From Cary Coutant: Fix x86_64 TLS. Also set DT_TEXTREL as well as
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h" // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42 #ifndef MAP_ANONYMOUS
43 # define MAP_ANONYMOUS MAP_ANON
44 #endif
45
46 namespace gold
47 {
48
49 // Output_data variables.
50
51 bool Output_data::allocated_sizes_are_fixed;
52
53 // Output_data methods.
54
55 Output_data::~Output_data()
56 {
57 }
58
59 // Return the default alignment for the target size.
60
61 uint64_t
62 Output_data::default_alignment()
63 {
64 return Output_data::default_alignment_for_size(parameters->get_size());
65 }
66
67 // Return the default alignment for a size--32 or 64.
68
69 uint64_t
70 Output_data::default_alignment_for_size(int size)
71 {
72 if (size == 32)
73 return 4;
74 else if (size == 64)
75 return 8;
76 else
77 gold_unreachable();
78 }
79
80 // Output_section_header methods. This currently assumes that the
81 // segment and section lists are complete at construction time.
82
83 Output_section_headers::Output_section_headers(
84 const Layout* layout,
85 const Layout::Segment_list* segment_list,
86 const Layout::Section_list* unattached_section_list,
87 const Stringpool* secnamepool)
88 : layout_(layout),
89 segment_list_(segment_list),
90 unattached_section_list_(unattached_section_list),
91 secnamepool_(secnamepool)
92 {
93 // Count all the sections. Start with 1 for the null section.
94 off_t count = 1;
95 for (Layout::Segment_list::const_iterator p = segment_list->begin();
96 p != segment_list->end();
97 ++p)
98 if ((*p)->type() == elfcpp::PT_LOAD)
99 count += (*p)->output_section_count();
100 count += unattached_section_list->size();
101
102 const int size = parameters->get_size();
103 int shdr_size;
104 if (size == 32)
105 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
106 else if (size == 64)
107 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
108 else
109 gold_unreachable();
110
111 this->set_data_size(count * shdr_size);
112 }
113
114 // Write out the section headers.
115
116 void
117 Output_section_headers::do_write(Output_file* of)
118 {
119 if (parameters->get_size() == 32)
120 {
121 if (parameters->is_big_endian())
122 {
123 #ifdef HAVE_TARGET_32_BIG
124 this->do_sized_write<32, true>(of);
125 #else
126 gold_unreachable();
127 #endif
128 }
129 else
130 {
131 #ifdef HAVE_TARGET_32_LITTLE
132 this->do_sized_write<32, false>(of);
133 #else
134 gold_unreachable();
135 #endif
136 }
137 }
138 else if (parameters->get_size() == 64)
139 {
140 if (parameters->is_big_endian())
141 {
142 #ifdef HAVE_TARGET_64_BIG
143 this->do_sized_write<64, true>(of);
144 #else
145 gold_unreachable();
146 #endif
147 }
148 else
149 {
150 #ifdef HAVE_TARGET_64_LITTLE
151 this->do_sized_write<64, false>(of);
152 #else
153 gold_unreachable();
154 #endif
155 }
156 }
157 else
158 gold_unreachable();
159 }
160
161 template<int size, bool big_endian>
162 void
163 Output_section_headers::do_sized_write(Output_file* of)
164 {
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
170
171 {
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
183 }
184
185 v += shdr_size;
186
187 unsigned shndx = 1;
188 for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
189 p != this->segment_list_->end();
190 ++p)
191 v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
192 this->layout_, this->secnamepool_, v, &shndx
193 SELECT_SIZE_ENDIAN(size, big_endian));
194 for (Layout::Section_list::const_iterator p =
195 this->unattached_section_list_->begin();
196 p != this->unattached_section_list_->end();
197 ++p)
198 {
199 gold_assert(shndx == (*p)->out_shndx());
200 elfcpp::Shdr_write<size, big_endian> oshdr(v);
201 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
202 v += shdr_size;
203 ++shndx;
204 }
205
206 of->write_output_view(this->offset(), all_shdrs_size, view);
207 }
208
209 // Output_segment_header methods.
210
211 Output_segment_headers::Output_segment_headers(
212 const Layout::Segment_list& segment_list)
213 : segment_list_(segment_list)
214 {
215 const int size = parameters->get_size();
216 int phdr_size;
217 if (size == 32)
218 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
219 else if (size == 64)
220 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
221 else
222 gold_unreachable();
223
224 this->set_data_size(segment_list.size() * phdr_size);
225 }
226
227 void
228 Output_segment_headers::do_write(Output_file* of)
229 {
230 if (parameters->get_size() == 32)
231 {
232 if (parameters->is_big_endian())
233 {
234 #ifdef HAVE_TARGET_32_BIG
235 this->do_sized_write<32, true>(of);
236 #else
237 gold_unreachable();
238 #endif
239 }
240 else
241 {
242 #ifdef HAVE_TARGET_32_LITTLE
243 this->do_sized_write<32, false>(of);
244 #else
245 gold_unreachable();
246 #endif
247 }
248 }
249 else if (parameters->get_size() == 64)
250 {
251 if (parameters->is_big_endian())
252 {
253 #ifdef HAVE_TARGET_64_BIG
254 this->do_sized_write<64, true>(of);
255 #else
256 gold_unreachable();
257 #endif
258 }
259 else
260 {
261 #ifdef HAVE_TARGET_64_LITTLE
262 this->do_sized_write<64, false>(of);
263 #else
264 gold_unreachable();
265 #endif
266 }
267 }
268 else
269 gold_unreachable();
270 }
271
272 template<int size, bool big_endian>
273 void
274 Output_segment_headers::do_sized_write(Output_file* of)
275 {
276 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
277 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
278 unsigned char* view = of->get_output_view(this->offset(),
279 all_phdrs_size);
280 unsigned char* v = view;
281 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
282 p != this->segment_list_.end();
283 ++p)
284 {
285 elfcpp::Phdr_write<size, big_endian> ophdr(v);
286 (*p)->write_header(&ophdr);
287 v += phdr_size;
288 }
289
290 of->write_output_view(this->offset(), all_phdrs_size, view);
291 }
292
293 // Output_file_header methods.
294
295 Output_file_header::Output_file_header(const Target* target,
296 const Symbol_table* symtab,
297 const Output_segment_headers* osh)
298 : target_(target),
299 symtab_(symtab),
300 segment_header_(osh),
301 section_header_(NULL),
302 shstrtab_(NULL)
303 {
304 const int size = parameters->get_size();
305 int ehdr_size;
306 if (size == 32)
307 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
308 else if (size == 64)
309 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
310 else
311 gold_unreachable();
312
313 this->set_data_size(ehdr_size);
314 }
315
316 // Set the section table information for a file header.
317
318 void
319 Output_file_header::set_section_info(const Output_section_headers* shdrs,
320 const Output_section* shstrtab)
321 {
322 this->section_header_ = shdrs;
323 this->shstrtab_ = shstrtab;
324 }
325
326 // Write out the file header.
327
328 void
329 Output_file_header::do_write(Output_file* of)
330 {
331 gold_assert(this->offset() == 0);
332
333 if (parameters->get_size() == 32)
334 {
335 if (parameters->is_big_endian())
336 {
337 #ifdef HAVE_TARGET_32_BIG
338 this->do_sized_write<32, true>(of);
339 #else
340 gold_unreachable();
341 #endif
342 }
343 else
344 {
345 #ifdef HAVE_TARGET_32_LITTLE
346 this->do_sized_write<32, false>(of);
347 #else
348 gold_unreachable();
349 #endif
350 }
351 }
352 else if (parameters->get_size() == 64)
353 {
354 if (parameters->is_big_endian())
355 {
356 #ifdef HAVE_TARGET_64_BIG
357 this->do_sized_write<64, true>(of);
358 #else
359 gold_unreachable();
360 #endif
361 }
362 else
363 {
364 #ifdef HAVE_TARGET_64_LITTLE
365 this->do_sized_write<64, false>(of);
366 #else
367 gold_unreachable();
368 #endif
369 }
370 }
371 else
372 gold_unreachable();
373 }
374
375 // Write out the file header with appropriate size and endianess.
376
377 template<int size, bool big_endian>
378 void
379 Output_file_header::do_sized_write(Output_file* of)
380 {
381 gold_assert(this->offset() == 0);
382
383 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
384 unsigned char* view = of->get_output_view(0, ehdr_size);
385 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
386
387 unsigned char e_ident[elfcpp::EI_NIDENT];
388 memset(e_ident, 0, elfcpp::EI_NIDENT);
389 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
390 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
391 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
392 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
393 if (size == 32)
394 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
395 else if (size == 64)
396 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
397 else
398 gold_unreachable();
399 e_ident[elfcpp::EI_DATA] = (big_endian
400 ? elfcpp::ELFDATA2MSB
401 : elfcpp::ELFDATA2LSB);
402 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
403 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
404 oehdr.put_e_ident(e_ident);
405
406 elfcpp::ET e_type;
407 if (parameters->output_is_object())
408 e_type = elfcpp::ET_REL;
409 else if (parameters->output_is_shared())
410 e_type = elfcpp::ET_DYN;
411 else
412 e_type = elfcpp::ET_EXEC;
413 oehdr.put_e_type(e_type);
414
415 oehdr.put_e_machine(this->target_->machine_code());
416 oehdr.put_e_version(elfcpp::EV_CURRENT);
417
418 // FIXME: Need to support -e, and target specific entry symbol.
419 Symbol* sym = this->symtab_->lookup("_start");
420 typename Sized_symbol<size>::Value_type v;
421 if (sym == NULL)
422 v = 0;
423 else
424 {
425 Sized_symbol<size>* ssym;
426 ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
427 sym SELECT_SIZE(size));
428 v = ssym->value();
429 }
430 oehdr.put_e_entry(v);
431
432 oehdr.put_e_phoff(this->segment_header_->offset());
433 oehdr.put_e_shoff(this->section_header_->offset());
434
435 // FIXME: The target needs to set the flags.
436 oehdr.put_e_flags(0);
437
438 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
439 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
440 oehdr.put_e_phnum(this->segment_header_->data_size()
441 / elfcpp::Elf_sizes<size>::phdr_size);
442 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
443 oehdr.put_e_shnum(this->section_header_->data_size()
444 / elfcpp::Elf_sizes<size>::shdr_size);
445 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
446
447 of->write_output_view(0, ehdr_size, view);
448 }
449
450 // Output_data_const methods.
451
452 void
453 Output_data_const::do_write(Output_file* of)
454 {
455 of->write(this->offset(), this->data_.data(), this->data_.size());
456 }
457
458 // Output_data_const_buffer methods.
459
460 void
461 Output_data_const_buffer::do_write(Output_file* of)
462 {
463 of->write(this->offset(), this->p_, this->data_size());
464 }
465
466 // Output_section_data methods.
467
468 // Record the output section, and set the entry size and such.
469
470 void
471 Output_section_data::set_output_section(Output_section* os)
472 {
473 gold_assert(this->output_section_ == NULL);
474 this->output_section_ = os;
475 this->do_adjust_output_section(os);
476 }
477
478 // Return the section index of the output section.
479
480 unsigned int
481 Output_section_data::do_out_shndx() const
482 {
483 gold_assert(this->output_section_ != NULL);
484 return this->output_section_->out_shndx();
485 }
486
487 // Output_data_strtab methods.
488
489 // Set the final data size.
490
491 void
492 Output_data_strtab::set_final_data_size()
493 {
494 this->strtab_->set_string_offsets();
495 this->set_data_size(this->strtab_->get_strtab_size());
496 }
497
498 // Write out a string table.
499
500 void
501 Output_data_strtab::do_write(Output_file* of)
502 {
503 this->strtab_->write(of, this->offset());
504 }
505
506 // Output_reloc methods.
507
508 // A reloc against a global symbol.
509
510 template<bool dynamic, int size, bool big_endian>
511 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
512 Symbol* gsym,
513 unsigned int type,
514 Output_data* od,
515 Address address,
516 bool is_relative)
517 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
518 is_relative_(is_relative), shndx_(INVALID_CODE)
519 {
520 this->u1_.gsym = gsym;
521 this->u2_.od = od;
522 if (dynamic && !is_relative)
523 gsym->set_needs_dynsym_entry();
524 }
525
526 template<bool dynamic, int size, bool big_endian>
527 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
528 Symbol* gsym,
529 unsigned int type,
530 Relobj* relobj,
531 unsigned int shndx,
532 Address address,
533 bool is_relative)
534 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
535 is_relative_(is_relative), shndx_(shndx)
536 {
537 gold_assert(shndx != INVALID_CODE);
538 this->u1_.gsym = gsym;
539 this->u2_.relobj = relobj;
540 if (dynamic && !is_relative)
541 gsym->set_needs_dynsym_entry();
542 }
543
544 // A reloc against a local symbol.
545
546 template<bool dynamic, int size, bool big_endian>
547 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
548 Sized_relobj<size, big_endian>* relobj,
549 unsigned int local_sym_index,
550 unsigned int type,
551 Output_data* od,
552 Address address,
553 bool is_relative)
554 : address_(address), local_sym_index_(local_sym_index), type_(type),
555 is_relative_(is_relative), shndx_(INVALID_CODE)
556 {
557 gold_assert(local_sym_index != GSYM_CODE
558 && local_sym_index != INVALID_CODE);
559 this->u1_.relobj = relobj;
560 this->u2_.od = od;
561 if (dynamic && !is_relative)
562 relobj->set_needs_output_dynsym_entry(local_sym_index);
563 }
564
565 template<bool dynamic, int size, bool big_endian>
566 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
567 Sized_relobj<size, big_endian>* relobj,
568 unsigned int local_sym_index,
569 unsigned int type,
570 unsigned int shndx,
571 Address address,
572 bool is_relative)
573 : address_(address), local_sym_index_(local_sym_index), type_(type),
574 is_relative_(is_relative), shndx_(shndx)
575 {
576 gold_assert(local_sym_index != GSYM_CODE
577 && local_sym_index != INVALID_CODE);
578 gold_assert(shndx != INVALID_CODE);
579 this->u1_.relobj = relobj;
580 this->u2_.relobj = relobj;
581 if (dynamic && !is_relative)
582 relobj->set_needs_output_dynsym_entry(local_sym_index);
583 }
584
585 // A reloc against the STT_SECTION symbol of an output section.
586
587 template<bool dynamic, int size, bool big_endian>
588 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
589 Output_section* os,
590 unsigned int type,
591 Output_data* od,
592 Address address)
593 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
594 is_relative_(false), shndx_(INVALID_CODE)
595 {
596 this->u1_.os = os;
597 this->u2_.od = od;
598 if (dynamic)
599 os->set_needs_dynsym_index();
600 }
601
602 template<bool dynamic, int size, bool big_endian>
603 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
604 Output_section* os,
605 unsigned int type,
606 Relobj* relobj,
607 unsigned int shndx,
608 Address address)
609 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
610 is_relative_(false), shndx_(shndx)
611 {
612 gold_assert(shndx != INVALID_CODE);
613 this->u1_.os = os;
614 this->u2_.relobj = relobj;
615 if (dynamic)
616 os->set_needs_dynsym_index();
617 }
618
619 // Get the symbol index of a relocation.
620
621 template<bool dynamic, int size, bool big_endian>
622 unsigned int
623 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
624 const
625 {
626 unsigned int index;
627 switch (this->local_sym_index_)
628 {
629 case INVALID_CODE:
630 gold_unreachable();
631
632 case GSYM_CODE:
633 if (this->u1_.gsym == NULL)
634 index = 0;
635 else if (dynamic)
636 index = this->u1_.gsym->dynsym_index();
637 else
638 index = this->u1_.gsym->symtab_index();
639 break;
640
641 case SECTION_CODE:
642 if (dynamic)
643 index = this->u1_.os->dynsym_index();
644 else
645 index = this->u1_.os->symtab_index();
646 break;
647
648 case 0:
649 // Relocations without symbols use a symbol index of 0.
650 index = 0;
651 break;
652
653 default:
654 if (dynamic)
655 index = this->u1_.relobj->dynsym_index(this->local_sym_index_);
656 else
657 index = this->u1_.relobj->symtab_index(this->local_sym_index_);
658 break;
659 }
660 gold_assert(index != -1U);
661 return index;
662 }
663
664 // Write out the offset and info fields of a Rel or Rela relocation
665 // entry.
666
667 template<bool dynamic, int size, bool big_endian>
668 template<typename Write_rel>
669 void
670 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
671 Write_rel* wr) const
672 {
673 Address address = this->address_;
674 if (this->shndx_ != INVALID_CODE)
675 {
676 off_t off;
677 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
678 &off);
679 gold_assert(os != NULL);
680 if (off != -1)
681 address += os->address() + off;
682 else
683 {
684 address = os->output_address(this->u2_.relobj, this->shndx_,
685 address);
686 gold_assert(address != -1U);
687 }
688 }
689 else if (this->u2_.od != NULL)
690 address += this->u2_.od->address();
691 wr->put_r_offset(address);
692 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
693 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
694 }
695
696 // Write out a Rel relocation.
697
698 template<bool dynamic, int size, bool big_endian>
699 void
700 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
701 unsigned char* pov) const
702 {
703 elfcpp::Rel_write<size, big_endian> orel(pov);
704 this->write_rel(&orel);
705 }
706
707 // Get the value of the symbol referred to by a Rel relocation.
708
709 template<bool dynamic, int size, bool big_endian>
710 typename elfcpp::Elf_types<size>::Elf_Addr
711 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value() const
712 {
713 if (this->local_sym_index_ == GSYM_CODE)
714 {
715 const Sized_symbol<size>* sym;
716 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
717 return sym->value();
718 }
719 gold_assert(this->local_sym_index_ != SECTION_CODE
720 && this->local_sym_index_ != INVALID_CODE);
721 const Sized_relobj<size, big_endian>* relobj = this->u1_.relobj;
722 return relobj->local_symbol_value(this->local_sym_index_);
723 }
724
725 // Write out a Rela relocation.
726
727 template<bool dynamic, int size, bool big_endian>
728 void
729 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
730 unsigned char* pov) const
731 {
732 elfcpp::Rela_write<size, big_endian> orel(pov);
733 this->rel_.write_rel(&orel);
734 Addend addend = this->addend_;
735 if (rel_.is_relative())
736 addend += rel_.symbol_value();
737 orel.put_r_addend(addend);
738 }
739
740 // Output_data_reloc_base methods.
741
742 // Adjust the output section.
743
744 template<int sh_type, bool dynamic, int size, bool big_endian>
745 void
746 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
747 ::do_adjust_output_section(Output_section* os)
748 {
749 if (sh_type == elfcpp::SHT_REL)
750 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
751 else if (sh_type == elfcpp::SHT_RELA)
752 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
753 else
754 gold_unreachable();
755 if (dynamic)
756 os->set_should_link_to_dynsym();
757 else
758 os->set_should_link_to_symtab();
759 }
760
761 // Write out relocation data.
762
763 template<int sh_type, bool dynamic, int size, bool big_endian>
764 void
765 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
766 Output_file* of)
767 {
768 const off_t off = this->offset();
769 const off_t oview_size = this->data_size();
770 unsigned char* const oview = of->get_output_view(off, oview_size);
771
772 unsigned char* pov = oview;
773 for (typename Relocs::const_iterator p = this->relocs_.begin();
774 p != this->relocs_.end();
775 ++p)
776 {
777 p->write(pov);
778 pov += reloc_size;
779 }
780
781 gold_assert(pov - oview == oview_size);
782
783 of->write_output_view(off, oview_size, oview);
784
785 // We no longer need the relocation entries.
786 this->relocs_.clear();
787 }
788
789 // Output_data_got::Got_entry methods.
790
791 // Write out the entry.
792
793 template<int size, bool big_endian>
794 void
795 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
796 {
797 Valtype val = 0;
798
799 switch (this->local_sym_index_)
800 {
801 case GSYM_CODE:
802 {
803 // If the symbol is resolved locally, we need to write out the
804 // link-time value, which will be relocated dynamically by a
805 // RELATIVE relocation.
806 Symbol* gsym = this->u_.gsym;
807 Sized_symbol<size>* sgsym;
808 // This cast is a bit ugly. We don't want to put a
809 // virtual method in Symbol, because we want Symbol to be
810 // as small as possible.
811 sgsym = static_cast<Sized_symbol<size>*>(gsym);
812 val = sgsym->value();
813 }
814 break;
815
816 case CONSTANT_CODE:
817 val = this->u_.constant;
818 break;
819
820 default:
821 val = this->u_.object->local_symbol_value(this->local_sym_index_);
822 break;
823 }
824
825 elfcpp::Swap<size, big_endian>::writeval(pov, val);
826 }
827
828 // Output_data_got methods.
829
830 // Add an entry for a global symbol to the GOT. This returns true if
831 // this is a new GOT entry, false if the symbol already had a GOT
832 // entry.
833
834 template<int size, bool big_endian>
835 bool
836 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
837 {
838 if (gsym->has_got_offset())
839 return false;
840
841 this->entries_.push_back(Got_entry(gsym));
842 this->set_got_size();
843 gsym->set_got_offset(this->last_got_offset());
844 return true;
845 }
846
847 // Add an entry for a global symbol to the GOT, and add a dynamic
848 // relocation of type R_TYPE for the GOT entry.
849 template<int size, bool big_endian>
850 void
851 Output_data_got<size, big_endian>::add_global_with_rel(
852 Symbol* gsym,
853 Rel_dyn* rel_dyn,
854 unsigned int r_type)
855 {
856 if (gsym->has_got_offset())
857 return;
858
859 this->entries_.push_back(Got_entry());
860 this->set_got_size();
861 unsigned int got_offset = this->last_got_offset();
862 gsym->set_got_offset(got_offset);
863 rel_dyn->add_global(gsym, r_type, this, got_offset);
864 }
865
866 template<int size, bool big_endian>
867 void
868 Output_data_got<size, big_endian>::add_global_with_rela(
869 Symbol* gsym,
870 Rela_dyn* rela_dyn,
871 unsigned int r_type)
872 {
873 if (gsym->has_got_offset())
874 return;
875
876 this->entries_.push_back(Got_entry());
877 this->set_got_size();
878 unsigned int got_offset = this->last_got_offset();
879 gsym->set_got_offset(got_offset);
880 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
881 }
882
883 // Add an entry for a local symbol to the GOT. This returns true if
884 // this is a new GOT entry, false if the symbol already has a GOT
885 // entry.
886
887 template<int size, bool big_endian>
888 bool
889 Output_data_got<size, big_endian>::add_local(
890 Sized_relobj<size, big_endian>* object,
891 unsigned int symndx)
892 {
893 if (object->local_has_got_offset(symndx))
894 return false;
895
896 this->entries_.push_back(Got_entry(object, symndx));
897 this->set_got_size();
898 object->set_local_got_offset(symndx, this->last_got_offset());
899 return true;
900 }
901
902 // Add an entry for a local symbol to the GOT, and add a dynamic
903 // relocation of type R_TYPE for the GOT entry.
904 template<int size, bool big_endian>
905 void
906 Output_data_got<size, big_endian>::add_local_with_rel(
907 Sized_relobj<size, big_endian>* object,
908 unsigned int symndx,
909 Rel_dyn* rel_dyn,
910 unsigned int r_type)
911 {
912 if (object->local_has_got_offset(symndx))
913 return;
914
915 this->entries_.push_back(Got_entry());
916 this->set_got_size();
917 unsigned int got_offset = this->last_got_offset();
918 object->set_local_got_offset(symndx, got_offset);
919 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
920 }
921
922 template<int size, bool big_endian>
923 void
924 Output_data_got<size, big_endian>::add_local_with_rela(
925 Sized_relobj<size, big_endian>* object,
926 unsigned int symndx,
927 Rela_dyn* rela_dyn,
928 unsigned int r_type)
929 {
930 if (object->local_has_got_offset(symndx))
931 return;
932
933 this->entries_.push_back(Got_entry());
934 this->set_got_size();
935 unsigned int got_offset = this->last_got_offset();
936 object->set_local_got_offset(symndx, got_offset);
937 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
938 }
939
940 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
941 // In a pair of entries, the first value in the pair will be used for the
942 // module index, and the second value will be used for the dtv-relative
943 // offset. This returns true if this is a new GOT entry, false if the symbol
944 // already has a GOT entry.
945
946 template<int size, bool big_endian>
947 bool
948 Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym, bool need_pair)
949 {
950 if (gsym->has_tls_got_offset(need_pair))
951 return false;
952
953 this->entries_.push_back(Got_entry(gsym));
954 gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
955 if (need_pair)
956 this->entries_.push_back(Got_entry(gsym));
957 this->set_got_size();
958 return true;
959 }
960
961 // Add an entry for a global TLS symbol to the GOT, and add a dynamic
962 // relocation of type R_TYPE.
963 template<int size, bool big_endian>
964 void
965 Output_data_got<size, big_endian>::add_global_tls_with_rel(
966 Symbol* gsym,
967 Rel_dyn* rel_dyn,
968 unsigned int r_type)
969 {
970 if (gsym->has_tls_got_offset(false))
971 return;
972
973 this->entries_.push_back(Got_entry());
974 this->set_got_size();
975 unsigned int got_offset = this->last_got_offset();
976 gsym->set_tls_got_offset(got_offset, false);
977 rel_dyn->add_global(gsym, r_type, this, got_offset);
978 }
979
980 template<int size, bool big_endian>
981 void
982 Output_data_got<size, big_endian>::add_global_tls_with_rela(
983 Symbol* gsym,
984 Rela_dyn* rela_dyn,
985 unsigned int r_type)
986 {
987 if (gsym->has_tls_got_offset(false))
988 return;
989
990 this->entries_.push_back(Got_entry());
991 this->set_got_size();
992 unsigned int got_offset = this->last_got_offset();
993 gsym->set_tls_got_offset(got_offset, false);
994 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
995 }
996
997 // Add a pair of entries for a global TLS symbol to the GOT, and add
998 // dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
999 template<int size, bool big_endian>
1000 void
1001 Output_data_got<size, big_endian>::add_global_tls_with_rel(
1002 Symbol* gsym,
1003 Rel_dyn* rel_dyn,
1004 unsigned int mod_r_type,
1005 unsigned int dtv_r_type)
1006 {
1007 if (gsym->has_tls_got_offset(true))
1008 return;
1009
1010 this->entries_.push_back(Got_entry());
1011 unsigned int got_offset = this->last_got_offset();
1012 gsym->set_tls_got_offset(got_offset, true);
1013 rel_dyn->add_global(gsym, mod_r_type, this, got_offset);
1014
1015 this->entries_.push_back(Got_entry());
1016 this->set_got_size();
1017 got_offset = this->last_got_offset();
1018 rel_dyn->add_global(gsym, dtv_r_type, this, got_offset);
1019 }
1020
1021 template<int size, bool big_endian>
1022 void
1023 Output_data_got<size, big_endian>::add_global_tls_with_rela(
1024 Symbol* gsym,
1025 Rela_dyn* rela_dyn,
1026 unsigned int mod_r_type,
1027 unsigned int dtv_r_type)
1028 {
1029 if (gsym->has_tls_got_offset(true))
1030 return;
1031
1032 this->entries_.push_back(Got_entry());
1033 unsigned int got_offset = this->last_got_offset();
1034 gsym->set_tls_got_offset(got_offset, true);
1035 rela_dyn->add_global(gsym, mod_r_type, this, got_offset, 0);
1036
1037 this->entries_.push_back(Got_entry());
1038 this->set_got_size();
1039 got_offset = this->last_got_offset();
1040 rela_dyn->add_global(gsym, dtv_r_type, this, got_offset, 0);
1041 }
1042
1043 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
1044 // In a pair of entries, the first value in the pair will be used for the
1045 // module index, and the second value will be used for the dtv-relative
1046 // offset. This returns true if this is a new GOT entry, false if the symbol
1047 // already has a GOT entry.
1048
1049 template<int size, bool big_endian>
1050 bool
1051 Output_data_got<size, big_endian>::add_local_tls(
1052 Sized_relobj<size, big_endian>* object,
1053 unsigned int symndx,
1054 bool need_pair)
1055 {
1056 if (object->local_has_tls_got_offset(symndx, need_pair))
1057 return false;
1058
1059 this->entries_.push_back(Got_entry(object, symndx));
1060 object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
1061 if (need_pair)
1062 this->entries_.push_back(Got_entry(object, symndx));
1063 this->set_got_size();
1064 return true;
1065 }
1066
1067 // Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1068 // and add a dynamic relocation of type R_TYPE for the first GOT entry.
1069 // Because this is a local symbol, the first GOT entry can be relocated
1070 // relative to a section symbol, and the second GOT entry will have an
1071 // dtv-relative value that can be computed at link time.
1072 template<int size, bool big_endian>
1073 void
1074 Output_data_got<size, big_endian>::add_local_tls_with_rel(
1075 Sized_relobj<size, big_endian>* object,
1076 unsigned int symndx,
1077 unsigned int shndx,
1078 bool need_pair,
1079 Rel_dyn* rel_dyn,
1080 unsigned int r_type)
1081 {
1082 if (object->local_has_tls_got_offset(symndx, need_pair))
1083 return;
1084
1085 this->entries_.push_back(Got_entry());
1086 unsigned int got_offset = this->last_got_offset();
1087 object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1088 off_t off;
1089 Output_section* os = object->output_section(shndx, &off);
1090 rel_dyn->add_output_section(os, r_type, this, got_offset);
1091
1092 // The second entry of the pair will be statically initialized
1093 // with the TLS offset of the symbol.
1094 if (need_pair)
1095 this->entries_.push_back(Got_entry(object, symndx));
1096
1097 this->set_got_size();
1098 }
1099
1100 template<int size, bool big_endian>
1101 void
1102 Output_data_got<size, big_endian>::add_local_tls_with_rela(
1103 Sized_relobj<size, big_endian>* object,
1104 unsigned int symndx,
1105 unsigned int shndx,
1106 bool need_pair,
1107 Rela_dyn* rela_dyn,
1108 unsigned int r_type)
1109 {
1110 if (object->local_has_tls_got_offset(symndx, need_pair))
1111 return;
1112
1113 this->entries_.push_back(Got_entry());
1114 unsigned int got_offset = this->last_got_offset();
1115 object->set_local_tls_got_offset(symndx, got_offset, need_pair);
1116 off_t off;
1117 Output_section* os = object->output_section(shndx, &off);
1118 rela_dyn->add_output_section(os, r_type, this, got_offset, 0);
1119
1120 // The second entry of the pair will be statically initialized
1121 // with the TLS offset of the symbol.
1122 if (need_pair)
1123 this->entries_.push_back(Got_entry(object, symndx));
1124
1125 this->set_got_size();
1126 }
1127
1128 // Write out the GOT.
1129
1130 template<int size, bool big_endian>
1131 void
1132 Output_data_got<size, big_endian>::do_write(Output_file* of)
1133 {
1134 const int add = size / 8;
1135
1136 const off_t off = this->offset();
1137 const off_t oview_size = this->data_size();
1138 unsigned char* const oview = of->get_output_view(off, oview_size);
1139
1140 unsigned char* pov = oview;
1141 for (typename Got_entries::const_iterator p = this->entries_.begin();
1142 p != this->entries_.end();
1143 ++p)
1144 {
1145 p->write(pov);
1146 pov += add;
1147 }
1148
1149 gold_assert(pov - oview == oview_size);
1150
1151 of->write_output_view(off, oview_size, oview);
1152
1153 // We no longer need the GOT entries.
1154 this->entries_.clear();
1155 }
1156
1157 // Output_data_dynamic::Dynamic_entry methods.
1158
1159 // Write out the entry.
1160
1161 template<int size, bool big_endian>
1162 void
1163 Output_data_dynamic::Dynamic_entry::write(
1164 unsigned char* pov,
1165 const Stringpool* pool
1166 ACCEPT_SIZE_ENDIAN) const
1167 {
1168 typename elfcpp::Elf_types<size>::Elf_WXword val;
1169 switch (this->classification_)
1170 {
1171 case DYNAMIC_NUMBER:
1172 val = this->u_.val;
1173 break;
1174
1175 case DYNAMIC_SECTION_ADDRESS:
1176 val = this->u_.od->address();
1177 break;
1178
1179 case DYNAMIC_SECTION_SIZE:
1180 val = this->u_.od->data_size();
1181 break;
1182
1183 case DYNAMIC_SYMBOL:
1184 {
1185 const Sized_symbol<size>* s =
1186 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1187 val = s->value();
1188 }
1189 break;
1190
1191 case DYNAMIC_STRING:
1192 val = pool->get_offset(this->u_.str);
1193 break;
1194
1195 default:
1196 gold_unreachable();
1197 }
1198
1199 elfcpp::Dyn_write<size, big_endian> dw(pov);
1200 dw.put_d_tag(this->tag_);
1201 dw.put_d_val(val);
1202 }
1203
1204 // Output_data_dynamic methods.
1205
1206 // Adjust the output section to set the entry size.
1207
1208 void
1209 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1210 {
1211 if (parameters->get_size() == 32)
1212 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1213 else if (parameters->get_size() == 64)
1214 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1215 else
1216 gold_unreachable();
1217 }
1218
1219 // Set the final data size.
1220
1221 void
1222 Output_data_dynamic::set_final_data_size()
1223 {
1224 // Add the terminating entry.
1225 this->add_constant(elfcpp::DT_NULL, 0);
1226
1227 int dyn_size;
1228 if (parameters->get_size() == 32)
1229 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1230 else if (parameters->get_size() == 64)
1231 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1232 else
1233 gold_unreachable();
1234 this->set_data_size(this->entries_.size() * dyn_size);
1235 }
1236
1237 // Write out the dynamic entries.
1238
1239 void
1240 Output_data_dynamic::do_write(Output_file* of)
1241 {
1242 if (parameters->get_size() == 32)
1243 {
1244 if (parameters->is_big_endian())
1245 {
1246 #ifdef HAVE_TARGET_32_BIG
1247 this->sized_write<32, true>(of);
1248 #else
1249 gold_unreachable();
1250 #endif
1251 }
1252 else
1253 {
1254 #ifdef HAVE_TARGET_32_LITTLE
1255 this->sized_write<32, false>(of);
1256 #else
1257 gold_unreachable();
1258 #endif
1259 }
1260 }
1261 else if (parameters->get_size() == 64)
1262 {
1263 if (parameters->is_big_endian())
1264 {
1265 #ifdef HAVE_TARGET_64_BIG
1266 this->sized_write<64, true>(of);
1267 #else
1268 gold_unreachable();
1269 #endif
1270 }
1271 else
1272 {
1273 #ifdef HAVE_TARGET_64_LITTLE
1274 this->sized_write<64, false>(of);
1275 #else
1276 gold_unreachable();
1277 #endif
1278 }
1279 }
1280 else
1281 gold_unreachable();
1282 }
1283
1284 template<int size, bool big_endian>
1285 void
1286 Output_data_dynamic::sized_write(Output_file* of)
1287 {
1288 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1289
1290 const off_t offset = this->offset();
1291 const off_t oview_size = this->data_size();
1292 unsigned char* const oview = of->get_output_view(offset, oview_size);
1293
1294 unsigned char* pov = oview;
1295 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1296 p != this->entries_.end();
1297 ++p)
1298 {
1299 p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1300 pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
1301 pov += dyn_size;
1302 }
1303
1304 gold_assert(pov - oview == oview_size);
1305
1306 of->write_output_view(offset, oview_size, oview);
1307
1308 // We no longer need the dynamic entries.
1309 this->entries_.clear();
1310 }
1311
1312 // Output_section::Input_section methods.
1313
1314 // Return the data size. For an input section we store the size here.
1315 // For an Output_section_data, we have to ask it for the size.
1316
1317 off_t
1318 Output_section::Input_section::data_size() const
1319 {
1320 if (this->is_input_section())
1321 return this->u1_.data_size;
1322 else
1323 return this->u2_.posd->data_size();
1324 }
1325
1326 // Set the address and file offset.
1327
1328 void
1329 Output_section::Input_section::set_address_and_file_offset(
1330 uint64_t address,
1331 off_t file_offset,
1332 off_t section_file_offset)
1333 {
1334 if (this->is_input_section())
1335 this->u2_.object->set_section_offset(this->shndx_,
1336 file_offset - section_file_offset);
1337 else
1338 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1339 }
1340
1341 // Finalize the data size.
1342
1343 void
1344 Output_section::Input_section::finalize_data_size()
1345 {
1346 if (!this->is_input_section())
1347 this->u2_.posd->finalize_data_size();
1348 }
1349
1350 // Try to turn an input offset into an output offset.
1351
1352 bool
1353 Output_section::Input_section::output_offset(const Relobj* object,
1354 unsigned int shndx,
1355 off_t offset,
1356 off_t *poutput) const
1357 {
1358 if (!this->is_input_section())
1359 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1360 else
1361 {
1362 if (this->shndx_ != shndx || this->u2_.object != object)
1363 return false;
1364 off_t output_offset;
1365 Output_section* os = object->output_section(shndx, &output_offset);
1366 gold_assert(os != NULL);
1367 gold_assert(output_offset != -1);
1368 *poutput = output_offset + offset;
1369 return true;
1370 }
1371 }
1372
1373 // Write out the data. We don't have to do anything for an input
1374 // section--they are handled via Object::relocate--but this is where
1375 // we write out the data for an Output_section_data.
1376
1377 void
1378 Output_section::Input_section::write(Output_file* of)
1379 {
1380 if (!this->is_input_section())
1381 this->u2_.posd->write(of);
1382 }
1383
1384 // Write the data to a buffer. As for write(), we don't have to do
1385 // anything for an input section.
1386
1387 void
1388 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1389 {
1390 if (!this->is_input_section())
1391 this->u2_.posd->write_to_buffer(buffer);
1392 }
1393
1394 // Output_section methods.
1395
1396 // Construct an Output_section. NAME will point into a Stringpool.
1397
1398 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1399 elfcpp::Elf_Xword flags)
1400 : name_(name),
1401 addralign_(0),
1402 entsize_(0),
1403 link_section_(NULL),
1404 link_(0),
1405 info_section_(NULL),
1406 info_(0),
1407 type_(type),
1408 flags_(flags),
1409 out_shndx_(-1U),
1410 symtab_index_(0),
1411 dynsym_index_(0),
1412 input_sections_(),
1413 first_input_offset_(0),
1414 fills_(),
1415 postprocessing_buffer_(NULL),
1416 needs_symtab_index_(false),
1417 needs_dynsym_index_(false),
1418 should_link_to_symtab_(false),
1419 should_link_to_dynsym_(false),
1420 after_input_sections_(false),
1421 requires_postprocessing_(false),
1422 tls_offset_(0)
1423 {
1424 // An unallocated section has no address. Forcing this means that
1425 // we don't need special treatment for symbols defined in debug
1426 // sections.
1427 if ((flags & elfcpp::SHF_ALLOC) == 0)
1428 this->set_address(0);
1429 }
1430
1431 Output_section::~Output_section()
1432 {
1433 }
1434
1435 // Set the entry size.
1436
1437 void
1438 Output_section::set_entsize(uint64_t v)
1439 {
1440 if (this->entsize_ == 0)
1441 this->entsize_ = v;
1442 else
1443 gold_assert(this->entsize_ == v);
1444 }
1445
1446 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1447 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1448 // relocation section which applies to this section, or 0 if none, or
1449 // -1U if more than one. Return the offset of the input section
1450 // within the output section. Return -1 if the input section will
1451 // receive special handling. In the normal case we don't always keep
1452 // track of input sections for an Output_section. Instead, each
1453 // Object keeps track of the Output_section for each of its input
1454 // sections.
1455
1456 template<int size, bool big_endian>
1457 off_t
1458 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1459 unsigned int shndx,
1460 const char* secname,
1461 const elfcpp::Shdr<size, big_endian>& shdr,
1462 unsigned int reloc_shndx)
1463 {
1464 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1465 if ((addralign & (addralign - 1)) != 0)
1466 {
1467 object->error(_("invalid alignment %lu for section \"%s\""),
1468 static_cast<unsigned long>(addralign), secname);
1469 addralign = 1;
1470 }
1471
1472 if (addralign > this->addralign_)
1473 this->addralign_ = addralign;
1474
1475 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1476 uint64_t entsize = shdr.get_sh_entsize();
1477
1478 // .debug_str is a mergeable string section, but is not always so
1479 // marked by compilers. Mark manually here so we can optimize.
1480 if (strcmp(secname, ".debug_str") == 0)
1481 {
1482 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1483 entsize = 1;
1484 }
1485
1486 // If this is a SHF_MERGE section, we pass all the input sections to
1487 // a Output_data_merge. We don't try to handle relocations for such
1488 // a section.
1489 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1490 && reloc_shndx == 0)
1491 {
1492 if (this->add_merge_input_section(object, shndx, sh_flags,
1493 entsize, addralign))
1494 {
1495 // Tell the relocation routines that they need to call the
1496 // output_offset method to determine the final address.
1497 return -1;
1498 }
1499 }
1500
1501 off_t offset_in_section = this->current_data_size_for_child();
1502 off_t aligned_offset_in_section = align_address(offset_in_section,
1503 addralign);
1504
1505 if (aligned_offset_in_section > offset_in_section
1506 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1507 && object->target()->has_code_fill())
1508 {
1509 // We need to add some fill data. Using fill_list_ when
1510 // possible is an optimization, since we will often have fill
1511 // sections without input sections.
1512 off_t fill_len = aligned_offset_in_section - offset_in_section;
1513 if (this->input_sections_.empty())
1514 this->fills_.push_back(Fill(offset_in_section, fill_len));
1515 else
1516 {
1517 // FIXME: When relaxing, the size needs to adjust to
1518 // maintain a constant alignment.
1519 std::string fill_data(object->target()->code_fill(fill_len));
1520 Output_data_const* odc = new Output_data_const(fill_data, 1);
1521 this->input_sections_.push_back(Input_section(odc));
1522 }
1523 }
1524
1525 this->set_current_data_size_for_child(aligned_offset_in_section
1526 + shdr.get_sh_size());
1527
1528 // We need to keep track of this section if we are already keeping
1529 // track of sections, or if we are relaxing. FIXME: Add test for
1530 // relaxing.
1531 if (!this->input_sections_.empty())
1532 this->input_sections_.push_back(Input_section(object, shndx,
1533 shdr.get_sh_size(),
1534 addralign));
1535
1536 return aligned_offset_in_section;
1537 }
1538
1539 // Add arbitrary data to an output section.
1540
1541 void
1542 Output_section::add_output_section_data(Output_section_data* posd)
1543 {
1544 Input_section inp(posd);
1545 this->add_output_section_data(&inp);
1546 }
1547
1548 // Add arbitrary data to an output section by Input_section.
1549
1550 void
1551 Output_section::add_output_section_data(Input_section* inp)
1552 {
1553 if (this->input_sections_.empty())
1554 this->first_input_offset_ = this->current_data_size_for_child();
1555
1556 this->input_sections_.push_back(*inp);
1557
1558 uint64_t addralign = inp->addralign();
1559 if (addralign > this->addralign_)
1560 this->addralign_ = addralign;
1561
1562 inp->set_output_section(this);
1563 }
1564
1565 // Add a merge section to an output section.
1566
1567 void
1568 Output_section::add_output_merge_section(Output_section_data* posd,
1569 bool is_string, uint64_t entsize)
1570 {
1571 Input_section inp(posd, is_string, entsize);
1572 this->add_output_section_data(&inp);
1573 }
1574
1575 // Add an input section to a SHF_MERGE section.
1576
1577 bool
1578 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1579 uint64_t flags, uint64_t entsize,
1580 uint64_t addralign)
1581 {
1582 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1583
1584 // We only merge strings if the alignment is not more than the
1585 // character size. This could be handled, but it's unusual.
1586 if (is_string && addralign > entsize)
1587 return false;
1588
1589 Input_section_list::iterator p;
1590 for (p = this->input_sections_.begin();
1591 p != this->input_sections_.end();
1592 ++p)
1593 if (p->is_merge_section(is_string, entsize, addralign))
1594 {
1595 p->add_input_section(object, shndx);
1596 return true;
1597 }
1598
1599 // We handle the actual constant merging in Output_merge_data or
1600 // Output_merge_string_data.
1601 Output_section_data* posd;
1602 if (!is_string)
1603 posd = new Output_merge_data(entsize, addralign);
1604 else
1605 {
1606 switch (entsize)
1607 {
1608 case 1:
1609 posd = new Output_merge_string<char>(addralign);
1610 break;
1611 case 2:
1612 posd = new Output_merge_string<uint16_t>(addralign);
1613 break;
1614 case 4:
1615 posd = new Output_merge_string<uint32_t>(addralign);
1616 break;
1617 default:
1618 return false;
1619 }
1620 }
1621
1622 this->add_output_merge_section(posd, is_string, entsize);
1623 posd->add_input_section(object, shndx);
1624
1625 return true;
1626 }
1627
1628 // Given an address OFFSET relative to the start of input section
1629 // SHNDX in OBJECT, return whether this address is being included in
1630 // the final link. This should only be called if SHNDX in OBJECT has
1631 // a special mapping.
1632
1633 bool
1634 Output_section::is_input_address_mapped(const Relobj* object,
1635 unsigned int shndx,
1636 off_t offset) const
1637 {
1638 gold_assert(object->is_section_specially_mapped(shndx));
1639
1640 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1641 p != this->input_sections_.end();
1642 ++p)
1643 {
1644 off_t output_offset;
1645 if (p->output_offset(object, shndx, offset, &output_offset))
1646 return output_offset != -1;
1647 }
1648
1649 // By default we assume that the address is mapped. This should
1650 // only be called after we have passed all sections to Layout. At
1651 // that point we should know what we are discarding.
1652 return true;
1653 }
1654
1655 // Given an address OFFSET relative to the start of input section
1656 // SHNDX in object OBJECT, return the output offset relative to the
1657 // start of the section. This should only be called if SHNDX in
1658 // OBJECT has a special mapping.
1659
1660 off_t
1661 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1662 off_t offset) const
1663 {
1664 gold_assert(object->is_section_specially_mapped(shndx));
1665 // This can only be called meaningfully when layout is complete.
1666 gold_assert(Output_data::is_layout_complete());
1667
1668 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1669 p != this->input_sections_.end();
1670 ++p)
1671 {
1672 off_t output_offset;
1673 if (p->output_offset(object, shndx, offset, &output_offset))
1674 return output_offset;
1675 }
1676 gold_unreachable();
1677 }
1678
1679 // Return the output virtual address of OFFSET relative to the start
1680 // of input section SHNDX in object OBJECT.
1681
1682 uint64_t
1683 Output_section::output_address(const Relobj* object, unsigned int shndx,
1684 off_t offset) const
1685 {
1686 gold_assert(object->is_section_specially_mapped(shndx));
1687 // This can only be called meaningfully when layout is complete.
1688 gold_assert(Output_data::is_layout_complete());
1689
1690 uint64_t addr = this->address() + this->first_input_offset_;
1691 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1692 p != this->input_sections_.end();
1693 ++p)
1694 {
1695 addr = align_address(addr, p->addralign());
1696 off_t output_offset;
1697 if (p->output_offset(object, shndx, offset, &output_offset))
1698 {
1699 if (output_offset == -1)
1700 return -1U;
1701 return addr + output_offset;
1702 }
1703 addr += p->data_size();
1704 }
1705
1706 // If we get here, it means that we don't know the mapping for this
1707 // input section. This might happen in principle if
1708 // add_input_section were called before add_output_section_data.
1709 // But it should never actually happen.
1710
1711 gold_unreachable();
1712 }
1713
1714 // Set the data size of an Output_section. This is where we handle
1715 // setting the addresses of any Output_section_data objects.
1716
1717 void
1718 Output_section::set_final_data_size()
1719 {
1720 if (this->input_sections_.empty())
1721 {
1722 this->set_data_size(this->current_data_size_for_child());
1723 return;
1724 }
1725
1726 uint64_t address = this->address();
1727 off_t startoff = this->offset();
1728 off_t off = startoff + this->first_input_offset_;
1729 for (Input_section_list::iterator p = this->input_sections_.begin();
1730 p != this->input_sections_.end();
1731 ++p)
1732 {
1733 off = align_address(off, p->addralign());
1734 p->set_address_and_file_offset(address + (off - startoff), off,
1735 startoff);
1736 off += p->data_size();
1737 }
1738
1739 this->set_data_size(off - startoff);
1740 }
1741
1742 // Set the TLS offset. Called only for SHT_TLS sections.
1743
1744 void
1745 Output_section::do_set_tls_offset(uint64_t tls_base)
1746 {
1747 this->tls_offset_ = this->address() - tls_base;
1748 }
1749
1750 // Write the section header to *OSHDR.
1751
1752 template<int size, bool big_endian>
1753 void
1754 Output_section::write_header(const Layout* layout,
1755 const Stringpool* secnamepool,
1756 elfcpp::Shdr_write<size, big_endian>* oshdr) const
1757 {
1758 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1759 oshdr->put_sh_type(this->type_);
1760 oshdr->put_sh_flags(this->flags_);
1761 oshdr->put_sh_addr(this->address());
1762 oshdr->put_sh_offset(this->offset());
1763 oshdr->put_sh_size(this->data_size());
1764 if (this->link_section_ != NULL)
1765 oshdr->put_sh_link(this->link_section_->out_shndx());
1766 else if (this->should_link_to_symtab_)
1767 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1768 else if (this->should_link_to_dynsym_)
1769 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1770 else
1771 oshdr->put_sh_link(this->link_);
1772 if (this->info_section_ != NULL)
1773 oshdr->put_sh_info(this->info_section_->out_shndx());
1774 else
1775 oshdr->put_sh_info(this->info_);
1776 oshdr->put_sh_addralign(this->addralign_);
1777 oshdr->put_sh_entsize(this->entsize_);
1778 }
1779
1780 // Write out the data. For input sections the data is written out by
1781 // Object::relocate, but we have to handle Output_section_data objects
1782 // here.
1783
1784 void
1785 Output_section::do_write(Output_file* of)
1786 {
1787 gold_assert(!this->requires_postprocessing());
1788
1789 off_t output_section_file_offset = this->offset();
1790 for (Fill_list::iterator p = this->fills_.begin();
1791 p != this->fills_.end();
1792 ++p)
1793 {
1794 std::string fill_data(of->target()->code_fill(p->length()));
1795 of->write(output_section_file_offset + p->section_offset(),
1796 fill_data.data(), fill_data.size());
1797 }
1798
1799 for (Input_section_list::iterator p = this->input_sections_.begin();
1800 p != this->input_sections_.end();
1801 ++p)
1802 p->write(of);
1803 }
1804
1805 // If a section requires postprocessing, create the buffer to use.
1806
1807 void
1808 Output_section::create_postprocessing_buffer()
1809 {
1810 gold_assert(this->requires_postprocessing());
1811 gold_assert(this->postprocessing_buffer_ == NULL);
1812
1813 if (!this->input_sections_.empty())
1814 {
1815 off_t off = this->first_input_offset_;
1816 for (Input_section_list::iterator p = this->input_sections_.begin();
1817 p != this->input_sections_.end();
1818 ++p)
1819 {
1820 off = align_address(off, p->addralign());
1821 p->finalize_data_size();
1822 off += p->data_size();
1823 }
1824 this->set_current_data_size_for_child(off);
1825 }
1826
1827 off_t buffer_size = this->current_data_size_for_child();
1828 this->postprocessing_buffer_ = new unsigned char[buffer_size];
1829 }
1830
1831 // Write all the data of an Output_section into the postprocessing
1832 // buffer. This is used for sections which require postprocessing,
1833 // such as compression. Input sections are handled by
1834 // Object::Relocate.
1835
1836 void
1837 Output_section::write_to_postprocessing_buffer()
1838 {
1839 gold_assert(this->requires_postprocessing());
1840
1841 Target* target = parameters->target();
1842 unsigned char* buffer = this->postprocessing_buffer();
1843 for (Fill_list::iterator p = this->fills_.begin();
1844 p != this->fills_.end();
1845 ++p)
1846 {
1847 std::string fill_data(target->code_fill(p->length()));
1848 memcpy(buffer + p->section_offset(), fill_data.data(), fill_data.size());
1849 }
1850
1851 off_t off = this->first_input_offset_;
1852 for (Input_section_list::iterator p = this->input_sections_.begin();
1853 p != this->input_sections_.end();
1854 ++p)
1855 {
1856 off = align_address(off, p->addralign());
1857 p->write_to_buffer(buffer + off);
1858 off += p->data_size();
1859 }
1860 }
1861
1862 // Output segment methods.
1863
1864 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1865 : output_data_(),
1866 output_bss_(),
1867 vaddr_(0),
1868 paddr_(0),
1869 memsz_(0),
1870 align_(0),
1871 offset_(0),
1872 filesz_(0),
1873 type_(type),
1874 flags_(flags),
1875 is_align_known_(false)
1876 {
1877 }
1878
1879 // Add an Output_section to an Output_segment.
1880
1881 void
1882 Output_segment::add_output_section(Output_section* os,
1883 elfcpp::Elf_Word seg_flags,
1884 bool front)
1885 {
1886 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1887 gold_assert(!this->is_align_known_);
1888
1889 // Update the segment flags.
1890 this->flags_ |= seg_flags;
1891
1892 Output_segment::Output_data_list* pdl;
1893 if (os->type() == elfcpp::SHT_NOBITS)
1894 pdl = &this->output_bss_;
1895 else
1896 pdl = &this->output_data_;
1897
1898 // So that PT_NOTE segments will work correctly, we need to ensure
1899 // that all SHT_NOTE sections are adjacent. This will normally
1900 // happen automatically, because all the SHT_NOTE input sections
1901 // will wind up in the same output section. However, it is possible
1902 // for multiple SHT_NOTE input sections to have different section
1903 // flags, and thus be in different output sections, but for the
1904 // different section flags to map into the same segment flags and
1905 // thus the same output segment.
1906
1907 // Note that while there may be many input sections in an output
1908 // section, there are normally only a few output sections in an
1909 // output segment. This loop is expected to be fast.
1910
1911 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1912 {
1913 Output_segment::Output_data_list::iterator p = pdl->end();
1914 do
1915 {
1916 --p;
1917 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1918 {
1919 // We don't worry about the FRONT parameter.
1920 ++p;
1921 pdl->insert(p, os);
1922 return;
1923 }
1924 }
1925 while (p != pdl->begin());
1926 }
1927
1928 // Similarly, so that PT_TLS segments will work, we need to group
1929 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
1930 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1931 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
1932 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
1933 // and the PT_TLS segment -- we do this grouping only for the
1934 // PT_LOAD segment.
1935 if (this->type_ != elfcpp::PT_TLS
1936 && (os->flags() & elfcpp::SHF_TLS) != 0
1937 && !this->output_data_.empty())
1938 {
1939 pdl = &this->output_data_;
1940 bool nobits = os->type() == elfcpp::SHT_NOBITS;
1941 bool sawtls = false;
1942 Output_segment::Output_data_list::iterator p = pdl->end();
1943 do
1944 {
1945 --p;
1946 bool insert;
1947 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1948 {
1949 sawtls = true;
1950 // Put a NOBITS section after the first TLS section.
1951 // But a PROGBITS section after the first TLS/PROGBITS
1952 // section.
1953 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1954 }
1955 else
1956 {
1957 // If we've gone past the TLS sections, but we've seen a
1958 // TLS section, then we need to insert this section now.
1959 insert = sawtls;
1960 }
1961
1962 if (insert)
1963 {
1964 // We don't worry about the FRONT parameter.
1965 ++p;
1966 pdl->insert(p, os);
1967 return;
1968 }
1969 }
1970 while (p != pdl->begin());
1971
1972 // There are no TLS sections yet; put this one at the requested
1973 // location in the section list.
1974 }
1975
1976 if (front)
1977 pdl->push_front(os);
1978 else
1979 pdl->push_back(os);
1980 }
1981
1982 // Add an Output_data (which is not an Output_section) to the start of
1983 // a segment.
1984
1985 void
1986 Output_segment::add_initial_output_data(Output_data* od)
1987 {
1988 gold_assert(!this->is_align_known_);
1989 this->output_data_.push_front(od);
1990 }
1991
1992 // Return the maximum alignment of the Output_data in Output_segment.
1993 // Once we compute this, we prohibit new sections from being added.
1994
1995 uint64_t
1996 Output_segment::addralign()
1997 {
1998 if (!this->is_align_known_)
1999 {
2000 uint64_t addralign;
2001
2002 addralign = Output_segment::maximum_alignment(&this->output_data_);
2003 if (addralign > this->align_)
2004 this->align_ = addralign;
2005
2006 addralign = Output_segment::maximum_alignment(&this->output_bss_);
2007 if (addralign > this->align_)
2008 this->align_ = addralign;
2009
2010 this->is_align_known_ = true;
2011 }
2012
2013 return this->align_;
2014 }
2015
2016 // Return the maximum alignment of a list of Output_data.
2017
2018 uint64_t
2019 Output_segment::maximum_alignment(const Output_data_list* pdl)
2020 {
2021 uint64_t ret = 0;
2022 for (Output_data_list::const_iterator p = pdl->begin();
2023 p != pdl->end();
2024 ++p)
2025 {
2026 uint64_t addralign = (*p)->addralign();
2027 if (addralign > ret)
2028 ret = addralign;
2029 }
2030 return ret;
2031 }
2032
2033 // Return the number of dynamic relocs applied to this segment.
2034
2035 unsigned int
2036 Output_segment::dynamic_reloc_count() const
2037 {
2038 return (this->dynamic_reloc_count_list(&this->output_data_)
2039 + this->dynamic_reloc_count_list(&this->output_bss_));
2040 }
2041
2042 // Return the number of dynamic relocs applied to an Output_data_list.
2043
2044 unsigned int
2045 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2046 {
2047 unsigned int count = 0;
2048 for (Output_data_list::const_iterator p = pdl->begin();
2049 p != pdl->end();
2050 ++p)
2051 count += (*p)->dynamic_reloc_count();
2052 return count;
2053 }
2054
2055 // Set the section addresses for an Output_segment. ADDR is the
2056 // address and *POFF is the file offset. Set the section indexes
2057 // starting with *PSHNDX. Return the address of the immediately
2058 // following segment. Update *POFF and *PSHNDX.
2059
2060 uint64_t
2061 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
2062 unsigned int* pshndx)
2063 {
2064 gold_assert(this->type_ == elfcpp::PT_LOAD);
2065
2066 this->vaddr_ = addr;
2067 this->paddr_ = addr;
2068
2069 off_t orig_off = *poff;
2070 this->offset_ = orig_off;
2071
2072 *poff = align_address(*poff, this->addralign());
2073
2074 addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
2075 pshndx);
2076 this->filesz_ = *poff - orig_off;
2077
2078 off_t off = *poff;
2079
2080 uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
2081 poff, pshndx);
2082 this->memsz_ = *poff - orig_off;
2083
2084 // Ignore the file offset adjustments made by the BSS Output_data
2085 // objects.
2086 *poff = off;
2087
2088 return ret;
2089 }
2090
2091 // Set the addresses and file offsets in a list of Output_data
2092 // structures.
2093
2094 uint64_t
2095 Output_segment::set_section_list_addresses(Output_data_list* pdl,
2096 uint64_t addr, off_t* poff,
2097 unsigned int* pshndx)
2098 {
2099 off_t startoff = *poff;
2100
2101 off_t off = startoff;
2102 for (Output_data_list::iterator p = pdl->begin();
2103 p != pdl->end();
2104 ++p)
2105 {
2106 off = align_address(off, (*p)->addralign());
2107 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2108
2109 // Unless this is a PT_TLS segment, we want to ignore the size
2110 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
2111 // affect the size of a PT_LOAD segment.
2112 if (this->type_ == elfcpp::PT_TLS
2113 || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2114 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2115 off += (*p)->data_size();
2116
2117 if ((*p)->is_section())
2118 {
2119 (*p)->set_out_shndx(*pshndx);
2120 ++*pshndx;
2121 }
2122 }
2123
2124 *poff = off;
2125 return addr + (off - startoff);
2126 }
2127
2128 // For a non-PT_LOAD segment, set the offset from the sections, if
2129 // any.
2130
2131 void
2132 Output_segment::set_offset()
2133 {
2134 gold_assert(this->type_ != elfcpp::PT_LOAD);
2135
2136 if (this->output_data_.empty() && this->output_bss_.empty())
2137 {
2138 this->vaddr_ = 0;
2139 this->paddr_ = 0;
2140 this->memsz_ = 0;
2141 this->align_ = 0;
2142 this->offset_ = 0;
2143 this->filesz_ = 0;
2144 return;
2145 }
2146
2147 const Output_data* first;
2148 if (this->output_data_.empty())
2149 first = this->output_bss_.front();
2150 else
2151 first = this->output_data_.front();
2152 this->vaddr_ = first->address();
2153 this->paddr_ = this->vaddr_;
2154 this->offset_ = first->offset();
2155
2156 if (this->output_data_.empty())
2157 this->filesz_ = 0;
2158 else
2159 {
2160 const Output_data* last_data = this->output_data_.back();
2161 this->filesz_ = (last_data->address()
2162 + last_data->data_size()
2163 - this->vaddr_);
2164 }
2165
2166 const Output_data* last;
2167 if (this->output_bss_.empty())
2168 last = this->output_data_.back();
2169 else
2170 last = this->output_bss_.back();
2171 this->memsz_ = (last->address()
2172 + last->data_size()
2173 - this->vaddr_);
2174 }
2175
2176 // Set the TLS offsets of the sections in the PT_TLS segment.
2177
2178 void
2179 Output_segment::set_tls_offsets()
2180 {
2181 gold_assert(this->type_ == elfcpp::PT_TLS);
2182
2183 for (Output_data_list::iterator p = this->output_data_.begin();
2184 p != this->output_data_.end();
2185 ++p)
2186 (*p)->set_tls_offset(this->vaddr_);
2187
2188 for (Output_data_list::iterator p = this->output_bss_.begin();
2189 p != this->output_bss_.end();
2190 ++p)
2191 (*p)->set_tls_offset(this->vaddr_);
2192 }
2193
2194 // Return the number of Output_sections in an Output_segment.
2195
2196 unsigned int
2197 Output_segment::output_section_count() const
2198 {
2199 return (this->output_section_count_list(&this->output_data_)
2200 + this->output_section_count_list(&this->output_bss_));
2201 }
2202
2203 // Return the number of Output_sections in an Output_data_list.
2204
2205 unsigned int
2206 Output_segment::output_section_count_list(const Output_data_list* pdl) const
2207 {
2208 unsigned int count = 0;
2209 for (Output_data_list::const_iterator p = pdl->begin();
2210 p != pdl->end();
2211 ++p)
2212 {
2213 if ((*p)->is_section())
2214 ++count;
2215 }
2216 return count;
2217 }
2218
2219 // Write the segment data into *OPHDR.
2220
2221 template<int size, bool big_endian>
2222 void
2223 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
2224 {
2225 ophdr->put_p_type(this->type_);
2226 ophdr->put_p_offset(this->offset_);
2227 ophdr->put_p_vaddr(this->vaddr_);
2228 ophdr->put_p_paddr(this->paddr_);
2229 ophdr->put_p_filesz(this->filesz_);
2230 ophdr->put_p_memsz(this->memsz_);
2231 ophdr->put_p_flags(this->flags_);
2232 ophdr->put_p_align(this->addralign());
2233 }
2234
2235 // Write the section headers into V.
2236
2237 template<int size, bool big_endian>
2238 unsigned char*
2239 Output_segment::write_section_headers(const Layout* layout,
2240 const Stringpool* secnamepool,
2241 unsigned char* v,
2242 unsigned int *pshndx
2243 ACCEPT_SIZE_ENDIAN) const
2244 {
2245 // Every section that is attached to a segment must be attached to a
2246 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2247 // segments.
2248 if (this->type_ != elfcpp::PT_LOAD)
2249 return v;
2250
2251 v = this->write_section_headers_list
2252 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
2253 layout, secnamepool, &this->output_data_, v, pshndx
2254 SELECT_SIZE_ENDIAN(size, big_endian));
2255 v = this->write_section_headers_list
2256 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
2257 layout, secnamepool, &this->output_bss_, v, pshndx
2258 SELECT_SIZE_ENDIAN(size, big_endian));
2259 return v;
2260 }
2261
2262 template<int size, bool big_endian>
2263 unsigned char*
2264 Output_segment::write_section_headers_list(const Layout* layout,
2265 const Stringpool* secnamepool,
2266 const Output_data_list* pdl,
2267 unsigned char* v,
2268 unsigned int* pshndx
2269 ACCEPT_SIZE_ENDIAN) const
2270 {
2271 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2272 for (Output_data_list::const_iterator p = pdl->begin();
2273 p != pdl->end();
2274 ++p)
2275 {
2276 if ((*p)->is_section())
2277 {
2278 const Output_section* ps = static_cast<const Output_section*>(*p);
2279 gold_assert(*pshndx == ps->out_shndx());
2280 elfcpp::Shdr_write<size, big_endian> oshdr(v);
2281 ps->write_header(layout, secnamepool, &oshdr);
2282 v += shdr_size;
2283 ++*pshndx;
2284 }
2285 }
2286 return v;
2287 }
2288
2289 // Output_file methods.
2290
2291 Output_file::Output_file(const General_options& options, Target* target)
2292 : options_(options),
2293 target_(target),
2294 name_(options.output_file_name()),
2295 o_(-1),
2296 file_size_(0),
2297 base_(NULL),
2298 map_is_anonymous_(false)
2299 {
2300 }
2301
2302 // Open the output file.
2303
2304 void
2305 Output_file::open(off_t file_size)
2306 {
2307 this->file_size_ = file_size;
2308
2309 // Unlink the file first; otherwise the open() may fail if the file
2310 // is busy (e.g. it's an executable that's currently being executed).
2311 //
2312 // However, the linker may be part of a system where a zero-length
2313 // file is created for it to write to, with tight permissions (gcc
2314 // 2.95 did something like this). Unlinking the file would work
2315 // around those permission controls, so we only unlink if the file
2316 // has a non-zero size. We also unlink only regular files to avoid
2317 // trouble with directories/etc.
2318 //
2319 // If we fail, continue; this command is merely a best-effort attempt
2320 // to improve the odds for open().
2321
2322 // We let the name "-" mean "stdout"
2323 if (strcmp(this->name_, "-") == 0)
2324 this->o_ = STDOUT_FILENO;
2325 else
2326 {
2327 struct stat s;
2328 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2329 unlink_if_ordinary(this->name_);
2330
2331 int mode = parameters->output_is_object() ? 0666 : 0777;
2332 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2333 if (o < 0)
2334 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2335 this->o_ = o;
2336 }
2337
2338 this->map();
2339 }
2340
2341 // Resize the output file.
2342
2343 void
2344 Output_file::resize(off_t file_size)
2345 {
2346 // If the mmap is mapping an anonymous memory buffer, this is easy:
2347 // just mremap to the new size. If it's mapping to a file, we want
2348 // to unmap to flush to the file, then remap after growing the file.
2349 if (this->map_is_anonymous_)
2350 {
2351 void* base = ::mremap(this->base_, this->file_size_, file_size,
2352 MREMAP_MAYMOVE);
2353 if (base == MAP_FAILED)
2354 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2355 this->base_ = static_cast<unsigned char*>(base);
2356 this->file_size_ = file_size;
2357 }
2358 else
2359 {
2360 this->unmap();
2361 this->file_size_ = file_size;
2362 this->map();
2363 }
2364 }
2365
2366 // Map the file into memory.
2367
2368 void
2369 Output_file::map()
2370 {
2371 const int o = this->o_;
2372
2373 // If the output file is not a regular file, don't try to mmap it;
2374 // instead, we'll mmap a block of memory (an anonymous buffer), and
2375 // then later write the buffer to the file.
2376 void* base;
2377 struct stat statbuf;
2378 if (o == STDOUT_FILENO || o == STDERR_FILENO
2379 || ::fstat(o, &statbuf) != 0
2380 || !S_ISREG(statbuf.st_mode))
2381 {
2382 this->map_is_anonymous_ = true;
2383 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2384 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2385 }
2386 else
2387 {
2388 // Write out one byte to make the file the right size.
2389 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2390 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2391 char b = 0;
2392 if (::write(o, &b, 1) != 1)
2393 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2394
2395 // Map the file into memory.
2396 this->map_is_anonymous_ = false;
2397 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2398 MAP_SHARED, o, 0);
2399 }
2400 if (base == MAP_FAILED)
2401 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
2402 this->base_ = static_cast<unsigned char*>(base);
2403 }
2404
2405 // Unmap the file from memory.
2406
2407 void
2408 Output_file::unmap()
2409 {
2410 if (::munmap(this->base_, this->file_size_) < 0)
2411 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
2412 this->base_ = NULL;
2413 }
2414
2415 // Close the output file.
2416
2417 void
2418 Output_file::close()
2419 {
2420 // If the map isn't file-backed, we need to write it now.
2421 if (this->map_is_anonymous_)
2422 {
2423 size_t bytes_to_write = this->file_size_;
2424 while (bytes_to_write > 0)
2425 {
2426 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2427 if (bytes_written == 0)
2428 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2429 else if (bytes_written < 0)
2430 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2431 else
2432 bytes_to_write -= bytes_written;
2433 }
2434 }
2435 this->unmap();
2436
2437 // We don't close stdout or stderr
2438 if (this->o_ != STDOUT_FILENO && this->o_ != STDERR_FILENO)
2439 if (::close(this->o_) < 0)
2440 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
2441 this->o_ = -1;
2442 }
2443
2444 // Instantiate the templates we need. We could use the configure
2445 // script to restrict this to only the ones for implemented targets.
2446
2447 #ifdef HAVE_TARGET_32_LITTLE
2448 template
2449 off_t
2450 Output_section::add_input_section<32, false>(
2451 Sized_relobj<32, false>* object,
2452 unsigned int shndx,
2453 const char* secname,
2454 const elfcpp::Shdr<32, false>& shdr,
2455 unsigned int reloc_shndx);
2456 #endif
2457
2458 #ifdef HAVE_TARGET_32_BIG
2459 template
2460 off_t
2461 Output_section::add_input_section<32, true>(
2462 Sized_relobj<32, true>* object,
2463 unsigned int shndx,
2464 const char* secname,
2465 const elfcpp::Shdr<32, true>& shdr,
2466 unsigned int reloc_shndx);
2467 #endif
2468
2469 #ifdef HAVE_TARGET_64_LITTLE
2470 template
2471 off_t
2472 Output_section::add_input_section<64, false>(
2473 Sized_relobj<64, false>* object,
2474 unsigned int shndx,
2475 const char* secname,
2476 const elfcpp::Shdr<64, false>& shdr,
2477 unsigned int reloc_shndx);
2478 #endif
2479
2480 #ifdef HAVE_TARGET_64_BIG
2481 template
2482 off_t
2483 Output_section::add_input_section<64, true>(
2484 Sized_relobj<64, true>* object,
2485 unsigned int shndx,
2486 const char* secname,
2487 const elfcpp::Shdr<64, true>& shdr,
2488 unsigned int reloc_shndx);
2489 #endif
2490
2491 #ifdef HAVE_TARGET_32_LITTLE
2492 template
2493 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
2494 #endif
2495
2496 #ifdef HAVE_TARGET_32_BIG
2497 template
2498 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
2499 #endif
2500
2501 #ifdef HAVE_TARGET_64_LITTLE
2502 template
2503 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
2504 #endif
2505
2506 #ifdef HAVE_TARGET_64_BIG
2507 template
2508 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
2509 #endif
2510
2511 #ifdef HAVE_TARGET_32_LITTLE
2512 template
2513 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
2514 #endif
2515
2516 #ifdef HAVE_TARGET_32_BIG
2517 template
2518 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
2519 #endif
2520
2521 #ifdef HAVE_TARGET_64_LITTLE
2522 template
2523 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
2524 #endif
2525
2526 #ifdef HAVE_TARGET_64_BIG
2527 template
2528 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
2529 #endif
2530
2531 #ifdef HAVE_TARGET_32_LITTLE
2532 template
2533 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
2534 #endif
2535
2536 #ifdef HAVE_TARGET_32_BIG
2537 template
2538 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
2539 #endif
2540
2541 #ifdef HAVE_TARGET_64_LITTLE
2542 template
2543 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
2544 #endif
2545
2546 #ifdef HAVE_TARGET_64_BIG
2547 template
2548 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
2549 #endif
2550
2551 #ifdef HAVE_TARGET_32_LITTLE
2552 template
2553 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
2554 #endif
2555
2556 #ifdef HAVE_TARGET_32_BIG
2557 template
2558 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
2559 #endif
2560
2561 #ifdef HAVE_TARGET_64_LITTLE
2562 template
2563 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
2564 #endif
2565
2566 #ifdef HAVE_TARGET_64_BIG
2567 template
2568 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
2569 #endif
2570
2571 #ifdef HAVE_TARGET_32_LITTLE
2572 template
2573 class Output_data_got<32, false>;
2574 #endif
2575
2576 #ifdef HAVE_TARGET_32_BIG
2577 template
2578 class Output_data_got<32, true>;
2579 #endif
2580
2581 #ifdef HAVE_TARGET_64_LITTLE
2582 template
2583 class Output_data_got<64, false>;
2584 #endif
2585
2586 #ifdef HAVE_TARGET_64_BIG
2587 template
2588 class Output_data_got<64, true>;
2589 #endif
2590
2591 } // End namespace gold.
This page took 0.083424 seconds and 4 git commands to generate.