126ec71e9984abed74106fb1713ccb1c701a7c5a
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "layout.h"
31 #include "reloc-types.h"
32
33 namespace gold
34 {
35
36 class General_options;
37 class Object;
38 class Symbol;
39 class Output_file;
40 class Output_section;
41 class Relocatable_relocs;
42 class Target;
43 template<int size, bool big_endian>
44 class Sized_target;
45 template<int size, bool big_endian>
46 class Sized_relobj;
47
48 // An abtract class for data which has to go into the output file.
49
50 class Output_data
51 {
52 public:
53 explicit Output_data()
54 : address_(0), data_size_(0), offset_(-1),
55 is_address_valid_(false), is_data_size_valid_(false),
56 is_offset_valid_(false),
57 dynamic_reloc_count_(0)
58 { }
59
60 virtual
61 ~Output_data();
62
63 // Return the address. For allocated sections, this is only valid
64 // after Layout::finalize is finished.
65 uint64_t
66 address() const
67 {
68 gold_assert(this->is_address_valid_);
69 return this->address_;
70 }
71
72 // Return the size of the data. For allocated sections, this must
73 // be valid after Layout::finalize calls set_address, but need not
74 // be valid before then.
75 off_t
76 data_size() const
77 {
78 gold_assert(this->is_data_size_valid_);
79 return this->data_size_;
80 }
81
82 // Return the file offset. This is only valid after
83 // Layout::finalize is finished. For some non-allocated sections,
84 // it may not be valid until near the end of the link.
85 off_t
86 offset() const
87 {
88 gold_assert(this->is_offset_valid_);
89 return this->offset_;
90 }
91
92 // Reset the address and file offset. This essentially disables the
93 // sanity testing about duplicate and unknown settings.
94 void
95 reset_address_and_file_offset()
96 {
97 this->is_address_valid_ = false;
98 this->is_offset_valid_ = false;
99 this->is_data_size_valid_ = false;
100 this->do_reset_address_and_file_offset();
101 }
102
103 // Return the required alignment.
104 uint64_t
105 addralign() const
106 { return this->do_addralign(); }
107
108 // Return whether this has a load address.
109 bool
110 has_load_address() const
111 { return this->do_has_load_address(); }
112
113 // Return the load address.
114 uint64_t
115 load_address() const
116 { return this->do_load_address(); }
117
118 // Return whether this is an Output_section.
119 bool
120 is_section() const
121 { return this->do_is_section(); }
122
123 // Return whether this is an Output_section of the specified type.
124 bool
125 is_section_type(elfcpp::Elf_Word stt) const
126 { return this->do_is_section_type(stt); }
127
128 // Return whether this is an Output_section with the specified flag
129 // set.
130 bool
131 is_section_flag_set(elfcpp::Elf_Xword shf) const
132 { return this->do_is_section_flag_set(shf); }
133
134 // Return the output section that this goes in, if there is one.
135 Output_section*
136 output_section()
137 { return this->do_output_section(); }
138
139 // Return the output section index, if there is an output section.
140 unsigned int
141 out_shndx() const
142 { return this->do_out_shndx(); }
143
144 // Set the output section index, if this is an output section.
145 void
146 set_out_shndx(unsigned int shndx)
147 { this->do_set_out_shndx(shndx); }
148
149 // Set the address and file offset of this data, and finalize the
150 // size of the data. This is called during Layout::finalize for
151 // allocated sections.
152 void
153 set_address_and_file_offset(uint64_t addr, off_t off)
154 {
155 this->set_address(addr);
156 this->set_file_offset(off);
157 this->finalize_data_size();
158 }
159
160 // Set the address.
161 void
162 set_address(uint64_t addr)
163 {
164 gold_assert(!this->is_address_valid_);
165 this->address_ = addr;
166 this->is_address_valid_ = true;
167 }
168
169 // Set the file offset.
170 void
171 set_file_offset(off_t off)
172 {
173 gold_assert(!this->is_offset_valid_);
174 this->offset_ = off;
175 this->is_offset_valid_ = true;
176 }
177
178 // Finalize the data size.
179 void
180 finalize_data_size()
181 {
182 if (!this->is_data_size_valid_)
183 {
184 // Tell the child class to set the data size.
185 this->set_final_data_size();
186 gold_assert(this->is_data_size_valid_);
187 }
188 }
189
190 // Set the TLS offset. Called only for SHT_TLS sections.
191 void
192 set_tls_offset(uint64_t tls_base)
193 { this->do_set_tls_offset(tls_base); }
194
195 // Return the TLS offset, relative to the base of the TLS segment.
196 // Valid only for SHT_TLS sections.
197 uint64_t
198 tls_offset() const
199 { return this->do_tls_offset(); }
200
201 // Write the data to the output file. This is called after
202 // Layout::finalize is complete.
203 void
204 write(Output_file* file)
205 { this->do_write(file); }
206
207 // This is called by Layout::finalize to note that the sizes of
208 // allocated sections must now be fixed.
209 static void
210 layout_complete()
211 { Output_data::allocated_sizes_are_fixed = true; }
212
213 // Used to check that layout has been done.
214 static bool
215 is_layout_complete()
216 { return Output_data::allocated_sizes_are_fixed; }
217
218 // Count the number of dynamic relocations applied to this section.
219 void
220 add_dynamic_reloc()
221 { ++this->dynamic_reloc_count_; }
222
223 // Return the number of dynamic relocations applied to this section.
224 unsigned int
225 dynamic_reloc_count() const
226 { return this->dynamic_reloc_count_; }
227
228 // Whether the address is valid.
229 bool
230 is_address_valid() const
231 { return this->is_address_valid_; }
232
233 // Whether the file offset is valid.
234 bool
235 is_offset_valid() const
236 { return this->is_offset_valid_; }
237
238 // Whether the data size is valid.
239 bool
240 is_data_size_valid() const
241 { return this->is_data_size_valid_; }
242
243 protected:
244 // Functions that child classes may or in some cases must implement.
245
246 // Write the data to the output file.
247 virtual void
248 do_write(Output_file*) = 0;
249
250 // Return the required alignment.
251 virtual uint64_t
252 do_addralign() const = 0;
253
254 // Return whether this has a load address.
255 virtual bool
256 do_has_load_address() const
257 { return false; }
258
259 // Return the load address.
260 virtual uint64_t
261 do_load_address() const
262 { gold_unreachable(); }
263
264 // Return whether this is an Output_section.
265 virtual bool
266 do_is_section() const
267 { return false; }
268
269 // Return whether this is an Output_section of the specified type.
270 // This only needs to be implement by Output_section.
271 virtual bool
272 do_is_section_type(elfcpp::Elf_Word) const
273 { return false; }
274
275 // Return whether this is an Output_section with the specific flag
276 // set. This only needs to be implemented by Output_section.
277 virtual bool
278 do_is_section_flag_set(elfcpp::Elf_Xword) const
279 { return false; }
280
281 // Return the output section, if there is one.
282 virtual Output_section*
283 do_output_section()
284 { return NULL; }
285
286 // Return the output section index, if there is an output section.
287 virtual unsigned int
288 do_out_shndx() const
289 { gold_unreachable(); }
290
291 // Set the output section index, if this is an output section.
292 virtual void
293 do_set_out_shndx(unsigned int)
294 { gold_unreachable(); }
295
296 // This is a hook for derived classes to set the data size. This is
297 // called by finalize_data_size, normally called during
298 // Layout::finalize, when the section address is set.
299 virtual void
300 set_final_data_size()
301 { gold_unreachable(); }
302
303 // A hook for resetting the address and file offset.
304 virtual void
305 do_reset_address_and_file_offset()
306 { }
307
308 // Set the TLS offset. Called only for SHT_TLS sections.
309 virtual void
310 do_set_tls_offset(uint64_t)
311 { gold_unreachable(); }
312
313 // Return the TLS offset, relative to the base of the TLS segment.
314 // Valid only for SHT_TLS sections.
315 virtual uint64_t
316 do_tls_offset() const
317 { gold_unreachable(); }
318
319 // Functions that child classes may call.
320
321 // Set the size of the data.
322 void
323 set_data_size(off_t data_size)
324 {
325 gold_assert(!this->is_data_size_valid_);
326 this->data_size_ = data_size;
327 this->is_data_size_valid_ = true;
328 }
329
330 // Get the current data size--this is for the convenience of
331 // sections which build up their size over time.
332 off_t
333 current_data_size_for_child() const
334 { return this->data_size_; }
335
336 // Set the current data size--this is for the convenience of
337 // sections which build up their size over time.
338 void
339 set_current_data_size_for_child(off_t data_size)
340 {
341 gold_assert(!this->is_data_size_valid_);
342 this->data_size_ = data_size;
343 }
344
345 // Return default alignment for the target size.
346 static uint64_t
347 default_alignment();
348
349 // Return default alignment for a specified size--32 or 64.
350 static uint64_t
351 default_alignment_for_size(int size);
352
353 private:
354 Output_data(const Output_data&);
355 Output_data& operator=(const Output_data&);
356
357 // This is used for verification, to make sure that we don't try to
358 // change any sizes of allocated sections after we set the section
359 // addresses.
360 static bool allocated_sizes_are_fixed;
361
362 // Memory address in output file.
363 uint64_t address_;
364 // Size of data in output file.
365 off_t data_size_;
366 // File offset of contents in output file.
367 off_t offset_;
368 // Whether address_ is valid.
369 bool is_address_valid_;
370 // Whether data_size_ is valid.
371 bool is_data_size_valid_;
372 // Whether offset_ is valid.
373 bool is_offset_valid_;
374 // Count of dynamic relocations applied to this section.
375 unsigned int dynamic_reloc_count_;
376 };
377
378 // Output the section headers.
379
380 class Output_section_headers : public Output_data
381 {
382 public:
383 Output_section_headers(const Layout*,
384 const Layout::Segment_list*,
385 const Layout::Section_list*,
386 const Layout::Section_list*,
387 const Stringpool*);
388
389 protected:
390 // Write the data to the file.
391 void
392 do_write(Output_file*);
393
394 // Return the required alignment.
395 uint64_t
396 do_addralign() const
397 { return Output_data::default_alignment(); }
398
399 private:
400 // Write the data to the file with the right size and endianness.
401 template<int size, bool big_endian>
402 void
403 do_sized_write(Output_file*);
404
405 const Layout* layout_;
406 const Layout::Segment_list* segment_list_;
407 const Layout::Section_list* section_list_;
408 const Layout::Section_list* unattached_section_list_;
409 const Stringpool* secnamepool_;
410 };
411
412 // Output the segment headers.
413
414 class Output_segment_headers : public Output_data
415 {
416 public:
417 Output_segment_headers(const Layout::Segment_list& segment_list);
418
419 protected:
420 // Write the data to the file.
421 void
422 do_write(Output_file*);
423
424 // Return the required alignment.
425 uint64_t
426 do_addralign() const
427 { return Output_data::default_alignment(); }
428
429 private:
430 // Write the data to the file with the right size and endianness.
431 template<int size, bool big_endian>
432 void
433 do_sized_write(Output_file*);
434
435 const Layout::Segment_list& segment_list_;
436 };
437
438 // Output the ELF file header.
439
440 class Output_file_header : public Output_data
441 {
442 public:
443 Output_file_header(const Target*,
444 const Symbol_table*,
445 const Output_segment_headers*,
446 const char* entry);
447
448 // Add information about the section headers. We lay out the ELF
449 // file header before we create the section headers.
450 void set_section_info(const Output_section_headers*,
451 const Output_section* shstrtab);
452
453 protected:
454 // Write the data to the file.
455 void
456 do_write(Output_file*);
457
458 // Return the required alignment.
459 uint64_t
460 do_addralign() const
461 { return Output_data::default_alignment(); }
462
463 private:
464 // Write the data to the file with the right size and endianness.
465 template<int size, bool big_endian>
466 void
467 do_sized_write(Output_file*);
468
469 // Return the value to use for the entry address.
470 template<int size>
471 typename elfcpp::Elf_types<size>::Elf_Addr
472 entry();
473
474 const Target* target_;
475 const Symbol_table* symtab_;
476 const Output_segment_headers* segment_header_;
477 const Output_section_headers* section_header_;
478 const Output_section* shstrtab_;
479 const char* entry_;
480 };
481
482 // Output sections are mainly comprised of input sections. However,
483 // there are cases where we have data to write out which is not in an
484 // input section. Output_section_data is used in such cases. This is
485 // an abstract base class.
486
487 class Output_section_data : public Output_data
488 {
489 public:
490 Output_section_data(off_t data_size, uint64_t addralign)
491 : Output_data(), output_section_(NULL), addralign_(addralign)
492 { this->set_data_size(data_size); }
493
494 Output_section_data(uint64_t addralign)
495 : Output_data(), output_section_(NULL), addralign_(addralign)
496 { }
497
498 // Return the output section.
499 const Output_section*
500 output_section() const
501 { return this->output_section_; }
502
503 // Record the output section.
504 void
505 set_output_section(Output_section* os);
506
507 // Add an input section, for SHF_MERGE sections. This returns true
508 // if the section was handled.
509 bool
510 add_input_section(Relobj* object, unsigned int shndx)
511 { return this->do_add_input_section(object, shndx); }
512
513 // Given an input OBJECT, an input section index SHNDX within that
514 // object, and an OFFSET relative to the start of that input
515 // section, return whether or not the corresponding offset within
516 // the output section is known. If this function returns true, it
517 // sets *POUTPUT to the output offset. The value -1 indicates that
518 // this input offset is being discarded.
519 bool
520 output_offset(const Relobj* object, unsigned int shndx,
521 section_offset_type offset,
522 section_offset_type *poutput) const
523 { return this->do_output_offset(object, shndx, offset, poutput); }
524
525 // Return whether this is the merge section for the input section
526 // SHNDX in OBJECT. This should return true when output_offset
527 // would return true for some values of OFFSET.
528 bool
529 is_merge_section_for(const Relobj* object, unsigned int shndx) const
530 { return this->do_is_merge_section_for(object, shndx); }
531
532 // Write the contents to a buffer. This is used for sections which
533 // require postprocessing, such as compression.
534 void
535 write_to_buffer(unsigned char* buffer)
536 { this->do_write_to_buffer(buffer); }
537
538 // Print merge stats to stderr. This should only be called for
539 // SHF_MERGE sections.
540 void
541 print_merge_stats(const char* section_name)
542 { this->do_print_merge_stats(section_name); }
543
544 protected:
545 // The child class must implement do_write.
546
547 // The child class may implement specific adjustments to the output
548 // section.
549 virtual void
550 do_adjust_output_section(Output_section*)
551 { }
552
553 // May be implemented by child class. Return true if the section
554 // was handled.
555 virtual bool
556 do_add_input_section(Relobj*, unsigned int)
557 { gold_unreachable(); }
558
559 // The child class may implement output_offset.
560 virtual bool
561 do_output_offset(const Relobj*, unsigned int, section_offset_type,
562 section_offset_type*) const
563 { return false; }
564
565 // The child class may implement is_merge_section_for.
566 virtual bool
567 do_is_merge_section_for(const Relobj*, unsigned int) const
568 { return false; }
569
570 // The child class may implement write_to_buffer. Most child
571 // classes can not appear in a compressed section, and they do not
572 // implement this.
573 virtual void
574 do_write_to_buffer(unsigned char*)
575 { gold_unreachable(); }
576
577 // Print merge statistics.
578 virtual void
579 do_print_merge_stats(const char*)
580 { gold_unreachable(); }
581
582 // Return the required alignment.
583 uint64_t
584 do_addralign() const
585 { return this->addralign_; }
586
587 // Return the output section.
588 Output_section*
589 do_output_section()
590 { return this->output_section_; }
591
592 // Return the section index of the output section.
593 unsigned int
594 do_out_shndx() const;
595
596 // Set the alignment.
597 void
598 set_addralign(uint64_t addralign)
599 { this->addralign_ = addralign; }
600
601 private:
602 // The output section for this section.
603 Output_section* output_section_;
604 // The required alignment.
605 uint64_t addralign_;
606 };
607
608 // Some Output_section_data classes build up their data step by step,
609 // rather than all at once. This class provides an interface for
610 // them.
611
612 class Output_section_data_build : public Output_section_data
613 {
614 public:
615 Output_section_data_build(uint64_t addralign)
616 : Output_section_data(addralign)
617 { }
618
619 // Get the current data size.
620 off_t
621 current_data_size() const
622 { return this->current_data_size_for_child(); }
623
624 // Set the current data size.
625 void
626 set_current_data_size(off_t data_size)
627 { this->set_current_data_size_for_child(data_size); }
628
629 protected:
630 // Set the final data size.
631 virtual void
632 set_final_data_size()
633 { this->set_data_size(this->current_data_size_for_child()); }
634 };
635
636 // A simple case of Output_data in which we have constant data to
637 // output.
638
639 class Output_data_const : public Output_section_data
640 {
641 public:
642 Output_data_const(const std::string& data, uint64_t addralign)
643 : Output_section_data(data.size(), addralign), data_(data)
644 { }
645
646 Output_data_const(const char* p, off_t len, uint64_t addralign)
647 : Output_section_data(len, addralign), data_(p, len)
648 { }
649
650 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
651 : Output_section_data(len, addralign),
652 data_(reinterpret_cast<const char*>(p), len)
653 { }
654
655 protected:
656 // Write the data to the output file.
657 void
658 do_write(Output_file*);
659
660 // Write the data to a buffer.
661 void
662 do_write_to_buffer(unsigned char* buffer)
663 { memcpy(buffer, this->data_.data(), this->data_.size()); }
664
665 private:
666 std::string data_;
667 };
668
669 // Another version of Output_data with constant data, in which the
670 // buffer is allocated by the caller.
671
672 class Output_data_const_buffer : public Output_section_data
673 {
674 public:
675 Output_data_const_buffer(const unsigned char* p, off_t len,
676 uint64_t addralign)
677 : Output_section_data(len, addralign), p_(p)
678 { }
679
680 protected:
681 // Write the data the output file.
682 void
683 do_write(Output_file*);
684
685 // Write the data to a buffer.
686 void
687 do_write_to_buffer(unsigned char* buffer)
688 { memcpy(buffer, this->p_, this->data_size()); }
689
690 private:
691 const unsigned char* p_;
692 };
693
694 // A place holder for a fixed amount of data written out via some
695 // other mechanism.
696
697 class Output_data_fixed_space : public Output_section_data
698 {
699 public:
700 Output_data_fixed_space(off_t data_size, uint64_t addralign)
701 : Output_section_data(data_size, addralign)
702 { }
703
704 protected:
705 // Write out the data--the actual data must be written out
706 // elsewhere.
707 void
708 do_write(Output_file*)
709 { }
710 };
711
712 // A place holder for variable sized data written out via some other
713 // mechanism.
714
715 class Output_data_space : public Output_section_data_build
716 {
717 public:
718 explicit Output_data_space(uint64_t addralign)
719 : Output_section_data_build(addralign)
720 { }
721
722 // Set the alignment.
723 void
724 set_space_alignment(uint64_t align)
725 { this->set_addralign(align); }
726
727 protected:
728 // Write out the data--the actual data must be written out
729 // elsewhere.
730 void
731 do_write(Output_file*)
732 { }
733 };
734
735 // A string table which goes into an output section.
736
737 class Output_data_strtab : public Output_section_data
738 {
739 public:
740 Output_data_strtab(Stringpool* strtab)
741 : Output_section_data(1), strtab_(strtab)
742 { }
743
744 protected:
745 // This is called to set the address and file offset. Here we make
746 // sure that the Stringpool is finalized.
747 void
748 set_final_data_size();
749
750 // Write out the data.
751 void
752 do_write(Output_file*);
753
754 // Write the data to a buffer.
755 void
756 do_write_to_buffer(unsigned char* buffer)
757 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
758
759 private:
760 Stringpool* strtab_;
761 };
762
763 // This POD class is used to represent a single reloc in the output
764 // file. This could be a private class within Output_data_reloc, but
765 // the templatization is complex enough that I broke it out into a
766 // separate class. The class is templatized on either elfcpp::SHT_REL
767 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
768 // relocation or an ordinary relocation.
769
770 // A relocation can be against a global symbol, a local symbol, a
771 // local section symbol, an output section, or the undefined symbol at
772 // index 0. We represent the latter by using a NULL global symbol.
773
774 template<int sh_type, bool dynamic, int size, bool big_endian>
775 class Output_reloc;
776
777 template<bool dynamic, int size, bool big_endian>
778 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
779 {
780 public:
781 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
782 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
783
784 // An uninitialized entry. We need this because we want to put
785 // instances of this class into an STL container.
786 Output_reloc()
787 : local_sym_index_(INVALID_CODE)
788 { }
789
790 // We have a bunch of different constructors. They come in pairs
791 // depending on how the address of the relocation is specified. It
792 // can either be an offset in an Output_data or an offset in an
793 // input section.
794
795 // A reloc against a global symbol.
796
797 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
798 Address address, bool is_relative);
799
800 Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
801 unsigned int shndx, Address address, bool is_relative);
802
803 // A reloc against a local symbol or local section symbol.
804
805 Output_reloc(Sized_relobj<size, big_endian>* relobj,
806 unsigned int local_sym_index, unsigned int type,
807 Output_data* od, Address address, bool is_relative,
808 bool is_section_symbol);
809
810 Output_reloc(Sized_relobj<size, big_endian>* relobj,
811 unsigned int local_sym_index, unsigned int type,
812 unsigned int shndx, Address address, bool is_relative,
813 bool is_section_symbol);
814
815 // A reloc against the STT_SECTION symbol of an output section.
816
817 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
818 Address address);
819
820 Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
821 unsigned int shndx, Address address);
822
823 // Return TRUE if this is a RELATIVE relocation.
824 bool
825 is_relative() const
826 { return this->is_relative_; }
827
828 // Return whether this is against a local section symbol.
829 bool
830 is_local_section_symbol() const
831 {
832 return (this->local_sym_index_ != GSYM_CODE
833 && this->local_sym_index_ != SECTION_CODE
834 && this->local_sym_index_ != INVALID_CODE
835 && this->is_section_symbol_);
836 }
837
838 // For a local section symbol, return the offset of the input
839 // section within the output section. ADDEND is the addend being
840 // applied to the input section.
841 section_offset_type
842 local_section_offset(Addend addend) const;
843
844 // Get the value of the symbol referred to by a Rel relocation when
845 // we are adding the given ADDEND.
846 Address
847 symbol_value(Addend addend) const;
848
849 // Write the reloc entry to an output view.
850 void
851 write(unsigned char* pov) const;
852
853 // Write the offset and info fields to Write_rel.
854 template<typename Write_rel>
855 void write_rel(Write_rel*) const;
856
857 private:
858 // Record that we need a dynamic symbol index.
859 void
860 set_needs_dynsym_index();
861
862 // Return the symbol index.
863 unsigned int
864 get_symbol_index() const;
865
866 // Codes for local_sym_index_.
867 enum
868 {
869 // Global symbol.
870 GSYM_CODE = -1U,
871 // Output section.
872 SECTION_CODE = -2U,
873 // Invalid uninitialized entry.
874 INVALID_CODE = -3U
875 };
876
877 union
878 {
879 // For a local symbol or local section symbol
880 // (this->local_sym_index_ >= 0), the object. We will never
881 // generate a relocation against a local symbol in a dynamic
882 // object; that doesn't make sense. And our callers will always
883 // be templatized, so we use Sized_relobj here.
884 Sized_relobj<size, big_endian>* relobj;
885 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
886 // symbol. If this is NULL, it indicates a relocation against the
887 // undefined 0 symbol.
888 Symbol* gsym;
889 // For a relocation against an output section
890 // (this->local_sym_index_ == SECTION_CODE), the output section.
891 Output_section* os;
892 } u1_;
893 union
894 {
895 // If this->shndx_ is not INVALID CODE, the object which holds the
896 // input section being used to specify the reloc address.
897 Relobj* relobj;
898 // If this->shndx_ is INVALID_CODE, the output data being used to
899 // specify the reloc address. This may be NULL if the reloc
900 // address is absolute.
901 Output_data* od;
902 } u2_;
903 // The address offset within the input section or the Output_data.
904 Address address_;
905 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
906 // relocation against an output section, or INVALID_CODE for an
907 // uninitialized value. Otherwise, for a local symbol
908 // (this->is_section_symbol_ is false), the local symbol index. For
909 // a local section symbol (this->is_section_symbol_ is true), the
910 // section index in the input file.
911 unsigned int local_sym_index_;
912 // The reloc type--a processor specific code.
913 unsigned int type_ : 30;
914 // True if the relocation is a RELATIVE relocation.
915 bool is_relative_ : 1;
916 // True if the relocation is against a section symbol.
917 bool is_section_symbol_ : 1;
918 // If the reloc address is an input section in an object, the
919 // section index. This is INVALID_CODE if the reloc address is
920 // specified in some other way.
921 unsigned int shndx_;
922 };
923
924 // The SHT_RELA version of Output_reloc<>. This is just derived from
925 // the SHT_REL version of Output_reloc, but it adds an addend.
926
927 template<bool dynamic, int size, bool big_endian>
928 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
929 {
930 public:
931 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
932 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
933
934 // An uninitialized entry.
935 Output_reloc()
936 : rel_()
937 { }
938
939 // A reloc against a global symbol.
940
941 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
942 Address address, Addend addend, bool is_relative)
943 : rel_(gsym, type, od, address, is_relative), addend_(addend)
944 { }
945
946 Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
947 unsigned int shndx, Address address, Addend addend,
948 bool is_relative)
949 : rel_(gsym, type, relobj, shndx, address, is_relative), addend_(addend)
950 { }
951
952 // A reloc against a local symbol.
953
954 Output_reloc(Sized_relobj<size, big_endian>* relobj,
955 unsigned int local_sym_index, unsigned int type,
956 Output_data* od, Address address,
957 Addend addend, bool is_relative, bool is_section_symbol)
958 : rel_(relobj, local_sym_index, type, od, address, is_relative,
959 is_section_symbol),
960 addend_(addend)
961 { }
962
963 Output_reloc(Sized_relobj<size, big_endian>* relobj,
964 unsigned int local_sym_index, unsigned int type,
965 unsigned int shndx, Address address,
966 Addend addend, bool is_relative, bool is_section_symbol)
967 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
968 is_section_symbol),
969 addend_(addend)
970 { }
971
972 // A reloc against the STT_SECTION symbol of an output section.
973
974 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
975 Address address, Addend addend)
976 : rel_(os, type, od, address), addend_(addend)
977 { }
978
979 Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
980 unsigned int shndx, Address address, Addend addend)
981 : rel_(os, type, relobj, shndx, address), addend_(addend)
982 { }
983
984 // Write the reloc entry to an output view.
985 void
986 write(unsigned char* pov) const;
987
988 private:
989 // The basic reloc.
990 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
991 // The addend.
992 Addend addend_;
993 };
994
995 // Output_data_reloc is used to manage a section containing relocs.
996 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
997 // indicates whether this is a dynamic relocation or a normal
998 // relocation. Output_data_reloc_base is a base class.
999 // Output_data_reloc is the real class, which we specialize based on
1000 // the reloc type.
1001
1002 template<int sh_type, bool dynamic, int size, bool big_endian>
1003 class Output_data_reloc_base : public Output_section_data_build
1004 {
1005 public:
1006 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1007 typedef typename Output_reloc_type::Address Address;
1008 static const int reloc_size =
1009 Reloc_types<sh_type, size, big_endian>::reloc_size;
1010
1011 // Construct the section.
1012 Output_data_reloc_base()
1013 : Output_section_data_build(Output_data::default_alignment_for_size(size))
1014 { }
1015
1016 protected:
1017 // Write out the data.
1018 void
1019 do_write(Output_file*);
1020
1021 // Set the entry size and the link.
1022 void
1023 do_adjust_output_section(Output_section *os);
1024
1025 // Add a relocation entry.
1026 void
1027 add(Output_data *od, const Output_reloc_type& reloc)
1028 {
1029 this->relocs_.push_back(reloc);
1030 this->set_current_data_size(this->relocs_.size() * reloc_size);
1031 od->add_dynamic_reloc();
1032 }
1033
1034 private:
1035 typedef std::vector<Output_reloc_type> Relocs;
1036
1037 Relocs relocs_;
1038 };
1039
1040 // The class which callers actually create.
1041
1042 template<int sh_type, bool dynamic, int size, bool big_endian>
1043 class Output_data_reloc;
1044
1045 // The SHT_REL version of Output_data_reloc.
1046
1047 template<bool dynamic, int size, bool big_endian>
1048 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1049 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1050 {
1051 private:
1052 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1053 big_endian> Base;
1054
1055 public:
1056 typedef typename Base::Output_reloc_type Output_reloc_type;
1057 typedef typename Output_reloc_type::Address Address;
1058
1059 Output_data_reloc()
1060 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>()
1061 { }
1062
1063 // Add a reloc against a global symbol.
1064
1065 void
1066 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1067 { this->add(od, Output_reloc_type(gsym, type, od, address, false)); }
1068
1069 void
1070 add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
1071 unsigned int shndx, Address address)
1072 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1073 false)); }
1074
1075 // Add a RELATIVE reloc against a global symbol. The final relocation
1076 // will not reference the symbol.
1077
1078 void
1079 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1080 Address address)
1081 { this->add(od, Output_reloc_type(gsym, type, od, address, true)); }
1082
1083 void
1084 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1085 Relobj* relobj, unsigned int shndx, Address address)
1086 {
1087 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1088 true));
1089 }
1090
1091 // Add a reloc against a local symbol.
1092
1093 void
1094 add_local(Sized_relobj<size, big_endian>* relobj,
1095 unsigned int local_sym_index, unsigned int type,
1096 Output_data* od, Address address)
1097 {
1098 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1099 address, false, false));
1100 }
1101
1102 void
1103 add_local(Sized_relobj<size, big_endian>* relobj,
1104 unsigned int local_sym_index, unsigned int type,
1105 Output_data* od, unsigned int shndx, Address address)
1106 {
1107 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1108 address, false, false));
1109 }
1110
1111 // Add a RELATIVE reloc against a local symbol.
1112
1113 void
1114 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1115 unsigned int local_sym_index, unsigned int type,
1116 Output_data* od, Address address)
1117 {
1118 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1119 address, true, false));
1120 }
1121
1122 void
1123 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1124 unsigned int local_sym_index, unsigned int type,
1125 Output_data* od, unsigned int shndx, Address address)
1126 {
1127 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1128 address, true, false));
1129 }
1130
1131 // Add a reloc against a local section symbol. This will be
1132 // converted into a reloc against the STT_SECTION symbol of the
1133 // output section.
1134
1135 void
1136 add_local_section(Sized_relobj<size, big_endian>* relobj,
1137 unsigned int input_shndx, unsigned int type,
1138 Output_data* od, Address address)
1139 {
1140 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1141 address, false, true));
1142 }
1143
1144 void
1145 add_local_section(Sized_relobj<size, big_endian>* relobj,
1146 unsigned int input_shndx, unsigned int type,
1147 Output_data* od, unsigned int shndx, Address address)
1148 {
1149 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1150 address, false, true));
1151 }
1152
1153 // A reloc against the STT_SECTION symbol of an output section.
1154 // OS is the Output_section that the relocation refers to; OD is
1155 // the Output_data object being relocated.
1156
1157 void
1158 add_output_section(Output_section* os, unsigned int type,
1159 Output_data* od, Address address)
1160 { this->add(od, Output_reloc_type(os, type, od, address)); }
1161
1162 void
1163 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1164 Relobj* relobj, unsigned int shndx, Address address)
1165 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1166 };
1167
1168 // The SHT_RELA version of Output_data_reloc.
1169
1170 template<bool dynamic, int size, bool big_endian>
1171 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1172 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1173 {
1174 private:
1175 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1176 big_endian> Base;
1177
1178 public:
1179 typedef typename Base::Output_reloc_type Output_reloc_type;
1180 typedef typename Output_reloc_type::Address Address;
1181 typedef typename Output_reloc_type::Addend Addend;
1182
1183 Output_data_reloc()
1184 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>()
1185 { }
1186
1187 // Add a reloc against a global symbol.
1188
1189 void
1190 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1191 Address address, Addend addend)
1192 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1193 false)); }
1194
1195 void
1196 add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
1197 unsigned int shndx, Address address,
1198 Addend addend)
1199 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1200 addend, false)); }
1201
1202 // Add a RELATIVE reloc against a global symbol. The final output
1203 // relocation will not reference the symbol, but we must keep the symbol
1204 // information long enough to set the addend of the relocation correctly
1205 // when it is written.
1206
1207 void
1208 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1209 Address address, Addend addend)
1210 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true)); }
1211
1212 void
1213 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1214 Relobj* relobj, unsigned int shndx, Address address,
1215 Addend addend)
1216 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1217 addend, true)); }
1218
1219 // Add a reloc against a local symbol.
1220
1221 void
1222 add_local(Sized_relobj<size, big_endian>* relobj,
1223 unsigned int local_sym_index, unsigned int type,
1224 Output_data* od, Address address, Addend addend)
1225 {
1226 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1227 addend, false, false));
1228 }
1229
1230 void
1231 add_local(Sized_relobj<size, big_endian>* relobj,
1232 unsigned int local_sym_index, unsigned int type,
1233 Output_data* od, unsigned int shndx, Address address,
1234 Addend addend)
1235 {
1236 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1237 address, addend, false, false));
1238 }
1239
1240 // Add a RELATIVE reloc against a local symbol.
1241
1242 void
1243 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1244 unsigned int local_sym_index, unsigned int type,
1245 Output_data* od, Address address, Addend addend)
1246 {
1247 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1248 addend, true, false));
1249 }
1250
1251 void
1252 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1253 unsigned int local_sym_index, unsigned int type,
1254 Output_data* od, unsigned int shndx, Address address,
1255 Addend addend)
1256 {
1257 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1258 address, addend, true, false));
1259 }
1260
1261 // Add a reloc against a local section symbol. This will be
1262 // converted into a reloc against the STT_SECTION symbol of the
1263 // output section.
1264
1265 void
1266 add_local_section(Sized_relobj<size, big_endian>* relobj,
1267 unsigned int input_shndx, unsigned int type,
1268 Output_data* od, Address address, Addend addend)
1269 {
1270 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1271 addend, false, true));
1272 }
1273
1274 void
1275 add_local_section(Sized_relobj<size, big_endian>* relobj,
1276 unsigned int input_shndx, unsigned int type,
1277 Output_data* od, unsigned int shndx, Address address,
1278 Addend addend)
1279 {
1280 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1281 address, addend, false, true));
1282 }
1283
1284 // A reloc against the STT_SECTION symbol of an output section.
1285
1286 void
1287 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1288 Address address, Addend addend)
1289 { this->add(os, Output_reloc_type(os, type, od, address, addend)); }
1290
1291 void
1292 add_output_section(Output_section* os, unsigned int type, Relobj* relobj,
1293 unsigned int shndx, Address address, Addend addend)
1294 { this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
1295 addend)); }
1296 };
1297
1298 // Output_relocatable_relocs represents a relocation section in a
1299 // relocatable link. The actual data is written out in the target
1300 // hook relocate_for_relocatable. This just saves space for it.
1301
1302 template<int sh_type, int size, bool big_endian>
1303 class Output_relocatable_relocs : public Output_section_data
1304 {
1305 public:
1306 Output_relocatable_relocs(Relocatable_relocs* rr)
1307 : Output_section_data(Output_data::default_alignment_for_size(size)),
1308 rr_(rr)
1309 { }
1310
1311 void
1312 set_final_data_size();
1313
1314 // Write out the data. There is nothing to do here.
1315 void
1316 do_write(Output_file*)
1317 { }
1318
1319 private:
1320 // The relocs associated with this input section.
1321 Relocatable_relocs* rr_;
1322 };
1323
1324 // Handle a GROUP section.
1325
1326 template<int size, bool big_endian>
1327 class Output_data_group : public Output_section_data
1328 {
1329 public:
1330 Output_data_group(Sized_relobj<size, big_endian>* relobj,
1331 section_size_type entry_count,
1332 const elfcpp::Elf_Word* contents);
1333
1334 void
1335 do_write(Output_file*);
1336
1337 private:
1338 // The input object.
1339 Sized_relobj<size, big_endian>* relobj_;
1340 // The group flag word.
1341 elfcpp::Elf_Word flags_;
1342 // The section indexes of the input sections in this group.
1343 std::vector<unsigned int> input_sections_;
1344 };
1345
1346 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1347 // for one symbol--either a global symbol or a local symbol in an
1348 // object. The target specific code adds entries to the GOT as
1349 // needed.
1350
1351 template<int size, bool big_endian>
1352 class Output_data_got : public Output_section_data_build
1353 {
1354 public:
1355 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1356 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1357 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1358
1359 Output_data_got()
1360 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1361 entries_()
1362 { }
1363
1364 // Add an entry for a global symbol to the GOT. Return true if this
1365 // is a new GOT entry, false if the symbol was already in the GOT.
1366 bool
1367 add_global(Symbol* gsym, unsigned int got_type);
1368
1369 // Add an entry for a global symbol to the GOT, and add a dynamic
1370 // relocation of type R_TYPE for the GOT entry.
1371 void
1372 add_global_with_rel(Symbol* gsym, unsigned int got_type,
1373 Rel_dyn* rel_dyn, unsigned int r_type);
1374
1375 void
1376 add_global_with_rela(Symbol* gsym, unsigned int got_type,
1377 Rela_dyn* rela_dyn, unsigned int r_type);
1378
1379 // Add a pair of entries for a global symbol to the GOT, and add
1380 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1381 void
1382 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
1383 Rel_dyn* rel_dyn, unsigned int r_type_1,
1384 unsigned int r_type_2);
1385
1386 void
1387 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
1388 Rela_dyn* rela_dyn, unsigned int r_type_1,
1389 unsigned int r_type_2);
1390
1391 // Add an entry for a local symbol to the GOT. This returns true if
1392 // this is a new GOT entry, false if the symbol already has a GOT
1393 // entry.
1394 bool
1395 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1396 unsigned int got_type);
1397
1398 // Add an entry for a local symbol to the GOT, and add a dynamic
1399 // relocation of type R_TYPE for the GOT entry.
1400 void
1401 add_local_with_rel(Sized_relobj<size, big_endian>* object,
1402 unsigned int sym_index, unsigned int got_type,
1403 Rel_dyn* rel_dyn, unsigned int r_type);
1404
1405 void
1406 add_local_with_rela(Sized_relobj<size, big_endian>* object,
1407 unsigned int sym_index, unsigned int got_type,
1408 Rela_dyn* rela_dyn, unsigned int r_type);
1409
1410 // Add a pair of entries for a local symbol to the GOT, and add
1411 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1412 void
1413 add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
1414 unsigned int sym_index, unsigned int shndx,
1415 unsigned int got_type, Rel_dyn* rel_dyn,
1416 unsigned int r_type_1, unsigned int r_type_2);
1417
1418 void
1419 add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
1420 unsigned int sym_index, unsigned int shndx,
1421 unsigned int got_type, Rela_dyn* rela_dyn,
1422 unsigned int r_type_1, unsigned int r_type_2);
1423
1424 // Add a constant to the GOT. This returns the offset of the new
1425 // entry from the start of the GOT.
1426 unsigned int
1427 add_constant(Valtype constant)
1428 {
1429 this->entries_.push_back(Got_entry(constant));
1430 this->set_got_size();
1431 return this->last_got_offset();
1432 }
1433
1434 protected:
1435 // Write out the GOT table.
1436 void
1437 do_write(Output_file*);
1438
1439 private:
1440 // This POD class holds a single GOT entry.
1441 class Got_entry
1442 {
1443 public:
1444 // Create a zero entry.
1445 Got_entry()
1446 : local_sym_index_(CONSTANT_CODE)
1447 { this->u_.constant = 0; }
1448
1449 // Create a global symbol entry.
1450 explicit Got_entry(Symbol* gsym)
1451 : local_sym_index_(GSYM_CODE)
1452 { this->u_.gsym = gsym; }
1453
1454 // Create a local symbol entry.
1455 Got_entry(Sized_relobj<size, big_endian>* object,
1456 unsigned int local_sym_index)
1457 : local_sym_index_(local_sym_index)
1458 {
1459 gold_assert(local_sym_index != GSYM_CODE
1460 && local_sym_index != CONSTANT_CODE);
1461 this->u_.object = object;
1462 }
1463
1464 // Create a constant entry. The constant is a host value--it will
1465 // be swapped, if necessary, when it is written out.
1466 explicit Got_entry(Valtype constant)
1467 : local_sym_index_(CONSTANT_CODE)
1468 { this->u_.constant = constant; }
1469
1470 // Write the GOT entry to an output view.
1471 void
1472 write(unsigned char* pov) const;
1473
1474 private:
1475 enum
1476 {
1477 GSYM_CODE = -1U,
1478 CONSTANT_CODE = -2U
1479 };
1480
1481 union
1482 {
1483 // For a local symbol, the object.
1484 Sized_relobj<size, big_endian>* object;
1485 // For a global symbol, the symbol.
1486 Symbol* gsym;
1487 // For a constant, the constant.
1488 Valtype constant;
1489 } u_;
1490 // For a local symbol, the local symbol index. This is GSYM_CODE
1491 // for a global symbol, or CONSTANT_CODE for a constant.
1492 unsigned int local_sym_index_;
1493 };
1494
1495 typedef std::vector<Got_entry> Got_entries;
1496
1497 // Return the offset into the GOT of GOT entry I.
1498 unsigned int
1499 got_offset(unsigned int i) const
1500 { return i * (size / 8); }
1501
1502 // Return the offset into the GOT of the last entry added.
1503 unsigned int
1504 last_got_offset() const
1505 { return this->got_offset(this->entries_.size() - 1); }
1506
1507 // Set the size of the section.
1508 void
1509 set_got_size()
1510 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
1511
1512 // The list of GOT entries.
1513 Got_entries entries_;
1514 };
1515
1516 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
1517 // section.
1518
1519 class Output_data_dynamic : public Output_section_data
1520 {
1521 public:
1522 Output_data_dynamic(Stringpool* pool)
1523 : Output_section_data(Output_data::default_alignment()),
1524 entries_(), pool_(pool)
1525 { }
1526
1527 // Add a new dynamic entry with a fixed numeric value.
1528 void
1529 add_constant(elfcpp::DT tag, unsigned int val)
1530 { this->add_entry(Dynamic_entry(tag, val)); }
1531
1532 // Add a new dynamic entry with the address of output data.
1533 void
1534 add_section_address(elfcpp::DT tag, const Output_data* od)
1535 { this->add_entry(Dynamic_entry(tag, od, false)); }
1536
1537 // Add a new dynamic entry with the address of output data
1538 // plus a constant offset.
1539 void
1540 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
1541 unsigned int offset)
1542 { this->add_entry(Dynamic_entry(tag, od, offset)); }
1543
1544 // Add a new dynamic entry with the size of output data.
1545 void
1546 add_section_size(elfcpp::DT tag, const Output_data* od)
1547 { this->add_entry(Dynamic_entry(tag, od, true)); }
1548
1549 // Add a new dynamic entry with the address of a symbol.
1550 void
1551 add_symbol(elfcpp::DT tag, const Symbol* sym)
1552 { this->add_entry(Dynamic_entry(tag, sym)); }
1553
1554 // Add a new dynamic entry with a string.
1555 void
1556 add_string(elfcpp::DT tag, const char* str)
1557 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
1558
1559 void
1560 add_string(elfcpp::DT tag, const std::string& str)
1561 { this->add_string(tag, str.c_str()); }
1562
1563 protected:
1564 // Adjust the output section to set the entry size.
1565 void
1566 do_adjust_output_section(Output_section*);
1567
1568 // Set the final data size.
1569 void
1570 set_final_data_size();
1571
1572 // Write out the dynamic entries.
1573 void
1574 do_write(Output_file*);
1575
1576 private:
1577 // This POD class holds a single dynamic entry.
1578 class Dynamic_entry
1579 {
1580 public:
1581 // Create an entry with a fixed numeric value.
1582 Dynamic_entry(elfcpp::DT tag, unsigned int val)
1583 : tag_(tag), offset_(DYNAMIC_NUMBER)
1584 { this->u_.val = val; }
1585
1586 // Create an entry with the size or address of a section.
1587 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
1588 : tag_(tag),
1589 offset_(section_size
1590 ? DYNAMIC_SECTION_SIZE
1591 : DYNAMIC_SECTION_ADDRESS)
1592 { this->u_.od = od; }
1593
1594 // Create an entry with the address of a section plus a constant offset.
1595 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
1596 : tag_(tag),
1597 offset_(offset)
1598 { this->u_.od = od; }
1599
1600 // Create an entry with the address of a symbol.
1601 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
1602 : tag_(tag), offset_(DYNAMIC_SYMBOL)
1603 { this->u_.sym = sym; }
1604
1605 // Create an entry with a string.
1606 Dynamic_entry(elfcpp::DT tag, const char* str)
1607 : tag_(tag), offset_(DYNAMIC_STRING)
1608 { this->u_.str = str; }
1609
1610 // Write the dynamic entry to an output view.
1611 template<int size, bool big_endian>
1612 void
1613 write(unsigned char* pov, const Stringpool*) const;
1614
1615 private:
1616 // Classification is encoded in the OFFSET field.
1617 enum Classification
1618 {
1619 // Section address.
1620 DYNAMIC_SECTION_ADDRESS = 0,
1621 // Number.
1622 DYNAMIC_NUMBER = -1U,
1623 // Section size.
1624 DYNAMIC_SECTION_SIZE = -2U,
1625 // Symbol adress.
1626 DYNAMIC_SYMBOL = -3U,
1627 // String.
1628 DYNAMIC_STRING = -4U
1629 // Any other value indicates a section address plus OFFSET.
1630 };
1631
1632 union
1633 {
1634 // For DYNAMIC_NUMBER.
1635 unsigned int val;
1636 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
1637 const Output_data* od;
1638 // For DYNAMIC_SYMBOL.
1639 const Symbol* sym;
1640 // For DYNAMIC_STRING.
1641 const char* str;
1642 } u_;
1643 // The dynamic tag.
1644 elfcpp::DT tag_;
1645 // The type of entry (Classification) or offset within a section.
1646 unsigned int offset_;
1647 };
1648
1649 // Add an entry to the list.
1650 void
1651 add_entry(const Dynamic_entry& entry)
1652 { this->entries_.push_back(entry); }
1653
1654 // Sized version of write function.
1655 template<int size, bool big_endian>
1656 void
1657 sized_write(Output_file* of);
1658
1659 // The type of the list of entries.
1660 typedef std::vector<Dynamic_entry> Dynamic_entries;
1661
1662 // The entries.
1663 Dynamic_entries entries_;
1664 // The pool used for strings.
1665 Stringpool* pool_;
1666 };
1667
1668 // An output section. We don't expect to have too many output
1669 // sections, so we don't bother to do a template on the size.
1670
1671 class Output_section : public Output_data
1672 {
1673 public:
1674 // Create an output section, giving the name, type, and flags.
1675 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
1676 virtual ~Output_section();
1677
1678 // Add a new input section SHNDX, named NAME, with header SHDR, from
1679 // object OBJECT. RELOC_SHNDX is the index of a relocation section
1680 // which applies to this section, or 0 if none, or -1U if more than
1681 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
1682 // in a linker script; in that case we need to keep track of input
1683 // sections associated with an output section. Return the offset
1684 // within the output section.
1685 template<int size, bool big_endian>
1686 off_t
1687 add_input_section(Sized_relobj<size, big_endian>* object, unsigned int shndx,
1688 const char *name,
1689 const elfcpp::Shdr<size, big_endian>& shdr,
1690 unsigned int reloc_shndx, bool have_sections_script);
1691
1692 // Add generated data POSD to this output section.
1693 void
1694 add_output_section_data(Output_section_data* posd);
1695
1696 // Return the section name.
1697 const char*
1698 name() const
1699 { return this->name_; }
1700
1701 // Return the section type.
1702 elfcpp::Elf_Word
1703 type() const
1704 { return this->type_; }
1705
1706 // Return the section flags.
1707 elfcpp::Elf_Xword
1708 flags() const
1709 { return this->flags_; }
1710
1711 // Set the section flags. This may only be used with the Layout
1712 // code when it is prepared to move the section to a different
1713 // segment.
1714 void
1715 set_flags(elfcpp::Elf_Xword flags)
1716 { this->flags_ = flags; }
1717
1718 // Return the entsize field.
1719 uint64_t
1720 entsize() const
1721 { return this->entsize_; }
1722
1723 // Set the entsize field.
1724 void
1725 set_entsize(uint64_t v);
1726
1727 // Set the load address.
1728 void
1729 set_load_address(uint64_t load_address)
1730 {
1731 this->load_address_ = load_address;
1732 this->has_load_address_ = true;
1733 }
1734
1735 // Set the link field to the output section index of a section.
1736 void
1737 set_link_section(const Output_data* od)
1738 {
1739 gold_assert(this->link_ == 0
1740 && !this->should_link_to_symtab_
1741 && !this->should_link_to_dynsym_);
1742 this->link_section_ = od;
1743 }
1744
1745 // Set the link field to a constant.
1746 void
1747 set_link(unsigned int v)
1748 {
1749 gold_assert(this->link_section_ == NULL
1750 && !this->should_link_to_symtab_
1751 && !this->should_link_to_dynsym_);
1752 this->link_ = v;
1753 }
1754
1755 // Record that this section should link to the normal symbol table.
1756 void
1757 set_should_link_to_symtab()
1758 {
1759 gold_assert(this->link_section_ == NULL
1760 && this->link_ == 0
1761 && !this->should_link_to_dynsym_);
1762 this->should_link_to_symtab_ = true;
1763 }
1764
1765 // Record that this section should link to the dynamic symbol table.
1766 void
1767 set_should_link_to_dynsym()
1768 {
1769 gold_assert(this->link_section_ == NULL
1770 && this->link_ == 0
1771 && !this->should_link_to_symtab_);
1772 this->should_link_to_dynsym_ = true;
1773 }
1774
1775 // Return the info field.
1776 unsigned int
1777 info() const
1778 {
1779 gold_assert(this->info_section_ == NULL
1780 && this->info_symndx_ == NULL);
1781 return this->info_;
1782 }
1783
1784 // Set the info field to the output section index of a section.
1785 void
1786 set_info_section(const Output_section* os)
1787 {
1788 gold_assert((this->info_section_ == NULL
1789 || (this->info_section_ == os
1790 && this->info_uses_section_index_))
1791 && this->info_symndx_ == NULL
1792 && this->info_ == 0);
1793 this->info_section_ = os;
1794 this->info_uses_section_index_= true;
1795 }
1796
1797 // Set the info field to the symbol table index of a symbol.
1798 void
1799 set_info_symndx(const Symbol* sym)
1800 {
1801 gold_assert(this->info_section_ == NULL
1802 && (this->info_symndx_ == NULL
1803 || this->info_symndx_ == sym)
1804 && this->info_ == 0);
1805 this->info_symndx_ = sym;
1806 }
1807
1808 // Set the info field to the symbol table index of a section symbol.
1809 void
1810 set_info_section_symndx(const Output_section* os)
1811 {
1812 gold_assert((this->info_section_ == NULL
1813 || (this->info_section_ == os
1814 && !this->info_uses_section_index_))
1815 && this->info_symndx_ == NULL
1816 && this->info_ == 0);
1817 this->info_section_ = os;
1818 this->info_uses_section_index_ = false;
1819 }
1820
1821 // Set the info field to a constant.
1822 void
1823 set_info(unsigned int v)
1824 {
1825 gold_assert(this->info_section_ == NULL
1826 && this->info_symndx_ == NULL
1827 && (this->info_ == 0
1828 || this->info_ == v));
1829 this->info_ = v;
1830 }
1831
1832 // Set the addralign field.
1833 void
1834 set_addralign(uint64_t v)
1835 { this->addralign_ = v; }
1836
1837 // Indicate that we need a symtab index.
1838 void
1839 set_needs_symtab_index()
1840 { this->needs_symtab_index_ = true; }
1841
1842 // Return whether we need a symtab index.
1843 bool
1844 needs_symtab_index() const
1845 { return this->needs_symtab_index_; }
1846
1847 // Get the symtab index.
1848 unsigned int
1849 symtab_index() const
1850 {
1851 gold_assert(this->symtab_index_ != 0);
1852 return this->symtab_index_;
1853 }
1854
1855 // Set the symtab index.
1856 void
1857 set_symtab_index(unsigned int index)
1858 {
1859 gold_assert(index != 0);
1860 this->symtab_index_ = index;
1861 }
1862
1863 // Indicate that we need a dynsym index.
1864 void
1865 set_needs_dynsym_index()
1866 { this->needs_dynsym_index_ = true; }
1867
1868 // Return whether we need a dynsym index.
1869 bool
1870 needs_dynsym_index() const
1871 { return this->needs_dynsym_index_; }
1872
1873 // Get the dynsym index.
1874 unsigned int
1875 dynsym_index() const
1876 {
1877 gold_assert(this->dynsym_index_ != 0);
1878 return this->dynsym_index_;
1879 }
1880
1881 // Set the dynsym index.
1882 void
1883 set_dynsym_index(unsigned int index)
1884 {
1885 gold_assert(index != 0);
1886 this->dynsym_index_ = index;
1887 }
1888
1889 // Return whether the input sections sections attachd to this output
1890 // section may require sorting. This is used to handle constructor
1891 // priorities compatibly with GNU ld.
1892 bool
1893 may_sort_attached_input_sections() const
1894 { return this->may_sort_attached_input_sections_; }
1895
1896 // Record that the input sections attached to this output section
1897 // may require sorting.
1898 void
1899 set_may_sort_attached_input_sections()
1900 { this->may_sort_attached_input_sections_ = true; }
1901
1902 // Return whether the input sections attached to this output section
1903 // require sorting. This is used to handle constructor priorities
1904 // compatibly with GNU ld.
1905 bool
1906 must_sort_attached_input_sections() const
1907 { return this->must_sort_attached_input_sections_; }
1908
1909 // Record that the input sections attached to this output section
1910 // require sorting.
1911 void
1912 set_must_sort_attached_input_sections()
1913 { this->must_sort_attached_input_sections_ = true; }
1914
1915 // Return whether this section should be written after all the input
1916 // sections are complete.
1917 bool
1918 after_input_sections() const
1919 { return this->after_input_sections_; }
1920
1921 // Record that this section should be written after all the input
1922 // sections are complete.
1923 void
1924 set_after_input_sections()
1925 { this->after_input_sections_ = true; }
1926
1927 // Return whether this section requires postprocessing after all
1928 // relocations have been applied.
1929 bool
1930 requires_postprocessing() const
1931 { return this->requires_postprocessing_; }
1932
1933 // If a section requires postprocessing, return the buffer to use.
1934 unsigned char*
1935 postprocessing_buffer() const
1936 {
1937 gold_assert(this->postprocessing_buffer_ != NULL);
1938 return this->postprocessing_buffer_;
1939 }
1940
1941 // If a section requires postprocessing, create the buffer to use.
1942 void
1943 create_postprocessing_buffer();
1944
1945 // If a section requires postprocessing, this is the size of the
1946 // buffer to which relocations should be applied.
1947 off_t
1948 postprocessing_buffer_size() const
1949 { return this->current_data_size_for_child(); }
1950
1951 // Modify the section name. This is only permitted for an
1952 // unallocated section, and only before the size has been finalized.
1953 // Otherwise the name will not get into Layout::namepool_.
1954 void
1955 set_name(const char* newname)
1956 {
1957 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
1958 gold_assert(!this->is_data_size_valid());
1959 this->name_ = newname;
1960 }
1961
1962 // Return whether the offset OFFSET in the input section SHNDX in
1963 // object OBJECT is being included in the link.
1964 bool
1965 is_input_address_mapped(const Relobj* object, unsigned int shndx,
1966 off_t offset) const;
1967
1968 // Return the offset within the output section of OFFSET relative to
1969 // the start of input section SHNDX in object OBJECT.
1970 section_offset_type
1971 output_offset(const Relobj* object, unsigned int shndx,
1972 section_offset_type offset) const;
1973
1974 // Return the output virtual address of OFFSET relative to the start
1975 // of input section SHNDX in object OBJECT.
1976 uint64_t
1977 output_address(const Relobj* object, unsigned int shndx,
1978 off_t offset) const;
1979
1980 // Return the output address of the start of the merged section for
1981 // input section SHNDX in object OBJECT. This is not necessarily
1982 // the offset corresponding to input offset 0 in the section, since
1983 // the section may be mapped arbitrarily.
1984 uint64_t
1985 starting_output_address(const Relobj* object, unsigned int shndx) const;
1986
1987 // Record that this output section was found in the SECTIONS clause
1988 // of a linker script.
1989 void
1990 set_found_in_sections_clause()
1991 { this->found_in_sections_clause_ = true; }
1992
1993 // Return whether this output section was found in the SECTIONS
1994 // clause of a linker script.
1995 bool
1996 found_in_sections_clause() const
1997 { return this->found_in_sections_clause_; }
1998
1999 // Write the section header into *OPHDR.
2000 template<int size, bool big_endian>
2001 void
2002 write_header(const Layout*, const Stringpool*,
2003 elfcpp::Shdr_write<size, big_endian>*) const;
2004
2005 // The next few calls are for linker script support.
2006
2007 // Store the list of input sections for this Output_section into the
2008 // list passed in. This removes the input sections, leaving only
2009 // any Output_section_data elements. This returns the size of those
2010 // Output_section_data elements. ADDRESS is the address of this
2011 // output section. FILL is the fill value to use, in case there are
2012 // any spaces between the remaining Output_section_data elements.
2013 uint64_t
2014 get_input_sections(uint64_t address, const std::string& fill,
2015 std::list<std::pair<Relobj*, unsigned int > >*);
2016
2017 // Add an input section from a script.
2018 void
2019 add_input_section_for_script(Relobj* object, unsigned int shndx,
2020 off_t data_size, uint64_t addralign);
2021
2022 // Set the current size of the output section.
2023 void
2024 set_current_data_size(off_t size)
2025 { this->set_current_data_size_for_child(size); }
2026
2027 // Get the current size of the output section.
2028 off_t
2029 current_data_size() const
2030 { return this->current_data_size_for_child(); }
2031
2032 // End of linker script support.
2033
2034 // Print merge statistics to stderr.
2035 void
2036 print_merge_stats();
2037
2038 protected:
2039 // Return the output section--i.e., the object itself.
2040 Output_section*
2041 do_output_section()
2042 { return this; }
2043
2044 // Return the section index in the output file.
2045 unsigned int
2046 do_out_shndx() const
2047 {
2048 gold_assert(this->out_shndx_ != -1U);
2049 return this->out_shndx_;
2050 }
2051
2052 // Set the output section index.
2053 void
2054 do_set_out_shndx(unsigned int shndx)
2055 {
2056 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
2057 this->out_shndx_ = shndx;
2058 }
2059
2060 // Set the final data size of the Output_section. For a typical
2061 // Output_section, there is nothing to do, but if there are any
2062 // Output_section_data objects we need to set their final addresses
2063 // here.
2064 virtual void
2065 set_final_data_size();
2066
2067 // Reset the address and file offset.
2068 void
2069 do_reset_address_and_file_offset();
2070
2071 // Write the data to the file. For a typical Output_section, this
2072 // does nothing: the data is written out by calling Object::Relocate
2073 // on each input object. But if there are any Output_section_data
2074 // objects we do need to write them out here.
2075 virtual void
2076 do_write(Output_file*);
2077
2078 // Return the address alignment--function required by parent class.
2079 uint64_t
2080 do_addralign() const
2081 { return this->addralign_; }
2082
2083 // Return whether there is a load address.
2084 bool
2085 do_has_load_address() const
2086 { return this->has_load_address_; }
2087
2088 // Return the load address.
2089 uint64_t
2090 do_load_address() const
2091 {
2092 gold_assert(this->has_load_address_);
2093 return this->load_address_;
2094 }
2095
2096 // Return whether this is an Output_section.
2097 bool
2098 do_is_section() const
2099 { return true; }
2100
2101 // Return whether this is a section of the specified type.
2102 bool
2103 do_is_section_type(elfcpp::Elf_Word type) const
2104 { return this->type_ == type; }
2105
2106 // Return whether the specified section flag is set.
2107 bool
2108 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
2109 { return (this->flags_ & flag) != 0; }
2110
2111 // Set the TLS offset. Called only for SHT_TLS sections.
2112 void
2113 do_set_tls_offset(uint64_t tls_base);
2114
2115 // Return the TLS offset, relative to the base of the TLS segment.
2116 // Valid only for SHT_TLS sections.
2117 uint64_t
2118 do_tls_offset() const
2119 { return this->tls_offset_; }
2120
2121 // This may be implemented by a child class.
2122 virtual void
2123 do_finalize_name(Layout*)
2124 { }
2125
2126 // Record that this section requires postprocessing after all
2127 // relocations have been applied. This is called by a child class.
2128 void
2129 set_requires_postprocessing()
2130 {
2131 this->requires_postprocessing_ = true;
2132 this->after_input_sections_ = true;
2133 }
2134
2135 // Write all the data of an Output_section into the postprocessing
2136 // buffer.
2137 void
2138 write_to_postprocessing_buffer();
2139
2140 private:
2141 // In some cases we need to keep a list of the input sections
2142 // associated with this output section. We only need the list if we
2143 // might have to change the offsets of the input section within the
2144 // output section after we add the input section. The ordinary
2145 // input sections will be written out when we process the object
2146 // file, and as such we don't need to track them here. We do need
2147 // to track Output_section_data objects here. We store instances of
2148 // this structure in a std::vector, so it must be a POD. There can
2149 // be many instances of this structure, so we use a union to save
2150 // some space.
2151 class Input_section
2152 {
2153 public:
2154 Input_section()
2155 : shndx_(0), p2align_(0)
2156 {
2157 this->u1_.data_size = 0;
2158 this->u2_.object = NULL;
2159 }
2160
2161 // For an ordinary input section.
2162 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
2163 uint64_t addralign)
2164 : shndx_(shndx),
2165 p2align_(ffsll(static_cast<long long>(addralign)))
2166 {
2167 gold_assert(shndx != OUTPUT_SECTION_CODE
2168 && shndx != MERGE_DATA_SECTION_CODE
2169 && shndx != MERGE_STRING_SECTION_CODE);
2170 this->u1_.data_size = data_size;
2171 this->u2_.object = object;
2172 }
2173
2174 // For a non-merge output section.
2175 Input_section(Output_section_data* posd)
2176 : shndx_(OUTPUT_SECTION_CODE),
2177 p2align_(ffsll(static_cast<long long>(posd->addralign())))
2178 {
2179 this->u1_.data_size = 0;
2180 this->u2_.posd = posd;
2181 }
2182
2183 // For a merge section.
2184 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
2185 : shndx_(is_string
2186 ? MERGE_STRING_SECTION_CODE
2187 : MERGE_DATA_SECTION_CODE),
2188 p2align_(ffsll(static_cast<long long>(posd->addralign())))
2189 {
2190 this->u1_.entsize = entsize;
2191 this->u2_.posd = posd;
2192 }
2193
2194 // The required alignment.
2195 uint64_t
2196 addralign() const
2197 {
2198 return (this->p2align_ == 0
2199 ? 0
2200 : static_cast<uint64_t>(1) << (this->p2align_ - 1));
2201 }
2202
2203 // Return the required size.
2204 off_t
2205 data_size() const;
2206
2207 // Whether this is an input section.
2208 bool
2209 is_input_section() const
2210 {
2211 return (this->shndx_ != OUTPUT_SECTION_CODE
2212 && this->shndx_ != MERGE_DATA_SECTION_CODE
2213 && this->shndx_ != MERGE_STRING_SECTION_CODE);
2214 }
2215
2216 // Return whether this is a merge section which matches the
2217 // parameters.
2218 bool
2219 is_merge_section(bool is_string, uint64_t entsize,
2220 uint64_t addralign) const
2221 {
2222 return (this->shndx_ == (is_string
2223 ? MERGE_STRING_SECTION_CODE
2224 : MERGE_DATA_SECTION_CODE)
2225 && this->u1_.entsize == entsize
2226 && this->addralign() == addralign);
2227 }
2228
2229 // Return the object for an input section.
2230 Relobj*
2231 relobj() const
2232 {
2233 gold_assert(this->is_input_section());
2234 return this->u2_.object;
2235 }
2236
2237 // Return the input section index for an input section.
2238 unsigned int
2239 shndx() const
2240 {
2241 gold_assert(this->is_input_section());
2242 return this->shndx_;
2243 }
2244
2245 // Set the output section.
2246 void
2247 set_output_section(Output_section* os)
2248 {
2249 gold_assert(!this->is_input_section());
2250 this->u2_.posd->set_output_section(os);
2251 }
2252
2253 // Set the address and file offset. This is called during
2254 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
2255 // the enclosing section.
2256 void
2257 set_address_and_file_offset(uint64_t address, off_t file_offset,
2258 off_t section_file_offset);
2259
2260 // Reset the address and file offset.
2261 void
2262 reset_address_and_file_offset();
2263
2264 // Finalize the data size.
2265 void
2266 finalize_data_size();
2267
2268 // Add an input section, for SHF_MERGE sections.
2269 bool
2270 add_input_section(Relobj* object, unsigned int shndx)
2271 {
2272 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
2273 || this->shndx_ == MERGE_STRING_SECTION_CODE);
2274 return this->u2_.posd->add_input_section(object, shndx);
2275 }
2276
2277 // Given an input OBJECT, an input section index SHNDX within that
2278 // object, and an OFFSET relative to the start of that input
2279 // section, return whether or not the output offset is known. If
2280 // this function returns true, it sets *POUTPUT to the offset in
2281 // the output section, relative to the start of the input section
2282 // in the output section. *POUTPUT may be different from OFFSET
2283 // for a merged section.
2284 bool
2285 output_offset(const Relobj* object, unsigned int shndx,
2286 section_offset_type offset,
2287 section_offset_type *poutput) const;
2288
2289 // Return whether this is the merge section for the input section
2290 // SHNDX in OBJECT.
2291 bool
2292 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
2293
2294 // Write out the data. This does nothing for an input section.
2295 void
2296 write(Output_file*);
2297
2298 // Write the data to a buffer. This does nothing for an input
2299 // section.
2300 void
2301 write_to_buffer(unsigned char*);
2302
2303 // Print statistics about merge sections to stderr.
2304 void
2305 print_merge_stats(const char* section_name)
2306 {
2307 if (this->shndx_ == MERGE_DATA_SECTION_CODE
2308 || this->shndx_ == MERGE_STRING_SECTION_CODE)
2309 this->u2_.posd->print_merge_stats(section_name);
2310 }
2311
2312 private:
2313 // Code values which appear in shndx_. If the value is not one of
2314 // these codes, it is the input section index in the object file.
2315 enum
2316 {
2317 // An Output_section_data.
2318 OUTPUT_SECTION_CODE = -1U,
2319 // An Output_section_data for an SHF_MERGE section with
2320 // SHF_STRINGS not set.
2321 MERGE_DATA_SECTION_CODE = -2U,
2322 // An Output_section_data for an SHF_MERGE section with
2323 // SHF_STRINGS set.
2324 MERGE_STRING_SECTION_CODE = -3U
2325 };
2326
2327 // For an ordinary input section, this is the section index in the
2328 // input file. For an Output_section_data, this is
2329 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
2330 // MERGE_STRING_SECTION_CODE.
2331 unsigned int shndx_;
2332 // The required alignment, stored as a power of 2.
2333 unsigned int p2align_;
2334 union
2335 {
2336 // For an ordinary input section, the section size.
2337 off_t data_size;
2338 // For OUTPUT_SECTION_CODE, this is not used. For
2339 // MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
2340 // entity size.
2341 uint64_t entsize;
2342 } u1_;
2343 union
2344 {
2345 // For an ordinary input section, the object which holds the
2346 // input section.
2347 Relobj* object;
2348 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
2349 // MERGE_STRING_SECTION_CODE, the data.
2350 Output_section_data* posd;
2351 } u2_;
2352 };
2353
2354 typedef std::vector<Input_section> Input_section_list;
2355
2356 // This class is used to sort the input sections.
2357 class Input_section_sort_entry;
2358
2359 // This is the sort comparison function.
2360 struct Input_section_sort_compare
2361 {
2362 bool
2363 operator()(const Input_section_sort_entry&,
2364 const Input_section_sort_entry&) const;
2365 };
2366
2367 // Fill data. This is used to fill in data between input sections.
2368 // It is also used for data statements (BYTE, WORD, etc.) in linker
2369 // scripts. When we have to keep track of the input sections, we
2370 // can use an Output_data_const, but we don't want to have to keep
2371 // track of input sections just to implement fills.
2372 class Fill
2373 {
2374 public:
2375 Fill(off_t section_offset, off_t length)
2376 : section_offset_(section_offset),
2377 length_(convert_to_section_size_type(length))
2378 { }
2379
2380 // Return section offset.
2381 off_t
2382 section_offset() const
2383 { return this->section_offset_; }
2384
2385 // Return fill length.
2386 section_size_type
2387 length() const
2388 { return this->length_; }
2389
2390 private:
2391 // The offset within the output section.
2392 off_t section_offset_;
2393 // The length of the space to fill.
2394 section_size_type length_;
2395 };
2396
2397 typedef std::vector<Fill> Fill_list;
2398
2399 // Add a new output section by Input_section.
2400 void
2401 add_output_section_data(Input_section*);
2402
2403 // Add an SHF_MERGE input section. Returns true if the section was
2404 // handled.
2405 bool
2406 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
2407 uint64_t entsize, uint64_t addralign);
2408
2409 // Add an output SHF_MERGE section POSD to this output section.
2410 // IS_STRING indicates whether it is a SHF_STRINGS section, and
2411 // ENTSIZE is the entity size. This returns the entry added to
2412 // input_sections_.
2413 void
2414 add_output_merge_section(Output_section_data* posd, bool is_string,
2415 uint64_t entsize);
2416
2417 // Sort the attached input sections.
2418 void
2419 sort_attached_input_sections();
2420
2421 // Most of these fields are only valid after layout.
2422
2423 // The name of the section. This will point into a Stringpool.
2424 const char* name_;
2425 // The section address is in the parent class.
2426 // The section alignment.
2427 uint64_t addralign_;
2428 // The section entry size.
2429 uint64_t entsize_;
2430 // The load address. This is only used when using a linker script
2431 // with a SECTIONS clause. The has_load_address_ field indicates
2432 // whether this field is valid.
2433 uint64_t load_address_;
2434 // The file offset is in the parent class.
2435 // Set the section link field to the index of this section.
2436 const Output_data* link_section_;
2437 // If link_section_ is NULL, this is the link field.
2438 unsigned int link_;
2439 // Set the section info field to the index of this section.
2440 const Output_section* info_section_;
2441 // If info_section_ is NULL, set the info field to the symbol table
2442 // index of this symbol.
2443 const Symbol* info_symndx_;
2444 // If info_section_ and info_symndx_ are NULL, this is the section
2445 // info field.
2446 unsigned int info_;
2447 // The section type.
2448 const elfcpp::Elf_Word type_;
2449 // The section flags.
2450 elfcpp::Elf_Xword flags_;
2451 // The section index.
2452 unsigned int out_shndx_;
2453 // If there is a STT_SECTION for this output section in the normal
2454 // symbol table, this is the symbol index. This starts out as zero.
2455 // It is initialized in Layout::finalize() to be the index, or -1U
2456 // if there isn't one.
2457 unsigned int symtab_index_;
2458 // If there is a STT_SECTION for this output section in the dynamic
2459 // symbol table, this is the symbol index. This starts out as zero.
2460 // It is initialized in Layout::finalize() to be the index, or -1U
2461 // if there isn't one.
2462 unsigned int dynsym_index_;
2463 // The input sections. This will be empty in cases where we don't
2464 // need to keep track of them.
2465 Input_section_list input_sections_;
2466 // The offset of the first entry in input_sections_.
2467 off_t first_input_offset_;
2468 // The fill data. This is separate from input_sections_ because we
2469 // often will need fill sections without needing to keep track of
2470 // input sections.
2471 Fill_list fills_;
2472 // If the section requires postprocessing, this buffer holds the
2473 // section contents during relocation.
2474 unsigned char* postprocessing_buffer_;
2475 // Whether this output section needs a STT_SECTION symbol in the
2476 // normal symbol table. This will be true if there is a relocation
2477 // which needs it.
2478 bool needs_symtab_index_ : 1;
2479 // Whether this output section needs a STT_SECTION symbol in the
2480 // dynamic symbol table. This will be true if there is a dynamic
2481 // relocation which needs it.
2482 bool needs_dynsym_index_ : 1;
2483 // Whether the link field of this output section should point to the
2484 // normal symbol table.
2485 bool should_link_to_symtab_ : 1;
2486 // Whether the link field of this output section should point to the
2487 // dynamic symbol table.
2488 bool should_link_to_dynsym_ : 1;
2489 // Whether this section should be written after all the input
2490 // sections are complete.
2491 bool after_input_sections_ : 1;
2492 // Whether this section requires post processing after all
2493 // relocations have been applied.
2494 bool requires_postprocessing_ : 1;
2495 // Whether an input section was mapped to this output section
2496 // because of a SECTIONS clause in a linker script.
2497 bool found_in_sections_clause_ : 1;
2498 // Whether this section has an explicitly specified load address.
2499 bool has_load_address_ : 1;
2500 // True if the info_section_ field means the section index of the
2501 // section, false if it means the symbol index of the corresponding
2502 // section symbol.
2503 bool info_uses_section_index_ : 1;
2504 // True if the input sections attached to this output section may
2505 // need sorting.
2506 bool may_sort_attached_input_sections_ : 1;
2507 // True if the input sections attached to this output section must
2508 // be sorted.
2509 bool must_sort_attached_input_sections_ : 1;
2510 // True if the input sections attached to this output section have
2511 // already been sorted.
2512 bool attached_input_sections_are_sorted_ : 1;
2513 // For SHT_TLS sections, the offset of this section relative to the base
2514 // of the TLS segment.
2515 uint64_t tls_offset_;
2516 };
2517
2518 // An output segment. PT_LOAD segments are built from collections of
2519 // output sections. Other segments typically point within PT_LOAD
2520 // segments, and are built directly as needed.
2521
2522 class Output_segment
2523 {
2524 public:
2525 // Create an output segment, specifying the type and flags.
2526 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
2527
2528 // Return the virtual address.
2529 uint64_t
2530 vaddr() const
2531 { return this->vaddr_; }
2532
2533 // Return the physical address.
2534 uint64_t
2535 paddr() const
2536 { return this->paddr_; }
2537
2538 // Return the segment type.
2539 elfcpp::Elf_Word
2540 type() const
2541 { return this->type_; }
2542
2543 // Return the segment flags.
2544 elfcpp::Elf_Word
2545 flags() const
2546 { return this->flags_; }
2547
2548 // Return the memory size.
2549 uint64_t
2550 memsz() const
2551 { return this->memsz_; }
2552
2553 // Return the file size.
2554 off_t
2555 filesz() const
2556 { return this->filesz_; }
2557
2558 // Return the file offset.
2559 off_t
2560 offset() const
2561 { return this->offset_; }
2562
2563 // Return the maximum alignment of the Output_data.
2564 uint64_t
2565 maximum_alignment();
2566
2567 // Add an Output_section to this segment.
2568 void
2569 add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags)
2570 { this->add_output_section(os, seg_flags, false); }
2571
2572 // Add an Output_section to the start of this segment.
2573 void
2574 add_initial_output_section(Output_section* os, elfcpp::Elf_Word seg_flags)
2575 { this->add_output_section(os, seg_flags, true); }
2576
2577 // Remove an Output_section from this segment. It is an error if it
2578 // is not present.
2579 void
2580 remove_output_section(Output_section* os);
2581
2582 // Add an Output_data (which is not an Output_section) to the start
2583 // of this segment.
2584 void
2585 add_initial_output_data(Output_data*);
2586
2587 // Return true if this segment has any sections which hold actual
2588 // data, rather than being a BSS section.
2589 bool
2590 has_any_data_sections() const
2591 { return !this->output_data_.empty(); }
2592
2593 // Return the number of dynamic relocations applied to this segment.
2594 unsigned int
2595 dynamic_reloc_count() const;
2596
2597 // Return the address of the first section.
2598 uint64_t
2599 first_section_load_address() const;
2600
2601 // Return whether the addresses have been set already.
2602 bool
2603 are_addresses_set() const
2604 { return this->are_addresses_set_; }
2605
2606 // Set the addresses.
2607 void
2608 set_addresses(uint64_t vaddr, uint64_t paddr)
2609 {
2610 this->vaddr_ = vaddr;
2611 this->paddr_ = paddr;
2612 this->are_addresses_set_ = true;
2613 }
2614
2615 // Set the segment flags. This is only used if we have a PHDRS
2616 // clause which explicitly specifies the flags.
2617 void
2618 set_flags(elfcpp::Elf_Word flags)
2619 { this->flags_ = flags; }
2620
2621 // Set the address of the segment to ADDR and the offset to *POFF
2622 // and set the addresses and offsets of all contained output
2623 // sections accordingly. Set the section indexes of all contained
2624 // output sections starting with *PSHNDX. If RESET is true, first
2625 // reset the addresses of the contained sections. Return the
2626 // address of the immediately following segment. Update *POFF and
2627 // *PSHNDX. This should only be called for a PT_LOAD segment.
2628 uint64_t
2629 set_section_addresses(const Layout*, bool reset, uint64_t addr, off_t* poff,
2630 unsigned int* pshndx);
2631
2632 // Set the minimum alignment of this segment. This may be adjusted
2633 // upward based on the section alignments.
2634 void
2635 set_minimum_p_align(uint64_t align)
2636 { this->min_p_align_ = align; }
2637
2638 // Set the offset of this segment based on the section. This should
2639 // only be called for a non-PT_LOAD segment.
2640 void
2641 set_offset();
2642
2643 // Set the TLS offsets of the sections contained in the PT_TLS segment.
2644 void
2645 set_tls_offsets();
2646
2647 // Return the number of output sections.
2648 unsigned int
2649 output_section_count() const;
2650
2651 // Return the section attached to the list segment with the lowest
2652 // load address. This is used when handling a PHDRS clause in a
2653 // linker script.
2654 Output_section*
2655 section_with_lowest_load_address() const;
2656
2657 // Write the segment header into *OPHDR.
2658 template<int size, bool big_endian>
2659 void
2660 write_header(elfcpp::Phdr_write<size, big_endian>*);
2661
2662 // Write the section headers of associated sections into V.
2663 template<int size, bool big_endian>
2664 unsigned char*
2665 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
2666 unsigned int* pshndx) const;
2667
2668 private:
2669 Output_segment(const Output_segment&);
2670 Output_segment& operator=(const Output_segment&);
2671
2672 typedef std::list<Output_data*> Output_data_list;
2673
2674 // Add an Output_section to this segment, specifying front or back.
2675 void
2676 add_output_section(Output_section*, elfcpp::Elf_Word seg_flags,
2677 bool front);
2678
2679 // Find the maximum alignment in an Output_data_list.
2680 static uint64_t
2681 maximum_alignment_list(const Output_data_list*);
2682
2683 // Set the section addresses in an Output_data_list.
2684 uint64_t
2685 set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
2686 uint64_t addr, off_t* poff, unsigned int* pshndx,
2687 bool* in_tls);
2688
2689 // Return the number of Output_sections in an Output_data_list.
2690 unsigned int
2691 output_section_count_list(const Output_data_list*) const;
2692
2693 // Return the number of dynamic relocs in an Output_data_list.
2694 unsigned int
2695 dynamic_reloc_count_list(const Output_data_list*) const;
2696
2697 // Find the section with the lowest load address in an
2698 // Output_data_list.
2699 void
2700 lowest_load_address_in_list(const Output_data_list* pdl,
2701 Output_section** found,
2702 uint64_t* found_lma) const;
2703
2704 // Write the section headers in the list into V.
2705 template<int size, bool big_endian>
2706 unsigned char*
2707 write_section_headers_list(const Layout*, const Stringpool*,
2708 const Output_data_list*, unsigned char* v,
2709 unsigned int* pshdx) const;
2710
2711 // The list of output data with contents attached to this segment.
2712 Output_data_list output_data_;
2713 // The list of output data without contents attached to this segment.
2714 Output_data_list output_bss_;
2715 // The segment virtual address.
2716 uint64_t vaddr_;
2717 // The segment physical address.
2718 uint64_t paddr_;
2719 // The size of the segment in memory.
2720 uint64_t memsz_;
2721 // The maximum section alignment. The is_max_align_known_ field
2722 // indicates whether this has been finalized.
2723 uint64_t max_align_;
2724 // The required minimum value for the p_align field. This is used
2725 // for PT_LOAD segments. Note that this does not mean that
2726 // addresses should be aligned to this value; it means the p_paddr
2727 // and p_vaddr fields must be congruent modulo this value. For
2728 // non-PT_LOAD segments, the dynamic linker works more efficiently
2729 // if the p_align field has the more conventional value, although it
2730 // can align as needed.
2731 uint64_t min_p_align_;
2732 // The offset of the segment data within the file.
2733 off_t offset_;
2734 // The size of the segment data in the file.
2735 off_t filesz_;
2736 // The segment type;
2737 elfcpp::Elf_Word type_;
2738 // The segment flags.
2739 elfcpp::Elf_Word flags_;
2740 // Whether we have finalized max_align_.
2741 bool is_max_align_known_ : 1;
2742 // Whether vaddr and paddr were set by a linker script.
2743 bool are_addresses_set_ : 1;
2744 };
2745
2746 // This class represents the output file.
2747
2748 class Output_file
2749 {
2750 public:
2751 Output_file(const char* name);
2752
2753 // Indicate that this is a temporary file which should not be
2754 // output.
2755 void
2756 set_is_temporary()
2757 { this->is_temporary_ = true; }
2758
2759 // Open the output file. FILE_SIZE is the final size of the file.
2760 void
2761 open(off_t file_size);
2762
2763 // Resize the output file.
2764 void
2765 resize(off_t file_size);
2766
2767 // Close the output file (flushing all buffered data) and make sure
2768 // there are no errors.
2769 void
2770 close();
2771
2772 // We currently always use mmap which makes the view handling quite
2773 // simple. In the future we may support other approaches.
2774
2775 // Write data to the output file.
2776 void
2777 write(off_t offset, const void* data, size_t len)
2778 { memcpy(this->base_ + offset, data, len); }
2779
2780 // Get a buffer to use to write to the file, given the offset into
2781 // the file and the size.
2782 unsigned char*
2783 get_output_view(off_t start, size_t size)
2784 {
2785 gold_assert(start >= 0
2786 && start + static_cast<off_t>(size) <= this->file_size_);
2787 return this->base_ + start;
2788 }
2789
2790 // VIEW must have been returned by get_output_view. Write the
2791 // buffer to the file, passing in the offset and the size.
2792 void
2793 write_output_view(off_t, size_t, unsigned char*)
2794 { }
2795
2796 // Get a read/write buffer. This is used when we want to write part
2797 // of the file, read it in, and write it again.
2798 unsigned char*
2799 get_input_output_view(off_t start, size_t size)
2800 { return this->get_output_view(start, size); }
2801
2802 // Write a read/write buffer back to the file.
2803 void
2804 write_input_output_view(off_t, size_t, unsigned char*)
2805 { }
2806
2807 // Get a read buffer. This is used when we just want to read part
2808 // of the file back it in.
2809 const unsigned char*
2810 get_input_view(off_t start, size_t size)
2811 { return this->get_output_view(start, size); }
2812
2813 // Release a read bfufer.
2814 void
2815 free_input_view(off_t, size_t, const unsigned char*)
2816 { }
2817
2818 private:
2819 // Map the file into memory and return a pointer to the map.
2820 void
2821 map();
2822
2823 // Unmap the file from memory (and flush to disk buffers).
2824 void
2825 unmap();
2826
2827 // File name.
2828 const char* name_;
2829 // File descriptor.
2830 int o_;
2831 // File size.
2832 off_t file_size_;
2833 // Base of file mapped into memory.
2834 unsigned char* base_;
2835 // True iff base_ points to a memory buffer rather than an output file.
2836 bool map_is_anonymous_;
2837 // True if this is a temporary file which should not be output.
2838 bool is_temporary_;
2839 };
2840
2841 } // End namespace gold.
2842
2843 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.086773 seconds and 4 git commands to generate.