size();
1766 unsigned char* const oview = of->get_output_view(offset, oview_size);
1767
1768 memset(oview, 0, oview_size);
1769
1770 if (parameters->target().is_big_endian())
1771 this->endian_do_write<true>(oview);
1772 else
1773 this->endian_do_write<false>(oview);
1774
1775 of->write_output_view(offset, oview_size, oview);
1776
1777 // We no longer need the data.
1778 this->entries_.clear();
1779 }
1780
1781 template<bool big_endian>
1782 void
1783 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1784 {
1785 for (Xindex_entries::const_iterator p = this->entries_.begin();
1786 p != this->entries_.end();
1787 ++p)
1788 {
1789 unsigned int symndx = p->first;
1790 gold_assert(symndx * 4 < this->data_size());
1791 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1792 }
1793 }
1794
1795 // Output_section::Input_section methods.
1796
1797 // Return the data size. For an input section we store the size here.
1798 // For an Output_section_data, we have to ask it for the size.
1799
1800 off_t
1801 Output_section::Input_section::data_size() const
1802 {
1803 if (this->is_input_section())
1804 return this->u1_.data_size;
1805 else
1806 return this->u2_.posd->data_size();
1807 }
1808
1809 // Return the object for an input section.
1810
1811 Relobj*
1812 Output_section::Input_section::relobj() const
1813 {
1814 if (this->is_input_section())
1815 return this->u2_.object;
1816 else if (this->is_merge_section())
1817 {
1818 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1819 return this->u2_.pomb->first_relobj();
1820 }
1821 else if (this->is_relaxed_input_section())
1822 return this->u2_.poris->relobj();
1823 else
1824 gold_unreachable();
1825 }
1826
1827 // Return the input section index for an input section.
1828
1829 unsigned int
1830 Output_section::Input_section::shndx() const
1831 {
1832 if (this->is_input_section())
1833 return this->shndx_;
1834 else if (this->is_merge_section())
1835 {
1836 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1837 return this->u2_.pomb->first_shndx();
1838 }
1839 else if (this->is_relaxed_input_section())
1840 return this->u2_.poris->shndx();
1841 else
1842 gold_unreachable();
1843 }
1844
1845 // Set the address and file offset.
1846
1847 void
1848 Output_section::Input_section::set_address_and_file_offset(
1849 uint64_t address,
1850 off_t file_offset,
1851 off_t section_file_offset)
1852 {
1853 if (this->is_input_section())
1854 this->u2_.object->set_section_offset(this->shndx_,
1855 file_offset - section_file_offset);
1856 else
1857 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1858 }
1859
1860 // Reset the address and file offset.
1861
1862 void
1863 Output_section::Input_section::reset_address_and_file_offset()
1864 {
1865 if (!this->is_input_section())
1866 this->u2_.posd->reset_address_and_file_offset();
1867 }
1868
1869 // Finalize the data size.
1870
1871 void
1872 Output_section::Input_section::finalize_data_size()
1873 {
1874 if (!this->is_input_section())
1875 this->u2_.posd->finalize_data_size();
1876 }
1877
1878 // Try to turn an input offset into an output offset. We want to
1879 // return the output offset relative to the start of this
1880 // Input_section in the output section.
1881
1882 inline bool
1883 Output_section::Input_section::output_offset(
1884 const Relobj* object,
1885 unsigned int shndx,
1886 section_offset_type offset,
1887 section_offset_type* poutput) const
1888 {
1889 if (!this->is_input_section())
1890 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1891 else
1892 {
1893 if (this->shndx_ != shndx || this->u2_.object != object)
1894 return false;
1895 *poutput = offset;
1896 return true;
1897 }
1898 }
1899
1900 // Return whether this is the merge section for the input section
1901 // SHNDX in OBJECT.
1902
1903 inline bool
1904 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1905 unsigned int shndx) const
1906 {
1907 if (this->is_input_section())
1908 return false;
1909 return this->u2_.posd->is_merge_section_for(object, shndx);
1910 }
1911
1912 // Write out the data. We don't have to do anything for an input
1913 // section--they are handled via Object::relocate--but this is where
1914 // we write out the data for an Output_section_data.
1915
1916 void
1917 Output_section::Input_section::write(Output_file* of)
1918 {
1919 if (!this->is_input_section())
1920 this->u2_.posd->write(of);
1921 }
1922
1923 // Write the data to a buffer. As for write(), we don't have to do
1924 // anything for an input section.
1925
1926 void
1927 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1928 {
1929 if (!this->is_input_section())
1930 this->u2_.posd->write_to_buffer(buffer);
1931 }
1932
1933 // Print to a map file.
1934
1935 void
1936 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1937 {
1938 switch (this->shndx_)
1939 {
1940 case OUTPUT_SECTION_CODE:
1941 case MERGE_DATA_SECTION_CODE:
1942 case MERGE_STRING_SECTION_CODE:
1943 this->u2_.posd->print_to_mapfile(mapfile);
1944 break;
1945
1946 case RELAXED_INPUT_SECTION_CODE:
1947 {
1948 Output_relaxed_input_section* relaxed_section =
1949 this->relaxed_input_section();
1950 mapfile->print_input_section(relaxed_section->relobj(),
1951 relaxed_section->shndx());
1952 }
1953 break;
1954 default:
1955 mapfile->print_input_section(this->u2_.object, this->shndx_);
1956 break;
1957 }
1958 }
1959
1960 // Output_section methods.
1961
1962 // Construct an Output_section. NAME will point into a Stringpool.
1963
1964 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1965 elfcpp::Elf_Xword flags)
1966 : name_(name),
1967 addralign_(0),
1968 entsize_(0),
1969 load_address_(0),
1970 link_section_(NULL),
1971 link_(0),
1972 info_section_(NULL),
1973 info_symndx_(NULL),
1974 info_(0),
1975 type_(type),
1976 flags_(flags),
1977 order_(ORDER_INVALID),
1978 out_shndx_(-1U),
1979 symtab_index_(0),
1980 dynsym_index_(0),
1981 input_sections_(),
1982 first_input_offset_(0),
1983 fills_(),
1984 postprocessing_buffer_(NULL),
1985 needs_symtab_index_(false),
1986 needs_dynsym_index_(false),
1987 should_link_to_symtab_(false),
1988 should_link_to_dynsym_(false),
1989 after_input_sections_(false),
1990 requires_postprocessing_(false),
1991 found_in_sections_clause_(false),
1992 has_load_address_(false),
1993 info_uses_section_index_(false),
1994 input_section_order_specified_(false),
1995 may_sort_attached_input_sections_(false),
1996 must_sort_attached_input_sections_(false),
1997 attached_input_sections_are_sorted_(false),
1998 is_relro_(false),
1999 is_small_section_(false),
2000 is_large_section_(false),
2001 generate_code_fills_at_write_(false),
2002 is_entsize_zero_(false),
2003 section_offsets_need_adjustment_(false),
2004 is_noload_(false),
2005 always_keeps_input_sections_(false),
2006 tls_offset_(0),
2007 checkpoint_(NULL),
2008 lookup_maps_(new Output_section_lookup_maps)
2009 {
2010 // An unallocated section has no address. Forcing this means that
2011 // we don't need special treatment for symbols defined in debug
2012 // sections.
2013 if ((flags & elfcpp::SHF_ALLOC) == 0)
2014 this->set_address(0);
2015 }
2016
2017 Output_section::~Output_section()
2018 {
2019 delete this->checkpoint_;
2020 }
2021
2022 // Set the entry size.
2023
2024 void
2025 Output_section::set_entsize(uint64_t v)
2026 {
2027 if (this->is_entsize_zero_)
2028 ;
2029 else if (this->entsize_ == 0)
2030 this->entsize_ = v;
2031 else if (this->entsize_ != v)
2032 {
2033 this->entsize_ = 0;
2034 this->is_entsize_zero_ = 1;
2035 }
2036 }
2037
2038 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2039 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2040 // relocation section which applies to this section, or 0 if none, or
2041 // -1U if more than one. Return the offset of the input section
2042 // within the output section. Return -1 if the input section will
2043 // receive special handling. In the normal case we don't always keep
2044 // track of input sections for an Output_section. Instead, each
2045 // Object keeps track of the Output_section for each of its input
2046 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2047 // track of input sections here; this is used when SECTIONS appears in
2048 // a linker script.
2049
2050 template<int size, bool big_endian>
2051 off_t
2052 Output_section::add_input_section(Layout* layout,
2053 Sized_relobj<size, big_endian>* object,
2054 unsigned int shndx,
2055 const char* secname,
2056 const elfcpp::Shdr<size, big_endian>& shdr,
2057 unsigned int reloc_shndx,
2058 bool have_sections_script)
2059 {
2060 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2061 if ((addralign & (addralign - 1)) != 0)
2062 {
2063 object->error(_("invalid alignment %lu for section \"%s\""),
2064 static_cast<unsigned long>(addralign), secname);
2065 addralign = 1;
2066 }
2067
2068 if (addralign > this->addralign_)
2069 this->addralign_ = addralign;
2070
2071 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2072 uint64_t entsize = shdr.get_sh_entsize();
2073
2074 // .debug_str is a mergeable string section, but is not always so
2075 // marked by compilers. Mark manually here so we can optimize.
2076 if (strcmp(secname, ".debug_str") == 0)
2077 {
2078 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2079 entsize = 1;
2080 }
2081
2082 this->update_flags_for_input_section(sh_flags);
2083 this->set_entsize(entsize);
2084
2085 // If this is a SHF_MERGE section, we pass all the input sections to
2086 // a Output_data_merge. We don't try to handle relocations for such
2087 // a section. We don't try to handle empty merge sections--they
2088 // mess up the mappings, and are useless anyhow.
2089 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2090 && reloc_shndx == 0
2091 && shdr.get_sh_size() > 0)
2092 {
2093 // Keep information about merged input sections for rebuilding fast
2094 // lookup maps if we have sections-script or we do relaxation.
2095 bool keeps_input_sections = (this->always_keeps_input_sections_
2096 || have_sections_script
2097 || parameters->target().may_relax());
2098
2099 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2100 addralign, keeps_input_sections))
2101 {
2102 // Tell the relocation routines that they need to call the
2103 // output_offset method to determine the final address.
2104 return -1;
2105 }
2106 }
2107
2108 off_t offset_in_section = this->current_data_size_for_child();
2109 off_t aligned_offset_in_section = align_address(offset_in_section,
2110 addralign);
2111
2112 // Determine if we want to delay code-fill generation until the output
2113 // section is written. When the target is relaxing, we want to delay fill
2114 // generating to avoid adjusting them during relaxation. Also, if we are
2115 // sorting input sections we must delay fill generation.
2116 if (!this->generate_code_fills_at_write_
2117 && !have_sections_script
2118 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2119 && parameters->target().has_code_fill()
2120 && (parameters->target().may_relax()
2121 || parameters->options().section_ordering_file()))
2122 {
2123 gold_assert(this->fills_.empty());
2124 this->generate_code_fills_at_write_ = true;
2125 }
2126
2127 if (aligned_offset_in_section > offset_in_section
2128 && !this->generate_code_fills_at_write_
2129 && !have_sections_script
2130 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2131 && parameters->target().has_code_fill())
2132 {
2133 // We need to add some fill data. Using fill_list_ when
2134 // possible is an optimization, since we will often have fill
2135 // sections without input sections.
2136 off_t fill_len = aligned_offset_in_section - offset_in_section;
2137 if (this->input_sections_.empty())
2138 this->fills_.push_back(Fill(offset_in_section, fill_len));
2139 else
2140 {
2141 std::string fill_data(parameters->target().code_fill(fill_len));
2142 Output_data_const* odc = new Output_data_const(fill_data, 1);
2143 this->input_sections_.push_back(Input_section(odc));
2144 }
2145 }
2146
2147 section_size_type input_section_size = shdr.get_sh_size();
2148 section_size_type uncompressed_size;
2149 if (object->section_is_compressed(shndx, &uncompressed_size))
2150 input_section_size = uncompressed_size;
2151
2152 this->set_current_data_size_for_child(aligned_offset_in_section
2153 + input_section_size);
2154
2155 // We need to keep track of this section if we are already keeping
2156 // track of sections, or if we are relaxing. Also, if this is a
2157 // section which requires sorting, or which may require sorting in
2158 // the future, we keep track of the sections. If the
2159 // --section-ordering-file option is used to specify the order of
2160 // sections, we need to keep track of sections.
2161 if (this->always_keeps_input_sections_
2162 || have_sections_script
2163 || !this->input_sections_.empty()
2164 || this->may_sort_attached_input_sections()
2165 || this->must_sort_attached_input_sections()
2166 || parameters->options().user_set_Map()
2167 || parameters->target().may_relax()
2168 || parameters->options().section_ordering_file())
2169 {
2170 Input_section isecn(object, shndx, input_section_size, addralign);
2171 if (parameters->options().section_ordering_file())
2172 {
2173 unsigned int section_order_index =
2174 layout->find_section_order_index(std::string(secname));
2175 if (section_order_index != 0)
2176 {
2177 isecn.set_section_order_index(section_order_index);
2178 this->set_input_section_order_specified();
2179 }
2180 }
2181 this->input_sections_.push_back(isecn);
2182 }
2183
2184 return aligned_offset_in_section;
2185 }
2186
2187 // Add arbitrary data to an output section.
2188
2189 void
2190 Output_section::add_output_section_data(Output_section_data* posd)
2191 {
2192 Input_section inp(posd);
2193 this->add_output_section_data(&inp);
2194
2195 if (posd->is_data_size_valid())
2196 {
2197 off_t offset_in_section = this->current_data_size_for_child();
2198 off_t aligned_offset_in_section = align_address(offset_in_section,
2199 posd->addralign());
2200 this->set_current_data_size_for_child(aligned_offset_in_section
2201 + posd->data_size());
2202 }
2203 }
2204
2205 // Add a relaxed input section.
2206
2207 void
2208 Output_section::add_relaxed_input_section(Layout* layout,
2209 Output_relaxed_input_section* poris,
2210 const std::string& name)
2211 {
2212 Input_section inp(poris);
2213
2214 // If the --section-ordering-file option is used to specify the order of
2215 // sections, we need to keep track of sections.
2216 if (parameters->options().section_ordering_file())
2217 {
2218 unsigned int section_order_index =
2219 layout->find_section_order_index(name);
2220 if (section_order_index != 0)
2221 {
2222 inp.set_section_order_index(section_order_index);
2223 this->set_input_section_order_specified();
2224 }
2225 }
2226
2227 this->add_output_section_data(&inp);
2228 if (this->lookup_maps_->is_valid())
2229 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2230 poris->shndx(), poris);
2231
2232 // For a relaxed section, we use the current data size. Linker scripts
2233 // get all the input sections, including relaxed one from an output
2234 // section and add them back to them same output section to compute the
2235 // output section size. If we do not account for sizes of relaxed input
2236 // sections, an output section would be incorrectly sized.
2237 off_t offset_in_section = this->current_data_size_for_child();
2238 off_t aligned_offset_in_section = align_address(offset_in_section,
2239 poris->addralign());
2240 this->set_current_data_size_for_child(aligned_offset_in_section
2241 + poris->current_data_size());
2242 }
2243
2244 // Add arbitrary data to an output section by Input_section.
2245
2246 void
2247 Output_section::add_output_section_data(Input_section* inp)
2248 {
2249 if (this->input_sections_.empty())
2250 this->first_input_offset_ = this->current_data_size_for_child();
2251
2252 this->input_sections_.push_back(*inp);
2253
2254 uint64_t addralign = inp->addralign();
2255 if (addralign > this->addralign_)
2256 this->addralign_ = addralign;
2257
2258 inp->set_output_section(this);
2259 }
2260
2261 // Add a merge section to an output section.
2262
2263 void
2264 Output_section::add_output_merge_section(Output_section_data* posd,
2265 bool is_string, uint64_t entsize)
2266 {
2267 Input_section inp(posd, is_string, entsize);
2268 this->add_output_section_data(&inp);
2269 }
2270
2271 // Add an input section to a SHF_MERGE section.
2272
2273 bool
2274 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2275 uint64_t flags, uint64_t entsize,
2276 uint64_t addralign,
2277 bool keeps_input_sections)
2278 {
2279 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2280
2281 // We only merge strings if the alignment is not more than the
2282 // character size. This could be handled, but it's unusual.
2283 if (is_string && addralign > entsize)
2284 return false;
2285
2286 // We cannot restore merged input section states.
2287 gold_assert(this->checkpoint_ == NULL);
2288
2289 // Look up merge sections by required properties.
2290 // Currently, we only invalidate the lookup maps in script processing
2291 // and relaxation. We should not have done either when we reach here.
2292 // So we assume that the lookup maps are valid to simply code.
2293 gold_assert(this->lookup_maps_->is_valid());
2294 Merge_section_properties msp(is_string, entsize, addralign);
2295 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2296 bool is_new = false;
2297 if (pomb != NULL)
2298 {
2299 gold_assert(pomb->is_string() == is_string
2300 && pomb->entsize() == entsize
2301 && pomb->addralign() == addralign);
2302 }
2303 else
2304 {
2305 // Create a new Output_merge_data or Output_merge_string_data.
2306 if (!is_string)
2307 pomb = new Output_merge_data(entsize, addralign);
2308 else
2309 {
2310 switch (entsize)
2311 {
2312 case 1:
2313 pomb = new Output_merge_string<char>(addralign);
2314 break;
2315 case 2:
2316 pomb = new Output_merge_string<uint16_t>(addralign);
2317 break;
2318 case 4:
2319 pomb = new Output_merge_string<uint32_t>(addralign);
2320 break;
2321 default:
2322 return false;
2323 }
2324 }
2325 // If we need to do script processing or relaxation, we need to keep
2326 // the original input sections to rebuild the fast lookup maps.
2327 if (keeps_input_sections)
2328 pomb->set_keeps_input_sections();
2329 is_new = true;
2330 }
2331
2332 if (pomb->add_input_section(object, shndx))
2333 {
2334 // Add new merge section to this output section and link merge
2335 // section properties to new merge section in map.
2336 if (is_new)
2337 {
2338 this->add_output_merge_section(pomb, is_string, entsize);
2339 this->lookup_maps_->add_merge_section(msp, pomb);
2340 }
2341
2342 // Add input section to new merge section and link input section to new
2343 // merge section in map.
2344 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2345 return true;
2346 }
2347 else
2348 {
2349 // If add_input_section failed, delete new merge section to avoid
2350 // exporting empty merge sections in Output_section::get_input_section.
2351 if (is_new)
2352 delete pomb;
2353 return false;
2354 }
2355 }
2356
2357 // Build a relaxation map to speed up relaxation of existing input sections.
2358 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2359
2360 void
2361 Output_section::build_relaxation_map(
2362 const Input_section_list& input_sections,
2363 size_t limit,
2364 Relaxation_map* relaxation_map) const
2365 {
2366 for (size_t i = 0; i < limit; ++i)
2367 {
2368 const Input_section& is(input_sections[i]);
2369 if (is.is_input_section() || is.is_relaxed_input_section())
2370 {
2371 Section_id sid(is.relobj(), is.shndx());
2372 (*relaxation_map)[sid] = i;
2373 }
2374 }
2375 }
2376
2377 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2378 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2379 // indices of INPUT_SECTIONS.
2380
2381 void
2382 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2383 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2384 const Relaxation_map& map,
2385 Input_section_list* input_sections)
2386 {
2387 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2388 {
2389 Output_relaxed_input_section* poris = relaxed_sections[i];
2390 Section_id sid(poris->relobj(), poris->shndx());
2391 Relaxation_map::const_iterator p = map.find(sid);
2392 gold_assert(p != map.end());
2393 gold_assert((*input_sections)[p->second].is_input_section());
2394
2395 // Remember section order index of original input section
2396 // if it is set. Copy it to the relaxed input section.
2397 unsigned int soi =
2398 (*input_sections)[p->second].section_order_index();
2399 (*input_sections)[p->second] = Input_section(poris);
2400 (*input_sections)[p->second].set_section_order_index(soi);
2401 }
2402 }
2403
2404 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2405 // is a vector of pointers to Output_relaxed_input_section or its derived
2406 // classes. The relaxed sections must correspond to existing input sections.
2407
2408 void
2409 Output_section::convert_input_sections_to_relaxed_sections(
2410 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2411 {
2412 gold_assert(parameters->target().may_relax());
2413
2414 // We want to make sure that restore_states does not undo the effect of
2415 // this. If there is no checkpoint active, just search the current
2416 // input section list and replace the sections there. If there is
2417 // a checkpoint, also replace the sections there.
2418
2419 // By default, we look at the whole list.
2420 size_t limit = this->input_sections_.size();
2421
2422 if (this->checkpoint_ != NULL)
2423 {
2424 // Replace input sections with relaxed input section in the saved
2425 // copy of the input section list.
2426 if (this->checkpoint_->input_sections_saved())
2427 {
2428 Relaxation_map map;
2429 this->build_relaxation_map(
2430 *(this->checkpoint_->input_sections()),
2431 this->checkpoint_->input_sections()->size(),
2432 &map);
2433 this->convert_input_sections_in_list_to_relaxed_sections(
2434 relaxed_sections,
2435 map,
2436 this->checkpoint_->input_sections());
2437 }
2438 else
2439 {
2440 // We have not copied the input section list yet. Instead, just
2441 // look at the portion that would be saved.
2442 limit = this->checkpoint_->input_sections_size();
2443 }
2444 }
2445
2446 // Convert input sections in input_section_list.
2447 Relaxation_map map;
2448 this->build_relaxation_map(this->input_sections_, limit, &map);
2449 this->convert_input_sections_in_list_to_relaxed_sections(
2450 relaxed_sections,
2451 map,
2452 &this->input_sections_);
2453
2454 // Update fast look-up map.
2455 if (this->lookup_maps_->is_valid())
2456 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2457 {
2458 Output_relaxed_input_section* poris = relaxed_sections[i];
2459 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2460 poris->shndx(), poris);
2461 }
2462 }
2463
2464 // Update the output section flags based on input section flags.
2465
2466 void
2467 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2468 {
2469 // If we created the section with SHF_ALLOC clear, we set the
2470 // address. If we are now setting the SHF_ALLOC flag, we need to
2471 // undo that.
2472 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2473 && (flags & elfcpp::SHF_ALLOC) != 0)
2474 this->mark_address_invalid();
2475
2476 this->flags_ |= (flags
2477 & (elfcpp::SHF_WRITE
2478 | elfcpp::SHF_ALLOC
2479 | elfcpp::SHF_EXECINSTR));
2480
2481 if ((flags & elfcpp::SHF_MERGE) == 0)
2482 this->flags_ &=~ elfcpp::SHF_MERGE;
2483 else
2484 {
2485 if (this->current_data_size_for_child() == 0)
2486 this->flags_ |= elfcpp::SHF_MERGE;
2487 }
2488
2489 if ((flags & elfcpp::SHF_STRINGS) == 0)
2490 this->flags_ &=~ elfcpp::SHF_STRINGS;
2491 else
2492 {
2493 if (this->current_data_size_for_child() == 0)
2494 this->flags_ |= elfcpp::SHF_STRINGS;
2495 }
2496 }
2497
2498 // Find the merge section into which an input section with index SHNDX in
2499 // OBJECT has been added. Return NULL if none found.
2500
2501 Output_section_data*
2502 Output_section::find_merge_section(const Relobj* object,
2503 unsigned int shndx) const
2504 {
2505 if (!this->lookup_maps_->is_valid())
2506 this->build_lookup_maps();
2507 return this->lookup_maps_->find_merge_section(object, shndx);
2508 }
2509
2510 // Build the lookup maps for merge and relaxed sections. This is needs
2511 // to be declared as a const methods so that it is callable with a const
2512 // Output_section pointer. The method only updates states of the maps.
2513
2514 void
2515 Output_section::build_lookup_maps() const
2516 {
2517 this->lookup_maps_->clear();
2518 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2519 p != this->input_sections_.end();
2520 ++p)
2521 {
2522 if (p->is_merge_section())
2523 {
2524 Output_merge_base* pomb = p->output_merge_base();
2525 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2526 pomb->addralign());
2527 this->lookup_maps_->add_merge_section(msp, pomb);
2528 for (Output_merge_base::Input_sections::const_iterator is =
2529 pomb->input_sections_begin();
2530 is != pomb->input_sections_end();
2531 ++is)
2532 {
2533 const Const_section_id& csid = *is;
2534 this->lookup_maps_->add_merge_input_section(csid.first,
2535 csid.second, pomb);
2536 }
2537
2538 }
2539 else if (p->is_relaxed_input_section())
2540 {
2541 Output_relaxed_input_section* poris = p->relaxed_input_section();
2542 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2543 poris->shndx(), poris);
2544 }
2545 }
2546 }
2547
2548 // Find an relaxed input section corresponding to an input section
2549 // in OBJECT with index SHNDX.
2550
2551 const Output_relaxed_input_section*
2552 Output_section::find_relaxed_input_section(const Relobj* object,
2553 unsigned int shndx) const
2554 {
2555 if (!this->lookup_maps_->is_valid())
2556 this->build_lookup_maps();
2557 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2558 }
2559
2560 // Given an address OFFSET relative to the start of input section
2561 // SHNDX in OBJECT, return whether this address is being included in
2562 // the final link. This should only be called if SHNDX in OBJECT has
2563 // a special mapping.
2564
2565 bool
2566 Output_section::is_input_address_mapped(const Relobj* object,
2567 unsigned int shndx,
2568 off_t offset) const
2569 {
2570 // Look at the Output_section_data_maps first.
2571 const Output_section_data* posd = this->find_merge_section(object, shndx);
2572 if (posd == NULL)
2573 posd = this->find_relaxed_input_section(object, shndx);
2574
2575 if (posd != NULL)
2576 {
2577 section_offset_type output_offset;
2578 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2579 gold_assert(found);
2580 return output_offset != -1;
2581 }
2582
2583 // Fall back to the slow look-up.
2584 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2585 p != this->input_sections_.end();
2586 ++p)
2587 {
2588 section_offset_type output_offset;
2589 if (p->output_offset(object, shndx, offset, &output_offset))
2590 return output_offset != -1;
2591 }
2592
2593 // By default we assume that the address is mapped. This should
2594 // only be called after we have passed all sections to Layout. At
2595 // that point we should know what we are discarding.
2596 return true;
2597 }
2598
2599 // Given an address OFFSET relative to the start of input section
2600 // SHNDX in object OBJECT, return the output offset relative to the
2601 // start of the input section in the output section. This should only
2602 // be called if SHNDX in OBJECT has a special mapping.
2603
2604 section_offset_type
2605 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2606 section_offset_type offset) const
2607 {
2608 // This can only be called meaningfully when we know the data size
2609 // of this.
2610 gold_assert(this->is_data_size_valid());
2611
2612 // Look at the Output_section_data_maps first.
2613 const Output_section_data* posd = this->find_merge_section(object, shndx);
2614 if (posd == NULL)
2615 posd = this->find_relaxed_input_section(object, shndx);
2616 if (posd != NULL)
2617 {
2618 section_offset_type output_offset;
2619 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2620 gold_assert(found);
2621 return output_offset;
2622 }
2623
2624 // Fall back to the slow look-up.
2625 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2626 p != this->input_sections_.end();
2627 ++p)
2628 {
2629 section_offset_type output_offset;
2630 if (p->output_offset(object, shndx, offset, &output_offset))
2631 return output_offset;
2632 }
2633 gold_unreachable();
2634 }
2635
2636 // Return the output virtual address of OFFSET relative to the start
2637 // of input section SHNDX in object OBJECT.
2638
2639 uint64_t
2640 Output_section::output_address(const Relobj* object, unsigned int shndx,
2641 off_t offset) const
2642 {
2643 uint64_t addr = this->address() + this->first_input_offset_;
2644
2645 // Look at the Output_section_data_maps first.
2646 const Output_section_data* posd = this->find_merge_section(object, shndx);
2647 if (posd == NULL)
2648 posd = this->find_relaxed_input_section(object, shndx);
2649 if (posd != NULL && posd->is_address_valid())
2650 {
2651 section_offset_type output_offset;
2652 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2653 gold_assert(found);
2654 return posd->address() + output_offset;
2655 }
2656
2657 // Fall back to the slow look-up.
2658 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2659 p != this->input_sections_.end();
2660 ++p)
2661 {
2662 addr = align_address(addr, p->addralign());
2663 section_offset_type output_offset;
2664 if (p->output_offset(object, shndx, offset, &output_offset))
2665 {
2666 if (output_offset == -1)
2667 return -1ULL;
2668 return addr + output_offset;
2669 }
2670 addr += p->data_size();
2671 }
2672
2673 // If we get here, it means that we don't know the mapping for this
2674 // input section. This might happen in principle if
2675 // add_input_section were called before add_output_section_data.
2676 // But it should never actually happen.
2677
2678 gold_unreachable();
2679 }
2680
2681 // Find the output address of the start of the merged section for
2682 // input section SHNDX in object OBJECT.
2683
2684 bool
2685 Output_section::find_starting_output_address(const Relobj* object,
2686 unsigned int shndx,
2687 uint64_t* paddr) const
2688 {
2689 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2690 // Looking up the merge section map does not always work as we sometimes
2691 // find a merge section without its address set.
2692 uint64_t addr = this->address() + this->first_input_offset_;
2693 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2694 p != this->input_sections_.end();
2695 ++p)
2696 {
2697 addr = align_address(addr, p->addralign());
2698
2699 // It would be nice if we could use the existing output_offset
2700 // method to get the output offset of input offset 0.
2701 // Unfortunately we don't know for sure that input offset 0 is
2702 // mapped at all.
2703 if (p->is_merge_section_for(object, shndx))
2704 {
2705 *paddr = addr;
2706 return true;
2707 }
2708
2709 addr += p->data_size();
2710 }
2711
2712 // We couldn't find a merge output section for this input section.
2713 return false;
2714 }
2715
2716 // Set the data size of an Output_section. This is where we handle
2717 // setting the addresses of any Output_section_data objects.
2718
2719 void
2720 Output_section::set_final_data_size()
2721 {
2722 if (this->input_sections_.empty())
2723 {
2724 this->set_data_size(this->current_data_size_for_child());
2725 return;
2726 }
2727
2728 if (this->must_sort_attached_input_sections()
2729 || this->input_section_order_specified())
2730 this->sort_attached_input_sections();
2731
2732 uint64_t address = this->address();
2733 off_t startoff = this->offset();
2734 off_t off = startoff + this->first_input_offset_;
2735 for (Input_section_list::iterator p = this->input_sections_.begin();
2736 p != this->input_sections_.end();
2737 ++p)
2738 {
2739 off = align_address(off, p->addralign());
2740 p->set_address_and_file_offset(address + (off - startoff), off,
2741 startoff);
2742 off += p->data_size();
2743 }
2744
2745 this->set_data_size(off - startoff);
2746 }
2747
2748 // Reset the address and file offset.
2749
2750 void
2751 Output_section::do_reset_address_and_file_offset()
2752 {
2753 // An unallocated section has no address. Forcing this means that
2754 // we don't need special treatment for symbols defined in debug
2755 // sections. We do the same in the constructor. This does not
2756 // apply to NOLOAD sections though.
2757 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2758 this->set_address(0);
2759
2760 for (Input_section_list::iterator p = this->input_sections_.begin();
2761 p != this->input_sections_.end();
2762 ++p)
2763 p->reset_address_and_file_offset();
2764 }
2765
2766 // Return true if address and file offset have the values after reset.
2767
2768 bool
2769 Output_section::do_address_and_file_offset_have_reset_values() const
2770 {
2771 if (this->is_offset_valid())
2772 return false;
2773
2774 // An unallocated section has address 0 after its construction or a reset.
2775 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2776 return this->is_address_valid() && this->address() == 0;
2777 else
2778 return !this->is_address_valid();
2779 }
2780
2781 // Set the TLS offset. Called only for SHT_TLS sections.
2782
2783 void
2784 Output_section::do_set_tls_offset(uint64_t tls_base)
2785 {
2786 this->tls_offset_ = this->address() - tls_base;
2787 }
2788
2789 // In a few cases we need to sort the input sections attached to an
2790 // output section. This is used to implement the type of constructor
2791 // priority ordering implemented by the GNU linker, in which the
2792 // priority becomes part of the section name and the sections are
2793 // sorted by name. We only do this for an output section if we see an
2794 // attached input section matching ".ctor.*", ".dtor.*",
2795 // ".init_array.*" or ".fini_array.*".
2796
2797 class Output_section::Input_section_sort_entry
2798 {
2799 public:
2800 Input_section_sort_entry()
2801 : input_section_(), index_(-1U), section_has_name_(false),
2802 section_name_()
2803 { }
2804
2805 Input_section_sort_entry(const Input_section& input_section,
2806 unsigned int index,
2807 bool must_sort_attached_input_sections)
2808 : input_section_(input_section), index_(index),
2809 section_has_name_(input_section.is_input_section()
2810 || input_section.is_relaxed_input_section())
2811 {
2812 if (this->section_has_name_
2813 && must_sort_attached_input_sections)
2814 {
2815 // This is only called single-threaded from Layout::finalize,
2816 // so it is OK to lock. Unfortunately we have no way to pass
2817 // in a Task token.
2818 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2819 Object* obj = (input_section.is_input_section()
2820 ? input_section.relobj()
2821 : input_section.relaxed_input_section()->relobj());
2822 Task_lock_obj<Object> tl(dummy_task, obj);
2823
2824 // This is a slow operation, which should be cached in
2825 // Layout::layout if this becomes a speed problem.
2826 this->section_name_ = obj->section_name(input_section.shndx());
2827 }
2828 }
2829
2830 // Return the Input_section.
2831 const Input_section&
2832 input_section() const
2833 {
2834 gold_assert(this->index_ != -1U);
2835 return this->input_section_;
2836 }
2837
2838 // The index of this entry in the original list. This is used to
2839 // make the sort stable.
2840 unsigned int
2841 index() const
2842 {
2843 gold_assert(this->index_ != -1U);
2844 return this->index_;
2845 }
2846
2847 // Whether there is a section name.
2848 bool
2849 section_has_name() const
2850 { return this->section_has_name_; }
2851
2852 // The section name.
2853 const std::string&
2854 section_name() const
2855 {
2856 gold_assert(this->section_has_name_);
2857 return this->section_name_;
2858 }
2859
2860 // Return true if the section name has a priority. This is assumed
2861 // to be true if it has a dot after the initial dot.
2862 bool
2863 has_priority() const
2864 {
2865 gold_assert(this->section_has_name_);
2866 return this->section_name_.find('.', 1) != std::string::npos;
2867 }
2868
2869 // Return true if this an input file whose base name matches
2870 // FILE_NAME. The base name must have an extension of ".o", and
2871 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2872 // This is to match crtbegin.o as well as crtbeginS.o without
2873 // getting confused by other possibilities. Overall matching the
2874 // file name this way is a dreadful hack, but the GNU linker does it
2875 // in order to better support gcc, and we need to be compatible.
2876 bool
2877 match_file_name(const char* match_file_name) const
2878 {
2879 const std::string& file_name(this->input_section_.relobj()->name());
2880 const char* base_name = lbasename(file_name.c_str());
2881 size_t match_len = strlen(match_file_name);
2882 if (strncmp(base_name, match_file_name, match_len) != 0)
2883 return false;
2884 size_t base_len = strlen(base_name);
2885 if (base_len != match_len + 2 && base_len != match_len + 3)
2886 return false;
2887 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2888 }
2889
2890 // Returns 1 if THIS should appear before S in section order, -1 if S
2891 // appears before THIS and 0 if they are not comparable.
2892 int
2893 compare_section_ordering(const Input_section_sort_entry& s) const
2894 {
2895 unsigned int this_secn_index = this->input_section_.section_order_index();
2896 unsigned int s_secn_index = s.input_section().section_order_index();
2897 if (this_secn_index > 0 && s_secn_index > 0)
2898 {
2899 if (this_secn_index < s_secn_index)
2900 return 1;
2901 else if (this_secn_index > s_secn_index)
2902 return -1;
2903 }
2904 return 0;
2905 }
2906
2907 private:
2908 // The Input_section we are sorting.
2909 Input_section input_section_;
2910 // The index of this Input_section in the original list.
2911 unsigned int index_;
2912 // Whether this Input_section has a section name--it won't if this
2913 // is some random Output_section_data.
2914 bool section_has_name_;
2915 // The section name if there is one.
2916 std::string section_name_;
2917 };
2918
2919 // Return true if S1 should come before S2 in the output section.
2920
2921 bool
2922 Output_section::Input_section_sort_compare::operator()(
2923 const Output_section::Input_section_sort_entry& s1,
2924 const Output_section::Input_section_sort_entry& s2) const
2925 {
2926 // crtbegin.o must come first.
2927 bool s1_begin = s1.match_file_name("crtbegin");
2928 bool s2_begin = s2.match_file_name("crtbegin");
2929 if (s1_begin || s2_begin)
2930 {
2931 if (!s1_begin)
2932 return false;
2933 if (!s2_begin)
2934 return true;
2935 return s1.index() < s2.index();
2936 }
2937
2938 // crtend.o must come last.
2939 bool s1_end = s1.match_file_name("crtend");
2940 bool s2_end = s2.match_file_name("crtend");
2941 if (s1_end || s2_end)
2942 {
2943 if (!s1_end)
2944 return true;
2945 if (!s2_end)
2946 return false;
2947 return s1.index() < s2.index();
2948 }
2949
2950 // We sort all the sections with no names to the end.
2951 if (!s1.section_has_name() || !s2.section_has_name())
2952 {
2953 if (s1.section_has_name())
2954 return true;
2955 if (s2.section_has_name())
2956 return false;
2957 return s1.index() < s2.index();
2958 }
2959
2960 // A section with a priority follows a section without a priority.
2961 bool s1_has_priority = s1.has_priority();
2962 bool s2_has_priority = s2.has_priority();
2963 if (s1_has_priority && !s2_has_priority)
2964 return false;
2965 if (!s1_has_priority && s2_has_priority)
2966 return true;
2967
2968 // Check if a section order exists for these sections through a section
2969 // ordering file. If sequence_num is 0, an order does not exist.
2970 int sequence_num = s1.compare_section_ordering(s2);
2971 if (sequence_num != 0)
2972 return sequence_num == 1;
2973
2974 // Otherwise we sort by name.
2975 int compare = s1.section_name().compare(s2.section_name());
2976 if (compare != 0)
2977 return compare < 0;
2978
2979 // Otherwise we keep the input order.
2980 return s1.index() < s2.index();
2981 }
2982
2983 // Return true if S1 should come before S2 in an .init_array or .fini_array
2984 // output section.
2985
2986 bool
2987 Output_section::Input_section_sort_init_fini_compare::operator()(
2988 const Output_section::Input_section_sort_entry& s1,
2989 const Output_section::Input_section_sort_entry& s2) const
2990 {
2991 // We sort all the sections with no names to the end.
2992 if (!s1.section_has_name() || !s2.section_has_name())
2993 {
2994 if (s1.section_has_name())
2995 return true;
2996 if (s2.section_has_name())
2997 return false;
2998 return s1.index() < s2.index();
2999 }
3000
3001 // A section without a priority follows a section with a priority.
3002 // This is the reverse of .ctors and .dtors sections.
3003 bool s1_has_priority = s1.has_priority();
3004 bool s2_has_priority = s2.has_priority();
3005 if (s1_has_priority && !s2_has_priority)
3006 return true;
3007 if (!s1_has_priority && s2_has_priority)
3008 return false;
3009
3010 // Check if a section order exists for these sections through a section
3011 // ordering file. If sequence_num is 0, an order does not exist.
3012 int sequence_num = s1.compare_section_ordering(s2);
3013 if (sequence_num != 0)
3014 return sequence_num == 1;
3015
3016 // Otherwise we sort by name.
3017 int compare = s1.section_name().compare(s2.section_name());
3018 if (compare != 0)
3019 return compare < 0;
3020
3021 // Otherwise we keep the input order.
3022 return s1.index() < s2.index();
3023 }
3024
3025 // Return true if S1 should come before S2. Sections that do not match
3026 // any pattern in the section ordering file are placed ahead of the sections
3027 // that match some pattern.
3028
3029 bool
3030 Output_section::Input_section_sort_section_order_index_compare::operator()(
3031 const Output_section::Input_section_sort_entry& s1,
3032 const Output_section::Input_section_sort_entry& s2) const
3033 {
3034 unsigned int s1_secn_index = s1.input_section().section_order_index();
3035 unsigned int s2_secn_index = s2.input_section().section_order_index();
3036
3037 // Keep input order if section ordering cannot determine order.
3038 if (s1_secn_index == s2_secn_index)
3039 return s1.index() < s2.index();
3040
3041 return s1_secn_index < s2_secn_index;
3042 }
3043
3044 // Sort the input sections attached to an output section.
3045
3046 void
3047 Output_section::sort_attached_input_sections()
3048 {
3049 if (this->attached_input_sections_are_sorted_)
3050 return;
3051
3052 if (this->checkpoint_ != NULL
3053 && !this->checkpoint_->input_sections_saved())
3054 this->checkpoint_->save_input_sections();
3055
3056 // The only thing we know about an input section is the object and
3057 // the section index. We need the section name. Recomputing this
3058 // is slow but this is an unusual case. If this becomes a speed
3059 // problem we can cache the names as required in Layout::layout.
3060
3061 // We start by building a larger vector holding a copy of each
3062 // Input_section, plus its current index in the list and its name.
3063 std::vector<Input_section_sort_entry> sort_list;
3064
3065 unsigned int i = 0;
3066 for (Input_section_list::iterator p = this->input_sections_.begin();
3067 p != this->input_sections_.end();
3068 ++p, ++i)
3069 sort_list.push_back(Input_section_sort_entry(*p, i,
3070 this->must_sort_attached_input_sections()));
3071
3072 // Sort the input sections.
3073 if (this->must_sort_attached_input_sections())
3074 {
3075 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3076 || this->type() == elfcpp::SHT_INIT_ARRAY
3077 || this->type() == elfcpp::SHT_FINI_ARRAY)
3078 std::sort(sort_list.begin(), sort_list.end(),
3079 Input_section_sort_init_fini_compare());
3080 else
3081 std::sort(sort_list.begin(), sort_list.end(),
3082 Input_section_sort_compare());
3083 }
3084 else
3085 {
3086 gold_assert(parameters->options().section_ordering_file());
3087 std::sort(sort_list.begin(), sort_list.end(),
3088 Input_section_sort_section_order_index_compare());
3089 }
3090
3091 // Copy the sorted input sections back to our list.
3092 this->input_sections_.clear();
3093 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3094 p != sort_list.end();
3095 ++p)
3096 this->input_sections_.push_back(p->input_section());
3097 sort_list.clear();
3098
3099 // Remember that we sorted the input sections, since we might get
3100 // called again.
3101 this->attached_input_sections_are_sorted_ = true;
3102 }
3103
3104 // Write the section header to *OSHDR.
3105
3106 template<int size, bool big_endian>
3107 void
3108 Output_section::write_header(const Layout* layout,
3109 const Stringpool* secnamepool,
3110 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3111 {
3112 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3113 oshdr->put_sh_type(this->type_);
3114
3115 elfcpp::Elf_Xword flags = this->flags_;
3116 if (this->info_section_ != NULL && this->info_uses_section_index_)
3117 flags |= elfcpp::SHF_INFO_LINK;
3118 oshdr->put_sh_flags(flags);
3119
3120 oshdr->put_sh_addr(this->address());
3121 oshdr->put_sh_offset(this->offset());
3122 oshdr->put_sh_size(this->data_size());
3123 if (this->link_section_ != NULL)
3124 oshdr->put_sh_link(this->link_section_->out_shndx());
3125 else if (this->should_link_to_symtab_)
3126 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3127 else if (this->should_link_to_dynsym_)
3128 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3129 else
3130 oshdr->put_sh_link(this->link_);
3131
3132 elfcpp::Elf_Word info;
3133 if (this->info_section_ != NULL)
3134 {
3135 if (this->info_uses_section_index_)
3136 info = this->info_section_->out_shndx();
3137 else
3138 info = this->info_section_->symtab_index();
3139 }
3140 else if (this->info_symndx_ != NULL)
3141 info = this->info_symndx_->symtab_index();
3142 else
3143 info = this->info_;
3144 oshdr->put_sh_info(info);
3145
3146 oshdr->put_sh_addralign(this->addralign_);
3147 oshdr->put_sh_entsize(this->entsize_);
3148 }
3149
3150 // Write out the data. For input sections the data is written out by
3151 // Object::relocate, but we have to handle Output_section_data objects
3152 // here.
3153
3154 void
3155 Output_section::do_write(Output_file* of)
3156 {
3157 gold_assert(!this->requires_postprocessing());
3158
3159 // If the target performs relaxation, we delay filler generation until now.
3160 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3161
3162 off_t output_section_file_offset = this->offset();
3163 for (Fill_list::iterator p = this->fills_.begin();
3164 p != this->fills_.end();
3165 ++p)
3166 {
3167 std::string fill_data(parameters->target().code_fill(p->length()));
3168 of->write(output_section_file_offset + p->section_offset(),
3169 fill_data.data(), fill_data.size());
3170 }
3171
3172 off_t off = this->offset() + this->first_input_offset_;
3173 for (Input_section_list::iterator p = this->input_sections_.begin();
3174 p != this->input_sections_.end();
3175 ++p)
3176 {
3177 off_t aligned_off = align_address(off, p->addralign());
3178 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3179 {
3180 size_t fill_len = aligned_off - off;
3181 std::string fill_data(parameters->target().code_fill(fill_len));
3182 of->write(off, fill_data.data(), fill_data.size());
3183 }
3184
3185 p->write(of);
3186 off = aligned_off + p->data_size();
3187 }
3188 }
3189
3190 // If a section requires postprocessing, create the buffer to use.
3191
3192 void
3193 Output_section::create_postprocessing_buffer()
3194 {
3195 gold_assert(this->requires_postprocessing());
3196
3197 if (this->postprocessing_buffer_ != NULL)
3198 return;
3199
3200 if (!this->input_sections_.empty())
3201 {
3202 off_t off = this->first_input_offset_;
3203 for (Input_section_list::iterator p = this->input_sections_.begin();
3204 p != this->input_sections_.end();
3205 ++p)
3206 {
3207 off = align_address(off, p->addralign());
3208 p->finalize_data_size();
3209 off += p->data_size();
3210 }
3211 this->set_current_data_size_for_child(off);
3212 }
3213
3214 off_t buffer_size = this->current_data_size_for_child();
3215 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3216 }
3217
3218 // Write all the data of an Output_section into the postprocessing
3219 // buffer. This is used for sections which require postprocessing,
3220 // such as compression. Input sections are handled by
3221 // Object::Relocate.
3222
3223 void
3224 Output_section::write_to_postprocessing_buffer()
3225 {
3226 gold_assert(this->requires_postprocessing());
3227
3228 // If the target performs relaxation, we delay filler generation until now.
3229 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3230
3231 unsigned char* buffer = this->postprocessing_buffer();
3232 for (Fill_list::iterator p = this->fills_.begin();
3233 p != this->fills_.end();
3234 ++p)
3235 {
3236 std::string fill_data(parameters->target().code_fill(p->length()));
3237 memcpy(buffer + p->section_offset(), fill_data.data(),
3238 fill_data.size());
3239 }
3240
3241 off_t off = this->first_input_offset_;
3242 for (Input_section_list::iterator p = this->input_sections_.begin();
3243 p != this->input_sections_.end();
3244 ++p)
3245 {
3246 off_t aligned_off = align_address(off, p->addralign());
3247 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3248 {
3249 size_t fill_len = aligned_off - off;
3250 std::string fill_data(parameters->target().code_fill(fill_len));
3251 memcpy(buffer + off, fill_data.data(), fill_data.size());
3252 }
3253
3254 p->write_to_buffer(buffer + aligned_off);
3255 off = aligned_off + p->data_size();
3256 }
3257 }
3258
3259 // Get the input sections for linker script processing. We leave
3260 // behind the Output_section_data entries. Note that this may be
3261 // slightly incorrect for merge sections. We will leave them behind,
3262 // but it is possible that the script says that they should follow
3263 // some other input sections, as in:
3264 // .rodata { *(.rodata) *(.rodata.cst*) }
3265 // For that matter, we don't handle this correctly:
3266 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3267 // With luck this will never matter.
3268
3269 uint64_t
3270 Output_section::get_input_sections(
3271 uint64_t address,
3272 const std::string& fill,
3273 std::list<Input_section>* input_sections)
3274 {
3275 if (this->checkpoint_ != NULL
3276 && !this->checkpoint_->input_sections_saved())
3277 this->checkpoint_->save_input_sections();
3278
3279 // Invalidate fast look-up maps.
3280 this->lookup_maps_->invalidate();
3281
3282 uint64_t orig_address = address;
3283
3284 address = align_address(address, this->addralign());
3285
3286 Input_section_list remaining;
3287 for (Input_section_list::iterator p = this->input_sections_.begin();
3288 p != this->input_sections_.end();
3289 ++p)
3290 {
3291 if (p->is_input_section()
3292 || p->is_relaxed_input_section()
3293 || p->is_merge_section())
3294 input_sections->push_back(*p);
3295 else
3296 {
3297 uint64_t aligned_address = align_address(address, p->addralign());
3298 if (aligned_address != address && !fill.empty())
3299 {
3300 section_size_type length =
3301 convert_to_section_size_type(aligned_address - address);
3302 std::string this_fill;
3303 this_fill.reserve(length);
3304 while (this_fill.length() + fill.length() <= length)
3305 this_fill += fill;
3306 if (this_fill.length() < length)
3307 this_fill.append(fill, 0, length - this_fill.length());
3308
3309 Output_section_data* posd = new Output_data_const(this_fill, 0);
3310 remaining.push_back(Input_section(posd));
3311 }
3312 address = aligned_address;
3313
3314 remaining.push_back(*p);
3315
3316 p->finalize_data_size();
3317 address += p->data_size();
3318 }
3319 }
3320
3321 this->input_sections_.swap(remaining);
3322 this->first_input_offset_ = 0;
3323
3324 uint64_t data_size = address - orig_address;
3325 this->set_current_data_size_for_child(data_size);
3326 return data_size;
3327 }
3328
3329 // Add a script input section. SIS is an Output_section::Input_section,
3330 // which can be either a plain input section or a special input section like
3331 // a relaxed input section. For a special input section, its size must be
3332 // finalized.
3333
3334 void
3335 Output_section::add_script_input_section(const Input_section& sis)
3336 {
3337 uint64_t data_size = sis.data_size();
3338 uint64_t addralign = sis.addralign();
3339 if (addralign > this->addralign_)
3340 this->addralign_ = addralign;
3341
3342 off_t offset_in_section = this->current_data_size_for_child();
3343 off_t aligned_offset_in_section = align_address(offset_in_section,
3344 addralign);
3345
3346 this->set_current_data_size_for_child(aligned_offset_in_section
3347 + data_size);
3348
3349 this->input_sections_.push_back(sis);
3350
3351 // Update fast lookup maps if necessary.
3352 if (this->lookup_maps_->is_valid())
3353 {
3354 if (sis.is_merge_section())
3355 {
3356 Output_merge_base* pomb = sis.output_merge_base();
3357 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3358 pomb->addralign());
3359 this->lookup_maps_->add_merge_section(msp, pomb);
3360 for (Output_merge_base::Input_sections::const_iterator p =
3361 pomb->input_sections_begin();
3362 p != pomb->input_sections_end();
3363 ++p)
3364 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3365 pomb);
3366 }
3367 else if (sis.is_relaxed_input_section())
3368 {
3369 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3370 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3371 poris->shndx(), poris);
3372 }
3373 }
3374 }
3375
3376 // Save states for relaxation.
3377
3378 void
3379 Output_section::save_states()
3380 {
3381 gold_assert(this->checkpoint_ == NULL);
3382 Checkpoint_output_section* checkpoint =
3383 new Checkpoint_output_section(this->addralign_, this->flags_,
3384 this->input_sections_,
3385 this->first_input_offset_,
3386 this->attached_input_sections_are_sorted_);
3387 this->checkpoint_ = checkpoint;
3388 gold_assert(this->fills_.empty());
3389 }
3390
3391 void
3392 Output_section::discard_states()
3393 {
3394 gold_assert(this->checkpoint_ != NULL);
3395 delete this->checkpoint_;
3396 this->checkpoint_ = NULL;
3397 gold_assert(this->fills_.empty());
3398
3399 // Simply invalidate the fast lookup maps since we do not keep
3400 // track of them.
3401 this->lookup_maps_->invalidate();
3402 }
3403
3404 void
3405 Output_section::restore_states()
3406 {
3407 gold_assert(this->checkpoint_ != NULL);
3408 Checkpoint_output_section* checkpoint = this->checkpoint_;
3409
3410 this->addralign_ = checkpoint->addralign();
3411 this->flags_ = checkpoint->flags();
3412 this->first_input_offset_ = checkpoint->first_input_offset();
3413
3414 if (!checkpoint->input_sections_saved())
3415 {
3416 // If we have not copied the input sections, just resize it.
3417 size_t old_size = checkpoint->input_sections_size();
3418 gold_assert(this->input_sections_.size() >= old_size);
3419 this->input_sections_.resize(old_size);
3420 }
3421 else
3422 {
3423 // We need to copy the whole list. This is not efficient for
3424 // extremely large output with hundreads of thousands of input
3425 // objects. We may need to re-think how we should pass sections
3426 // to scripts.
3427 this->input_sections_ = *checkpoint->input_sections();
3428 }
3429
3430 this->attached_input_sections_are_sorted_ =
3431 checkpoint->attached_input_sections_are_sorted();
3432
3433 // Simply invalidate the fast lookup maps since we do not keep
3434 // track of them.
3435 this->lookup_maps_->invalidate();
3436 }
3437
3438 // Update the section offsets of input sections in this. This is required if
3439 // relaxation causes some input sections to change sizes.
3440
3441 void
3442 Output_section::adjust_section_offsets()
3443 {
3444 if (!this->section_offsets_need_adjustment_)
3445 return;
3446
3447 off_t off = 0;
3448 for (Input_section_list::iterator p = this->input_sections_.begin();
3449 p != this->input_sections_.end();
3450 ++p)
3451 {
3452 off = align_address(off, p->addralign());
3453 if (p->is_input_section())
3454 p->relobj()->set_section_offset(p->shndx(), off);
3455 off += p->data_size();
3456 }
3457
3458 this->section_offsets_need_adjustment_ = false;
3459 }
3460
3461 // Print to the map file.
3462
3463 void
3464 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3465 {
3466 mapfile->print_output_section(this);
3467
3468 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3469 p != this->input_sections_.end();
3470 ++p)
3471 p->print_to_mapfile(mapfile);
3472 }
3473
3474 // Print stats for merge sections to stderr.
3475
3476 void
3477 Output_section::print_merge_stats()
3478 {
3479 Input_section_list::iterator p;
3480 for (p = this->input_sections_.begin();
3481 p != this->input_sections_.end();
3482 ++p)
3483 p->print_merge_stats(this->name_);
3484 }
3485
3486 // Output segment methods.
3487
3488 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3489 : vaddr_(0),
3490 paddr_(0),
3491 memsz_(0),
3492 max_align_(0),
3493 min_p_align_(0),
3494 offset_(0),
3495 filesz_(0),
3496 type_(type),
3497 flags_(flags),
3498 is_max_align_known_(false),
3499 are_addresses_set_(false),
3500 is_large_data_segment_(false)
3501 {
3502 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3503 // the flags.
3504 if (type == elfcpp::PT_TLS)
3505 this->flags_ = elfcpp::PF_R;
3506 }
3507
3508 // Add an Output_section to a PT_LOAD Output_segment.
3509
3510 void
3511 Output_segment::add_output_section_to_load(Layout* layout,
3512 Output_section* os,
3513 elfcpp::Elf_Word seg_flags)
3514 {
3515 gold_assert(this->type() == elfcpp::PT_LOAD);
3516 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3517 gold_assert(!this->is_max_align_known_);
3518 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3519
3520 this->update_flags_for_output_section(seg_flags);
3521
3522 // We don't want to change the ordering if we have a linker script
3523 // with a SECTIONS clause.
3524 Output_section_order order = os->order();
3525 if (layout->script_options()->saw_sections_clause())
3526 order = static_cast<Output_section_order>(0);
3527 else
3528 gold_assert(order != ORDER_INVALID);
3529
3530 this->output_lists_[order].push_back(os);
3531 }
3532
3533 // Add an Output_section to a non-PT_LOAD Output_segment.
3534
3535 void
3536 Output_segment::add_output_section_to_nonload(Output_section* os,
3537 elfcpp::Elf_Word seg_flags)
3538 {
3539 gold_assert(this->type() != elfcpp::PT_LOAD);
3540 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3541 gold_assert(!this->is_max_align_known_);
3542
3543 this->update_flags_for_output_section(seg_flags);
3544
3545 this->output_lists_[0].push_back(os);
3546 }
3547
3548 // Remove an Output_section from this segment. It is an error if it
3549 // is not present.
3550
3551 void
3552 Output_segment::remove_output_section(Output_section* os)
3553 {
3554 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3555 {
3556 Output_data_list* pdl = &this->output_lists_[i];
3557 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3558 {
3559 if (*p == os)
3560 {
3561 pdl->erase(p);
3562 return;
3563 }
3564 }
3565 }
3566 gold_unreachable();
3567 }
3568
3569 // Add an Output_data (which need not be an Output_section) to the
3570 // start of a segment.
3571
3572 void
3573 Output_segment::add_initial_output_data(Output_data* od)
3574 {
3575 gold_assert(!this->is_max_align_known_);
3576 Output_data_list::iterator p = this->output_lists_[0].begin();
3577 this->output_lists_[0].insert(p, od);
3578 }
3579
3580 // Return true if this segment has any sections which hold actual
3581 // data, rather than being a BSS section.
3582
3583 bool
3584 Output_segment::has_any_data_sections() const
3585 {
3586 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3587 {
3588 const Output_data_list* pdl = &this->output_lists_[i];
3589 for (Output_data_list::const_iterator p = pdl->begin();
3590 p != pdl->end();
3591 ++p)
3592 {
3593 if (!(*p)->is_section())
3594 return true;
3595 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3596 return true;
3597 }
3598 }
3599 return false;
3600 }
3601
3602 // Return whether the first data section (not counting TLS sections)
3603 // is a relro section.
3604
3605 bool
3606 Output_segment::is_first_section_relro() const
3607 {
3608 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3609 {
3610 if (i == static_cast<int>(ORDER_TLS_DATA)
3611 || i == static_cast<int>(ORDER_TLS_BSS))
3612 continue;
3613 const Output_data_list* pdl = &this->output_lists_[i];
3614 if (!pdl->empty())
3615 {
3616 Output_data* p = pdl->front();
3617 return p->is_section() && p->output_section()->is_relro();
3618 }
3619 }
3620 return false;
3621 }
3622
3623 // Return the maximum alignment of the Output_data in Output_segment.
3624
3625 uint64_t
3626 Output_segment::maximum_alignment()
3627 {
3628 if (!this->is_max_align_known_)
3629 {
3630 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3631 {
3632 const Output_data_list* pdl = &this->output_lists_[i];
3633 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3634 if (addralign > this->max_align_)
3635 this->max_align_ = addralign;
3636 }
3637 this->is_max_align_known_ = true;
3638 }
3639
3640 return this->max_align_;
3641 }
3642
3643 // Return the maximum alignment of a list of Output_data.
3644
3645 uint64_t
3646 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3647 {
3648 uint64_t ret = 0;
3649 for (Output_data_list::const_iterator p = pdl->begin();
3650 p != pdl->end();
3651 ++p)
3652 {
3653 uint64_t addralign = (*p)->addralign();
3654 if (addralign > ret)
3655 ret = addralign;
3656 }
3657 return ret;
3658 }
3659
3660 // Return whether this segment has any dynamic relocs.
3661
3662 bool
3663 Output_segment::has_dynamic_reloc() const
3664 {
3665 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3666 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3667 return true;
3668 return false;
3669 }
3670
3671 // Return whether this Output_data_list has any dynamic relocs.
3672
3673 bool
3674 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
3675 {
3676 for (Output_data_list::const_iterator p = pdl->begin();
3677 p != pdl->end();
3678 ++p)
3679 if ((*p)->has_dynamic_reloc())
3680 return true;
3681 return false;
3682 }
3683
3684 // Set the section addresses for an Output_segment. If RESET is true,
3685 // reset the addresses first. ADDR is the address and *POFF is the
3686 // file offset. Set the section indexes starting with *PSHNDX.
3687 // INCREASE_RELRO is the size of the portion of the first non-relro
3688 // section that should be included in the PT_GNU_RELRO segment.
3689 // If this segment has relro sections, and has been aligned for
3690 // that purpose, set *HAS_RELRO to TRUE. Return the address of
3691 // the immediately following segment. Update *HAS_RELRO, *POFF,
3692 // and *PSHNDX.
3693
3694 uint64_t
3695 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3696 uint64_t addr,
3697 unsigned int* increase_relro,
3698 bool* has_relro,
3699 off_t* poff,
3700 unsigned int* pshndx)
3701 {
3702 gold_assert(this->type_ == elfcpp::PT_LOAD);
3703
3704 uint64_t last_relro_pad = 0;
3705 off_t orig_off = *poff;
3706
3707 bool in_tls = false;
3708
3709 // If we have relro sections, we need to pad forward now so that the
3710 // relro sections plus INCREASE_RELRO end on a common page boundary.
3711 if (parameters->options().relro()
3712 && this->is_first_section_relro()
3713 && (!this->are_addresses_set_ || reset))
3714 {
3715 uint64_t relro_size = 0;
3716 off_t off = *poff;
3717 uint64_t max_align = 0;
3718 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
3719 {
3720 Output_data_list* pdl = &this->output_lists_[i];
3721 Output_data_list::iterator p;
3722 for (p = pdl->begin(); p != pdl->end(); ++p)
3723 {
3724 if (!(*p)->is_section())
3725 break;
3726 uint64_t align = (*p)->addralign();
3727 if (align > max_align)
3728 max_align = align;
3729 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3730 in_tls = true;
3731 else if (in_tls)
3732 {
3733 // Align the first non-TLS section to the alignment
3734 // of the TLS segment.
3735 align = max_align;
3736 in_tls = false;
3737 }
3738 relro_size = align_address(relro_size, align);
3739 // Ignore the size of the .tbss section.
3740 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
3741 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
3742 continue;
3743 if ((*p)->is_address_valid())
3744 relro_size += (*p)->data_size();
3745 else
3746 {
3747 // FIXME: This could be faster.
3748 (*p)->set_address_and_file_offset(addr + relro_size,
3749 off + relro_size);
3750 relro_size += (*p)->data_size();
3751 (*p)->reset_address_and_file_offset();
3752 }
3753 }
3754 if (p != pdl->end())
3755 break;
3756 }
3757 relro_size += *increase_relro;
3758 // Pad the total relro size to a multiple of the maximum
3759 // section alignment seen.
3760 uint64_t aligned_size = align_address(relro_size, max_align);
3761 // Note the amount of padding added after the last relro section.
3762 last_relro_pad = aligned_size - relro_size;
3763 *has_relro = true;
3764
3765 uint64_t page_align = parameters->target().common_pagesize();
3766
3767 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3768 uint64_t desired_align = page_align - (aligned_size % page_align);
3769 if (desired_align < *poff % page_align)
3770 *poff += page_align - *poff % page_align;
3771 *poff += desired_align - *poff % page_align;
3772 addr += *poff - orig_off;
3773 orig_off = *poff;
3774 }
3775
3776 if (!reset && this->are_addresses_set_)
3777 {
3778 gold_assert(this->paddr_ == addr);
3779 addr = this->vaddr_;
3780 }
3781 else
3782 {
3783 this->vaddr_ = addr;
3784 this->paddr_ = addr;
3785 this->are_addresses_set_ = true;
3786 }
3787
3788 in_tls = false;
3789
3790 this->offset_ = orig_off;
3791
3792 off_t off = 0;
3793 uint64_t ret;
3794 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3795 {
3796 if (i == static_cast<int>(ORDER_RELRO_LAST))
3797 {
3798 *poff += last_relro_pad;
3799 addr += last_relro_pad;
3800 if (this->output_lists_[i].empty())
3801 {
3802 // If there is nothing in the ORDER_RELRO_LAST list,
3803 // the padding will occur at the end of the relro
3804 // segment, and we need to add it to *INCREASE_RELRO.
3805 *increase_relro += last_relro_pad;
3806 }
3807 }
3808 addr = this->set_section_list_addresses(layout, reset,
3809 &this->output_lists_[i],
3810 addr, poff, pshndx, &in_tls);
3811 if (i < static_cast<int>(ORDER_SMALL_BSS))
3812 {
3813 this->filesz_ = *poff - orig_off;
3814 off = *poff;
3815 }
3816
3817 ret = addr;
3818 }
3819
3820 // If the last section was a TLS section, align upward to the
3821 // alignment of the TLS segment, so that the overall size of the TLS
3822 // segment is aligned.
3823 if (in_tls)
3824 {
3825 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3826 *poff = align_address(*poff, segment_align);
3827 }
3828
3829 this->memsz_ = *poff - orig_off;
3830
3831 // Ignore the file offset adjustments made by the BSS Output_data
3832 // objects.
3833 *poff = off;
3834
3835 return ret;
3836 }
3837
3838 // Set the addresses and file offsets in a list of Output_data
3839 // structures.
3840
3841 uint64_t
3842 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3843 Output_data_list* pdl,
3844 uint64_t addr, off_t* poff,
3845 unsigned int* pshndx,
3846 bool* in_tls)
3847 {
3848 off_t startoff = *poff;
3849
3850 off_t off = startoff;
3851 for (Output_data_list::iterator p = pdl->begin();
3852 p != pdl->end();
3853 ++p)
3854 {
3855 if (reset)
3856 (*p)->reset_address_and_file_offset();
3857
3858 // When using a linker script the section will most likely
3859 // already have an address.
3860 if (!(*p)->is_address_valid())
3861 {
3862 uint64_t align = (*p)->addralign();
3863
3864 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3865 {
3866 // Give the first TLS section the alignment of the
3867 // entire TLS segment. Otherwise the TLS segment as a
3868 // whole may be misaligned.
3869 if (!*in_tls)
3870 {
3871 Output_segment* tls_segment = layout->tls_segment();
3872 gold_assert(tls_segment != NULL);
3873 uint64_t segment_align = tls_segment->maximum_alignment();
3874 gold_assert(segment_align >= align);
3875 align = segment_align;
3876
3877 *in_tls = true;
3878 }
3879 }
3880 else
3881 {
3882 // If this is the first section after the TLS segment,
3883 // align it to at least the alignment of the TLS
3884 // segment, so that the size of the overall TLS segment
3885 // is aligned.
3886 if (*in_tls)
3887 {
3888 uint64_t segment_align =
3889 layout->tls_segment()->maximum_alignment();
3890 if (segment_align > align)
3891 align = segment_align;
3892
3893 *in_tls = false;
3894 }
3895 }
3896
3897 off = align_address(off, align);
3898 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3899 }
3900 else
3901 {
3902 // The script may have inserted a skip forward, but it
3903 // better not have moved backward.
3904 if ((*p)->address() >= addr + (off - startoff))
3905 off += (*p)->address() - (addr + (off - startoff));
3906 else
3907 {
3908 if (!layout->script_options()->saw_sections_clause())
3909 gold_unreachable();
3910 else
3911 {
3912 Output_section* os = (*p)->output_section();
3913
3914 // Cast to unsigned long long to avoid format warnings.
3915 unsigned long long previous_dot =
3916 static_cast<unsigned long long>(addr + (off - startoff));
3917 unsigned long long dot =
3918 static_cast<unsigned long long>((*p)->address());
3919
3920 if (os == NULL)
3921 gold_error(_("dot moves backward in linker script "
3922 "from 0x%llx to 0x%llx"), previous_dot, dot);
3923 else
3924 gold_error(_("address of section '%s' moves backward "
3925 "from 0x%llx to 0x%llx"),
3926 os->name(), previous_dot, dot);
3927 }
3928 }
3929 (*p)->set_file_offset(off);
3930 (*p)->finalize_data_size();
3931 }
3932
3933 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3934 // section. Such a section does not affect the size of a
3935 // PT_LOAD segment.
3936 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3937 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3938 off += (*p)->data_size();
3939
3940 if ((*p)->is_section())
3941 {
3942 (*p)->set_out_shndx(*pshndx);
3943 ++*pshndx;
3944 }
3945 }
3946
3947 *poff = off;
3948 return addr + (off - startoff);
3949 }
3950
3951 // For a non-PT_LOAD segment, set the offset from the sections, if
3952 // any. Add INCREASE to the file size and the memory size.
3953
3954 void
3955 Output_segment::set_offset(unsigned int increase)
3956 {
3957 gold_assert(this->type_ != elfcpp::PT_LOAD);
3958
3959 gold_assert(!this->are_addresses_set_);
3960
3961 // A non-load section only uses output_lists_[0].
3962
3963 Output_data_list* pdl = &this->output_lists_[0];
3964
3965 if (pdl->empty())
3966 {
3967 gold_assert(increase == 0);
3968 this->vaddr_ = 0;
3969 this->paddr_ = 0;
3970 this->are_addresses_set_ = true;
3971 this->memsz_ = 0;
3972 this->min_p_align_ = 0;
3973 this->offset_ = 0;
3974 this->filesz_ = 0;
3975 return;
3976 }
3977
3978 // Find the first and last section by address.
3979 const Output_data* first = NULL;
3980 const Output_data* last_data = NULL;
3981 const Output_data* last_bss = NULL;
3982 for (Output_data_list::const_iterator p = pdl->begin();
3983 p != pdl->end();
3984 ++p)
3985 {
3986 if (first == NULL
3987 || (*p)->address() < first->address()
3988 || ((*p)->address() == first->address()
3989 && (*p)->data_size() < first->data_size()))
3990 first = *p;
3991 const Output_data** plast;
3992 if ((*p)->is_section()
3993 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
3994 plast = &last_bss;
3995 else
3996 plast = &last_data;
3997 if (*plast == NULL
3998 || (*p)->address() > (*plast)->address()
3999 || ((*p)->address() == (*plast)->address()
4000 && (*p)->data_size() > (*plast)->data_size()))
4001 *plast = *p;
4002 }
4003
4004 this->vaddr_ = first->address();
4005 this->paddr_ = (first->has_load_address()
4006 ? first->load_address()
4007 : this->vaddr_);
4008 this->are_addresses_set_ = true;
4009 this->offset_ = first->offset();
4010
4011 if (last_data == NULL)
4012 this->filesz_ = 0;
4013 else
4014 this->filesz_ = (last_data->address()
4015 + last_data->data_size()
4016 - this->vaddr_);
4017
4018 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4019 this->memsz_ = (last->address()
4020 + last->data_size()
4021 - this->vaddr_);
4022
4023 this->filesz_ += increase;
4024 this->memsz_ += increase;
4025
4026 // If this is a RELRO segment, verify that the segment ends at a
4027 // page boundary.
4028 if (this->type_ == elfcpp::PT_GNU_RELRO)
4029 {
4030 uint64_t page_align = parameters->target().common_pagesize();
4031 uint64_t segment_end = this->vaddr_ + this->memsz_;
4032 gold_assert(segment_end == align_address(segment_end, page_align));
4033 }
4034
4035 // If this is a TLS segment, align the memory size. The code in
4036 // set_section_list ensures that the section after the TLS segment
4037 // is aligned to give us room.
4038 if (this->type_ == elfcpp::PT_TLS)
4039 {
4040 uint64_t segment_align = this->maximum_alignment();
4041 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4042 this->memsz_ = align_address(this->memsz_, segment_align);
4043 }
4044 }
4045
4046 // Set the TLS offsets of the sections in the PT_TLS segment.
4047
4048 void
4049 Output_segment::set_tls_offsets()
4050 {
4051 gold_assert(this->type_ == elfcpp::PT_TLS);
4052
4053 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4054 p != this->output_lists_[0].end();
4055 ++p)
4056 (*p)->set_tls_offset(this->vaddr_);
4057 }
4058
4059 // Return the load address of the first section.
4060
4061 uint64_t
4062 Output_segment::first_section_load_address() const
4063 {
4064 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4065 {
4066 const Output_data_list* pdl = &this->output_lists_[i];
4067 for (Output_data_list::const_iterator p = pdl->begin();
4068 p != pdl->end();
4069 ++p)
4070 {
4071 if ((*p)->is_section())
4072 return ((*p)->has_load_address()
4073 ? (*p)->load_address()
4074 : (*p)->address());
4075 }
4076 }
4077 gold_unreachable();
4078 }
4079
4080 // Return the number of Output_sections in an Output_segment.
4081
4082 unsigned int
4083 Output_segment::output_section_count() const
4084 {
4085 unsigned int ret = 0;
4086 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4087 ret += this->output_section_count_list(&this->output_lists_[i]);
4088 return ret;
4089 }
4090
4091 // Return the number of Output_sections in an Output_data_list.
4092
4093 unsigned int
4094 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4095 {
4096 unsigned int count = 0;
4097 for (Output_data_list::const_iterator p = pdl->begin();
4098 p != pdl->end();
4099 ++p)
4100 {
4101 if ((*p)->is_section())
4102 ++count;
4103 }
4104 return count;
4105 }
4106
4107 // Return the section attached to the list segment with the lowest
4108 // load address. This is used when handling a PHDRS clause in a
4109 // linker script.
4110
4111 Output_section*
4112 Output_segment::section_with_lowest_load_address() const
4113 {
4114 Output_section* found = NULL;
4115 uint64_t found_lma = 0;
4116 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4117 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4118 &found_lma);
4119 return found;
4120 }
4121
4122 // Look through a list for a section with a lower load address.
4123
4124 void
4125 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4126 Output_section** found,
4127 uint64_t* found_lma) const
4128 {
4129 for (Output_data_list::const_iterator p = pdl->begin();
4130 p != pdl->end();
4131 ++p)
4132 {
4133 if (!(*p)->is_section())
4134 continue;
4135 Output_section* os = static_cast<Output_section*>(*p);
4136 uint64_t lma = (os->has_load_address()
4137 ? os->load_address()
4138 : os->address());
4139 if (*found == NULL || lma < *found_lma)
4140 {
4141 *found = os;
4142 *found_lma = lma;
4143 }
4144 }
4145 }
4146
4147 // Write the segment data into *OPHDR.
4148
4149 template<int size, bool big_endian>
4150 void
4151 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4152 {
4153 ophdr->put_p_type(this->type_);
4154 ophdr->put_p_offset(this->offset_);
4155 ophdr->put_p_vaddr(this->vaddr_);
4156 ophdr->put_p_paddr(this->paddr_);
4157 ophdr->put_p_filesz(this->filesz_);
4158 ophdr->put_p_memsz(this->memsz_);
4159 ophdr->put_p_flags(this->flags_);
4160 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4161 }
4162
4163 // Write the section headers into V.
4164
4165 template<int size, bool big_endian>
4166 unsigned char*
4167 Output_segment::write_section_headers(const Layout* layout,
4168 const Stringpool* secnamepool,
4169 unsigned char* v,
4170 unsigned int* pshndx) const
4171 {
4172 // Every section that is attached to a segment must be attached to a
4173 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4174 // segments.
4175 if (this->type_ != elfcpp::PT_LOAD)
4176 return v;
4177
4178 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4179 {
4180 const Output_data_list* pdl = &this->output_lists_[i];
4181 v = this->write_section_headers_list<size, big_endian>(layout,
4182 secnamepool,
4183 pdl,
4184 v, pshndx);
4185 }
4186
4187 return v;
4188 }
4189
4190 template<int size, bool big_endian>
4191 unsigned char*
4192 Output_segment::write_section_headers_list(const Layout* layout,
4193 const Stringpool* secnamepool,
4194 const Output_data_list* pdl,
4195 unsigned char* v,
4196 unsigned int* pshndx) const
4197 {
4198 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4199 for (Output_data_list::const_iterator p = pdl->begin();
4200 p != pdl->end();
4201 ++p)
4202 {
4203 if ((*p)->is_section())
4204 {
4205 const Output_section* ps = static_cast<const Output_section*>(*p);
4206 gold_assert(*pshndx == ps->out_shndx());
4207 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4208 ps->write_header(layout, secnamepool, &oshdr);
4209 v += shdr_size;
4210 ++*pshndx;
4211 }
4212 }
4213 return v;
4214 }
4215
4216 // Print the output sections to the map file.
4217
4218 void
4219 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4220 {
4221 if (this->type() != elfcpp::PT_LOAD)
4222 return;
4223 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4224 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4225 }
4226
4227 // Print an output section list to the map file.
4228
4229 void
4230 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4231 const Output_data_list* pdl) const
4232 {
4233 for (Output_data_list::const_iterator p = pdl->begin();
4234 p != pdl->end();
4235 ++p)
4236 (*p)->print_to_mapfile(mapfile);
4237 }
4238
4239 // Output_file methods.
4240
4241 Output_file::Output_file(const char* name)
4242 : name_(name),
4243 o_(-1),
4244 file_size_(0),
4245 base_(NULL),
4246 map_is_anonymous_(false),
4247 is_temporary_(false)
4248 {
4249 }
4250
4251 // Try to open an existing file. Returns false if the file doesn't
4252 // exist, has a size of 0 or can't be mmapped.
4253
4254 bool
4255 Output_file::open_for_modification()
4256 {
4257 // The name "-" means "stdout".
4258 if (strcmp(this->name_, "-") == 0)
4259 return false;
4260
4261 // Don't bother opening files with a size of zero.
4262 struct stat s;
4263 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4264 return false;
4265
4266 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4267 if (o < 0)
4268 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4269 this->o_ = o;
4270 this->file_size_ = s.st_size;
4271
4272 // If the file can't be mmapped, copying the content to an anonymous
4273 // map will probably negate the performance benefits of incremental
4274 // linking. This could be helped by using views and loading only
4275 // the necessary parts, but this is not supported as of now.
4276 if (!this->map_no_anonymous())
4277 {
4278 release_descriptor(o, true);
4279 this->o_ = -1;
4280 this->file_size_ = 0;
4281 return false;
4282 }
4283
4284 return true;
4285 }
4286
4287 // Open the output file.
4288
4289 void
4290 Output_file::open(off_t file_size)
4291 {
4292 this->file_size_ = file_size;
4293
4294 // Unlink the file first; otherwise the open() may fail if the file
4295 // is busy (e.g. it's an executable that's currently being executed).
4296 //
4297 // However, the linker may be part of a system where a zero-length
4298 // file is created for it to write to, with tight permissions (gcc
4299 // 2.95 did something like this). Unlinking the file would work
4300 // around those permission controls, so we only unlink if the file
4301 // has a non-zero size. We also unlink only regular files to avoid
4302 // trouble with directories/etc.
4303 //
4304 // If we fail, continue; this command is merely a best-effort attempt
4305 // to improve the odds for open().
4306
4307 // We let the name "-" mean "stdout"
4308 if (!this->is_temporary_)
4309 {
4310 if (strcmp(this->name_, "-") == 0)
4311 this->o_ = STDOUT_FILENO;
4312 else
4313 {
4314 struct stat s;
4315 if (::stat(this->name_, &s) == 0
4316 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4317 {
4318 if (s.st_size != 0)
4319 ::unlink(this->name_);
4320 else if (!parameters->options().relocatable())
4321 {
4322 // If we don't unlink the existing file, add execute
4323 // permission where read permissions already exist
4324 // and where the umask permits.
4325 int mask = ::umask(0);
4326 ::umask(mask);
4327 s.st_mode |= (s.st_mode & 0444) >> 2;
4328 ::chmod(this->name_, s.st_mode & ~mask);
4329 }
4330 }
4331
4332 int mode = parameters->options().relocatable() ? 0666 : 0777;
4333 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4334 mode);
4335 if (o < 0)
4336 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4337 this->o_ = o;
4338 }
4339 }
4340
4341 this->map();
4342 }
4343
4344 // Resize the output file.
4345
4346 void
4347 Output_file::resize(off_t file_size)
4348 {
4349 // If the mmap is mapping an anonymous memory buffer, this is easy:
4350 // just mremap to the new size. If it's mapping to a file, we want
4351 // to unmap to flush to the file, then remap after growing the file.
4352 if (this->map_is_anonymous_)
4353 {
4354 void* base = ::mremap(this->base_, this->file_size_, file_size,
4355 MREMAP_MAYMOVE);
4356 if (base == MAP_FAILED)
4357 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4358 this->base_ = static_cast<unsigned char*>(base);
4359 this->file_size_ = file_size;
4360 }
4361 else
4362 {
4363 this->unmap();
4364 this->file_size_ = file_size;
4365 if (!this->map_no_anonymous())
4366 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4367 }
4368 }
4369
4370 // Map an anonymous block of memory which will later be written to the
4371 // file. Return whether the map succeeded.
4372
4373 bool
4374 Output_file::map_anonymous()
4375 {
4376 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4377 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4378 if (base != MAP_FAILED)
4379 {
4380 this->map_is_anonymous_ = true;
4381 this->base_ = static_cast<unsigned char*>(base);
4382 return true;
4383 }
4384 return false;
4385 }
4386
4387 // Map the file into memory. Return whether the mapping succeeded.
4388
4389 bool
4390 Output_file::map_no_anonymous()
4391 {
4392 const int o = this->o_;
4393
4394 // If the output file is not a regular file, don't try to mmap it;
4395 // instead, we'll mmap a block of memory (an anonymous buffer), and
4396 // then later write the buffer to the file.
4397 void* base;
4398 struct stat statbuf;
4399 if (o == STDOUT_FILENO || o == STDERR_FILENO
4400 || ::fstat(o, &statbuf) != 0
4401 || !S_ISREG(statbuf.st_mode)
4402 || this->is_temporary_)
4403 return false;
4404
4405 // Ensure that we have disk space available for the file. If we
4406 // don't do this, it is possible that we will call munmap, close,
4407 // and exit with dirty buffers still in the cache with no assigned
4408 // disk blocks. If the disk is out of space at that point, the
4409 // output file will wind up incomplete, but we will have already
4410 // exited. The alternative to fallocate would be to use fdatasync,
4411 // but that would be a more significant performance hit.
4412 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4413 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4414
4415 // Map the file into memory.
4416 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4417 MAP_SHARED, o, 0);
4418
4419 // The mmap call might fail because of file system issues: the file
4420 // system might not support mmap at all, or it might not support
4421 // mmap with PROT_WRITE.
4422 if (base == MAP_FAILED)
4423 return false;
4424
4425 this->map_is_anonymous_ = false;
4426 this->base_ = static_cast<unsigned char*>(base);
4427 return true;
4428 }
4429
4430 // Map the file into memory.
4431
4432 void
4433 Output_file::map()
4434 {
4435 if (this->map_no_anonymous())
4436 return;
4437
4438 // The mmap call might fail because of file system issues: the file
4439 // system might not support mmap at all, or it might not support
4440 // mmap with PROT_WRITE. I'm not sure which errno values we will
4441 // see in all cases, so if the mmap fails for any reason and we
4442 // don't care about file contents, try for an anonymous map.
4443 if (this->map_anonymous())
4444 return;
4445
4446 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4447 this->name_, static_cast<unsigned long>(this->file_size_),
4448 strerror(errno));
4449 }
4450
4451 // Unmap the file from memory.
4452
4453 void
4454 Output_file::unmap()
4455 {
4456 if (::munmap(this->base_, this->file_size_) < 0)
4457 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4458 this->base_ = NULL;
4459 }
4460
4461 // Close the output file.
4462
4463 void
4464 Output_file::close()
4465 {
4466 // If the map isn't file-backed, we need to write it now.
4467 if (this->map_is_anonymous_ && !this->is_temporary_)
4468 {
4469 size_t bytes_to_write = this->file_size_;
4470 size_t offset = 0;
4471 while (bytes_to_write > 0)
4472 {
4473 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4474 bytes_to_write);
4475 if (bytes_written == 0)
4476 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4477 else if (bytes_written < 0)
4478 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4479 else
4480 {
4481 bytes_to_write -= bytes_written;
4482 offset += bytes_written;
4483 }
4484 }
4485 }
4486 this->unmap();
4487
4488 // We don't close stdout or stderr
4489 if (this->o_ != STDOUT_FILENO
4490 && this->o_ != STDERR_FILENO
4491 && !this->is_temporary_)
4492 if (::close(this->o_) < 0)
4493 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4494 this->o_ = -1;
4495 }
4496
4497 // Instantiate the templates we need. We could use the configure
4498 // script to restrict this to only the ones for implemented targets.
4499
4500 #ifdef HAVE_TARGET_32_LITTLE
4501 template
4502 off_t
4503 Output_section::add_input_section<32, false>(
4504 Layout* layout,
4505 Sized_relobj<32, false>* object,
4506 unsigned int shndx,
4507 const char* secname,
4508 const elfcpp::Shdr<32, false>& shdr,
4509 unsigned int reloc_shndx,
4510 bool have_sections_script);
4511 #endif
4512
4513 #ifdef HAVE_TARGET_32_BIG
4514 template
4515 off_t
4516 Output_section::add_input_section<32, true>(
4517 Layout* layout,
4518 Sized_relobj<32, true>* object,
4519 unsigned int shndx,
4520 const char* secname,
4521 const elfcpp::Shdr<32, true>& shdr,
4522 unsigned int reloc_shndx,
4523 bool have_sections_script);
4524 #endif
4525
4526 #ifdef HAVE_TARGET_64_LITTLE
4527 template
4528 off_t
4529 Output_section::add_input_section<64, false>(
4530 Layout* layout,
4531 Sized_relobj<64, false>* object,
4532 unsigned int shndx,
4533 const char* secname,
4534 const elfcpp::Shdr<64, false>& shdr,
4535 unsigned int reloc_shndx,
4536 bool have_sections_script);
4537 #endif
4538
4539 #ifdef HAVE_TARGET_64_BIG
4540 template
4541 off_t
4542 Output_section::add_input_section<64, true>(
4543 Layout* layout,
4544 Sized_relobj<64, true>* object,
4545 unsigned int shndx,
4546 const char* secname,
4547 const elfcpp::Shdr<64, true>& shdr,
4548 unsigned int reloc_shndx,
4549 bool have_sections_script);
4550 #endif
4551
4552 #ifdef HAVE_TARGET_32_LITTLE
4553 template
4554 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4555 #endif
4556
4557 #ifdef HAVE_TARGET_32_BIG
4558 template
4559 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4560 #endif
4561
4562 #ifdef HAVE_TARGET_64_LITTLE
4563 template
4564 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4565 #endif
4566
4567 #ifdef HAVE_TARGET_64_BIG
4568 template
4569 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4570 #endif
4571
4572 #ifdef HAVE_TARGET_32_LITTLE
4573 template
4574 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4575 #endif
4576
4577 #ifdef HAVE_TARGET_32_BIG
4578 template
4579 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4580 #endif
4581
4582 #ifdef HAVE_TARGET_64_LITTLE
4583 template
4584 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4585 #endif
4586
4587 #ifdef HAVE_TARGET_64_BIG
4588 template
4589 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4590 #endif
4591
4592 #ifdef HAVE_TARGET_32_LITTLE
4593 template
4594 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4595 #endif
4596
4597 #ifdef HAVE_TARGET_32_BIG
4598 template
4599 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4600 #endif
4601
4602 #ifdef HAVE_TARGET_64_LITTLE
4603 template
4604 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4605 #endif
4606
4607 #ifdef HAVE_TARGET_64_BIG
4608 template
4609 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4610 #endif
4611
4612 #ifdef HAVE_TARGET_32_LITTLE
4613 template
4614 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4615 #endif
4616
4617 #ifdef HAVE_TARGET_32_BIG
4618 template
4619 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4620 #endif
4621
4622 #ifdef HAVE_TARGET_64_LITTLE
4623 template
4624 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4625 #endif
4626
4627 #ifdef HAVE_TARGET_64_BIG
4628 template
4629 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4630 #endif
4631
4632 #ifdef HAVE_TARGET_32_LITTLE
4633 template
4634 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4635 #endif
4636
4637 #ifdef HAVE_TARGET_32_BIG
4638 template
4639 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4640 #endif
4641
4642 #ifdef HAVE_TARGET_64_LITTLE
4643 template
4644 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4645 #endif
4646
4647 #ifdef HAVE_TARGET_64_BIG
4648 template
4649 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4650 #endif
4651
4652 #ifdef HAVE_TARGET_32_LITTLE
4653 template
4654 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4655 #endif
4656
4657 #ifdef HAVE_TARGET_32_BIG
4658 template
4659 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4660 #endif
4661
4662 #ifdef HAVE_TARGET_64_LITTLE
4663 template
4664 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4665 #endif
4666
4667 #ifdef HAVE_TARGET_64_BIG
4668 template
4669 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4670 #endif
4671
4672 #ifdef HAVE_TARGET_32_LITTLE
4673 template
4674 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4675 #endif
4676
4677 #ifdef HAVE_TARGET_32_BIG
4678 template
4679 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4680 #endif
4681
4682 #ifdef HAVE_TARGET_64_LITTLE
4683 template
4684 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4685 #endif
4686
4687 #ifdef HAVE_TARGET_64_BIG
4688 template
4689 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4690 #endif
4691
4692 #ifdef HAVE_TARGET_32_LITTLE
4693 template
4694 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4695 #endif
4696
4697 #ifdef HAVE_TARGET_32_BIG
4698 template
4699 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4700 #endif
4701
4702 #ifdef HAVE_TARGET_64_LITTLE
4703 template
4704 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4705 #endif
4706
4707 #ifdef HAVE_TARGET_64_BIG
4708 template
4709 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4710 #endif
4711
4712 #ifdef HAVE_TARGET_32_LITTLE
4713 template
4714 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4715 #endif
4716
4717 #ifdef HAVE_TARGET_32_BIG
4718 template
4719 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4720 #endif
4721
4722 #ifdef HAVE_TARGET_64_LITTLE
4723 template
4724 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4725 #endif
4726
4727 #ifdef HAVE_TARGET_64_BIG
4728 template
4729 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4730 #endif
4731
4732 #ifdef HAVE_TARGET_32_LITTLE
4733 template
4734 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4735 #endif
4736
4737 #ifdef HAVE_TARGET_32_BIG
4738 template
4739 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4740 #endif
4741
4742 #ifdef HAVE_TARGET_64_LITTLE
4743 template
4744 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4745 #endif
4746
4747 #ifdef HAVE_TARGET_64_BIG
4748 template
4749 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4750 #endif
4751
4752 #ifdef HAVE_TARGET_32_LITTLE
4753 template
4754 class Output_data_group<32, false>;
4755 #endif
4756
4757 #ifdef HAVE_TARGET_32_BIG
4758 template
4759 class Output_data_group<32, true>;
4760 #endif
4761
4762 #ifdef HAVE_TARGET_64_LITTLE
4763 template
4764 class Output_data_group<64, false>;
4765 #endif
4766
4767 #ifdef HAVE_TARGET_64_BIG
4768 template
4769 class Output_data_group<64, true>;
4770 #endif
4771
4772 #ifdef HAVE_TARGET_32_LITTLE
4773 template
4774 class Output_data_got<32, false>;
4775 #endif
4776
4777 #ifdef HAVE_TARGET_32_BIG
4778 template
4779 class Output_data_got<32, true>;
4780 #endif
4781
4782 #ifdef HAVE_TARGET_64_LITTLE
4783 template
4784 class Output_data_got<64, false>;
4785 #endif
4786
4787 #ifdef HAVE_TARGET_64_BIG
4788 template
4789 class Output_data_got<64, true>;
4790 #endif
4791
4792 } // End namespace gold.
This page took 0.12803 seconds and 4 git commands to generate.