* output.cc (Output_reloc<SHT_REL>::local_section_offset): Add
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h" // for unlink_if_ordinary()
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "output.h"
41
42 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43 #ifndef MAP_ANONYMOUS
44 # define MAP_ANONYMOUS MAP_ANON
45 #endif
46
47 namespace gold
48 {
49
50 // Output_data variables.
51
52 bool Output_data::allocated_sizes_are_fixed;
53
54 // Output_data methods.
55
56 Output_data::~Output_data()
57 {
58 }
59
60 // Return the default alignment for the target size.
61
62 uint64_t
63 Output_data::default_alignment()
64 {
65 return Output_data::default_alignment_for_size(
66 parameters->target().get_size());
67 }
68
69 // Return the default alignment for a size--32 or 64.
70
71 uint64_t
72 Output_data::default_alignment_for_size(int size)
73 {
74 if (size == 32)
75 return 4;
76 else if (size == 64)
77 return 8;
78 else
79 gold_unreachable();
80 }
81
82 // Output_section_header methods. This currently assumes that the
83 // segment and section lists are complete at construction time.
84
85 Output_section_headers::Output_section_headers(
86 const Layout* layout,
87 const Layout::Segment_list* segment_list,
88 const Layout::Section_list* section_list,
89 const Layout::Section_list* unattached_section_list,
90 const Stringpool* secnamepool)
91 : layout_(layout),
92 segment_list_(segment_list),
93 section_list_(section_list),
94 unattached_section_list_(unattached_section_list),
95 secnamepool_(secnamepool)
96 {
97 // Count all the sections. Start with 1 for the null section.
98 off_t count = 1;
99 if (!parameters->options().relocatable())
100 {
101 for (Layout::Segment_list::const_iterator p = segment_list->begin();
102 p != segment_list->end();
103 ++p)
104 if ((*p)->type() == elfcpp::PT_LOAD)
105 count += (*p)->output_section_count();
106 }
107 else
108 {
109 for (Layout::Section_list::const_iterator p = section_list->begin();
110 p != section_list->end();
111 ++p)
112 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
113 ++count;
114 }
115 count += unattached_section_list->size();
116
117 const int size = parameters->target().get_size();
118 int shdr_size;
119 if (size == 32)
120 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
121 else if (size == 64)
122 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
123 else
124 gold_unreachable();
125
126 this->set_data_size(count * shdr_size);
127 }
128
129 // Write out the section headers.
130
131 void
132 Output_section_headers::do_write(Output_file* of)
133 {
134 switch (parameters->size_and_endianness())
135 {
136 #ifdef HAVE_TARGET_32_LITTLE
137 case Parameters::TARGET_32_LITTLE:
138 this->do_sized_write<32, false>(of);
139 break;
140 #endif
141 #ifdef HAVE_TARGET_32_BIG
142 case Parameters::TARGET_32_BIG:
143 this->do_sized_write<32, true>(of);
144 break;
145 #endif
146 #ifdef HAVE_TARGET_64_LITTLE
147 case Parameters::TARGET_64_LITTLE:
148 this->do_sized_write<64, false>(of);
149 break;
150 #endif
151 #ifdef HAVE_TARGET_64_BIG
152 case Parameters::TARGET_64_BIG:
153 this->do_sized_write<64, true>(of);
154 break;
155 #endif
156 default:
157 gold_unreachable();
158 }
159 }
160
161 template<int size, bool big_endian>
162 void
163 Output_section_headers::do_sized_write(Output_file* of)
164 {
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
170
171 {
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
183 }
184
185 v += shdr_size;
186
187 unsigned int shndx = 1;
188 if (!parameters->options().relocatable())
189 {
190 for (Layout::Segment_list::const_iterator p =
191 this->segment_list_->begin();
192 p != this->segment_list_->end();
193 ++p)
194 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
195 this->secnamepool_,
196 v,
197 &shndx);
198 }
199 else
200 {
201 for (Layout::Section_list::const_iterator p =
202 this->section_list_->begin();
203 p != this->section_list_->end();
204 ++p)
205 {
206 // We do unallocated sections below, except that group
207 // sections have to come first.
208 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
209 && (*p)->type() != elfcpp::SHT_GROUP)
210 continue;
211 gold_assert(shndx == (*p)->out_shndx());
212 elfcpp::Shdr_write<size, big_endian> oshdr(v);
213 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
214 v += shdr_size;
215 ++shndx;
216 }
217 }
218
219 for (Layout::Section_list::const_iterator p =
220 this->unattached_section_list_->begin();
221 p != this->unattached_section_list_->end();
222 ++p)
223 {
224 // For a relocatable link, we did unallocated group sections
225 // above, since they have to come first.
226 if ((*p)->type() == elfcpp::SHT_GROUP
227 && parameters->options().relocatable())
228 continue;
229 gold_assert(shndx == (*p)->out_shndx());
230 elfcpp::Shdr_write<size, big_endian> oshdr(v);
231 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
232 v += shdr_size;
233 ++shndx;
234 }
235
236 of->write_output_view(this->offset(), all_shdrs_size, view);
237 }
238
239 // Output_segment_header methods.
240
241 Output_segment_headers::Output_segment_headers(
242 const Layout::Segment_list& segment_list)
243 : segment_list_(segment_list)
244 {
245 const int size = parameters->target().get_size();
246 int phdr_size;
247 if (size == 32)
248 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
249 else if (size == 64)
250 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
251 else
252 gold_unreachable();
253
254 this->set_data_size(segment_list.size() * phdr_size);
255 }
256
257 void
258 Output_segment_headers::do_write(Output_file* of)
259 {
260 switch (parameters->size_and_endianness())
261 {
262 #ifdef HAVE_TARGET_32_LITTLE
263 case Parameters::TARGET_32_LITTLE:
264 this->do_sized_write<32, false>(of);
265 break;
266 #endif
267 #ifdef HAVE_TARGET_32_BIG
268 case Parameters::TARGET_32_BIG:
269 this->do_sized_write<32, true>(of);
270 break;
271 #endif
272 #ifdef HAVE_TARGET_64_LITTLE
273 case Parameters::TARGET_64_LITTLE:
274 this->do_sized_write<64, false>(of);
275 break;
276 #endif
277 #ifdef HAVE_TARGET_64_BIG
278 case Parameters::TARGET_64_BIG:
279 this->do_sized_write<64, true>(of);
280 break;
281 #endif
282 default:
283 gold_unreachable();
284 }
285 }
286
287 template<int size, bool big_endian>
288 void
289 Output_segment_headers::do_sized_write(Output_file* of)
290 {
291 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
292 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
293 gold_assert(all_phdrs_size == this->data_size());
294 unsigned char* view = of->get_output_view(this->offset(),
295 all_phdrs_size);
296 unsigned char* v = view;
297 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
298 p != this->segment_list_.end();
299 ++p)
300 {
301 elfcpp::Phdr_write<size, big_endian> ophdr(v);
302 (*p)->write_header(&ophdr);
303 v += phdr_size;
304 }
305
306 gold_assert(v - view == all_phdrs_size);
307
308 of->write_output_view(this->offset(), all_phdrs_size, view);
309 }
310
311 // Output_file_header methods.
312
313 Output_file_header::Output_file_header(const Target* target,
314 const Symbol_table* symtab,
315 const Output_segment_headers* osh,
316 const char* entry)
317 : target_(target),
318 symtab_(symtab),
319 segment_header_(osh),
320 section_header_(NULL),
321 shstrtab_(NULL),
322 entry_(entry)
323 {
324 const int size = parameters->target().get_size();
325 int ehdr_size;
326 if (size == 32)
327 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
328 else if (size == 64)
329 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
330 else
331 gold_unreachable();
332
333 this->set_data_size(ehdr_size);
334 }
335
336 // Set the section table information for a file header.
337
338 void
339 Output_file_header::set_section_info(const Output_section_headers* shdrs,
340 const Output_section* shstrtab)
341 {
342 this->section_header_ = shdrs;
343 this->shstrtab_ = shstrtab;
344 }
345
346 // Write out the file header.
347
348 void
349 Output_file_header::do_write(Output_file* of)
350 {
351 gold_assert(this->offset() == 0);
352
353 switch (parameters->size_and_endianness())
354 {
355 #ifdef HAVE_TARGET_32_LITTLE
356 case Parameters::TARGET_32_LITTLE:
357 this->do_sized_write<32, false>(of);
358 break;
359 #endif
360 #ifdef HAVE_TARGET_32_BIG
361 case Parameters::TARGET_32_BIG:
362 this->do_sized_write<32, true>(of);
363 break;
364 #endif
365 #ifdef HAVE_TARGET_64_LITTLE
366 case Parameters::TARGET_64_LITTLE:
367 this->do_sized_write<64, false>(of);
368 break;
369 #endif
370 #ifdef HAVE_TARGET_64_BIG
371 case Parameters::TARGET_64_BIG:
372 this->do_sized_write<64, true>(of);
373 break;
374 #endif
375 default:
376 gold_unreachable();
377 }
378 }
379
380 // Write out the file header with appropriate size and endianess.
381
382 template<int size, bool big_endian>
383 void
384 Output_file_header::do_sized_write(Output_file* of)
385 {
386 gold_assert(this->offset() == 0);
387
388 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
389 unsigned char* view = of->get_output_view(0, ehdr_size);
390 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
391
392 unsigned char e_ident[elfcpp::EI_NIDENT];
393 memset(e_ident, 0, elfcpp::EI_NIDENT);
394 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
395 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
396 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
397 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
398 if (size == 32)
399 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
400 else if (size == 64)
401 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
402 else
403 gold_unreachable();
404 e_ident[elfcpp::EI_DATA] = (big_endian
405 ? elfcpp::ELFDATA2MSB
406 : elfcpp::ELFDATA2LSB);
407 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
408 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
409 oehdr.put_e_ident(e_ident);
410
411 elfcpp::ET e_type;
412 if (parameters->options().relocatable())
413 e_type = elfcpp::ET_REL;
414 else if (parameters->options().shared())
415 e_type = elfcpp::ET_DYN;
416 else
417 e_type = elfcpp::ET_EXEC;
418 oehdr.put_e_type(e_type);
419
420 oehdr.put_e_machine(this->target_->machine_code());
421 oehdr.put_e_version(elfcpp::EV_CURRENT);
422
423 oehdr.put_e_entry(this->entry<size>());
424
425 if (this->segment_header_ == NULL)
426 oehdr.put_e_phoff(0);
427 else
428 oehdr.put_e_phoff(this->segment_header_->offset());
429
430 oehdr.put_e_shoff(this->section_header_->offset());
431
432 // FIXME: The target needs to set the flags.
433 oehdr.put_e_flags(0);
434
435 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
436
437 if (this->segment_header_ == NULL)
438 {
439 oehdr.put_e_phentsize(0);
440 oehdr.put_e_phnum(0);
441 }
442 else
443 {
444 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
445 oehdr.put_e_phnum(this->segment_header_->data_size()
446 / elfcpp::Elf_sizes<size>::phdr_size);
447 }
448
449 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
450 oehdr.put_e_shnum(this->section_header_->data_size()
451 / elfcpp::Elf_sizes<size>::shdr_size);
452 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
453
454 of->write_output_view(0, ehdr_size, view);
455 }
456
457 // Return the value to use for the entry address. THIS->ENTRY_ is the
458 // symbol specified on the command line, if any.
459
460 template<int size>
461 typename elfcpp::Elf_types<size>::Elf_Addr
462 Output_file_header::entry()
463 {
464 const bool should_issue_warning = (this->entry_ != NULL
465 && !parameters->options().relocatable()
466 && !parameters->options().shared());
467
468 // FIXME: Need to support target specific entry symbol.
469 const char* entry = this->entry_;
470 if (entry == NULL)
471 entry = "_start";
472
473 Symbol* sym = this->symtab_->lookup(entry);
474
475 typename Sized_symbol<size>::Value_type v;
476 if (sym != NULL)
477 {
478 Sized_symbol<size>* ssym;
479 ssym = this->symtab_->get_sized_symbol<size>(sym);
480 if (!ssym->is_defined() && should_issue_warning)
481 gold_warning("entry symbol '%s' exists but is not defined", entry);
482 v = ssym->value();
483 }
484 else
485 {
486 // We couldn't find the entry symbol. See if we can parse it as
487 // a number. This supports, e.g., -e 0x1000.
488 char* endptr;
489 v = strtoull(entry, &endptr, 0);
490 if (*endptr != '\0')
491 {
492 if (should_issue_warning)
493 gold_warning("cannot find entry symbol '%s'", entry);
494 v = 0;
495 }
496 }
497
498 return v;
499 }
500
501 // Output_data_const methods.
502
503 void
504 Output_data_const::do_write(Output_file* of)
505 {
506 of->write(this->offset(), this->data_.data(), this->data_.size());
507 }
508
509 // Output_data_const_buffer methods.
510
511 void
512 Output_data_const_buffer::do_write(Output_file* of)
513 {
514 of->write(this->offset(), this->p_, this->data_size());
515 }
516
517 // Output_section_data methods.
518
519 // Record the output section, and set the entry size and such.
520
521 void
522 Output_section_data::set_output_section(Output_section* os)
523 {
524 gold_assert(this->output_section_ == NULL);
525 this->output_section_ = os;
526 this->do_adjust_output_section(os);
527 }
528
529 // Return the section index of the output section.
530
531 unsigned int
532 Output_section_data::do_out_shndx() const
533 {
534 gold_assert(this->output_section_ != NULL);
535 return this->output_section_->out_shndx();
536 }
537
538 // Output_data_strtab methods.
539
540 // Set the final data size.
541
542 void
543 Output_data_strtab::set_final_data_size()
544 {
545 this->strtab_->set_string_offsets();
546 this->set_data_size(this->strtab_->get_strtab_size());
547 }
548
549 // Write out a string table.
550
551 void
552 Output_data_strtab::do_write(Output_file* of)
553 {
554 this->strtab_->write(of, this->offset());
555 }
556
557 // Output_reloc methods.
558
559 // A reloc against a global symbol.
560
561 template<bool dynamic, int size, bool big_endian>
562 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
563 Symbol* gsym,
564 unsigned int type,
565 Output_data* od,
566 Address address,
567 bool is_relative)
568 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
569 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
570 {
571 // this->type_ is a bitfield; make sure TYPE fits.
572 gold_assert(this->type_ == type);
573 this->u1_.gsym = gsym;
574 this->u2_.od = od;
575 if (dynamic)
576 this->set_needs_dynsym_index();
577 }
578
579 template<bool dynamic, int size, bool big_endian>
580 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
581 Symbol* gsym,
582 unsigned int type,
583 Relobj* relobj,
584 unsigned int shndx,
585 Address address,
586 bool is_relative)
587 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
588 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
589 {
590 gold_assert(shndx != INVALID_CODE);
591 // this->type_ is a bitfield; make sure TYPE fits.
592 gold_assert(this->type_ == type);
593 this->u1_.gsym = gsym;
594 this->u2_.relobj = relobj;
595 if (dynamic)
596 this->set_needs_dynsym_index();
597 }
598
599 // A reloc against a local symbol.
600
601 template<bool dynamic, int size, bool big_endian>
602 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
603 Sized_relobj<size, big_endian>* relobj,
604 unsigned int local_sym_index,
605 unsigned int type,
606 Output_data* od,
607 Address address,
608 bool is_relative,
609 bool is_section_symbol)
610 : address_(address), local_sym_index_(local_sym_index), type_(type),
611 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
612 shndx_(INVALID_CODE)
613 {
614 gold_assert(local_sym_index != GSYM_CODE
615 && local_sym_index != INVALID_CODE);
616 // this->type_ is a bitfield; make sure TYPE fits.
617 gold_assert(this->type_ == type);
618 this->u1_.relobj = relobj;
619 this->u2_.od = od;
620 if (dynamic)
621 this->set_needs_dynsym_index();
622 }
623
624 template<bool dynamic, int size, bool big_endian>
625 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
626 Sized_relobj<size, big_endian>* relobj,
627 unsigned int local_sym_index,
628 unsigned int type,
629 unsigned int shndx,
630 Address address,
631 bool is_relative,
632 bool is_section_symbol)
633 : address_(address), local_sym_index_(local_sym_index), type_(type),
634 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
635 shndx_(shndx)
636 {
637 gold_assert(local_sym_index != GSYM_CODE
638 && local_sym_index != INVALID_CODE);
639 gold_assert(shndx != INVALID_CODE);
640 // this->type_ is a bitfield; make sure TYPE fits.
641 gold_assert(this->type_ == type);
642 this->u1_.relobj = relobj;
643 this->u2_.relobj = relobj;
644 if (dynamic)
645 this->set_needs_dynsym_index();
646 }
647
648 // A reloc against the STT_SECTION symbol of an output section.
649
650 template<bool dynamic, int size, bool big_endian>
651 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
652 Output_section* os,
653 unsigned int type,
654 Output_data* od,
655 Address address)
656 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
657 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
658 {
659 // this->type_ is a bitfield; make sure TYPE fits.
660 gold_assert(this->type_ == type);
661 this->u1_.os = os;
662 this->u2_.od = od;
663 if (dynamic)
664 this->set_needs_dynsym_index();
665 else
666 os->set_needs_symtab_index();
667 }
668
669 template<bool dynamic, int size, bool big_endian>
670 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
671 Output_section* os,
672 unsigned int type,
673 Relobj* relobj,
674 unsigned int shndx,
675 Address address)
676 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
677 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
678 {
679 gold_assert(shndx != INVALID_CODE);
680 // this->type_ is a bitfield; make sure TYPE fits.
681 gold_assert(this->type_ == type);
682 this->u1_.os = os;
683 this->u2_.relobj = relobj;
684 if (dynamic)
685 this->set_needs_dynsym_index();
686 else
687 os->set_needs_symtab_index();
688 }
689
690 // Record that we need a dynamic symbol index for this relocation.
691
692 template<bool dynamic, int size, bool big_endian>
693 void
694 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
695 set_needs_dynsym_index()
696 {
697 if (this->is_relative_)
698 return;
699 switch (this->local_sym_index_)
700 {
701 case INVALID_CODE:
702 gold_unreachable();
703
704 case GSYM_CODE:
705 this->u1_.gsym->set_needs_dynsym_entry();
706 break;
707
708 case SECTION_CODE:
709 this->u1_.os->set_needs_dynsym_index();
710 break;
711
712 case 0:
713 break;
714
715 default:
716 {
717 const unsigned int lsi = this->local_sym_index_;
718 if (!this->is_section_symbol_)
719 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
720 else
721 {
722 section_offset_type dummy;
723 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
724 gold_assert(os != NULL);
725 os->set_needs_dynsym_index();
726 }
727 }
728 break;
729 }
730 }
731
732 // Get the symbol index of a relocation.
733
734 template<bool dynamic, int size, bool big_endian>
735 unsigned int
736 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
737 const
738 {
739 unsigned int index;
740 switch (this->local_sym_index_)
741 {
742 case INVALID_CODE:
743 gold_unreachable();
744
745 case GSYM_CODE:
746 if (this->u1_.gsym == NULL)
747 index = 0;
748 else if (dynamic)
749 index = this->u1_.gsym->dynsym_index();
750 else
751 index = this->u1_.gsym->symtab_index();
752 break;
753
754 case SECTION_CODE:
755 if (dynamic)
756 index = this->u1_.os->dynsym_index();
757 else
758 index = this->u1_.os->symtab_index();
759 break;
760
761 case 0:
762 // Relocations without symbols use a symbol index of 0.
763 index = 0;
764 break;
765
766 default:
767 {
768 const unsigned int lsi = this->local_sym_index_;
769 if (!this->is_section_symbol_)
770 {
771 if (dynamic)
772 index = this->u1_.relobj->dynsym_index(lsi);
773 else
774 index = this->u1_.relobj->symtab_index(lsi);
775 }
776 else
777 {
778 section_offset_type dummy;
779 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
780 gold_assert(os != NULL);
781 if (dynamic)
782 index = os->dynsym_index();
783 else
784 index = os->symtab_index();
785 }
786 }
787 break;
788 }
789 gold_assert(index != -1U);
790 return index;
791 }
792
793 // For a local section symbol, get the address of the offset ADDEND
794 // within the input section.
795
796 template<bool dynamic, int size, bool big_endian>
797 section_offset_type
798 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
799 local_section_offset(Addend addend) const
800 {
801 gold_assert(this->local_sym_index_ != GSYM_CODE
802 && this->local_sym_index_ != SECTION_CODE
803 && this->local_sym_index_ != INVALID_CODE
804 && this->is_section_symbol_);
805 const unsigned int lsi = this->local_sym_index_;
806 section_offset_type offset;
807 Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
808 gold_assert(os != NULL);
809 if (offset != -1)
810 return offset + addend;
811 // This is a merge section.
812 offset = os->output_address(this->u1_.relobj, lsi, addend);
813 gold_assert(offset != -1);
814 return offset;
815 }
816
817 // Write out the offset and info fields of a Rel or Rela relocation
818 // entry.
819
820 template<bool dynamic, int size, bool big_endian>
821 template<typename Write_rel>
822 void
823 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
824 Write_rel* wr) const
825 {
826 Address address = this->address_;
827 if (this->shndx_ != INVALID_CODE)
828 {
829 section_offset_type off;
830 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
831 &off);
832 gold_assert(os != NULL);
833 if (off != -1)
834 address += os->address() + off;
835 else
836 {
837 address = os->output_address(this->u2_.relobj, this->shndx_,
838 address);
839 gold_assert(address != -1U);
840 }
841 }
842 else if (this->u2_.od != NULL)
843 address += this->u2_.od->address();
844 wr->put_r_offset(address);
845 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
846 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
847 }
848
849 // Write out a Rel relocation.
850
851 template<bool dynamic, int size, bool big_endian>
852 void
853 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
854 unsigned char* pov) const
855 {
856 elfcpp::Rel_write<size, big_endian> orel(pov);
857 this->write_rel(&orel);
858 }
859
860 // Get the value of the symbol referred to by a Rel relocation.
861
862 template<bool dynamic, int size, bool big_endian>
863 typename elfcpp::Elf_types<size>::Elf_Addr
864 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
865 Addend addend) const
866 {
867 if (this->local_sym_index_ == GSYM_CODE)
868 {
869 const Sized_symbol<size>* sym;
870 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
871 return sym->value() + addend;
872 }
873 gold_assert(this->local_sym_index_ != SECTION_CODE
874 && this->local_sym_index_ != INVALID_CODE
875 && !this->is_section_symbol_);
876 const unsigned int lsi = this->local_sym_index_;
877 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
878 return symval->value(this->u1_.relobj, addend);
879 }
880
881 // Write out a Rela relocation.
882
883 template<bool dynamic, int size, bool big_endian>
884 void
885 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
886 unsigned char* pov) const
887 {
888 elfcpp::Rela_write<size, big_endian> orel(pov);
889 this->rel_.write_rel(&orel);
890 Addend addend = this->addend_;
891 if (this->rel_.is_relative())
892 addend = this->rel_.symbol_value(addend);
893 else if (this->rel_.is_local_section_symbol())
894 addend = this->rel_.local_section_offset(addend);
895 orel.put_r_addend(addend);
896 }
897
898 // Output_data_reloc_base methods.
899
900 // Adjust the output section.
901
902 template<int sh_type, bool dynamic, int size, bool big_endian>
903 void
904 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
905 ::do_adjust_output_section(Output_section* os)
906 {
907 if (sh_type == elfcpp::SHT_REL)
908 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
909 else if (sh_type == elfcpp::SHT_RELA)
910 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
911 else
912 gold_unreachable();
913 if (dynamic)
914 os->set_should_link_to_dynsym();
915 else
916 os->set_should_link_to_symtab();
917 }
918
919 // Write out relocation data.
920
921 template<int sh_type, bool dynamic, int size, bool big_endian>
922 void
923 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
924 Output_file* of)
925 {
926 const off_t off = this->offset();
927 const off_t oview_size = this->data_size();
928 unsigned char* const oview = of->get_output_view(off, oview_size);
929
930 unsigned char* pov = oview;
931 for (typename Relocs::const_iterator p = this->relocs_.begin();
932 p != this->relocs_.end();
933 ++p)
934 {
935 p->write(pov);
936 pov += reloc_size;
937 }
938
939 gold_assert(pov - oview == oview_size);
940
941 of->write_output_view(off, oview_size, oview);
942
943 // We no longer need the relocation entries.
944 this->relocs_.clear();
945 }
946
947 // Class Output_relocatable_relocs.
948
949 template<int sh_type, int size, bool big_endian>
950 void
951 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
952 {
953 this->set_data_size(this->rr_->output_reloc_count()
954 * Reloc_types<sh_type, size, big_endian>::reloc_size);
955 }
956
957 // class Output_data_group.
958
959 template<int size, bool big_endian>
960 Output_data_group<size, big_endian>::Output_data_group(
961 Sized_relobj<size, big_endian>* relobj,
962 section_size_type entry_count,
963 const elfcpp::Elf_Word* contents)
964 : Output_section_data(entry_count * 4, 4),
965 relobj_(relobj)
966 {
967 this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
968 for (section_size_type i = 1; i < entry_count; ++i)
969 {
970 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
971 this->input_sections_.push_back(shndx);
972 }
973 }
974
975 // Write out the section group, which means translating the section
976 // indexes to apply to the output file.
977
978 template<int size, bool big_endian>
979 void
980 Output_data_group<size, big_endian>::do_write(Output_file* of)
981 {
982 const off_t off = this->offset();
983 const section_size_type oview_size =
984 convert_to_section_size_type(this->data_size());
985 unsigned char* const oview = of->get_output_view(off, oview_size);
986
987 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
988 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
989 ++contents;
990
991 for (std::vector<unsigned int>::const_iterator p =
992 this->input_sections_.begin();
993 p != this->input_sections_.end();
994 ++p, ++contents)
995 {
996 section_offset_type dummy;
997 Output_section* os = this->relobj_->output_section(*p, &dummy);
998
999 unsigned int output_shndx;
1000 if (os != NULL)
1001 output_shndx = os->out_shndx();
1002 else
1003 {
1004 this->relobj_->error(_("section group retained but "
1005 "group element discarded"));
1006 output_shndx = 0;
1007 }
1008
1009 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1010 }
1011
1012 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1013 gold_assert(wrote == oview_size);
1014
1015 of->write_output_view(off, oview_size, oview);
1016
1017 // We no longer need this information.
1018 this->input_sections_.clear();
1019 }
1020
1021 // Output_data_got::Got_entry methods.
1022
1023 // Write out the entry.
1024
1025 template<int size, bool big_endian>
1026 void
1027 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1028 {
1029 Valtype val = 0;
1030
1031 switch (this->local_sym_index_)
1032 {
1033 case GSYM_CODE:
1034 {
1035 // If the symbol is resolved locally, we need to write out the
1036 // link-time value, which will be relocated dynamically by a
1037 // RELATIVE relocation.
1038 Symbol* gsym = this->u_.gsym;
1039 Sized_symbol<size>* sgsym;
1040 // This cast is a bit ugly. We don't want to put a
1041 // virtual method in Symbol, because we want Symbol to be
1042 // as small as possible.
1043 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1044 val = sgsym->value();
1045 }
1046 break;
1047
1048 case CONSTANT_CODE:
1049 val = this->u_.constant;
1050 break;
1051
1052 default:
1053 {
1054 const unsigned int lsi = this->local_sym_index_;
1055 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1056 val = symval->value(this->u_.object, 0);
1057 }
1058 break;
1059 }
1060
1061 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1062 }
1063
1064 // Output_data_got methods.
1065
1066 // Add an entry for a global symbol to the GOT. This returns true if
1067 // this is a new GOT entry, false if the symbol already had a GOT
1068 // entry.
1069
1070 template<int size, bool big_endian>
1071 bool
1072 Output_data_got<size, big_endian>::add_global(
1073 Symbol* gsym,
1074 unsigned int got_type)
1075 {
1076 if (gsym->has_got_offset(got_type))
1077 return false;
1078
1079 this->entries_.push_back(Got_entry(gsym));
1080 this->set_got_size();
1081 gsym->set_got_offset(got_type, this->last_got_offset());
1082 return true;
1083 }
1084
1085 // Add an entry for a global symbol to the GOT, and add a dynamic
1086 // relocation of type R_TYPE for the GOT entry.
1087 template<int size, bool big_endian>
1088 void
1089 Output_data_got<size, big_endian>::add_global_with_rel(
1090 Symbol* gsym,
1091 unsigned int got_type,
1092 Rel_dyn* rel_dyn,
1093 unsigned int r_type)
1094 {
1095 if (gsym->has_got_offset(got_type))
1096 return;
1097
1098 this->entries_.push_back(Got_entry());
1099 this->set_got_size();
1100 unsigned int got_offset = this->last_got_offset();
1101 gsym->set_got_offset(got_type, got_offset);
1102 rel_dyn->add_global(gsym, r_type, this, got_offset);
1103 }
1104
1105 template<int size, bool big_endian>
1106 void
1107 Output_data_got<size, big_endian>::add_global_with_rela(
1108 Symbol* gsym,
1109 unsigned int got_type,
1110 Rela_dyn* rela_dyn,
1111 unsigned int r_type)
1112 {
1113 if (gsym->has_got_offset(got_type))
1114 return;
1115
1116 this->entries_.push_back(Got_entry());
1117 this->set_got_size();
1118 unsigned int got_offset = this->last_got_offset();
1119 gsym->set_got_offset(got_type, got_offset);
1120 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1121 }
1122
1123 // Add a pair of entries for a global symbol to the GOT, and add
1124 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1125 // If R_TYPE_2 == 0, add the second entry with no relocation.
1126 template<int size, bool big_endian>
1127 void
1128 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1129 Symbol* gsym,
1130 unsigned int got_type,
1131 Rel_dyn* rel_dyn,
1132 unsigned int r_type_1,
1133 unsigned int r_type_2)
1134 {
1135 if (gsym->has_got_offset(got_type))
1136 return;
1137
1138 this->entries_.push_back(Got_entry());
1139 unsigned int got_offset = this->last_got_offset();
1140 gsym->set_got_offset(got_type, got_offset);
1141 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1142
1143 this->entries_.push_back(Got_entry());
1144 if (r_type_2 != 0)
1145 {
1146 got_offset = this->last_got_offset();
1147 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1148 }
1149
1150 this->set_got_size();
1151 }
1152
1153 template<int size, bool big_endian>
1154 void
1155 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1156 Symbol* gsym,
1157 unsigned int got_type,
1158 Rela_dyn* rela_dyn,
1159 unsigned int r_type_1,
1160 unsigned int r_type_2)
1161 {
1162 if (gsym->has_got_offset(got_type))
1163 return;
1164
1165 this->entries_.push_back(Got_entry());
1166 unsigned int got_offset = this->last_got_offset();
1167 gsym->set_got_offset(got_type, got_offset);
1168 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1169
1170 this->entries_.push_back(Got_entry());
1171 if (r_type_2 != 0)
1172 {
1173 got_offset = this->last_got_offset();
1174 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1175 }
1176
1177 this->set_got_size();
1178 }
1179
1180 // Add an entry for a local symbol to the GOT. This returns true if
1181 // this is a new GOT entry, false if the symbol already has a GOT
1182 // entry.
1183
1184 template<int size, bool big_endian>
1185 bool
1186 Output_data_got<size, big_endian>::add_local(
1187 Sized_relobj<size, big_endian>* object,
1188 unsigned int symndx,
1189 unsigned int got_type)
1190 {
1191 if (object->local_has_got_offset(symndx, got_type))
1192 return false;
1193
1194 this->entries_.push_back(Got_entry(object, symndx));
1195 this->set_got_size();
1196 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1197 return true;
1198 }
1199
1200 // Add an entry for a local symbol to the GOT, and add a dynamic
1201 // relocation of type R_TYPE for the GOT entry.
1202 template<int size, bool big_endian>
1203 void
1204 Output_data_got<size, big_endian>::add_local_with_rel(
1205 Sized_relobj<size, big_endian>* object,
1206 unsigned int symndx,
1207 unsigned int got_type,
1208 Rel_dyn* rel_dyn,
1209 unsigned int r_type)
1210 {
1211 if (object->local_has_got_offset(symndx, got_type))
1212 return;
1213
1214 this->entries_.push_back(Got_entry());
1215 this->set_got_size();
1216 unsigned int got_offset = this->last_got_offset();
1217 object->set_local_got_offset(symndx, got_type, got_offset);
1218 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1219 }
1220
1221 template<int size, bool big_endian>
1222 void
1223 Output_data_got<size, big_endian>::add_local_with_rela(
1224 Sized_relobj<size, big_endian>* object,
1225 unsigned int symndx,
1226 unsigned int got_type,
1227 Rela_dyn* rela_dyn,
1228 unsigned int r_type)
1229 {
1230 if (object->local_has_got_offset(symndx, got_type))
1231 return;
1232
1233 this->entries_.push_back(Got_entry());
1234 this->set_got_size();
1235 unsigned int got_offset = this->last_got_offset();
1236 object->set_local_got_offset(symndx, got_type, got_offset);
1237 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1238 }
1239
1240 // Add a pair of entries for a local symbol to the GOT, and add
1241 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1242 // If R_TYPE_2 == 0, add the second entry with no relocation.
1243 template<int size, bool big_endian>
1244 void
1245 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1246 Sized_relobj<size, big_endian>* object,
1247 unsigned int symndx,
1248 unsigned int shndx,
1249 unsigned int got_type,
1250 Rel_dyn* rel_dyn,
1251 unsigned int r_type_1,
1252 unsigned int r_type_2)
1253 {
1254 if (object->local_has_got_offset(symndx, got_type))
1255 return;
1256
1257 this->entries_.push_back(Got_entry());
1258 unsigned int got_offset = this->last_got_offset();
1259 object->set_local_got_offset(symndx, got_type, got_offset);
1260 section_offset_type off;
1261 Output_section* os = object->output_section(shndx, &off);
1262 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1263
1264 this->entries_.push_back(Got_entry(object, symndx));
1265 if (r_type_2 != 0)
1266 {
1267 got_offset = this->last_got_offset();
1268 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1269 }
1270
1271 this->set_got_size();
1272 }
1273
1274 template<int size, bool big_endian>
1275 void
1276 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1277 Sized_relobj<size, big_endian>* object,
1278 unsigned int symndx,
1279 unsigned int shndx,
1280 unsigned int got_type,
1281 Rela_dyn* rela_dyn,
1282 unsigned int r_type_1,
1283 unsigned int r_type_2)
1284 {
1285 if (object->local_has_got_offset(symndx, got_type))
1286 return;
1287
1288 this->entries_.push_back(Got_entry());
1289 unsigned int got_offset = this->last_got_offset();
1290 object->set_local_got_offset(symndx, got_type, got_offset);
1291 section_offset_type off;
1292 Output_section* os = object->output_section(shndx, &off);
1293 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1294
1295 this->entries_.push_back(Got_entry(object, symndx));
1296 if (r_type_2 != 0)
1297 {
1298 got_offset = this->last_got_offset();
1299 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1300 }
1301
1302 this->set_got_size();
1303 }
1304
1305 // Write out the GOT.
1306
1307 template<int size, bool big_endian>
1308 void
1309 Output_data_got<size, big_endian>::do_write(Output_file* of)
1310 {
1311 const int add = size / 8;
1312
1313 const off_t off = this->offset();
1314 const off_t oview_size = this->data_size();
1315 unsigned char* const oview = of->get_output_view(off, oview_size);
1316
1317 unsigned char* pov = oview;
1318 for (typename Got_entries::const_iterator p = this->entries_.begin();
1319 p != this->entries_.end();
1320 ++p)
1321 {
1322 p->write(pov);
1323 pov += add;
1324 }
1325
1326 gold_assert(pov - oview == oview_size);
1327
1328 of->write_output_view(off, oview_size, oview);
1329
1330 // We no longer need the GOT entries.
1331 this->entries_.clear();
1332 }
1333
1334 // Output_data_dynamic::Dynamic_entry methods.
1335
1336 // Write out the entry.
1337
1338 template<int size, bool big_endian>
1339 void
1340 Output_data_dynamic::Dynamic_entry::write(
1341 unsigned char* pov,
1342 const Stringpool* pool) const
1343 {
1344 typename elfcpp::Elf_types<size>::Elf_WXword val;
1345 switch (this->classification_)
1346 {
1347 case DYNAMIC_NUMBER:
1348 val = this->u_.val;
1349 break;
1350
1351 case DYNAMIC_SECTION_ADDRESS:
1352 val = this->u_.od->address();
1353 break;
1354
1355 case DYNAMIC_SECTION_SIZE:
1356 val = this->u_.od->data_size();
1357 break;
1358
1359 case DYNAMIC_SYMBOL:
1360 {
1361 const Sized_symbol<size>* s =
1362 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1363 val = s->value();
1364 }
1365 break;
1366
1367 case DYNAMIC_STRING:
1368 val = pool->get_offset(this->u_.str);
1369 break;
1370
1371 default:
1372 gold_unreachable();
1373 }
1374
1375 elfcpp::Dyn_write<size, big_endian> dw(pov);
1376 dw.put_d_tag(this->tag_);
1377 dw.put_d_val(val);
1378 }
1379
1380 // Output_data_dynamic methods.
1381
1382 // Adjust the output section to set the entry size.
1383
1384 void
1385 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1386 {
1387 if (parameters->target().get_size() == 32)
1388 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1389 else if (parameters->target().get_size() == 64)
1390 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1391 else
1392 gold_unreachable();
1393 }
1394
1395 // Set the final data size.
1396
1397 void
1398 Output_data_dynamic::set_final_data_size()
1399 {
1400 // Add the terminating entry.
1401 this->add_constant(elfcpp::DT_NULL, 0);
1402
1403 int dyn_size;
1404 if (parameters->target().get_size() == 32)
1405 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1406 else if (parameters->target().get_size() == 64)
1407 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1408 else
1409 gold_unreachable();
1410 this->set_data_size(this->entries_.size() * dyn_size);
1411 }
1412
1413 // Write out the dynamic entries.
1414
1415 void
1416 Output_data_dynamic::do_write(Output_file* of)
1417 {
1418 switch (parameters->size_and_endianness())
1419 {
1420 #ifdef HAVE_TARGET_32_LITTLE
1421 case Parameters::TARGET_32_LITTLE:
1422 this->sized_write<32, false>(of);
1423 break;
1424 #endif
1425 #ifdef HAVE_TARGET_32_BIG
1426 case Parameters::TARGET_32_BIG:
1427 this->sized_write<32, true>(of);
1428 break;
1429 #endif
1430 #ifdef HAVE_TARGET_64_LITTLE
1431 case Parameters::TARGET_64_LITTLE:
1432 this->sized_write<64, false>(of);
1433 break;
1434 #endif
1435 #ifdef HAVE_TARGET_64_BIG
1436 case Parameters::TARGET_64_BIG:
1437 this->sized_write<64, true>(of);
1438 break;
1439 #endif
1440 default:
1441 gold_unreachable();
1442 }
1443 }
1444
1445 template<int size, bool big_endian>
1446 void
1447 Output_data_dynamic::sized_write(Output_file* of)
1448 {
1449 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1450
1451 const off_t offset = this->offset();
1452 const off_t oview_size = this->data_size();
1453 unsigned char* const oview = of->get_output_view(offset, oview_size);
1454
1455 unsigned char* pov = oview;
1456 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1457 p != this->entries_.end();
1458 ++p)
1459 {
1460 p->write<size, big_endian>(pov, this->pool_);
1461 pov += dyn_size;
1462 }
1463
1464 gold_assert(pov - oview == oview_size);
1465
1466 of->write_output_view(offset, oview_size, oview);
1467
1468 // We no longer need the dynamic entries.
1469 this->entries_.clear();
1470 }
1471
1472 // Output_section::Input_section methods.
1473
1474 // Return the data size. For an input section we store the size here.
1475 // For an Output_section_data, we have to ask it for the size.
1476
1477 off_t
1478 Output_section::Input_section::data_size() const
1479 {
1480 if (this->is_input_section())
1481 return this->u1_.data_size;
1482 else
1483 return this->u2_.posd->data_size();
1484 }
1485
1486 // Set the address and file offset.
1487
1488 void
1489 Output_section::Input_section::set_address_and_file_offset(
1490 uint64_t address,
1491 off_t file_offset,
1492 off_t section_file_offset)
1493 {
1494 if (this->is_input_section())
1495 this->u2_.object->set_section_offset(this->shndx_,
1496 file_offset - section_file_offset);
1497 else
1498 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1499 }
1500
1501 // Reset the address and file offset.
1502
1503 void
1504 Output_section::Input_section::reset_address_and_file_offset()
1505 {
1506 if (!this->is_input_section())
1507 this->u2_.posd->reset_address_and_file_offset();
1508 }
1509
1510 // Finalize the data size.
1511
1512 void
1513 Output_section::Input_section::finalize_data_size()
1514 {
1515 if (!this->is_input_section())
1516 this->u2_.posd->finalize_data_size();
1517 }
1518
1519 // Try to turn an input offset into an output offset. We want to
1520 // return the output offset relative to the start of this
1521 // Input_section in the output section.
1522
1523 inline bool
1524 Output_section::Input_section::output_offset(
1525 const Relobj* object,
1526 unsigned int shndx,
1527 section_offset_type offset,
1528 section_offset_type *poutput) const
1529 {
1530 if (!this->is_input_section())
1531 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1532 else
1533 {
1534 if (this->shndx_ != shndx || this->u2_.object != object)
1535 return false;
1536 *poutput = offset;
1537 return true;
1538 }
1539 }
1540
1541 // Return whether this is the merge section for the input section
1542 // SHNDX in OBJECT.
1543
1544 inline bool
1545 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1546 unsigned int shndx) const
1547 {
1548 if (this->is_input_section())
1549 return false;
1550 return this->u2_.posd->is_merge_section_for(object, shndx);
1551 }
1552
1553 // Write out the data. We don't have to do anything for an input
1554 // section--they are handled via Object::relocate--but this is where
1555 // we write out the data for an Output_section_data.
1556
1557 void
1558 Output_section::Input_section::write(Output_file* of)
1559 {
1560 if (!this->is_input_section())
1561 this->u2_.posd->write(of);
1562 }
1563
1564 // Write the data to a buffer. As for write(), we don't have to do
1565 // anything for an input section.
1566
1567 void
1568 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1569 {
1570 if (!this->is_input_section())
1571 this->u2_.posd->write_to_buffer(buffer);
1572 }
1573
1574 // Output_section methods.
1575
1576 // Construct an Output_section. NAME will point into a Stringpool.
1577
1578 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1579 elfcpp::Elf_Xword flags)
1580 : name_(name),
1581 addralign_(0),
1582 entsize_(0),
1583 load_address_(0),
1584 link_section_(NULL),
1585 link_(0),
1586 info_section_(NULL),
1587 info_symndx_(NULL),
1588 info_(0),
1589 type_(type),
1590 flags_(flags),
1591 out_shndx_(-1U),
1592 symtab_index_(0),
1593 dynsym_index_(0),
1594 input_sections_(),
1595 first_input_offset_(0),
1596 fills_(),
1597 postprocessing_buffer_(NULL),
1598 needs_symtab_index_(false),
1599 needs_dynsym_index_(false),
1600 should_link_to_symtab_(false),
1601 should_link_to_dynsym_(false),
1602 after_input_sections_(false),
1603 requires_postprocessing_(false),
1604 found_in_sections_clause_(false),
1605 has_load_address_(false),
1606 info_uses_section_index_(false),
1607 may_sort_attached_input_sections_(false),
1608 must_sort_attached_input_sections_(false),
1609 attached_input_sections_are_sorted_(false),
1610 tls_offset_(0)
1611 {
1612 // An unallocated section has no address. Forcing this means that
1613 // we don't need special treatment for symbols defined in debug
1614 // sections.
1615 if ((flags & elfcpp::SHF_ALLOC) == 0)
1616 this->set_address(0);
1617 }
1618
1619 Output_section::~Output_section()
1620 {
1621 }
1622
1623 // Set the entry size.
1624
1625 void
1626 Output_section::set_entsize(uint64_t v)
1627 {
1628 if (this->entsize_ == 0)
1629 this->entsize_ = v;
1630 else
1631 gold_assert(this->entsize_ == v);
1632 }
1633
1634 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1635 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1636 // relocation section which applies to this section, or 0 if none, or
1637 // -1U if more than one. Return the offset of the input section
1638 // within the output section. Return -1 if the input section will
1639 // receive special handling. In the normal case we don't always keep
1640 // track of input sections for an Output_section. Instead, each
1641 // Object keeps track of the Output_section for each of its input
1642 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1643 // track of input sections here; this is used when SECTIONS appears in
1644 // a linker script.
1645
1646 template<int size, bool big_endian>
1647 off_t
1648 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1649 unsigned int shndx,
1650 const char* secname,
1651 const elfcpp::Shdr<size, big_endian>& shdr,
1652 unsigned int reloc_shndx,
1653 bool have_sections_script)
1654 {
1655 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1656 if ((addralign & (addralign - 1)) != 0)
1657 {
1658 object->error(_("invalid alignment %lu for section \"%s\""),
1659 static_cast<unsigned long>(addralign), secname);
1660 addralign = 1;
1661 }
1662
1663 if (addralign > this->addralign_)
1664 this->addralign_ = addralign;
1665
1666 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1667 this->flags_ |= (sh_flags
1668 & (elfcpp::SHF_WRITE
1669 | elfcpp::SHF_ALLOC
1670 | elfcpp::SHF_EXECINSTR));
1671
1672 uint64_t entsize = shdr.get_sh_entsize();
1673
1674 // .debug_str is a mergeable string section, but is not always so
1675 // marked by compilers. Mark manually here so we can optimize.
1676 if (strcmp(secname, ".debug_str") == 0)
1677 {
1678 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1679 entsize = 1;
1680 }
1681
1682 // If this is a SHF_MERGE section, we pass all the input sections to
1683 // a Output_data_merge. We don't try to handle relocations for such
1684 // a section.
1685 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1686 && reloc_shndx == 0)
1687 {
1688 if (this->add_merge_input_section(object, shndx, sh_flags,
1689 entsize, addralign))
1690 {
1691 // Tell the relocation routines that they need to call the
1692 // output_offset method to determine the final address.
1693 return -1;
1694 }
1695 }
1696
1697 off_t offset_in_section = this->current_data_size_for_child();
1698 off_t aligned_offset_in_section = align_address(offset_in_section,
1699 addralign);
1700
1701 if (aligned_offset_in_section > offset_in_section
1702 && !have_sections_script
1703 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1704 && object->target()->has_code_fill())
1705 {
1706 // We need to add some fill data. Using fill_list_ when
1707 // possible is an optimization, since we will often have fill
1708 // sections without input sections.
1709 off_t fill_len = aligned_offset_in_section - offset_in_section;
1710 if (this->input_sections_.empty())
1711 this->fills_.push_back(Fill(offset_in_section, fill_len));
1712 else
1713 {
1714 // FIXME: When relaxing, the size needs to adjust to
1715 // maintain a constant alignment.
1716 std::string fill_data(object->target()->code_fill(fill_len));
1717 Output_data_const* odc = new Output_data_const(fill_data, 1);
1718 this->input_sections_.push_back(Input_section(odc));
1719 }
1720 }
1721
1722 this->set_current_data_size_for_child(aligned_offset_in_section
1723 + shdr.get_sh_size());
1724
1725 // We need to keep track of this section if we are already keeping
1726 // track of sections, or if we are relaxing. Also, if this is a
1727 // section which requires sorting, or which may require sorting in
1728 // the future, we keep track of the sections. FIXME: Add test for
1729 // relaxing.
1730 if (have_sections_script
1731 || !this->input_sections_.empty()
1732 || this->may_sort_attached_input_sections()
1733 || this->must_sort_attached_input_sections())
1734 this->input_sections_.push_back(Input_section(object, shndx,
1735 shdr.get_sh_size(),
1736 addralign));
1737
1738 return aligned_offset_in_section;
1739 }
1740
1741 // Add arbitrary data to an output section.
1742
1743 void
1744 Output_section::add_output_section_data(Output_section_data* posd)
1745 {
1746 Input_section inp(posd);
1747 this->add_output_section_data(&inp);
1748
1749 if (posd->is_data_size_valid())
1750 {
1751 off_t offset_in_section = this->current_data_size_for_child();
1752 off_t aligned_offset_in_section = align_address(offset_in_section,
1753 posd->addralign());
1754 this->set_current_data_size_for_child(aligned_offset_in_section
1755 + posd->data_size());
1756 }
1757 }
1758
1759 // Add arbitrary data to an output section by Input_section.
1760
1761 void
1762 Output_section::add_output_section_data(Input_section* inp)
1763 {
1764 if (this->input_sections_.empty())
1765 this->first_input_offset_ = this->current_data_size_for_child();
1766
1767 this->input_sections_.push_back(*inp);
1768
1769 uint64_t addralign = inp->addralign();
1770 if (addralign > this->addralign_)
1771 this->addralign_ = addralign;
1772
1773 inp->set_output_section(this);
1774 }
1775
1776 // Add a merge section to an output section.
1777
1778 void
1779 Output_section::add_output_merge_section(Output_section_data* posd,
1780 bool is_string, uint64_t entsize)
1781 {
1782 Input_section inp(posd, is_string, entsize);
1783 this->add_output_section_data(&inp);
1784 }
1785
1786 // Add an input section to a SHF_MERGE section.
1787
1788 bool
1789 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1790 uint64_t flags, uint64_t entsize,
1791 uint64_t addralign)
1792 {
1793 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1794
1795 // We only merge strings if the alignment is not more than the
1796 // character size. This could be handled, but it's unusual.
1797 if (is_string && addralign > entsize)
1798 return false;
1799
1800 Input_section_list::iterator p;
1801 for (p = this->input_sections_.begin();
1802 p != this->input_sections_.end();
1803 ++p)
1804 if (p->is_merge_section(is_string, entsize, addralign))
1805 {
1806 p->add_input_section(object, shndx);
1807 return true;
1808 }
1809
1810 // We handle the actual constant merging in Output_merge_data or
1811 // Output_merge_string_data.
1812 Output_section_data* posd;
1813 if (!is_string)
1814 posd = new Output_merge_data(entsize, addralign);
1815 else
1816 {
1817 switch (entsize)
1818 {
1819 case 1:
1820 posd = new Output_merge_string<char>(addralign);
1821 break;
1822 case 2:
1823 posd = new Output_merge_string<uint16_t>(addralign);
1824 break;
1825 case 4:
1826 posd = new Output_merge_string<uint32_t>(addralign);
1827 break;
1828 default:
1829 return false;
1830 }
1831 }
1832
1833 this->add_output_merge_section(posd, is_string, entsize);
1834 posd->add_input_section(object, shndx);
1835
1836 return true;
1837 }
1838
1839 // Given an address OFFSET relative to the start of input section
1840 // SHNDX in OBJECT, return whether this address is being included in
1841 // the final link. This should only be called if SHNDX in OBJECT has
1842 // a special mapping.
1843
1844 bool
1845 Output_section::is_input_address_mapped(const Relobj* object,
1846 unsigned int shndx,
1847 off_t offset) const
1848 {
1849 gold_assert(object->is_section_specially_mapped(shndx));
1850
1851 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1852 p != this->input_sections_.end();
1853 ++p)
1854 {
1855 section_offset_type output_offset;
1856 if (p->output_offset(object, shndx, offset, &output_offset))
1857 return output_offset != -1;
1858 }
1859
1860 // By default we assume that the address is mapped. This should
1861 // only be called after we have passed all sections to Layout. At
1862 // that point we should know what we are discarding.
1863 return true;
1864 }
1865
1866 // Given an address OFFSET relative to the start of input section
1867 // SHNDX in object OBJECT, return the output offset relative to the
1868 // start of the input section in the output section. This should only
1869 // be called if SHNDX in OBJECT has a special mapping.
1870
1871 section_offset_type
1872 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1873 section_offset_type offset) const
1874 {
1875 gold_assert(object->is_section_specially_mapped(shndx));
1876 // This can only be called meaningfully when layout is complete.
1877 gold_assert(Output_data::is_layout_complete());
1878
1879 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1880 p != this->input_sections_.end();
1881 ++p)
1882 {
1883 section_offset_type output_offset;
1884 if (p->output_offset(object, shndx, offset, &output_offset))
1885 return output_offset;
1886 }
1887 gold_unreachable();
1888 }
1889
1890 // Return the output virtual address of OFFSET relative to the start
1891 // of input section SHNDX in object OBJECT.
1892
1893 uint64_t
1894 Output_section::output_address(const Relobj* object, unsigned int shndx,
1895 off_t offset) const
1896 {
1897 gold_assert(object->is_section_specially_mapped(shndx));
1898
1899 uint64_t addr = this->address() + this->first_input_offset_;
1900 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1901 p != this->input_sections_.end();
1902 ++p)
1903 {
1904 addr = align_address(addr, p->addralign());
1905 section_offset_type output_offset;
1906 if (p->output_offset(object, shndx, offset, &output_offset))
1907 {
1908 if (output_offset == -1)
1909 return -1U;
1910 return addr + output_offset;
1911 }
1912 addr += p->data_size();
1913 }
1914
1915 // If we get here, it means that we don't know the mapping for this
1916 // input section. This might happen in principle if
1917 // add_input_section were called before add_output_section_data.
1918 // But it should never actually happen.
1919
1920 gold_unreachable();
1921 }
1922
1923 // Return the output address of the start of the merged section for
1924 // input section SHNDX in object OBJECT.
1925
1926 uint64_t
1927 Output_section::starting_output_address(const Relobj* object,
1928 unsigned int shndx) const
1929 {
1930 gold_assert(object->is_section_specially_mapped(shndx));
1931
1932 uint64_t addr = this->address() + this->first_input_offset_;
1933 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1934 p != this->input_sections_.end();
1935 ++p)
1936 {
1937 addr = align_address(addr, p->addralign());
1938
1939 // It would be nice if we could use the existing output_offset
1940 // method to get the output offset of input offset 0.
1941 // Unfortunately we don't know for sure that input offset 0 is
1942 // mapped at all.
1943 if (p->is_merge_section_for(object, shndx))
1944 return addr;
1945
1946 addr += p->data_size();
1947 }
1948 gold_unreachable();
1949 }
1950
1951 // Set the data size of an Output_section. This is where we handle
1952 // setting the addresses of any Output_section_data objects.
1953
1954 void
1955 Output_section::set_final_data_size()
1956 {
1957 if (this->input_sections_.empty())
1958 {
1959 this->set_data_size(this->current_data_size_for_child());
1960 return;
1961 }
1962
1963 if (this->must_sort_attached_input_sections())
1964 this->sort_attached_input_sections();
1965
1966 uint64_t address = this->address();
1967 off_t startoff = this->offset();
1968 off_t off = startoff + this->first_input_offset_;
1969 for (Input_section_list::iterator p = this->input_sections_.begin();
1970 p != this->input_sections_.end();
1971 ++p)
1972 {
1973 off = align_address(off, p->addralign());
1974 p->set_address_and_file_offset(address + (off - startoff), off,
1975 startoff);
1976 off += p->data_size();
1977 }
1978
1979 this->set_data_size(off - startoff);
1980 }
1981
1982 // Reset the address and file offset.
1983
1984 void
1985 Output_section::do_reset_address_and_file_offset()
1986 {
1987 for (Input_section_list::iterator p = this->input_sections_.begin();
1988 p != this->input_sections_.end();
1989 ++p)
1990 p->reset_address_and_file_offset();
1991 }
1992
1993 // Set the TLS offset. Called only for SHT_TLS sections.
1994
1995 void
1996 Output_section::do_set_tls_offset(uint64_t tls_base)
1997 {
1998 this->tls_offset_ = this->address() - tls_base;
1999 }
2000
2001 // In a few cases we need to sort the input sections attached to an
2002 // output section. This is used to implement the type of constructor
2003 // priority ordering implemented by the GNU linker, in which the
2004 // priority becomes part of the section name and the sections are
2005 // sorted by name. We only do this for an output section if we see an
2006 // attached input section matching ".ctor.*", ".dtor.*",
2007 // ".init_array.*" or ".fini_array.*".
2008
2009 class Output_section::Input_section_sort_entry
2010 {
2011 public:
2012 Input_section_sort_entry()
2013 : input_section_(), index_(-1U), section_has_name_(false),
2014 section_name_()
2015 { }
2016
2017 Input_section_sort_entry(const Input_section& input_section,
2018 unsigned int index)
2019 : input_section_(input_section), index_(index),
2020 section_has_name_(input_section.is_input_section())
2021 {
2022 if (this->section_has_name_)
2023 {
2024 // This is only called single-threaded from Layout::finalize,
2025 // so it is OK to lock. Unfortunately we have no way to pass
2026 // in a Task token.
2027 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2028 Object* obj = input_section.relobj();
2029 Task_lock_obj<Object> tl(dummy_task, obj);
2030
2031 // This is a slow operation, which should be cached in
2032 // Layout::layout if this becomes a speed problem.
2033 this->section_name_ = obj->section_name(input_section.shndx());
2034 }
2035 }
2036
2037 // Return the Input_section.
2038 const Input_section&
2039 input_section() const
2040 {
2041 gold_assert(this->index_ != -1U);
2042 return this->input_section_;
2043 }
2044
2045 // The index of this entry in the original list. This is used to
2046 // make the sort stable.
2047 unsigned int
2048 index() const
2049 {
2050 gold_assert(this->index_ != -1U);
2051 return this->index_;
2052 }
2053
2054 // Whether there is a section name.
2055 bool
2056 section_has_name() const
2057 { return this->section_has_name_; }
2058
2059 // The section name.
2060 const std::string&
2061 section_name() const
2062 {
2063 gold_assert(this->section_has_name_);
2064 return this->section_name_;
2065 }
2066
2067 // Return true if the section name has a priority. This is assumed
2068 // to be true if it has a dot after the initial dot.
2069 bool
2070 has_priority() const
2071 {
2072 gold_assert(this->section_has_name_);
2073 return this->section_name_.find('.', 1);
2074 }
2075
2076 // Return true if this an input file whose base name matches
2077 // FILE_NAME. The base name must have an extension of ".o", and
2078 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2079 // This is to match crtbegin.o as well as crtbeginS.o without
2080 // getting confused by other possibilities. Overall matching the
2081 // file name this way is a dreadful hack, but the GNU linker does it
2082 // in order to better support gcc, and we need to be compatible.
2083 bool
2084 match_file_name(const char* match_file_name) const
2085 {
2086 const std::string& file_name(this->input_section_.relobj()->name());
2087 const char* base_name = lbasename(file_name.c_str());
2088 size_t match_len = strlen(match_file_name);
2089 if (strncmp(base_name, match_file_name, match_len) != 0)
2090 return false;
2091 size_t base_len = strlen(base_name);
2092 if (base_len != match_len + 2 && base_len != match_len + 3)
2093 return false;
2094 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2095 }
2096
2097 private:
2098 // The Input_section we are sorting.
2099 Input_section input_section_;
2100 // The index of this Input_section in the original list.
2101 unsigned int index_;
2102 // Whether this Input_section has a section name--it won't if this
2103 // is some random Output_section_data.
2104 bool section_has_name_;
2105 // The section name if there is one.
2106 std::string section_name_;
2107 };
2108
2109 // Return true if S1 should come before S2 in the output section.
2110
2111 bool
2112 Output_section::Input_section_sort_compare::operator()(
2113 const Output_section::Input_section_sort_entry& s1,
2114 const Output_section::Input_section_sort_entry& s2) const
2115 {
2116 // crtbegin.o must come first.
2117 bool s1_begin = s1.match_file_name("crtbegin");
2118 bool s2_begin = s2.match_file_name("crtbegin");
2119 if (s1_begin || s2_begin)
2120 {
2121 if (!s1_begin)
2122 return false;
2123 if (!s2_begin)
2124 return true;
2125 return s1.index() < s2.index();
2126 }
2127
2128 // crtend.o must come last.
2129 bool s1_end = s1.match_file_name("crtend");
2130 bool s2_end = s2.match_file_name("crtend");
2131 if (s1_end || s2_end)
2132 {
2133 if (!s1_end)
2134 return true;
2135 if (!s2_end)
2136 return false;
2137 return s1.index() < s2.index();
2138 }
2139
2140 // We sort all the sections with no names to the end.
2141 if (!s1.section_has_name() || !s2.section_has_name())
2142 {
2143 if (s1.section_has_name())
2144 return true;
2145 if (s2.section_has_name())
2146 return false;
2147 return s1.index() < s2.index();
2148 }
2149
2150 // A section with a priority follows a section without a priority.
2151 // The GNU linker does this for all but .init_array sections; until
2152 // further notice we'll assume that that is an mistake.
2153 bool s1_has_priority = s1.has_priority();
2154 bool s2_has_priority = s2.has_priority();
2155 if (s1_has_priority && !s2_has_priority)
2156 return false;
2157 if (!s1_has_priority && s2_has_priority)
2158 return true;
2159
2160 // Otherwise we sort by name.
2161 int compare = s1.section_name().compare(s2.section_name());
2162 if (compare != 0)
2163 return compare < 0;
2164
2165 // Otherwise we keep the input order.
2166 return s1.index() < s2.index();
2167 }
2168
2169 // Sort the input sections attached to an output section.
2170
2171 void
2172 Output_section::sort_attached_input_sections()
2173 {
2174 if (this->attached_input_sections_are_sorted_)
2175 return;
2176
2177 // The only thing we know about an input section is the object and
2178 // the section index. We need the section name. Recomputing this
2179 // is slow but this is an unusual case. If this becomes a speed
2180 // problem we can cache the names as required in Layout::layout.
2181
2182 // We start by building a larger vector holding a copy of each
2183 // Input_section, plus its current index in the list and its name.
2184 std::vector<Input_section_sort_entry> sort_list;
2185
2186 unsigned int i = 0;
2187 for (Input_section_list::iterator p = this->input_sections_.begin();
2188 p != this->input_sections_.end();
2189 ++p, ++i)
2190 sort_list.push_back(Input_section_sort_entry(*p, i));
2191
2192 // Sort the input sections.
2193 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2194
2195 // Copy the sorted input sections back to our list.
2196 this->input_sections_.clear();
2197 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2198 p != sort_list.end();
2199 ++p)
2200 this->input_sections_.push_back(p->input_section());
2201
2202 // Remember that we sorted the input sections, since we might get
2203 // called again.
2204 this->attached_input_sections_are_sorted_ = true;
2205 }
2206
2207 // Write the section header to *OSHDR.
2208
2209 template<int size, bool big_endian>
2210 void
2211 Output_section::write_header(const Layout* layout,
2212 const Stringpool* secnamepool,
2213 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2214 {
2215 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2216 oshdr->put_sh_type(this->type_);
2217
2218 elfcpp::Elf_Xword flags = this->flags_;
2219 if (this->info_section_ != NULL && this->info_uses_section_index_)
2220 flags |= elfcpp::SHF_INFO_LINK;
2221 oshdr->put_sh_flags(flags);
2222
2223 oshdr->put_sh_addr(this->address());
2224 oshdr->put_sh_offset(this->offset());
2225 oshdr->put_sh_size(this->data_size());
2226 if (this->link_section_ != NULL)
2227 oshdr->put_sh_link(this->link_section_->out_shndx());
2228 else if (this->should_link_to_symtab_)
2229 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2230 else if (this->should_link_to_dynsym_)
2231 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2232 else
2233 oshdr->put_sh_link(this->link_);
2234
2235 elfcpp::Elf_Word info;
2236 if (this->info_section_ != NULL)
2237 {
2238 if (this->info_uses_section_index_)
2239 info = this->info_section_->out_shndx();
2240 else
2241 info = this->info_section_->symtab_index();
2242 }
2243 else if (this->info_symndx_ != NULL)
2244 info = this->info_symndx_->symtab_index();
2245 else
2246 info = this->info_;
2247 oshdr->put_sh_info(info);
2248
2249 oshdr->put_sh_addralign(this->addralign_);
2250 oshdr->put_sh_entsize(this->entsize_);
2251 }
2252
2253 // Write out the data. For input sections the data is written out by
2254 // Object::relocate, but we have to handle Output_section_data objects
2255 // here.
2256
2257 void
2258 Output_section::do_write(Output_file* of)
2259 {
2260 gold_assert(!this->requires_postprocessing());
2261
2262 off_t output_section_file_offset = this->offset();
2263 for (Fill_list::iterator p = this->fills_.begin();
2264 p != this->fills_.end();
2265 ++p)
2266 {
2267 std::string fill_data(parameters->target().code_fill(p->length()));
2268 of->write(output_section_file_offset + p->section_offset(),
2269 fill_data.data(), fill_data.size());
2270 }
2271
2272 for (Input_section_list::iterator p = this->input_sections_.begin();
2273 p != this->input_sections_.end();
2274 ++p)
2275 p->write(of);
2276 }
2277
2278 // If a section requires postprocessing, create the buffer to use.
2279
2280 void
2281 Output_section::create_postprocessing_buffer()
2282 {
2283 gold_assert(this->requires_postprocessing());
2284
2285 if (this->postprocessing_buffer_ != NULL)
2286 return;
2287
2288 if (!this->input_sections_.empty())
2289 {
2290 off_t off = this->first_input_offset_;
2291 for (Input_section_list::iterator p = this->input_sections_.begin();
2292 p != this->input_sections_.end();
2293 ++p)
2294 {
2295 off = align_address(off, p->addralign());
2296 p->finalize_data_size();
2297 off += p->data_size();
2298 }
2299 this->set_current_data_size_for_child(off);
2300 }
2301
2302 off_t buffer_size = this->current_data_size_for_child();
2303 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2304 }
2305
2306 // Write all the data of an Output_section into the postprocessing
2307 // buffer. This is used for sections which require postprocessing,
2308 // such as compression. Input sections are handled by
2309 // Object::Relocate.
2310
2311 void
2312 Output_section::write_to_postprocessing_buffer()
2313 {
2314 gold_assert(this->requires_postprocessing());
2315
2316 unsigned char* buffer = this->postprocessing_buffer();
2317 for (Fill_list::iterator p = this->fills_.begin();
2318 p != this->fills_.end();
2319 ++p)
2320 {
2321 std::string fill_data(parameters->target().code_fill(p->length()));
2322 memcpy(buffer + p->section_offset(), fill_data.data(),
2323 fill_data.size());
2324 }
2325
2326 off_t off = this->first_input_offset_;
2327 for (Input_section_list::iterator p = this->input_sections_.begin();
2328 p != this->input_sections_.end();
2329 ++p)
2330 {
2331 off = align_address(off, p->addralign());
2332 p->write_to_buffer(buffer + off);
2333 off += p->data_size();
2334 }
2335 }
2336
2337 // Get the input sections for linker script processing. We leave
2338 // behind the Output_section_data entries. Note that this may be
2339 // slightly incorrect for merge sections. We will leave them behind,
2340 // but it is possible that the script says that they should follow
2341 // some other input sections, as in:
2342 // .rodata { *(.rodata) *(.rodata.cst*) }
2343 // For that matter, we don't handle this correctly:
2344 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2345 // With luck this will never matter.
2346
2347 uint64_t
2348 Output_section::get_input_sections(
2349 uint64_t address,
2350 const std::string& fill,
2351 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2352 {
2353 uint64_t orig_address = address;
2354
2355 address = align_address(address, this->addralign());
2356
2357 Input_section_list remaining;
2358 for (Input_section_list::iterator p = this->input_sections_.begin();
2359 p != this->input_sections_.end();
2360 ++p)
2361 {
2362 if (p->is_input_section())
2363 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2364 else
2365 {
2366 uint64_t aligned_address = align_address(address, p->addralign());
2367 if (aligned_address != address && !fill.empty())
2368 {
2369 section_size_type length =
2370 convert_to_section_size_type(aligned_address - address);
2371 std::string this_fill;
2372 this_fill.reserve(length);
2373 while (this_fill.length() + fill.length() <= length)
2374 this_fill += fill;
2375 if (this_fill.length() < length)
2376 this_fill.append(fill, 0, length - this_fill.length());
2377
2378 Output_section_data* posd = new Output_data_const(this_fill, 0);
2379 remaining.push_back(Input_section(posd));
2380 }
2381 address = aligned_address;
2382
2383 remaining.push_back(*p);
2384
2385 p->finalize_data_size();
2386 address += p->data_size();
2387 }
2388 }
2389
2390 this->input_sections_.swap(remaining);
2391 this->first_input_offset_ = 0;
2392
2393 uint64_t data_size = address - orig_address;
2394 this->set_current_data_size_for_child(data_size);
2395 return data_size;
2396 }
2397
2398 // Add an input section from a script.
2399
2400 void
2401 Output_section::add_input_section_for_script(Relobj* object,
2402 unsigned int shndx,
2403 off_t data_size,
2404 uint64_t addralign)
2405 {
2406 if (addralign > this->addralign_)
2407 this->addralign_ = addralign;
2408
2409 off_t offset_in_section = this->current_data_size_for_child();
2410 off_t aligned_offset_in_section = align_address(offset_in_section,
2411 addralign);
2412
2413 this->set_current_data_size_for_child(aligned_offset_in_section
2414 + data_size);
2415
2416 this->input_sections_.push_back(Input_section(object, shndx,
2417 data_size, addralign));
2418 }
2419
2420 // Print stats for merge sections to stderr.
2421
2422 void
2423 Output_section::print_merge_stats()
2424 {
2425 Input_section_list::iterator p;
2426 for (p = this->input_sections_.begin();
2427 p != this->input_sections_.end();
2428 ++p)
2429 p->print_merge_stats(this->name_);
2430 }
2431
2432 // Output segment methods.
2433
2434 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2435 : output_data_(),
2436 output_bss_(),
2437 vaddr_(0),
2438 paddr_(0),
2439 memsz_(0),
2440 max_align_(0),
2441 min_p_align_(0),
2442 offset_(0),
2443 filesz_(0),
2444 type_(type),
2445 flags_(flags),
2446 is_max_align_known_(false),
2447 are_addresses_set_(false)
2448 {
2449 }
2450
2451 // Add an Output_section to an Output_segment.
2452
2453 void
2454 Output_segment::add_output_section(Output_section* os,
2455 elfcpp::Elf_Word seg_flags,
2456 bool front)
2457 {
2458 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
2459 gold_assert(!this->is_max_align_known_);
2460
2461 // Update the segment flags.
2462 this->flags_ |= seg_flags;
2463
2464 Output_segment::Output_data_list* pdl;
2465 if (os->type() == elfcpp::SHT_NOBITS)
2466 pdl = &this->output_bss_;
2467 else
2468 pdl = &this->output_data_;
2469
2470 // So that PT_NOTE segments will work correctly, we need to ensure
2471 // that all SHT_NOTE sections are adjacent. This will normally
2472 // happen automatically, because all the SHT_NOTE input sections
2473 // will wind up in the same output section. However, it is possible
2474 // for multiple SHT_NOTE input sections to have different section
2475 // flags, and thus be in different output sections, but for the
2476 // different section flags to map into the same segment flags and
2477 // thus the same output segment.
2478
2479 // Note that while there may be many input sections in an output
2480 // section, there are normally only a few output sections in an
2481 // output segment. This loop is expected to be fast.
2482
2483 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
2484 {
2485 Output_segment::Output_data_list::iterator p = pdl->end();
2486 do
2487 {
2488 --p;
2489 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2490 {
2491 // We don't worry about the FRONT parameter.
2492 ++p;
2493 pdl->insert(p, os);
2494 return;
2495 }
2496 }
2497 while (p != pdl->begin());
2498 }
2499
2500 // Similarly, so that PT_TLS segments will work, we need to group
2501 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2502 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2503 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2504 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2505 // and the PT_TLS segment -- we do this grouping only for the
2506 // PT_LOAD segment.
2507 if (this->type_ != elfcpp::PT_TLS
2508 && (os->flags() & elfcpp::SHF_TLS) != 0
2509 && !this->output_data_.empty())
2510 {
2511 pdl = &this->output_data_;
2512 bool nobits = os->type() == elfcpp::SHT_NOBITS;
2513 bool sawtls = false;
2514 Output_segment::Output_data_list::iterator p = pdl->end();
2515 do
2516 {
2517 --p;
2518 bool insert;
2519 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2520 {
2521 sawtls = true;
2522 // Put a NOBITS section after the first TLS section.
2523 // But a PROGBITS section after the first TLS/PROGBITS
2524 // section.
2525 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2526 }
2527 else
2528 {
2529 // If we've gone past the TLS sections, but we've seen a
2530 // TLS section, then we need to insert this section now.
2531 insert = sawtls;
2532 }
2533
2534 if (insert)
2535 {
2536 // We don't worry about the FRONT parameter.
2537 ++p;
2538 pdl->insert(p, os);
2539 return;
2540 }
2541 }
2542 while (p != pdl->begin());
2543
2544 // There are no TLS sections yet; put this one at the requested
2545 // location in the section list.
2546 }
2547
2548 if (front)
2549 pdl->push_front(os);
2550 else
2551 pdl->push_back(os);
2552 }
2553
2554 // Remove an Output_section from this segment. It is an error if it
2555 // is not present.
2556
2557 void
2558 Output_segment::remove_output_section(Output_section* os)
2559 {
2560 // We only need this for SHT_PROGBITS.
2561 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2562 for (Output_data_list::iterator p = this->output_data_.begin();
2563 p != this->output_data_.end();
2564 ++p)
2565 {
2566 if (*p == os)
2567 {
2568 this->output_data_.erase(p);
2569 return;
2570 }
2571 }
2572 gold_unreachable();
2573 }
2574
2575 // Add an Output_data (which is not an Output_section) to the start of
2576 // a segment.
2577
2578 void
2579 Output_segment::add_initial_output_data(Output_data* od)
2580 {
2581 gold_assert(!this->is_max_align_known_);
2582 this->output_data_.push_front(od);
2583 }
2584
2585 // Return the maximum alignment of the Output_data in Output_segment.
2586
2587 uint64_t
2588 Output_segment::maximum_alignment()
2589 {
2590 if (!this->is_max_align_known_)
2591 {
2592 uint64_t addralign;
2593
2594 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2595 if (addralign > this->max_align_)
2596 this->max_align_ = addralign;
2597
2598 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2599 if (addralign > this->max_align_)
2600 this->max_align_ = addralign;
2601
2602 this->is_max_align_known_ = true;
2603 }
2604
2605 return this->max_align_;
2606 }
2607
2608 // Return the maximum alignment of a list of Output_data.
2609
2610 uint64_t
2611 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
2612 {
2613 uint64_t ret = 0;
2614 for (Output_data_list::const_iterator p = pdl->begin();
2615 p != pdl->end();
2616 ++p)
2617 {
2618 uint64_t addralign = (*p)->addralign();
2619 if (addralign > ret)
2620 ret = addralign;
2621 }
2622 return ret;
2623 }
2624
2625 // Return the number of dynamic relocs applied to this segment.
2626
2627 unsigned int
2628 Output_segment::dynamic_reloc_count() const
2629 {
2630 return (this->dynamic_reloc_count_list(&this->output_data_)
2631 + this->dynamic_reloc_count_list(&this->output_bss_));
2632 }
2633
2634 // Return the number of dynamic relocs applied to an Output_data_list.
2635
2636 unsigned int
2637 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2638 {
2639 unsigned int count = 0;
2640 for (Output_data_list::const_iterator p = pdl->begin();
2641 p != pdl->end();
2642 ++p)
2643 count += (*p)->dynamic_reloc_count();
2644 return count;
2645 }
2646
2647 // Set the section addresses for an Output_segment. If RESET is true,
2648 // reset the addresses first. ADDR is the address and *POFF is the
2649 // file offset. Set the section indexes starting with *PSHNDX.
2650 // Return the address of the immediately following segment. Update
2651 // *POFF and *PSHNDX.
2652
2653 uint64_t
2654 Output_segment::set_section_addresses(const Layout* layout, bool reset,
2655 uint64_t addr, off_t* poff,
2656 unsigned int* pshndx)
2657 {
2658 gold_assert(this->type_ == elfcpp::PT_LOAD);
2659
2660 if (!reset && this->are_addresses_set_)
2661 {
2662 gold_assert(this->paddr_ == addr);
2663 addr = this->vaddr_;
2664 }
2665 else
2666 {
2667 this->vaddr_ = addr;
2668 this->paddr_ = addr;
2669 this->are_addresses_set_ = true;
2670 }
2671
2672 bool in_tls = false;
2673
2674 off_t orig_off = *poff;
2675 this->offset_ = orig_off;
2676
2677 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2678 addr, poff, pshndx, &in_tls);
2679 this->filesz_ = *poff - orig_off;
2680
2681 off_t off = *poff;
2682
2683 uint64_t ret = this->set_section_list_addresses(layout, reset,
2684 &this->output_bss_,
2685 addr, poff, pshndx,
2686 &in_tls);
2687
2688 // If the last section was a TLS section, align upward to the
2689 // alignment of the TLS segment, so that the overall size of the TLS
2690 // segment is aligned.
2691 if (in_tls)
2692 {
2693 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2694 *poff = align_address(*poff, segment_align);
2695 }
2696
2697 this->memsz_ = *poff - orig_off;
2698
2699 // Ignore the file offset adjustments made by the BSS Output_data
2700 // objects.
2701 *poff = off;
2702
2703 return ret;
2704 }
2705
2706 // Set the addresses and file offsets in a list of Output_data
2707 // structures.
2708
2709 uint64_t
2710 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2711 Output_data_list* pdl,
2712 uint64_t addr, off_t* poff,
2713 unsigned int* pshndx,
2714 bool* in_tls)
2715 {
2716 off_t startoff = *poff;
2717
2718 off_t off = startoff;
2719 for (Output_data_list::iterator p = pdl->begin();
2720 p != pdl->end();
2721 ++p)
2722 {
2723 if (reset)
2724 (*p)->reset_address_and_file_offset();
2725
2726 // When using a linker script the section will most likely
2727 // already have an address.
2728 if (!(*p)->is_address_valid())
2729 {
2730 uint64_t align = (*p)->addralign();
2731
2732 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2733 {
2734 // Give the first TLS section the alignment of the
2735 // entire TLS segment. Otherwise the TLS segment as a
2736 // whole may be misaligned.
2737 if (!*in_tls)
2738 {
2739 Output_segment* tls_segment = layout->tls_segment();
2740 gold_assert(tls_segment != NULL);
2741 uint64_t segment_align = tls_segment->maximum_alignment();
2742 gold_assert(segment_align >= align);
2743 align = segment_align;
2744
2745 *in_tls = true;
2746 }
2747 }
2748 else
2749 {
2750 // If this is the first section after the TLS segment,
2751 // align it to at least the alignment of the TLS
2752 // segment, so that the size of the overall TLS segment
2753 // is aligned.
2754 if (*in_tls)
2755 {
2756 uint64_t segment_align =
2757 layout->tls_segment()->maximum_alignment();
2758 if (segment_align > align)
2759 align = segment_align;
2760
2761 *in_tls = false;
2762 }
2763 }
2764
2765 off = align_address(off, align);
2766 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2767 }
2768 else
2769 {
2770 // The script may have inserted a skip forward, but it
2771 // better not have moved backward.
2772 gold_assert((*p)->address() >= addr + (off - startoff));
2773 off += (*p)->address() - (addr + (off - startoff));
2774 (*p)->set_file_offset(off);
2775 (*p)->finalize_data_size();
2776 }
2777
2778 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2779 // section. Such a section does not affect the size of a
2780 // PT_LOAD segment.
2781 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
2782 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2783 off += (*p)->data_size();
2784
2785 if ((*p)->is_section())
2786 {
2787 (*p)->set_out_shndx(*pshndx);
2788 ++*pshndx;
2789 }
2790 }
2791
2792 *poff = off;
2793 return addr + (off - startoff);
2794 }
2795
2796 // For a non-PT_LOAD segment, set the offset from the sections, if
2797 // any.
2798
2799 void
2800 Output_segment::set_offset()
2801 {
2802 gold_assert(this->type_ != elfcpp::PT_LOAD);
2803
2804 gold_assert(!this->are_addresses_set_);
2805
2806 if (this->output_data_.empty() && this->output_bss_.empty())
2807 {
2808 this->vaddr_ = 0;
2809 this->paddr_ = 0;
2810 this->are_addresses_set_ = true;
2811 this->memsz_ = 0;
2812 this->min_p_align_ = 0;
2813 this->offset_ = 0;
2814 this->filesz_ = 0;
2815 return;
2816 }
2817
2818 const Output_data* first;
2819 if (this->output_data_.empty())
2820 first = this->output_bss_.front();
2821 else
2822 first = this->output_data_.front();
2823 this->vaddr_ = first->address();
2824 this->paddr_ = (first->has_load_address()
2825 ? first->load_address()
2826 : this->vaddr_);
2827 this->are_addresses_set_ = true;
2828 this->offset_ = first->offset();
2829
2830 if (this->output_data_.empty())
2831 this->filesz_ = 0;
2832 else
2833 {
2834 const Output_data* last_data = this->output_data_.back();
2835 this->filesz_ = (last_data->address()
2836 + last_data->data_size()
2837 - this->vaddr_);
2838 }
2839
2840 const Output_data* last;
2841 if (this->output_bss_.empty())
2842 last = this->output_data_.back();
2843 else
2844 last = this->output_bss_.back();
2845 this->memsz_ = (last->address()
2846 + last->data_size()
2847 - this->vaddr_);
2848
2849 // If this is a TLS segment, align the memory size. The code in
2850 // set_section_list ensures that the section after the TLS segment
2851 // is aligned to give us room.
2852 if (this->type_ == elfcpp::PT_TLS)
2853 {
2854 uint64_t segment_align = this->maximum_alignment();
2855 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
2856 this->memsz_ = align_address(this->memsz_, segment_align);
2857 }
2858 }
2859
2860 // Set the TLS offsets of the sections in the PT_TLS segment.
2861
2862 void
2863 Output_segment::set_tls_offsets()
2864 {
2865 gold_assert(this->type_ == elfcpp::PT_TLS);
2866
2867 for (Output_data_list::iterator p = this->output_data_.begin();
2868 p != this->output_data_.end();
2869 ++p)
2870 (*p)->set_tls_offset(this->vaddr_);
2871
2872 for (Output_data_list::iterator p = this->output_bss_.begin();
2873 p != this->output_bss_.end();
2874 ++p)
2875 (*p)->set_tls_offset(this->vaddr_);
2876 }
2877
2878 // Return the address of the first section.
2879
2880 uint64_t
2881 Output_segment::first_section_load_address() const
2882 {
2883 for (Output_data_list::const_iterator p = this->output_data_.begin();
2884 p != this->output_data_.end();
2885 ++p)
2886 if ((*p)->is_section())
2887 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2888
2889 for (Output_data_list::const_iterator p = this->output_bss_.begin();
2890 p != this->output_bss_.end();
2891 ++p)
2892 if ((*p)->is_section())
2893 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2894
2895 gold_unreachable();
2896 }
2897
2898 // Return the number of Output_sections in an Output_segment.
2899
2900 unsigned int
2901 Output_segment::output_section_count() const
2902 {
2903 return (this->output_section_count_list(&this->output_data_)
2904 + this->output_section_count_list(&this->output_bss_));
2905 }
2906
2907 // Return the number of Output_sections in an Output_data_list.
2908
2909 unsigned int
2910 Output_segment::output_section_count_list(const Output_data_list* pdl) const
2911 {
2912 unsigned int count = 0;
2913 for (Output_data_list::const_iterator p = pdl->begin();
2914 p != pdl->end();
2915 ++p)
2916 {
2917 if ((*p)->is_section())
2918 ++count;
2919 }
2920 return count;
2921 }
2922
2923 // Return the section attached to the list segment with the lowest
2924 // load address. This is used when handling a PHDRS clause in a
2925 // linker script.
2926
2927 Output_section*
2928 Output_segment::section_with_lowest_load_address() const
2929 {
2930 Output_section* found = NULL;
2931 uint64_t found_lma = 0;
2932 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2933
2934 Output_section* found_data = found;
2935 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2936 if (found != found_data && found_data != NULL)
2937 {
2938 gold_error(_("nobits section %s may not precede progbits section %s "
2939 "in same segment"),
2940 found->name(), found_data->name());
2941 return NULL;
2942 }
2943
2944 return found;
2945 }
2946
2947 // Look through a list for a section with a lower load address.
2948
2949 void
2950 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2951 Output_section** found,
2952 uint64_t* found_lma) const
2953 {
2954 for (Output_data_list::const_iterator p = pdl->begin();
2955 p != pdl->end();
2956 ++p)
2957 {
2958 if (!(*p)->is_section())
2959 continue;
2960 Output_section* os = static_cast<Output_section*>(*p);
2961 uint64_t lma = (os->has_load_address()
2962 ? os->load_address()
2963 : os->address());
2964 if (*found == NULL || lma < *found_lma)
2965 {
2966 *found = os;
2967 *found_lma = lma;
2968 }
2969 }
2970 }
2971
2972 // Write the segment data into *OPHDR.
2973
2974 template<int size, bool big_endian>
2975 void
2976 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
2977 {
2978 ophdr->put_p_type(this->type_);
2979 ophdr->put_p_offset(this->offset_);
2980 ophdr->put_p_vaddr(this->vaddr_);
2981 ophdr->put_p_paddr(this->paddr_);
2982 ophdr->put_p_filesz(this->filesz_);
2983 ophdr->put_p_memsz(this->memsz_);
2984 ophdr->put_p_flags(this->flags_);
2985 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
2986 }
2987
2988 // Write the section headers into V.
2989
2990 template<int size, bool big_endian>
2991 unsigned char*
2992 Output_segment::write_section_headers(const Layout* layout,
2993 const Stringpool* secnamepool,
2994 unsigned char* v,
2995 unsigned int *pshndx) const
2996 {
2997 // Every section that is attached to a segment must be attached to a
2998 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2999 // segments.
3000 if (this->type_ != elfcpp::PT_LOAD)
3001 return v;
3002
3003 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3004 &this->output_data_,
3005 v, pshndx);
3006 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3007 &this->output_bss_,
3008 v, pshndx);
3009 return v;
3010 }
3011
3012 template<int size, bool big_endian>
3013 unsigned char*
3014 Output_segment::write_section_headers_list(const Layout* layout,
3015 const Stringpool* secnamepool,
3016 const Output_data_list* pdl,
3017 unsigned char* v,
3018 unsigned int* pshndx) const
3019 {
3020 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3021 for (Output_data_list::const_iterator p = pdl->begin();
3022 p != pdl->end();
3023 ++p)
3024 {
3025 if ((*p)->is_section())
3026 {
3027 const Output_section* ps = static_cast<const Output_section*>(*p);
3028 gold_assert(*pshndx == ps->out_shndx());
3029 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3030 ps->write_header(layout, secnamepool, &oshdr);
3031 v += shdr_size;
3032 ++*pshndx;
3033 }
3034 }
3035 return v;
3036 }
3037
3038 // Output_file methods.
3039
3040 Output_file::Output_file(const char* name)
3041 : name_(name),
3042 o_(-1),
3043 file_size_(0),
3044 base_(NULL),
3045 map_is_anonymous_(false),
3046 is_temporary_(false)
3047 {
3048 }
3049
3050 // Open the output file.
3051
3052 void
3053 Output_file::open(off_t file_size)
3054 {
3055 this->file_size_ = file_size;
3056
3057 // Unlink the file first; otherwise the open() may fail if the file
3058 // is busy (e.g. it's an executable that's currently being executed).
3059 //
3060 // However, the linker may be part of a system where a zero-length
3061 // file is created for it to write to, with tight permissions (gcc
3062 // 2.95 did something like this). Unlinking the file would work
3063 // around those permission controls, so we only unlink if the file
3064 // has a non-zero size. We also unlink only regular files to avoid
3065 // trouble with directories/etc.
3066 //
3067 // If we fail, continue; this command is merely a best-effort attempt
3068 // to improve the odds for open().
3069
3070 // We let the name "-" mean "stdout"
3071 if (!this->is_temporary_)
3072 {
3073 if (strcmp(this->name_, "-") == 0)
3074 this->o_ = STDOUT_FILENO;
3075 else
3076 {
3077 struct stat s;
3078 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3079 unlink_if_ordinary(this->name_);
3080
3081 int mode = parameters->options().relocatable() ? 0666 : 0777;
3082 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
3083 if (o < 0)
3084 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3085 this->o_ = o;
3086 }
3087 }
3088
3089 this->map();
3090 }
3091
3092 // Resize the output file.
3093
3094 void
3095 Output_file::resize(off_t file_size)
3096 {
3097 // If the mmap is mapping an anonymous memory buffer, this is easy:
3098 // just mremap to the new size. If it's mapping to a file, we want
3099 // to unmap to flush to the file, then remap after growing the file.
3100 if (this->map_is_anonymous_)
3101 {
3102 void* base = ::mremap(this->base_, this->file_size_, file_size,
3103 MREMAP_MAYMOVE);
3104 if (base == MAP_FAILED)
3105 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3106 this->base_ = static_cast<unsigned char*>(base);
3107 this->file_size_ = file_size;
3108 }
3109 else
3110 {
3111 this->unmap();
3112 this->file_size_ = file_size;
3113 this->map();
3114 }
3115 }
3116
3117 // Map the file into memory.
3118
3119 void
3120 Output_file::map()
3121 {
3122 const int o = this->o_;
3123
3124 // If the output file is not a regular file, don't try to mmap it;
3125 // instead, we'll mmap a block of memory (an anonymous buffer), and
3126 // then later write the buffer to the file.
3127 void* base;
3128 struct stat statbuf;
3129 if (o == STDOUT_FILENO || o == STDERR_FILENO
3130 || ::fstat(o, &statbuf) != 0
3131 || !S_ISREG(statbuf.st_mode)
3132 || this->is_temporary_)
3133 {
3134 this->map_is_anonymous_ = true;
3135 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3136 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3137 }
3138 else
3139 {
3140 // Write out one byte to make the file the right size.
3141 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3142 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3143 char b = 0;
3144 if (::write(o, &b, 1) != 1)
3145 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3146
3147 // Map the file into memory.
3148 this->map_is_anonymous_ = false;
3149 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3150 MAP_SHARED, o, 0);
3151 }
3152 if (base == MAP_FAILED)
3153 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3154 this->base_ = static_cast<unsigned char*>(base);
3155 }
3156
3157 // Unmap the file from memory.
3158
3159 void
3160 Output_file::unmap()
3161 {
3162 if (::munmap(this->base_, this->file_size_) < 0)
3163 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
3164 this->base_ = NULL;
3165 }
3166
3167 // Close the output file.
3168
3169 void
3170 Output_file::close()
3171 {
3172 // If the map isn't file-backed, we need to write it now.
3173 if (this->map_is_anonymous_ && !this->is_temporary_)
3174 {
3175 size_t bytes_to_write = this->file_size_;
3176 while (bytes_to_write > 0)
3177 {
3178 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3179 if (bytes_written == 0)
3180 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3181 else if (bytes_written < 0)
3182 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3183 else
3184 bytes_to_write -= bytes_written;
3185 }
3186 }
3187 this->unmap();
3188
3189 // We don't close stdout or stderr
3190 if (this->o_ != STDOUT_FILENO
3191 && this->o_ != STDERR_FILENO
3192 && !this->is_temporary_)
3193 if (::close(this->o_) < 0)
3194 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
3195 this->o_ = -1;
3196 }
3197
3198 // Instantiate the templates we need. We could use the configure
3199 // script to restrict this to only the ones for implemented targets.
3200
3201 #ifdef HAVE_TARGET_32_LITTLE
3202 template
3203 off_t
3204 Output_section::add_input_section<32, false>(
3205 Sized_relobj<32, false>* object,
3206 unsigned int shndx,
3207 const char* secname,
3208 const elfcpp::Shdr<32, false>& shdr,
3209 unsigned int reloc_shndx,
3210 bool have_sections_script);
3211 #endif
3212
3213 #ifdef HAVE_TARGET_32_BIG
3214 template
3215 off_t
3216 Output_section::add_input_section<32, true>(
3217 Sized_relobj<32, true>* object,
3218 unsigned int shndx,
3219 const char* secname,
3220 const elfcpp::Shdr<32, true>& shdr,
3221 unsigned int reloc_shndx,
3222 bool have_sections_script);
3223 #endif
3224
3225 #ifdef HAVE_TARGET_64_LITTLE
3226 template
3227 off_t
3228 Output_section::add_input_section<64, false>(
3229 Sized_relobj<64, false>* object,
3230 unsigned int shndx,
3231 const char* secname,
3232 const elfcpp::Shdr<64, false>& shdr,
3233 unsigned int reloc_shndx,
3234 bool have_sections_script);
3235 #endif
3236
3237 #ifdef HAVE_TARGET_64_BIG
3238 template
3239 off_t
3240 Output_section::add_input_section<64, true>(
3241 Sized_relobj<64, true>* object,
3242 unsigned int shndx,
3243 const char* secname,
3244 const elfcpp::Shdr<64, true>& shdr,
3245 unsigned int reloc_shndx,
3246 bool have_sections_script);
3247 #endif
3248
3249 #ifdef HAVE_TARGET_32_LITTLE
3250 template
3251 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
3252 #endif
3253
3254 #ifdef HAVE_TARGET_32_BIG
3255 template
3256 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
3257 #endif
3258
3259 #ifdef HAVE_TARGET_64_LITTLE
3260 template
3261 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
3262 #endif
3263
3264 #ifdef HAVE_TARGET_64_BIG
3265 template
3266 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
3267 #endif
3268
3269 #ifdef HAVE_TARGET_32_LITTLE
3270 template
3271 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
3272 #endif
3273
3274 #ifdef HAVE_TARGET_32_BIG
3275 template
3276 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
3277 #endif
3278
3279 #ifdef HAVE_TARGET_64_LITTLE
3280 template
3281 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
3282 #endif
3283
3284 #ifdef HAVE_TARGET_64_BIG
3285 template
3286 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
3287 #endif
3288
3289 #ifdef HAVE_TARGET_32_LITTLE
3290 template
3291 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
3292 #endif
3293
3294 #ifdef HAVE_TARGET_32_BIG
3295 template
3296 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
3297 #endif
3298
3299 #ifdef HAVE_TARGET_64_LITTLE
3300 template
3301 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
3302 #endif
3303
3304 #ifdef HAVE_TARGET_64_BIG
3305 template
3306 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
3307 #endif
3308
3309 #ifdef HAVE_TARGET_32_LITTLE
3310 template
3311 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
3312 #endif
3313
3314 #ifdef HAVE_TARGET_32_BIG
3315 template
3316 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
3317 #endif
3318
3319 #ifdef HAVE_TARGET_64_LITTLE
3320 template
3321 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
3322 #endif
3323
3324 #ifdef HAVE_TARGET_64_BIG
3325 template
3326 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
3327 #endif
3328
3329 #ifdef HAVE_TARGET_32_LITTLE
3330 template
3331 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3332 #endif
3333
3334 #ifdef HAVE_TARGET_32_BIG
3335 template
3336 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3337 #endif
3338
3339 #ifdef HAVE_TARGET_64_LITTLE
3340 template
3341 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3342 #endif
3343
3344 #ifdef HAVE_TARGET_64_BIG
3345 template
3346 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3347 #endif
3348
3349 #ifdef HAVE_TARGET_32_LITTLE
3350 template
3351 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3352 #endif
3353
3354 #ifdef HAVE_TARGET_32_BIG
3355 template
3356 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3357 #endif
3358
3359 #ifdef HAVE_TARGET_64_LITTLE
3360 template
3361 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3362 #endif
3363
3364 #ifdef HAVE_TARGET_64_BIG
3365 template
3366 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3367 #endif
3368
3369 #ifdef HAVE_TARGET_32_LITTLE
3370 template
3371 class Output_data_group<32, false>;
3372 #endif
3373
3374 #ifdef HAVE_TARGET_32_BIG
3375 template
3376 class Output_data_group<32, true>;
3377 #endif
3378
3379 #ifdef HAVE_TARGET_64_LITTLE
3380 template
3381 class Output_data_group<64, false>;
3382 #endif
3383
3384 #ifdef HAVE_TARGET_64_BIG
3385 template
3386 class Output_data_group<64, true>;
3387 #endif
3388
3389 #ifdef HAVE_TARGET_32_LITTLE
3390 template
3391 class Output_data_got<32, false>;
3392 #endif
3393
3394 #ifdef HAVE_TARGET_32_BIG
3395 template
3396 class Output_data_got<32, true>;
3397 #endif
3398
3399 #ifdef HAVE_TARGET_64_LITTLE
3400 template
3401 class Output_data_got<64, false>;
3402 #endif
3403
3404 #ifdef HAVE_TARGET_64_BIG
3405 template
3406 class Output_data_got<64, true>;
3407 #endif
3408
3409 } // End namespace gold.
This page took 0.106787 seconds and 5 git commands to generate.