gdbserver: on GDB breakpoint reinsertion, also delete the breakpoint's commands.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 this->target_->adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address,
815 bool is_relative)
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
834 Sized_relobj<size, big_endian>* relobj,
835 unsigned int shndx,
836 Address address,
837 bool is_relative)
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851 }
852
853 // An absolute or relative relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
859 Address address,
860 bool is_relative)
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(is_relative), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
876 Address address,
877 bool is_relative)
878 : address_(address), local_sym_index_(0), type_(type),
879 is_relative_(is_relative), is_symbolless_(false),
880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881 {
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
887 }
888
889 // A target specific relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893 unsigned int type,
894 void* arg,
895 Output_data* od,
896 Address address)
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898 is_relative_(false), is_symbolless_(false),
899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900 {
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
903 this->u1_.arg = arg;
904 this->u2_.od = od;
905 }
906
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909 unsigned int type,
910 void* arg,
911 Sized_relobj<size, big_endian>* relobj,
912 unsigned int shndx,
913 Address address)
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915 is_relative_(false), is_symbolless_(false),
916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917 {
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
921 this->u1_.arg = arg;
922 this->u2_.relobj = relobj;
923 }
924
925 // Record that we need a dynamic symbol index for this relocation.
926
927 template<bool dynamic, int size, bool big_endian>
928 void
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
931 {
932 if (this->is_symbolless_)
933 return;
934 switch (this->local_sym_index_)
935 {
936 case INVALID_CODE:
937 gold_unreachable();
938
939 case GSYM_CODE:
940 this->u1_.gsym->set_needs_dynsym_entry();
941 break;
942
943 case SECTION_CODE:
944 this->u1_.os->set_needs_dynsym_index();
945 break;
946
947 case TARGET_CODE:
948 // The target must take care of this if necessary.
949 break;
950
951 case 0:
952 break;
953
954 default:
955 {
956 const unsigned int lsi = this->local_sym_index_;
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
962 else
963 relobj->output_section(lsi)->set_needs_dynsym_index();
964 }
965 break;
966 }
967 }
968
969 // Get the symbol index of a relocation.
970
971 template<bool dynamic, int size, bool big_endian>
972 unsigned int
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974 const
975 {
976 unsigned int index;
977 if (this->is_symbolless_)
978 return 0;
979 switch (this->local_sym_index_)
980 {
981 case INVALID_CODE:
982 gold_unreachable();
983
984 case GSYM_CODE:
985 if (this->u1_.gsym == NULL)
986 index = 0;
987 else if (dynamic)
988 index = this->u1_.gsym->dynsym_index();
989 else
990 index = this->u1_.gsym->symtab_index();
991 break;
992
993 case SECTION_CODE:
994 if (dynamic)
995 index = this->u1_.os->dynsym_index();
996 else
997 index = this->u1_.os->symtab_index();
998 break;
999
1000 case TARGET_CODE:
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 this->type_);
1003 break;
1004
1005 case 0:
1006 // Relocations without symbols use a symbol index of 0.
1007 index = 0;
1008 break;
1009
1010 default:
1011 {
1012 const unsigned int lsi = this->local_sym_index_;
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
1016 if (!this->is_section_symbol_)
1017 {
1018 if (dynamic)
1019 index = relobj->dynsym_index(lsi);
1020 else
1021 index = relobj->symtab_index(lsi);
1022 }
1023 else
1024 {
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1027 if (dynamic)
1028 index = os->dynsym_index();
1029 else
1030 index = os->symtab_index();
1031 }
1032 }
1033 break;
1034 }
1035 gold_assert(index != -1U);
1036 return index;
1037 }
1038
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 local_section_offset(Addend addend) const
1046 {
1047 gold_assert(this->local_sym_index_ != GSYM_CODE
1048 && this->local_sym_index_ != SECTION_CODE
1049 && this->local_sym_index_ != TARGET_CODE
1050 && this->local_sym_index_ != INVALID_CODE
1051 && this->local_sym_index_ != 0
1052 && this->is_section_symbol_);
1053 const unsigned int lsi = this->local_sym_index_;
1054 Output_section* os = this->u1_.relobj->output_section(lsi);
1055 gold_assert(os != NULL);
1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057 if (offset != invalid_address)
1058 return offset + addend;
1059 // This is a merge section.
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
1064 gold_assert(offset != invalid_address);
1065 return offset;
1066 }
1067
1068 // Get the output address of a relocation.
1069
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073 {
1074 Address address = this->address_;
1075 if (this->shndx_ != INVALID_CODE)
1076 {
1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078 gold_assert(os != NULL);
1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080 if (off != invalid_address)
1081 address += os->address() + off;
1082 else
1083 {
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
1088 gold_assert(address != invalid_address);
1089 }
1090 }
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
1093 return address;
1094 }
1095
1096 // Write out the offset and info fields of a Rel or Rela relocation
1097 // entry.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1101 void
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1104 {
1105 wr->put_r_offset(this->get_address());
1106 unsigned int sym_index = this->get_symbol_index();
1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108 }
1109
1110 // Write out a Rel relocation.
1111
1112 template<bool dynamic, int size, bool big_endian>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1116 {
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1119 }
1120
1121 // Get the value of the symbol referred to by a Rel relocation.
1122
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126 Addend addend) const
1127 {
1128 if (this->local_sym_index_ == GSYM_CODE)
1129 {
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132 if (this->use_plt_offset_ && sym->has_plt_offset())
1133 return parameters->target().plt_address_for_global(sym);
1134 else
1135 return sym->value() + addend;
1136 }
1137 if (this->local_sym_index_ == SECTION_CODE)
1138 {
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1141 }
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
1143 && this->local_sym_index_ != INVALID_CODE
1144 && this->local_sym_index_ != 0
1145 && !this->is_section_symbol_);
1146 const unsigned int lsi = this->local_sym_index_;
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
1150 if (this->use_plt_offset_)
1151 return parameters->target().plt_address_for_local(relobj, lsi);
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167 {
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213 {
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235 {
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261 {
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266 if (this->sort_relocs())
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
1282 gold_assert(pov - oview == oview_size);
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304 Sized_relobj_file<size, big_endian>* relobj,
1305 section_size_type entry_count,
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
1308 : Output_section_data(entry_count * 4, 4, false),
1309 relobj_(relobj),
1310 flags_(flags)
1311 {
1312 this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
1334 ++p, ++contents)
1335 {
1336 Output_section* os = this->relobj_->output_section(*p);
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
1357 this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int got_size, bool big_endian>
1365 void
1366 Output_data_got<got_size, big_endian>::Got_entry::write(
1367 unsigned int got_indx,
1368 unsigned char* pov) const
1369 {
1370 Valtype val = 0;
1371
1372 switch (this->local_sym_index_)
1373 {
1374 case GSYM_CODE:
1375 {
1376 // If the symbol is resolved locally, we need to write out the
1377 // link-time value, which will be relocated dynamically by a
1378 // RELATIVE relocation.
1379 Symbol* gsym = this->u_.gsym;
1380 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1381 val = parameters->target().plt_address_for_global(gsym);
1382 else
1383 {
1384 switch (parameters->size_and_endianness())
1385 {
1386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1387 case Parameters::TARGET_32_LITTLE:
1388 case Parameters::TARGET_32_BIG:
1389 {
1390 // This cast is ugly. We don't want to put a
1391 // virtual method in Symbol, because we want Symbol
1392 // to be as small as possible.
1393 Sized_symbol<32>::Value_type v;
1394 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1395 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1396 }
1397 break;
1398 #endif
1399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1400 case Parameters::TARGET_64_LITTLE:
1401 case Parameters::TARGET_64_BIG:
1402 {
1403 Sized_symbol<64>::Value_type v;
1404 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1405 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1406 }
1407 break;
1408 #endif
1409 default:
1410 gold_unreachable();
1411 }
1412 if (this->use_plt_or_tls_offset_
1413 && gsym->type() == elfcpp::STT_TLS)
1414 val += parameters->target().tls_offset_for_global(gsym,
1415 got_indx);
1416 }
1417 }
1418 break;
1419
1420 case CONSTANT_CODE:
1421 val = this->u_.constant;
1422 break;
1423
1424 case RESERVED_CODE:
1425 // If we're doing an incremental update, don't touch this GOT entry.
1426 if (parameters->incremental_update())
1427 return;
1428 val = this->u_.constant;
1429 break;
1430
1431 default:
1432 {
1433 const Relobj* object = this->u_.object;
1434 const unsigned int lsi = this->local_sym_index_;
1435 bool is_tls = object->local_is_tls(lsi);
1436 if (this->use_plt_or_tls_offset_ && !is_tls)
1437 val = parameters->target().plt_address_for_local(object, lsi);
1438 else
1439 {
1440 uint64_t lval = object->local_symbol_value(lsi, 0);
1441 val = convert_types<Valtype, uint64_t>(lval);
1442 if (this->use_plt_or_tls_offset_ && is_tls)
1443 val += parameters->target().tls_offset_for_local(object, lsi,
1444 got_indx);
1445 }
1446 }
1447 break;
1448 }
1449
1450 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1451 }
1452
1453 // Output_data_got methods.
1454
1455 // Add an entry for a global symbol to the GOT. This returns true if
1456 // this is a new GOT entry, false if the symbol already had a GOT
1457 // entry.
1458
1459 template<int got_size, bool big_endian>
1460 bool
1461 Output_data_got<got_size, big_endian>::add_global(
1462 Symbol* gsym,
1463 unsigned int got_type)
1464 {
1465 if (gsym->has_got_offset(got_type))
1466 return false;
1467
1468 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1469 gsym->set_got_offset(got_type, got_offset);
1470 return true;
1471 }
1472
1473 // Like add_global, but use the PLT offset.
1474
1475 template<int got_size, bool big_endian>
1476 bool
1477 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1478 unsigned int got_type)
1479 {
1480 if (gsym->has_got_offset(got_type))
1481 return false;
1482
1483 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1484 gsym->set_got_offset(got_type, got_offset);
1485 return true;
1486 }
1487
1488 // Add an entry for a global symbol to the GOT, and add a dynamic
1489 // relocation of type R_TYPE for the GOT entry.
1490
1491 template<int got_size, bool big_endian>
1492 void
1493 Output_data_got<got_size, big_endian>::add_global_with_rel(
1494 Symbol* gsym,
1495 unsigned int got_type,
1496 Output_data_reloc_generic* rel_dyn,
1497 unsigned int r_type)
1498 {
1499 if (gsym->has_got_offset(got_type))
1500 return;
1501
1502 unsigned int got_offset = this->add_got_entry(Got_entry());
1503 gsym->set_got_offset(got_type, got_offset);
1504 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1505 }
1506
1507 // Add a pair of entries for a global symbol to the GOT, and add
1508 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1509 // If R_TYPE_2 == 0, add the second entry with no relocation.
1510 template<int got_size, bool big_endian>
1511 void
1512 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1513 Symbol* gsym,
1514 unsigned int got_type,
1515 Output_data_reloc_generic* rel_dyn,
1516 unsigned int r_type_1,
1517 unsigned int r_type_2)
1518 {
1519 if (gsym->has_got_offset(got_type))
1520 return;
1521
1522 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1523 gsym->set_got_offset(got_type, got_offset);
1524 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1525
1526 if (r_type_2 != 0)
1527 rel_dyn->add_global_generic(gsym, r_type_2, this,
1528 got_offset + got_size / 8, 0);
1529 }
1530
1531 // Add an entry for a local symbol to the GOT. This returns true if
1532 // this is a new GOT entry, false if the symbol already has a GOT
1533 // entry.
1534
1535 template<int got_size, bool big_endian>
1536 bool
1537 Output_data_got<got_size, big_endian>::add_local(
1538 Relobj* object,
1539 unsigned int symndx,
1540 unsigned int got_type)
1541 {
1542 if (object->local_has_got_offset(symndx, got_type))
1543 return false;
1544
1545 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1546 false));
1547 object->set_local_got_offset(symndx, got_type, got_offset);
1548 return true;
1549 }
1550
1551 // Like add_local, but use the PLT offset.
1552
1553 template<int got_size, bool big_endian>
1554 bool
1555 Output_data_got<got_size, big_endian>::add_local_plt(
1556 Relobj* object,
1557 unsigned int symndx,
1558 unsigned int got_type)
1559 {
1560 if (object->local_has_got_offset(symndx, got_type))
1561 return false;
1562
1563 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1564 true));
1565 object->set_local_got_offset(symndx, got_type, got_offset);
1566 return true;
1567 }
1568
1569 // Add an entry for a local symbol to the GOT, and add a dynamic
1570 // relocation of type R_TYPE for the GOT entry.
1571
1572 template<int got_size, bool big_endian>
1573 void
1574 Output_data_got<got_size, big_endian>::add_local_with_rel(
1575 Relobj* object,
1576 unsigned int symndx,
1577 unsigned int got_type,
1578 Output_data_reloc_generic* rel_dyn,
1579 unsigned int r_type)
1580 {
1581 if (object->local_has_got_offset(symndx, got_type))
1582 return;
1583
1584 unsigned int got_offset = this->add_got_entry(Got_entry());
1585 object->set_local_got_offset(symndx, got_type, got_offset);
1586 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1587 }
1588
1589 // Add a pair of entries for a local symbol to the GOT, and add
1590 // a dynamic relocation of type R_TYPE using the section symbol of
1591 // the output section to which input section SHNDX maps, on the first.
1592 // The first got entry will have a value of zero, the second the
1593 // value of the local symbol.
1594 template<int got_size, bool big_endian>
1595 void
1596 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1597 Relobj* object,
1598 unsigned int symndx,
1599 unsigned int shndx,
1600 unsigned int got_type,
1601 Output_data_reloc_generic* rel_dyn,
1602 unsigned int r_type)
1603 {
1604 if (object->local_has_got_offset(symndx, got_type))
1605 return;
1606
1607 unsigned int got_offset =
1608 this->add_got_entry_pair(Got_entry(),
1609 Got_entry(object, symndx, false));
1610 object->set_local_got_offset(symndx, got_type, got_offset);
1611 Output_section* os = object->output_section(shndx);
1612 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1613 }
1614
1615 // Add a pair of entries for a local symbol to the GOT, and add
1616 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1617 // The first got entry will have a value of zero, the second the
1618 // value of the local symbol offset by Target::tls_offset_for_local.
1619 template<int got_size, bool big_endian>
1620 void
1621 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1622 Relobj* object,
1623 unsigned int symndx,
1624 unsigned int got_type,
1625 Output_data_reloc_generic* rel_dyn,
1626 unsigned int r_type)
1627 {
1628 if (object->local_has_got_offset(symndx, got_type))
1629 return;
1630
1631 unsigned int got_offset
1632 = this->add_got_entry_pair(Got_entry(),
1633 Got_entry(object, symndx, true));
1634 object->set_local_got_offset(symndx, got_type, got_offset);
1635 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1636 }
1637
1638 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1639
1640 template<int got_size, bool big_endian>
1641 void
1642 Output_data_got<got_size, big_endian>::reserve_local(
1643 unsigned int i,
1644 Relobj* object,
1645 unsigned int sym_index,
1646 unsigned int got_type)
1647 {
1648 this->do_reserve_slot(i);
1649 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1650 }
1651
1652 // Reserve a slot in the GOT for a global symbol.
1653
1654 template<int got_size, bool big_endian>
1655 void
1656 Output_data_got<got_size, big_endian>::reserve_global(
1657 unsigned int i,
1658 Symbol* gsym,
1659 unsigned int got_type)
1660 {
1661 this->do_reserve_slot(i);
1662 gsym->set_got_offset(got_type, this->got_offset(i));
1663 }
1664
1665 // Write out the GOT.
1666
1667 template<int got_size, bool big_endian>
1668 void
1669 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1670 {
1671 const int add = got_size / 8;
1672
1673 const off_t off = this->offset();
1674 const off_t oview_size = this->data_size();
1675 unsigned char* const oview = of->get_output_view(off, oview_size);
1676
1677 unsigned char* pov = oview;
1678 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1679 {
1680 this->entries_[i].write(i, pov);
1681 pov += add;
1682 }
1683
1684 gold_assert(pov - oview == oview_size);
1685
1686 of->write_output_view(off, oview_size, oview);
1687
1688 // We no longer need the GOT entries.
1689 this->entries_.clear();
1690 }
1691
1692 // Create a new GOT entry and return its offset.
1693
1694 template<int got_size, bool big_endian>
1695 unsigned int
1696 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1697 {
1698 if (!this->is_data_size_valid())
1699 {
1700 this->entries_.push_back(got_entry);
1701 this->set_got_size();
1702 return this->last_got_offset();
1703 }
1704 else
1705 {
1706 // For an incremental update, find an available slot.
1707 off_t got_offset = this->free_list_.allocate(got_size / 8,
1708 got_size / 8, 0);
1709 if (got_offset == -1)
1710 gold_fallback(_("out of patch space (GOT);"
1711 " relink with --incremental-full"));
1712 unsigned int got_index = got_offset / (got_size / 8);
1713 gold_assert(got_index < this->entries_.size());
1714 this->entries_[got_index] = got_entry;
1715 return static_cast<unsigned int>(got_offset);
1716 }
1717 }
1718
1719 // Create a pair of new GOT entries and return the offset of the first.
1720
1721 template<int got_size, bool big_endian>
1722 unsigned int
1723 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1724 Got_entry got_entry_1,
1725 Got_entry got_entry_2)
1726 {
1727 if (!this->is_data_size_valid())
1728 {
1729 unsigned int got_offset;
1730 this->entries_.push_back(got_entry_1);
1731 got_offset = this->last_got_offset();
1732 this->entries_.push_back(got_entry_2);
1733 this->set_got_size();
1734 return got_offset;
1735 }
1736 else
1737 {
1738 // For an incremental update, find an available pair of slots.
1739 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1740 got_size / 8, 0);
1741 if (got_offset == -1)
1742 gold_fallback(_("out of patch space (GOT);"
1743 " relink with --incremental-full"));
1744 unsigned int got_index = got_offset / (got_size / 8);
1745 gold_assert(got_index < this->entries_.size());
1746 this->entries_[got_index] = got_entry_1;
1747 this->entries_[got_index + 1] = got_entry_2;
1748 return static_cast<unsigned int>(got_offset);
1749 }
1750 }
1751
1752 // Replace GOT entry I with a new value.
1753
1754 template<int got_size, bool big_endian>
1755 void
1756 Output_data_got<got_size, big_endian>::replace_got_entry(
1757 unsigned int i,
1758 Got_entry got_entry)
1759 {
1760 gold_assert(i < this->entries_.size());
1761 this->entries_[i] = got_entry;
1762 }
1763
1764 // Output_data_dynamic::Dynamic_entry methods.
1765
1766 // Write out the entry.
1767
1768 template<int size, bool big_endian>
1769 void
1770 Output_data_dynamic::Dynamic_entry::write(
1771 unsigned char* pov,
1772 const Stringpool* pool) const
1773 {
1774 typename elfcpp::Elf_types<size>::Elf_WXword val;
1775 switch (this->offset_)
1776 {
1777 case DYNAMIC_NUMBER:
1778 val = this->u_.val;
1779 break;
1780
1781 case DYNAMIC_SECTION_SIZE:
1782 val = this->u_.od->data_size();
1783 if (this->od2 != NULL)
1784 val += this->od2->data_size();
1785 break;
1786
1787 case DYNAMIC_SYMBOL:
1788 {
1789 const Sized_symbol<size>* s =
1790 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1791 val = s->value();
1792 }
1793 break;
1794
1795 case DYNAMIC_STRING:
1796 val = pool->get_offset(this->u_.str);
1797 break;
1798
1799 case DYNAMIC_CUSTOM:
1800 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1801 break;
1802
1803 default:
1804 val = this->u_.od->address() + this->offset_;
1805 break;
1806 }
1807
1808 elfcpp::Dyn_write<size, big_endian> dw(pov);
1809 dw.put_d_tag(this->tag_);
1810 dw.put_d_val(val);
1811 }
1812
1813 // Output_data_dynamic methods.
1814
1815 // Adjust the output section to set the entry size.
1816
1817 void
1818 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1819 {
1820 if (parameters->target().get_size() == 32)
1821 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1822 else if (parameters->target().get_size() == 64)
1823 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1824 else
1825 gold_unreachable();
1826 }
1827
1828 // Set the final data size.
1829
1830 void
1831 Output_data_dynamic::set_final_data_size()
1832 {
1833 // Add the terminating entry if it hasn't been added.
1834 // Because of relaxation, we can run this multiple times.
1835 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1836 {
1837 int extra = parameters->options().spare_dynamic_tags();
1838 for (int i = 0; i < extra; ++i)
1839 this->add_constant(elfcpp::DT_NULL, 0);
1840 this->add_constant(elfcpp::DT_NULL, 0);
1841 }
1842
1843 int dyn_size;
1844 if (parameters->target().get_size() == 32)
1845 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1846 else if (parameters->target().get_size() == 64)
1847 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1848 else
1849 gold_unreachable();
1850 this->set_data_size(this->entries_.size() * dyn_size);
1851 }
1852
1853 // Write out the dynamic entries.
1854
1855 void
1856 Output_data_dynamic::do_write(Output_file* of)
1857 {
1858 switch (parameters->size_and_endianness())
1859 {
1860 #ifdef HAVE_TARGET_32_LITTLE
1861 case Parameters::TARGET_32_LITTLE:
1862 this->sized_write<32, false>(of);
1863 break;
1864 #endif
1865 #ifdef HAVE_TARGET_32_BIG
1866 case Parameters::TARGET_32_BIG:
1867 this->sized_write<32, true>(of);
1868 break;
1869 #endif
1870 #ifdef HAVE_TARGET_64_LITTLE
1871 case Parameters::TARGET_64_LITTLE:
1872 this->sized_write<64, false>(of);
1873 break;
1874 #endif
1875 #ifdef HAVE_TARGET_64_BIG
1876 case Parameters::TARGET_64_BIG:
1877 this->sized_write<64, true>(of);
1878 break;
1879 #endif
1880 default:
1881 gold_unreachable();
1882 }
1883 }
1884
1885 template<int size, bool big_endian>
1886 void
1887 Output_data_dynamic::sized_write(Output_file* of)
1888 {
1889 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1890
1891 const off_t offset = this->offset();
1892 const off_t oview_size = this->data_size();
1893 unsigned char* const oview = of->get_output_view(offset, oview_size);
1894
1895 unsigned char* pov = oview;
1896 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1897 p != this->entries_.end();
1898 ++p)
1899 {
1900 p->write<size, big_endian>(pov, this->pool_);
1901 pov += dyn_size;
1902 }
1903
1904 gold_assert(pov - oview == oview_size);
1905
1906 of->write_output_view(offset, oview_size, oview);
1907
1908 // We no longer need the dynamic entries.
1909 this->entries_.clear();
1910 }
1911
1912 // Class Output_symtab_xindex.
1913
1914 void
1915 Output_symtab_xindex::do_write(Output_file* of)
1916 {
1917 const off_t offset = this->offset();
1918 const off_t oview_size = this->data_size();
1919 unsigned char* const oview = of->get_output_view(offset, oview_size);
1920
1921 memset(oview, 0, oview_size);
1922
1923 if (parameters->target().is_big_endian())
1924 this->endian_do_write<true>(oview);
1925 else
1926 this->endian_do_write<false>(oview);
1927
1928 of->write_output_view(offset, oview_size, oview);
1929
1930 // We no longer need the data.
1931 this->entries_.clear();
1932 }
1933
1934 template<bool big_endian>
1935 void
1936 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1937 {
1938 for (Xindex_entries::const_iterator p = this->entries_.begin();
1939 p != this->entries_.end();
1940 ++p)
1941 {
1942 unsigned int symndx = p->first;
1943 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
1944 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1945 }
1946 }
1947
1948 // Output_fill_debug_info methods.
1949
1950 // Return the minimum size needed for a dummy compilation unit header.
1951
1952 size_t
1953 Output_fill_debug_info::do_minimum_hole_size() const
1954 {
1955 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1956 // address_size.
1957 const size_t len = 4 + 2 + 4 + 1;
1958 // For type units, add type_signature, type_offset.
1959 if (this->is_debug_types_)
1960 return len + 8 + 4;
1961 return len;
1962 }
1963
1964 // Write a dummy compilation unit header to fill a hole in the
1965 // .debug_info or .debug_types section.
1966
1967 void
1968 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1969 {
1970 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1971 static_cast<long>(off), static_cast<long>(len));
1972
1973 gold_assert(len >= this->do_minimum_hole_size());
1974
1975 unsigned char* const oview = of->get_output_view(off, len);
1976 unsigned char* pov = oview;
1977
1978 // Write header fields: unit_length, version, debug_abbrev_offset,
1979 // address_size.
1980 if (this->is_big_endian())
1981 {
1982 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1983 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1984 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1985 }
1986 else
1987 {
1988 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1989 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1990 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1991 }
1992 pov += 4 + 2 + 4;
1993 *pov++ = 4;
1994
1995 // For type units, the additional header fields -- type_signature,
1996 // type_offset -- can be filled with zeroes.
1997
1998 // Fill the remainder of the free space with zeroes. The first
1999 // zero should tell the consumer there are no DIEs to read in this
2000 // compilation unit.
2001 if (pov < oview + len)
2002 memset(pov, 0, oview + len - pov);
2003
2004 of->write_output_view(off, len, oview);
2005 }
2006
2007 // Output_fill_debug_line methods.
2008
2009 // Return the minimum size needed for a dummy line number program header.
2010
2011 size_t
2012 Output_fill_debug_line::do_minimum_hole_size() const
2013 {
2014 // Line number program header fields: unit_length, version, header_length,
2015 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2016 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2017 const size_t len = 4 + 2 + 4 + this->header_length;
2018 return len;
2019 }
2020
2021 // Write a dummy line number program header to fill a hole in the
2022 // .debug_line section.
2023
2024 void
2025 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2026 {
2027 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2028 static_cast<long>(off), static_cast<long>(len));
2029
2030 gold_assert(len >= this->do_minimum_hole_size());
2031
2032 unsigned char* const oview = of->get_output_view(off, len);
2033 unsigned char* pov = oview;
2034
2035 // Write header fields: unit_length, version, header_length,
2036 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2037 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2038 // We set the header_length field to cover the entire hole, so the
2039 // line number program is empty.
2040 if (this->is_big_endian())
2041 {
2042 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2043 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2044 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2045 }
2046 else
2047 {
2048 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2049 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2050 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2051 }
2052 pov += 4 + 2 + 4;
2053 *pov++ = 1; // minimum_instruction_length
2054 *pov++ = 0; // default_is_stmt
2055 *pov++ = 0; // line_base
2056 *pov++ = 5; // line_range
2057 *pov++ = 13; // opcode_base
2058 *pov++ = 0; // standard_opcode_lengths[1]
2059 *pov++ = 1; // standard_opcode_lengths[2]
2060 *pov++ = 1; // standard_opcode_lengths[3]
2061 *pov++ = 1; // standard_opcode_lengths[4]
2062 *pov++ = 1; // standard_opcode_lengths[5]
2063 *pov++ = 0; // standard_opcode_lengths[6]
2064 *pov++ = 0; // standard_opcode_lengths[7]
2065 *pov++ = 0; // standard_opcode_lengths[8]
2066 *pov++ = 1; // standard_opcode_lengths[9]
2067 *pov++ = 0; // standard_opcode_lengths[10]
2068 *pov++ = 0; // standard_opcode_lengths[11]
2069 *pov++ = 1; // standard_opcode_lengths[12]
2070 *pov++ = 0; // include_directories (empty)
2071 *pov++ = 0; // filenames (empty)
2072
2073 // Some consumers don't check the header_length field, and simply
2074 // start reading the line number program immediately following the
2075 // header. For those consumers, we fill the remainder of the free
2076 // space with DW_LNS_set_basic_block opcodes. These are effectively
2077 // no-ops: the resulting line table program will not create any rows.
2078 if (pov < oview + len)
2079 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2080
2081 of->write_output_view(off, len, oview);
2082 }
2083
2084 // Output_section::Input_section methods.
2085
2086 // Return the current data size. For an input section we store the size here.
2087 // For an Output_section_data, we have to ask it for the size.
2088
2089 off_t
2090 Output_section::Input_section::current_data_size() const
2091 {
2092 if (this->is_input_section())
2093 return this->u1_.data_size;
2094 else
2095 {
2096 this->u2_.posd->pre_finalize_data_size();
2097 return this->u2_.posd->current_data_size();
2098 }
2099 }
2100
2101 // Return the data size. For an input section we store the size here.
2102 // For an Output_section_data, we have to ask it for the size.
2103
2104 off_t
2105 Output_section::Input_section::data_size() const
2106 {
2107 if (this->is_input_section())
2108 return this->u1_.data_size;
2109 else
2110 return this->u2_.posd->data_size();
2111 }
2112
2113 // Return the object for an input section.
2114
2115 Relobj*
2116 Output_section::Input_section::relobj() const
2117 {
2118 if (this->is_input_section())
2119 return this->u2_.object;
2120 else if (this->is_merge_section())
2121 {
2122 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2123 return this->u2_.pomb->first_relobj();
2124 }
2125 else if (this->is_relaxed_input_section())
2126 return this->u2_.poris->relobj();
2127 else
2128 gold_unreachable();
2129 }
2130
2131 // Return the input section index for an input section.
2132
2133 unsigned int
2134 Output_section::Input_section::shndx() const
2135 {
2136 if (this->is_input_section())
2137 return this->shndx_;
2138 else if (this->is_merge_section())
2139 {
2140 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2141 return this->u2_.pomb->first_shndx();
2142 }
2143 else if (this->is_relaxed_input_section())
2144 return this->u2_.poris->shndx();
2145 else
2146 gold_unreachable();
2147 }
2148
2149 // Set the address and file offset.
2150
2151 void
2152 Output_section::Input_section::set_address_and_file_offset(
2153 uint64_t address,
2154 off_t file_offset,
2155 off_t section_file_offset)
2156 {
2157 if (this->is_input_section())
2158 this->u2_.object->set_section_offset(this->shndx_,
2159 file_offset - section_file_offset);
2160 else
2161 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2162 }
2163
2164 // Reset the address and file offset.
2165
2166 void
2167 Output_section::Input_section::reset_address_and_file_offset()
2168 {
2169 if (!this->is_input_section())
2170 this->u2_.posd->reset_address_and_file_offset();
2171 }
2172
2173 // Finalize the data size.
2174
2175 void
2176 Output_section::Input_section::finalize_data_size()
2177 {
2178 if (!this->is_input_section())
2179 this->u2_.posd->finalize_data_size();
2180 }
2181
2182 // Try to turn an input offset into an output offset. We want to
2183 // return the output offset relative to the start of this
2184 // Input_section in the output section.
2185
2186 inline bool
2187 Output_section::Input_section::output_offset(
2188 const Relobj* object,
2189 unsigned int shndx,
2190 section_offset_type offset,
2191 section_offset_type* poutput) const
2192 {
2193 if (!this->is_input_section())
2194 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2195 else
2196 {
2197 if (this->shndx_ != shndx || this->u2_.object != object)
2198 return false;
2199 *poutput = offset;
2200 return true;
2201 }
2202 }
2203
2204 // Return whether this is the merge section for the input section
2205 // SHNDX in OBJECT.
2206
2207 inline bool
2208 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2209 unsigned int shndx) const
2210 {
2211 if (this->is_input_section())
2212 return false;
2213 return this->u2_.posd->is_merge_section_for(object, shndx);
2214 }
2215
2216 // Write out the data. We don't have to do anything for an input
2217 // section--they are handled via Object::relocate--but this is where
2218 // we write out the data for an Output_section_data.
2219
2220 void
2221 Output_section::Input_section::write(Output_file* of)
2222 {
2223 if (!this->is_input_section())
2224 this->u2_.posd->write(of);
2225 }
2226
2227 // Write the data to a buffer. As for write(), we don't have to do
2228 // anything for an input section.
2229
2230 void
2231 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2232 {
2233 if (!this->is_input_section())
2234 this->u2_.posd->write_to_buffer(buffer);
2235 }
2236
2237 // Print to a map file.
2238
2239 void
2240 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2241 {
2242 switch (this->shndx_)
2243 {
2244 case OUTPUT_SECTION_CODE:
2245 case MERGE_DATA_SECTION_CODE:
2246 case MERGE_STRING_SECTION_CODE:
2247 this->u2_.posd->print_to_mapfile(mapfile);
2248 break;
2249
2250 case RELAXED_INPUT_SECTION_CODE:
2251 {
2252 Output_relaxed_input_section* relaxed_section =
2253 this->relaxed_input_section();
2254 mapfile->print_input_section(relaxed_section->relobj(),
2255 relaxed_section->shndx());
2256 }
2257 break;
2258 default:
2259 mapfile->print_input_section(this->u2_.object, this->shndx_);
2260 break;
2261 }
2262 }
2263
2264 // Output_section methods.
2265
2266 // Construct an Output_section. NAME will point into a Stringpool.
2267
2268 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2269 elfcpp::Elf_Xword flags)
2270 : name_(name),
2271 addralign_(0),
2272 entsize_(0),
2273 load_address_(0),
2274 link_section_(NULL),
2275 link_(0),
2276 info_section_(NULL),
2277 info_symndx_(NULL),
2278 info_(0),
2279 type_(type),
2280 flags_(flags),
2281 order_(ORDER_INVALID),
2282 out_shndx_(-1U),
2283 symtab_index_(0),
2284 dynsym_index_(0),
2285 input_sections_(),
2286 first_input_offset_(0),
2287 fills_(),
2288 postprocessing_buffer_(NULL),
2289 needs_symtab_index_(false),
2290 needs_dynsym_index_(false),
2291 should_link_to_symtab_(false),
2292 should_link_to_dynsym_(false),
2293 after_input_sections_(false),
2294 requires_postprocessing_(false),
2295 found_in_sections_clause_(false),
2296 has_load_address_(false),
2297 info_uses_section_index_(false),
2298 input_section_order_specified_(false),
2299 may_sort_attached_input_sections_(false),
2300 must_sort_attached_input_sections_(false),
2301 attached_input_sections_are_sorted_(false),
2302 is_relro_(false),
2303 is_small_section_(false),
2304 is_large_section_(false),
2305 generate_code_fills_at_write_(false),
2306 is_entsize_zero_(false),
2307 section_offsets_need_adjustment_(false),
2308 is_noload_(false),
2309 always_keeps_input_sections_(false),
2310 has_fixed_layout_(false),
2311 is_patch_space_allowed_(false),
2312 is_unique_segment_(false),
2313 tls_offset_(0),
2314 extra_segment_flags_(0),
2315 segment_alignment_(0),
2316 checkpoint_(NULL),
2317 lookup_maps_(new Output_section_lookup_maps),
2318 free_list_(),
2319 free_space_fill_(NULL),
2320 patch_space_(0)
2321 {
2322 // An unallocated section has no address. Forcing this means that
2323 // we don't need special treatment for symbols defined in debug
2324 // sections.
2325 if ((flags & elfcpp::SHF_ALLOC) == 0)
2326 this->set_address(0);
2327 }
2328
2329 Output_section::~Output_section()
2330 {
2331 delete this->checkpoint_;
2332 }
2333
2334 // Set the entry size.
2335
2336 void
2337 Output_section::set_entsize(uint64_t v)
2338 {
2339 if (this->is_entsize_zero_)
2340 ;
2341 else if (this->entsize_ == 0)
2342 this->entsize_ = v;
2343 else if (this->entsize_ != v)
2344 {
2345 this->entsize_ = 0;
2346 this->is_entsize_zero_ = 1;
2347 }
2348 }
2349
2350 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2351 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2352 // relocation section which applies to this section, or 0 if none, or
2353 // -1U if more than one. Return the offset of the input section
2354 // within the output section. Return -1 if the input section will
2355 // receive special handling. In the normal case we don't always keep
2356 // track of input sections for an Output_section. Instead, each
2357 // Object keeps track of the Output_section for each of its input
2358 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2359 // track of input sections here; this is used when SECTIONS appears in
2360 // a linker script.
2361
2362 template<int size, bool big_endian>
2363 off_t
2364 Output_section::add_input_section(Layout* layout,
2365 Sized_relobj_file<size, big_endian>* object,
2366 unsigned int shndx,
2367 const char* secname,
2368 const elfcpp::Shdr<size, big_endian>& shdr,
2369 unsigned int reloc_shndx,
2370 bool have_sections_script)
2371 {
2372 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2373 if ((addralign & (addralign - 1)) != 0)
2374 {
2375 object->error(_("invalid alignment %lu for section \"%s\""),
2376 static_cast<unsigned long>(addralign), secname);
2377 addralign = 1;
2378 }
2379
2380 if (addralign > this->addralign_)
2381 this->addralign_ = addralign;
2382
2383 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2384 uint64_t entsize = shdr.get_sh_entsize();
2385
2386 // .debug_str is a mergeable string section, but is not always so
2387 // marked by compilers. Mark manually here so we can optimize.
2388 if (strcmp(secname, ".debug_str") == 0)
2389 {
2390 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2391 entsize = 1;
2392 }
2393
2394 this->update_flags_for_input_section(sh_flags);
2395 this->set_entsize(entsize);
2396
2397 // If this is a SHF_MERGE section, we pass all the input sections to
2398 // a Output_data_merge. We don't try to handle relocations for such
2399 // a section. We don't try to handle empty merge sections--they
2400 // mess up the mappings, and are useless anyhow.
2401 // FIXME: Need to handle merge sections during incremental update.
2402 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2403 && reloc_shndx == 0
2404 && shdr.get_sh_size() > 0
2405 && !parameters->incremental())
2406 {
2407 // Keep information about merged input sections for rebuilding fast
2408 // lookup maps if we have sections-script or we do relaxation.
2409 bool keeps_input_sections = (this->always_keeps_input_sections_
2410 || have_sections_script
2411 || parameters->target().may_relax());
2412
2413 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2414 addralign, keeps_input_sections))
2415 {
2416 // Tell the relocation routines that they need to call the
2417 // output_offset method to determine the final address.
2418 return -1;
2419 }
2420 }
2421
2422 section_size_type input_section_size = shdr.get_sh_size();
2423 section_size_type uncompressed_size;
2424 if (object->section_is_compressed(shndx, &uncompressed_size))
2425 input_section_size = uncompressed_size;
2426
2427 off_t offset_in_section;
2428
2429 if (this->has_fixed_layout())
2430 {
2431 // For incremental updates, find a chunk of unused space in the section.
2432 offset_in_section = this->free_list_.allocate(input_section_size,
2433 addralign, 0);
2434 if (offset_in_section == -1)
2435 gold_fallback(_("out of patch space in section %s; "
2436 "relink with --incremental-full"),
2437 this->name());
2438 return offset_in_section;
2439 }
2440
2441 offset_in_section = this->current_data_size_for_child();
2442 off_t aligned_offset_in_section = align_address(offset_in_section,
2443 addralign);
2444 this->set_current_data_size_for_child(aligned_offset_in_section
2445 + input_section_size);
2446
2447 // Determine if we want to delay code-fill generation until the output
2448 // section is written. When the target is relaxing, we want to delay fill
2449 // generating to avoid adjusting them during relaxation. Also, if we are
2450 // sorting input sections we must delay fill generation.
2451 if (!this->generate_code_fills_at_write_
2452 && !have_sections_script
2453 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2454 && parameters->target().has_code_fill()
2455 && (parameters->target().may_relax()
2456 || layout->is_section_ordering_specified()))
2457 {
2458 gold_assert(this->fills_.empty());
2459 this->generate_code_fills_at_write_ = true;
2460 }
2461
2462 if (aligned_offset_in_section > offset_in_section
2463 && !this->generate_code_fills_at_write_
2464 && !have_sections_script
2465 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2466 && parameters->target().has_code_fill())
2467 {
2468 // We need to add some fill data. Using fill_list_ when
2469 // possible is an optimization, since we will often have fill
2470 // sections without input sections.
2471 off_t fill_len = aligned_offset_in_section - offset_in_section;
2472 if (this->input_sections_.empty())
2473 this->fills_.push_back(Fill(offset_in_section, fill_len));
2474 else
2475 {
2476 std::string fill_data(parameters->target().code_fill(fill_len));
2477 Output_data_const* odc = new Output_data_const(fill_data, 1);
2478 this->input_sections_.push_back(Input_section(odc));
2479 }
2480 }
2481
2482 // We need to keep track of this section if we are already keeping
2483 // track of sections, or if we are relaxing. Also, if this is a
2484 // section which requires sorting, or which may require sorting in
2485 // the future, we keep track of the sections. If the
2486 // --section-ordering-file option is used to specify the order of
2487 // sections, we need to keep track of sections.
2488 if (this->always_keeps_input_sections_
2489 || have_sections_script
2490 || !this->input_sections_.empty()
2491 || this->may_sort_attached_input_sections()
2492 || this->must_sort_attached_input_sections()
2493 || parameters->options().user_set_Map()
2494 || parameters->target().may_relax()
2495 || layout->is_section_ordering_specified())
2496 {
2497 Input_section isecn(object, shndx, input_section_size, addralign);
2498 /* If section ordering is requested by specifying a ordering file,
2499 using --section-ordering-file, match the section name with
2500 a pattern. */
2501 if (parameters->options().section_ordering_file())
2502 {
2503 unsigned int section_order_index =
2504 layout->find_section_order_index(std::string(secname));
2505 if (section_order_index != 0)
2506 {
2507 isecn.set_section_order_index(section_order_index);
2508 this->set_input_section_order_specified();
2509 }
2510 }
2511 this->input_sections_.push_back(isecn);
2512 }
2513
2514 return aligned_offset_in_section;
2515 }
2516
2517 // Add arbitrary data to an output section.
2518
2519 void
2520 Output_section::add_output_section_data(Output_section_data* posd)
2521 {
2522 Input_section inp(posd);
2523 this->add_output_section_data(&inp);
2524
2525 if (posd->is_data_size_valid())
2526 {
2527 off_t offset_in_section;
2528 if (this->has_fixed_layout())
2529 {
2530 // For incremental updates, find a chunk of unused space.
2531 offset_in_section = this->free_list_.allocate(posd->data_size(),
2532 posd->addralign(), 0);
2533 if (offset_in_section == -1)
2534 gold_fallback(_("out of patch space in section %s; "
2535 "relink with --incremental-full"),
2536 this->name());
2537 // Finalize the address and offset now.
2538 uint64_t addr = this->address();
2539 off_t offset = this->offset();
2540 posd->set_address_and_file_offset(addr + offset_in_section,
2541 offset + offset_in_section);
2542 }
2543 else
2544 {
2545 offset_in_section = this->current_data_size_for_child();
2546 off_t aligned_offset_in_section = align_address(offset_in_section,
2547 posd->addralign());
2548 this->set_current_data_size_for_child(aligned_offset_in_section
2549 + posd->data_size());
2550 }
2551 }
2552 else if (this->has_fixed_layout())
2553 {
2554 // For incremental updates, arrange for the data to have a fixed layout.
2555 // This will mean that additions to the data must be allocated from
2556 // free space within the containing output section.
2557 uint64_t addr = this->address();
2558 posd->set_address(addr);
2559 posd->set_file_offset(0);
2560 // FIXME: This should eventually be unreachable.
2561 // gold_unreachable();
2562 }
2563 }
2564
2565 // Add a relaxed input section.
2566
2567 void
2568 Output_section::add_relaxed_input_section(Layout* layout,
2569 Output_relaxed_input_section* poris,
2570 const std::string& name)
2571 {
2572 Input_section inp(poris);
2573
2574 // If the --section-ordering-file option is used to specify the order of
2575 // sections, we need to keep track of sections.
2576 if (layout->is_section_ordering_specified())
2577 {
2578 unsigned int section_order_index =
2579 layout->find_section_order_index(name);
2580 if (section_order_index != 0)
2581 {
2582 inp.set_section_order_index(section_order_index);
2583 this->set_input_section_order_specified();
2584 }
2585 }
2586
2587 this->add_output_section_data(&inp);
2588 if (this->lookup_maps_->is_valid())
2589 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2590 poris->shndx(), poris);
2591
2592 // For a relaxed section, we use the current data size. Linker scripts
2593 // get all the input sections, including relaxed one from an output
2594 // section and add them back to the same output section to compute the
2595 // output section size. If we do not account for sizes of relaxed input
2596 // sections, an output section would be incorrectly sized.
2597 off_t offset_in_section = this->current_data_size_for_child();
2598 off_t aligned_offset_in_section = align_address(offset_in_section,
2599 poris->addralign());
2600 this->set_current_data_size_for_child(aligned_offset_in_section
2601 + poris->current_data_size());
2602 }
2603
2604 // Add arbitrary data to an output section by Input_section.
2605
2606 void
2607 Output_section::add_output_section_data(Input_section* inp)
2608 {
2609 if (this->input_sections_.empty())
2610 this->first_input_offset_ = this->current_data_size_for_child();
2611
2612 this->input_sections_.push_back(*inp);
2613
2614 uint64_t addralign = inp->addralign();
2615 if (addralign > this->addralign_)
2616 this->addralign_ = addralign;
2617
2618 inp->set_output_section(this);
2619 }
2620
2621 // Add a merge section to an output section.
2622
2623 void
2624 Output_section::add_output_merge_section(Output_section_data* posd,
2625 bool is_string, uint64_t entsize)
2626 {
2627 Input_section inp(posd, is_string, entsize);
2628 this->add_output_section_data(&inp);
2629 }
2630
2631 // Add an input section to a SHF_MERGE section.
2632
2633 bool
2634 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2635 uint64_t flags, uint64_t entsize,
2636 uint64_t addralign,
2637 bool keeps_input_sections)
2638 {
2639 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2640
2641 // We cannot restore merged input section states.
2642 gold_assert(this->checkpoint_ == NULL);
2643
2644 // Look up merge sections by required properties.
2645 // Currently, we only invalidate the lookup maps in script processing
2646 // and relaxation. We should not have done either when we reach here.
2647 // So we assume that the lookup maps are valid to simply code.
2648 gold_assert(this->lookup_maps_->is_valid());
2649 Merge_section_properties msp(is_string, entsize, addralign);
2650 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2651 bool is_new = false;
2652 if (pomb != NULL)
2653 {
2654 gold_assert(pomb->is_string() == is_string
2655 && pomb->entsize() == entsize
2656 && pomb->addralign() == addralign);
2657 }
2658 else
2659 {
2660 // Create a new Output_merge_data or Output_merge_string_data.
2661 if (!is_string)
2662 pomb = new Output_merge_data(entsize, addralign);
2663 else
2664 {
2665 switch (entsize)
2666 {
2667 case 1:
2668 pomb = new Output_merge_string<char>(addralign);
2669 break;
2670 case 2:
2671 pomb = new Output_merge_string<uint16_t>(addralign);
2672 break;
2673 case 4:
2674 pomb = new Output_merge_string<uint32_t>(addralign);
2675 break;
2676 default:
2677 return false;
2678 }
2679 }
2680 // If we need to do script processing or relaxation, we need to keep
2681 // the original input sections to rebuild the fast lookup maps.
2682 if (keeps_input_sections)
2683 pomb->set_keeps_input_sections();
2684 is_new = true;
2685 }
2686
2687 if (pomb->add_input_section(object, shndx))
2688 {
2689 // Add new merge section to this output section and link merge
2690 // section properties to new merge section in map.
2691 if (is_new)
2692 {
2693 this->add_output_merge_section(pomb, is_string, entsize);
2694 this->lookup_maps_->add_merge_section(msp, pomb);
2695 }
2696
2697 // Add input section to new merge section and link input section to new
2698 // merge section in map.
2699 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2700 return true;
2701 }
2702 else
2703 {
2704 // If add_input_section failed, delete new merge section to avoid
2705 // exporting empty merge sections in Output_section::get_input_section.
2706 if (is_new)
2707 delete pomb;
2708 return false;
2709 }
2710 }
2711
2712 // Build a relaxation map to speed up relaxation of existing input sections.
2713 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2714
2715 void
2716 Output_section::build_relaxation_map(
2717 const Input_section_list& input_sections,
2718 size_t limit,
2719 Relaxation_map* relaxation_map) const
2720 {
2721 for (size_t i = 0; i < limit; ++i)
2722 {
2723 const Input_section& is(input_sections[i]);
2724 if (is.is_input_section() || is.is_relaxed_input_section())
2725 {
2726 Section_id sid(is.relobj(), is.shndx());
2727 (*relaxation_map)[sid] = i;
2728 }
2729 }
2730 }
2731
2732 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2733 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2734 // indices of INPUT_SECTIONS.
2735
2736 void
2737 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2738 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2739 const Relaxation_map& map,
2740 Input_section_list* input_sections)
2741 {
2742 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2743 {
2744 Output_relaxed_input_section* poris = relaxed_sections[i];
2745 Section_id sid(poris->relobj(), poris->shndx());
2746 Relaxation_map::const_iterator p = map.find(sid);
2747 gold_assert(p != map.end());
2748 gold_assert((*input_sections)[p->second].is_input_section());
2749
2750 // Remember section order index of original input section
2751 // if it is set. Copy it to the relaxed input section.
2752 unsigned int soi =
2753 (*input_sections)[p->second].section_order_index();
2754 (*input_sections)[p->second] = Input_section(poris);
2755 (*input_sections)[p->second].set_section_order_index(soi);
2756 }
2757 }
2758
2759 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2760 // is a vector of pointers to Output_relaxed_input_section or its derived
2761 // classes. The relaxed sections must correspond to existing input sections.
2762
2763 void
2764 Output_section::convert_input_sections_to_relaxed_sections(
2765 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2766 {
2767 gold_assert(parameters->target().may_relax());
2768
2769 // We want to make sure that restore_states does not undo the effect of
2770 // this. If there is no checkpoint active, just search the current
2771 // input section list and replace the sections there. If there is
2772 // a checkpoint, also replace the sections there.
2773
2774 // By default, we look at the whole list.
2775 size_t limit = this->input_sections_.size();
2776
2777 if (this->checkpoint_ != NULL)
2778 {
2779 // Replace input sections with relaxed input section in the saved
2780 // copy of the input section list.
2781 if (this->checkpoint_->input_sections_saved())
2782 {
2783 Relaxation_map map;
2784 this->build_relaxation_map(
2785 *(this->checkpoint_->input_sections()),
2786 this->checkpoint_->input_sections()->size(),
2787 &map);
2788 this->convert_input_sections_in_list_to_relaxed_sections(
2789 relaxed_sections,
2790 map,
2791 this->checkpoint_->input_sections());
2792 }
2793 else
2794 {
2795 // We have not copied the input section list yet. Instead, just
2796 // look at the portion that would be saved.
2797 limit = this->checkpoint_->input_sections_size();
2798 }
2799 }
2800
2801 // Convert input sections in input_section_list.
2802 Relaxation_map map;
2803 this->build_relaxation_map(this->input_sections_, limit, &map);
2804 this->convert_input_sections_in_list_to_relaxed_sections(
2805 relaxed_sections,
2806 map,
2807 &this->input_sections_);
2808
2809 // Update fast look-up map.
2810 if (this->lookup_maps_->is_valid())
2811 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2812 {
2813 Output_relaxed_input_section* poris = relaxed_sections[i];
2814 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2815 poris->shndx(), poris);
2816 }
2817 }
2818
2819 // Update the output section flags based on input section flags.
2820
2821 void
2822 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2823 {
2824 // If we created the section with SHF_ALLOC clear, we set the
2825 // address. If we are now setting the SHF_ALLOC flag, we need to
2826 // undo that.
2827 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2828 && (flags & elfcpp::SHF_ALLOC) != 0)
2829 this->mark_address_invalid();
2830
2831 this->flags_ |= (flags
2832 & (elfcpp::SHF_WRITE
2833 | elfcpp::SHF_ALLOC
2834 | elfcpp::SHF_EXECINSTR));
2835
2836 if ((flags & elfcpp::SHF_MERGE) == 0)
2837 this->flags_ &=~ elfcpp::SHF_MERGE;
2838 else
2839 {
2840 if (this->current_data_size_for_child() == 0)
2841 this->flags_ |= elfcpp::SHF_MERGE;
2842 }
2843
2844 if ((flags & elfcpp::SHF_STRINGS) == 0)
2845 this->flags_ &=~ elfcpp::SHF_STRINGS;
2846 else
2847 {
2848 if (this->current_data_size_for_child() == 0)
2849 this->flags_ |= elfcpp::SHF_STRINGS;
2850 }
2851 }
2852
2853 // Find the merge section into which an input section with index SHNDX in
2854 // OBJECT has been added. Return NULL if none found.
2855
2856 Output_section_data*
2857 Output_section::find_merge_section(const Relobj* object,
2858 unsigned int shndx) const
2859 {
2860 if (!this->lookup_maps_->is_valid())
2861 this->build_lookup_maps();
2862 return this->lookup_maps_->find_merge_section(object, shndx);
2863 }
2864
2865 // Build the lookup maps for merge and relaxed sections. This is needs
2866 // to be declared as a const methods so that it is callable with a const
2867 // Output_section pointer. The method only updates states of the maps.
2868
2869 void
2870 Output_section::build_lookup_maps() const
2871 {
2872 this->lookup_maps_->clear();
2873 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2874 p != this->input_sections_.end();
2875 ++p)
2876 {
2877 if (p->is_merge_section())
2878 {
2879 Output_merge_base* pomb = p->output_merge_base();
2880 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2881 pomb->addralign());
2882 this->lookup_maps_->add_merge_section(msp, pomb);
2883 for (Output_merge_base::Input_sections::const_iterator is =
2884 pomb->input_sections_begin();
2885 is != pomb->input_sections_end();
2886 ++is)
2887 {
2888 const Const_section_id& csid = *is;
2889 this->lookup_maps_->add_merge_input_section(csid.first,
2890 csid.second, pomb);
2891 }
2892
2893 }
2894 else if (p->is_relaxed_input_section())
2895 {
2896 Output_relaxed_input_section* poris = p->relaxed_input_section();
2897 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2898 poris->shndx(), poris);
2899 }
2900 }
2901 }
2902
2903 // Find an relaxed input section corresponding to an input section
2904 // in OBJECT with index SHNDX.
2905
2906 const Output_relaxed_input_section*
2907 Output_section::find_relaxed_input_section(const Relobj* object,
2908 unsigned int shndx) const
2909 {
2910 if (!this->lookup_maps_->is_valid())
2911 this->build_lookup_maps();
2912 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2913 }
2914
2915 // Given an address OFFSET relative to the start of input section
2916 // SHNDX in OBJECT, return whether this address is being included in
2917 // the final link. This should only be called if SHNDX in OBJECT has
2918 // a special mapping.
2919
2920 bool
2921 Output_section::is_input_address_mapped(const Relobj* object,
2922 unsigned int shndx,
2923 off_t offset) const
2924 {
2925 // Look at the Output_section_data_maps first.
2926 const Output_section_data* posd = this->find_merge_section(object, shndx);
2927 if (posd == NULL)
2928 posd = this->find_relaxed_input_section(object, shndx);
2929
2930 if (posd != NULL)
2931 {
2932 section_offset_type output_offset;
2933 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2934 gold_assert(found);
2935 return output_offset != -1;
2936 }
2937
2938 // Fall back to the slow look-up.
2939 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2940 p != this->input_sections_.end();
2941 ++p)
2942 {
2943 section_offset_type output_offset;
2944 if (p->output_offset(object, shndx, offset, &output_offset))
2945 return output_offset != -1;
2946 }
2947
2948 // By default we assume that the address is mapped. This should
2949 // only be called after we have passed all sections to Layout. At
2950 // that point we should know what we are discarding.
2951 return true;
2952 }
2953
2954 // Given an address OFFSET relative to the start of input section
2955 // SHNDX in object OBJECT, return the output offset relative to the
2956 // start of the input section in the output section. This should only
2957 // be called if SHNDX in OBJECT has a special mapping.
2958
2959 section_offset_type
2960 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2961 section_offset_type offset) const
2962 {
2963 // This can only be called meaningfully when we know the data size
2964 // of this.
2965 gold_assert(this->is_data_size_valid());
2966
2967 // Look at the Output_section_data_maps first.
2968 const Output_section_data* posd = this->find_merge_section(object, shndx);
2969 if (posd == NULL)
2970 posd = this->find_relaxed_input_section(object, shndx);
2971 if (posd != NULL)
2972 {
2973 section_offset_type output_offset;
2974 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2975 gold_assert(found);
2976 return output_offset;
2977 }
2978
2979 // Fall back to the slow look-up.
2980 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2981 p != this->input_sections_.end();
2982 ++p)
2983 {
2984 section_offset_type output_offset;
2985 if (p->output_offset(object, shndx, offset, &output_offset))
2986 return output_offset;
2987 }
2988 gold_unreachable();
2989 }
2990
2991 // Return the output virtual address of OFFSET relative to the start
2992 // of input section SHNDX in object OBJECT.
2993
2994 uint64_t
2995 Output_section::output_address(const Relobj* object, unsigned int shndx,
2996 off_t offset) const
2997 {
2998 uint64_t addr = this->address() + this->first_input_offset_;
2999
3000 // Look at the Output_section_data_maps first.
3001 const Output_section_data* posd = this->find_merge_section(object, shndx);
3002 if (posd == NULL)
3003 posd = this->find_relaxed_input_section(object, shndx);
3004 if (posd != NULL && posd->is_address_valid())
3005 {
3006 section_offset_type output_offset;
3007 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3008 gold_assert(found);
3009 return posd->address() + output_offset;
3010 }
3011
3012 // Fall back to the slow look-up.
3013 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3014 p != this->input_sections_.end();
3015 ++p)
3016 {
3017 addr = align_address(addr, p->addralign());
3018 section_offset_type output_offset;
3019 if (p->output_offset(object, shndx, offset, &output_offset))
3020 {
3021 if (output_offset == -1)
3022 return -1ULL;
3023 return addr + output_offset;
3024 }
3025 addr += p->data_size();
3026 }
3027
3028 // If we get here, it means that we don't know the mapping for this
3029 // input section. This might happen in principle if
3030 // add_input_section were called before add_output_section_data.
3031 // But it should never actually happen.
3032
3033 gold_unreachable();
3034 }
3035
3036 // Find the output address of the start of the merged section for
3037 // input section SHNDX in object OBJECT.
3038
3039 bool
3040 Output_section::find_starting_output_address(const Relobj* object,
3041 unsigned int shndx,
3042 uint64_t* paddr) const
3043 {
3044 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3045 // Looking up the merge section map does not always work as we sometimes
3046 // find a merge section without its address set.
3047 uint64_t addr = this->address() + this->first_input_offset_;
3048 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3049 p != this->input_sections_.end();
3050 ++p)
3051 {
3052 addr = align_address(addr, p->addralign());
3053
3054 // It would be nice if we could use the existing output_offset
3055 // method to get the output offset of input offset 0.
3056 // Unfortunately we don't know for sure that input offset 0 is
3057 // mapped at all.
3058 if (p->is_merge_section_for(object, shndx))
3059 {
3060 *paddr = addr;
3061 return true;
3062 }
3063
3064 addr += p->data_size();
3065 }
3066
3067 // We couldn't find a merge output section for this input section.
3068 return false;
3069 }
3070
3071 // Update the data size of an Output_section.
3072
3073 void
3074 Output_section::update_data_size()
3075 {
3076 if (this->input_sections_.empty())
3077 return;
3078
3079 if (this->must_sort_attached_input_sections()
3080 || this->input_section_order_specified())
3081 this->sort_attached_input_sections();
3082
3083 off_t off = this->first_input_offset_;
3084 for (Input_section_list::iterator p = this->input_sections_.begin();
3085 p != this->input_sections_.end();
3086 ++p)
3087 {
3088 off = align_address(off, p->addralign());
3089 off += p->current_data_size();
3090 }
3091
3092 this->set_current_data_size_for_child(off);
3093 }
3094
3095 // Set the data size of an Output_section. This is where we handle
3096 // setting the addresses of any Output_section_data objects.
3097
3098 void
3099 Output_section::set_final_data_size()
3100 {
3101 off_t data_size;
3102
3103 if (this->input_sections_.empty())
3104 data_size = this->current_data_size_for_child();
3105 else
3106 {
3107 if (this->must_sort_attached_input_sections()
3108 || this->input_section_order_specified())
3109 this->sort_attached_input_sections();
3110
3111 uint64_t address = this->address();
3112 off_t startoff = this->offset();
3113 off_t off = startoff + this->first_input_offset_;
3114 for (Input_section_list::iterator p = this->input_sections_.begin();
3115 p != this->input_sections_.end();
3116 ++p)
3117 {
3118 off = align_address(off, p->addralign());
3119 p->set_address_and_file_offset(address + (off - startoff), off,
3120 startoff);
3121 off += p->data_size();
3122 }
3123 data_size = off - startoff;
3124 }
3125
3126 // For full incremental links, we want to allocate some patch space
3127 // in most sections for subsequent incremental updates.
3128 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3129 {
3130 double pct = parameters->options().incremental_patch();
3131 size_t extra = static_cast<size_t>(data_size * pct);
3132 if (this->free_space_fill_ != NULL
3133 && this->free_space_fill_->minimum_hole_size() > extra)
3134 extra = this->free_space_fill_->minimum_hole_size();
3135 off_t new_size = align_address(data_size + extra, this->addralign());
3136 this->patch_space_ = new_size - data_size;
3137 gold_debug(DEBUG_INCREMENTAL,
3138 "set_final_data_size: %08lx + %08lx: section %s",
3139 static_cast<long>(data_size),
3140 static_cast<long>(this->patch_space_),
3141 this->name());
3142 data_size = new_size;
3143 }
3144
3145 this->set_data_size(data_size);
3146 }
3147
3148 // Reset the address and file offset.
3149
3150 void
3151 Output_section::do_reset_address_and_file_offset()
3152 {
3153 // An unallocated section has no address. Forcing this means that
3154 // we don't need special treatment for symbols defined in debug
3155 // sections. We do the same in the constructor. This does not
3156 // apply to NOLOAD sections though.
3157 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3158 this->set_address(0);
3159
3160 for (Input_section_list::iterator p = this->input_sections_.begin();
3161 p != this->input_sections_.end();
3162 ++p)
3163 p->reset_address_and_file_offset();
3164
3165 // Remove any patch space that was added in set_final_data_size.
3166 if (this->patch_space_ > 0)
3167 {
3168 this->set_current_data_size_for_child(this->current_data_size_for_child()
3169 - this->patch_space_);
3170 this->patch_space_ = 0;
3171 }
3172 }
3173
3174 // Return true if address and file offset have the values after reset.
3175
3176 bool
3177 Output_section::do_address_and_file_offset_have_reset_values() const
3178 {
3179 if (this->is_offset_valid())
3180 return false;
3181
3182 // An unallocated section has address 0 after its construction or a reset.
3183 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3184 return this->is_address_valid() && this->address() == 0;
3185 else
3186 return !this->is_address_valid();
3187 }
3188
3189 // Set the TLS offset. Called only for SHT_TLS sections.
3190
3191 void
3192 Output_section::do_set_tls_offset(uint64_t tls_base)
3193 {
3194 this->tls_offset_ = this->address() - tls_base;
3195 }
3196
3197 // In a few cases we need to sort the input sections attached to an
3198 // output section. This is used to implement the type of constructor
3199 // priority ordering implemented by the GNU linker, in which the
3200 // priority becomes part of the section name and the sections are
3201 // sorted by name. We only do this for an output section if we see an
3202 // attached input section matching ".ctors.*", ".dtors.*",
3203 // ".init_array.*" or ".fini_array.*".
3204
3205 class Output_section::Input_section_sort_entry
3206 {
3207 public:
3208 Input_section_sort_entry()
3209 : input_section_(), index_(-1U), section_has_name_(false),
3210 section_name_()
3211 { }
3212
3213 Input_section_sort_entry(const Input_section& input_section,
3214 unsigned int index,
3215 bool must_sort_attached_input_sections)
3216 : input_section_(input_section), index_(index),
3217 section_has_name_(input_section.is_input_section()
3218 || input_section.is_relaxed_input_section())
3219 {
3220 if (this->section_has_name_
3221 && must_sort_attached_input_sections)
3222 {
3223 // This is only called single-threaded from Layout::finalize,
3224 // so it is OK to lock. Unfortunately we have no way to pass
3225 // in a Task token.
3226 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3227 Object* obj = (input_section.is_input_section()
3228 ? input_section.relobj()
3229 : input_section.relaxed_input_section()->relobj());
3230 Task_lock_obj<Object> tl(dummy_task, obj);
3231
3232 // This is a slow operation, which should be cached in
3233 // Layout::layout if this becomes a speed problem.
3234 this->section_name_ = obj->section_name(input_section.shndx());
3235 }
3236 }
3237
3238 // Return the Input_section.
3239 const Input_section&
3240 input_section() const
3241 {
3242 gold_assert(this->index_ != -1U);
3243 return this->input_section_;
3244 }
3245
3246 // The index of this entry in the original list. This is used to
3247 // make the sort stable.
3248 unsigned int
3249 index() const
3250 {
3251 gold_assert(this->index_ != -1U);
3252 return this->index_;
3253 }
3254
3255 // Whether there is a section name.
3256 bool
3257 section_has_name() const
3258 { return this->section_has_name_; }
3259
3260 // The section name.
3261 const std::string&
3262 section_name() const
3263 {
3264 gold_assert(this->section_has_name_);
3265 return this->section_name_;
3266 }
3267
3268 // Return true if the section name has a priority. This is assumed
3269 // to be true if it has a dot after the initial dot.
3270 bool
3271 has_priority() const
3272 {
3273 gold_assert(this->section_has_name_);
3274 return this->section_name_.find('.', 1) != std::string::npos;
3275 }
3276
3277 // Return the priority. Believe it or not, gcc encodes the priority
3278 // differently for .ctors/.dtors and .init_array/.fini_array
3279 // sections.
3280 unsigned int
3281 get_priority() const
3282 {
3283 gold_assert(this->section_has_name_);
3284 bool is_ctors;
3285 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3286 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3287 is_ctors = true;
3288 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3289 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3290 is_ctors = false;
3291 else
3292 return 0;
3293 char* end;
3294 unsigned long prio = strtoul((this->section_name_.c_str()
3295 + (is_ctors ? 7 : 12)),
3296 &end, 10);
3297 if (*end != '\0')
3298 return 0;
3299 else if (is_ctors)
3300 return 65535 - prio;
3301 else
3302 return prio;
3303 }
3304
3305 // Return true if this an input file whose base name matches
3306 // FILE_NAME. The base name must have an extension of ".o", and
3307 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3308 // This is to match crtbegin.o as well as crtbeginS.o without
3309 // getting confused by other possibilities. Overall matching the
3310 // file name this way is a dreadful hack, but the GNU linker does it
3311 // in order to better support gcc, and we need to be compatible.
3312 bool
3313 match_file_name(const char* file_name) const
3314 {
3315 if (this->input_section_.is_output_section_data())
3316 return false;
3317 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3318 }
3319
3320 // Returns 1 if THIS should appear before S in section order, -1 if S
3321 // appears before THIS and 0 if they are not comparable.
3322 int
3323 compare_section_ordering(const Input_section_sort_entry& s) const
3324 {
3325 unsigned int this_secn_index = this->input_section_.section_order_index();
3326 unsigned int s_secn_index = s.input_section().section_order_index();
3327 if (this_secn_index > 0 && s_secn_index > 0)
3328 {
3329 if (this_secn_index < s_secn_index)
3330 return 1;
3331 else if (this_secn_index > s_secn_index)
3332 return -1;
3333 }
3334 return 0;
3335 }
3336
3337 private:
3338 // The Input_section we are sorting.
3339 Input_section input_section_;
3340 // The index of this Input_section in the original list.
3341 unsigned int index_;
3342 // Whether this Input_section has a section name--it won't if this
3343 // is some random Output_section_data.
3344 bool section_has_name_;
3345 // The section name if there is one.
3346 std::string section_name_;
3347 };
3348
3349 // Return true if S1 should come before S2 in the output section.
3350
3351 bool
3352 Output_section::Input_section_sort_compare::operator()(
3353 const Output_section::Input_section_sort_entry& s1,
3354 const Output_section::Input_section_sort_entry& s2) const
3355 {
3356 // crtbegin.o must come first.
3357 bool s1_begin = s1.match_file_name("crtbegin");
3358 bool s2_begin = s2.match_file_name("crtbegin");
3359 if (s1_begin || s2_begin)
3360 {
3361 if (!s1_begin)
3362 return false;
3363 if (!s2_begin)
3364 return true;
3365 return s1.index() < s2.index();
3366 }
3367
3368 // crtend.o must come last.
3369 bool s1_end = s1.match_file_name("crtend");
3370 bool s2_end = s2.match_file_name("crtend");
3371 if (s1_end || s2_end)
3372 {
3373 if (!s1_end)
3374 return true;
3375 if (!s2_end)
3376 return false;
3377 return s1.index() < s2.index();
3378 }
3379
3380 // We sort all the sections with no names to the end.
3381 if (!s1.section_has_name() || !s2.section_has_name())
3382 {
3383 if (s1.section_has_name())
3384 return true;
3385 if (s2.section_has_name())
3386 return false;
3387 return s1.index() < s2.index();
3388 }
3389
3390 // A section with a priority follows a section without a priority.
3391 bool s1_has_priority = s1.has_priority();
3392 bool s2_has_priority = s2.has_priority();
3393 if (s1_has_priority && !s2_has_priority)
3394 return false;
3395 if (!s1_has_priority && s2_has_priority)
3396 return true;
3397
3398 // Check if a section order exists for these sections through a section
3399 // ordering file. If sequence_num is 0, an order does not exist.
3400 int sequence_num = s1.compare_section_ordering(s2);
3401 if (sequence_num != 0)
3402 return sequence_num == 1;
3403
3404 // Otherwise we sort by name.
3405 int compare = s1.section_name().compare(s2.section_name());
3406 if (compare != 0)
3407 return compare < 0;
3408
3409 // Otherwise we keep the input order.
3410 return s1.index() < s2.index();
3411 }
3412
3413 // Return true if S1 should come before S2 in an .init_array or .fini_array
3414 // output section.
3415
3416 bool
3417 Output_section::Input_section_sort_init_fini_compare::operator()(
3418 const Output_section::Input_section_sort_entry& s1,
3419 const Output_section::Input_section_sort_entry& s2) const
3420 {
3421 // We sort all the sections with no names to the end.
3422 if (!s1.section_has_name() || !s2.section_has_name())
3423 {
3424 if (s1.section_has_name())
3425 return true;
3426 if (s2.section_has_name())
3427 return false;
3428 return s1.index() < s2.index();
3429 }
3430
3431 // A section without a priority follows a section with a priority.
3432 // This is the reverse of .ctors and .dtors sections.
3433 bool s1_has_priority = s1.has_priority();
3434 bool s2_has_priority = s2.has_priority();
3435 if (s1_has_priority && !s2_has_priority)
3436 return true;
3437 if (!s1_has_priority && s2_has_priority)
3438 return false;
3439
3440 // .ctors and .dtors sections without priority come after
3441 // .init_array and .fini_array sections without priority.
3442 if (!s1_has_priority
3443 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3444 && s1.section_name() != s2.section_name())
3445 return false;
3446 if (!s2_has_priority
3447 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3448 && s2.section_name() != s1.section_name())
3449 return true;
3450
3451 // Sort by priority if we can.
3452 if (s1_has_priority)
3453 {
3454 unsigned int s1_prio = s1.get_priority();
3455 unsigned int s2_prio = s2.get_priority();
3456 if (s1_prio < s2_prio)
3457 return true;
3458 else if (s1_prio > s2_prio)
3459 return false;
3460 }
3461
3462 // Check if a section order exists for these sections through a section
3463 // ordering file. If sequence_num is 0, an order does not exist.
3464 int sequence_num = s1.compare_section_ordering(s2);
3465 if (sequence_num != 0)
3466 return sequence_num == 1;
3467
3468 // Otherwise we sort by name.
3469 int compare = s1.section_name().compare(s2.section_name());
3470 if (compare != 0)
3471 return compare < 0;
3472
3473 // Otherwise we keep the input order.
3474 return s1.index() < s2.index();
3475 }
3476
3477 // Return true if S1 should come before S2. Sections that do not match
3478 // any pattern in the section ordering file are placed ahead of the sections
3479 // that match some pattern.
3480
3481 bool
3482 Output_section::Input_section_sort_section_order_index_compare::operator()(
3483 const Output_section::Input_section_sort_entry& s1,
3484 const Output_section::Input_section_sort_entry& s2) const
3485 {
3486 unsigned int s1_secn_index = s1.input_section().section_order_index();
3487 unsigned int s2_secn_index = s2.input_section().section_order_index();
3488
3489 // Keep input order if section ordering cannot determine order.
3490 if (s1_secn_index == s2_secn_index)
3491 return s1.index() < s2.index();
3492
3493 return s1_secn_index < s2_secn_index;
3494 }
3495
3496 // Return true if S1 should come before S2. This is the sort comparison
3497 // function for .text to sort sections with prefixes
3498 // .text.{unlikely,exit,startup,hot} before other sections.
3499
3500 bool
3501 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3502 ::operator()(
3503 const Output_section::Input_section_sort_entry& s1,
3504 const Output_section::Input_section_sort_entry& s2) const
3505 {
3506 // We sort all the sections with no names to the end.
3507 if (!s1.section_has_name() || !s2.section_has_name())
3508 {
3509 if (s1.section_has_name())
3510 return true;
3511 if (s2.section_has_name())
3512 return false;
3513 return s1.index() < s2.index();
3514 }
3515
3516 // Some input section names have special ordering requirements.
3517 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3518 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3519 if (o1 != o2)
3520 {
3521 if (o1 < 0)
3522 return false;
3523 else if (o2 < 0)
3524 return true;
3525 else
3526 return o1 < o2;
3527 }
3528
3529 // Keep input order otherwise.
3530 return s1.index() < s2.index();
3531 }
3532
3533 // Return true if S1 should come before S2. This is the sort comparison
3534 // function for sections to sort them by name.
3535
3536 bool
3537 Output_section::Input_section_sort_section_name_compare
3538 ::operator()(
3539 const Output_section::Input_section_sort_entry& s1,
3540 const Output_section::Input_section_sort_entry& s2) const
3541 {
3542 // We sort all the sections with no names to the end.
3543 if (!s1.section_has_name() || !s2.section_has_name())
3544 {
3545 if (s1.section_has_name())
3546 return true;
3547 if (s2.section_has_name())
3548 return false;
3549 return s1.index() < s2.index();
3550 }
3551
3552 // We sort by name.
3553 int compare = s1.section_name().compare(s2.section_name());
3554 if (compare != 0)
3555 return compare < 0;
3556
3557 // Keep input order otherwise.
3558 return s1.index() < s2.index();
3559 }
3560
3561 // This updates the section order index of input sections according to the
3562 // the order specified in the mapping from Section id to order index.
3563
3564 void
3565 Output_section::update_section_layout(
3566 const Section_layout_order* order_map)
3567 {
3568 for (Input_section_list::iterator p = this->input_sections_.begin();
3569 p != this->input_sections_.end();
3570 ++p)
3571 {
3572 if (p->is_input_section()
3573 || p->is_relaxed_input_section())
3574 {
3575 Object* obj = (p->is_input_section()
3576 ? p->relobj()
3577 : p->relaxed_input_section()->relobj());
3578 unsigned int shndx = p->shndx();
3579 Section_layout_order::const_iterator it
3580 = order_map->find(Section_id(obj, shndx));
3581 if (it == order_map->end())
3582 continue;
3583 unsigned int section_order_index = it->second;
3584 if (section_order_index != 0)
3585 {
3586 p->set_section_order_index(section_order_index);
3587 this->set_input_section_order_specified();
3588 }
3589 }
3590 }
3591 }
3592
3593 // Sort the input sections attached to an output section.
3594
3595 void
3596 Output_section::sort_attached_input_sections()
3597 {
3598 if (this->attached_input_sections_are_sorted_)
3599 return;
3600
3601 if (this->checkpoint_ != NULL
3602 && !this->checkpoint_->input_sections_saved())
3603 this->checkpoint_->save_input_sections();
3604
3605 // The only thing we know about an input section is the object and
3606 // the section index. We need the section name. Recomputing this
3607 // is slow but this is an unusual case. If this becomes a speed
3608 // problem we can cache the names as required in Layout::layout.
3609
3610 // We start by building a larger vector holding a copy of each
3611 // Input_section, plus its current index in the list and its name.
3612 std::vector<Input_section_sort_entry> sort_list;
3613
3614 unsigned int i = 0;
3615 for (Input_section_list::iterator p = this->input_sections_.begin();
3616 p != this->input_sections_.end();
3617 ++p, ++i)
3618 sort_list.push_back(Input_section_sort_entry(*p, i,
3619 this->must_sort_attached_input_sections()));
3620
3621 // Sort the input sections.
3622 if (this->must_sort_attached_input_sections())
3623 {
3624 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3625 || this->type() == elfcpp::SHT_INIT_ARRAY
3626 || this->type() == elfcpp::SHT_FINI_ARRAY)
3627 std::sort(sort_list.begin(), sort_list.end(),
3628 Input_section_sort_init_fini_compare());
3629 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3630 std::sort(sort_list.begin(), sort_list.end(),
3631 Input_section_sort_section_name_compare());
3632 else if (strcmp(this->name(), ".text") == 0)
3633 std::sort(sort_list.begin(), sort_list.end(),
3634 Input_section_sort_section_prefix_special_ordering_compare());
3635 else
3636 std::sort(sort_list.begin(), sort_list.end(),
3637 Input_section_sort_compare());
3638 }
3639 else
3640 {
3641 gold_assert(this->input_section_order_specified());
3642 std::sort(sort_list.begin(), sort_list.end(),
3643 Input_section_sort_section_order_index_compare());
3644 }
3645
3646 // Copy the sorted input sections back to our list.
3647 this->input_sections_.clear();
3648 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3649 p != sort_list.end();
3650 ++p)
3651 this->input_sections_.push_back(p->input_section());
3652 sort_list.clear();
3653
3654 // Remember that we sorted the input sections, since we might get
3655 // called again.
3656 this->attached_input_sections_are_sorted_ = true;
3657 }
3658
3659 // Write the section header to *OSHDR.
3660
3661 template<int size, bool big_endian>
3662 void
3663 Output_section::write_header(const Layout* layout,
3664 const Stringpool* secnamepool,
3665 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3666 {
3667 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3668 oshdr->put_sh_type(this->type_);
3669
3670 elfcpp::Elf_Xword flags = this->flags_;
3671 if (this->info_section_ != NULL && this->info_uses_section_index_)
3672 flags |= elfcpp::SHF_INFO_LINK;
3673 oshdr->put_sh_flags(flags);
3674
3675 oshdr->put_sh_addr(this->address());
3676 oshdr->put_sh_offset(this->offset());
3677 oshdr->put_sh_size(this->data_size());
3678 if (this->link_section_ != NULL)
3679 oshdr->put_sh_link(this->link_section_->out_shndx());
3680 else if (this->should_link_to_symtab_)
3681 oshdr->put_sh_link(layout->symtab_section_shndx());
3682 else if (this->should_link_to_dynsym_)
3683 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3684 else
3685 oshdr->put_sh_link(this->link_);
3686
3687 elfcpp::Elf_Word info;
3688 if (this->info_section_ != NULL)
3689 {
3690 if (this->info_uses_section_index_)
3691 info = this->info_section_->out_shndx();
3692 else
3693 info = this->info_section_->symtab_index();
3694 }
3695 else if (this->info_symndx_ != NULL)
3696 info = this->info_symndx_->symtab_index();
3697 else
3698 info = this->info_;
3699 oshdr->put_sh_info(info);
3700
3701 oshdr->put_sh_addralign(this->addralign_);
3702 oshdr->put_sh_entsize(this->entsize_);
3703 }
3704
3705 // Write out the data. For input sections the data is written out by
3706 // Object::relocate, but we have to handle Output_section_data objects
3707 // here.
3708
3709 void
3710 Output_section::do_write(Output_file* of)
3711 {
3712 gold_assert(!this->requires_postprocessing());
3713
3714 // If the target performs relaxation, we delay filler generation until now.
3715 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3716
3717 off_t output_section_file_offset = this->offset();
3718 for (Fill_list::iterator p = this->fills_.begin();
3719 p != this->fills_.end();
3720 ++p)
3721 {
3722 std::string fill_data(parameters->target().code_fill(p->length()));
3723 of->write(output_section_file_offset + p->section_offset(),
3724 fill_data.data(), fill_data.size());
3725 }
3726
3727 off_t off = this->offset() + this->first_input_offset_;
3728 for (Input_section_list::iterator p = this->input_sections_.begin();
3729 p != this->input_sections_.end();
3730 ++p)
3731 {
3732 off_t aligned_off = align_address(off, p->addralign());
3733 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3734 {
3735 size_t fill_len = aligned_off - off;
3736 std::string fill_data(parameters->target().code_fill(fill_len));
3737 of->write(off, fill_data.data(), fill_data.size());
3738 }
3739
3740 p->write(of);
3741 off = aligned_off + p->data_size();
3742 }
3743
3744 // For incremental links, fill in unused chunks in debug sections
3745 // with dummy compilation unit headers.
3746 if (this->free_space_fill_ != NULL)
3747 {
3748 for (Free_list::Const_iterator p = this->free_list_.begin();
3749 p != this->free_list_.end();
3750 ++p)
3751 {
3752 off_t off = p->start_;
3753 size_t len = p->end_ - off;
3754 this->free_space_fill_->write(of, this->offset() + off, len);
3755 }
3756 if (this->patch_space_ > 0)
3757 {
3758 off_t off = this->current_data_size_for_child() - this->patch_space_;
3759 this->free_space_fill_->write(of, this->offset() + off,
3760 this->patch_space_);
3761 }
3762 }
3763 }
3764
3765 // If a section requires postprocessing, create the buffer to use.
3766
3767 void
3768 Output_section::create_postprocessing_buffer()
3769 {
3770 gold_assert(this->requires_postprocessing());
3771
3772 if (this->postprocessing_buffer_ != NULL)
3773 return;
3774
3775 if (!this->input_sections_.empty())
3776 {
3777 off_t off = this->first_input_offset_;
3778 for (Input_section_list::iterator p = this->input_sections_.begin();
3779 p != this->input_sections_.end();
3780 ++p)
3781 {
3782 off = align_address(off, p->addralign());
3783 p->finalize_data_size();
3784 off += p->data_size();
3785 }
3786 this->set_current_data_size_for_child(off);
3787 }
3788
3789 off_t buffer_size = this->current_data_size_for_child();
3790 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3791 }
3792
3793 // Write all the data of an Output_section into the postprocessing
3794 // buffer. This is used for sections which require postprocessing,
3795 // such as compression. Input sections are handled by
3796 // Object::Relocate.
3797
3798 void
3799 Output_section::write_to_postprocessing_buffer()
3800 {
3801 gold_assert(this->requires_postprocessing());
3802
3803 // If the target performs relaxation, we delay filler generation until now.
3804 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3805
3806 unsigned char* buffer = this->postprocessing_buffer();
3807 for (Fill_list::iterator p = this->fills_.begin();
3808 p != this->fills_.end();
3809 ++p)
3810 {
3811 std::string fill_data(parameters->target().code_fill(p->length()));
3812 memcpy(buffer + p->section_offset(), fill_data.data(),
3813 fill_data.size());
3814 }
3815
3816 off_t off = this->first_input_offset_;
3817 for (Input_section_list::iterator p = this->input_sections_.begin();
3818 p != this->input_sections_.end();
3819 ++p)
3820 {
3821 off_t aligned_off = align_address(off, p->addralign());
3822 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3823 {
3824 size_t fill_len = aligned_off - off;
3825 std::string fill_data(parameters->target().code_fill(fill_len));
3826 memcpy(buffer + off, fill_data.data(), fill_data.size());
3827 }
3828
3829 p->write_to_buffer(buffer + aligned_off);
3830 off = aligned_off + p->data_size();
3831 }
3832 }
3833
3834 // Get the input sections for linker script processing. We leave
3835 // behind the Output_section_data entries. Note that this may be
3836 // slightly incorrect for merge sections. We will leave them behind,
3837 // but it is possible that the script says that they should follow
3838 // some other input sections, as in:
3839 // .rodata { *(.rodata) *(.rodata.cst*) }
3840 // For that matter, we don't handle this correctly:
3841 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3842 // With luck this will never matter.
3843
3844 uint64_t
3845 Output_section::get_input_sections(
3846 uint64_t address,
3847 const std::string& fill,
3848 std::list<Input_section>* input_sections)
3849 {
3850 if (this->checkpoint_ != NULL
3851 && !this->checkpoint_->input_sections_saved())
3852 this->checkpoint_->save_input_sections();
3853
3854 // Invalidate fast look-up maps.
3855 this->lookup_maps_->invalidate();
3856
3857 uint64_t orig_address = address;
3858
3859 address = align_address(address, this->addralign());
3860
3861 Input_section_list remaining;
3862 for (Input_section_list::iterator p = this->input_sections_.begin();
3863 p != this->input_sections_.end();
3864 ++p)
3865 {
3866 if (p->is_input_section()
3867 || p->is_relaxed_input_section()
3868 || p->is_merge_section())
3869 input_sections->push_back(*p);
3870 else
3871 {
3872 uint64_t aligned_address = align_address(address, p->addralign());
3873 if (aligned_address != address && !fill.empty())
3874 {
3875 section_size_type length =
3876 convert_to_section_size_type(aligned_address - address);
3877 std::string this_fill;
3878 this_fill.reserve(length);
3879 while (this_fill.length() + fill.length() <= length)
3880 this_fill += fill;
3881 if (this_fill.length() < length)
3882 this_fill.append(fill, 0, length - this_fill.length());
3883
3884 Output_section_data* posd = new Output_data_const(this_fill, 0);
3885 remaining.push_back(Input_section(posd));
3886 }
3887 address = aligned_address;
3888
3889 remaining.push_back(*p);
3890
3891 p->finalize_data_size();
3892 address += p->data_size();
3893 }
3894 }
3895
3896 this->input_sections_.swap(remaining);
3897 this->first_input_offset_ = 0;
3898
3899 uint64_t data_size = address - orig_address;
3900 this->set_current_data_size_for_child(data_size);
3901 return data_size;
3902 }
3903
3904 // Add a script input section. SIS is an Output_section::Input_section,
3905 // which can be either a plain input section or a special input section like
3906 // a relaxed input section. For a special input section, its size must be
3907 // finalized.
3908
3909 void
3910 Output_section::add_script_input_section(const Input_section& sis)
3911 {
3912 uint64_t data_size = sis.data_size();
3913 uint64_t addralign = sis.addralign();
3914 if (addralign > this->addralign_)
3915 this->addralign_ = addralign;
3916
3917 off_t offset_in_section = this->current_data_size_for_child();
3918 off_t aligned_offset_in_section = align_address(offset_in_section,
3919 addralign);
3920
3921 this->set_current_data_size_for_child(aligned_offset_in_section
3922 + data_size);
3923
3924 this->input_sections_.push_back(sis);
3925
3926 // Update fast lookup maps if necessary.
3927 if (this->lookup_maps_->is_valid())
3928 {
3929 if (sis.is_merge_section())
3930 {
3931 Output_merge_base* pomb = sis.output_merge_base();
3932 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3933 pomb->addralign());
3934 this->lookup_maps_->add_merge_section(msp, pomb);
3935 for (Output_merge_base::Input_sections::const_iterator p =
3936 pomb->input_sections_begin();
3937 p != pomb->input_sections_end();
3938 ++p)
3939 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3940 pomb);
3941 }
3942 else if (sis.is_relaxed_input_section())
3943 {
3944 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3945 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3946 poris->shndx(), poris);
3947 }
3948 }
3949 }
3950
3951 // Save states for relaxation.
3952
3953 void
3954 Output_section::save_states()
3955 {
3956 gold_assert(this->checkpoint_ == NULL);
3957 Checkpoint_output_section* checkpoint =
3958 new Checkpoint_output_section(this->addralign_, this->flags_,
3959 this->input_sections_,
3960 this->first_input_offset_,
3961 this->attached_input_sections_are_sorted_);
3962 this->checkpoint_ = checkpoint;
3963 gold_assert(this->fills_.empty());
3964 }
3965
3966 void
3967 Output_section::discard_states()
3968 {
3969 gold_assert(this->checkpoint_ != NULL);
3970 delete this->checkpoint_;
3971 this->checkpoint_ = NULL;
3972 gold_assert(this->fills_.empty());
3973
3974 // Simply invalidate the fast lookup maps since we do not keep
3975 // track of them.
3976 this->lookup_maps_->invalidate();
3977 }
3978
3979 void
3980 Output_section::restore_states()
3981 {
3982 gold_assert(this->checkpoint_ != NULL);
3983 Checkpoint_output_section* checkpoint = this->checkpoint_;
3984
3985 this->addralign_ = checkpoint->addralign();
3986 this->flags_ = checkpoint->flags();
3987 this->first_input_offset_ = checkpoint->first_input_offset();
3988
3989 if (!checkpoint->input_sections_saved())
3990 {
3991 // If we have not copied the input sections, just resize it.
3992 size_t old_size = checkpoint->input_sections_size();
3993 gold_assert(this->input_sections_.size() >= old_size);
3994 this->input_sections_.resize(old_size);
3995 }
3996 else
3997 {
3998 // We need to copy the whole list. This is not efficient for
3999 // extremely large output with hundreads of thousands of input
4000 // objects. We may need to re-think how we should pass sections
4001 // to scripts.
4002 this->input_sections_ = *checkpoint->input_sections();
4003 }
4004
4005 this->attached_input_sections_are_sorted_ =
4006 checkpoint->attached_input_sections_are_sorted();
4007
4008 // Simply invalidate the fast lookup maps since we do not keep
4009 // track of them.
4010 this->lookup_maps_->invalidate();
4011 }
4012
4013 // Update the section offsets of input sections in this. This is required if
4014 // relaxation causes some input sections to change sizes.
4015
4016 void
4017 Output_section::adjust_section_offsets()
4018 {
4019 if (!this->section_offsets_need_adjustment_)
4020 return;
4021
4022 off_t off = 0;
4023 for (Input_section_list::iterator p = this->input_sections_.begin();
4024 p != this->input_sections_.end();
4025 ++p)
4026 {
4027 off = align_address(off, p->addralign());
4028 if (p->is_input_section())
4029 p->relobj()->set_section_offset(p->shndx(), off);
4030 off += p->data_size();
4031 }
4032
4033 this->section_offsets_need_adjustment_ = false;
4034 }
4035
4036 // Print to the map file.
4037
4038 void
4039 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4040 {
4041 mapfile->print_output_section(this);
4042
4043 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4044 p != this->input_sections_.end();
4045 ++p)
4046 p->print_to_mapfile(mapfile);
4047 }
4048
4049 // Print stats for merge sections to stderr.
4050
4051 void
4052 Output_section::print_merge_stats()
4053 {
4054 Input_section_list::iterator p;
4055 for (p = this->input_sections_.begin();
4056 p != this->input_sections_.end();
4057 ++p)
4058 p->print_merge_stats(this->name_);
4059 }
4060
4061 // Set a fixed layout for the section. Used for incremental update links.
4062
4063 void
4064 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4065 off_t sh_size, uint64_t sh_addralign)
4066 {
4067 this->addralign_ = sh_addralign;
4068 this->set_current_data_size(sh_size);
4069 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4070 this->set_address(sh_addr);
4071 this->set_file_offset(sh_offset);
4072 this->finalize_data_size();
4073 this->free_list_.init(sh_size, false);
4074 this->has_fixed_layout_ = true;
4075 }
4076
4077 // Reserve space within the fixed layout for the section. Used for
4078 // incremental update links.
4079
4080 void
4081 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4082 {
4083 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4084 }
4085
4086 // Allocate space from the free list for the section. Used for
4087 // incremental update links.
4088
4089 off_t
4090 Output_section::allocate(off_t len, uint64_t addralign)
4091 {
4092 return this->free_list_.allocate(len, addralign, 0);
4093 }
4094
4095 // Output segment methods.
4096
4097 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4098 : vaddr_(0),
4099 paddr_(0),
4100 memsz_(0),
4101 max_align_(0),
4102 min_p_align_(0),
4103 offset_(0),
4104 filesz_(0),
4105 type_(type),
4106 flags_(flags),
4107 is_max_align_known_(false),
4108 are_addresses_set_(false),
4109 is_large_data_segment_(false),
4110 is_unique_segment_(false)
4111 {
4112 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4113 // the flags.
4114 if (type == elfcpp::PT_TLS)
4115 this->flags_ = elfcpp::PF_R;
4116 }
4117
4118 // Add an Output_section to a PT_LOAD Output_segment.
4119
4120 void
4121 Output_segment::add_output_section_to_load(Layout* layout,
4122 Output_section* os,
4123 elfcpp::Elf_Word seg_flags)
4124 {
4125 gold_assert(this->type() == elfcpp::PT_LOAD);
4126 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4127 gold_assert(!this->is_max_align_known_);
4128 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4129
4130 this->update_flags_for_output_section(seg_flags);
4131
4132 // We don't want to change the ordering if we have a linker script
4133 // with a SECTIONS clause.
4134 Output_section_order order = os->order();
4135 if (layout->script_options()->saw_sections_clause())
4136 order = static_cast<Output_section_order>(0);
4137 else
4138 gold_assert(order != ORDER_INVALID);
4139
4140 this->output_lists_[order].push_back(os);
4141 }
4142
4143 // Add an Output_section to a non-PT_LOAD Output_segment.
4144
4145 void
4146 Output_segment::add_output_section_to_nonload(Output_section* os,
4147 elfcpp::Elf_Word seg_flags)
4148 {
4149 gold_assert(this->type() != elfcpp::PT_LOAD);
4150 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4151 gold_assert(!this->is_max_align_known_);
4152
4153 this->update_flags_for_output_section(seg_flags);
4154
4155 this->output_lists_[0].push_back(os);
4156 }
4157
4158 // Remove an Output_section from this segment. It is an error if it
4159 // is not present.
4160
4161 void
4162 Output_segment::remove_output_section(Output_section* os)
4163 {
4164 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4165 {
4166 Output_data_list* pdl = &this->output_lists_[i];
4167 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4168 {
4169 if (*p == os)
4170 {
4171 pdl->erase(p);
4172 return;
4173 }
4174 }
4175 }
4176 gold_unreachable();
4177 }
4178
4179 // Add an Output_data (which need not be an Output_section) to the
4180 // start of a segment.
4181
4182 void
4183 Output_segment::add_initial_output_data(Output_data* od)
4184 {
4185 gold_assert(!this->is_max_align_known_);
4186 Output_data_list::iterator p = this->output_lists_[0].begin();
4187 this->output_lists_[0].insert(p, od);
4188 }
4189
4190 // Return true if this segment has any sections which hold actual
4191 // data, rather than being a BSS section.
4192
4193 bool
4194 Output_segment::has_any_data_sections() const
4195 {
4196 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4197 {
4198 const Output_data_list* pdl = &this->output_lists_[i];
4199 for (Output_data_list::const_iterator p = pdl->begin();
4200 p != pdl->end();
4201 ++p)
4202 {
4203 if (!(*p)->is_section())
4204 return true;
4205 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4206 return true;
4207 }
4208 }
4209 return false;
4210 }
4211
4212 // Return whether the first data section (not counting TLS sections)
4213 // is a relro section.
4214
4215 bool
4216 Output_segment::is_first_section_relro() const
4217 {
4218 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4219 {
4220 if (i == static_cast<int>(ORDER_TLS_DATA)
4221 || i == static_cast<int>(ORDER_TLS_BSS))
4222 continue;
4223 const Output_data_list* pdl = &this->output_lists_[i];
4224 if (!pdl->empty())
4225 {
4226 Output_data* p = pdl->front();
4227 return p->is_section() && p->output_section()->is_relro();
4228 }
4229 }
4230 return false;
4231 }
4232
4233 // Return the maximum alignment of the Output_data in Output_segment.
4234
4235 uint64_t
4236 Output_segment::maximum_alignment()
4237 {
4238 if (!this->is_max_align_known_)
4239 {
4240 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4241 {
4242 const Output_data_list* pdl = &this->output_lists_[i];
4243 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4244 if (addralign > this->max_align_)
4245 this->max_align_ = addralign;
4246 }
4247 this->is_max_align_known_ = true;
4248 }
4249
4250 return this->max_align_;
4251 }
4252
4253 // Return the maximum alignment of a list of Output_data.
4254
4255 uint64_t
4256 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4257 {
4258 uint64_t ret = 0;
4259 for (Output_data_list::const_iterator p = pdl->begin();
4260 p != pdl->end();
4261 ++p)
4262 {
4263 uint64_t addralign = (*p)->addralign();
4264 if (addralign > ret)
4265 ret = addralign;
4266 }
4267 return ret;
4268 }
4269
4270 // Return whether this segment has any dynamic relocs.
4271
4272 bool
4273 Output_segment::has_dynamic_reloc() const
4274 {
4275 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4276 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4277 return true;
4278 return false;
4279 }
4280
4281 // Return whether this Output_data_list has any dynamic relocs.
4282
4283 bool
4284 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4285 {
4286 for (Output_data_list::const_iterator p = pdl->begin();
4287 p != pdl->end();
4288 ++p)
4289 if ((*p)->has_dynamic_reloc())
4290 return true;
4291 return false;
4292 }
4293
4294 // Set the section addresses for an Output_segment. If RESET is true,
4295 // reset the addresses first. ADDR is the address and *POFF is the
4296 // file offset. Set the section indexes starting with *PSHNDX.
4297 // INCREASE_RELRO is the size of the portion of the first non-relro
4298 // section that should be included in the PT_GNU_RELRO segment.
4299 // If this segment has relro sections, and has been aligned for
4300 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4301 // the immediately following segment. Update *HAS_RELRO, *POFF,
4302 // and *PSHNDX.
4303
4304 uint64_t
4305 Output_segment::set_section_addresses(const Target* target,
4306 Layout* layout, bool reset,
4307 uint64_t addr,
4308 unsigned int* increase_relro,
4309 bool* has_relro,
4310 off_t* poff,
4311 unsigned int* pshndx)
4312 {
4313 gold_assert(this->type_ == elfcpp::PT_LOAD);
4314
4315 uint64_t last_relro_pad = 0;
4316 off_t orig_off = *poff;
4317
4318 bool in_tls = false;
4319
4320 // If we have relro sections, we need to pad forward now so that the
4321 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4322 if (parameters->options().relro()
4323 && this->is_first_section_relro()
4324 && (!this->are_addresses_set_ || reset))
4325 {
4326 uint64_t relro_size = 0;
4327 off_t off = *poff;
4328 uint64_t max_align = 0;
4329 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4330 {
4331 Output_data_list* pdl = &this->output_lists_[i];
4332 Output_data_list::iterator p;
4333 for (p = pdl->begin(); p != pdl->end(); ++p)
4334 {
4335 if (!(*p)->is_section())
4336 break;
4337 uint64_t align = (*p)->addralign();
4338 if (align > max_align)
4339 max_align = align;
4340 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4341 in_tls = true;
4342 else if (in_tls)
4343 {
4344 // Align the first non-TLS section to the alignment
4345 // of the TLS segment.
4346 align = max_align;
4347 in_tls = false;
4348 }
4349 relro_size = align_address(relro_size, align);
4350 // Ignore the size of the .tbss section.
4351 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4352 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4353 continue;
4354 if ((*p)->is_address_valid())
4355 relro_size += (*p)->data_size();
4356 else
4357 {
4358 // FIXME: This could be faster.
4359 (*p)->set_address_and_file_offset(addr + relro_size,
4360 off + relro_size);
4361 relro_size += (*p)->data_size();
4362 (*p)->reset_address_and_file_offset();
4363 }
4364 }
4365 if (p != pdl->end())
4366 break;
4367 }
4368 relro_size += *increase_relro;
4369 // Pad the total relro size to a multiple of the maximum
4370 // section alignment seen.
4371 uint64_t aligned_size = align_address(relro_size, max_align);
4372 // Note the amount of padding added after the last relro section.
4373 last_relro_pad = aligned_size - relro_size;
4374 *has_relro = true;
4375
4376 uint64_t page_align = parameters->target().abi_pagesize();
4377
4378 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4379 uint64_t desired_align = page_align - (aligned_size % page_align);
4380 if (desired_align < *poff % page_align)
4381 *poff += page_align - *poff % page_align;
4382 *poff += desired_align - *poff % page_align;
4383 addr += *poff - orig_off;
4384 orig_off = *poff;
4385 }
4386
4387 if (!reset && this->are_addresses_set_)
4388 {
4389 gold_assert(this->paddr_ == addr);
4390 addr = this->vaddr_;
4391 }
4392 else
4393 {
4394 this->vaddr_ = addr;
4395 this->paddr_ = addr;
4396 this->are_addresses_set_ = true;
4397 }
4398
4399 in_tls = false;
4400
4401 this->offset_ = orig_off;
4402
4403 off_t off = 0;
4404 uint64_t ret;
4405 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4406 {
4407 if (i == static_cast<int>(ORDER_RELRO_LAST))
4408 {
4409 *poff += last_relro_pad;
4410 addr += last_relro_pad;
4411 if (this->output_lists_[i].empty())
4412 {
4413 // If there is nothing in the ORDER_RELRO_LAST list,
4414 // the padding will occur at the end of the relro
4415 // segment, and we need to add it to *INCREASE_RELRO.
4416 *increase_relro += last_relro_pad;
4417 }
4418 }
4419 addr = this->set_section_list_addresses(layout, reset,
4420 &this->output_lists_[i],
4421 addr, poff, pshndx, &in_tls);
4422 if (i < static_cast<int>(ORDER_SMALL_BSS))
4423 {
4424 this->filesz_ = *poff - orig_off;
4425 off = *poff;
4426 }
4427
4428 ret = addr;
4429 }
4430
4431 // If the last section was a TLS section, align upward to the
4432 // alignment of the TLS segment, so that the overall size of the TLS
4433 // segment is aligned.
4434 if (in_tls)
4435 {
4436 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4437 *poff = align_address(*poff, segment_align);
4438 }
4439
4440 this->memsz_ = *poff - orig_off;
4441
4442 // Ignore the file offset adjustments made by the BSS Output_data
4443 // objects.
4444 *poff = off;
4445
4446 // If code segments must contain only code, and this code segment is
4447 // page-aligned in the file, then fill it out to a whole page with
4448 // code fill (the tail of the segment will not be within any section).
4449 // Thus the entire code segment can be mapped from the file as whole
4450 // pages and that mapping will contain only valid instructions.
4451 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4452 {
4453 uint64_t abi_pagesize = target->abi_pagesize();
4454 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4455 {
4456 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4457
4458 std::string fill_data;
4459 if (target->has_code_fill())
4460 fill_data = target->code_fill(fill_size);
4461 else
4462 fill_data.resize(fill_size); // Zero fill.
4463
4464 Output_data_const* fill = new Output_data_const(fill_data, 0);
4465 fill->set_address(this->vaddr_ + this->memsz_);
4466 fill->set_file_offset(off);
4467 layout->add_relax_output(fill);
4468
4469 off += fill_size;
4470 gold_assert(off % abi_pagesize == 0);
4471 ret += fill_size;
4472 gold_assert(ret % abi_pagesize == 0);
4473
4474 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4475 this->memsz_ = this->filesz_ += fill_size;
4476
4477 *poff = off;
4478 }
4479 }
4480
4481 return ret;
4482 }
4483
4484 // Set the addresses and file offsets in a list of Output_data
4485 // structures.
4486
4487 uint64_t
4488 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4489 Output_data_list* pdl,
4490 uint64_t addr, off_t* poff,
4491 unsigned int* pshndx,
4492 bool* in_tls)
4493 {
4494 off_t startoff = *poff;
4495 // For incremental updates, we may allocate non-fixed sections from
4496 // free space in the file. This keeps track of the high-water mark.
4497 off_t maxoff = startoff;
4498
4499 off_t off = startoff;
4500 for (Output_data_list::iterator p = pdl->begin();
4501 p != pdl->end();
4502 ++p)
4503 {
4504 if (reset)
4505 (*p)->reset_address_and_file_offset();
4506
4507 // When doing an incremental update or when using a linker script,
4508 // the section will most likely already have an address.
4509 if (!(*p)->is_address_valid())
4510 {
4511 uint64_t align = (*p)->addralign();
4512
4513 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4514 {
4515 // Give the first TLS section the alignment of the
4516 // entire TLS segment. Otherwise the TLS segment as a
4517 // whole may be misaligned.
4518 if (!*in_tls)
4519 {
4520 Output_segment* tls_segment = layout->tls_segment();
4521 gold_assert(tls_segment != NULL);
4522 uint64_t segment_align = tls_segment->maximum_alignment();
4523 gold_assert(segment_align >= align);
4524 align = segment_align;
4525
4526 *in_tls = true;
4527 }
4528 }
4529 else
4530 {
4531 // If this is the first section after the TLS segment,
4532 // align it to at least the alignment of the TLS
4533 // segment, so that the size of the overall TLS segment
4534 // is aligned.
4535 if (*in_tls)
4536 {
4537 uint64_t segment_align =
4538 layout->tls_segment()->maximum_alignment();
4539 if (segment_align > align)
4540 align = segment_align;
4541
4542 *in_tls = false;
4543 }
4544 }
4545
4546 if (!parameters->incremental_update())
4547 {
4548 off = align_address(off, align);
4549 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4550 }
4551 else
4552 {
4553 // Incremental update: allocate file space from free list.
4554 (*p)->pre_finalize_data_size();
4555 off_t current_size = (*p)->current_data_size();
4556 off = layout->allocate(current_size, align, startoff);
4557 if (off == -1)
4558 {
4559 gold_assert((*p)->output_section() != NULL);
4560 gold_fallback(_("out of patch space for section %s; "
4561 "relink with --incremental-full"),
4562 (*p)->output_section()->name());
4563 }
4564 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4565 if ((*p)->data_size() > current_size)
4566 {
4567 gold_assert((*p)->output_section() != NULL);
4568 gold_fallback(_("%s: section changed size; "
4569 "relink with --incremental-full"),
4570 (*p)->output_section()->name());
4571 }
4572 }
4573 }
4574 else if (parameters->incremental_update())
4575 {
4576 // For incremental updates, use the fixed offset for the
4577 // high-water mark computation.
4578 off = (*p)->offset();
4579 }
4580 else
4581 {
4582 // The script may have inserted a skip forward, but it
4583 // better not have moved backward.
4584 if ((*p)->address() >= addr + (off - startoff))
4585 off += (*p)->address() - (addr + (off - startoff));
4586 else
4587 {
4588 if (!layout->script_options()->saw_sections_clause())
4589 gold_unreachable();
4590 else
4591 {
4592 Output_section* os = (*p)->output_section();
4593
4594 // Cast to unsigned long long to avoid format warnings.
4595 unsigned long long previous_dot =
4596 static_cast<unsigned long long>(addr + (off - startoff));
4597 unsigned long long dot =
4598 static_cast<unsigned long long>((*p)->address());
4599
4600 if (os == NULL)
4601 gold_error(_("dot moves backward in linker script "
4602 "from 0x%llx to 0x%llx"), previous_dot, dot);
4603 else
4604 gold_error(_("address of section '%s' moves backward "
4605 "from 0x%llx to 0x%llx"),
4606 os->name(), previous_dot, dot);
4607 }
4608 }
4609 (*p)->set_file_offset(off);
4610 (*p)->finalize_data_size();
4611 }
4612
4613 if (parameters->incremental_update())
4614 gold_debug(DEBUG_INCREMENTAL,
4615 "set_section_list_addresses: %08lx %08lx %s",
4616 static_cast<long>(off),
4617 static_cast<long>((*p)->data_size()),
4618 ((*p)->output_section() != NULL
4619 ? (*p)->output_section()->name() : "(special)"));
4620
4621 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4622 // section. Such a section does not affect the size of a
4623 // PT_LOAD segment.
4624 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4625 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4626 off += (*p)->data_size();
4627
4628 if (off > maxoff)
4629 maxoff = off;
4630
4631 if ((*p)->is_section())
4632 {
4633 (*p)->set_out_shndx(*pshndx);
4634 ++*pshndx;
4635 }
4636 }
4637
4638 *poff = maxoff;
4639 return addr + (maxoff - startoff);
4640 }
4641
4642 // For a non-PT_LOAD segment, set the offset from the sections, if
4643 // any. Add INCREASE to the file size and the memory size.
4644
4645 void
4646 Output_segment::set_offset(unsigned int increase)
4647 {
4648 gold_assert(this->type_ != elfcpp::PT_LOAD);
4649
4650 gold_assert(!this->are_addresses_set_);
4651
4652 // A non-load section only uses output_lists_[0].
4653
4654 Output_data_list* pdl = &this->output_lists_[0];
4655
4656 if (pdl->empty())
4657 {
4658 gold_assert(increase == 0);
4659 this->vaddr_ = 0;
4660 this->paddr_ = 0;
4661 this->are_addresses_set_ = true;
4662 this->memsz_ = 0;
4663 this->min_p_align_ = 0;
4664 this->offset_ = 0;
4665 this->filesz_ = 0;
4666 return;
4667 }
4668
4669 // Find the first and last section by address.
4670 const Output_data* first = NULL;
4671 const Output_data* last_data = NULL;
4672 const Output_data* last_bss = NULL;
4673 for (Output_data_list::const_iterator p = pdl->begin();
4674 p != pdl->end();
4675 ++p)
4676 {
4677 if (first == NULL
4678 || (*p)->address() < first->address()
4679 || ((*p)->address() == first->address()
4680 && (*p)->data_size() < first->data_size()))
4681 first = *p;
4682 const Output_data** plast;
4683 if ((*p)->is_section()
4684 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4685 plast = &last_bss;
4686 else
4687 plast = &last_data;
4688 if (*plast == NULL
4689 || (*p)->address() > (*plast)->address()
4690 || ((*p)->address() == (*plast)->address()
4691 && (*p)->data_size() > (*plast)->data_size()))
4692 *plast = *p;
4693 }
4694
4695 this->vaddr_ = first->address();
4696 this->paddr_ = (first->has_load_address()
4697 ? first->load_address()
4698 : this->vaddr_);
4699 this->are_addresses_set_ = true;
4700 this->offset_ = first->offset();
4701
4702 if (last_data == NULL)
4703 this->filesz_ = 0;
4704 else
4705 this->filesz_ = (last_data->address()
4706 + last_data->data_size()
4707 - this->vaddr_);
4708
4709 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4710 this->memsz_ = (last->address()
4711 + last->data_size()
4712 - this->vaddr_);
4713
4714 this->filesz_ += increase;
4715 this->memsz_ += increase;
4716
4717 // If this is a RELRO segment, verify that the segment ends at a
4718 // page boundary.
4719 if (this->type_ == elfcpp::PT_GNU_RELRO)
4720 {
4721 uint64_t page_align = parameters->target().abi_pagesize();
4722 uint64_t segment_end = this->vaddr_ + this->memsz_;
4723 if (parameters->incremental_update())
4724 {
4725 // The INCREASE_RELRO calculation is bypassed for an incremental
4726 // update, so we need to adjust the segment size manually here.
4727 segment_end = align_address(segment_end, page_align);
4728 this->memsz_ = segment_end - this->vaddr_;
4729 }
4730 else
4731 gold_assert(segment_end == align_address(segment_end, page_align));
4732 }
4733
4734 // If this is a TLS segment, align the memory size. The code in
4735 // set_section_list ensures that the section after the TLS segment
4736 // is aligned to give us room.
4737 if (this->type_ == elfcpp::PT_TLS)
4738 {
4739 uint64_t segment_align = this->maximum_alignment();
4740 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4741 this->memsz_ = align_address(this->memsz_, segment_align);
4742 }
4743 }
4744
4745 // Set the TLS offsets of the sections in the PT_TLS segment.
4746
4747 void
4748 Output_segment::set_tls_offsets()
4749 {
4750 gold_assert(this->type_ == elfcpp::PT_TLS);
4751
4752 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4753 p != this->output_lists_[0].end();
4754 ++p)
4755 (*p)->set_tls_offset(this->vaddr_);
4756 }
4757
4758 // Return the first section.
4759
4760 Output_section*
4761 Output_segment::first_section() const
4762 {
4763 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4764 {
4765 const Output_data_list* pdl = &this->output_lists_[i];
4766 for (Output_data_list::const_iterator p = pdl->begin();
4767 p != pdl->end();
4768 ++p)
4769 {
4770 if ((*p)->is_section())
4771 return (*p)->output_section();
4772 }
4773 }
4774 gold_unreachable();
4775 }
4776
4777 // Return the number of Output_sections in an Output_segment.
4778
4779 unsigned int
4780 Output_segment::output_section_count() const
4781 {
4782 unsigned int ret = 0;
4783 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4784 ret += this->output_section_count_list(&this->output_lists_[i]);
4785 return ret;
4786 }
4787
4788 // Return the number of Output_sections in an Output_data_list.
4789
4790 unsigned int
4791 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4792 {
4793 unsigned int count = 0;
4794 for (Output_data_list::const_iterator p = pdl->begin();
4795 p != pdl->end();
4796 ++p)
4797 {
4798 if ((*p)->is_section())
4799 ++count;
4800 }
4801 return count;
4802 }
4803
4804 // Return the section attached to the list segment with the lowest
4805 // load address. This is used when handling a PHDRS clause in a
4806 // linker script.
4807
4808 Output_section*
4809 Output_segment::section_with_lowest_load_address() const
4810 {
4811 Output_section* found = NULL;
4812 uint64_t found_lma = 0;
4813 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4814 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4815 &found_lma);
4816 return found;
4817 }
4818
4819 // Look through a list for a section with a lower load address.
4820
4821 void
4822 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4823 Output_section** found,
4824 uint64_t* found_lma) const
4825 {
4826 for (Output_data_list::const_iterator p = pdl->begin();
4827 p != pdl->end();
4828 ++p)
4829 {
4830 if (!(*p)->is_section())
4831 continue;
4832 Output_section* os = static_cast<Output_section*>(*p);
4833 uint64_t lma = (os->has_load_address()
4834 ? os->load_address()
4835 : os->address());
4836 if (*found == NULL || lma < *found_lma)
4837 {
4838 *found = os;
4839 *found_lma = lma;
4840 }
4841 }
4842 }
4843
4844 // Write the segment data into *OPHDR.
4845
4846 template<int size, bool big_endian>
4847 void
4848 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4849 {
4850 ophdr->put_p_type(this->type_);
4851 ophdr->put_p_offset(this->offset_);
4852 ophdr->put_p_vaddr(this->vaddr_);
4853 ophdr->put_p_paddr(this->paddr_);
4854 ophdr->put_p_filesz(this->filesz_);
4855 ophdr->put_p_memsz(this->memsz_);
4856 ophdr->put_p_flags(this->flags_);
4857 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4858 }
4859
4860 // Write the section headers into V.
4861
4862 template<int size, bool big_endian>
4863 unsigned char*
4864 Output_segment::write_section_headers(const Layout* layout,
4865 const Stringpool* secnamepool,
4866 unsigned char* v,
4867 unsigned int* pshndx) const
4868 {
4869 // Every section that is attached to a segment must be attached to a
4870 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4871 // segments.
4872 if (this->type_ != elfcpp::PT_LOAD)
4873 return v;
4874
4875 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4876 {
4877 const Output_data_list* pdl = &this->output_lists_[i];
4878 v = this->write_section_headers_list<size, big_endian>(layout,
4879 secnamepool,
4880 pdl,
4881 v, pshndx);
4882 }
4883
4884 return v;
4885 }
4886
4887 template<int size, bool big_endian>
4888 unsigned char*
4889 Output_segment::write_section_headers_list(const Layout* layout,
4890 const Stringpool* secnamepool,
4891 const Output_data_list* pdl,
4892 unsigned char* v,
4893 unsigned int* pshndx) const
4894 {
4895 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4896 for (Output_data_list::const_iterator p = pdl->begin();
4897 p != pdl->end();
4898 ++p)
4899 {
4900 if ((*p)->is_section())
4901 {
4902 const Output_section* ps = static_cast<const Output_section*>(*p);
4903 gold_assert(*pshndx == ps->out_shndx());
4904 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4905 ps->write_header(layout, secnamepool, &oshdr);
4906 v += shdr_size;
4907 ++*pshndx;
4908 }
4909 }
4910 return v;
4911 }
4912
4913 // Print the output sections to the map file.
4914
4915 void
4916 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4917 {
4918 if (this->type() != elfcpp::PT_LOAD)
4919 return;
4920 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4921 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4922 }
4923
4924 // Print an output section list to the map file.
4925
4926 void
4927 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4928 const Output_data_list* pdl) const
4929 {
4930 for (Output_data_list::const_iterator p = pdl->begin();
4931 p != pdl->end();
4932 ++p)
4933 (*p)->print_to_mapfile(mapfile);
4934 }
4935
4936 // Output_file methods.
4937
4938 Output_file::Output_file(const char* name)
4939 : name_(name),
4940 o_(-1),
4941 file_size_(0),
4942 base_(NULL),
4943 map_is_anonymous_(false),
4944 map_is_allocated_(false),
4945 is_temporary_(false)
4946 {
4947 }
4948
4949 // Try to open an existing file. Returns false if the file doesn't
4950 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4951 // NULL, open that file as the base for incremental linking, and
4952 // copy its contents to the new output file. This routine can
4953 // be called for incremental updates, in which case WRITABLE should
4954 // be true, or by the incremental-dump utility, in which case
4955 // WRITABLE should be false.
4956
4957 bool
4958 Output_file::open_base_file(const char* base_name, bool writable)
4959 {
4960 // The name "-" means "stdout".
4961 if (strcmp(this->name_, "-") == 0)
4962 return false;
4963
4964 bool use_base_file = base_name != NULL;
4965 if (!use_base_file)
4966 base_name = this->name_;
4967 else if (strcmp(base_name, this->name_) == 0)
4968 gold_fatal(_("%s: incremental base and output file name are the same"),
4969 base_name);
4970
4971 // Don't bother opening files with a size of zero.
4972 struct stat s;
4973 if (::stat(base_name, &s) != 0)
4974 {
4975 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4976 return false;
4977 }
4978 if (s.st_size == 0)
4979 {
4980 gold_info(_("%s: incremental base file is empty"), base_name);
4981 return false;
4982 }
4983
4984 // If we're using a base file, we want to open it read-only.
4985 if (use_base_file)
4986 writable = false;
4987
4988 int oflags = writable ? O_RDWR : O_RDONLY;
4989 int o = open_descriptor(-1, base_name, oflags, 0);
4990 if (o < 0)
4991 {
4992 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4993 return false;
4994 }
4995
4996 // If the base file and the output file are different, open a
4997 // new output file and read the contents from the base file into
4998 // the newly-mapped region.
4999 if (use_base_file)
5000 {
5001 this->open(s.st_size);
5002 ssize_t bytes_to_read = s.st_size;
5003 unsigned char* p = this->base_;
5004 while (bytes_to_read > 0)
5005 {
5006 ssize_t len = ::read(o, p, bytes_to_read);
5007 if (len < 0)
5008 {
5009 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5010 return false;
5011 }
5012 if (len == 0)
5013 {
5014 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5015 base_name,
5016 static_cast<long long>(s.st_size - bytes_to_read),
5017 static_cast<long long>(s.st_size));
5018 return false;
5019 }
5020 p += len;
5021 bytes_to_read -= len;
5022 }
5023 ::close(o);
5024 return true;
5025 }
5026
5027 this->o_ = o;
5028 this->file_size_ = s.st_size;
5029
5030 if (!this->map_no_anonymous(writable))
5031 {
5032 release_descriptor(o, true);
5033 this->o_ = -1;
5034 this->file_size_ = 0;
5035 return false;
5036 }
5037
5038 return true;
5039 }
5040
5041 // Open the output file.
5042
5043 void
5044 Output_file::open(off_t file_size)
5045 {
5046 this->file_size_ = file_size;
5047
5048 // Unlink the file first; otherwise the open() may fail if the file
5049 // is busy (e.g. it's an executable that's currently being executed).
5050 //
5051 // However, the linker may be part of a system where a zero-length
5052 // file is created for it to write to, with tight permissions (gcc
5053 // 2.95 did something like this). Unlinking the file would work
5054 // around those permission controls, so we only unlink if the file
5055 // has a non-zero size. We also unlink only regular files to avoid
5056 // trouble with directories/etc.
5057 //
5058 // If we fail, continue; this command is merely a best-effort attempt
5059 // to improve the odds for open().
5060
5061 // We let the name "-" mean "stdout"
5062 if (!this->is_temporary_)
5063 {
5064 if (strcmp(this->name_, "-") == 0)
5065 this->o_ = STDOUT_FILENO;
5066 else
5067 {
5068 struct stat s;
5069 if (::stat(this->name_, &s) == 0
5070 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5071 {
5072 if (s.st_size != 0)
5073 ::unlink(this->name_);
5074 else if (!parameters->options().relocatable())
5075 {
5076 // If we don't unlink the existing file, add execute
5077 // permission where read permissions already exist
5078 // and where the umask permits.
5079 int mask = ::umask(0);
5080 ::umask(mask);
5081 s.st_mode |= (s.st_mode & 0444) >> 2;
5082 ::chmod(this->name_, s.st_mode & ~mask);
5083 }
5084 }
5085
5086 int mode = parameters->options().relocatable() ? 0666 : 0777;
5087 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5088 mode);
5089 if (o < 0)
5090 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5091 this->o_ = o;
5092 }
5093 }
5094
5095 this->map();
5096 }
5097
5098 // Resize the output file.
5099
5100 void
5101 Output_file::resize(off_t file_size)
5102 {
5103 // If the mmap is mapping an anonymous memory buffer, this is easy:
5104 // just mremap to the new size. If it's mapping to a file, we want
5105 // to unmap to flush to the file, then remap after growing the file.
5106 if (this->map_is_anonymous_)
5107 {
5108 void* base;
5109 if (!this->map_is_allocated_)
5110 {
5111 base = ::mremap(this->base_, this->file_size_, file_size,
5112 MREMAP_MAYMOVE);
5113 if (base == MAP_FAILED)
5114 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5115 }
5116 else
5117 {
5118 base = realloc(this->base_, file_size);
5119 if (base == NULL)
5120 gold_nomem();
5121 if (file_size > this->file_size_)
5122 memset(static_cast<char*>(base) + this->file_size_, 0,
5123 file_size - this->file_size_);
5124 }
5125 this->base_ = static_cast<unsigned char*>(base);
5126 this->file_size_ = file_size;
5127 }
5128 else
5129 {
5130 this->unmap();
5131 this->file_size_ = file_size;
5132 if (!this->map_no_anonymous(true))
5133 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5134 }
5135 }
5136
5137 // Map an anonymous block of memory which will later be written to the
5138 // file. Return whether the map succeeded.
5139
5140 bool
5141 Output_file::map_anonymous()
5142 {
5143 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5144 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5145 if (base == MAP_FAILED)
5146 {
5147 base = malloc(this->file_size_);
5148 if (base == NULL)
5149 return false;
5150 memset(base, 0, this->file_size_);
5151 this->map_is_allocated_ = true;
5152 }
5153 this->base_ = static_cast<unsigned char*>(base);
5154 this->map_is_anonymous_ = true;
5155 return true;
5156 }
5157
5158 // Map the file into memory. Return whether the mapping succeeded.
5159 // If WRITABLE is true, map with write access.
5160
5161 bool
5162 Output_file::map_no_anonymous(bool writable)
5163 {
5164 const int o = this->o_;
5165
5166 // If the output file is not a regular file, don't try to mmap it;
5167 // instead, we'll mmap a block of memory (an anonymous buffer), and
5168 // then later write the buffer to the file.
5169 void* base;
5170 struct stat statbuf;
5171 if (o == STDOUT_FILENO || o == STDERR_FILENO
5172 || ::fstat(o, &statbuf) != 0
5173 || !S_ISREG(statbuf.st_mode)
5174 || this->is_temporary_)
5175 return false;
5176
5177 // Ensure that we have disk space available for the file. If we
5178 // don't do this, it is possible that we will call munmap, close,
5179 // and exit with dirty buffers still in the cache with no assigned
5180 // disk blocks. If the disk is out of space at that point, the
5181 // output file will wind up incomplete, but we will have already
5182 // exited. The alternative to fallocate would be to use fdatasync,
5183 // but that would be a more significant performance hit.
5184 if (writable)
5185 {
5186 int err = gold_fallocate(o, 0, this->file_size_);
5187 if (err != 0)
5188 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5189 }
5190
5191 // Map the file into memory.
5192 int prot = PROT_READ;
5193 if (writable)
5194 prot |= PROT_WRITE;
5195 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5196
5197 // The mmap call might fail because of file system issues: the file
5198 // system might not support mmap at all, or it might not support
5199 // mmap with PROT_WRITE.
5200 if (base == MAP_FAILED)
5201 return false;
5202
5203 this->map_is_anonymous_ = false;
5204 this->base_ = static_cast<unsigned char*>(base);
5205 return true;
5206 }
5207
5208 // Map the file into memory.
5209
5210 void
5211 Output_file::map()
5212 {
5213 if (parameters->options().mmap_output_file()
5214 && this->map_no_anonymous(true))
5215 return;
5216
5217 // The mmap call might fail because of file system issues: the file
5218 // system might not support mmap at all, or it might not support
5219 // mmap with PROT_WRITE. I'm not sure which errno values we will
5220 // see in all cases, so if the mmap fails for any reason and we
5221 // don't care about file contents, try for an anonymous map.
5222 if (this->map_anonymous())
5223 return;
5224
5225 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5226 this->name_, static_cast<unsigned long>(this->file_size_),
5227 strerror(errno));
5228 }
5229
5230 // Unmap the file from memory.
5231
5232 void
5233 Output_file::unmap()
5234 {
5235 if (this->map_is_anonymous_)
5236 {
5237 // We've already written out the data, so there is no reason to
5238 // waste time unmapping or freeing the memory.
5239 }
5240 else
5241 {
5242 if (::munmap(this->base_, this->file_size_) < 0)
5243 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5244 }
5245 this->base_ = NULL;
5246 }
5247
5248 // Close the output file.
5249
5250 void
5251 Output_file::close()
5252 {
5253 // If the map isn't file-backed, we need to write it now.
5254 if (this->map_is_anonymous_ && !this->is_temporary_)
5255 {
5256 size_t bytes_to_write = this->file_size_;
5257 size_t offset = 0;
5258 while (bytes_to_write > 0)
5259 {
5260 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5261 bytes_to_write);
5262 if (bytes_written == 0)
5263 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5264 else if (bytes_written < 0)
5265 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5266 else
5267 {
5268 bytes_to_write -= bytes_written;
5269 offset += bytes_written;
5270 }
5271 }
5272 }
5273 this->unmap();
5274
5275 // We don't close stdout or stderr
5276 if (this->o_ != STDOUT_FILENO
5277 && this->o_ != STDERR_FILENO
5278 && !this->is_temporary_)
5279 if (::close(this->o_) < 0)
5280 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5281 this->o_ = -1;
5282 }
5283
5284 // Instantiate the templates we need. We could use the configure
5285 // script to restrict this to only the ones for implemented targets.
5286
5287 #ifdef HAVE_TARGET_32_LITTLE
5288 template
5289 off_t
5290 Output_section::add_input_section<32, false>(
5291 Layout* layout,
5292 Sized_relobj_file<32, false>* object,
5293 unsigned int shndx,
5294 const char* secname,
5295 const elfcpp::Shdr<32, false>& shdr,
5296 unsigned int reloc_shndx,
5297 bool have_sections_script);
5298 #endif
5299
5300 #ifdef HAVE_TARGET_32_BIG
5301 template
5302 off_t
5303 Output_section::add_input_section<32, true>(
5304 Layout* layout,
5305 Sized_relobj_file<32, true>* object,
5306 unsigned int shndx,
5307 const char* secname,
5308 const elfcpp::Shdr<32, true>& shdr,
5309 unsigned int reloc_shndx,
5310 bool have_sections_script);
5311 #endif
5312
5313 #ifdef HAVE_TARGET_64_LITTLE
5314 template
5315 off_t
5316 Output_section::add_input_section<64, false>(
5317 Layout* layout,
5318 Sized_relobj_file<64, false>* object,
5319 unsigned int shndx,
5320 const char* secname,
5321 const elfcpp::Shdr<64, false>& shdr,
5322 unsigned int reloc_shndx,
5323 bool have_sections_script);
5324 #endif
5325
5326 #ifdef HAVE_TARGET_64_BIG
5327 template
5328 off_t
5329 Output_section::add_input_section<64, true>(
5330 Layout* layout,
5331 Sized_relobj_file<64, true>* object,
5332 unsigned int shndx,
5333 const char* secname,
5334 const elfcpp::Shdr<64, true>& shdr,
5335 unsigned int reloc_shndx,
5336 bool have_sections_script);
5337 #endif
5338
5339 #ifdef HAVE_TARGET_32_LITTLE
5340 template
5341 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5342 #endif
5343
5344 #ifdef HAVE_TARGET_32_BIG
5345 template
5346 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5347 #endif
5348
5349 #ifdef HAVE_TARGET_64_LITTLE
5350 template
5351 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5352 #endif
5353
5354 #ifdef HAVE_TARGET_64_BIG
5355 template
5356 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5357 #endif
5358
5359 #ifdef HAVE_TARGET_32_LITTLE
5360 template
5361 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5362 #endif
5363
5364 #ifdef HAVE_TARGET_32_BIG
5365 template
5366 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5367 #endif
5368
5369 #ifdef HAVE_TARGET_64_LITTLE
5370 template
5371 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5372 #endif
5373
5374 #ifdef HAVE_TARGET_64_BIG
5375 template
5376 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5377 #endif
5378
5379 #ifdef HAVE_TARGET_32_LITTLE
5380 template
5381 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5382 #endif
5383
5384 #ifdef HAVE_TARGET_32_BIG
5385 template
5386 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5387 #endif
5388
5389 #ifdef HAVE_TARGET_64_LITTLE
5390 template
5391 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5392 #endif
5393
5394 #ifdef HAVE_TARGET_64_BIG
5395 template
5396 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5397 #endif
5398
5399 #ifdef HAVE_TARGET_32_LITTLE
5400 template
5401 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5402 #endif
5403
5404 #ifdef HAVE_TARGET_32_BIG
5405 template
5406 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5407 #endif
5408
5409 #ifdef HAVE_TARGET_64_LITTLE
5410 template
5411 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5412 #endif
5413
5414 #ifdef HAVE_TARGET_64_BIG
5415 template
5416 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5417 #endif
5418
5419 #ifdef HAVE_TARGET_32_LITTLE
5420 template
5421 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5422 #endif
5423
5424 #ifdef HAVE_TARGET_32_BIG
5425 template
5426 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5427 #endif
5428
5429 #ifdef HAVE_TARGET_64_LITTLE
5430 template
5431 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5432 #endif
5433
5434 #ifdef HAVE_TARGET_64_BIG
5435 template
5436 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5437 #endif
5438
5439 #ifdef HAVE_TARGET_32_LITTLE
5440 template
5441 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5442 #endif
5443
5444 #ifdef HAVE_TARGET_32_BIG
5445 template
5446 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5447 #endif
5448
5449 #ifdef HAVE_TARGET_64_LITTLE
5450 template
5451 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5452 #endif
5453
5454 #ifdef HAVE_TARGET_64_BIG
5455 template
5456 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5457 #endif
5458
5459 #ifdef HAVE_TARGET_32_LITTLE
5460 template
5461 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5462 #endif
5463
5464 #ifdef HAVE_TARGET_32_BIG
5465 template
5466 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5467 #endif
5468
5469 #ifdef HAVE_TARGET_64_LITTLE
5470 template
5471 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5472 #endif
5473
5474 #ifdef HAVE_TARGET_64_BIG
5475 template
5476 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5477 #endif
5478
5479 #ifdef HAVE_TARGET_32_LITTLE
5480 template
5481 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5482 #endif
5483
5484 #ifdef HAVE_TARGET_32_BIG
5485 template
5486 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5487 #endif
5488
5489 #ifdef HAVE_TARGET_64_LITTLE
5490 template
5491 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5492 #endif
5493
5494 #ifdef HAVE_TARGET_64_BIG
5495 template
5496 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5497 #endif
5498
5499 #ifdef HAVE_TARGET_32_LITTLE
5500 template
5501 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5502 #endif
5503
5504 #ifdef HAVE_TARGET_32_BIG
5505 template
5506 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5507 #endif
5508
5509 #ifdef HAVE_TARGET_64_LITTLE
5510 template
5511 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5512 #endif
5513
5514 #ifdef HAVE_TARGET_64_BIG
5515 template
5516 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5517 #endif
5518
5519 #ifdef HAVE_TARGET_32_LITTLE
5520 template
5521 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5522 #endif
5523
5524 #ifdef HAVE_TARGET_32_BIG
5525 template
5526 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5527 #endif
5528
5529 #ifdef HAVE_TARGET_64_LITTLE
5530 template
5531 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5532 #endif
5533
5534 #ifdef HAVE_TARGET_64_BIG
5535 template
5536 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5537 #endif
5538
5539 #ifdef HAVE_TARGET_32_LITTLE
5540 template
5541 class Output_data_group<32, false>;
5542 #endif
5543
5544 #ifdef HAVE_TARGET_32_BIG
5545 template
5546 class Output_data_group<32, true>;
5547 #endif
5548
5549 #ifdef HAVE_TARGET_64_LITTLE
5550 template
5551 class Output_data_group<64, false>;
5552 #endif
5553
5554 #ifdef HAVE_TARGET_64_BIG
5555 template
5556 class Output_data_group<64, true>;
5557 #endif
5558
5559 template
5560 class Output_data_got<32, false>;
5561
5562 template
5563 class Output_data_got<32, true>;
5564
5565 template
5566 class Output_data_got<64, false>;
5567
5568 template
5569 class Output_data_got<64, true>;
5570
5571 } // End namespace gold.
This page took 0.141274 seconds and 4 git commands to generate.