*** empty log message ***
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "layout.h"
31 #include "reloc-types.h"
32
33 namespace gold
34 {
35
36 class General_options;
37 class Object;
38 class Symbol;
39 class Output_file;
40 class Output_section;
41 class Target;
42 template<int size, bool big_endian>
43 class Sized_target;
44 template<int size, bool big_endian>
45 class Sized_relobj;
46
47 // An abtract class for data which has to go into the output file.
48
49 class Output_data
50 {
51 public:
52 explicit Output_data()
53 : address_(0), data_size_(0), offset_(-1),
54 is_address_valid_(false), is_data_size_valid_(false),
55 is_offset_valid_(false),
56 dynamic_reloc_count_(0)
57 { }
58
59 virtual
60 ~Output_data();
61
62 // Return the address. For allocated sections, this is only valid
63 // after Layout::finalize is finished.
64 uint64_t
65 address() const
66 {
67 gold_assert(this->is_address_valid_);
68 return this->address_;
69 }
70
71 // Return the size of the data. For allocated sections, this must
72 // be valid after Layout::finalize calls set_address, but need not
73 // be valid before then.
74 off_t
75 data_size() const
76 {
77 gold_assert(this->is_data_size_valid_);
78 return this->data_size_;
79 }
80
81 // Return the file offset. This is only valid after
82 // Layout::finalize is finished. For some non-allocated sections,
83 // it may not be valid until near the end of the link.
84 off_t
85 offset() const
86 {
87 gold_assert(this->is_offset_valid_);
88 return this->offset_;
89 }
90
91 // Return the required alignment.
92 uint64_t
93 addralign() const
94 { return this->do_addralign(); }
95
96 // Return whether this is an Output_section.
97 bool
98 is_section() const
99 { return this->do_is_section(); }
100
101 // Return whether this is an Output_section of the specified type.
102 bool
103 is_section_type(elfcpp::Elf_Word stt) const
104 { return this->do_is_section_type(stt); }
105
106 // Return whether this is an Output_section with the specified flag
107 // set.
108 bool
109 is_section_flag_set(elfcpp::Elf_Xword shf) const
110 { return this->do_is_section_flag_set(shf); }
111
112 // Return the output section index, if there is an output section.
113 unsigned int
114 out_shndx() const
115 { return this->do_out_shndx(); }
116
117 // Set the output section index, if this is an output section.
118 void
119 set_out_shndx(unsigned int shndx)
120 { this->do_set_out_shndx(shndx); }
121
122 // Set the address and file offset of this data, and finalize the
123 // size of the data. This is called during Layout::finalize for
124 // allocated sections.
125 void
126 set_address_and_file_offset(uint64_t addr, off_t off)
127 {
128 this->set_address(addr);
129 this->set_file_offset(off);
130 this->finalize_data_size();
131 }
132
133 // Set the address.
134 void
135 set_address(uint64_t addr)
136 {
137 gold_assert(!this->is_address_valid_);
138 this->address_ = addr;
139 this->is_address_valid_ = true;
140 }
141
142 // Set the file offset.
143 void
144 set_file_offset(off_t off)
145 {
146 gold_assert(!this->is_offset_valid_);
147 this->offset_ = off;
148 this->is_offset_valid_ = true;
149 }
150
151 // Finalize the data size.
152 void
153 finalize_data_size()
154 {
155 if (!this->is_data_size_valid_)
156 {
157 // Tell the child class to set the data size.
158 this->set_final_data_size();
159 gold_assert(this->is_data_size_valid_);
160 }
161 }
162
163 // Set the TLS offset. Called only for SHT_TLS sections.
164 void
165 set_tls_offset(uint64_t tls_base)
166 { this->do_set_tls_offset(tls_base); }
167
168 // Return the TLS offset, relative to the base of the TLS segment.
169 // Valid only for SHT_TLS sections.
170 uint64_t
171 tls_offset() const
172 { return this->do_tls_offset(); }
173
174 // Write the data to the output file. This is called after
175 // Layout::finalize is complete.
176 void
177 write(Output_file* file)
178 { this->do_write(file); }
179
180 // This is called by Layout::finalize to note that the sizes of
181 // allocated sections must now be fixed.
182 static void
183 layout_complete()
184 { Output_data::allocated_sizes_are_fixed = true; }
185
186 // Used to check that layout has been done.
187 static bool
188 is_layout_complete()
189 { return Output_data::allocated_sizes_are_fixed; }
190
191 // Count the number of dynamic relocations applied to this section.
192 void
193 add_dynamic_reloc()
194 { ++this->dynamic_reloc_count_; }
195
196 // Return the number of dynamic relocations applied to this section.
197 unsigned int
198 dynamic_reloc_count() const
199 { return this->dynamic_reloc_count_; }
200
201 // Whether the address is valid.
202 bool
203 is_address_valid() const
204 { return this->is_address_valid_; }
205
206 // Whether the file offset is valid.
207 bool
208 is_offset_valid() const
209 { return this->is_offset_valid_; }
210
211 // Whether the data size is valid.
212 bool
213 is_data_size_valid() const
214 { return this->is_data_size_valid_; }
215
216 protected:
217 // Functions that child classes may or in some cases must implement.
218
219 // Write the data to the output file.
220 virtual void
221 do_write(Output_file*) = 0;
222
223 // Return the required alignment.
224 virtual uint64_t
225 do_addralign() const = 0;
226
227 // Return whether this is an Output_section.
228 virtual bool
229 do_is_section() const
230 { return false; }
231
232 // Return whether this is an Output_section of the specified type.
233 // This only needs to be implement by Output_section.
234 virtual bool
235 do_is_section_type(elfcpp::Elf_Word) const
236 { return false; }
237
238 // Return whether this is an Output_section with the specific flag
239 // set. This only needs to be implemented by Output_section.
240 virtual bool
241 do_is_section_flag_set(elfcpp::Elf_Xword) const
242 { return false; }
243
244 // Return the output section index, if there is an output section.
245 virtual unsigned int
246 do_out_shndx() const
247 { gold_unreachable(); }
248
249 // Set the output section index, if this is an output section.
250 virtual void
251 do_set_out_shndx(unsigned int)
252 { gold_unreachable(); }
253
254 // This is a hook for derived classes to set the data size. This is
255 // called by finalize_data_size, normally called during
256 // Layout::finalize, when the section address is set.
257 virtual void
258 set_final_data_size()
259 { gold_unreachable(); }
260
261 // Set the TLS offset. Called only for SHT_TLS sections.
262 virtual void
263 do_set_tls_offset(uint64_t)
264 { gold_unreachable(); }
265
266 // Return the TLS offset, relative to the base of the TLS segment.
267 // Valid only for SHT_TLS sections.
268 virtual uint64_t
269 do_tls_offset() const
270 { gold_unreachable(); }
271
272 // Functions that child classes may call.
273
274 // Set the size of the data.
275 void
276 set_data_size(off_t data_size)
277 {
278 gold_assert(!this->is_data_size_valid_);
279 this->data_size_ = data_size;
280 this->is_data_size_valid_ = true;
281 }
282
283 // Get the current data size--this is for the convenience of
284 // sections which build up their size over time.
285 off_t
286 current_data_size_for_child() const
287 { return this->data_size_; }
288
289 // Set the current data size--this is for the convenience of
290 // sections which build up their size over time.
291 void
292 set_current_data_size_for_child(off_t data_size)
293 {
294 gold_assert(!this->is_data_size_valid_);
295 this->data_size_ = data_size;
296 }
297
298 // Return default alignment for the target size.
299 static uint64_t
300 default_alignment();
301
302 // Return default alignment for a specified size--32 or 64.
303 static uint64_t
304 default_alignment_for_size(int size);
305
306 private:
307 Output_data(const Output_data&);
308 Output_data& operator=(const Output_data&);
309
310 // This is used for verification, to make sure that we don't try to
311 // change any sizes of allocated sections after we set the section
312 // addresses.
313 static bool allocated_sizes_are_fixed;
314
315 // Memory address in output file.
316 uint64_t address_;
317 // Size of data in output file.
318 off_t data_size_;
319 // File offset of contents in output file.
320 off_t offset_;
321 // Whether address_ is valid.
322 bool is_address_valid_;
323 // Whether data_size_ is valid.
324 bool is_data_size_valid_;
325 // Whether offset_ is valid.
326 bool is_offset_valid_;
327 // Count of dynamic relocations applied to this section.
328 unsigned int dynamic_reloc_count_;
329 };
330
331 // Output the section headers.
332
333 class Output_section_headers : public Output_data
334 {
335 public:
336 Output_section_headers(const Layout*,
337 const Layout::Segment_list*,
338 const Layout::Section_list*,
339 const Stringpool*);
340
341 protected:
342 // Write the data to the file.
343 void
344 do_write(Output_file*);
345
346 // Return the required alignment.
347 uint64_t
348 do_addralign() const
349 { return Output_data::default_alignment(); }
350
351 private:
352 // Write the data to the file with the right size and endianness.
353 template<int size, bool big_endian>
354 void
355 do_sized_write(Output_file*);
356
357 const Layout* layout_;
358 const Layout::Segment_list* segment_list_;
359 const Layout::Section_list* unattached_section_list_;
360 const Stringpool* secnamepool_;
361 };
362
363 // Output the segment headers.
364
365 class Output_segment_headers : public Output_data
366 {
367 public:
368 Output_segment_headers(const Layout::Segment_list& segment_list);
369
370 protected:
371 // Write the data to the file.
372 void
373 do_write(Output_file*);
374
375 // Return the required alignment.
376 uint64_t
377 do_addralign() const
378 { return Output_data::default_alignment(); }
379
380 private:
381 // Write the data to the file with the right size and endianness.
382 template<int size, bool big_endian>
383 void
384 do_sized_write(Output_file*);
385
386 const Layout::Segment_list& segment_list_;
387 };
388
389 // Output the ELF file header.
390
391 class Output_file_header : public Output_data
392 {
393 public:
394 Output_file_header(const Target*,
395 const Symbol_table*,
396 const Output_segment_headers*,
397 const char* entry);
398
399 // Add information about the section headers. We lay out the ELF
400 // file header before we create the section headers.
401 void set_section_info(const Output_section_headers*,
402 const Output_section* shstrtab);
403
404 protected:
405 // Write the data to the file.
406 void
407 do_write(Output_file*);
408
409 // Return the required alignment.
410 uint64_t
411 do_addralign() const
412 { return Output_data::default_alignment(); }
413
414 private:
415 // Write the data to the file with the right size and endianness.
416 template<int size, bool big_endian>
417 void
418 do_sized_write(Output_file*);
419
420 // Return the value to use for the entry address.
421 template<int size>
422 typename elfcpp::Elf_types<size>::Elf_Addr
423 entry();
424
425 const Target* target_;
426 const Symbol_table* symtab_;
427 const Output_segment_headers* segment_header_;
428 const Output_section_headers* section_header_;
429 const Output_section* shstrtab_;
430 const char* entry_;
431 };
432
433 // Output sections are mainly comprised of input sections. However,
434 // there are cases where we have data to write out which is not in an
435 // input section. Output_section_data is used in such cases. This is
436 // an abstract base class.
437
438 class Output_section_data : public Output_data
439 {
440 public:
441 Output_section_data(off_t data_size, uint64_t addralign)
442 : Output_data(), output_section_(NULL), addralign_(addralign)
443 { this->set_data_size(data_size); }
444
445 Output_section_data(uint64_t addralign)
446 : Output_data(), output_section_(NULL), addralign_(addralign)
447 { }
448
449 // Return the output section.
450 const Output_section*
451 output_section() const
452 { return this->output_section_; }
453
454 // Record the output section.
455 void
456 set_output_section(Output_section* os);
457
458 // Add an input section, for SHF_MERGE sections. This returns true
459 // if the section was handled.
460 bool
461 add_input_section(Relobj* object, unsigned int shndx)
462 { return this->do_add_input_section(object, shndx); }
463
464 // Given an input OBJECT, an input section index SHNDX within that
465 // object, and an OFFSET relative to the start of that input
466 // section, return whether or not the corresponding offset within
467 // the output section is known. If this function returns true, it
468 // sets *POUTPUT to the output offset. The value -1 indicates that
469 // this input offset is being discarded.
470 bool
471 output_offset(const Relobj* object, unsigned int shndx,
472 section_offset_type offset,
473 section_offset_type *poutput) const
474 { return this->do_output_offset(object, shndx, offset, poutput); }
475
476 // Return whether this is the merge section for the input section
477 // SHNDX in OBJECT. This should return true when output_offset
478 // would return true for some values of OFFSET.
479 bool
480 is_merge_section_for(const Relobj* object, unsigned int shndx) const
481 { return this->do_is_merge_section_for(object, shndx); }
482
483 // Write the contents to a buffer. This is used for sections which
484 // require postprocessing, such as compression.
485 void
486 write_to_buffer(unsigned char* buffer)
487 { this->do_write_to_buffer(buffer); }
488
489 // Print merge stats to stderr. This should only be called for
490 // SHF_MERGE sections.
491 void
492 print_merge_stats(const char* section_name)
493 { this->do_print_merge_stats(section_name); }
494
495 protected:
496 // The child class must implement do_write.
497
498 // The child class may implement specific adjustments to the output
499 // section.
500 virtual void
501 do_adjust_output_section(Output_section*)
502 { }
503
504 // May be implemented by child class. Return true if the section
505 // was handled.
506 virtual bool
507 do_add_input_section(Relobj*, unsigned int)
508 { gold_unreachable(); }
509
510 // The child class may implement output_offset.
511 virtual bool
512 do_output_offset(const Relobj*, unsigned int, section_offset_type,
513 section_offset_type*) const
514 { return false; }
515
516 // The child class may implement is_merge_section_for.
517 virtual bool
518 do_is_merge_section_for(const Relobj*, unsigned int) const
519 { return false; }
520
521 // The child class may implement write_to_buffer. Most child
522 // classes can not appear in a compressed section, and they do not
523 // implement this.
524 virtual void
525 do_write_to_buffer(unsigned char*)
526 { gold_unreachable(); }
527
528 // Print merge statistics.
529 virtual void
530 do_print_merge_stats(const char*)
531 { gold_unreachable(); }
532
533 // Return the required alignment.
534 uint64_t
535 do_addralign() const
536 { return this->addralign_; }
537
538 // Return the section index of the output section.
539 unsigned int
540 do_out_shndx() const;
541
542 // Set the alignment.
543 void
544 set_addralign(uint64_t addralign)
545 { this->addralign_ = addralign; }
546
547 private:
548 // The output section for this section.
549 const Output_section* output_section_;
550 // The required alignment.
551 uint64_t addralign_;
552 };
553
554 // Some Output_section_data classes build up their data step by step,
555 // rather than all at once. This class provides an interface for
556 // them.
557
558 class Output_section_data_build : public Output_section_data
559 {
560 public:
561 Output_section_data_build(uint64_t addralign)
562 : Output_section_data(addralign)
563 { }
564
565 // Get the current data size.
566 off_t
567 current_data_size() const
568 { return this->current_data_size_for_child(); }
569
570 // Set the current data size.
571 void
572 set_current_data_size(off_t data_size)
573 { this->set_current_data_size_for_child(data_size); }
574
575 protected:
576 // Set the final data size.
577 virtual void
578 set_final_data_size()
579 { this->set_data_size(this->current_data_size_for_child()); }
580 };
581
582 // A simple case of Output_data in which we have constant data to
583 // output.
584
585 class Output_data_const : public Output_section_data
586 {
587 public:
588 Output_data_const(const std::string& data, uint64_t addralign)
589 : Output_section_data(data.size(), addralign), data_(data)
590 { }
591
592 Output_data_const(const char* p, off_t len, uint64_t addralign)
593 : Output_section_data(len, addralign), data_(p, len)
594 { }
595
596 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
597 : Output_section_data(len, addralign),
598 data_(reinterpret_cast<const char*>(p), len)
599 { }
600
601 protected:
602 // Write the data to the output file.
603 void
604 do_write(Output_file*);
605
606 // Write the data to a buffer.
607 void
608 do_write_to_buffer(unsigned char* buffer)
609 { memcpy(buffer, this->data_.data(), this->data_.size()); }
610
611 private:
612 std::string data_;
613 };
614
615 // Another version of Output_data with constant data, in which the
616 // buffer is allocated by the caller.
617
618 class Output_data_const_buffer : public Output_section_data
619 {
620 public:
621 Output_data_const_buffer(const unsigned char* p, off_t len,
622 uint64_t addralign)
623 : Output_section_data(len, addralign), p_(p)
624 { }
625
626 protected:
627 // Write the data the output file.
628 void
629 do_write(Output_file*);
630
631 // Write the data to a buffer.
632 void
633 do_write_to_buffer(unsigned char* buffer)
634 { memcpy(buffer, this->p_, this->data_size()); }
635
636 private:
637 const unsigned char* p_;
638 };
639
640 // A place holder for a fixed amount of data written out via some
641 // other mechanism.
642
643 class Output_data_fixed_space : public Output_section_data
644 {
645 public:
646 Output_data_fixed_space(off_t data_size, uint64_t addralign)
647 : Output_section_data(data_size, addralign)
648 { }
649
650 protected:
651 // Write out the data--the actual data must be written out
652 // elsewhere.
653 void
654 do_write(Output_file*)
655 { }
656 };
657
658 // A place holder for variable sized data written out via some other
659 // mechanism.
660
661 class Output_data_space : public Output_section_data_build
662 {
663 public:
664 explicit Output_data_space(uint64_t addralign)
665 : Output_section_data_build(addralign)
666 { }
667
668 // Set the alignment.
669 void
670 set_space_alignment(uint64_t align)
671 { this->set_addralign(align); }
672
673 protected:
674 // Write out the data--the actual data must be written out
675 // elsewhere.
676 void
677 do_write(Output_file*)
678 { }
679 };
680
681 // A string table which goes into an output section.
682
683 class Output_data_strtab : public Output_section_data
684 {
685 public:
686 Output_data_strtab(Stringpool* strtab)
687 : Output_section_data(1), strtab_(strtab)
688 { }
689
690 protected:
691 // This is called to set the address and file offset. Here we make
692 // sure that the Stringpool is finalized.
693 void
694 set_final_data_size();
695
696 // Write out the data.
697 void
698 do_write(Output_file*);
699
700 // Write the data to a buffer.
701 void
702 do_write_to_buffer(unsigned char* buffer)
703 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
704
705 private:
706 Stringpool* strtab_;
707 };
708
709 // This POD class is used to represent a single reloc in the output
710 // file. This could be a private class within Output_data_reloc, but
711 // the templatization is complex enough that I broke it out into a
712 // separate class. The class is templatized on either elfcpp::SHT_REL
713 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
714 // relocation or an ordinary relocation.
715
716 // A relocation can be against a global symbol, a local symbol, an
717 // output section, or the undefined symbol at index 0. We represent
718 // the latter by using a NULL global symbol.
719
720 template<int sh_type, bool dynamic, int size, bool big_endian>
721 class Output_reloc;
722
723 template<bool dynamic, int size, bool big_endian>
724 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
725 {
726 public:
727 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
728
729 // An uninitialized entry. We need this because we want to put
730 // instances of this class into an STL container.
731 Output_reloc()
732 : local_sym_index_(INVALID_CODE)
733 { }
734
735 // A reloc against a global symbol.
736
737 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
738 Address address, bool is_relative);
739
740 Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
741 unsigned int shndx, Address address, bool is_relative);
742
743 // A reloc against a local symbol.
744
745 Output_reloc(Sized_relobj<size, big_endian>* relobj,
746 unsigned int local_sym_index, unsigned int type,
747 Output_data* od, Address address, bool is_relative);
748
749 Output_reloc(Sized_relobj<size, big_endian>* relobj,
750 unsigned int local_sym_index, unsigned int type,
751 unsigned int shndx, Address address, bool is_relative);
752
753 // A reloc against the STT_SECTION symbol of an output section.
754
755 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
756 Address address);
757
758 Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
759 unsigned int shndx, Address address);
760
761 // Return TRUE if this is a RELATIVE relocation.
762 bool
763 is_relative() const
764 { return this->is_relative_; }
765
766 // Get the value of the symbol referred to by a Rel relocation.
767
768 Address
769 symbol_value() const;
770
771 // Write the reloc entry to an output view.
772 void
773 write(unsigned char* pov) const;
774
775 // Write the offset and info fields to Write_rel.
776 template<typename Write_rel>
777 void write_rel(Write_rel*) const;
778
779 private:
780 // Return the symbol index. We can't do a double template
781 // specialization, so we do a secondary template here.
782 unsigned int
783 get_symbol_index() const;
784
785 // Codes for local_sym_index_.
786 enum
787 {
788 // Global symbol.
789 GSYM_CODE = -1U,
790 // Output section.
791 SECTION_CODE = -2U,
792 // Invalid uninitialized entry.
793 INVALID_CODE = -3U
794 };
795
796 union
797 {
798 // For a local symbol, the object. We will never generate a
799 // relocation against a local symbol in a dynamic object; that
800 // doesn't make sense. And our callers will always be
801 // templatized, so we use Sized_relobj here.
802 Sized_relobj<size, big_endian>* relobj;
803 // For a global symbol, the symbol. If this is NULL, it indicates
804 // a relocation against the undefined 0 symbol.
805 Symbol* gsym;
806 // For a relocation against an output section, the output section.
807 Output_section* os;
808 } u1_;
809 union
810 {
811 // If shndx_ is not INVALID CODE, the object which holds the input
812 // section being used to specify the reloc address.
813 Relobj* relobj;
814 // If shndx_ is INVALID_CODE, the output data being used to
815 // specify the reloc address. This may be NULL if the reloc
816 // address is absolute.
817 Output_data* od;
818 } u2_;
819 // The address offset within the input section or the Output_data.
820 Address address_;
821 // For a local symbol, the local symbol index. This is GSYM_CODE
822 // for a global symbol, or INVALID_CODE for an uninitialized value.
823 unsigned int local_sym_index_;
824 // The reloc type--a processor specific code.
825 unsigned int type_ : 31;
826 // True if the relocation is a RELATIVE relocation.
827 bool is_relative_ : 1;
828 // If the reloc address is an input section in an object, the
829 // section index. This is INVALID_CODE if the reloc address is
830 // specified in some other way.
831 unsigned int shndx_;
832 };
833
834 // The SHT_RELA version of Output_reloc<>. This is just derived from
835 // the SHT_REL version of Output_reloc, but it adds an addend.
836
837 template<bool dynamic, int size, bool big_endian>
838 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
839 {
840 public:
841 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
842 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
843
844 // An uninitialized entry.
845 Output_reloc()
846 : rel_()
847 { }
848
849 // A reloc against a global symbol.
850
851 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
852 Address address, Addend addend, bool is_relative)
853 : rel_(gsym, type, od, address, is_relative), addend_(addend)
854 { }
855
856 Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
857 unsigned int shndx, Address address, Addend addend,
858 bool is_relative)
859 : rel_(gsym, type, relobj, shndx, address, is_relative), addend_(addend)
860 { }
861
862 // A reloc against a local symbol.
863
864 Output_reloc(Sized_relobj<size, big_endian>* relobj,
865 unsigned int local_sym_index, unsigned int type,
866 Output_data* od, Address address,
867 Addend addend, bool is_relative)
868 : rel_(relobj, local_sym_index, type, od, address, is_relative),
869 addend_(addend)
870 { }
871
872 Output_reloc(Sized_relobj<size, big_endian>* relobj,
873 unsigned int local_sym_index, unsigned int type,
874 unsigned int shndx, Address address,
875 Addend addend, bool is_relative)
876 : rel_(relobj, local_sym_index, type, shndx, address, is_relative),
877 addend_(addend)
878 { }
879
880 // A reloc against the STT_SECTION symbol of an output section.
881
882 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
883 Address address, Addend addend)
884 : rel_(os, type, od, address), addend_(addend)
885 { }
886
887 Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
888 unsigned int shndx, Address address, Addend addend)
889 : rel_(os, type, relobj, shndx, address), addend_(addend)
890 { }
891
892 // Write the reloc entry to an output view.
893 void
894 write(unsigned char* pov) const;
895
896 private:
897 // The basic reloc.
898 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
899 // The addend.
900 Addend addend_;
901 };
902
903 // Output_data_reloc is used to manage a section containing relocs.
904 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
905 // indicates whether this is a dynamic relocation or a normal
906 // relocation. Output_data_reloc_base is a base class.
907 // Output_data_reloc is the real class, which we specialize based on
908 // the reloc type.
909
910 template<int sh_type, bool dynamic, int size, bool big_endian>
911 class Output_data_reloc_base : public Output_section_data_build
912 {
913 public:
914 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
915 typedef typename Output_reloc_type::Address Address;
916 static const int reloc_size =
917 Reloc_types<sh_type, size, big_endian>::reloc_size;
918
919 // Construct the section.
920 Output_data_reloc_base()
921 : Output_section_data_build(Output_data::default_alignment_for_size(size))
922 { }
923
924 protected:
925 // Write out the data.
926 void
927 do_write(Output_file*);
928
929 // Set the entry size and the link.
930 void
931 do_adjust_output_section(Output_section *os);
932
933 // Add a relocation entry.
934 void
935 add(Output_data *od, const Output_reloc_type& reloc)
936 {
937 this->relocs_.push_back(reloc);
938 this->set_current_data_size(this->relocs_.size() * reloc_size);
939 od->add_dynamic_reloc();
940 }
941
942 private:
943 typedef std::vector<Output_reloc_type> Relocs;
944
945 Relocs relocs_;
946 };
947
948 // The class which callers actually create.
949
950 template<int sh_type, bool dynamic, int size, bool big_endian>
951 class Output_data_reloc;
952
953 // The SHT_REL version of Output_data_reloc.
954
955 template<bool dynamic, int size, bool big_endian>
956 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
957 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
958 {
959 private:
960 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
961 big_endian> Base;
962
963 public:
964 typedef typename Base::Output_reloc_type Output_reloc_type;
965 typedef typename Output_reloc_type::Address Address;
966
967 Output_data_reloc()
968 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>()
969 { }
970
971 // Add a reloc against a global symbol.
972
973 void
974 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
975 { this->add(od, Output_reloc_type(gsym, type, od, address, false)); }
976
977 void
978 add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
979 unsigned int shndx, Address address)
980 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
981 false)); }
982
983 // Add a RELATIVE reloc against a global symbol. The final relocation
984 // will not reference the symbol.
985
986 void
987 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
988 Address address)
989 { this->add(od, Output_reloc_type(gsym, type, od, address, true)); }
990
991 void
992 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
993 Relobj* relobj, unsigned int shndx, Address address)
994 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
995 true)); }
996
997 // Add a reloc against a local symbol.
998
999 void
1000 add_local(Sized_relobj<size, big_endian>* relobj,
1001 unsigned int local_sym_index, unsigned int type,
1002 Output_data* od, Address address)
1003 { this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1004 address, false)); }
1005
1006 void
1007 add_local(Sized_relobj<size, big_endian>* relobj,
1008 unsigned int local_sym_index, unsigned int type,
1009 Output_data* od, unsigned int shndx, Address address)
1010 { this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1011 address, false)); }
1012
1013 // Add a RELATIVE reloc against a local symbol.
1014
1015 void
1016 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1017 unsigned int local_sym_index, unsigned int type,
1018 Output_data* od, Address address)
1019 { this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1020 address, true)); }
1021
1022 void
1023 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1024 unsigned int local_sym_index, unsigned int type,
1025 Output_data* od, unsigned int shndx, Address address)
1026 { this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1027 address, true)); }
1028
1029 // A reloc against the STT_SECTION symbol of an output section.
1030 // OS is the Output_section that the relocation refers to; OD is
1031 // the Output_data object being relocated.
1032
1033 void
1034 add_output_section(Output_section* os, unsigned int type,
1035 Output_data* od, Address address)
1036 { this->add(od, Output_reloc_type(os, type, od, address)); }
1037
1038 void
1039 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1040 Relobj* relobj, unsigned int shndx, Address address)
1041 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1042 };
1043
1044 // The SHT_RELA version of Output_data_reloc.
1045
1046 template<bool dynamic, int size, bool big_endian>
1047 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1048 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1049 {
1050 private:
1051 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1052 big_endian> Base;
1053
1054 public:
1055 typedef typename Base::Output_reloc_type Output_reloc_type;
1056 typedef typename Output_reloc_type::Address Address;
1057 typedef typename Output_reloc_type::Addend Addend;
1058
1059 Output_data_reloc()
1060 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>()
1061 { }
1062
1063 // Add a reloc against a global symbol.
1064
1065 void
1066 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1067 Address address, Addend addend)
1068 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1069 false)); }
1070
1071 void
1072 add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
1073 unsigned int shndx, Address address,
1074 Addend addend)
1075 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1076 addend, false)); }
1077
1078 // Add a RELATIVE reloc against a global symbol. The final output
1079 // relocation will not reference the symbol, but we must keep the symbol
1080 // information long enough to set the addend of the relocation correctly
1081 // when it is written.
1082
1083 void
1084 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1085 Address address, Addend addend)
1086 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true)); }
1087
1088 void
1089 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1090 Relobj* relobj, unsigned int shndx, Address address,
1091 Addend addend)
1092 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1093 addend, true)); }
1094
1095 // Add a reloc against a local symbol.
1096
1097 void
1098 add_local(Sized_relobj<size, big_endian>* relobj,
1099 unsigned int local_sym_index, unsigned int type,
1100 Output_data* od, Address address, Addend addend)
1101 {
1102 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1103 addend, false));
1104 }
1105
1106 void
1107 add_local(Sized_relobj<size, big_endian>* relobj,
1108 unsigned int local_sym_index, unsigned int type,
1109 Output_data* od, unsigned int shndx, Address address,
1110 Addend addend)
1111 {
1112 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1113 address, addend, false));
1114 }
1115
1116 // Add a RELATIVE reloc against a local symbol.
1117
1118 void
1119 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1120 unsigned int local_sym_index, unsigned int type,
1121 Output_data* od, Address address, Addend addend)
1122 {
1123 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1124 addend, true));
1125 }
1126
1127 void
1128 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1129 unsigned int local_sym_index, unsigned int type,
1130 Output_data* od, unsigned int shndx, Address address,
1131 Addend addend)
1132 {
1133 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1134 address, addend, true));
1135 }
1136
1137 // A reloc against the STT_SECTION symbol of an output section.
1138
1139 void
1140 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1141 Address address, Addend addend)
1142 { this->add(os, Output_reloc_type(os, type, od, address, addend)); }
1143
1144 void
1145 add_output_section(Output_section* os, unsigned int type, Relobj* relobj,
1146 unsigned int shndx, Address address, Addend addend)
1147 { this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
1148 addend)); }
1149 };
1150
1151 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1152 // for one symbol--either a global symbol or a local symbol in an
1153 // object. The target specific code adds entries to the GOT as
1154 // needed.
1155
1156 template<int size, bool big_endian>
1157 class Output_data_got : public Output_section_data_build
1158 {
1159 public:
1160 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1161 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1162 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1163
1164 Output_data_got()
1165 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1166 entries_()
1167 { }
1168
1169 // Add an entry for a global symbol to the GOT. Return true if this
1170 // is a new GOT entry, false if the symbol was already in the GOT.
1171 bool
1172 add_global(Symbol* gsym);
1173
1174 // Add an entry for a global symbol to the GOT, and add a dynamic
1175 // relocation of type R_TYPE for the GOT entry.
1176 void
1177 add_global_with_rel(Symbol* gsym, Rel_dyn* rel_dyn, unsigned int r_type);
1178
1179 void
1180 add_global_with_rela(Symbol* gsym, Rela_dyn* rela_dyn, unsigned int r_type);
1181
1182 // Add an entry for a local symbol to the GOT. This returns true if
1183 // this is a new GOT entry, false if the symbol already has a GOT
1184 // entry.
1185 bool
1186 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index);
1187
1188 // Add an entry for a global symbol to the GOT, and add a dynamic
1189 // relocation of type R_TYPE for the GOT entry.
1190 void
1191 add_local_with_rel(Sized_relobj<size, big_endian>* object,
1192 unsigned int sym_index, Rel_dyn* rel_dyn,
1193 unsigned int r_type);
1194
1195 void
1196 add_local_with_rela(Sized_relobj<size, big_endian>* object,
1197 unsigned int sym_index, Rela_dyn* rela_dyn,
1198 unsigned int r_type);
1199
1200 // Add an entry (or pair of entries) for a global TLS symbol to the GOT.
1201 // Return true if this is a new GOT entry, false if the symbol was
1202 // already in the GOT.
1203 bool
1204 add_global_tls(Symbol* gsym, bool need_pair);
1205
1206 // Add an entry for a global TLS symbol to the GOT, and add a dynamic
1207 // relocation of type R_TYPE.
1208 void
1209 add_global_tls_with_rel(Symbol* gsym, Rel_dyn* rel_dyn,
1210 unsigned int r_type);
1211
1212 void
1213 add_global_tls_with_rela(Symbol* gsym, Rela_dyn* rela_dyn,
1214 unsigned int r_type);
1215
1216 // Add a pair of entries for a global TLS symbol to the GOT, and add
1217 // dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
1218 void
1219 add_global_tls_with_rel(Symbol* gsym, Rel_dyn* rel_dyn,
1220 unsigned int mod_r_type,
1221 unsigned int dtv_r_type);
1222
1223 void
1224 add_global_tls_with_rela(Symbol* gsym, Rela_dyn* rela_dyn,
1225 unsigned int mod_r_type,
1226 unsigned int dtv_r_type);
1227
1228 // Add an entry (or pair of entries) for a local TLS symbol to the GOT.
1229 // This returns true if this is a new GOT entry, false if the symbol
1230 // already has a GOT entry.
1231 bool
1232 add_local_tls(Sized_relobj<size, big_endian>* object,
1233 unsigned int sym_index, bool need_pair);
1234
1235 // Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1236 // and add a dynamic relocation of type R_TYPE for the first GOT entry.
1237 // Because this is a local symbol, the first GOT entry can be relocated
1238 // relative to a section symbol, and the second GOT entry will have an
1239 // dtv-relative value that can be computed at link time.
1240 void
1241 add_local_tls_with_rel(Sized_relobj<size, big_endian>* object,
1242 unsigned int sym_index, unsigned int shndx,
1243 bool need_pair, Rel_dyn* rel_dyn,
1244 unsigned int r_type);
1245
1246 void
1247 add_local_tls_with_rela(Sized_relobj<size, big_endian>* object,
1248 unsigned int sym_index, unsigned int shndx,
1249 bool need_pair, Rela_dyn* rela_dyn,
1250 unsigned int r_type);
1251
1252 // Add a constant to the GOT. This returns the offset of the new
1253 // entry from the start of the GOT.
1254 unsigned int
1255 add_constant(Valtype constant)
1256 {
1257 this->entries_.push_back(Got_entry(constant));
1258 this->set_got_size();
1259 return this->last_got_offset();
1260 }
1261
1262 protected:
1263 // Write out the GOT table.
1264 void
1265 do_write(Output_file*);
1266
1267 private:
1268 // This POD class holds a single GOT entry.
1269 class Got_entry
1270 {
1271 public:
1272 // Create a zero entry.
1273 Got_entry()
1274 : local_sym_index_(CONSTANT_CODE)
1275 { this->u_.constant = 0; }
1276
1277 // Create a global symbol entry.
1278 explicit Got_entry(Symbol* gsym)
1279 : local_sym_index_(GSYM_CODE)
1280 { this->u_.gsym = gsym; }
1281
1282 // Create a local symbol entry.
1283 Got_entry(Sized_relobj<size, big_endian>* object,
1284 unsigned int local_sym_index)
1285 : local_sym_index_(local_sym_index)
1286 {
1287 gold_assert(local_sym_index != GSYM_CODE
1288 && local_sym_index != CONSTANT_CODE);
1289 this->u_.object = object;
1290 }
1291
1292 // Create a constant entry. The constant is a host value--it will
1293 // be swapped, if necessary, when it is written out.
1294 explicit Got_entry(Valtype constant)
1295 : local_sym_index_(CONSTANT_CODE)
1296 { this->u_.constant = constant; }
1297
1298 // Write the GOT entry to an output view.
1299 void
1300 write(unsigned char* pov) const;
1301
1302 private:
1303 enum
1304 {
1305 GSYM_CODE = -1U,
1306 CONSTANT_CODE = -2U
1307 };
1308
1309 union
1310 {
1311 // For a local symbol, the object.
1312 Sized_relobj<size, big_endian>* object;
1313 // For a global symbol, the symbol.
1314 Symbol* gsym;
1315 // For a constant, the constant.
1316 Valtype constant;
1317 } u_;
1318 // For a local symbol, the local symbol index. This is GSYM_CODE
1319 // for a global symbol, or CONSTANT_CODE for a constant.
1320 unsigned int local_sym_index_;
1321 };
1322
1323 typedef std::vector<Got_entry> Got_entries;
1324
1325 // Return the offset into the GOT of GOT entry I.
1326 unsigned int
1327 got_offset(unsigned int i) const
1328 { return i * (size / 8); }
1329
1330 // Return the offset into the GOT of the last entry added.
1331 unsigned int
1332 last_got_offset() const
1333 { return this->got_offset(this->entries_.size() - 1); }
1334
1335 // Set the size of the section.
1336 void
1337 set_got_size()
1338 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
1339
1340 // The list of GOT entries.
1341 Got_entries entries_;
1342 };
1343
1344 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
1345 // section.
1346
1347 class Output_data_dynamic : public Output_section_data
1348 {
1349 public:
1350 Output_data_dynamic(Stringpool* pool)
1351 : Output_section_data(Output_data::default_alignment()),
1352 entries_(), pool_(pool)
1353 { }
1354
1355 // Add a new dynamic entry with a fixed numeric value.
1356 void
1357 add_constant(elfcpp::DT tag, unsigned int val)
1358 { this->add_entry(Dynamic_entry(tag, val)); }
1359
1360 // Add a new dynamic entry with the address of output data.
1361 void
1362 add_section_address(elfcpp::DT tag, const Output_data* od)
1363 { this->add_entry(Dynamic_entry(tag, od, false)); }
1364
1365 // Add a new dynamic entry with the size of output data.
1366 void
1367 add_section_size(elfcpp::DT tag, const Output_data* od)
1368 { this->add_entry(Dynamic_entry(tag, od, true)); }
1369
1370 // Add a new dynamic entry with the address of a symbol.
1371 void
1372 add_symbol(elfcpp::DT tag, const Symbol* sym)
1373 { this->add_entry(Dynamic_entry(tag, sym)); }
1374
1375 // Add a new dynamic entry with a string.
1376 void
1377 add_string(elfcpp::DT tag, const char* str)
1378 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
1379
1380 void
1381 add_string(elfcpp::DT tag, const std::string& str)
1382 { this->add_string(tag, str.c_str()); }
1383
1384 protected:
1385 // Adjust the output section to set the entry size.
1386 void
1387 do_adjust_output_section(Output_section*);
1388
1389 // Set the final data size.
1390 void
1391 set_final_data_size();
1392
1393 // Write out the dynamic entries.
1394 void
1395 do_write(Output_file*);
1396
1397 private:
1398 // This POD class holds a single dynamic entry.
1399 class Dynamic_entry
1400 {
1401 public:
1402 // Create an entry with a fixed numeric value.
1403 Dynamic_entry(elfcpp::DT tag, unsigned int val)
1404 : tag_(tag), classification_(DYNAMIC_NUMBER)
1405 { this->u_.val = val; }
1406
1407 // Create an entry with the size or address of a section.
1408 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
1409 : tag_(tag),
1410 classification_(section_size
1411 ? DYNAMIC_SECTION_SIZE
1412 : DYNAMIC_SECTION_ADDRESS)
1413 { this->u_.od = od; }
1414
1415 // Create an entry with the address of a symbol.
1416 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
1417 : tag_(tag), classification_(DYNAMIC_SYMBOL)
1418 { this->u_.sym = sym; }
1419
1420 // Create an entry with a string.
1421 Dynamic_entry(elfcpp::DT tag, const char* str)
1422 : tag_(tag), classification_(DYNAMIC_STRING)
1423 { this->u_.str = str; }
1424
1425 // Write the dynamic entry to an output view.
1426 template<int size, bool big_endian>
1427 void
1428 write(unsigned char* pov, const Stringpool* ACCEPT_SIZE_ENDIAN) const;
1429
1430 private:
1431 enum Classification
1432 {
1433 // Number.
1434 DYNAMIC_NUMBER,
1435 // Section address.
1436 DYNAMIC_SECTION_ADDRESS,
1437 // Section size.
1438 DYNAMIC_SECTION_SIZE,
1439 // Symbol adress.
1440 DYNAMIC_SYMBOL,
1441 // String.
1442 DYNAMIC_STRING
1443 };
1444
1445 union
1446 {
1447 // For DYNAMIC_NUMBER.
1448 unsigned int val;
1449 // For DYNAMIC_SECTION_ADDRESS and DYNAMIC_SECTION_SIZE.
1450 const Output_data* od;
1451 // For DYNAMIC_SYMBOL.
1452 const Symbol* sym;
1453 // For DYNAMIC_STRING.
1454 const char* str;
1455 } u_;
1456 // The dynamic tag.
1457 elfcpp::DT tag_;
1458 // The type of entry.
1459 Classification classification_;
1460 };
1461
1462 // Add an entry to the list.
1463 void
1464 add_entry(const Dynamic_entry& entry)
1465 { this->entries_.push_back(entry); }
1466
1467 // Sized version of write function.
1468 template<int size, bool big_endian>
1469 void
1470 sized_write(Output_file* of);
1471
1472 // The type of the list of entries.
1473 typedef std::vector<Dynamic_entry> Dynamic_entries;
1474
1475 // The entries.
1476 Dynamic_entries entries_;
1477 // The pool used for strings.
1478 Stringpool* pool_;
1479 };
1480
1481 // An output section. We don't expect to have too many output
1482 // sections, so we don't bother to do a template on the size.
1483
1484 class Output_section : public Output_data
1485 {
1486 public:
1487 // Create an output section, giving the name, type, and flags.
1488 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
1489 virtual ~Output_section();
1490
1491 // Add a new input section SHNDX, named NAME, with header SHDR, from
1492 // object OBJECT. RELOC_SHNDX is the index of a relocation section
1493 // which applies to this section, or 0 if none, or -1U if more than
1494 // one. Return the offset within the output section.
1495 template<int size, bool big_endian>
1496 off_t
1497 add_input_section(Sized_relobj<size, big_endian>* object, unsigned int shndx,
1498 const char *name,
1499 const elfcpp::Shdr<size, big_endian>& shdr,
1500 unsigned int reloc_shndx);
1501
1502 // Add generated data POSD to this output section.
1503 void
1504 add_output_section_data(Output_section_data* posd);
1505
1506 // Return the section name.
1507 const char*
1508 name() const
1509 { return this->name_; }
1510
1511 // Return the section type.
1512 elfcpp::Elf_Word
1513 type() const
1514 { return this->type_; }
1515
1516 // Return the section flags.
1517 elfcpp::Elf_Xword
1518 flags() const
1519 { return this->flags_; }
1520
1521 // Return the entsize field.
1522 uint64_t
1523 entsize() const
1524 { return this->entsize_; }
1525
1526 // Set the entsize field.
1527 void
1528 set_entsize(uint64_t v);
1529
1530 // Set the link field to the output section index of a section.
1531 void
1532 set_link_section(const Output_data* od)
1533 {
1534 gold_assert(this->link_ == 0
1535 && !this->should_link_to_symtab_
1536 && !this->should_link_to_dynsym_);
1537 this->link_section_ = od;
1538 }
1539
1540 // Set the link field to a constant.
1541 void
1542 set_link(unsigned int v)
1543 {
1544 gold_assert(this->link_section_ == NULL
1545 && !this->should_link_to_symtab_
1546 && !this->should_link_to_dynsym_);
1547 this->link_ = v;
1548 }
1549
1550 // Record that this section should link to the normal symbol table.
1551 void
1552 set_should_link_to_symtab()
1553 {
1554 gold_assert(this->link_section_ == NULL
1555 && this->link_ == 0
1556 && !this->should_link_to_dynsym_);
1557 this->should_link_to_symtab_ = true;
1558 }
1559
1560 // Record that this section should link to the dynamic symbol table.
1561 void
1562 set_should_link_to_dynsym()
1563 {
1564 gold_assert(this->link_section_ == NULL
1565 && this->link_ == 0
1566 && !this->should_link_to_symtab_);
1567 this->should_link_to_dynsym_ = true;
1568 }
1569
1570 // Return the info field.
1571 unsigned int
1572 info() const
1573 {
1574 gold_assert(this->info_section_ == NULL);
1575 return this->info_;
1576 }
1577
1578 // Set the info field to the output section index of a section.
1579 void
1580 set_info_section(const Output_data* od)
1581 {
1582 gold_assert(this->info_ == 0);
1583 this->info_section_ = od;
1584 }
1585
1586 // Set the info field to a constant.
1587 void
1588 set_info(unsigned int v)
1589 {
1590 gold_assert(this->info_section_ == NULL);
1591 this->info_ = v;
1592 }
1593
1594 // Set the addralign field.
1595 void
1596 set_addralign(uint64_t v)
1597 { this->addralign_ = v; }
1598
1599 // Indicate that we need a symtab index.
1600 void
1601 set_needs_symtab_index()
1602 { this->needs_symtab_index_ = true; }
1603
1604 // Return whether we need a symtab index.
1605 bool
1606 needs_symtab_index() const
1607 { return this->needs_symtab_index_; }
1608
1609 // Get the symtab index.
1610 unsigned int
1611 symtab_index() const
1612 {
1613 gold_assert(this->symtab_index_ != 0);
1614 return this->symtab_index_;
1615 }
1616
1617 // Set the symtab index.
1618 void
1619 set_symtab_index(unsigned int index)
1620 {
1621 gold_assert(index != 0);
1622 this->symtab_index_ = index;
1623 }
1624
1625 // Indicate that we need a dynsym index.
1626 void
1627 set_needs_dynsym_index()
1628 { this->needs_dynsym_index_ = true; }
1629
1630 // Return whether we need a dynsym index.
1631 bool
1632 needs_dynsym_index() const
1633 { return this->needs_dynsym_index_; }
1634
1635 // Get the dynsym index.
1636 unsigned int
1637 dynsym_index() const
1638 {
1639 gold_assert(this->dynsym_index_ != 0);
1640 return this->dynsym_index_;
1641 }
1642
1643 // Set the dynsym index.
1644 void
1645 set_dynsym_index(unsigned int index)
1646 {
1647 gold_assert(index != 0);
1648 this->dynsym_index_ = index;
1649 }
1650
1651 // Return whether this section should be written after all the input
1652 // sections are complete.
1653 bool
1654 after_input_sections() const
1655 { return this->after_input_sections_; }
1656
1657 // Record that this section should be written after all the input
1658 // sections are complete.
1659 void
1660 set_after_input_sections()
1661 { this->after_input_sections_ = true; }
1662
1663 // Return whether this section requires postprocessing after all
1664 // relocations have been applied.
1665 bool
1666 requires_postprocessing() const
1667 { return this->requires_postprocessing_; }
1668
1669 // If a section requires postprocessing, return the buffer to use.
1670 unsigned char*
1671 postprocessing_buffer() const
1672 {
1673 gold_assert(this->postprocessing_buffer_ != NULL);
1674 return this->postprocessing_buffer_;
1675 }
1676
1677 // If a section requires postprocessing, create the buffer to use.
1678 void
1679 create_postprocessing_buffer();
1680
1681 // If a section requires postprocessing, this is the size of the
1682 // buffer to which relocations should be applied.
1683 off_t
1684 postprocessing_buffer_size() const
1685 { return this->current_data_size_for_child(); }
1686
1687 // Return whether the offset OFFSET in the input section SHNDX in
1688 // object OBJECT is being included in the link.
1689 bool
1690 is_input_address_mapped(const Relobj* object, unsigned int shndx,
1691 off_t offset) const;
1692
1693 // Return the offset within the output section of OFFSET relative to
1694 // the start of input section SHNDX in object OBJECT.
1695 section_offset_type
1696 output_offset(const Relobj* object, unsigned int shndx,
1697 section_offset_type offset) const;
1698
1699 // Return the output virtual address of OFFSET relative to the start
1700 // of input section SHNDX in object OBJECT.
1701 uint64_t
1702 output_address(const Relobj* object, unsigned int shndx,
1703 off_t offset) const;
1704
1705 // Return the output address of the start of the merged section for
1706 // input section SHNDX in object OBJECT. This is not necessarily
1707 // the offset corresponding to input offset 0 in the section, since
1708 // the section may be mapped arbitrarily.
1709 uint64_t
1710 starting_output_address(const Relobj* object, unsigned int shndx) const;
1711
1712 // Write the section header into *OPHDR.
1713 template<int size, bool big_endian>
1714 void
1715 write_header(const Layout*, const Stringpool*,
1716 elfcpp::Shdr_write<size, big_endian>*) const;
1717
1718 // Print merge statistics to stderr.
1719 void
1720 print_merge_stats();
1721
1722 protected:
1723 // Return the section index in the output file.
1724 unsigned int
1725 do_out_shndx() const
1726 {
1727 gold_assert(this->out_shndx_ != -1U);
1728 return this->out_shndx_;
1729 }
1730
1731 // Set the output section index.
1732 void
1733 do_set_out_shndx(unsigned int shndx)
1734 {
1735 gold_assert(this->out_shndx_ == -1U);
1736 this->out_shndx_ = shndx;
1737 }
1738
1739 // Set the final data size of the Output_section. For a typical
1740 // Output_section, there is nothing to do, but if there are any
1741 // Output_section_data objects we need to set their final addresses
1742 // here.
1743 virtual void
1744 set_final_data_size();
1745
1746 // Write the data to the file. For a typical Output_section, this
1747 // does nothing: the data is written out by calling Object::Relocate
1748 // on each input object. But if there are any Output_section_data
1749 // objects we do need to write them out here.
1750 virtual void
1751 do_write(Output_file*);
1752
1753 // Return the address alignment--function required by parent class.
1754 uint64_t
1755 do_addralign() const
1756 { return this->addralign_; }
1757
1758 // Return whether this is an Output_section.
1759 bool
1760 do_is_section() const
1761 { return true; }
1762
1763 // Return whether this is a section of the specified type.
1764 bool
1765 do_is_section_type(elfcpp::Elf_Word type) const
1766 { return this->type_ == type; }
1767
1768 // Return whether the specified section flag is set.
1769 bool
1770 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
1771 { return (this->flags_ & flag) != 0; }
1772
1773 // Set the TLS offset. Called only for SHT_TLS sections.
1774 void
1775 do_set_tls_offset(uint64_t tls_base);
1776
1777 // Return the TLS offset, relative to the base of the TLS segment.
1778 // Valid only for SHT_TLS sections.
1779 uint64_t
1780 do_tls_offset() const
1781 { return this->tls_offset_; }
1782
1783 // Modify the section name. This is only permitted for an
1784 // unallocated section, and only before the size has been finalized.
1785 // Otherwise the name will not get into Layout::namepool_.
1786 void
1787 set_name(const char* newname)
1788 {
1789 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
1790 gold_assert(!this->is_data_size_valid());
1791 this->name_ = newname;
1792 }
1793
1794 // This may be implemented by a child class.
1795 virtual void
1796 do_finalize_name(Layout*)
1797 { }
1798
1799 // Record that this section requires postprocessing after all
1800 // relocations have been applied. This is called by a child class.
1801 void
1802 set_requires_postprocessing()
1803 {
1804 this->requires_postprocessing_ = true;
1805 this->after_input_sections_ = true;
1806 }
1807
1808 // Write all the data of an Output_section into the postprocessing
1809 // buffer.
1810 void
1811 write_to_postprocessing_buffer();
1812
1813 private:
1814 // In some cases we need to keep a list of the input sections
1815 // associated with this output section. We only need the list if we
1816 // might have to change the offsets of the input section within the
1817 // output section after we add the input section. The ordinary
1818 // input sections will be written out when we process the object
1819 // file, and as such we don't need to track them here. We do need
1820 // to track Output_section_data objects here. We store instances of
1821 // this structure in a std::vector, so it must be a POD. There can
1822 // be many instances of this structure, so we use a union to save
1823 // some space.
1824 class Input_section
1825 {
1826 public:
1827 Input_section()
1828 : shndx_(0), p2align_(0)
1829 {
1830 this->u1_.data_size = 0;
1831 this->u2_.object = NULL;
1832 }
1833
1834 // For an ordinary input section.
1835 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
1836 uint64_t addralign)
1837 : shndx_(shndx),
1838 p2align_(ffsll(static_cast<long long>(addralign)))
1839 {
1840 gold_assert(shndx != OUTPUT_SECTION_CODE
1841 && shndx != MERGE_DATA_SECTION_CODE
1842 && shndx != MERGE_STRING_SECTION_CODE);
1843 this->u1_.data_size = data_size;
1844 this->u2_.object = object;
1845 }
1846
1847 // For a non-merge output section.
1848 Input_section(Output_section_data* posd)
1849 : shndx_(OUTPUT_SECTION_CODE),
1850 p2align_(ffsll(static_cast<long long>(posd->addralign())))
1851 {
1852 this->u1_.data_size = 0;
1853 this->u2_.posd = posd;
1854 }
1855
1856 // For a merge section.
1857 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
1858 : shndx_(is_string
1859 ? MERGE_STRING_SECTION_CODE
1860 : MERGE_DATA_SECTION_CODE),
1861 p2align_(ffsll(static_cast<long long>(posd->addralign())))
1862 {
1863 this->u1_.entsize = entsize;
1864 this->u2_.posd = posd;
1865 }
1866
1867 // The required alignment.
1868 uint64_t
1869 addralign() const
1870 {
1871 return (this->p2align_ == 0
1872 ? 0
1873 : static_cast<uint64_t>(1) << (this->p2align_ - 1));
1874 }
1875
1876 // Return the required size.
1877 off_t
1878 data_size() const;
1879
1880 // Return whether this is a merge section which matches the
1881 // parameters.
1882 bool
1883 is_merge_section(bool is_string, uint64_t entsize,
1884 uint64_t addralign) const
1885 {
1886 return (this->shndx_ == (is_string
1887 ? MERGE_STRING_SECTION_CODE
1888 : MERGE_DATA_SECTION_CODE)
1889 && this->u1_.entsize == entsize
1890 && this->addralign() == addralign);
1891 }
1892
1893 // Set the output section.
1894 void
1895 set_output_section(Output_section* os)
1896 {
1897 gold_assert(!this->is_input_section());
1898 this->u2_.posd->set_output_section(os);
1899 }
1900
1901 // Set the address and file offset. This is called during
1902 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
1903 // the enclosing section.
1904 void
1905 set_address_and_file_offset(uint64_t address, off_t file_offset,
1906 off_t section_file_offset);
1907
1908 // Finalize the data size.
1909 void
1910 finalize_data_size();
1911
1912 // Add an input section, for SHF_MERGE sections.
1913 bool
1914 add_input_section(Relobj* object, unsigned int shndx)
1915 {
1916 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
1917 || this->shndx_ == MERGE_STRING_SECTION_CODE);
1918 return this->u2_.posd->add_input_section(object, shndx);
1919 }
1920
1921 // Given an input OBJECT, an input section index SHNDX within that
1922 // object, and an OFFSET relative to the start of that input
1923 // section, return whether or not the output offset is known. If
1924 // this function returns true, it sets *POUTPUT to the offset in
1925 // the output section, relative to the start of the input section
1926 // in the output section. *POUTPUT may be different from OFFSET
1927 // for a merged section.
1928 bool
1929 output_offset(const Relobj* object, unsigned int shndx,
1930 section_offset_type offset,
1931 section_offset_type *poutput) const;
1932
1933 // Return whether this is the merge section for the input section
1934 // SHNDX in OBJECT.
1935 bool
1936 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
1937
1938 // Write out the data. This does nothing for an input section.
1939 void
1940 write(Output_file*);
1941
1942 // Write the data to a buffer. This does nothing for an input
1943 // section.
1944 void
1945 write_to_buffer(unsigned char*);
1946
1947 // Print statistics about merge sections to stderr.
1948 void
1949 print_merge_stats(const char* section_name)
1950 {
1951 if (this->shndx_ == MERGE_DATA_SECTION_CODE
1952 || this->shndx_ == MERGE_STRING_SECTION_CODE)
1953 this->u2_.posd->print_merge_stats(section_name);
1954 }
1955
1956 private:
1957 // Code values which appear in shndx_. If the value is not one of
1958 // these codes, it is the input section index in the object file.
1959 enum
1960 {
1961 // An Output_section_data.
1962 OUTPUT_SECTION_CODE = -1U,
1963 // An Output_section_data for an SHF_MERGE section with
1964 // SHF_STRINGS not set.
1965 MERGE_DATA_SECTION_CODE = -2U,
1966 // An Output_section_data for an SHF_MERGE section with
1967 // SHF_STRINGS set.
1968 MERGE_STRING_SECTION_CODE = -3U
1969 };
1970
1971 // Whether this is an input section.
1972 bool
1973 is_input_section() const
1974 {
1975 return (this->shndx_ != OUTPUT_SECTION_CODE
1976 && this->shndx_ != MERGE_DATA_SECTION_CODE
1977 && this->shndx_ != MERGE_STRING_SECTION_CODE);
1978 }
1979
1980 // For an ordinary input section, this is the section index in the
1981 // input file. For an Output_section_data, this is
1982 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
1983 // MERGE_STRING_SECTION_CODE.
1984 unsigned int shndx_;
1985 // The required alignment, stored as a power of 2.
1986 unsigned int p2align_;
1987 union
1988 {
1989 // For an ordinary input section, the section size.
1990 off_t data_size;
1991 // For OUTPUT_SECTION_CODE, this is not used. For
1992 // MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
1993 // entity size.
1994 uint64_t entsize;
1995 } u1_;
1996 union
1997 {
1998 // For an ordinary input section, the object which holds the
1999 // input section.
2000 Relobj* object;
2001 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
2002 // MERGE_STRING_SECTION_CODE, the data.
2003 Output_section_data* posd;
2004 } u2_;
2005 };
2006
2007 typedef std::vector<Input_section> Input_section_list;
2008
2009 // Fill data. This is used to fill in data between input sections.
2010 // When we have to keep track of the input sections, we can use an
2011 // Output_data_const, but we don't want to have to keep track of
2012 // input sections just to implement fills. For a fill we record the
2013 // offset, and the actual data to be written out.
2014 class Fill
2015 {
2016 public:
2017 Fill(off_t section_offset, off_t length)
2018 : section_offset_(section_offset), length_(length)
2019 { }
2020
2021 // Return section offset.
2022 off_t
2023 section_offset() const
2024 { return this->section_offset_; }
2025
2026 // Return fill length.
2027 off_t
2028 length() const
2029 { return this->length_; }
2030
2031 private:
2032 // The offset within the output section.
2033 off_t section_offset_;
2034 // The length of the space to fill.
2035 off_t length_;
2036 };
2037
2038 typedef std::vector<Fill> Fill_list;
2039
2040 // Add a new output section by Input_section.
2041 void
2042 add_output_section_data(Input_section*);
2043
2044 // Add an SHF_MERGE input section. Returns true if the section was
2045 // handled.
2046 bool
2047 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
2048 uint64_t entsize, uint64_t addralign);
2049
2050 // Add an output SHF_MERGE section POSD to this output section.
2051 // IS_STRING indicates whether it is a SHF_STRINGS section, and
2052 // ENTSIZE is the entity size. This returns the entry added to
2053 // input_sections_.
2054 void
2055 add_output_merge_section(Output_section_data* posd, bool is_string,
2056 uint64_t entsize);
2057
2058 // Most of these fields are only valid after layout.
2059
2060 // The name of the section. This will point into a Stringpool.
2061 const char* name_;
2062 // The section address is in the parent class.
2063 // The section alignment.
2064 uint64_t addralign_;
2065 // The section entry size.
2066 uint64_t entsize_;
2067 // The file offset is in the parent class.
2068 // Set the section link field to the index of this section.
2069 const Output_data* link_section_;
2070 // If link_section_ is NULL, this is the link field.
2071 unsigned int link_;
2072 // Set the section info field to the index of this section.
2073 const Output_data* info_section_;
2074 // If info_section_ is NULL, this is the section info field.
2075 unsigned int info_;
2076 // The section type.
2077 const elfcpp::Elf_Word type_;
2078 // The section flags.
2079 const elfcpp::Elf_Xword flags_;
2080 // The section index.
2081 unsigned int out_shndx_;
2082 // If there is a STT_SECTION for this output section in the normal
2083 // symbol table, this is the symbol index. This starts out as zero.
2084 // It is initialized in Layout::finalize() to be the index, or -1U
2085 // if there isn't one.
2086 unsigned int symtab_index_;
2087 // If there is a STT_SECTION for this output section in the dynamic
2088 // symbol table, this is the symbol index. This starts out as zero.
2089 // It is initialized in Layout::finalize() to be the index, or -1U
2090 // if there isn't one.
2091 unsigned int dynsym_index_;
2092 // The input sections. This will be empty in cases where we don't
2093 // need to keep track of them.
2094 Input_section_list input_sections_;
2095 // The offset of the first entry in input_sections_.
2096 off_t first_input_offset_;
2097 // The fill data. This is separate from input_sections_ because we
2098 // often will need fill sections without needing to keep track of
2099 // input sections.
2100 Fill_list fills_;
2101 // If the section requires postprocessing, this buffer holds the
2102 // section contents during relocation.
2103 unsigned char* postprocessing_buffer_;
2104 // Whether this output section needs a STT_SECTION symbol in the
2105 // normal symbol table. This will be true if there is a relocation
2106 // which needs it.
2107 bool needs_symtab_index_ : 1;
2108 // Whether this output section needs a STT_SECTION symbol in the
2109 // dynamic symbol table. This will be true if there is a dynamic
2110 // relocation which needs it.
2111 bool needs_dynsym_index_ : 1;
2112 // Whether the link field of this output section should point to the
2113 // normal symbol table.
2114 bool should_link_to_symtab_ : 1;
2115 // Whether the link field of this output section should point to the
2116 // dynamic symbol table.
2117 bool should_link_to_dynsym_ : 1;
2118 // Whether this section should be written after all the input
2119 // sections are complete.
2120 bool after_input_sections_ : 1;
2121 // Whether this section requires post processing after all
2122 // relocations have been applied.
2123 bool requires_postprocessing_ : 1;
2124 // For SHT_TLS sections, the offset of this section relative to the base
2125 // of the TLS segment.
2126 uint64_t tls_offset_;
2127 };
2128
2129 // An output segment. PT_LOAD segments are built from collections of
2130 // output sections. Other segments typically point within PT_LOAD
2131 // segments, and are built directly as needed.
2132
2133 class Output_segment
2134 {
2135 public:
2136 // Create an output segment, specifying the type and flags.
2137 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
2138
2139 // Return the virtual address.
2140 uint64_t
2141 vaddr() const
2142 { return this->vaddr_; }
2143
2144 // Return the physical address.
2145 uint64_t
2146 paddr() const
2147 { return this->paddr_; }
2148
2149 // Return the segment type.
2150 elfcpp::Elf_Word
2151 type() const
2152 { return this->type_; }
2153
2154 // Return the segment flags.
2155 elfcpp::Elf_Word
2156 flags() const
2157 { return this->flags_; }
2158
2159 // Return the memory size.
2160 uint64_t
2161 memsz() const
2162 { return this->memsz_; }
2163
2164 // Return the file size.
2165 off_t
2166 filesz() const
2167 { return this->filesz_; }
2168
2169 // Return the maximum alignment of the Output_data.
2170 uint64_t
2171 addralign();
2172
2173 // Add an Output_section to this segment.
2174 void
2175 add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags)
2176 { this->add_output_section(os, seg_flags, false); }
2177
2178 // Add an Output_section to the start of this segment.
2179 void
2180 add_initial_output_section(Output_section* os, elfcpp::Elf_Word seg_flags)
2181 { this->add_output_section(os, seg_flags, true); }
2182
2183 // Add an Output_data (which is not an Output_section) to the start
2184 // of this segment.
2185 void
2186 add_initial_output_data(Output_data*);
2187
2188 // Return the number of dynamic relocations applied to this segment.
2189 unsigned int
2190 dynamic_reloc_count() const;
2191
2192 // Set the address of the segment to ADDR and the offset to *POFF
2193 // (aligned if necessary), and set the addresses and offsets of all
2194 // contained output sections accordingly. Set the section indexes
2195 // of all contained output sections starting with *PSHNDX. Return
2196 // the address of the immediately following segment. Update *POFF
2197 // and *PSHNDX. This should only be called for a PT_LOAD segment.
2198 uint64_t
2199 set_section_addresses(uint64_t addr, off_t* poff, unsigned int* pshndx);
2200
2201 // Set the minimum alignment of this segment. This may be adjusted
2202 // upward based on the section alignments.
2203 void
2204 set_minimum_addralign(uint64_t align)
2205 {
2206 gold_assert(!this->is_align_known_);
2207 this->align_ = align;
2208 }
2209
2210 // Set the offset of this segment based on the section. This should
2211 // only be called for a non-PT_LOAD segment.
2212 void
2213 set_offset();
2214
2215 // Set the TLS offsets of the sections contained in the PT_TLS segment.
2216 void
2217 set_tls_offsets();
2218
2219 // Return the number of output sections.
2220 unsigned int
2221 output_section_count() const;
2222
2223 // Write the segment header into *OPHDR.
2224 template<int size, bool big_endian>
2225 void
2226 write_header(elfcpp::Phdr_write<size, big_endian>*);
2227
2228 // Write the section headers of associated sections into V.
2229 template<int size, bool big_endian>
2230 unsigned char*
2231 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
2232 unsigned int* pshndx ACCEPT_SIZE_ENDIAN) const;
2233
2234 private:
2235 Output_segment(const Output_segment&);
2236 Output_segment& operator=(const Output_segment&);
2237
2238 typedef std::list<Output_data*> Output_data_list;
2239
2240 // Add an Output_section to this segment, specifying front or back.
2241 void
2242 add_output_section(Output_section*, elfcpp::Elf_Word seg_flags,
2243 bool front);
2244
2245 // Find the maximum alignment in an Output_data_list.
2246 static uint64_t
2247 maximum_alignment(const Output_data_list*);
2248
2249 // Set the section addresses in an Output_data_list.
2250 uint64_t
2251 set_section_list_addresses(Output_data_list*, uint64_t addr, off_t* poff,
2252 unsigned int* pshndx);
2253
2254 // Return the number of Output_sections in an Output_data_list.
2255 unsigned int
2256 output_section_count_list(const Output_data_list*) const;
2257
2258 // Return the number of dynamic relocs in an Output_data_list.
2259 unsigned int
2260 dynamic_reloc_count_list(const Output_data_list*) const;
2261
2262 // Write the section headers in the list into V.
2263 template<int size, bool big_endian>
2264 unsigned char*
2265 write_section_headers_list(const Layout*, const Stringpool*,
2266 const Output_data_list*, unsigned char* v,
2267 unsigned int* pshdx ACCEPT_SIZE_ENDIAN) const;
2268
2269 // The list of output data with contents attached to this segment.
2270 Output_data_list output_data_;
2271 // The list of output data without contents attached to this segment.
2272 Output_data_list output_bss_;
2273 // The segment virtual address.
2274 uint64_t vaddr_;
2275 // The segment physical address.
2276 uint64_t paddr_;
2277 // The size of the segment in memory.
2278 uint64_t memsz_;
2279 // The segment alignment. The is_align_known_ field indicates
2280 // whether this has been finalized. It can be set to a minimum
2281 // value before it is finalized.
2282 uint64_t align_;
2283 // The offset of the segment data within the file.
2284 off_t offset_;
2285 // The size of the segment data in the file.
2286 off_t filesz_;
2287 // The segment type;
2288 elfcpp::Elf_Word type_;
2289 // The segment flags.
2290 elfcpp::Elf_Word flags_;
2291 // Whether we have finalized align_.
2292 bool is_align_known_;
2293 };
2294
2295 // This class represents the output file.
2296
2297 class Output_file
2298 {
2299 public:
2300 Output_file(const General_options& options, Target*);
2301
2302 // Get a pointer to the target.
2303 Target*
2304 target() const
2305 { return this->target_; }
2306
2307 // Open the output file. FILE_SIZE is the final size of the file.
2308 void
2309 open(off_t file_size);
2310
2311 // Resize the output file.
2312 void
2313 resize(off_t file_size);
2314
2315 // Close the output file (flushing all buffered data) and make sure
2316 // there are no errors.
2317 void
2318 close();
2319
2320 // We currently always use mmap which makes the view handling quite
2321 // simple. In the future we may support other approaches.
2322
2323 // Write data to the output file.
2324 void
2325 write(off_t offset, const void* data, size_t len)
2326 { memcpy(this->base_ + offset, data, len); }
2327
2328 // Get a buffer to use to write to the file, given the offset into
2329 // the file and the size.
2330 unsigned char*
2331 get_output_view(off_t start, size_t size)
2332 {
2333 gold_assert(start >= 0
2334 && start + static_cast<off_t>(size) <= this->file_size_);
2335 return this->base_ + start;
2336 }
2337
2338 // VIEW must have been returned by get_output_view. Write the
2339 // buffer to the file, passing in the offset and the size.
2340 void
2341 write_output_view(off_t, size_t, unsigned char*)
2342 { }
2343
2344 // Get a read/write buffer. This is used when we want to write part
2345 // of the file, read it in, and write it again.
2346 unsigned char*
2347 get_input_output_view(off_t start, size_t size)
2348 { return this->get_output_view(start, size); }
2349
2350 // Write a read/write buffer back to the file.
2351 void
2352 write_input_output_view(off_t, size_t, unsigned char*)
2353 { }
2354
2355 // Get a read buffer. This is used when we just want to read part
2356 // of the file back it in.
2357 const unsigned char*
2358 get_input_view(off_t start, size_t size)
2359 { return this->get_output_view(start, size); }
2360
2361 // Release a read bfufer.
2362 void
2363 free_input_view(off_t, size_t, const unsigned char*)
2364 { }
2365
2366 private:
2367 // Map the file into memory and return a pointer to the map.
2368 void
2369 map();
2370
2371 // Unmap the file from memory (and flush to disk buffers).
2372 void
2373 unmap();
2374
2375
2376 // General options.
2377 const General_options& options_;
2378 // Target.
2379 Target* target_;
2380 // File name.
2381 const char* name_;
2382 // File descriptor.
2383 int o_;
2384 // File size.
2385 off_t file_size_;
2386 // Base of file mapped into memory.
2387 unsigned char* base_;
2388 // True iff base_ points to a memory buffer rather than an output file.
2389 bool map_is_anonymous_;
2390 };
2391
2392 } // End namespace gold.
2393
2394 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.077317 seconds and 4 git commands to generate.