include/elf/
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h" // for unlink_if_ordinary()
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 namespace gold
49 {
50
51 // Output_data variables.
52
53 bool Output_data::allocated_sizes_are_fixed;
54
55 // Output_data methods.
56
57 Output_data::~Output_data()
58 {
59 }
60
61 // Return the default alignment for the target size.
62
63 uint64_t
64 Output_data::default_alignment()
65 {
66 return Output_data::default_alignment_for_size(
67 parameters->target().get_size());
68 }
69
70 // Return the default alignment for a size--32 or 64.
71
72 uint64_t
73 Output_data::default_alignment_for_size(int size)
74 {
75 if (size == 32)
76 return 4;
77 else if (size == 64)
78 return 8;
79 else
80 gold_unreachable();
81 }
82
83 // Output_section_header methods. This currently assumes that the
84 // segment and section lists are complete at construction time.
85
86 Output_section_headers::Output_section_headers(
87 const Layout* layout,
88 const Layout::Segment_list* segment_list,
89 const Layout::Section_list* section_list,
90 const Layout::Section_list* unattached_section_list,
91 const Stringpool* secnamepool,
92 const Output_section* shstrtab_section)
93 : layout_(layout),
94 segment_list_(segment_list),
95 section_list_(section_list),
96 unattached_section_list_(unattached_section_list),
97 secnamepool_(secnamepool),
98 shstrtab_section_(shstrtab_section)
99 {
100 // Count all the sections. Start with 1 for the null section.
101 off_t count = 1;
102 if (!parameters->options().relocatable())
103 {
104 for (Layout::Segment_list::const_iterator p = segment_list->begin();
105 p != segment_list->end();
106 ++p)
107 if ((*p)->type() == elfcpp::PT_LOAD)
108 count += (*p)->output_section_count();
109 }
110 else
111 {
112 for (Layout::Section_list::const_iterator p = section_list->begin();
113 p != section_list->end();
114 ++p)
115 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
116 ++count;
117 }
118 count += unattached_section_list->size();
119
120 const int size = parameters->target().get_size();
121 int shdr_size;
122 if (size == 32)
123 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
124 else if (size == 64)
125 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
126 else
127 gold_unreachable();
128
129 this->set_data_size(count * shdr_size);
130 }
131
132 // Write out the section headers.
133
134 void
135 Output_section_headers::do_write(Output_file* of)
136 {
137 switch (parameters->size_and_endianness())
138 {
139 #ifdef HAVE_TARGET_32_LITTLE
140 case Parameters::TARGET_32_LITTLE:
141 this->do_sized_write<32, false>(of);
142 break;
143 #endif
144 #ifdef HAVE_TARGET_32_BIG
145 case Parameters::TARGET_32_BIG:
146 this->do_sized_write<32, true>(of);
147 break;
148 #endif
149 #ifdef HAVE_TARGET_64_LITTLE
150 case Parameters::TARGET_64_LITTLE:
151 this->do_sized_write<64, false>(of);
152 break;
153 #endif
154 #ifdef HAVE_TARGET_64_BIG
155 case Parameters::TARGET_64_BIG:
156 this->do_sized_write<64, true>(of);
157 break;
158 #endif
159 default:
160 gold_unreachable();
161 }
162 }
163
164 template<int size, bool big_endian>
165 void
166 Output_section_headers::do_sized_write(Output_file* of)
167 {
168 off_t all_shdrs_size = this->data_size();
169 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
170
171 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
172 unsigned char* v = view;
173
174 {
175 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
176 oshdr.put_sh_name(0);
177 oshdr.put_sh_type(elfcpp::SHT_NULL);
178 oshdr.put_sh_flags(0);
179 oshdr.put_sh_addr(0);
180 oshdr.put_sh_offset(0);
181
182 size_t section_count = (this->data_size()
183 / elfcpp::Elf_sizes<size>::shdr_size);
184 if (section_count < elfcpp::SHN_LORESERVE)
185 oshdr.put_sh_size(0);
186 else
187 oshdr.put_sh_size(section_count);
188
189 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
190 if (shstrndx < elfcpp::SHN_LORESERVE)
191 oshdr.put_sh_link(0);
192 else
193 oshdr.put_sh_link(shstrndx);
194
195 oshdr.put_sh_info(0);
196 oshdr.put_sh_addralign(0);
197 oshdr.put_sh_entsize(0);
198 }
199
200 v += shdr_size;
201
202 unsigned int shndx = 1;
203 if (!parameters->options().relocatable())
204 {
205 for (Layout::Segment_list::const_iterator p =
206 this->segment_list_->begin();
207 p != this->segment_list_->end();
208 ++p)
209 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
210 this->secnamepool_,
211 v,
212 &shndx);
213 }
214 else
215 {
216 for (Layout::Section_list::const_iterator p =
217 this->section_list_->begin();
218 p != this->section_list_->end();
219 ++p)
220 {
221 // We do unallocated sections below, except that group
222 // sections have to come first.
223 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
224 && (*p)->type() != elfcpp::SHT_GROUP)
225 continue;
226 gold_assert(shndx == (*p)->out_shndx());
227 elfcpp::Shdr_write<size, big_endian> oshdr(v);
228 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
229 v += shdr_size;
230 ++shndx;
231 }
232 }
233
234 for (Layout::Section_list::const_iterator p =
235 this->unattached_section_list_->begin();
236 p != this->unattached_section_list_->end();
237 ++p)
238 {
239 // For a relocatable link, we did unallocated group sections
240 // above, since they have to come first.
241 if ((*p)->type() == elfcpp::SHT_GROUP
242 && parameters->options().relocatable())
243 continue;
244 gold_assert(shndx == (*p)->out_shndx());
245 elfcpp::Shdr_write<size, big_endian> oshdr(v);
246 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
247 v += shdr_size;
248 ++shndx;
249 }
250
251 of->write_output_view(this->offset(), all_shdrs_size, view);
252 }
253
254 // Output_segment_header methods.
255
256 Output_segment_headers::Output_segment_headers(
257 const Layout::Segment_list& segment_list)
258 : segment_list_(segment_list)
259 {
260 const int size = parameters->target().get_size();
261 int phdr_size;
262 if (size == 32)
263 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
264 else if (size == 64)
265 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
266 else
267 gold_unreachable();
268
269 this->set_data_size(segment_list.size() * phdr_size);
270 }
271
272 void
273 Output_segment_headers::do_write(Output_file* of)
274 {
275 switch (parameters->size_and_endianness())
276 {
277 #ifdef HAVE_TARGET_32_LITTLE
278 case Parameters::TARGET_32_LITTLE:
279 this->do_sized_write<32, false>(of);
280 break;
281 #endif
282 #ifdef HAVE_TARGET_32_BIG
283 case Parameters::TARGET_32_BIG:
284 this->do_sized_write<32, true>(of);
285 break;
286 #endif
287 #ifdef HAVE_TARGET_64_LITTLE
288 case Parameters::TARGET_64_LITTLE:
289 this->do_sized_write<64, false>(of);
290 break;
291 #endif
292 #ifdef HAVE_TARGET_64_BIG
293 case Parameters::TARGET_64_BIG:
294 this->do_sized_write<64, true>(of);
295 break;
296 #endif
297 default:
298 gold_unreachable();
299 }
300 }
301
302 template<int size, bool big_endian>
303 void
304 Output_segment_headers::do_sized_write(Output_file* of)
305 {
306 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
307 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
308 gold_assert(all_phdrs_size == this->data_size());
309 unsigned char* view = of->get_output_view(this->offset(),
310 all_phdrs_size);
311 unsigned char* v = view;
312 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
313 p != this->segment_list_.end();
314 ++p)
315 {
316 elfcpp::Phdr_write<size, big_endian> ophdr(v);
317 (*p)->write_header(&ophdr);
318 v += phdr_size;
319 }
320
321 gold_assert(v - view == all_phdrs_size);
322
323 of->write_output_view(this->offset(), all_phdrs_size, view);
324 }
325
326 // Output_file_header methods.
327
328 Output_file_header::Output_file_header(const Target* target,
329 const Symbol_table* symtab,
330 const Output_segment_headers* osh,
331 const char* entry)
332 : target_(target),
333 symtab_(symtab),
334 segment_header_(osh),
335 section_header_(NULL),
336 shstrtab_(NULL),
337 entry_(entry)
338 {
339 const int size = parameters->target().get_size();
340 int ehdr_size;
341 if (size == 32)
342 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
343 else if (size == 64)
344 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
345 else
346 gold_unreachable();
347
348 this->set_data_size(ehdr_size);
349 }
350
351 // Set the section table information for a file header.
352
353 void
354 Output_file_header::set_section_info(const Output_section_headers* shdrs,
355 const Output_section* shstrtab)
356 {
357 this->section_header_ = shdrs;
358 this->shstrtab_ = shstrtab;
359 }
360
361 // Write out the file header.
362
363 void
364 Output_file_header::do_write(Output_file* of)
365 {
366 gold_assert(this->offset() == 0);
367
368 switch (parameters->size_and_endianness())
369 {
370 #ifdef HAVE_TARGET_32_LITTLE
371 case Parameters::TARGET_32_LITTLE:
372 this->do_sized_write<32, false>(of);
373 break;
374 #endif
375 #ifdef HAVE_TARGET_32_BIG
376 case Parameters::TARGET_32_BIG:
377 this->do_sized_write<32, true>(of);
378 break;
379 #endif
380 #ifdef HAVE_TARGET_64_LITTLE
381 case Parameters::TARGET_64_LITTLE:
382 this->do_sized_write<64, false>(of);
383 break;
384 #endif
385 #ifdef HAVE_TARGET_64_BIG
386 case Parameters::TARGET_64_BIG:
387 this->do_sized_write<64, true>(of);
388 break;
389 #endif
390 default:
391 gold_unreachable();
392 }
393 }
394
395 // Write out the file header with appropriate size and endianess.
396
397 template<int size, bool big_endian>
398 void
399 Output_file_header::do_sized_write(Output_file* of)
400 {
401 gold_assert(this->offset() == 0);
402
403 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
404 unsigned char* view = of->get_output_view(0, ehdr_size);
405 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
406
407 unsigned char e_ident[elfcpp::EI_NIDENT];
408 memset(e_ident, 0, elfcpp::EI_NIDENT);
409 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
410 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
411 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
412 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
413 if (size == 32)
414 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
415 else if (size == 64)
416 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
417 else
418 gold_unreachable();
419 e_ident[elfcpp::EI_DATA] = (big_endian
420 ? elfcpp::ELFDATA2MSB
421 : elfcpp::ELFDATA2LSB);
422 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
423 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
424 oehdr.put_e_ident(e_ident);
425
426 elfcpp::ET e_type;
427 if (parameters->options().relocatable())
428 e_type = elfcpp::ET_REL;
429 else if (parameters->options().shared())
430 e_type = elfcpp::ET_DYN;
431 else
432 e_type = elfcpp::ET_EXEC;
433 oehdr.put_e_type(e_type);
434
435 oehdr.put_e_machine(this->target_->machine_code());
436 oehdr.put_e_version(elfcpp::EV_CURRENT);
437
438 oehdr.put_e_entry(this->entry<size>());
439
440 if (this->segment_header_ == NULL)
441 oehdr.put_e_phoff(0);
442 else
443 oehdr.put_e_phoff(this->segment_header_->offset());
444
445 oehdr.put_e_shoff(this->section_header_->offset());
446
447 // FIXME: The target needs to set the flags.
448 oehdr.put_e_flags(0);
449
450 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
451
452 if (this->segment_header_ == NULL)
453 {
454 oehdr.put_e_phentsize(0);
455 oehdr.put_e_phnum(0);
456 }
457 else
458 {
459 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
460 oehdr.put_e_phnum(this->segment_header_->data_size()
461 / elfcpp::Elf_sizes<size>::phdr_size);
462 }
463
464 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
465 size_t section_count = (this->section_header_->data_size()
466 / elfcpp::Elf_sizes<size>::shdr_size);
467
468 if (section_count < elfcpp::SHN_LORESERVE)
469 oehdr.put_e_shnum(this->section_header_->data_size()
470 / elfcpp::Elf_sizes<size>::shdr_size);
471 else
472 oehdr.put_e_shnum(0);
473
474 unsigned int shstrndx = this->shstrtab_->out_shndx();
475 if (shstrndx < elfcpp::SHN_LORESERVE)
476 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
477 else
478 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
479
480 of->write_output_view(0, ehdr_size, view);
481 }
482
483 // Return the value to use for the entry address. THIS->ENTRY_ is the
484 // symbol specified on the command line, if any.
485
486 template<int size>
487 typename elfcpp::Elf_types<size>::Elf_Addr
488 Output_file_header::entry()
489 {
490 const bool should_issue_warning = (this->entry_ != NULL
491 && !parameters->options().relocatable()
492 && !parameters->options().shared());
493
494 // FIXME: Need to support target specific entry symbol.
495 const char* entry = this->entry_;
496 if (entry == NULL)
497 entry = "_start";
498
499 Symbol* sym = this->symtab_->lookup(entry);
500
501 typename Sized_symbol<size>::Value_type v;
502 if (sym != NULL)
503 {
504 Sized_symbol<size>* ssym;
505 ssym = this->symtab_->get_sized_symbol<size>(sym);
506 if (!ssym->is_defined() && should_issue_warning)
507 gold_warning("entry symbol '%s' exists but is not defined", entry);
508 v = ssym->value();
509 }
510 else
511 {
512 // We couldn't find the entry symbol. See if we can parse it as
513 // a number. This supports, e.g., -e 0x1000.
514 char* endptr;
515 v = strtoull(entry, &endptr, 0);
516 if (*endptr != '\0')
517 {
518 if (should_issue_warning)
519 gold_warning("cannot find entry symbol '%s'", entry);
520 v = 0;
521 }
522 }
523
524 return v;
525 }
526
527 // Output_data_const methods.
528
529 void
530 Output_data_const::do_write(Output_file* of)
531 {
532 of->write(this->offset(), this->data_.data(), this->data_.size());
533 }
534
535 // Output_data_const_buffer methods.
536
537 void
538 Output_data_const_buffer::do_write(Output_file* of)
539 {
540 of->write(this->offset(), this->p_, this->data_size());
541 }
542
543 // Output_section_data methods.
544
545 // Record the output section, and set the entry size and such.
546
547 void
548 Output_section_data::set_output_section(Output_section* os)
549 {
550 gold_assert(this->output_section_ == NULL);
551 this->output_section_ = os;
552 this->do_adjust_output_section(os);
553 }
554
555 // Return the section index of the output section.
556
557 unsigned int
558 Output_section_data::do_out_shndx() const
559 {
560 gold_assert(this->output_section_ != NULL);
561 return this->output_section_->out_shndx();
562 }
563
564 // Set the alignment, which means we may need to update the alignment
565 // of the output section.
566
567 void
568 Output_section_data::set_addralign(uint64_t addralign)
569 {
570 this->addralign_ = addralign;
571 if (this->output_section_ != NULL
572 && this->output_section_->addralign() < addralign)
573 this->output_section_->set_addralign(addralign);
574 }
575
576 // Output_data_strtab methods.
577
578 // Set the final data size.
579
580 void
581 Output_data_strtab::set_final_data_size()
582 {
583 this->strtab_->set_string_offsets();
584 this->set_data_size(this->strtab_->get_strtab_size());
585 }
586
587 // Write out a string table.
588
589 void
590 Output_data_strtab::do_write(Output_file* of)
591 {
592 this->strtab_->write(of, this->offset());
593 }
594
595 // Output_reloc methods.
596
597 // A reloc against a global symbol.
598
599 template<bool dynamic, int size, bool big_endian>
600 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
601 Symbol* gsym,
602 unsigned int type,
603 Output_data* od,
604 Address address,
605 bool is_relative)
606 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
607 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
608 {
609 // this->type_ is a bitfield; make sure TYPE fits.
610 gold_assert(this->type_ == type);
611 this->u1_.gsym = gsym;
612 this->u2_.od = od;
613 if (dynamic)
614 this->set_needs_dynsym_index();
615 }
616
617 template<bool dynamic, int size, bool big_endian>
618 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
619 Symbol* gsym,
620 unsigned int type,
621 Sized_relobj<size, big_endian>* relobj,
622 unsigned int shndx,
623 Address address,
624 bool is_relative)
625 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
626 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
627 {
628 gold_assert(shndx != INVALID_CODE);
629 // this->type_ is a bitfield; make sure TYPE fits.
630 gold_assert(this->type_ == type);
631 this->u1_.gsym = gsym;
632 this->u2_.relobj = relobj;
633 if (dynamic)
634 this->set_needs_dynsym_index();
635 }
636
637 // A reloc against a local symbol.
638
639 template<bool dynamic, int size, bool big_endian>
640 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
641 Sized_relobj<size, big_endian>* relobj,
642 unsigned int local_sym_index,
643 unsigned int type,
644 Output_data* od,
645 Address address,
646 bool is_relative,
647 bool is_section_symbol)
648 : address_(address), local_sym_index_(local_sym_index), type_(type),
649 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
650 shndx_(INVALID_CODE)
651 {
652 gold_assert(local_sym_index != GSYM_CODE
653 && local_sym_index != INVALID_CODE);
654 // this->type_ is a bitfield; make sure TYPE fits.
655 gold_assert(this->type_ == type);
656 this->u1_.relobj = relobj;
657 this->u2_.od = od;
658 if (dynamic)
659 this->set_needs_dynsym_index();
660 }
661
662 template<bool dynamic, int size, bool big_endian>
663 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
664 Sized_relobj<size, big_endian>* relobj,
665 unsigned int local_sym_index,
666 unsigned int type,
667 unsigned int shndx,
668 Address address,
669 bool is_relative,
670 bool is_section_symbol)
671 : address_(address), local_sym_index_(local_sym_index), type_(type),
672 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
673 shndx_(shndx)
674 {
675 gold_assert(local_sym_index != GSYM_CODE
676 && local_sym_index != INVALID_CODE);
677 gold_assert(shndx != INVALID_CODE);
678 // this->type_ is a bitfield; make sure TYPE fits.
679 gold_assert(this->type_ == type);
680 this->u1_.relobj = relobj;
681 this->u2_.relobj = relobj;
682 if (dynamic)
683 this->set_needs_dynsym_index();
684 }
685
686 // A reloc against the STT_SECTION symbol of an output section.
687
688 template<bool dynamic, int size, bool big_endian>
689 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
690 Output_section* os,
691 unsigned int type,
692 Output_data* od,
693 Address address)
694 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
695 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
696 {
697 // this->type_ is a bitfield; make sure TYPE fits.
698 gold_assert(this->type_ == type);
699 this->u1_.os = os;
700 this->u2_.od = od;
701 if (dynamic)
702 this->set_needs_dynsym_index();
703 else
704 os->set_needs_symtab_index();
705 }
706
707 template<bool dynamic, int size, bool big_endian>
708 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
709 Output_section* os,
710 unsigned int type,
711 Sized_relobj<size, big_endian>* relobj,
712 unsigned int shndx,
713 Address address)
714 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
715 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
716 {
717 gold_assert(shndx != INVALID_CODE);
718 // this->type_ is a bitfield; make sure TYPE fits.
719 gold_assert(this->type_ == type);
720 this->u1_.os = os;
721 this->u2_.relobj = relobj;
722 if (dynamic)
723 this->set_needs_dynsym_index();
724 else
725 os->set_needs_symtab_index();
726 }
727
728 // Record that we need a dynamic symbol index for this relocation.
729
730 template<bool dynamic, int size, bool big_endian>
731 void
732 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
733 set_needs_dynsym_index()
734 {
735 if (this->is_relative_)
736 return;
737 switch (this->local_sym_index_)
738 {
739 case INVALID_CODE:
740 gold_unreachable();
741
742 case GSYM_CODE:
743 this->u1_.gsym->set_needs_dynsym_entry();
744 break;
745
746 case SECTION_CODE:
747 this->u1_.os->set_needs_dynsym_index();
748 break;
749
750 case 0:
751 break;
752
753 default:
754 {
755 const unsigned int lsi = this->local_sym_index_;
756 if (!this->is_section_symbol_)
757 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
758 else
759 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
760 }
761 break;
762 }
763 }
764
765 // Get the symbol index of a relocation.
766
767 template<bool dynamic, int size, bool big_endian>
768 unsigned int
769 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
770 const
771 {
772 unsigned int index;
773 switch (this->local_sym_index_)
774 {
775 case INVALID_CODE:
776 gold_unreachable();
777
778 case GSYM_CODE:
779 if (this->u1_.gsym == NULL)
780 index = 0;
781 else if (dynamic)
782 index = this->u1_.gsym->dynsym_index();
783 else
784 index = this->u1_.gsym->symtab_index();
785 break;
786
787 case SECTION_CODE:
788 if (dynamic)
789 index = this->u1_.os->dynsym_index();
790 else
791 index = this->u1_.os->symtab_index();
792 break;
793
794 case 0:
795 // Relocations without symbols use a symbol index of 0.
796 index = 0;
797 break;
798
799 default:
800 {
801 const unsigned int lsi = this->local_sym_index_;
802 if (!this->is_section_symbol_)
803 {
804 if (dynamic)
805 index = this->u1_.relobj->dynsym_index(lsi);
806 else
807 index = this->u1_.relobj->symtab_index(lsi);
808 }
809 else
810 {
811 Output_section* os = this->u1_.relobj->output_section(lsi);
812 gold_assert(os != NULL);
813 if (dynamic)
814 index = os->dynsym_index();
815 else
816 index = os->symtab_index();
817 }
818 }
819 break;
820 }
821 gold_assert(index != -1U);
822 return index;
823 }
824
825 // For a local section symbol, get the address of the offset ADDEND
826 // within the input section.
827
828 template<bool dynamic, int size, bool big_endian>
829 typename elfcpp::Elf_types<size>::Elf_Addr
830 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
831 local_section_offset(Addend addend) const
832 {
833 gold_assert(this->local_sym_index_ != GSYM_CODE
834 && this->local_sym_index_ != SECTION_CODE
835 && this->local_sym_index_ != INVALID_CODE
836 && this->is_section_symbol_);
837 const unsigned int lsi = this->local_sym_index_;
838 Output_section* os = this->u1_.relobj->output_section(lsi);
839 gold_assert(os != NULL);
840 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
841 if (offset != invalid_address)
842 return offset + addend;
843 // This is a merge section.
844 offset = os->output_address(this->u1_.relobj, lsi, addend);
845 gold_assert(offset != invalid_address);
846 return offset;
847 }
848
849 // Get the output address of a relocation.
850
851 template<bool dynamic, int size, bool big_endian>
852 typename elfcpp::Elf_types<size>::Elf_Addr
853 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
854 {
855 Address address = this->address_;
856 if (this->shndx_ != INVALID_CODE)
857 {
858 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
859 gold_assert(os != NULL);
860 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
861 if (off != invalid_address)
862 address += os->address() + off;
863 else
864 {
865 address = os->output_address(this->u2_.relobj, this->shndx_,
866 address);
867 gold_assert(address != invalid_address);
868 }
869 }
870 else if (this->u2_.od != NULL)
871 address += this->u2_.od->address();
872 return address;
873 }
874
875 // Write out the offset and info fields of a Rel or Rela relocation
876 // entry.
877
878 template<bool dynamic, int size, bool big_endian>
879 template<typename Write_rel>
880 void
881 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
882 Write_rel* wr) const
883 {
884 wr->put_r_offset(this->get_address());
885 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
886 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
887 }
888
889 // Write out a Rel relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 void
893 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
894 unsigned char* pov) const
895 {
896 elfcpp::Rel_write<size, big_endian> orel(pov);
897 this->write_rel(&orel);
898 }
899
900 // Get the value of the symbol referred to by a Rel relocation.
901
902 template<bool dynamic, int size, bool big_endian>
903 typename elfcpp::Elf_types<size>::Elf_Addr
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
905 Addend addend) const
906 {
907 if (this->local_sym_index_ == GSYM_CODE)
908 {
909 const Sized_symbol<size>* sym;
910 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
911 return sym->value() + addend;
912 }
913 gold_assert(this->local_sym_index_ != SECTION_CODE
914 && this->local_sym_index_ != INVALID_CODE
915 && !this->is_section_symbol_);
916 const unsigned int lsi = this->local_sym_index_;
917 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
918 return symval->value(this->u1_.relobj, addend);
919 }
920
921 // Reloc comparison. This function sorts the dynamic relocs for the
922 // benefit of the dynamic linker. First we sort all relative relocs
923 // to the front. Among relative relocs, we sort by output address.
924 // Among non-relative relocs, we sort by symbol index, then by output
925 // address.
926
927 template<bool dynamic, int size, bool big_endian>
928 int
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
931 const
932 {
933 if (this->is_relative_)
934 {
935 if (!r2.is_relative_)
936 return -1;
937 // Otherwise sort by reloc address below.
938 }
939 else if (r2.is_relative_)
940 return 1;
941 else
942 {
943 unsigned int sym1 = this->get_symbol_index();
944 unsigned int sym2 = r2.get_symbol_index();
945 if (sym1 < sym2)
946 return -1;
947 else if (sym1 > sym2)
948 return 1;
949 // Otherwise sort by reloc address.
950 }
951
952 section_offset_type addr1 = this->get_address();
953 section_offset_type addr2 = r2.get_address();
954 if (addr1 < addr2)
955 return -1;
956 else if (addr1 > addr2)
957 return 1;
958
959 // Final tie breaker, in order to generate the same output on any
960 // host: reloc type.
961 unsigned int type1 = this->type_;
962 unsigned int type2 = r2.type_;
963 if (type1 < type2)
964 return -1;
965 else if (type1 > type2)
966 return 1;
967
968 // These relocs appear to be exactly the same.
969 return 0;
970 }
971
972 // Write out a Rela relocation.
973
974 template<bool dynamic, int size, bool big_endian>
975 void
976 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
977 unsigned char* pov) const
978 {
979 elfcpp::Rela_write<size, big_endian> orel(pov);
980 this->rel_.write_rel(&orel);
981 Addend addend = this->addend_;
982 if (this->rel_.is_relative())
983 addend = this->rel_.symbol_value(addend);
984 else if (this->rel_.is_local_section_symbol())
985 addend = this->rel_.local_section_offset(addend);
986 orel.put_r_addend(addend);
987 }
988
989 // Output_data_reloc_base methods.
990
991 // Adjust the output section.
992
993 template<int sh_type, bool dynamic, int size, bool big_endian>
994 void
995 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
996 ::do_adjust_output_section(Output_section* os)
997 {
998 if (sh_type == elfcpp::SHT_REL)
999 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1000 else if (sh_type == elfcpp::SHT_RELA)
1001 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1002 else
1003 gold_unreachable();
1004 if (dynamic)
1005 os->set_should_link_to_dynsym();
1006 else
1007 os->set_should_link_to_symtab();
1008 }
1009
1010 // Write out relocation data.
1011
1012 template<int sh_type, bool dynamic, int size, bool big_endian>
1013 void
1014 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1015 Output_file* of)
1016 {
1017 const off_t off = this->offset();
1018 const off_t oview_size = this->data_size();
1019 unsigned char* const oview = of->get_output_view(off, oview_size);
1020
1021 if (this->sort_relocs_)
1022 {
1023 gold_assert(dynamic);
1024 std::sort(this->relocs_.begin(), this->relocs_.end(),
1025 Sort_relocs_comparison());
1026 }
1027
1028 unsigned char* pov = oview;
1029 for (typename Relocs::const_iterator p = this->relocs_.begin();
1030 p != this->relocs_.end();
1031 ++p)
1032 {
1033 p->write(pov);
1034 pov += reloc_size;
1035 }
1036
1037 gold_assert(pov - oview == oview_size);
1038
1039 of->write_output_view(off, oview_size, oview);
1040
1041 // We no longer need the relocation entries.
1042 this->relocs_.clear();
1043 }
1044
1045 // Class Output_relocatable_relocs.
1046
1047 template<int sh_type, int size, bool big_endian>
1048 void
1049 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1050 {
1051 this->set_data_size(this->rr_->output_reloc_count()
1052 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1053 }
1054
1055 // class Output_data_group.
1056
1057 template<int size, bool big_endian>
1058 Output_data_group<size, big_endian>::Output_data_group(
1059 Sized_relobj<size, big_endian>* relobj,
1060 section_size_type entry_count,
1061 elfcpp::Elf_Word flags,
1062 std::vector<unsigned int>* input_shndxes)
1063 : Output_section_data(entry_count * 4, 4),
1064 relobj_(relobj),
1065 flags_(flags)
1066 {
1067 this->input_shndxes_.swap(*input_shndxes);
1068 }
1069
1070 // Write out the section group, which means translating the section
1071 // indexes to apply to the output file.
1072
1073 template<int size, bool big_endian>
1074 void
1075 Output_data_group<size, big_endian>::do_write(Output_file* of)
1076 {
1077 const off_t off = this->offset();
1078 const section_size_type oview_size =
1079 convert_to_section_size_type(this->data_size());
1080 unsigned char* const oview = of->get_output_view(off, oview_size);
1081
1082 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1083 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1084 ++contents;
1085
1086 for (std::vector<unsigned int>::const_iterator p =
1087 this->input_shndxes_.begin();
1088 p != this->input_shndxes_.end();
1089 ++p, ++contents)
1090 {
1091 Output_section* os = this->relobj_->output_section(*p);
1092
1093 unsigned int output_shndx;
1094 if (os != NULL)
1095 output_shndx = os->out_shndx();
1096 else
1097 {
1098 this->relobj_->error(_("section group retained but "
1099 "group element discarded"));
1100 output_shndx = 0;
1101 }
1102
1103 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1104 }
1105
1106 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1107 gold_assert(wrote == oview_size);
1108
1109 of->write_output_view(off, oview_size, oview);
1110
1111 // We no longer need this information.
1112 this->input_shndxes_.clear();
1113 }
1114
1115 // Output_data_got::Got_entry methods.
1116
1117 // Write out the entry.
1118
1119 template<int size, bool big_endian>
1120 void
1121 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1122 {
1123 Valtype val = 0;
1124
1125 switch (this->local_sym_index_)
1126 {
1127 case GSYM_CODE:
1128 {
1129 // If the symbol is resolved locally, we need to write out the
1130 // link-time value, which will be relocated dynamically by a
1131 // RELATIVE relocation.
1132 Symbol* gsym = this->u_.gsym;
1133 Sized_symbol<size>* sgsym;
1134 // This cast is a bit ugly. We don't want to put a
1135 // virtual method in Symbol, because we want Symbol to be
1136 // as small as possible.
1137 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1138 val = sgsym->value();
1139 }
1140 break;
1141
1142 case CONSTANT_CODE:
1143 val = this->u_.constant;
1144 break;
1145
1146 default:
1147 {
1148 const unsigned int lsi = this->local_sym_index_;
1149 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1150 val = symval->value(this->u_.object, 0);
1151 }
1152 break;
1153 }
1154
1155 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1156 }
1157
1158 // Output_data_got methods.
1159
1160 // Add an entry for a global symbol to the GOT. This returns true if
1161 // this is a new GOT entry, false if the symbol already had a GOT
1162 // entry.
1163
1164 template<int size, bool big_endian>
1165 bool
1166 Output_data_got<size, big_endian>::add_global(
1167 Symbol* gsym,
1168 unsigned int got_type)
1169 {
1170 if (gsym->has_got_offset(got_type))
1171 return false;
1172
1173 this->entries_.push_back(Got_entry(gsym));
1174 this->set_got_size();
1175 gsym->set_got_offset(got_type, this->last_got_offset());
1176 return true;
1177 }
1178
1179 // Add an entry for a global symbol to the GOT, and add a dynamic
1180 // relocation of type R_TYPE for the GOT entry.
1181 template<int size, bool big_endian>
1182 void
1183 Output_data_got<size, big_endian>::add_global_with_rel(
1184 Symbol* gsym,
1185 unsigned int got_type,
1186 Rel_dyn* rel_dyn,
1187 unsigned int r_type)
1188 {
1189 if (gsym->has_got_offset(got_type))
1190 return;
1191
1192 this->entries_.push_back(Got_entry());
1193 this->set_got_size();
1194 unsigned int got_offset = this->last_got_offset();
1195 gsym->set_got_offset(got_type, got_offset);
1196 rel_dyn->add_global(gsym, r_type, this, got_offset);
1197 }
1198
1199 template<int size, bool big_endian>
1200 void
1201 Output_data_got<size, big_endian>::add_global_with_rela(
1202 Symbol* gsym,
1203 unsigned int got_type,
1204 Rela_dyn* rela_dyn,
1205 unsigned int r_type)
1206 {
1207 if (gsym->has_got_offset(got_type))
1208 return;
1209
1210 this->entries_.push_back(Got_entry());
1211 this->set_got_size();
1212 unsigned int got_offset = this->last_got_offset();
1213 gsym->set_got_offset(got_type, got_offset);
1214 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1215 }
1216
1217 // Add a pair of entries for a global symbol to the GOT, and add
1218 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1219 // If R_TYPE_2 == 0, add the second entry with no relocation.
1220 template<int size, bool big_endian>
1221 void
1222 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1223 Symbol* gsym,
1224 unsigned int got_type,
1225 Rel_dyn* rel_dyn,
1226 unsigned int r_type_1,
1227 unsigned int r_type_2)
1228 {
1229 if (gsym->has_got_offset(got_type))
1230 return;
1231
1232 this->entries_.push_back(Got_entry());
1233 unsigned int got_offset = this->last_got_offset();
1234 gsym->set_got_offset(got_type, got_offset);
1235 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1236
1237 this->entries_.push_back(Got_entry());
1238 if (r_type_2 != 0)
1239 {
1240 got_offset = this->last_got_offset();
1241 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1242 }
1243
1244 this->set_got_size();
1245 }
1246
1247 template<int size, bool big_endian>
1248 void
1249 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1250 Symbol* gsym,
1251 unsigned int got_type,
1252 Rela_dyn* rela_dyn,
1253 unsigned int r_type_1,
1254 unsigned int r_type_2)
1255 {
1256 if (gsym->has_got_offset(got_type))
1257 return;
1258
1259 this->entries_.push_back(Got_entry());
1260 unsigned int got_offset = this->last_got_offset();
1261 gsym->set_got_offset(got_type, got_offset);
1262 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1263
1264 this->entries_.push_back(Got_entry());
1265 if (r_type_2 != 0)
1266 {
1267 got_offset = this->last_got_offset();
1268 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1269 }
1270
1271 this->set_got_size();
1272 }
1273
1274 // Add an entry for a local symbol to the GOT. This returns true if
1275 // this is a new GOT entry, false if the symbol already has a GOT
1276 // entry.
1277
1278 template<int size, bool big_endian>
1279 bool
1280 Output_data_got<size, big_endian>::add_local(
1281 Sized_relobj<size, big_endian>* object,
1282 unsigned int symndx,
1283 unsigned int got_type)
1284 {
1285 if (object->local_has_got_offset(symndx, got_type))
1286 return false;
1287
1288 this->entries_.push_back(Got_entry(object, symndx));
1289 this->set_got_size();
1290 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1291 return true;
1292 }
1293
1294 // Add an entry for a local symbol to the GOT, and add a dynamic
1295 // relocation of type R_TYPE for the GOT entry.
1296 template<int size, bool big_endian>
1297 void
1298 Output_data_got<size, big_endian>::add_local_with_rel(
1299 Sized_relobj<size, big_endian>* object,
1300 unsigned int symndx,
1301 unsigned int got_type,
1302 Rel_dyn* rel_dyn,
1303 unsigned int r_type)
1304 {
1305 if (object->local_has_got_offset(symndx, got_type))
1306 return;
1307
1308 this->entries_.push_back(Got_entry());
1309 this->set_got_size();
1310 unsigned int got_offset = this->last_got_offset();
1311 object->set_local_got_offset(symndx, got_type, got_offset);
1312 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1313 }
1314
1315 template<int size, bool big_endian>
1316 void
1317 Output_data_got<size, big_endian>::add_local_with_rela(
1318 Sized_relobj<size, big_endian>* object,
1319 unsigned int symndx,
1320 unsigned int got_type,
1321 Rela_dyn* rela_dyn,
1322 unsigned int r_type)
1323 {
1324 if (object->local_has_got_offset(symndx, got_type))
1325 return;
1326
1327 this->entries_.push_back(Got_entry());
1328 this->set_got_size();
1329 unsigned int got_offset = this->last_got_offset();
1330 object->set_local_got_offset(symndx, got_type, got_offset);
1331 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1332 }
1333
1334 // Add a pair of entries for a local symbol to the GOT, and add
1335 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1336 // If R_TYPE_2 == 0, add the second entry with no relocation.
1337 template<int size, bool big_endian>
1338 void
1339 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1340 Sized_relobj<size, big_endian>* object,
1341 unsigned int symndx,
1342 unsigned int shndx,
1343 unsigned int got_type,
1344 Rel_dyn* rel_dyn,
1345 unsigned int r_type_1,
1346 unsigned int r_type_2)
1347 {
1348 if (object->local_has_got_offset(symndx, got_type))
1349 return;
1350
1351 this->entries_.push_back(Got_entry());
1352 unsigned int got_offset = this->last_got_offset();
1353 object->set_local_got_offset(symndx, got_type, got_offset);
1354 Output_section* os = object->output_section(shndx);
1355 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1356
1357 this->entries_.push_back(Got_entry(object, symndx));
1358 if (r_type_2 != 0)
1359 {
1360 got_offset = this->last_got_offset();
1361 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1362 }
1363
1364 this->set_got_size();
1365 }
1366
1367 template<int size, bool big_endian>
1368 void
1369 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1370 Sized_relobj<size, big_endian>* object,
1371 unsigned int symndx,
1372 unsigned int shndx,
1373 unsigned int got_type,
1374 Rela_dyn* rela_dyn,
1375 unsigned int r_type_1,
1376 unsigned int r_type_2)
1377 {
1378 if (object->local_has_got_offset(symndx, got_type))
1379 return;
1380
1381 this->entries_.push_back(Got_entry());
1382 unsigned int got_offset = this->last_got_offset();
1383 object->set_local_got_offset(symndx, got_type, got_offset);
1384 Output_section* os = object->output_section(shndx);
1385 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1386
1387 this->entries_.push_back(Got_entry(object, symndx));
1388 if (r_type_2 != 0)
1389 {
1390 got_offset = this->last_got_offset();
1391 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1392 }
1393
1394 this->set_got_size();
1395 }
1396
1397 // Write out the GOT.
1398
1399 template<int size, bool big_endian>
1400 void
1401 Output_data_got<size, big_endian>::do_write(Output_file* of)
1402 {
1403 const int add = size / 8;
1404
1405 const off_t off = this->offset();
1406 const off_t oview_size = this->data_size();
1407 unsigned char* const oview = of->get_output_view(off, oview_size);
1408
1409 unsigned char* pov = oview;
1410 for (typename Got_entries::const_iterator p = this->entries_.begin();
1411 p != this->entries_.end();
1412 ++p)
1413 {
1414 p->write(pov);
1415 pov += add;
1416 }
1417
1418 gold_assert(pov - oview == oview_size);
1419
1420 of->write_output_view(off, oview_size, oview);
1421
1422 // We no longer need the GOT entries.
1423 this->entries_.clear();
1424 }
1425
1426 // Output_data_dynamic::Dynamic_entry methods.
1427
1428 // Write out the entry.
1429
1430 template<int size, bool big_endian>
1431 void
1432 Output_data_dynamic::Dynamic_entry::write(
1433 unsigned char* pov,
1434 const Stringpool* pool) const
1435 {
1436 typename elfcpp::Elf_types<size>::Elf_WXword val;
1437 switch (this->offset_)
1438 {
1439 case DYNAMIC_NUMBER:
1440 val = this->u_.val;
1441 break;
1442
1443 case DYNAMIC_SECTION_SIZE:
1444 val = this->u_.od->data_size();
1445 break;
1446
1447 case DYNAMIC_SYMBOL:
1448 {
1449 const Sized_symbol<size>* s =
1450 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1451 val = s->value();
1452 }
1453 break;
1454
1455 case DYNAMIC_STRING:
1456 val = pool->get_offset(this->u_.str);
1457 break;
1458
1459 default:
1460 val = this->u_.od->address() + this->offset_;
1461 break;
1462 }
1463
1464 elfcpp::Dyn_write<size, big_endian> dw(pov);
1465 dw.put_d_tag(this->tag_);
1466 dw.put_d_val(val);
1467 }
1468
1469 // Output_data_dynamic methods.
1470
1471 // Adjust the output section to set the entry size.
1472
1473 void
1474 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1475 {
1476 if (parameters->target().get_size() == 32)
1477 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1478 else if (parameters->target().get_size() == 64)
1479 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1480 else
1481 gold_unreachable();
1482 }
1483
1484 // Set the final data size.
1485
1486 void
1487 Output_data_dynamic::set_final_data_size()
1488 {
1489 // Add the terminating entry.
1490 this->add_constant(elfcpp::DT_NULL, 0);
1491
1492 int dyn_size;
1493 if (parameters->target().get_size() == 32)
1494 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1495 else if (parameters->target().get_size() == 64)
1496 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1497 else
1498 gold_unreachable();
1499 this->set_data_size(this->entries_.size() * dyn_size);
1500 }
1501
1502 // Write out the dynamic entries.
1503
1504 void
1505 Output_data_dynamic::do_write(Output_file* of)
1506 {
1507 switch (parameters->size_and_endianness())
1508 {
1509 #ifdef HAVE_TARGET_32_LITTLE
1510 case Parameters::TARGET_32_LITTLE:
1511 this->sized_write<32, false>(of);
1512 break;
1513 #endif
1514 #ifdef HAVE_TARGET_32_BIG
1515 case Parameters::TARGET_32_BIG:
1516 this->sized_write<32, true>(of);
1517 break;
1518 #endif
1519 #ifdef HAVE_TARGET_64_LITTLE
1520 case Parameters::TARGET_64_LITTLE:
1521 this->sized_write<64, false>(of);
1522 break;
1523 #endif
1524 #ifdef HAVE_TARGET_64_BIG
1525 case Parameters::TARGET_64_BIG:
1526 this->sized_write<64, true>(of);
1527 break;
1528 #endif
1529 default:
1530 gold_unreachable();
1531 }
1532 }
1533
1534 template<int size, bool big_endian>
1535 void
1536 Output_data_dynamic::sized_write(Output_file* of)
1537 {
1538 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1539
1540 const off_t offset = this->offset();
1541 const off_t oview_size = this->data_size();
1542 unsigned char* const oview = of->get_output_view(offset, oview_size);
1543
1544 unsigned char* pov = oview;
1545 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1546 p != this->entries_.end();
1547 ++p)
1548 {
1549 p->write<size, big_endian>(pov, this->pool_);
1550 pov += dyn_size;
1551 }
1552
1553 gold_assert(pov - oview == oview_size);
1554
1555 of->write_output_view(offset, oview_size, oview);
1556
1557 // We no longer need the dynamic entries.
1558 this->entries_.clear();
1559 }
1560
1561 // Class Output_symtab_xindex.
1562
1563 void
1564 Output_symtab_xindex::do_write(Output_file* of)
1565 {
1566 const off_t offset = this->offset();
1567 const off_t oview_size = this->data_size();
1568 unsigned char* const oview = of->get_output_view(offset, oview_size);
1569
1570 memset(oview, 0, oview_size);
1571
1572 if (parameters->target().is_big_endian())
1573 this->endian_do_write<true>(oview);
1574 else
1575 this->endian_do_write<false>(oview);
1576
1577 of->write_output_view(offset, oview_size, oview);
1578
1579 // We no longer need the data.
1580 this->entries_.clear();
1581 }
1582
1583 template<bool big_endian>
1584 void
1585 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1586 {
1587 for (Xindex_entries::const_iterator p = this->entries_.begin();
1588 p != this->entries_.end();
1589 ++p)
1590 elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1591 }
1592
1593 // Output_section::Input_section methods.
1594
1595 // Return the data size. For an input section we store the size here.
1596 // For an Output_section_data, we have to ask it for the size.
1597
1598 off_t
1599 Output_section::Input_section::data_size() const
1600 {
1601 if (this->is_input_section())
1602 return this->u1_.data_size;
1603 else
1604 return this->u2_.posd->data_size();
1605 }
1606
1607 // Set the address and file offset.
1608
1609 void
1610 Output_section::Input_section::set_address_and_file_offset(
1611 uint64_t address,
1612 off_t file_offset,
1613 off_t section_file_offset)
1614 {
1615 if (this->is_input_section())
1616 this->u2_.object->set_section_offset(this->shndx_,
1617 file_offset - section_file_offset);
1618 else
1619 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1620 }
1621
1622 // Reset the address and file offset.
1623
1624 void
1625 Output_section::Input_section::reset_address_and_file_offset()
1626 {
1627 if (!this->is_input_section())
1628 this->u2_.posd->reset_address_and_file_offset();
1629 }
1630
1631 // Finalize the data size.
1632
1633 void
1634 Output_section::Input_section::finalize_data_size()
1635 {
1636 if (!this->is_input_section())
1637 this->u2_.posd->finalize_data_size();
1638 }
1639
1640 // Try to turn an input offset into an output offset. We want to
1641 // return the output offset relative to the start of this
1642 // Input_section in the output section.
1643
1644 inline bool
1645 Output_section::Input_section::output_offset(
1646 const Relobj* object,
1647 unsigned int shndx,
1648 section_offset_type offset,
1649 section_offset_type *poutput) const
1650 {
1651 if (!this->is_input_section())
1652 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1653 else
1654 {
1655 if (this->shndx_ != shndx || this->u2_.object != object)
1656 return false;
1657 *poutput = offset;
1658 return true;
1659 }
1660 }
1661
1662 // Return whether this is the merge section for the input section
1663 // SHNDX in OBJECT.
1664
1665 inline bool
1666 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1667 unsigned int shndx) const
1668 {
1669 if (this->is_input_section())
1670 return false;
1671 return this->u2_.posd->is_merge_section_for(object, shndx);
1672 }
1673
1674 // Write out the data. We don't have to do anything for an input
1675 // section--they are handled via Object::relocate--but this is where
1676 // we write out the data for an Output_section_data.
1677
1678 void
1679 Output_section::Input_section::write(Output_file* of)
1680 {
1681 if (!this->is_input_section())
1682 this->u2_.posd->write(of);
1683 }
1684
1685 // Write the data to a buffer. As for write(), we don't have to do
1686 // anything for an input section.
1687
1688 void
1689 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1690 {
1691 if (!this->is_input_section())
1692 this->u2_.posd->write_to_buffer(buffer);
1693 }
1694
1695 // Print to a map file.
1696
1697 void
1698 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1699 {
1700 switch (this->shndx_)
1701 {
1702 case OUTPUT_SECTION_CODE:
1703 case MERGE_DATA_SECTION_CODE:
1704 case MERGE_STRING_SECTION_CODE:
1705 this->u2_.posd->print_to_mapfile(mapfile);
1706 break;
1707
1708 default:
1709 mapfile->print_input_section(this->u2_.object, this->shndx_);
1710 break;
1711 }
1712 }
1713
1714 // Output_section methods.
1715
1716 // Construct an Output_section. NAME will point into a Stringpool.
1717
1718 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1719 elfcpp::Elf_Xword flags)
1720 : name_(name),
1721 addralign_(0),
1722 entsize_(0),
1723 load_address_(0),
1724 link_section_(NULL),
1725 link_(0),
1726 info_section_(NULL),
1727 info_symndx_(NULL),
1728 info_(0),
1729 type_(type),
1730 flags_(flags),
1731 out_shndx_(-1U),
1732 symtab_index_(0),
1733 dynsym_index_(0),
1734 input_sections_(),
1735 first_input_offset_(0),
1736 fills_(),
1737 postprocessing_buffer_(NULL),
1738 needs_symtab_index_(false),
1739 needs_dynsym_index_(false),
1740 should_link_to_symtab_(false),
1741 should_link_to_dynsym_(false),
1742 after_input_sections_(false),
1743 requires_postprocessing_(false),
1744 found_in_sections_clause_(false),
1745 has_load_address_(false),
1746 info_uses_section_index_(false),
1747 may_sort_attached_input_sections_(false),
1748 must_sort_attached_input_sections_(false),
1749 attached_input_sections_are_sorted_(false),
1750 is_relro_(false),
1751 is_relro_local_(false),
1752 tls_offset_(0)
1753 {
1754 // An unallocated section has no address. Forcing this means that
1755 // we don't need special treatment for symbols defined in debug
1756 // sections.
1757 if ((flags & elfcpp::SHF_ALLOC) == 0)
1758 this->set_address(0);
1759 }
1760
1761 Output_section::~Output_section()
1762 {
1763 }
1764
1765 // Set the entry size.
1766
1767 void
1768 Output_section::set_entsize(uint64_t v)
1769 {
1770 if (this->entsize_ == 0)
1771 this->entsize_ = v;
1772 else
1773 gold_assert(this->entsize_ == v);
1774 }
1775
1776 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1777 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1778 // relocation section which applies to this section, or 0 if none, or
1779 // -1U if more than one. Return the offset of the input section
1780 // within the output section. Return -1 if the input section will
1781 // receive special handling. In the normal case we don't always keep
1782 // track of input sections for an Output_section. Instead, each
1783 // Object keeps track of the Output_section for each of its input
1784 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1785 // track of input sections here; this is used when SECTIONS appears in
1786 // a linker script.
1787
1788 template<int size, bool big_endian>
1789 off_t
1790 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1791 unsigned int shndx,
1792 const char* secname,
1793 const elfcpp::Shdr<size, big_endian>& shdr,
1794 unsigned int reloc_shndx,
1795 bool have_sections_script)
1796 {
1797 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1798 if ((addralign & (addralign - 1)) != 0)
1799 {
1800 object->error(_("invalid alignment %lu for section \"%s\""),
1801 static_cast<unsigned long>(addralign), secname);
1802 addralign = 1;
1803 }
1804
1805 if (addralign > this->addralign_)
1806 this->addralign_ = addralign;
1807
1808 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1809 this->update_flags_for_input_section(sh_flags);
1810
1811 uint64_t entsize = shdr.get_sh_entsize();
1812
1813 // .debug_str is a mergeable string section, but is not always so
1814 // marked by compilers. Mark manually here so we can optimize.
1815 if (strcmp(secname, ".debug_str") == 0)
1816 {
1817 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1818 entsize = 1;
1819 }
1820
1821 // If this is a SHF_MERGE section, we pass all the input sections to
1822 // a Output_data_merge. We don't try to handle relocations for such
1823 // a section. We don't try to handle empty merge sections--they
1824 // mess up the mappings, and are useless anyhow.
1825 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1826 && reloc_shndx == 0
1827 && shdr.get_sh_size() > 0)
1828 {
1829 if (this->add_merge_input_section(object, shndx, sh_flags,
1830 entsize, addralign))
1831 {
1832 // Tell the relocation routines that they need to call the
1833 // output_offset method to determine the final address.
1834 return -1;
1835 }
1836 }
1837
1838 off_t offset_in_section = this->current_data_size_for_child();
1839 off_t aligned_offset_in_section = align_address(offset_in_section,
1840 addralign);
1841
1842 if (aligned_offset_in_section > offset_in_section
1843 && !have_sections_script
1844 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1845 && object->target()->has_code_fill())
1846 {
1847 // We need to add some fill data. Using fill_list_ when
1848 // possible is an optimization, since we will often have fill
1849 // sections without input sections.
1850 off_t fill_len = aligned_offset_in_section - offset_in_section;
1851 if (this->input_sections_.empty())
1852 this->fills_.push_back(Fill(offset_in_section, fill_len));
1853 else
1854 {
1855 // FIXME: When relaxing, the size needs to adjust to
1856 // maintain a constant alignment.
1857 std::string fill_data(object->target()->code_fill(fill_len));
1858 Output_data_const* odc = new Output_data_const(fill_data, 1);
1859 this->input_sections_.push_back(Input_section(odc));
1860 }
1861 }
1862
1863 this->set_current_data_size_for_child(aligned_offset_in_section
1864 + shdr.get_sh_size());
1865
1866 // We need to keep track of this section if we are already keeping
1867 // track of sections, or if we are relaxing. Also, if this is a
1868 // section which requires sorting, or which may require sorting in
1869 // the future, we keep track of the sections. FIXME: Add test for
1870 // relaxing.
1871 if (have_sections_script
1872 || !this->input_sections_.empty()
1873 || this->may_sort_attached_input_sections()
1874 || this->must_sort_attached_input_sections()
1875 || parameters->options().user_set_Map())
1876 this->input_sections_.push_back(Input_section(object, shndx,
1877 shdr.get_sh_size(),
1878 addralign));
1879
1880 return aligned_offset_in_section;
1881 }
1882
1883 // Add arbitrary data to an output section.
1884
1885 void
1886 Output_section::add_output_section_data(Output_section_data* posd)
1887 {
1888 Input_section inp(posd);
1889 this->add_output_section_data(&inp);
1890
1891 if (posd->is_data_size_valid())
1892 {
1893 off_t offset_in_section = this->current_data_size_for_child();
1894 off_t aligned_offset_in_section = align_address(offset_in_section,
1895 posd->addralign());
1896 this->set_current_data_size_for_child(aligned_offset_in_section
1897 + posd->data_size());
1898 }
1899 }
1900
1901 // Add arbitrary data to an output section by Input_section.
1902
1903 void
1904 Output_section::add_output_section_data(Input_section* inp)
1905 {
1906 if (this->input_sections_.empty())
1907 this->first_input_offset_ = this->current_data_size_for_child();
1908
1909 this->input_sections_.push_back(*inp);
1910
1911 uint64_t addralign = inp->addralign();
1912 if (addralign > this->addralign_)
1913 this->addralign_ = addralign;
1914
1915 inp->set_output_section(this);
1916 }
1917
1918 // Add a merge section to an output section.
1919
1920 void
1921 Output_section::add_output_merge_section(Output_section_data* posd,
1922 bool is_string, uint64_t entsize)
1923 {
1924 Input_section inp(posd, is_string, entsize);
1925 this->add_output_section_data(&inp);
1926 }
1927
1928 // Add an input section to a SHF_MERGE section.
1929
1930 bool
1931 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1932 uint64_t flags, uint64_t entsize,
1933 uint64_t addralign)
1934 {
1935 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1936
1937 // We only merge strings if the alignment is not more than the
1938 // character size. This could be handled, but it's unusual.
1939 if (is_string && addralign > entsize)
1940 return false;
1941
1942 Input_section_list::iterator p;
1943 for (p = this->input_sections_.begin();
1944 p != this->input_sections_.end();
1945 ++p)
1946 if (p->is_merge_section(is_string, entsize, addralign))
1947 {
1948 p->add_input_section(object, shndx);
1949 return true;
1950 }
1951
1952 // We handle the actual constant merging in Output_merge_data or
1953 // Output_merge_string_data.
1954 Output_section_data* posd;
1955 if (!is_string)
1956 posd = new Output_merge_data(entsize, addralign);
1957 else
1958 {
1959 switch (entsize)
1960 {
1961 case 1:
1962 posd = new Output_merge_string<char>(addralign);
1963 break;
1964 case 2:
1965 posd = new Output_merge_string<uint16_t>(addralign);
1966 break;
1967 case 4:
1968 posd = new Output_merge_string<uint32_t>(addralign);
1969 break;
1970 default:
1971 return false;
1972 }
1973 }
1974
1975 this->add_output_merge_section(posd, is_string, entsize);
1976 posd->add_input_section(object, shndx);
1977
1978 return true;
1979 }
1980
1981 // Given an address OFFSET relative to the start of input section
1982 // SHNDX in OBJECT, return whether this address is being included in
1983 // the final link. This should only be called if SHNDX in OBJECT has
1984 // a special mapping.
1985
1986 bool
1987 Output_section::is_input_address_mapped(const Relobj* object,
1988 unsigned int shndx,
1989 off_t offset) const
1990 {
1991 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1992 p != this->input_sections_.end();
1993 ++p)
1994 {
1995 section_offset_type output_offset;
1996 if (p->output_offset(object, shndx, offset, &output_offset))
1997 return output_offset != -1;
1998 }
1999
2000 // By default we assume that the address is mapped. This should
2001 // only be called after we have passed all sections to Layout. At
2002 // that point we should know what we are discarding.
2003 return true;
2004 }
2005
2006 // Given an address OFFSET relative to the start of input section
2007 // SHNDX in object OBJECT, return the output offset relative to the
2008 // start of the input section in the output section. This should only
2009 // be called if SHNDX in OBJECT has a special mapping.
2010
2011 section_offset_type
2012 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2013 section_offset_type offset) const
2014 {
2015 // This can only be called meaningfully when layout is complete.
2016 gold_assert(Output_data::is_layout_complete());
2017
2018 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2019 p != this->input_sections_.end();
2020 ++p)
2021 {
2022 section_offset_type output_offset;
2023 if (p->output_offset(object, shndx, offset, &output_offset))
2024 return output_offset;
2025 }
2026 gold_unreachable();
2027 }
2028
2029 // Return the output virtual address of OFFSET relative to the start
2030 // of input section SHNDX in object OBJECT.
2031
2032 uint64_t
2033 Output_section::output_address(const Relobj* object, unsigned int shndx,
2034 off_t offset) const
2035 {
2036 uint64_t addr = this->address() + this->first_input_offset_;
2037 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2038 p != this->input_sections_.end();
2039 ++p)
2040 {
2041 addr = align_address(addr, p->addralign());
2042 section_offset_type output_offset;
2043 if (p->output_offset(object, shndx, offset, &output_offset))
2044 {
2045 if (output_offset == -1)
2046 return -1ULL;
2047 return addr + output_offset;
2048 }
2049 addr += p->data_size();
2050 }
2051
2052 // If we get here, it means that we don't know the mapping for this
2053 // input section. This might happen in principle if
2054 // add_input_section were called before add_output_section_data.
2055 // But it should never actually happen.
2056
2057 gold_unreachable();
2058 }
2059
2060 // Find the output address of the start of the merged section for
2061 // input section SHNDX in object OBJECT.
2062
2063 bool
2064 Output_section::find_starting_output_address(const Relobj* object,
2065 unsigned int shndx,
2066 uint64_t* paddr) const
2067 {
2068 uint64_t addr = this->address() + this->first_input_offset_;
2069 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2070 p != this->input_sections_.end();
2071 ++p)
2072 {
2073 addr = align_address(addr, p->addralign());
2074
2075 // It would be nice if we could use the existing output_offset
2076 // method to get the output offset of input offset 0.
2077 // Unfortunately we don't know for sure that input offset 0 is
2078 // mapped at all.
2079 if (p->is_merge_section_for(object, shndx))
2080 {
2081 *paddr = addr;
2082 return true;
2083 }
2084
2085 addr += p->data_size();
2086 }
2087
2088 // We couldn't find a merge output section for this input section.
2089 return false;
2090 }
2091
2092 // Set the data size of an Output_section. This is where we handle
2093 // setting the addresses of any Output_section_data objects.
2094
2095 void
2096 Output_section::set_final_data_size()
2097 {
2098 if (this->input_sections_.empty())
2099 {
2100 this->set_data_size(this->current_data_size_for_child());
2101 return;
2102 }
2103
2104 if (this->must_sort_attached_input_sections())
2105 this->sort_attached_input_sections();
2106
2107 uint64_t address = this->address();
2108 off_t startoff = this->offset();
2109 off_t off = startoff + this->first_input_offset_;
2110 for (Input_section_list::iterator p = this->input_sections_.begin();
2111 p != this->input_sections_.end();
2112 ++p)
2113 {
2114 off = align_address(off, p->addralign());
2115 p->set_address_and_file_offset(address + (off - startoff), off,
2116 startoff);
2117 off += p->data_size();
2118 }
2119
2120 this->set_data_size(off - startoff);
2121 }
2122
2123 // Reset the address and file offset.
2124
2125 void
2126 Output_section::do_reset_address_and_file_offset()
2127 {
2128 for (Input_section_list::iterator p = this->input_sections_.begin();
2129 p != this->input_sections_.end();
2130 ++p)
2131 p->reset_address_and_file_offset();
2132 }
2133
2134 // Set the TLS offset. Called only for SHT_TLS sections.
2135
2136 void
2137 Output_section::do_set_tls_offset(uint64_t tls_base)
2138 {
2139 this->tls_offset_ = this->address() - tls_base;
2140 }
2141
2142 // In a few cases we need to sort the input sections attached to an
2143 // output section. This is used to implement the type of constructor
2144 // priority ordering implemented by the GNU linker, in which the
2145 // priority becomes part of the section name and the sections are
2146 // sorted by name. We only do this for an output section if we see an
2147 // attached input section matching ".ctor.*", ".dtor.*",
2148 // ".init_array.*" or ".fini_array.*".
2149
2150 class Output_section::Input_section_sort_entry
2151 {
2152 public:
2153 Input_section_sort_entry()
2154 : input_section_(), index_(-1U), section_has_name_(false),
2155 section_name_()
2156 { }
2157
2158 Input_section_sort_entry(const Input_section& input_section,
2159 unsigned int index)
2160 : input_section_(input_section), index_(index),
2161 section_has_name_(input_section.is_input_section())
2162 {
2163 if (this->section_has_name_)
2164 {
2165 // This is only called single-threaded from Layout::finalize,
2166 // so it is OK to lock. Unfortunately we have no way to pass
2167 // in a Task token.
2168 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2169 Object* obj = input_section.relobj();
2170 Task_lock_obj<Object> tl(dummy_task, obj);
2171
2172 // This is a slow operation, which should be cached in
2173 // Layout::layout if this becomes a speed problem.
2174 this->section_name_ = obj->section_name(input_section.shndx());
2175 }
2176 }
2177
2178 // Return the Input_section.
2179 const Input_section&
2180 input_section() const
2181 {
2182 gold_assert(this->index_ != -1U);
2183 return this->input_section_;
2184 }
2185
2186 // The index of this entry in the original list. This is used to
2187 // make the sort stable.
2188 unsigned int
2189 index() const
2190 {
2191 gold_assert(this->index_ != -1U);
2192 return this->index_;
2193 }
2194
2195 // Whether there is a section name.
2196 bool
2197 section_has_name() const
2198 { return this->section_has_name_; }
2199
2200 // The section name.
2201 const std::string&
2202 section_name() const
2203 {
2204 gold_assert(this->section_has_name_);
2205 return this->section_name_;
2206 }
2207
2208 // Return true if the section name has a priority. This is assumed
2209 // to be true if it has a dot after the initial dot.
2210 bool
2211 has_priority() const
2212 {
2213 gold_assert(this->section_has_name_);
2214 return this->section_name_.find('.', 1);
2215 }
2216
2217 // Return true if this an input file whose base name matches
2218 // FILE_NAME. The base name must have an extension of ".o", and
2219 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2220 // This is to match crtbegin.o as well as crtbeginS.o without
2221 // getting confused by other possibilities. Overall matching the
2222 // file name this way is a dreadful hack, but the GNU linker does it
2223 // in order to better support gcc, and we need to be compatible.
2224 bool
2225 match_file_name(const char* match_file_name) const
2226 {
2227 const std::string& file_name(this->input_section_.relobj()->name());
2228 const char* base_name = lbasename(file_name.c_str());
2229 size_t match_len = strlen(match_file_name);
2230 if (strncmp(base_name, match_file_name, match_len) != 0)
2231 return false;
2232 size_t base_len = strlen(base_name);
2233 if (base_len != match_len + 2 && base_len != match_len + 3)
2234 return false;
2235 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2236 }
2237
2238 private:
2239 // The Input_section we are sorting.
2240 Input_section input_section_;
2241 // The index of this Input_section in the original list.
2242 unsigned int index_;
2243 // Whether this Input_section has a section name--it won't if this
2244 // is some random Output_section_data.
2245 bool section_has_name_;
2246 // The section name if there is one.
2247 std::string section_name_;
2248 };
2249
2250 // Return true if S1 should come before S2 in the output section.
2251
2252 bool
2253 Output_section::Input_section_sort_compare::operator()(
2254 const Output_section::Input_section_sort_entry& s1,
2255 const Output_section::Input_section_sort_entry& s2) const
2256 {
2257 // crtbegin.o must come first.
2258 bool s1_begin = s1.match_file_name("crtbegin");
2259 bool s2_begin = s2.match_file_name("crtbegin");
2260 if (s1_begin || s2_begin)
2261 {
2262 if (!s1_begin)
2263 return false;
2264 if (!s2_begin)
2265 return true;
2266 return s1.index() < s2.index();
2267 }
2268
2269 // crtend.o must come last.
2270 bool s1_end = s1.match_file_name("crtend");
2271 bool s2_end = s2.match_file_name("crtend");
2272 if (s1_end || s2_end)
2273 {
2274 if (!s1_end)
2275 return true;
2276 if (!s2_end)
2277 return false;
2278 return s1.index() < s2.index();
2279 }
2280
2281 // We sort all the sections with no names to the end.
2282 if (!s1.section_has_name() || !s2.section_has_name())
2283 {
2284 if (s1.section_has_name())
2285 return true;
2286 if (s2.section_has_name())
2287 return false;
2288 return s1.index() < s2.index();
2289 }
2290
2291 // A section with a priority follows a section without a priority.
2292 // The GNU linker does this for all but .init_array sections; until
2293 // further notice we'll assume that that is an mistake.
2294 bool s1_has_priority = s1.has_priority();
2295 bool s2_has_priority = s2.has_priority();
2296 if (s1_has_priority && !s2_has_priority)
2297 return false;
2298 if (!s1_has_priority && s2_has_priority)
2299 return true;
2300
2301 // Otherwise we sort by name.
2302 int compare = s1.section_name().compare(s2.section_name());
2303 if (compare != 0)
2304 return compare < 0;
2305
2306 // Otherwise we keep the input order.
2307 return s1.index() < s2.index();
2308 }
2309
2310 // Sort the input sections attached to an output section.
2311
2312 void
2313 Output_section::sort_attached_input_sections()
2314 {
2315 if (this->attached_input_sections_are_sorted_)
2316 return;
2317
2318 // The only thing we know about an input section is the object and
2319 // the section index. We need the section name. Recomputing this
2320 // is slow but this is an unusual case. If this becomes a speed
2321 // problem we can cache the names as required in Layout::layout.
2322
2323 // We start by building a larger vector holding a copy of each
2324 // Input_section, plus its current index in the list and its name.
2325 std::vector<Input_section_sort_entry> sort_list;
2326
2327 unsigned int i = 0;
2328 for (Input_section_list::iterator p = this->input_sections_.begin();
2329 p != this->input_sections_.end();
2330 ++p, ++i)
2331 sort_list.push_back(Input_section_sort_entry(*p, i));
2332
2333 // Sort the input sections.
2334 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2335
2336 // Copy the sorted input sections back to our list.
2337 this->input_sections_.clear();
2338 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2339 p != sort_list.end();
2340 ++p)
2341 this->input_sections_.push_back(p->input_section());
2342
2343 // Remember that we sorted the input sections, since we might get
2344 // called again.
2345 this->attached_input_sections_are_sorted_ = true;
2346 }
2347
2348 // Write the section header to *OSHDR.
2349
2350 template<int size, bool big_endian>
2351 void
2352 Output_section::write_header(const Layout* layout,
2353 const Stringpool* secnamepool,
2354 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2355 {
2356 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2357 oshdr->put_sh_type(this->type_);
2358
2359 elfcpp::Elf_Xword flags = this->flags_;
2360 if (this->info_section_ != NULL && this->info_uses_section_index_)
2361 flags |= elfcpp::SHF_INFO_LINK;
2362 oshdr->put_sh_flags(flags);
2363
2364 oshdr->put_sh_addr(this->address());
2365 oshdr->put_sh_offset(this->offset());
2366 oshdr->put_sh_size(this->data_size());
2367 if (this->link_section_ != NULL)
2368 oshdr->put_sh_link(this->link_section_->out_shndx());
2369 else if (this->should_link_to_symtab_)
2370 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2371 else if (this->should_link_to_dynsym_)
2372 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2373 else
2374 oshdr->put_sh_link(this->link_);
2375
2376 elfcpp::Elf_Word info;
2377 if (this->info_section_ != NULL)
2378 {
2379 if (this->info_uses_section_index_)
2380 info = this->info_section_->out_shndx();
2381 else
2382 info = this->info_section_->symtab_index();
2383 }
2384 else if (this->info_symndx_ != NULL)
2385 info = this->info_symndx_->symtab_index();
2386 else
2387 info = this->info_;
2388 oshdr->put_sh_info(info);
2389
2390 oshdr->put_sh_addralign(this->addralign_);
2391 oshdr->put_sh_entsize(this->entsize_);
2392 }
2393
2394 // Write out the data. For input sections the data is written out by
2395 // Object::relocate, but we have to handle Output_section_data objects
2396 // here.
2397
2398 void
2399 Output_section::do_write(Output_file* of)
2400 {
2401 gold_assert(!this->requires_postprocessing());
2402
2403 off_t output_section_file_offset = this->offset();
2404 for (Fill_list::iterator p = this->fills_.begin();
2405 p != this->fills_.end();
2406 ++p)
2407 {
2408 std::string fill_data(parameters->target().code_fill(p->length()));
2409 of->write(output_section_file_offset + p->section_offset(),
2410 fill_data.data(), fill_data.size());
2411 }
2412
2413 for (Input_section_list::iterator p = this->input_sections_.begin();
2414 p != this->input_sections_.end();
2415 ++p)
2416 p->write(of);
2417 }
2418
2419 // If a section requires postprocessing, create the buffer to use.
2420
2421 void
2422 Output_section::create_postprocessing_buffer()
2423 {
2424 gold_assert(this->requires_postprocessing());
2425
2426 if (this->postprocessing_buffer_ != NULL)
2427 return;
2428
2429 if (!this->input_sections_.empty())
2430 {
2431 off_t off = this->first_input_offset_;
2432 for (Input_section_list::iterator p = this->input_sections_.begin();
2433 p != this->input_sections_.end();
2434 ++p)
2435 {
2436 off = align_address(off, p->addralign());
2437 p->finalize_data_size();
2438 off += p->data_size();
2439 }
2440 this->set_current_data_size_for_child(off);
2441 }
2442
2443 off_t buffer_size = this->current_data_size_for_child();
2444 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2445 }
2446
2447 // Write all the data of an Output_section into the postprocessing
2448 // buffer. This is used for sections which require postprocessing,
2449 // such as compression. Input sections are handled by
2450 // Object::Relocate.
2451
2452 void
2453 Output_section::write_to_postprocessing_buffer()
2454 {
2455 gold_assert(this->requires_postprocessing());
2456
2457 unsigned char* buffer = this->postprocessing_buffer();
2458 for (Fill_list::iterator p = this->fills_.begin();
2459 p != this->fills_.end();
2460 ++p)
2461 {
2462 std::string fill_data(parameters->target().code_fill(p->length()));
2463 memcpy(buffer + p->section_offset(), fill_data.data(),
2464 fill_data.size());
2465 }
2466
2467 off_t off = this->first_input_offset_;
2468 for (Input_section_list::iterator p = this->input_sections_.begin();
2469 p != this->input_sections_.end();
2470 ++p)
2471 {
2472 off = align_address(off, p->addralign());
2473 p->write_to_buffer(buffer + off);
2474 off += p->data_size();
2475 }
2476 }
2477
2478 // Get the input sections for linker script processing. We leave
2479 // behind the Output_section_data entries. Note that this may be
2480 // slightly incorrect for merge sections. We will leave them behind,
2481 // but it is possible that the script says that they should follow
2482 // some other input sections, as in:
2483 // .rodata { *(.rodata) *(.rodata.cst*) }
2484 // For that matter, we don't handle this correctly:
2485 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2486 // With luck this will never matter.
2487
2488 uint64_t
2489 Output_section::get_input_sections(
2490 uint64_t address,
2491 const std::string& fill,
2492 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2493 {
2494 uint64_t orig_address = address;
2495
2496 address = align_address(address, this->addralign());
2497
2498 Input_section_list remaining;
2499 for (Input_section_list::iterator p = this->input_sections_.begin();
2500 p != this->input_sections_.end();
2501 ++p)
2502 {
2503 if (p->is_input_section())
2504 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2505 else
2506 {
2507 uint64_t aligned_address = align_address(address, p->addralign());
2508 if (aligned_address != address && !fill.empty())
2509 {
2510 section_size_type length =
2511 convert_to_section_size_type(aligned_address - address);
2512 std::string this_fill;
2513 this_fill.reserve(length);
2514 while (this_fill.length() + fill.length() <= length)
2515 this_fill += fill;
2516 if (this_fill.length() < length)
2517 this_fill.append(fill, 0, length - this_fill.length());
2518
2519 Output_section_data* posd = new Output_data_const(this_fill, 0);
2520 remaining.push_back(Input_section(posd));
2521 }
2522 address = aligned_address;
2523
2524 remaining.push_back(*p);
2525
2526 p->finalize_data_size();
2527 address += p->data_size();
2528 }
2529 }
2530
2531 this->input_sections_.swap(remaining);
2532 this->first_input_offset_ = 0;
2533
2534 uint64_t data_size = address - orig_address;
2535 this->set_current_data_size_for_child(data_size);
2536 return data_size;
2537 }
2538
2539 // Add an input section from a script.
2540
2541 void
2542 Output_section::add_input_section_for_script(Relobj* object,
2543 unsigned int shndx,
2544 off_t data_size,
2545 uint64_t addralign)
2546 {
2547 if (addralign > this->addralign_)
2548 this->addralign_ = addralign;
2549
2550 off_t offset_in_section = this->current_data_size_for_child();
2551 off_t aligned_offset_in_section = align_address(offset_in_section,
2552 addralign);
2553
2554 this->set_current_data_size_for_child(aligned_offset_in_section
2555 + data_size);
2556
2557 this->input_sections_.push_back(Input_section(object, shndx,
2558 data_size, addralign));
2559 }
2560
2561 // Print to the map file.
2562
2563 void
2564 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
2565 {
2566 mapfile->print_output_section(this);
2567
2568 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2569 p != this->input_sections_.end();
2570 ++p)
2571 p->print_to_mapfile(mapfile);
2572 }
2573
2574 // Print stats for merge sections to stderr.
2575
2576 void
2577 Output_section::print_merge_stats()
2578 {
2579 Input_section_list::iterator p;
2580 for (p = this->input_sections_.begin();
2581 p != this->input_sections_.end();
2582 ++p)
2583 p->print_merge_stats(this->name_);
2584 }
2585
2586 // Output segment methods.
2587
2588 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2589 : output_data_(),
2590 output_bss_(),
2591 vaddr_(0),
2592 paddr_(0),
2593 memsz_(0),
2594 max_align_(0),
2595 min_p_align_(0),
2596 offset_(0),
2597 filesz_(0),
2598 type_(type),
2599 flags_(flags),
2600 is_max_align_known_(false),
2601 are_addresses_set_(false)
2602 {
2603 }
2604
2605 // Add an Output_section to an Output_segment.
2606
2607 void
2608 Output_segment::add_output_section(Output_section* os,
2609 elfcpp::Elf_Word seg_flags)
2610 {
2611 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2612 gold_assert(!this->is_max_align_known_);
2613
2614 // Update the segment flags.
2615 this->flags_ |= seg_flags;
2616
2617 Output_segment::Output_data_list* pdl;
2618 if (os->type() == elfcpp::SHT_NOBITS)
2619 pdl = &this->output_bss_;
2620 else
2621 pdl = &this->output_data_;
2622
2623 // So that PT_NOTE segments will work correctly, we need to ensure
2624 // that all SHT_NOTE sections are adjacent. This will normally
2625 // happen automatically, because all the SHT_NOTE input sections
2626 // will wind up in the same output section. However, it is possible
2627 // for multiple SHT_NOTE input sections to have different section
2628 // flags, and thus be in different output sections, but for the
2629 // different section flags to map into the same segment flags and
2630 // thus the same output segment.
2631
2632 // Note that while there may be many input sections in an output
2633 // section, there are normally only a few output sections in an
2634 // output segment. This loop is expected to be fast.
2635
2636 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2637 {
2638 Output_segment::Output_data_list::iterator p = pdl->end();
2639 do
2640 {
2641 --p;
2642 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2643 {
2644 ++p;
2645 pdl->insert(p, os);
2646 return;
2647 }
2648 }
2649 while (p != pdl->begin());
2650 }
2651
2652 // Similarly, so that PT_TLS segments will work, we need to group
2653 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2654 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2655 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2656 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2657 // and the PT_TLS segment -- we do this grouping only for the
2658 // PT_LOAD segment.
2659 if (this->type_ != elfcpp::PT_TLS
2660 && (os->flags() & elfcpp::SHF_TLS) != 0)
2661 {
2662 pdl = &this->output_data_;
2663 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2664 bool sawtls = false;
2665 Output_segment::Output_data_list::iterator p = pdl->end();
2666 do
2667 {
2668 --p;
2669 bool insert;
2670 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2671 {
2672 sawtls = true;
2673 // Put a NOBITS section after the first TLS section.
2674 // Put a PROGBITS section after the first TLS/PROGBITS
2675 // section.
2676 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2677 }
2678 else
2679 {
2680 // If we've gone past the TLS sections, but we've seen a
2681 // TLS section, then we need to insert this section now.
2682 insert = sawtls;
2683 }
2684
2685 if (insert)
2686 {
2687 ++p;
2688 pdl->insert(p, os);
2689 return;
2690 }
2691 }
2692 while (p != pdl->begin());
2693
2694 // There are no TLS sections yet; put this one at the requested
2695 // location in the section list.
2696 }
2697
2698 // For the PT_GNU_RELRO segment, we need to group relro sections,
2699 // and we need to put them before any non-relro sections. Also,
2700 // relro local sections go before relro non-local sections.
2701 if (parameters->options().relro() && os->is_relro())
2702 {
2703 gold_assert(pdl == &this->output_data_);
2704 Output_segment::Output_data_list::iterator p;
2705 for (p = pdl->begin(); p != pdl->end(); ++p)
2706 {
2707 if (!(*p)->is_section())
2708 break;
2709
2710 Output_section* pos = (*p)->output_section();
2711 if (!pos->is_relro()
2712 || (os->is_relro_local() && !pos->is_relro_local()))
2713 break;
2714 }
2715
2716 pdl->insert(p, os);
2717 return;
2718 }
2719
2720 pdl->push_back(os);
2721 }
2722
2723 // Remove an Output_section from this segment. It is an error if it
2724 // is not present.
2725
2726 void
2727 Output_segment::remove_output_section(Output_section* os)
2728 {
2729 // We only need this for SHT_PROGBITS.
2730 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2731 for (Output_data_list::iterator p = this->output_data_.begin();
2732 p != this->output_data_.end();
2733 ++p)
2734 {
2735 if (*p == os)
2736 {
2737 this->output_data_.erase(p);
2738 return;
2739 }
2740 }
2741 gold_unreachable();
2742 }
2743
2744 // Add an Output_data (which is not an Output_section) to the start of
2745 // a segment.
2746
2747 void
2748 Output_segment::add_initial_output_data(Output_data* od)
2749 {
2750 gold_assert(!this->is_max_align_known_);
2751 this->output_data_.push_front(od);
2752 }
2753
2754 // Return whether the first data section is a relro section.
2755
2756 bool
2757 Output_segment::is_first_section_relro() const
2758 {
2759 return (!this->output_data_.empty()
2760 && this->output_data_.front()->is_section()
2761 && this->output_data_.front()->output_section()->is_relro());
2762 }
2763
2764 // Return the maximum alignment of the Output_data in Output_segment.
2765
2766 uint64_t
2767 Output_segment::maximum_alignment()
2768 {
2769 if (!this->is_max_align_known_)
2770 {
2771 uint64_t addralign;
2772
2773 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2774 if (addralign > this->max_align_)
2775 this->max_align_ = addralign;
2776
2777 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2778 if (addralign > this->max_align_)
2779 this->max_align_ = addralign;
2780
2781 // If -z relro is in effect, and the first section in this
2782 // segment is a relro section, then the segment must be aligned
2783 // to at least the common page size. This ensures that the
2784 // PT_GNU_RELRO segment will start at a page boundary.
2785 if (this->type_ == elfcpp::PT_LOAD
2786 && parameters->options().relro()
2787 && this->is_first_section_relro())
2788 {
2789 addralign = parameters->target().common_pagesize();
2790 if (addralign > this->max_align_)
2791 this->max_align_ = addralign;
2792 }
2793
2794 this->is_max_align_known_ = true;
2795 }
2796
2797 return this->max_align_;
2798 }
2799
2800 // Return the maximum alignment of a list of Output_data.
2801
2802 uint64_t
2803 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2804 {
2805 uint64_t ret = 0;
2806 for (Output_data_list::const_iterator p = pdl->begin();
2807 p != pdl->end();
2808 ++p)
2809 {
2810 uint64_t addralign = (*p)->addralign();
2811 if (addralign > ret)
2812 ret = addralign;
2813 }
2814 return ret;
2815 }
2816
2817 // Return the number of dynamic relocs applied to this segment.
2818
2819 unsigned int
2820 Output_segment::dynamic_reloc_count() const
2821 {
2822 return (this->dynamic_reloc_count_list(&this->output_data_)
2823 + this->dynamic_reloc_count_list(&this->output_bss_));
2824 }
2825
2826 // Return the number of dynamic relocs applied to an Output_data_list.
2827
2828 unsigned int
2829 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2830 {
2831 unsigned int count = 0;
2832 for (Output_data_list::const_iterator p = pdl->begin();
2833 p != pdl->end();
2834 ++p)
2835 count += (*p)->dynamic_reloc_count();
2836 return count;
2837 }
2838
2839 // Set the section addresses for an Output_segment. If RESET is true,
2840 // reset the addresses first. ADDR is the address and *POFF is the
2841 // file offset. Set the section indexes starting with *PSHNDX.
2842 // Return the address of the immediately following segment. Update
2843 // *POFF and *PSHNDX.
2844
2845 uint64_t
2846 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2847 uint64_t addr, off_t* poff,
2848 unsigned int* pshndx)
2849 {
2850 gold_assert(this->type_ == elfcpp::PT_LOAD);
2851
2852 if (!reset && this->are_addresses_set_)
2853 {
2854 gold_assert(this->paddr_ == addr);
2855 addr = this->vaddr_;
2856 }
2857 else
2858 {
2859 this->vaddr_ = addr;
2860 this->paddr_ = addr;
2861 this->are_addresses_set_ = true;
2862 }
2863
2864 bool in_tls = false;
2865
2866 bool in_relro = (parameters->options().relro()
2867 && this->is_first_section_relro());
2868
2869 off_t orig_off = *poff;
2870 this->offset_ = orig_off;
2871
2872 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2873 addr, poff, pshndx, &in_tls,
2874 &in_relro);
2875 this->filesz_ = *poff - orig_off;
2876
2877 off_t off = *poff;
2878
2879 uint64_t ret = this->set_section_list_addresses(layout, reset,
2880 &this->output_bss_,
2881 addr, poff, pshndx,
2882 &in_tls, &in_relro);
2883
2884 // If the last section was a TLS section, align upward to the
2885 // alignment of the TLS segment, so that the overall size of the TLS
2886 // segment is aligned.
2887 if (in_tls)
2888 {
2889 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2890 *poff = align_address(*poff, segment_align);
2891 }
2892
2893 // If all the sections were relro sections, align upward to the
2894 // common page size.
2895 if (in_relro)
2896 {
2897 uint64_t page_align = parameters->target().common_pagesize();
2898 *poff = align_address(*poff, page_align);
2899 }
2900
2901 this->memsz_ = *poff - orig_off;
2902
2903 // Ignore the file offset adjustments made by the BSS Output_data
2904 // objects.
2905 *poff = off;
2906
2907 return ret;
2908 }
2909
2910 // Set the addresses and file offsets in a list of Output_data
2911 // structures.
2912
2913 uint64_t
2914 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2915 Output_data_list* pdl,
2916 uint64_t addr, off_t* poff,
2917 unsigned int* pshndx,
2918 bool* in_tls, bool* in_relro)
2919 {
2920 off_t startoff = *poff;
2921
2922 off_t off = startoff;
2923 for (Output_data_list::iterator p = pdl->begin();
2924 p != pdl->end();
2925 ++p)
2926 {
2927 if (reset)
2928 (*p)->reset_address_and_file_offset();
2929
2930 // When using a linker script the section will most likely
2931 // already have an address.
2932 if (!(*p)->is_address_valid())
2933 {
2934 uint64_t align = (*p)->addralign();
2935
2936 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2937 {
2938 // Give the first TLS section the alignment of the
2939 // entire TLS segment. Otherwise the TLS segment as a
2940 // whole may be misaligned.
2941 if (!*in_tls)
2942 {
2943 Output_segment* tls_segment = layout->tls_segment();
2944 gold_assert(tls_segment != NULL);
2945 uint64_t segment_align = tls_segment->maximum_alignment();
2946 gold_assert(segment_align >= align);
2947 align = segment_align;
2948
2949 *in_tls = true;
2950 }
2951 }
2952 else
2953 {
2954 // If this is the first section after the TLS segment,
2955 // align it to at least the alignment of the TLS
2956 // segment, so that the size of the overall TLS segment
2957 // is aligned.
2958 if (*in_tls)
2959 {
2960 uint64_t segment_align =
2961 layout->tls_segment()->maximum_alignment();
2962 if (segment_align > align)
2963 align = segment_align;
2964
2965 *in_tls = false;
2966 }
2967 }
2968
2969 // If this is a non-relro section after a relro section,
2970 // align it to a common page boundary so that the dynamic
2971 // linker has a page to mark as read-only.
2972 if (*in_relro
2973 && (!(*p)->is_section()
2974 || !(*p)->output_section()->is_relro()))
2975 {
2976 uint64_t page_align = parameters->target().common_pagesize();
2977 if (page_align > align)
2978 align = page_align;
2979 *in_relro = false;
2980 }
2981
2982 off = align_address(off, align);
2983 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2984 }
2985 else
2986 {
2987 // The script may have inserted a skip forward, but it
2988 // better not have moved backward.
2989 gold_assert((*p)->address() >= addr + (off - startoff));
2990 off += (*p)->address() - (addr + (off - startoff));
2991 (*p)->set_file_offset(off);
2992 (*p)->finalize_data_size();
2993 }
2994
2995 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2996 // section. Such a section does not affect the size of a
2997 // PT_LOAD segment.
2998 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2999 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3000 off += (*p)->data_size();
3001
3002 if ((*p)->is_section())
3003 {
3004 (*p)->set_out_shndx(*pshndx);
3005 ++*pshndx;
3006 }
3007 }
3008
3009 *poff = off;
3010 return addr + (off - startoff);
3011 }
3012
3013 // For a non-PT_LOAD segment, set the offset from the sections, if
3014 // any.
3015
3016 void
3017 Output_segment::set_offset()
3018 {
3019 gold_assert(this->type_ != elfcpp::PT_LOAD);
3020
3021 gold_assert(!this->are_addresses_set_);
3022
3023 if (this->output_data_.empty() && this->output_bss_.empty())
3024 {
3025 this->vaddr_ = 0;
3026 this->paddr_ = 0;
3027 this->are_addresses_set_ = true;
3028 this->memsz_ = 0;
3029 this->min_p_align_ = 0;
3030 this->offset_ = 0;
3031 this->filesz_ = 0;
3032 return;
3033 }
3034
3035 const Output_data* first;
3036 if (this->output_data_.empty())
3037 first = this->output_bss_.front();
3038 else
3039 first = this->output_data_.front();
3040 this->vaddr_ = first->address();
3041 this->paddr_ = (first->has_load_address()
3042 ? first->load_address()
3043 : this->vaddr_);
3044 this->are_addresses_set_ = true;
3045 this->offset_ = first->offset();
3046
3047 if (this->output_data_.empty())
3048 this->filesz_ = 0;
3049 else
3050 {
3051 const Output_data* last_data = this->output_data_.back();
3052 this->filesz_ = (last_data->address()
3053 + last_data->data_size()
3054 - this->vaddr_);
3055 }
3056
3057 const Output_data* last;
3058 if (this->output_bss_.empty())
3059 last = this->output_data_.back();
3060 else
3061 last = this->output_bss_.back();
3062 this->memsz_ = (last->address()
3063 + last->data_size()
3064 - this->vaddr_);
3065
3066 // If this is a TLS segment, align the memory size. The code in
3067 // set_section_list ensures that the section after the TLS segment
3068 // is aligned to give us room.
3069 if (this->type_ == elfcpp::PT_TLS)
3070 {
3071 uint64_t segment_align = this->maximum_alignment();
3072 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3073 this->memsz_ = align_address(this->memsz_, segment_align);
3074 }
3075
3076 // If this is a RELRO segment, align the memory size. The code in
3077 // set_section_list ensures that the section after the RELRO segment
3078 // is aligned to give us room.
3079 if (this->type_ == elfcpp::PT_GNU_RELRO)
3080 {
3081 uint64_t page_align = parameters->target().common_pagesize();
3082 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3083 this->memsz_ = align_address(this->memsz_, page_align);
3084 }
3085 }
3086
3087 // Set the TLS offsets of the sections in the PT_TLS segment.
3088
3089 void
3090 Output_segment::set_tls_offsets()
3091 {
3092 gold_assert(this->type_ == elfcpp::PT_TLS);
3093
3094 for (Output_data_list::iterator p = this->output_data_.begin();
3095 p != this->output_data_.end();
3096 ++p)
3097 (*p)->set_tls_offset(this->vaddr_);
3098
3099 for (Output_data_list::iterator p = this->output_bss_.begin();
3100 p != this->output_bss_.end();
3101 ++p)
3102 (*p)->set_tls_offset(this->vaddr_);
3103 }
3104
3105 // Return the address of the first section.
3106
3107 uint64_t
3108 Output_segment::first_section_load_address() const
3109 {
3110 for (Output_data_list::const_iterator p = this->output_data_.begin();
3111 p != this->output_data_.end();
3112 ++p)
3113 if ((*p)->is_section())
3114 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3115
3116 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3117 p != this->output_bss_.end();
3118 ++p)
3119 if ((*p)->is_section())
3120 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3121
3122 gold_unreachable();
3123 }
3124
3125 // Return the number of Output_sections in an Output_segment.
3126
3127 unsigned int
3128 Output_segment::output_section_count() const
3129 {
3130 return (this->output_section_count_list(&this->output_data_)
3131 + this->output_section_count_list(&this->output_bss_));
3132 }
3133
3134 // Return the number of Output_sections in an Output_data_list.
3135
3136 unsigned int
3137 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3138 {
3139 unsigned int count = 0;
3140 for (Output_data_list::const_iterator p = pdl->begin();
3141 p != pdl->end();
3142 ++p)
3143 {
3144 if ((*p)->is_section())
3145 ++count;
3146 }
3147 return count;
3148 }
3149
3150 // Return the section attached to the list segment with the lowest
3151 // load address. This is used when handling a PHDRS clause in a
3152 // linker script.
3153
3154 Output_section*
3155 Output_segment::section_with_lowest_load_address() const
3156 {
3157 Output_section* found = NULL;
3158 uint64_t found_lma = 0;
3159 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3160
3161 Output_section* found_data = found;
3162 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3163 if (found != found_data && found_data != NULL)
3164 {
3165 gold_error(_("nobits section %s may not precede progbits section %s "
3166 "in same segment"),
3167 found->name(), found_data->name());
3168 return NULL;
3169 }
3170
3171 return found;
3172 }
3173
3174 // Look through a list for a section with a lower load address.
3175
3176 void
3177 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3178 Output_section** found,
3179 uint64_t* found_lma) const
3180 {
3181 for (Output_data_list::const_iterator p = pdl->begin();
3182 p != pdl->end();
3183 ++p)
3184 {
3185 if (!(*p)->is_section())
3186 continue;
3187 Output_section* os = static_cast<Output_section*>(*p);
3188 uint64_t lma = (os->has_load_address()
3189 ? os->load_address()
3190 : os->address());
3191 if (*found == NULL || lma < *found_lma)
3192 {
3193 *found = os;
3194 *found_lma = lma;
3195 }
3196 }
3197 }
3198
3199 // Write the segment data into *OPHDR.
3200
3201 template<int size, bool big_endian>
3202 void
3203 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3204 {
3205 ophdr->put_p_type(this->type_);
3206 ophdr->put_p_offset(this->offset_);
3207 ophdr->put_p_vaddr(this->vaddr_);
3208 ophdr->put_p_paddr(this->paddr_);
3209 ophdr->put_p_filesz(this->filesz_);
3210 ophdr->put_p_memsz(this->memsz_);
3211 ophdr->put_p_flags(this->flags_);
3212 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3213 }
3214
3215 // Write the section headers into V.
3216
3217 template<int size, bool big_endian>
3218 unsigned char*
3219 Output_segment::write_section_headers(const Layout* layout,
3220 const Stringpool* secnamepool,
3221 unsigned char* v,
3222 unsigned int *pshndx) const
3223 {
3224 // Every section that is attached to a segment must be attached to a
3225 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3226 // segments.
3227 if (this->type_ != elfcpp::PT_LOAD)
3228 return v;
3229
3230 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3231 &this->output_data_,
3232 v, pshndx);
3233 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3234 &this->output_bss_,
3235 v, pshndx);
3236 return v;
3237 }
3238
3239 template<int size, bool big_endian>
3240 unsigned char*
3241 Output_segment::write_section_headers_list(const Layout* layout,
3242 const Stringpool* secnamepool,
3243 const Output_data_list* pdl,
3244 unsigned char* v,
3245 unsigned int* pshndx) const
3246 {
3247 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3248 for (Output_data_list::const_iterator p = pdl->begin();
3249 p != pdl->end();
3250 ++p)
3251 {
3252 if ((*p)->is_section())
3253 {
3254 const Output_section* ps = static_cast<const Output_section*>(*p);
3255 gold_assert(*pshndx == ps->out_shndx());
3256 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3257 ps->write_header(layout, secnamepool, &oshdr);
3258 v += shdr_size;
3259 ++*pshndx;
3260 }
3261 }
3262 return v;
3263 }
3264
3265 // Print the output sections to the map file.
3266
3267 void
3268 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3269 {
3270 if (this->type() != elfcpp::PT_LOAD)
3271 return;
3272 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3273 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3274 }
3275
3276 // Print an output section list to the map file.
3277
3278 void
3279 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3280 const Output_data_list* pdl) const
3281 {
3282 for (Output_data_list::const_iterator p = pdl->begin();
3283 p != pdl->end();
3284 ++p)
3285 (*p)->print_to_mapfile(mapfile);
3286 }
3287
3288 // Output_file methods.
3289
3290 Output_file::Output_file(const char* name)
3291 : name_(name),
3292 o_(-1),
3293 file_size_(0),
3294 base_(NULL),
3295 map_is_anonymous_(false),
3296 is_temporary_(false)
3297 {
3298 }
3299
3300 // Open the output file.
3301
3302 void
3303 Output_file::open(off_t file_size)
3304 {
3305 this->file_size_ = file_size;
3306
3307 // Unlink the file first; otherwise the open() may fail if the file
3308 // is busy (e.g. it's an executable that's currently being executed).
3309 //
3310 // However, the linker may be part of a system where a zero-length
3311 // file is created for it to write to, with tight permissions (gcc
3312 // 2.95 did something like this). Unlinking the file would work
3313 // around those permission controls, so we only unlink if the file
3314 // has a non-zero size. We also unlink only regular files to avoid
3315 // trouble with directories/etc.
3316 //
3317 // If we fail, continue; this command is merely a best-effort attempt
3318 // to improve the odds for open().
3319
3320 // We let the name "-" mean "stdout"
3321 if (!this->is_temporary_)
3322 {
3323 if (strcmp(this->name_, "-") == 0)
3324 this->o_ = STDOUT_FILENO;
3325 else
3326 {
3327 struct stat s;
3328 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3329 unlink_if_ordinary(this->name_);
3330
3331 int mode = parameters->options().relocatable() ? 0666 : 0777;
3332 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3333 mode);
3334 if (o < 0)
3335 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3336 this->o_ = o;
3337 }
3338 }
3339
3340 this->map();
3341 }
3342
3343 // Resize the output file.
3344
3345 void
3346 Output_file::resize(off_t file_size)
3347 {
3348 // If the mmap is mapping an anonymous memory buffer, this is easy:
3349 // just mremap to the new size. If it's mapping to a file, we want
3350 // to unmap to flush to the file, then remap after growing the file.
3351 if (this->map_is_anonymous_)
3352 {
3353 void* base = ::mremap(this->base_, this->file_size_, file_size,
3354 MREMAP_MAYMOVE);
3355 if (base == MAP_FAILED)
3356 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3357 this->base_ = static_cast<unsigned char*>(base);
3358 this->file_size_ = file_size;
3359 }
3360 else
3361 {
3362 this->unmap();
3363 this->file_size_ = file_size;
3364 this->map();
3365 }
3366 }
3367
3368 // Map the file into memory.
3369
3370 void
3371 Output_file::map()
3372 {
3373 const int o = this->o_;
3374
3375 // If the output file is not a regular file, don't try to mmap it;
3376 // instead, we'll mmap a block of memory (an anonymous buffer), and
3377 // then later write the buffer to the file.
3378 void* base;
3379 struct stat statbuf;
3380 if (o == STDOUT_FILENO || o == STDERR_FILENO
3381 || ::fstat(o, &statbuf) != 0
3382 || !S_ISREG(statbuf.st_mode)
3383 || this->is_temporary_)
3384 {
3385 this->map_is_anonymous_ = true;
3386 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3387 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3388 }
3389 else
3390 {
3391 // Write out one byte to make the file the right size.
3392 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3393 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3394 char b = 0;
3395 if (::write(o, &b, 1) != 1)
3396 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3397
3398 // Map the file into memory.
3399 this->map_is_anonymous_ = false;
3400 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3401 MAP_SHARED, o, 0);
3402 }
3403 if (base == MAP_FAILED)
3404 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3405 this->base_ = static_cast<unsigned char*>(base);
3406 }
3407
3408 // Unmap the file from memory.
3409
3410 void
3411 Output_file::unmap()
3412 {
3413 if (::munmap(this->base_, this->file_size_) < 0)
3414 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3415 this->base_ = NULL;
3416 }
3417
3418 // Close the output file.
3419
3420 void
3421 Output_file::close()
3422 {
3423 // If the map isn't file-backed, we need to write it now.
3424 if (this->map_is_anonymous_ && !this->is_temporary_)
3425 {
3426 size_t bytes_to_write = this->file_size_;
3427 while (bytes_to_write > 0)
3428 {
3429 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3430 if (bytes_written == 0)
3431 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3432 else if (bytes_written < 0)
3433 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3434 else
3435 bytes_to_write -= bytes_written;
3436 }
3437 }
3438 this->unmap();
3439
3440 // We don't close stdout or stderr
3441 if (this->o_ != STDOUT_FILENO
3442 && this->o_ != STDERR_FILENO
3443 && !this->is_temporary_)
3444 if (::close(this->o_) < 0)
3445 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3446 this->o_ = -1;
3447 }
3448
3449 // Instantiate the templates we need. We could use the configure
3450 // script to restrict this to only the ones for implemented targets.
3451
3452 #ifdef HAVE_TARGET_32_LITTLE
3453 template
3454 off_t
3455 Output_section::add_input_section<32, false>(
3456 Sized_relobj<32, false>* object,
3457 unsigned int shndx,
3458 const char* secname,
3459 const elfcpp::Shdr<32, false>& shdr,
3460 unsigned int reloc_shndx,
3461 bool have_sections_script);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_32_BIG
3465 template
3466 off_t
3467 Output_section::add_input_section<32, true>(
3468 Sized_relobj<32, true>* object,
3469 unsigned int shndx,
3470 const char* secname,
3471 const elfcpp::Shdr<32, true>& shdr,
3472 unsigned int reloc_shndx,
3473 bool have_sections_script);
3474 #endif
3475
3476 #ifdef HAVE_TARGET_64_LITTLE
3477 template
3478 off_t
3479 Output_section::add_input_section<64, false>(
3480 Sized_relobj<64, false>* object,
3481 unsigned int shndx,
3482 const char* secname,
3483 const elfcpp::Shdr<64, false>& shdr,
3484 unsigned int reloc_shndx,
3485 bool have_sections_script);
3486 #endif
3487
3488 #ifdef HAVE_TARGET_64_BIG
3489 template
3490 off_t
3491 Output_section::add_input_section<64, true>(
3492 Sized_relobj<64, true>* object,
3493 unsigned int shndx,
3494 const char* secname,
3495 const elfcpp::Shdr<64, true>& shdr,
3496 unsigned int reloc_shndx,
3497 bool have_sections_script);
3498 #endif
3499
3500 #ifdef HAVE_TARGET_32_LITTLE
3501 template
3502 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
3503 #endif
3504
3505 #ifdef HAVE_TARGET_32_BIG
3506 template
3507 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
3508 #endif
3509
3510 #ifdef HAVE_TARGET_64_LITTLE
3511 template
3512 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
3513 #endif
3514
3515 #ifdef HAVE_TARGET_64_BIG
3516 template
3517 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
3518 #endif
3519
3520 #ifdef HAVE_TARGET_32_LITTLE
3521 template
3522 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
3523 #endif
3524
3525 #ifdef HAVE_TARGET_32_BIG
3526 template
3527 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
3528 #endif
3529
3530 #ifdef HAVE_TARGET_64_LITTLE
3531 template
3532 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
3533 #endif
3534
3535 #ifdef HAVE_TARGET_64_BIG
3536 template
3537 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
3538 #endif
3539
3540 #ifdef HAVE_TARGET_32_LITTLE
3541 template
3542 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
3543 #endif
3544
3545 #ifdef HAVE_TARGET_32_BIG
3546 template
3547 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
3548 #endif
3549
3550 #ifdef HAVE_TARGET_64_LITTLE
3551 template
3552 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
3553 #endif
3554
3555 #ifdef HAVE_TARGET_64_BIG
3556 template
3557 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
3558 #endif
3559
3560 #ifdef HAVE_TARGET_32_LITTLE
3561 template
3562 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
3563 #endif
3564
3565 #ifdef HAVE_TARGET_32_BIG
3566 template
3567 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
3568 #endif
3569
3570 #ifdef HAVE_TARGET_64_LITTLE
3571 template
3572 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
3573 #endif
3574
3575 #ifdef HAVE_TARGET_64_BIG
3576 template
3577 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
3578 #endif
3579
3580 #ifdef HAVE_TARGET_32_LITTLE
3581 template
3582 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3583 #endif
3584
3585 #ifdef HAVE_TARGET_32_BIG
3586 template
3587 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3588 #endif
3589
3590 #ifdef HAVE_TARGET_64_LITTLE
3591 template
3592 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3593 #endif
3594
3595 #ifdef HAVE_TARGET_64_BIG
3596 template
3597 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3598 #endif
3599
3600 #ifdef HAVE_TARGET_32_LITTLE
3601 template
3602 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3603 #endif
3604
3605 #ifdef HAVE_TARGET_32_BIG
3606 template
3607 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3608 #endif
3609
3610 #ifdef HAVE_TARGET_64_LITTLE
3611 template
3612 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3613 #endif
3614
3615 #ifdef HAVE_TARGET_64_BIG
3616 template
3617 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3618 #endif
3619
3620 #ifdef HAVE_TARGET_32_LITTLE
3621 template
3622 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3623 #endif
3624
3625 #ifdef HAVE_TARGET_32_BIG
3626 template
3627 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3628 #endif
3629
3630 #ifdef HAVE_TARGET_64_LITTLE
3631 template
3632 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3633 #endif
3634
3635 #ifdef HAVE_TARGET_64_BIG
3636 template
3637 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3638 #endif
3639
3640 #ifdef HAVE_TARGET_32_LITTLE
3641 template
3642 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3643 #endif
3644
3645 #ifdef HAVE_TARGET_32_BIG
3646 template
3647 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3648 #endif
3649
3650 #ifdef HAVE_TARGET_64_LITTLE
3651 template
3652 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3653 #endif
3654
3655 #ifdef HAVE_TARGET_64_BIG
3656 template
3657 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3658 #endif
3659
3660 #ifdef HAVE_TARGET_32_LITTLE
3661 template
3662 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3663 #endif
3664
3665 #ifdef HAVE_TARGET_32_BIG
3666 template
3667 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3668 #endif
3669
3670 #ifdef HAVE_TARGET_64_LITTLE
3671 template
3672 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3673 #endif
3674
3675 #ifdef HAVE_TARGET_64_BIG
3676 template
3677 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3678 #endif
3679
3680 #ifdef HAVE_TARGET_32_LITTLE
3681 template
3682 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3683 #endif
3684
3685 #ifdef HAVE_TARGET_32_BIG
3686 template
3687 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3688 #endif
3689
3690 #ifdef HAVE_TARGET_64_LITTLE
3691 template
3692 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3693 #endif
3694
3695 #ifdef HAVE_TARGET_64_BIG
3696 template
3697 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3698 #endif
3699
3700 #ifdef HAVE_TARGET_32_LITTLE
3701 template
3702 class Output_data_group<32, false>;
3703 #endif
3704
3705 #ifdef HAVE_TARGET_32_BIG
3706 template
3707 class Output_data_group<32, true>;
3708 #endif
3709
3710 #ifdef HAVE_TARGET_64_LITTLE
3711 template
3712 class Output_data_group<64, false>;
3713 #endif
3714
3715 #ifdef HAVE_TARGET_64_BIG
3716 template
3717 class Output_data_group<64, true>;
3718 #endif
3719
3720 #ifdef HAVE_TARGET_32_LITTLE
3721 template
3722 class Output_data_got<32, false>;
3723 #endif
3724
3725 #ifdef HAVE_TARGET_32_BIG
3726 template
3727 class Output_data_got<32, true>;
3728 #endif
3729
3730 #ifdef HAVE_TARGET_64_LITTLE
3731 template
3732 class Output_data_got<64, false>;
3733 #endif
3734
3735 #ifdef HAVE_TARGET_64_BIG
3736 template
3737 class Output_data_got<64, true>;
3738 #endif
3739
3740 } // End namespace gold.
This page took 0.130977 seconds and 4 git commands to generate.