Actually define GOLD_GOLD_H multiple inclusion macro.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 #include "gold.h"
4
5 #include <cstdlib>
6 #include <cerrno>
7 #include <fcntl.h>
8 #include <unistd.h>
9 #include <sys/mman.h>
10 #include <algorithm>
11
12 #include "object.h"
13 #include "symtab.h"
14 #include "reloc.h"
15 #include "merge.h"
16 #include "output.h"
17
18 namespace gold
19 {
20
21 // Output_data variables.
22
23 bool Output_data::sizes_are_fixed;
24
25 // Output_data methods.
26
27 Output_data::~Output_data()
28 {
29 }
30
31 // Set the address and offset.
32
33 void
34 Output_data::set_address(uint64_t addr, off_t off)
35 {
36 this->address_ = addr;
37 this->offset_ = off;
38
39 // Let the child class know.
40 this->do_set_address(addr, off);
41 }
42
43 // Return the default alignment for a size--32 or 64.
44
45 uint64_t
46 Output_data::default_alignment(int size)
47 {
48 if (size == 32)
49 return 4;
50 else if (size == 64)
51 return 8;
52 else
53 gold_unreachable();
54 }
55
56 // Output_section_header methods. This currently assumes that the
57 // segment and section lists are complete at construction time.
58
59 Output_section_headers::Output_section_headers(
60 int size,
61 bool big_endian,
62 const Layout* layout,
63 const Layout::Segment_list* segment_list,
64 const Layout::Section_list* unattached_section_list,
65 const Stringpool* secnamepool)
66 : size_(size),
67 big_endian_(big_endian),
68 layout_(layout),
69 segment_list_(segment_list),
70 unattached_section_list_(unattached_section_list),
71 secnamepool_(secnamepool)
72 {
73 // Count all the sections. Start with 1 for the null section.
74 off_t count = 1;
75 for (Layout::Segment_list::const_iterator p = segment_list->begin();
76 p != segment_list->end();
77 ++p)
78 if ((*p)->type() == elfcpp::PT_LOAD)
79 count += (*p)->output_section_count();
80 count += unattached_section_list->size();
81
82 int shdr_size;
83 if (size == 32)
84 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
85 else if (size == 64)
86 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
87 else
88 gold_unreachable();
89
90 this->set_data_size(count * shdr_size);
91 }
92
93 // Write out the section headers.
94
95 void
96 Output_section_headers::do_write(Output_file* of)
97 {
98 if (this->size_ == 32)
99 {
100 if (this->big_endian_)
101 this->do_sized_write<32, true>(of);
102 else
103 this->do_sized_write<32, false>(of);
104 }
105 else if (this->size_ == 64)
106 {
107 if (this->big_endian_)
108 this->do_sized_write<64, true>(of);
109 else
110 this->do_sized_write<64, false>(of);
111 }
112 else
113 gold_unreachable();
114 }
115
116 template<int size, bool big_endian>
117 void
118 Output_section_headers::do_sized_write(Output_file* of)
119 {
120 off_t all_shdrs_size = this->data_size();
121 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
122
123 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
124 unsigned char* v = view;
125
126 {
127 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
128 oshdr.put_sh_name(0);
129 oshdr.put_sh_type(elfcpp::SHT_NULL);
130 oshdr.put_sh_flags(0);
131 oshdr.put_sh_addr(0);
132 oshdr.put_sh_offset(0);
133 oshdr.put_sh_size(0);
134 oshdr.put_sh_link(0);
135 oshdr.put_sh_info(0);
136 oshdr.put_sh_addralign(0);
137 oshdr.put_sh_entsize(0);
138 }
139
140 v += shdr_size;
141
142 unsigned shndx = 1;
143 for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
144 p != this->segment_list_->end();
145 ++p)
146 v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
147 this->layout_, this->secnamepool_, v, &shndx
148 SELECT_SIZE_ENDIAN(size, big_endian));
149 for (Layout::Section_list::const_iterator p =
150 this->unattached_section_list_->begin();
151 p != this->unattached_section_list_->end();
152 ++p)
153 {
154 gold_assert(shndx == (*p)->out_shndx());
155 elfcpp::Shdr_write<size, big_endian> oshdr(v);
156 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
157 v += shdr_size;
158 ++shndx;
159 }
160
161 of->write_output_view(this->offset(), all_shdrs_size, view);
162 }
163
164 // Output_segment_header methods.
165
166 Output_segment_headers::Output_segment_headers(
167 int size,
168 bool big_endian,
169 const Layout::Segment_list& segment_list)
170 : size_(size), big_endian_(big_endian), segment_list_(segment_list)
171 {
172 int phdr_size;
173 if (size == 32)
174 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
175 else if (size == 64)
176 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
177 else
178 gold_unreachable();
179
180 this->set_data_size(segment_list.size() * phdr_size);
181 }
182
183 void
184 Output_segment_headers::do_write(Output_file* of)
185 {
186 if (this->size_ == 32)
187 {
188 if (this->big_endian_)
189 this->do_sized_write<32, true>(of);
190 else
191 this->do_sized_write<32, false>(of);
192 }
193 else if (this->size_ == 64)
194 {
195 if (this->big_endian_)
196 this->do_sized_write<64, true>(of);
197 else
198 this->do_sized_write<64, false>(of);
199 }
200 else
201 gold_unreachable();
202 }
203
204 template<int size, bool big_endian>
205 void
206 Output_segment_headers::do_sized_write(Output_file* of)
207 {
208 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
209 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
210 unsigned char* view = of->get_output_view(this->offset(),
211 all_phdrs_size);
212 unsigned char* v = view;
213 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
214 p != this->segment_list_.end();
215 ++p)
216 {
217 elfcpp::Phdr_write<size, big_endian> ophdr(v);
218 (*p)->write_header(&ophdr);
219 v += phdr_size;
220 }
221
222 of->write_output_view(this->offset(), all_phdrs_size, view);
223 }
224
225 // Output_file_header methods.
226
227 Output_file_header::Output_file_header(int size,
228 bool big_endian,
229 const General_options& options,
230 const Target* target,
231 const Symbol_table* symtab,
232 const Output_segment_headers* osh)
233 : size_(size),
234 big_endian_(big_endian),
235 options_(options),
236 target_(target),
237 symtab_(symtab),
238 segment_header_(osh),
239 section_header_(NULL),
240 shstrtab_(NULL)
241 {
242 int ehdr_size;
243 if (size == 32)
244 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
245 else if (size == 64)
246 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
247 else
248 gold_unreachable();
249
250 this->set_data_size(ehdr_size);
251 }
252
253 // Set the section table information for a file header.
254
255 void
256 Output_file_header::set_section_info(const Output_section_headers* shdrs,
257 const Output_section* shstrtab)
258 {
259 this->section_header_ = shdrs;
260 this->shstrtab_ = shstrtab;
261 }
262
263 // Write out the file header.
264
265 void
266 Output_file_header::do_write(Output_file* of)
267 {
268 if (this->size_ == 32)
269 {
270 if (this->big_endian_)
271 this->do_sized_write<32, true>(of);
272 else
273 this->do_sized_write<32, false>(of);
274 }
275 else if (this->size_ == 64)
276 {
277 if (this->big_endian_)
278 this->do_sized_write<64, true>(of);
279 else
280 this->do_sized_write<64, false>(of);
281 }
282 else
283 gold_unreachable();
284 }
285
286 // Write out the file header with appropriate size and endianess.
287
288 template<int size, bool big_endian>
289 void
290 Output_file_header::do_sized_write(Output_file* of)
291 {
292 gold_assert(this->offset() == 0);
293
294 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
295 unsigned char* view = of->get_output_view(0, ehdr_size);
296 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
297
298 unsigned char e_ident[elfcpp::EI_NIDENT];
299 memset(e_ident, 0, elfcpp::EI_NIDENT);
300 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
301 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
302 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
303 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
304 if (size == 32)
305 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
306 else if (size == 64)
307 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
308 else
309 gold_unreachable();
310 e_ident[elfcpp::EI_DATA] = (big_endian
311 ? elfcpp::ELFDATA2MSB
312 : elfcpp::ELFDATA2LSB);
313 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
314 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
315 oehdr.put_e_ident(e_ident);
316
317 elfcpp::ET e_type;
318 // FIXME: ET_DYN.
319 if (this->options_.is_relocatable())
320 e_type = elfcpp::ET_REL;
321 else
322 e_type = elfcpp::ET_EXEC;
323 oehdr.put_e_type(e_type);
324
325 oehdr.put_e_machine(this->target_->machine_code());
326 oehdr.put_e_version(elfcpp::EV_CURRENT);
327
328 // FIXME: Need to support -e, and target specific entry symbol.
329 Symbol* sym = this->symtab_->lookup("_start");
330 typename Sized_symbol<size>::Value_type v;
331 if (sym == NULL)
332 v = 0;
333 else
334 {
335 Sized_symbol<size>* ssym;
336 ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
337 sym SELECT_SIZE(size));
338 v = ssym->value();
339 }
340 oehdr.put_e_entry(v);
341
342 oehdr.put_e_phoff(this->segment_header_->offset());
343 oehdr.put_e_shoff(this->section_header_->offset());
344
345 // FIXME: The target needs to set the flags.
346 oehdr.put_e_flags(0);
347
348 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
349 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
350 oehdr.put_e_phnum(this->segment_header_->data_size()
351 / elfcpp::Elf_sizes<size>::phdr_size);
352 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
353 oehdr.put_e_shnum(this->section_header_->data_size()
354 / elfcpp::Elf_sizes<size>::shdr_size);
355 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
356
357 of->write_output_view(0, ehdr_size, view);
358 }
359
360 // Output_data_const methods.
361
362 void
363 Output_data_const::do_write(Output_file* of)
364 {
365 of->write(this->offset(), this->data_.data(), this->data_.size());
366 }
367
368 // Output_data_const_buffer methods.
369
370 void
371 Output_data_const_buffer::do_write(Output_file* of)
372 {
373 of->write(this->offset(), this->p_, this->data_size());
374 }
375
376 // Output_section_data methods.
377
378 // Record the output section, and set the entry size and such.
379
380 void
381 Output_section_data::set_output_section(Output_section* os)
382 {
383 gold_assert(this->output_section_ == NULL);
384 this->output_section_ = os;
385 this->do_adjust_output_section(os);
386 }
387
388 // Return the section index of the output section.
389
390 unsigned int
391 Output_section_data::do_out_shndx() const
392 {
393 gold_assert(this->output_section_ != NULL);
394 return this->output_section_->out_shndx();
395 }
396
397 // Output_data_strtab methods.
398
399 // Set the address. We don't actually care about the address, but we
400 // do set our final size.
401
402 void
403 Output_data_strtab::do_set_address(uint64_t, off_t)
404 {
405 this->strtab_->set_string_offsets();
406 this->set_data_size(this->strtab_->get_strtab_size());
407 }
408
409 // Write out a string table.
410
411 void
412 Output_data_strtab::do_write(Output_file* of)
413 {
414 this->strtab_->write(of, this->offset());
415 }
416
417 // Output_reloc methods.
418
419 // Get the symbol index of a relocation.
420
421 template<bool dynamic, int size, bool big_endian>
422 unsigned int
423 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
424 const
425 {
426 unsigned int index;
427 switch (this->local_sym_index_)
428 {
429 case INVALID_CODE:
430 gold_unreachable();
431
432 case GSYM_CODE:
433 if (this->u1_.gsym == NULL)
434 index = 0;
435 else if (dynamic)
436 index = this->u1_.gsym->dynsym_index();
437 else
438 index = this->u1_.gsym->symtab_index();
439 break;
440
441 case SECTION_CODE:
442 if (dynamic)
443 index = this->u1_.os->dynsym_index();
444 else
445 index = this->u1_.os->symtab_index();
446 break;
447
448 default:
449 if (dynamic)
450 {
451 // FIXME: It seems that some targets may need to generate
452 // dynamic relocations against local symbols for some
453 // reasons. This will have to be addressed at some point.
454 gold_unreachable();
455 }
456 else
457 index = this->u1_.relobj->symtab_index(this->local_sym_index_);
458 break;
459 }
460 gold_assert(index != -1U);
461 return index;
462 }
463
464 // Write out the offset and info fields of a Rel or Rela relocation
465 // entry.
466
467 template<bool dynamic, int size, bool big_endian>
468 template<typename Write_rel>
469 void
470 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
471 Write_rel* wr) const
472 {
473 Address address = this->address_;
474 if (this->shndx_ != INVALID_CODE)
475 {
476 off_t off;
477 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
478 &off);
479 gold_assert(os != NULL);
480 address += os->address() + off;
481 }
482 else if (this->u2_.od != NULL)
483 address += this->u2_.od->address();
484 wr->put_r_offset(address);
485 wr->put_r_info(elfcpp::elf_r_info<size>(this->get_symbol_index(),
486 this->type_));
487 }
488
489 // Write out a Rel relocation.
490
491 template<bool dynamic, int size, bool big_endian>
492 void
493 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
494 unsigned char* pov) const
495 {
496 elfcpp::Rel_write<size, big_endian> orel(pov);
497 this->write_rel(&orel);
498 }
499
500 // Write out a Rela relocation.
501
502 template<bool dynamic, int size, bool big_endian>
503 void
504 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
505 unsigned char* pov) const
506 {
507 elfcpp::Rela_write<size, big_endian> orel(pov);
508 this->rel_.write_rel(&orel);
509 orel.put_r_addend(this->addend_);
510 }
511
512 // Output_data_reloc_base methods.
513
514 // Adjust the output section.
515
516 template<int sh_type, bool dynamic, int size, bool big_endian>
517 void
518 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
519 ::do_adjust_output_section(Output_section* os)
520 {
521 if (sh_type == elfcpp::SHT_REL)
522 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
523 else if (sh_type == elfcpp::SHT_RELA)
524 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
525 else
526 gold_unreachable();
527 if (dynamic)
528 os->set_should_link_to_dynsym();
529 else
530 os->set_should_link_to_symtab();
531 }
532
533 // Write out relocation data.
534
535 template<int sh_type, bool dynamic, int size, bool big_endian>
536 void
537 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
538 Output_file* of)
539 {
540 const off_t off = this->offset();
541 const off_t oview_size = this->data_size();
542 unsigned char* const oview = of->get_output_view(off, oview_size);
543
544 unsigned char* pov = oview;
545 for (typename Relocs::const_iterator p = this->relocs_.begin();
546 p != this->relocs_.end();
547 ++p)
548 {
549 p->write(pov);
550 pov += reloc_size;
551 }
552
553 gold_assert(pov - oview == oview_size);
554
555 of->write_output_view(off, oview_size, oview);
556
557 // We no longer need the relocation entries.
558 this->relocs_.clear();
559 }
560
561 // Output_data_got::Got_entry methods.
562
563 // Write out the entry.
564
565 template<int size, bool big_endian>
566 void
567 Output_data_got<size, big_endian>::Got_entry::write(
568 const General_options* options,
569 unsigned char* pov) const
570 {
571 Valtype val = 0;
572
573 switch (this->local_sym_index_)
574 {
575 case GSYM_CODE:
576 {
577 Symbol* gsym = this->u_.gsym;
578
579 // If the symbol is resolved locally, we need to write out its
580 // value. Otherwise we just write zero. The target code is
581 // responsible for creating a relocation entry to fill in the
582 // value at runtime.
583 if (gsym->final_value_is_known(options))
584 {
585 Sized_symbol<size>* sgsym;
586 // This cast is a bit ugly. We don't want to put a
587 // virtual method in Symbol, because we want Symbol to be
588 // as small as possible.
589 sgsym = static_cast<Sized_symbol<size>*>(gsym);
590 val = sgsym->value();
591 }
592 }
593 break;
594
595 case CONSTANT_CODE:
596 val = this->u_.constant;
597 break;
598
599 default:
600 gold_unreachable();
601 }
602
603 elfcpp::Swap<size, big_endian>::writeval(pov, val);
604 }
605
606 // Output_data_got methods.
607
608 // Add an entry for a global symbol to the GOT. This returns true if
609 // this is a new GOT entry, false if the symbol already had a GOT
610 // entry.
611
612 template<int size, bool big_endian>
613 bool
614 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
615 {
616 if (gsym->has_got_offset())
617 return false;
618
619 this->entries_.push_back(Got_entry(gsym));
620 this->set_got_size();
621 gsym->set_got_offset(this->last_got_offset());
622 return true;
623 }
624
625 // Write out the GOT.
626
627 template<int size, bool big_endian>
628 void
629 Output_data_got<size, big_endian>::do_write(Output_file* of)
630 {
631 const int add = size / 8;
632
633 const off_t off = this->offset();
634 const off_t oview_size = this->data_size();
635 unsigned char* const oview = of->get_output_view(off, oview_size);
636
637 unsigned char* pov = oview;
638 for (typename Got_entries::const_iterator p = this->entries_.begin();
639 p != this->entries_.end();
640 ++p)
641 {
642 p->write(this->options_, pov);
643 pov += add;
644 }
645
646 gold_assert(pov - oview == oview_size);
647
648 of->write_output_view(off, oview_size, oview);
649
650 // We no longer need the GOT entries.
651 this->entries_.clear();
652 }
653
654 // Output_data_dynamic::Dynamic_entry methods.
655
656 // Write out the entry.
657
658 template<int size, bool big_endian>
659 void
660 Output_data_dynamic::Dynamic_entry::write(
661 unsigned char* pov,
662 const Stringpool* pool
663 ACCEPT_SIZE_ENDIAN) const
664 {
665 typename elfcpp::Elf_types<size>::Elf_WXword val;
666 switch (this->classification_)
667 {
668 case DYNAMIC_NUMBER:
669 val = this->u_.val;
670 break;
671
672 case DYNAMIC_SECTION_ADDRESS:
673 val = this->u_.od->address();
674 break;
675
676 case DYNAMIC_SECTION_SIZE:
677 val = this->u_.od->data_size();
678 break;
679
680 case DYNAMIC_SYMBOL:
681 {
682 const Sized_symbol<size>* s =
683 static_cast<const Sized_symbol<size>*>(this->u_.sym);
684 val = s->value();
685 }
686 break;
687
688 case DYNAMIC_STRING:
689 val = pool->get_offset(this->u_.str);
690 break;
691
692 default:
693 gold_unreachable();
694 }
695
696 elfcpp::Dyn_write<size, big_endian> dw(pov);
697 dw.put_d_tag(this->tag_);
698 dw.put_d_val(val);
699 }
700
701 // Output_data_dynamic methods.
702
703 // Adjust the output section to set the entry size.
704
705 void
706 Output_data_dynamic::do_adjust_output_section(Output_section* os)
707 {
708 if (this->target_->get_size() == 32)
709 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
710 else if (this->target_->get_size() == 64)
711 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
712 else
713 gold_unreachable();
714 }
715
716 // Set the final data size.
717
718 void
719 Output_data_dynamic::do_set_address(uint64_t, off_t)
720 {
721 // Add the terminating entry.
722 this->add_constant(elfcpp::DT_NULL, 0);
723
724 int dyn_size;
725 if (this->target_->get_size() == 32)
726 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
727 else if (this->target_->get_size() == 64)
728 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
729 else
730 gold_unreachable();
731 this->set_data_size(this->entries_.size() * dyn_size);
732 }
733
734 // Write out the dynamic entries.
735
736 void
737 Output_data_dynamic::do_write(Output_file* of)
738 {
739 if (this->target_->get_size() == 32)
740 {
741 if (this->target_->is_big_endian())
742 this->sized_write<32, true>(of);
743 else
744 this->sized_write<32, false>(of);
745 }
746 else if (this->target_->get_size() == 64)
747 {
748 if (this->target_->is_big_endian())
749 this->sized_write<64, true>(of);
750 else
751 this->sized_write<64, false>(of);
752 }
753 else
754 gold_unreachable();
755 }
756
757 template<int size, bool big_endian>
758 void
759 Output_data_dynamic::sized_write(Output_file* of)
760 {
761 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
762
763 const off_t offset = this->offset();
764 const off_t oview_size = this->data_size();
765 unsigned char* const oview = of->get_output_view(offset, oview_size);
766
767 unsigned char* pov = oview;
768 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
769 p != this->entries_.end();
770 ++p)
771 {
772 p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
773 pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
774 pov += dyn_size;
775 }
776
777 gold_assert(pov - oview == oview_size);
778
779 of->write_output_view(offset, oview_size, oview);
780
781 // We no longer need the dynamic entries.
782 this->entries_.clear();
783 }
784
785 // Output_section::Input_section methods.
786
787 // Return the data size. For an input section we store the size here.
788 // For an Output_section_data, we have to ask it for the size.
789
790 off_t
791 Output_section::Input_section::data_size() const
792 {
793 if (this->is_input_section())
794 return this->u1_.data_size;
795 else
796 return this->u2_.posd->data_size();
797 }
798
799 // Set the address and file offset.
800
801 void
802 Output_section::Input_section::set_address(uint64_t addr, off_t off,
803 off_t secoff)
804 {
805 if (this->is_input_section())
806 this->u2_.object->set_section_offset(this->shndx_, off - secoff);
807 else
808 this->u2_.posd->set_address(addr, off);
809 }
810
811 // Try to turn an input address into an output address.
812
813 bool
814 Output_section::Input_section::output_address(const Relobj* object,
815 unsigned int shndx,
816 off_t offset,
817 uint64_t output_section_address,
818 uint64_t *poutput) const
819 {
820 if (!this->is_input_section())
821 return this->u2_.posd->output_address(object, shndx, offset,
822 output_section_address, poutput);
823 else
824 {
825 if (this->u2_.object != object)
826 return false;
827 off_t output_offset;
828 Output_section* os = object->output_section(shndx, &output_offset);
829 gold_assert(os != NULL);
830 *poutput = output_section_address + output_offset + offset;
831 return true;
832 }
833 }
834
835 // Write out the data. We don't have to do anything for an input
836 // section--they are handled via Object::relocate--but this is where
837 // we write out the data for an Output_section_data.
838
839 void
840 Output_section::Input_section::write(Output_file* of)
841 {
842 if (!this->is_input_section())
843 this->u2_.posd->write(of);
844 }
845
846 // Output_section methods.
847
848 // Construct an Output_section. NAME will point into a Stringpool.
849
850 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
851 elfcpp::Elf_Xword flags)
852 : name_(name),
853 addralign_(0),
854 entsize_(0),
855 link_section_(NULL),
856 link_(0),
857 info_section_(NULL),
858 info_(0),
859 type_(type),
860 flags_(flags),
861 out_shndx_(0),
862 symtab_index_(0),
863 dynsym_index_(0),
864 input_sections_(),
865 first_input_offset_(0),
866 fills_(),
867 needs_symtab_index_(false),
868 needs_dynsym_index_(false),
869 should_link_to_symtab_(false),
870 should_link_to_dynsym_(false)
871 {
872 }
873
874 Output_section::~Output_section()
875 {
876 }
877
878 // Set the entry size.
879
880 void
881 Output_section::set_entsize(uint64_t v)
882 {
883 if (this->entsize_ == 0)
884 this->entsize_ = v;
885 else
886 gold_assert(this->entsize_ == v);
887 }
888
889 // Add the input section SHNDX, with header SHDR, named SECNAME, in
890 // OBJECT, to the Output_section. Return the offset of the input
891 // section within the output section. We don't always keep track of
892 // input sections for an Output_section. Instead, each Object keeps
893 // track of the Output_section for each of its input sections.
894
895 template<int size, bool big_endian>
896 off_t
897 Output_section::add_input_section(Relobj* object, unsigned int shndx,
898 const char* secname,
899 const elfcpp::Shdr<size, big_endian>& shdr)
900 {
901 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
902 if ((addralign & (addralign - 1)) != 0)
903 {
904 fprintf(stderr, _("%s: %s: invalid alignment %lu for section \"%s\"\n"),
905 program_name, object->name().c_str(),
906 static_cast<unsigned long>(addralign), secname);
907 gold_exit(false);
908 }
909
910 if (addralign > this->addralign_)
911 this->addralign_ = addralign;
912
913 // If this is a SHF_MERGE section, we pass all the input sections to
914 // a Output_data_merge.
915 if ((shdr.get_sh_flags() & elfcpp::SHF_MERGE) != 0)
916 {
917 if (this->add_merge_input_section(object, shndx, shdr.get_sh_flags(),
918 shdr.get_sh_entsize(),
919 addralign))
920 {
921 // Tell the relocation routines that they need to call the
922 // output_address method to determine the final address.
923 return -1;
924 }
925 }
926
927 off_t offset_in_section = this->data_size();
928 off_t aligned_offset_in_section = align_address(offset_in_section,
929 addralign);
930
931 if (aligned_offset_in_section > offset_in_section
932 && (shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0
933 && object->target()->has_code_fill())
934 {
935 // We need to add some fill data. Using fill_list_ when
936 // possible is an optimization, since we will often have fill
937 // sections without input sections.
938 off_t fill_len = aligned_offset_in_section - offset_in_section;
939 if (this->input_sections_.empty())
940 this->fills_.push_back(Fill(offset_in_section, fill_len));
941 else
942 {
943 // FIXME: When relaxing, the size needs to adjust to
944 // maintain a constant alignment.
945 std::string fill_data(object->target()->code_fill(fill_len));
946 Output_data_const* odc = new Output_data_const(fill_data, 1);
947 this->input_sections_.push_back(Input_section(odc));
948 }
949 }
950
951 this->set_data_size(aligned_offset_in_section + shdr.get_sh_size());
952
953 // We need to keep track of this section if we are already keeping
954 // track of sections, or if we are relaxing. FIXME: Add test for
955 // relaxing.
956 if (!this->input_sections_.empty())
957 this->input_sections_.push_back(Input_section(object, shndx,
958 shdr.get_sh_size(),
959 addralign));
960
961 return aligned_offset_in_section;
962 }
963
964 // Add arbitrary data to an output section.
965
966 void
967 Output_section::add_output_section_data(Output_section_data* posd)
968 {
969 Input_section inp(posd);
970 this->add_output_section_data(&inp);
971 }
972
973 // Add arbitrary data to an output section by Input_section.
974
975 void
976 Output_section::add_output_section_data(Input_section* inp)
977 {
978 if (this->input_sections_.empty())
979 this->first_input_offset_ = this->data_size();
980
981 this->input_sections_.push_back(*inp);
982
983 uint64_t addralign = inp->addralign();
984 if (addralign > this->addralign_)
985 this->addralign_ = addralign;
986
987 inp->set_output_section(this);
988 }
989
990 // Add a merge section to an output section.
991
992 void
993 Output_section::add_output_merge_section(Output_section_data* posd,
994 bool is_string, uint64_t entsize)
995 {
996 Input_section inp(posd, is_string, entsize);
997 this->add_output_section_data(&inp);
998 }
999
1000 // Add an input section to a SHF_MERGE section.
1001
1002 bool
1003 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1004 uint64_t flags, uint64_t entsize,
1005 uint64_t addralign)
1006 {
1007 // We only merge constants if the alignment is not more than the
1008 // entry size. This could be handled, but it's unusual.
1009 if (addralign > entsize)
1010 return false;
1011
1012 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1013 Input_section_list::iterator p;
1014 for (p = this->input_sections_.begin();
1015 p != this->input_sections_.end();
1016 ++p)
1017 if (p->is_merge_section(is_string, entsize))
1018 break;
1019
1020 // We handle the actual constant merging in Output_merge_data or
1021 // Output_merge_string_data.
1022 if (p != this->input_sections_.end())
1023 p->add_input_section(object, shndx);
1024 else
1025 {
1026 Output_section_data* posd;
1027 if (!is_string)
1028 posd = new Output_merge_data(entsize);
1029 else if (entsize == 1)
1030 posd = new Output_merge_string<char>();
1031 else if (entsize == 2)
1032 posd = new Output_merge_string<uint16_t>();
1033 else if (entsize == 4)
1034 posd = new Output_merge_string<uint32_t>();
1035 else
1036 return false;
1037
1038 this->add_output_merge_section(posd, is_string, entsize);
1039 posd->add_input_section(object, shndx);
1040 }
1041
1042 return true;
1043 }
1044
1045 // Return the output virtual address of OFFSET relative to the start
1046 // of input section SHNDX in object OBJECT.
1047
1048 uint64_t
1049 Output_section::output_address(const Relobj* object, unsigned int shndx,
1050 off_t offset) const
1051 {
1052 uint64_t addr = this->address() + this->first_input_offset_;
1053 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1054 p != this->input_sections_.end();
1055 ++p)
1056 {
1057 addr = align_address(addr, p->addralign());
1058 uint64_t output;
1059 if (p->output_address(object, shndx, offset, addr, &output))
1060 return output;
1061 addr += p->data_size();
1062 }
1063
1064 // If we get here, it means that we don't know the mapping for this
1065 // input section. This might happen in principle if
1066 // add_input_section were called before add_output_section_data.
1067 // But it should never actually happen.
1068
1069 gold_unreachable();
1070 }
1071
1072 // Set the address of an Output_section. This is where we handle
1073 // setting the addresses of any Output_section_data objects.
1074
1075 void
1076 Output_section::do_set_address(uint64_t address, off_t startoff)
1077 {
1078 if (this->input_sections_.empty())
1079 return;
1080
1081 off_t off = startoff + this->first_input_offset_;
1082 for (Input_section_list::iterator p = this->input_sections_.begin();
1083 p != this->input_sections_.end();
1084 ++p)
1085 {
1086 off = align_address(off, p->addralign());
1087 p->set_address(address + (off - startoff), off, startoff);
1088 off += p->data_size();
1089 }
1090
1091 this->set_data_size(off - startoff);
1092 }
1093
1094 // Write the section header to *OSHDR.
1095
1096 template<int size, bool big_endian>
1097 void
1098 Output_section::write_header(const Layout* layout,
1099 const Stringpool* secnamepool,
1100 elfcpp::Shdr_write<size, big_endian>* oshdr) const
1101 {
1102 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1103 oshdr->put_sh_type(this->type_);
1104 oshdr->put_sh_flags(this->flags_);
1105 oshdr->put_sh_addr(this->address());
1106 oshdr->put_sh_offset(this->offset());
1107 oshdr->put_sh_size(this->data_size());
1108 if (this->link_section_ != NULL)
1109 oshdr->put_sh_link(this->link_section_->out_shndx());
1110 else if (this->should_link_to_symtab_)
1111 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1112 else if (this->should_link_to_dynsym_)
1113 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1114 else
1115 oshdr->put_sh_link(this->link_);
1116 if (this->info_section_ != NULL)
1117 oshdr->put_sh_info(this->info_section_->out_shndx());
1118 else
1119 oshdr->put_sh_info(this->info_);
1120 oshdr->put_sh_addralign(this->addralign_);
1121 oshdr->put_sh_entsize(this->entsize_);
1122 }
1123
1124 // Write out the data. For input sections the data is written out by
1125 // Object::relocate, but we have to handle Output_section_data objects
1126 // here.
1127
1128 void
1129 Output_section::do_write(Output_file* of)
1130 {
1131 off_t output_section_file_offset = this->offset();
1132 for (Fill_list::iterator p = this->fills_.begin();
1133 p != this->fills_.end();
1134 ++p)
1135 {
1136 std::string fill_data(of->target()->code_fill(p->length()));
1137 of->write(output_section_file_offset + p->section_offset(),
1138 fill_data.data(), fill_data.size());
1139 }
1140
1141 for (Input_section_list::iterator p = this->input_sections_.begin();
1142 p != this->input_sections_.end();
1143 ++p)
1144 p->write(of);
1145 }
1146
1147 // Output segment methods.
1148
1149 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1150 : output_data_(),
1151 output_bss_(),
1152 vaddr_(0),
1153 paddr_(0),
1154 memsz_(0),
1155 align_(0),
1156 offset_(0),
1157 filesz_(0),
1158 type_(type),
1159 flags_(flags),
1160 is_align_known_(false)
1161 {
1162 }
1163
1164 // Add an Output_section to an Output_segment.
1165
1166 void
1167 Output_segment::add_output_section(Output_section* os,
1168 elfcpp::Elf_Word seg_flags,
1169 bool front)
1170 {
1171 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1172 gold_assert(!this->is_align_known_);
1173
1174 // Update the segment flags.
1175 this->flags_ |= seg_flags;
1176
1177 Output_segment::Output_data_list* pdl;
1178 if (os->type() == elfcpp::SHT_NOBITS)
1179 pdl = &this->output_bss_;
1180 else
1181 pdl = &this->output_data_;
1182
1183 // So that PT_NOTE segments will work correctly, we need to ensure
1184 // that all SHT_NOTE sections are adjacent. This will normally
1185 // happen automatically, because all the SHT_NOTE input sections
1186 // will wind up in the same output section. However, it is possible
1187 // for multiple SHT_NOTE input sections to have different section
1188 // flags, and thus be in different output sections, but for the
1189 // different section flags to map into the same segment flags and
1190 // thus the same output segment.
1191
1192 // Note that while there may be many input sections in an output
1193 // section, there are normally only a few output sections in an
1194 // output segment. This loop is expected to be fast.
1195
1196 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1197 {
1198 Output_segment::Output_data_list::iterator p = pdl->end();
1199 do
1200 {
1201 --p;
1202 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1203 {
1204 // We don't worry about the FRONT parameter.
1205 ++p;
1206 pdl->insert(p, os);
1207 return;
1208 }
1209 }
1210 while (p != pdl->begin());
1211 }
1212
1213 // Similarly, so that PT_TLS segments will work, we need to group
1214 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
1215 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1216 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
1217 // correctly.
1218 if ((os->flags() & elfcpp::SHF_TLS) != 0 && !this->output_data_.empty())
1219 {
1220 pdl = &this->output_data_;
1221 bool nobits = os->type() == elfcpp::SHT_NOBITS;
1222 bool sawtls = false;
1223 Output_segment::Output_data_list::iterator p = pdl->end();
1224 do
1225 {
1226 --p;
1227 bool insert;
1228 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1229 {
1230 sawtls = true;
1231 // Put a NOBITS section after the first TLS section.
1232 // But a PROGBITS section after the first TLS/PROGBITS
1233 // section.
1234 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1235 }
1236 else
1237 {
1238 // If we've gone past the TLS sections, but we've seen a
1239 // TLS section, then we need to insert this section now.
1240 insert = sawtls;
1241 }
1242
1243 if (insert)
1244 {
1245 // We don't worry about the FRONT parameter.
1246 ++p;
1247 pdl->insert(p, os);
1248 return;
1249 }
1250 }
1251 while (p != pdl->begin());
1252
1253 // There are no TLS sections yet; put this one at the requested
1254 // location in the section list.
1255 }
1256
1257 if (front)
1258 pdl->push_front(os);
1259 else
1260 pdl->push_back(os);
1261 }
1262
1263 // Add an Output_data (which is not an Output_section) to the start of
1264 // a segment.
1265
1266 void
1267 Output_segment::add_initial_output_data(Output_data* od)
1268 {
1269 gold_assert(!this->is_align_known_);
1270 this->output_data_.push_front(od);
1271 }
1272
1273 // Return the maximum alignment of the Output_data in Output_segment.
1274 // Once we compute this, we prohibit new sections from being added.
1275
1276 uint64_t
1277 Output_segment::addralign()
1278 {
1279 if (!this->is_align_known_)
1280 {
1281 uint64_t addralign;
1282
1283 addralign = Output_segment::maximum_alignment(&this->output_data_);
1284 if (addralign > this->align_)
1285 this->align_ = addralign;
1286
1287 addralign = Output_segment::maximum_alignment(&this->output_bss_);
1288 if (addralign > this->align_)
1289 this->align_ = addralign;
1290
1291 this->is_align_known_ = true;
1292 }
1293
1294 return this->align_;
1295 }
1296
1297 // Return the maximum alignment of a list of Output_data.
1298
1299 uint64_t
1300 Output_segment::maximum_alignment(const Output_data_list* pdl)
1301 {
1302 uint64_t ret = 0;
1303 for (Output_data_list::const_iterator p = pdl->begin();
1304 p != pdl->end();
1305 ++p)
1306 {
1307 uint64_t addralign = (*p)->addralign();
1308 if (addralign > ret)
1309 ret = addralign;
1310 }
1311 return ret;
1312 }
1313
1314 // Set the section addresses for an Output_segment. ADDR is the
1315 // address and *POFF is the file offset. Set the section indexes
1316 // starting with *PSHNDX. Return the address of the immediately
1317 // following segment. Update *POFF and *PSHNDX.
1318
1319 uint64_t
1320 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
1321 unsigned int* pshndx)
1322 {
1323 gold_assert(this->type_ == elfcpp::PT_LOAD);
1324
1325 this->vaddr_ = addr;
1326 this->paddr_ = addr;
1327
1328 off_t orig_off = *poff;
1329 this->offset_ = orig_off;
1330
1331 *poff = align_address(*poff, this->addralign());
1332
1333 addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
1334 pshndx);
1335 this->filesz_ = *poff - orig_off;
1336
1337 off_t off = *poff;
1338
1339 uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
1340 poff, pshndx);
1341 this->memsz_ = *poff - orig_off;
1342
1343 // Ignore the file offset adjustments made by the BSS Output_data
1344 // objects.
1345 *poff = off;
1346
1347 return ret;
1348 }
1349
1350 // Set the addresses and file offsets in a list of Output_data
1351 // structures.
1352
1353 uint64_t
1354 Output_segment::set_section_list_addresses(Output_data_list* pdl,
1355 uint64_t addr, off_t* poff,
1356 unsigned int* pshndx)
1357 {
1358 off_t startoff = *poff;
1359
1360 off_t off = startoff;
1361 for (Output_data_list::iterator p = pdl->begin();
1362 p != pdl->end();
1363 ++p)
1364 {
1365 off = align_address(off, (*p)->addralign());
1366 (*p)->set_address(addr + (off - startoff), off);
1367
1368 // Unless this is a PT_TLS segment, we want to ignore the size
1369 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
1370 // affect the size of a PT_LOAD segment.
1371 if (this->type_ == elfcpp::PT_TLS
1372 || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
1373 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
1374 off += (*p)->data_size();
1375
1376 if ((*p)->is_section())
1377 {
1378 (*p)->set_out_shndx(*pshndx);
1379 ++*pshndx;
1380 }
1381 }
1382
1383 *poff = off;
1384 return addr + (off - startoff);
1385 }
1386
1387 // For a non-PT_LOAD segment, set the offset from the sections, if
1388 // any.
1389
1390 void
1391 Output_segment::set_offset()
1392 {
1393 gold_assert(this->type_ != elfcpp::PT_LOAD);
1394
1395 if (this->output_data_.empty() && this->output_bss_.empty())
1396 {
1397 this->vaddr_ = 0;
1398 this->paddr_ = 0;
1399 this->memsz_ = 0;
1400 this->align_ = 0;
1401 this->offset_ = 0;
1402 this->filesz_ = 0;
1403 return;
1404 }
1405
1406 const Output_data* first;
1407 if (this->output_data_.empty())
1408 first = this->output_bss_.front();
1409 else
1410 first = this->output_data_.front();
1411 this->vaddr_ = first->address();
1412 this->paddr_ = this->vaddr_;
1413 this->offset_ = first->offset();
1414
1415 if (this->output_data_.empty())
1416 this->filesz_ = 0;
1417 else
1418 {
1419 const Output_data* last_data = this->output_data_.back();
1420 this->filesz_ = (last_data->address()
1421 + last_data->data_size()
1422 - this->vaddr_);
1423 }
1424
1425 const Output_data* last;
1426 if (this->output_bss_.empty())
1427 last = this->output_data_.back();
1428 else
1429 last = this->output_bss_.back();
1430 this->memsz_ = (last->address()
1431 + last->data_size()
1432 - this->vaddr_);
1433 }
1434
1435 // Return the number of Output_sections in an Output_segment.
1436
1437 unsigned int
1438 Output_segment::output_section_count() const
1439 {
1440 return (this->output_section_count_list(&this->output_data_)
1441 + this->output_section_count_list(&this->output_bss_));
1442 }
1443
1444 // Return the number of Output_sections in an Output_data_list.
1445
1446 unsigned int
1447 Output_segment::output_section_count_list(const Output_data_list* pdl) const
1448 {
1449 unsigned int count = 0;
1450 for (Output_data_list::const_iterator p = pdl->begin();
1451 p != pdl->end();
1452 ++p)
1453 {
1454 if ((*p)->is_section())
1455 ++count;
1456 }
1457 return count;
1458 }
1459
1460 // Write the segment data into *OPHDR.
1461
1462 template<int size, bool big_endian>
1463 void
1464 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
1465 {
1466 ophdr->put_p_type(this->type_);
1467 ophdr->put_p_offset(this->offset_);
1468 ophdr->put_p_vaddr(this->vaddr_);
1469 ophdr->put_p_paddr(this->paddr_);
1470 ophdr->put_p_filesz(this->filesz_);
1471 ophdr->put_p_memsz(this->memsz_);
1472 ophdr->put_p_flags(this->flags_);
1473 ophdr->put_p_align(this->addralign());
1474 }
1475
1476 // Write the section headers into V.
1477
1478 template<int size, bool big_endian>
1479 unsigned char*
1480 Output_segment::write_section_headers(const Layout* layout,
1481 const Stringpool* secnamepool,
1482 unsigned char* v,
1483 unsigned int *pshndx
1484 ACCEPT_SIZE_ENDIAN) const
1485 {
1486 // Every section that is attached to a segment must be attached to a
1487 // PT_LOAD segment, so we only write out section headers for PT_LOAD
1488 // segments.
1489 if (this->type_ != elfcpp::PT_LOAD)
1490 return v;
1491
1492 v = this->write_section_headers_list
1493 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1494 layout, secnamepool, &this->output_data_, v, pshndx
1495 SELECT_SIZE_ENDIAN(size, big_endian));
1496 v = this->write_section_headers_list
1497 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1498 layout, secnamepool, &this->output_bss_, v, pshndx
1499 SELECT_SIZE_ENDIAN(size, big_endian));
1500 return v;
1501 }
1502
1503 template<int size, bool big_endian>
1504 unsigned char*
1505 Output_segment::write_section_headers_list(const Layout* layout,
1506 const Stringpool* secnamepool,
1507 const Output_data_list* pdl,
1508 unsigned char* v,
1509 unsigned int* pshndx
1510 ACCEPT_SIZE_ENDIAN) const
1511 {
1512 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1513 for (Output_data_list::const_iterator p = pdl->begin();
1514 p != pdl->end();
1515 ++p)
1516 {
1517 if ((*p)->is_section())
1518 {
1519 const Output_section* ps = static_cast<const Output_section*>(*p);
1520 gold_assert(*pshndx == ps->out_shndx());
1521 elfcpp::Shdr_write<size, big_endian> oshdr(v);
1522 ps->write_header(layout, secnamepool, &oshdr);
1523 v += shdr_size;
1524 ++*pshndx;
1525 }
1526 }
1527 return v;
1528 }
1529
1530 // Output_file methods.
1531
1532 Output_file::Output_file(const General_options& options, Target* target)
1533 : options_(options),
1534 target_(target),
1535 name_(options.output_file_name()),
1536 o_(-1),
1537 file_size_(0),
1538 base_(NULL)
1539 {
1540 }
1541
1542 // Open the output file.
1543
1544 void
1545 Output_file::open(off_t file_size)
1546 {
1547 this->file_size_ = file_size;
1548
1549 int mode = this->options_.is_relocatable() ? 0666 : 0777;
1550 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
1551 if (o < 0)
1552 {
1553 fprintf(stderr, _("%s: %s: open: %s\n"),
1554 program_name, this->name_, strerror(errno));
1555 gold_exit(false);
1556 }
1557 this->o_ = o;
1558
1559 // Write out one byte to make the file the right size.
1560 if (::lseek(o, file_size - 1, SEEK_SET) < 0)
1561 {
1562 fprintf(stderr, _("%s: %s: lseek: %s\n"),
1563 program_name, this->name_, strerror(errno));
1564 gold_exit(false);
1565 }
1566 char b = 0;
1567 if (::write(o, &b, 1) != 1)
1568 {
1569 fprintf(stderr, _("%s: %s: write: %s\n"),
1570 program_name, this->name_, strerror(errno));
1571 gold_exit(false);
1572 }
1573
1574 // Map the file into memory.
1575 void* base = ::mmap(NULL, file_size, PROT_READ | PROT_WRITE,
1576 MAP_SHARED, o, 0);
1577 if (base == MAP_FAILED)
1578 {
1579 fprintf(stderr, _("%s: %s: mmap: %s\n"),
1580 program_name, this->name_, strerror(errno));
1581 gold_exit(false);
1582 }
1583 this->base_ = static_cast<unsigned char*>(base);
1584 }
1585
1586 // Close the output file.
1587
1588 void
1589 Output_file::close()
1590 {
1591 if (::munmap(this->base_, this->file_size_) < 0)
1592 {
1593 fprintf(stderr, _("%s: %s: munmap: %s\n"),
1594 program_name, this->name_, strerror(errno));
1595 gold_exit(false);
1596 }
1597 this->base_ = NULL;
1598
1599 if (::close(this->o_) < 0)
1600 {
1601 fprintf(stderr, _("%s: %s: close: %s\n"),
1602 program_name, this->name_, strerror(errno));
1603 gold_exit(false);
1604 }
1605 this->o_ = -1;
1606 }
1607
1608 // Instantiate the templates we need. We could use the configure
1609 // script to restrict this to only the ones for implemented targets.
1610
1611 #ifdef HAVE_TARGET_32_LITTLE
1612 template
1613 off_t
1614 Output_section::add_input_section<32, false>(
1615 Relobj* object,
1616 unsigned int shndx,
1617 const char* secname,
1618 const elfcpp::Shdr<32, false>& shdr);
1619 #endif
1620
1621 #ifdef HAVE_TARGET_32_BIG
1622 template
1623 off_t
1624 Output_section::add_input_section<32, true>(
1625 Relobj* object,
1626 unsigned int shndx,
1627 const char* secname,
1628 const elfcpp::Shdr<32, true>& shdr);
1629 #endif
1630
1631 #ifdef HAVE_TARGET_64_LITTLE
1632 template
1633 off_t
1634 Output_section::add_input_section<64, false>(
1635 Relobj* object,
1636 unsigned int shndx,
1637 const char* secname,
1638 const elfcpp::Shdr<64, false>& shdr);
1639 #endif
1640
1641 #ifdef HAVE_TARGET_64_BIG
1642 template
1643 off_t
1644 Output_section::add_input_section<64, true>(
1645 Relobj* object,
1646 unsigned int shndx,
1647 const char* secname,
1648 const elfcpp::Shdr<64, true>& shdr);
1649 #endif
1650
1651 #ifdef HAVE_TARGET_32_LITTLE
1652 template
1653 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
1654 #endif
1655
1656 #ifdef HAVE_TARGET_32_BIG
1657 template
1658 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
1659 #endif
1660
1661 #ifdef HAVE_TARGET_64_LITTLE
1662 template
1663 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
1664 #endif
1665
1666 #ifdef HAVE_TARGET_64_BIG
1667 template
1668 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
1669 #endif
1670
1671 #ifdef HAVE_TARGET_32_LITTLE
1672 template
1673 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
1674 #endif
1675
1676 #ifdef HAVE_TARGET_32_BIG
1677 template
1678 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
1679 #endif
1680
1681 #ifdef HAVE_TARGET_64_LITTLE
1682 template
1683 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
1684 #endif
1685
1686 #ifdef HAVE_TARGET_64_BIG
1687 template
1688 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
1689 #endif
1690
1691 #ifdef HAVE_TARGET_32_LITTLE
1692 template
1693 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
1694 #endif
1695
1696 #ifdef HAVE_TARGET_32_BIG
1697 template
1698 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
1699 #endif
1700
1701 #ifdef HAVE_TARGET_64_LITTLE
1702 template
1703 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
1704 #endif
1705
1706 #ifdef HAVE_TARGET_64_BIG
1707 template
1708 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
1709 #endif
1710
1711 #ifdef HAVE_TARGET_32_LITTLE
1712 template
1713 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
1714 #endif
1715
1716 #ifdef HAVE_TARGET_32_BIG
1717 template
1718 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
1719 #endif
1720
1721 #ifdef HAVE_TARGET_64_LITTLE
1722 template
1723 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
1724 #endif
1725
1726 #ifdef HAVE_TARGET_64_BIG
1727 template
1728 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
1729 #endif
1730
1731 #ifdef HAVE_TARGET_32_LITTLE
1732 template
1733 class Output_data_got<32, false>;
1734 #endif
1735
1736 #ifdef HAVE_TARGET_32_BIG
1737 template
1738 class Output_data_got<32, true>;
1739 #endif
1740
1741 #ifdef HAVE_TARGET_64_LITTLE
1742 template
1743 class Output_data_got<64, false>;
1744 #endif
1745
1746 #ifdef HAVE_TARGET_64_BIG
1747 template
1748 class Output_data_got<64, true>;
1749 #endif
1750
1751 } // End namespace gold.
This page took 0.069047 seconds and 4 git commands to generate.