Add global parameters.
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 #ifndef GOLD_OUTPUT_H
4 #define GOLD_OUTPUT_H
5
6 #include <list>
7 #include <vector>
8
9 #include "elfcpp.h"
10 #include "layout.h"
11 #include "reloc-types.h"
12
13 namespace gold
14 {
15
16 class General_options;
17 class Object;
18 class Symbol;
19 class Output_file;
20 class Output_section;
21 class Target;
22 template<int size, bool big_endian>
23 class Sized_target;
24 template<int size, bool big_endian>
25 class Sized_relobj;
26
27 // An abtract class for data which has to go into the output file.
28
29 class Output_data
30 {
31 public:
32 explicit Output_data(off_t data_size = 0)
33 : address_(0), data_size_(data_size), offset_(-1)
34 { }
35
36 virtual
37 ~Output_data();
38
39 // Return the address. This is only valid after Layout::finalize is
40 // finished.
41 uint64_t
42 address() const
43 { return this->address_; }
44
45 // Return the size of the data. This must be valid after
46 // Layout::finalize calls set_address, but need not be valid before
47 // then.
48 off_t
49 data_size() const
50 { return this->data_size_; }
51
52 // Return the file offset. This is only valid after
53 // Layout::finalize is finished.
54 off_t
55 offset() const
56 { return this->offset_; }
57
58 // Return the required alignment.
59 uint64_t
60 addralign() const
61 { return this->do_addralign(); }
62
63 // Return whether this is an Output_section.
64 bool
65 is_section() const
66 { return this->do_is_section(); }
67
68 // Return whether this is an Output_section of the specified type.
69 bool
70 is_section_type(elfcpp::Elf_Word stt) const
71 { return this->do_is_section_type(stt); }
72
73 // Return whether this is an Output_section with the specified flag
74 // set.
75 bool
76 is_section_flag_set(elfcpp::Elf_Xword shf) const
77 { return this->do_is_section_flag_set(shf); }
78
79 // Return the output section index, if there is an output section.
80 unsigned int
81 out_shndx() const
82 { return this->do_out_shndx(); }
83
84 // Set the output section index, if this is an output section.
85 void
86 set_out_shndx(unsigned int shndx)
87 { this->do_set_out_shndx(shndx); }
88
89 // Set the address and file offset of this data. This is called
90 // during Layout::finalize.
91 void
92 set_address(uint64_t addr, off_t off);
93
94 // Write the data to the output file. This is called after
95 // Layout::finalize is complete.
96 void
97 write(Output_file* file)
98 { this->do_write(file); }
99
100 // This is called by Layout::finalize to note that all sizes must
101 // now be fixed.
102 static void
103 layout_complete()
104 { Output_data::sizes_are_fixed = true; }
105
106 protected:
107 // Functions that child classes may or in some cases must implement.
108
109 // Write the data to the output file.
110 virtual void
111 do_write(Output_file*) = 0;
112
113 // Return the required alignment.
114 virtual uint64_t
115 do_addralign() const = 0;
116
117 // Return whether this is an Output_section.
118 virtual bool
119 do_is_section() const
120 { return false; }
121
122 // Return whether this is an Output_section of the specified type.
123 // This only needs to be implement by Output_section.
124 virtual bool
125 do_is_section_type(elfcpp::Elf_Word) const
126 { return false; }
127
128 // Return whether this is an Output_section with the specific flag
129 // set. This only needs to be implemented by Output_section.
130 virtual bool
131 do_is_section_flag_set(elfcpp::Elf_Xword) const
132 { return false; }
133
134 // Return the output section index, if there is an output section.
135 virtual unsigned int
136 do_out_shndx() const
137 { gold_unreachable(); }
138
139 // Set the output section index, if this is an output section.
140 virtual void
141 do_set_out_shndx(unsigned int)
142 { gold_unreachable(); }
143
144 // Set the address and file offset of the data. This only needs to
145 // be implemented if the child needs to know. The child class can
146 // set its size in this call.
147 virtual void
148 do_set_address(uint64_t, off_t)
149 { }
150
151 // Functions that child classes may call.
152
153 // Set the size of the data.
154 void
155 set_data_size(off_t data_size)
156 {
157 gold_assert(!Output_data::sizes_are_fixed);
158 this->data_size_ = data_size;
159 }
160
161 // Return default alignment for a size--32 or 64.
162 static uint64_t
163 default_alignment(int size);
164
165 private:
166 Output_data(const Output_data&);
167 Output_data& operator=(const Output_data&);
168
169 // This is used for verification, to make sure that we don't try to
170 // change any sizes after we set the section addresses.
171 static bool sizes_are_fixed;
172
173 // Memory address in file (not always meaningful).
174 uint64_t address_;
175 // Size of data in file.
176 off_t data_size_;
177 // Offset within file.
178 off_t offset_;
179 };
180
181 // Output the section headers.
182
183 class Output_section_headers : public Output_data
184 {
185 public:
186 Output_section_headers(int size,
187 bool big_endian,
188 const Layout*,
189 const Layout::Segment_list*,
190 const Layout::Section_list*,
191 const Stringpool*);
192
193 // Write the data to the file.
194 void
195 do_write(Output_file*);
196
197 // Return the required alignment.
198 uint64_t
199 do_addralign() const
200 { return Output_data::default_alignment(this->size_); }
201
202 private:
203 // Write the data to the file with the right size and endianness.
204 template<int size, bool big_endian>
205 void
206 do_sized_write(Output_file*);
207
208 int size_;
209 bool big_endian_;
210 const Layout* layout_;
211 const Layout::Segment_list* segment_list_;
212 const Layout::Section_list* unattached_section_list_;
213 const Stringpool* secnamepool_;
214 };
215
216 // Output the segment headers.
217
218 class Output_segment_headers : public Output_data
219 {
220 public:
221 Output_segment_headers(int size, bool big_endian,
222 const Layout::Segment_list& segment_list);
223
224 // Write the data to the file.
225 void
226 do_write(Output_file*);
227
228 // Return the required alignment.
229 uint64_t
230 do_addralign() const
231 { return Output_data::default_alignment(this->size_); }
232
233 private:
234 // Write the data to the file with the right size and endianness.
235 template<int size, bool big_endian>
236 void
237 do_sized_write(Output_file*);
238
239 int size_;
240 bool big_endian_;
241 const Layout::Segment_list& segment_list_;
242 };
243
244 // Output the ELF file header.
245
246 class Output_file_header : public Output_data
247 {
248 public:
249 Output_file_header(int size,
250 bool big_endian,
251 const Target*,
252 const Symbol_table*,
253 const Output_segment_headers*);
254
255 // Add information about the section headers. We lay out the ELF
256 // file header before we create the section headers.
257 void set_section_info(const Output_section_headers*,
258 const Output_section* shstrtab);
259
260 // Write the data to the file.
261 void
262 do_write(Output_file*);
263
264 // Return the required alignment.
265 uint64_t
266 do_addralign() const
267 { return Output_data::default_alignment(this->size_); }
268
269 // Set the address and offset--we only implement this for error
270 // checking.
271 void
272 do_set_address(uint64_t, off_t off) const
273 { gold_assert(off == 0); }
274
275 private:
276 // Write the data to the file with the right size and endianness.
277 template<int size, bool big_endian>
278 void
279 do_sized_write(Output_file*);
280
281 int size_;
282 bool big_endian_;
283 const Target* target_;
284 const Symbol_table* symtab_;
285 const Output_segment_headers* segment_header_;
286 const Output_section_headers* section_header_;
287 const Output_section* shstrtab_;
288 };
289
290 // Output sections are mainly comprised of input sections. However,
291 // there are cases where we have data to write out which is not in an
292 // input section. Output_section_data is used in such cases. This is
293 // an abstract base class.
294
295 class Output_section_data : public Output_data
296 {
297 public:
298 Output_section_data(off_t data_size, uint64_t addralign)
299 : Output_data(data_size), output_section_(NULL), addralign_(addralign)
300 { }
301
302 Output_section_data(uint64_t addralign)
303 : Output_data(0), output_section_(NULL), addralign_(addralign)
304 { }
305
306 // Return the output section.
307 const Output_section*
308 output_section() const
309 { return this->output_section_; }
310
311 // Record the output section.
312 void
313 set_output_section(Output_section* os);
314
315 // Add an input section, for SHF_MERGE sections. This returns true
316 // if the section was handled.
317 bool
318 add_input_section(Relobj* object, unsigned int shndx)
319 { return this->do_add_input_section(object, shndx); }
320
321 // Given an input OBJECT, an input section index SHNDX within that
322 // object, and an OFFSET relative to the start of that input
323 // section, return whether or not the output address is known.
324 // OUTPUT_SECTION_ADDRESS is the address of the output section which
325 // this is a part of. If this function returns true, it sets
326 // *POUTPUT to the output address.
327 virtual bool
328 output_address(const Relobj* object, unsigned int shndx, off_t offset,
329 uint64_t output_section_address, uint64_t *poutput) const
330 {
331 return this->do_output_address(object, shndx, offset,
332 output_section_address, poutput);
333 }
334
335 protected:
336 // The child class must implement do_write.
337
338 // The child class may implement specific adjustments to the output
339 // section.
340 virtual void
341 do_adjust_output_section(Output_section*)
342 { }
343
344 // May be implemented by child class. Return true if the section
345 // was handled.
346 virtual bool
347 do_add_input_section(Relobj*, unsigned int)
348 { gold_unreachable(); }
349
350 // The child class may implement output_address.
351 virtual bool
352 do_output_address(const Relobj*, unsigned int, off_t, uint64_t,
353 uint64_t*) const
354 { return false; }
355
356 // Return the required alignment.
357 uint64_t
358 do_addralign() const
359 { return this->addralign_; }
360
361 // Return the section index of the output section.
362 unsigned int
363 do_out_shndx() const;
364
365 // Set the alignment.
366 void
367 set_addralign(uint64_t addralign)
368 { this->addralign_ = addralign; }
369
370 private:
371 // The output section for this section.
372 const Output_section* output_section_;
373 // The required alignment.
374 uint64_t addralign_;
375 };
376
377 // A simple case of Output_data in which we have constant data to
378 // output.
379
380 class Output_data_const : public Output_section_data
381 {
382 public:
383 Output_data_const(const std::string& data, uint64_t addralign)
384 : Output_section_data(data.size(), addralign), data_(data)
385 { }
386
387 Output_data_const(const char* p, off_t len, uint64_t addralign)
388 : Output_section_data(len, addralign), data_(p, len)
389 { }
390
391 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
392 : Output_section_data(len, addralign),
393 data_(reinterpret_cast<const char*>(p), len)
394 { }
395
396 // Add more data.
397 void
398 add_data(const std::string& add)
399 {
400 this->data_.append(add);
401 this->set_data_size(this->data_.size());
402 }
403
404 // Write the data to the output file.
405 void
406 do_write(Output_file*);
407
408 private:
409 std::string data_;
410 };
411
412 // Another version of Output_data with constant data, in which the
413 // buffer is allocated by the caller.
414
415 class Output_data_const_buffer : public Output_section_data
416 {
417 public:
418 Output_data_const_buffer(const unsigned char* p, off_t len,
419 uint64_t addralign)
420 : Output_section_data(len, addralign), p_(p)
421 { }
422
423 // Write the data the output file.
424 void
425 do_write(Output_file*);
426
427 private:
428 const unsigned char* p_;
429 };
430
431 // A place holder for data written out via some other mechanism.
432
433 class Output_data_space : public Output_section_data
434 {
435 public:
436 Output_data_space(off_t data_size, uint64_t addralign)
437 : Output_section_data(data_size, addralign)
438 { }
439
440 explicit Output_data_space(uint64_t addralign)
441 : Output_section_data(addralign)
442 { }
443
444 // Set the size.
445 void
446 set_space_size(off_t space_size)
447 { this->set_data_size(space_size); }
448
449 // Set the alignment.
450 void
451 set_space_alignment(uint64_t align)
452 { this->set_addralign(align); }
453
454 // Write out the data--this must be handled elsewhere.
455 void
456 do_write(Output_file*)
457 { }
458 };
459
460 // A string table which goes into an output section.
461
462 class Output_data_strtab : public Output_section_data
463 {
464 public:
465 Output_data_strtab(Stringpool* strtab)
466 : Output_section_data(1), strtab_(strtab)
467 { }
468
469 // This is called to set the address and file offset. Here we make
470 // sure that the Stringpool is finalized.
471 void
472 do_set_address(uint64_t, off_t);
473
474 // Write out the data.
475 void
476 do_write(Output_file*);
477
478 private:
479 Stringpool* strtab_;
480 };
481
482 // This POD class is used to represent a single reloc in the output
483 // file. This could be a private class within Output_data_reloc, but
484 // the templatization is complex enough that I broke it out into a
485 // separate class. The class is templatized on either elfcpp::SHT_REL
486 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
487 // relocation or an ordinary relocation.
488
489 // A relocation can be against a global symbol, a local symbol, an
490 // output section, or the undefined symbol at index 0. We represent
491 // the latter by using a NULL global symbol.
492
493 template<int sh_type, bool dynamic, int size, bool big_endian>
494 class Output_reloc;
495
496 template<bool dynamic, int size, bool big_endian>
497 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
498 {
499 public:
500 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
501
502 // An uninitialized entry. We need this because we want to put
503 // instances of this class into an STL container.
504 Output_reloc()
505 : local_sym_index_(INVALID_CODE)
506 { }
507
508 // A reloc against a global symbol.
509
510 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
511 Address address)
512 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
513 shndx_(INVALID_CODE)
514 {
515 this->u1_.gsym = gsym;
516 this->u2_.od = od;
517 }
518
519 Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
520 unsigned int shndx, Address address)
521 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
522 shndx_(shndx)
523 {
524 gold_assert(shndx != INVALID_CODE);
525 this->u1_.gsym = gsym;
526 this->u2_.relobj = relobj;
527 }
528
529 // A reloc against a local symbol.
530
531 Output_reloc(Sized_relobj<size, big_endian>* relobj,
532 unsigned int local_sym_index,
533 unsigned int type,
534 Output_data* od,
535 Address address)
536 : address_(address), local_sym_index_(local_sym_index), type_(type),
537 shndx_(INVALID_CODE)
538 {
539 gold_assert(local_sym_index != GSYM_CODE
540 && local_sym_index != INVALID_CODE);
541 this->u1_.relobj = relobj;
542 this->u2_.od = od;
543 }
544
545 Output_reloc(Sized_relobj<size, big_endian>* relobj,
546 unsigned int local_sym_index,
547 unsigned int type,
548 unsigned int shndx,
549 Address address)
550 : address_(address), local_sym_index_(local_sym_index), type_(type),
551 shndx_(shndx)
552 {
553 gold_assert(local_sym_index != GSYM_CODE
554 && local_sym_index != INVALID_CODE);
555 gold_assert(shndx != INVALID_CODE);
556 this->u1_.relobj = relobj;
557 this->u2_.relobj = relobj;
558 }
559
560 // A reloc against the STT_SECTION symbol of an output section.
561
562 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
563 Address address)
564 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
565 shndx_(INVALID_CODE)
566 {
567 this->u1_.os = os;
568 this->u2_.od = od;
569 }
570
571 Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
572 unsigned int shndx, Address address)
573 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
574 shndx_(shndx)
575 {
576 gold_assert(shndx != INVALID_CODE);
577 this->u1_.os = os;
578 this->u2_.relobj = relobj;
579 }
580
581 // Write the reloc entry to an output view.
582 void
583 write(unsigned char* pov) const;
584
585 // Write the offset and info fields to Write_rel.
586 template<typename Write_rel>
587 void write_rel(Write_rel*) const;
588
589 private:
590 // Return the symbol index. We can't do a double template
591 // specialization, so we do a secondary template here.
592 unsigned int
593 get_symbol_index() const;
594
595 // Codes for local_sym_index_.
596 enum
597 {
598 // Global symbol.
599 GSYM_CODE = -1U,
600 // Output section.
601 SECTION_CODE = -2U,
602 // Invalid uninitialized entry.
603 INVALID_CODE = -3U
604 };
605
606 union
607 {
608 // For a local symbol, the object. We will never generate a
609 // relocation against a local symbol in a dynamic object; that
610 // doesn't make sense. And our callers will always be
611 // templatized, so we use Sized_relobj here.
612 Sized_relobj<size, big_endian>* relobj;
613 // For a global symbol, the symbol. If this is NULL, it indicates
614 // a relocation against the undefined 0 symbol.
615 Symbol* gsym;
616 // For a relocation against an output section, the output section.
617 Output_section* os;
618 } u1_;
619 union
620 {
621 // If shndx_ is not INVALID CODE, the object which holds the input
622 // section being used to specify the reloc address.
623 Relobj* relobj;
624 // If shndx_ is INVALID_CODE, the output data being used to
625 // specify the reloc address. This may be NULL if the reloc
626 // address is absolute.
627 Output_data* od;
628 } u2_;
629 // The address offset within the input section or the Output_data.
630 Address address_;
631 // For a local symbol, the local symbol index. This is GSYM_CODE
632 // for a global symbol, or INVALID_CODE for an uninitialized value.
633 unsigned int local_sym_index_;
634 // The reloc type--a processor specific code.
635 unsigned int type_;
636 // If the reloc address is an input section in an object, the
637 // section index. This is INVALID_CODE if the reloc address is
638 // specified in some other way.
639 unsigned int shndx_;
640 };
641
642 // The SHT_RELA version of Output_reloc<>. This is just derived from
643 // the SHT_REL version of Output_reloc, but it adds an addend.
644
645 template<bool dynamic, int size, bool big_endian>
646 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
647 {
648 public:
649 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
650 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
651
652 // An uninitialized entry.
653 Output_reloc()
654 : rel_()
655 { }
656
657 // A reloc against a global symbol.
658
659 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
660 Address address, Addend addend)
661 : rel_(gsym, type, od, address), addend_(addend)
662 { }
663
664 Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
665 unsigned int shndx, Address address, Addend addend)
666 : rel_(gsym, type, relobj, shndx, address), addend_(addend)
667 { }
668
669 // A reloc against a local symbol.
670
671 Output_reloc(Sized_relobj<size, big_endian>* relobj,
672 unsigned int local_sym_index,
673 unsigned int type, Output_data* od, Address address,
674 Addend addend)
675 : rel_(relobj, local_sym_index, type, od, address), addend_(addend)
676 { }
677
678 Output_reloc(Sized_relobj<size, big_endian>* relobj,
679 unsigned int local_sym_index,
680 unsigned int type,
681 unsigned int shndx,
682 Address address,
683 Addend addend)
684 : rel_(relobj, local_sym_index, type, shndx, address),
685 addend_(addend)
686 { }
687
688 // A reloc against the STT_SECTION symbol of an output section.
689
690 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
691 Address address, Addend addend)
692 : rel_(os, type, od, address), addend_(addend)
693 { }
694
695 Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
696 unsigned int shndx, Address address, Addend addend)
697 : rel_(os, type, relobj, shndx, address), addend_(addend)
698 { }
699
700 // Write the reloc entry to an output view.
701 void
702 write(unsigned char* pov) const;
703
704 private:
705 // The basic reloc.
706 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
707 // The addend.
708 Addend addend_;
709 };
710
711 // Output_data_reloc is used to manage a section containing relocs.
712 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
713 // indicates whether this is a dynamic relocation or a normal
714 // relocation. Output_data_reloc_base is a base class.
715 // Output_data_reloc is the real class, which we specialize based on
716 // the reloc type.
717
718 template<int sh_type, bool dynamic, int size, bool big_endian>
719 class Output_data_reloc_base : public Output_section_data
720 {
721 public:
722 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
723 typedef typename Output_reloc_type::Address Address;
724 static const int reloc_size =
725 Reloc_types<sh_type, size, big_endian>::reloc_size;
726
727 // Construct the section.
728 Output_data_reloc_base()
729 : Output_section_data(Output_data::default_alignment(size))
730 { }
731
732 // Write out the data.
733 void
734 do_write(Output_file*);
735
736 protected:
737 // Set the entry size and the link.
738 void
739 do_adjust_output_section(Output_section *os);
740
741 // Add a relocation entry.
742 void
743 add(const Output_reloc_type& reloc)
744 {
745 this->relocs_.push_back(reloc);
746 this->set_data_size(this->relocs_.size() * reloc_size);
747 }
748
749 private:
750 typedef std::vector<Output_reloc_type> Relocs;
751
752 Relocs relocs_;
753 };
754
755 // The class which callers actually create.
756
757 template<int sh_type, bool dynamic, int size, bool big_endian>
758 class Output_data_reloc;
759
760 // The SHT_REL version of Output_data_reloc.
761
762 template<bool dynamic, int size, bool big_endian>
763 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
764 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
765 {
766 private:
767 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
768 big_endian> Base;
769
770 public:
771 typedef typename Base::Output_reloc_type Output_reloc_type;
772 typedef typename Output_reloc_type::Address Address;
773
774 Output_data_reloc()
775 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>()
776 { }
777
778 // Add a reloc against a global symbol.
779
780 void
781 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
782 { this->add(Output_reloc_type(gsym, type, od, address)); }
783
784 void
785 add_global(Symbol* gsym, unsigned int type, Relobj* relobj,
786 unsigned int shndx, Address address)
787 { this->add(Output_reloc_type(gsym, type, relobj, shndx, address)); }
788
789 // Add a reloc against a local symbol.
790
791 void
792 add_local(Sized_relobj<size, big_endian>* relobj,
793 unsigned int local_sym_index, unsigned int type,
794 Output_data* od, Address address)
795 { this->add(Output_reloc_type(relobj, local_sym_index, type, od, address)); }
796
797 void
798 add_local(Sized_relobj<size, big_endian>* relobj,
799 unsigned int local_sym_index, unsigned int type,
800 unsigned int shndx, Address address)
801 { this->add(Output_reloc_type(relobj, local_sym_index, type, shndx,
802 address)); }
803
804
805 // A reloc against the STT_SECTION symbol of an output section.
806
807 void
808 add_output_section(Output_section* os, unsigned int type,
809 Output_data* od, Address address)
810 { this->add(Output_reloc_type(os, type, od, address)); }
811
812 void
813 add_output_section(Output_section* os, unsigned int type,
814 Relobj* relobj, unsigned int shndx, Address address)
815 { this->add(Output_reloc_type(os, type, relobj, shndx, address)); }
816 };
817
818 // The SHT_RELA version of Output_data_reloc.
819
820 template<bool dynamic, int size, bool big_endian>
821 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
822 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
823 {
824 private:
825 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
826 big_endian> Base;
827
828 public:
829 typedef typename Base::Output_reloc_type Output_reloc_type;
830 typedef typename Output_reloc_type::Address Address;
831 typedef typename Output_reloc_type::Addend Addend;
832
833 Output_data_reloc()
834 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>()
835 { }
836
837 // Add a reloc against a global symbol.
838
839 void
840 add_global(Symbol* gsym, unsigned int type, Output_data* od,
841 Address address, Addend addend)
842 { this->add(Output_reloc_type(gsym, type, od, address, addend)); }
843
844 void
845 add_global(Symbol* gsym, unsigned int type, Relobj* relobj,
846 unsigned int shndx, Address address, Addend addend)
847 { this->add(Output_reloc_type(gsym, type, relobj, shndx, address, addend)); }
848
849 // Add a reloc against a local symbol.
850
851 void
852 add_local(Sized_relobj<size, big_endian>* relobj,
853 unsigned int local_sym_index, unsigned int type,
854 Output_data* od, Address address, Addend addend)
855 {
856 this->add(Output_reloc_type(relobj, local_sym_index, type, od, address,
857 addend));
858 }
859
860 void
861 add_local(Sized_relobj<size, big_endian>* relobj,
862 unsigned int local_sym_index, unsigned int type,
863 unsigned int shndx, Address address, Addend addend)
864 {
865 this->add(Output_reloc_type(relobj, local_sym_index, type, shndx, address,
866 addend));
867 }
868
869 // A reloc against the STT_SECTION symbol of an output section.
870
871 void
872 add_output_section(Output_section* os, unsigned int type, Output_data* od,
873 Address address, Addend addend)
874 { this->add(Output_reloc_type(os, type, od, address, addend)); }
875
876 void
877 add_output_section(Output_section* os, unsigned int type, Relobj* relobj,
878 unsigned int shndx, Address address, Addend addend)
879 { this->add(Output_reloc_type(os, type, relobj, shndx, address, addend)); }
880 };
881
882 // Output_data_got is used to manage a GOT. Each entry in the GOT is
883 // for one symbol--either a global symbol or a local symbol in an
884 // object. The target specific code adds entries to the GOT as
885 // needed.
886
887 template<int size, bool big_endian>
888 class Output_data_got : public Output_section_data
889 {
890 public:
891 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
892
893 Output_data_got()
894 : Output_section_data(Output_data::default_alignment(size)), entries_()
895 { }
896
897 // Add an entry for a global symbol to the GOT. Return true if this
898 // is a new GOT entry, false if the symbol was already in the GOT.
899 bool
900 add_global(Symbol* gsym);
901
902 // Add an entry for a local symbol to the GOT. This returns the
903 // offset of the new entry from the start of the GOT.
904 unsigned int
905 add_local(Object* object, unsigned int sym_index)
906 {
907 this->entries_.push_back(Got_entry(object, sym_index));
908 this->set_got_size();
909 return this->last_got_offset();
910 }
911
912 // Add a constant to the GOT. This returns the offset of the new
913 // entry from the start of the GOT.
914 unsigned int
915 add_constant(Valtype constant)
916 {
917 this->entries_.push_back(Got_entry(constant));
918 this->set_got_size();
919 return this->last_got_offset();
920 }
921
922 // Write out the GOT table.
923 void
924 do_write(Output_file*);
925
926 private:
927 // This POD class holds a single GOT entry.
928 class Got_entry
929 {
930 public:
931 // Create a zero entry.
932 Got_entry()
933 : local_sym_index_(CONSTANT_CODE)
934 { this->u_.constant = 0; }
935
936 // Create a global symbol entry.
937 explicit Got_entry(Symbol* gsym)
938 : local_sym_index_(GSYM_CODE)
939 { this->u_.gsym = gsym; }
940
941 // Create a local symbol entry.
942 Got_entry(Object* object, unsigned int local_sym_index)
943 : local_sym_index_(local_sym_index)
944 {
945 gold_assert(local_sym_index != GSYM_CODE
946 && local_sym_index != CONSTANT_CODE);
947 this->u_.object = object;
948 }
949
950 // Create a constant entry. The constant is a host value--it will
951 // be swapped, if necessary, when it is written out.
952 explicit Got_entry(Valtype constant)
953 : local_sym_index_(CONSTANT_CODE)
954 { this->u_.constant = constant; }
955
956 // Write the GOT entry to an output view.
957 void
958 write(unsigned char* pov) const;
959
960 private:
961 enum
962 {
963 GSYM_CODE = -1U,
964 CONSTANT_CODE = -2U
965 };
966
967 union
968 {
969 // For a local symbol, the object.
970 Object* object;
971 // For a global symbol, the symbol.
972 Symbol* gsym;
973 // For a constant, the constant.
974 Valtype constant;
975 } u_;
976 // For a local symbol, the local symbol index. This is GSYM_CODE
977 // for a global symbol, or CONSTANT_CODE for a constant.
978 unsigned int local_sym_index_;
979 };
980
981 typedef std::vector<Got_entry> Got_entries;
982
983 // Return the offset into the GOT of GOT entry I.
984 unsigned int
985 got_offset(unsigned int i) const
986 { return i * (size / 8); }
987
988 // Return the offset into the GOT of the last entry added.
989 unsigned int
990 last_got_offset() const
991 { return this->got_offset(this->entries_.size() - 1); }
992
993 // Set the size of the section.
994 void
995 set_got_size()
996 { this->set_data_size(this->got_offset(this->entries_.size())); }
997
998 // The list of GOT entries.
999 Got_entries entries_;
1000 };
1001
1002 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
1003 // section.
1004
1005 class Output_data_dynamic : public Output_section_data
1006 {
1007 public:
1008 Output_data_dynamic(const Target* target, Stringpool* pool)
1009 : Output_section_data(Output_data::default_alignment(target->get_size())),
1010 target_(target), entries_(), pool_(pool)
1011 { }
1012
1013 // Add a new dynamic entry with a fixed numeric value.
1014 void
1015 add_constant(elfcpp::DT tag, unsigned int val)
1016 { this->add_entry(Dynamic_entry(tag, val)); }
1017
1018 // Add a new dynamic entry with the address of output data.
1019 void
1020 add_section_address(elfcpp::DT tag, const Output_data* od)
1021 { this->add_entry(Dynamic_entry(tag, od, false)); }
1022
1023 // Add a new dynamic entry with the size of output data.
1024 void
1025 add_section_size(elfcpp::DT tag, const Output_data* od)
1026 { this->add_entry(Dynamic_entry(tag, od, true)); }
1027
1028 // Add a new dynamic entry with the address of a symbol.
1029 void
1030 add_symbol(elfcpp::DT tag, const Symbol* sym)
1031 { this->add_entry(Dynamic_entry(tag, sym)); }
1032
1033 // Add a new dynamic entry with a string.
1034 void
1035 add_string(elfcpp::DT tag, const char* str)
1036 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, NULL))); }
1037
1038 void
1039 add_string(elfcpp::DT tag, const std::string& str)
1040 { this->add_string(tag, str.c_str()); }
1041
1042 // Set the final data size.
1043 void
1044 do_set_address(uint64_t, off_t);
1045
1046 // Write out the dynamic entries.
1047 void
1048 do_write(Output_file*);
1049
1050 protected:
1051 // Adjust the output section to set the entry size.
1052 void
1053 do_adjust_output_section(Output_section*);
1054
1055 private:
1056 // This POD class holds a single dynamic entry.
1057 class Dynamic_entry
1058 {
1059 public:
1060 // Create an entry with a fixed numeric value.
1061 Dynamic_entry(elfcpp::DT tag, unsigned int val)
1062 : tag_(tag), classification_(DYNAMIC_NUMBER)
1063 { this->u_.val = val; }
1064
1065 // Create an entry with the size or address of a section.
1066 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
1067 : tag_(tag),
1068 classification_(section_size
1069 ? DYNAMIC_SECTION_SIZE
1070 : DYNAMIC_SECTION_ADDRESS)
1071 { this->u_.od = od; }
1072
1073 // Create an entry with the address of a symbol.
1074 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
1075 : tag_(tag), classification_(DYNAMIC_SYMBOL)
1076 { this->u_.sym = sym; }
1077
1078 // Create an entry with a string.
1079 Dynamic_entry(elfcpp::DT tag, const char* str)
1080 : tag_(tag), classification_(DYNAMIC_STRING)
1081 { this->u_.str = str; }
1082
1083 // Write the dynamic entry to an output view.
1084 template<int size, bool big_endian>
1085 void
1086 write(unsigned char* pov, const Stringpool* ACCEPT_SIZE_ENDIAN) const;
1087
1088 private:
1089 enum Classification
1090 {
1091 // Number.
1092 DYNAMIC_NUMBER,
1093 // Section address.
1094 DYNAMIC_SECTION_ADDRESS,
1095 // Section size.
1096 DYNAMIC_SECTION_SIZE,
1097 // Symbol adress.
1098 DYNAMIC_SYMBOL,
1099 // String.
1100 DYNAMIC_STRING
1101 };
1102
1103 union
1104 {
1105 // For DYNAMIC_NUMBER.
1106 unsigned int val;
1107 // For DYNAMIC_SECTION_ADDRESS and DYNAMIC_SECTION_SIZE.
1108 const Output_data* od;
1109 // For DYNAMIC_SYMBOL.
1110 const Symbol* sym;
1111 // For DYNAMIC_STRING.
1112 const char* str;
1113 } u_;
1114 // The dynamic tag.
1115 elfcpp::DT tag_;
1116 // The type of entry.
1117 Classification classification_;
1118 };
1119
1120 // Add an entry to the list.
1121 void
1122 add_entry(const Dynamic_entry& entry)
1123 { this->entries_.push_back(entry); }
1124
1125 // Sized version of write function.
1126 template<int size, bool big_endian>
1127 void
1128 sized_write(Output_file* of);
1129
1130 // The type of the list of entries.
1131 typedef std::vector<Dynamic_entry> Dynamic_entries;
1132
1133 // The target.
1134 const Target* target_;
1135 // The entries.
1136 Dynamic_entries entries_;
1137 // The pool used for strings.
1138 Stringpool* pool_;
1139 };
1140
1141 // An output section. We don't expect to have too many output
1142 // sections, so we don't bother to do a template on the size.
1143
1144 class Output_section : public Output_data
1145 {
1146 public:
1147 // Create an output section, giving the name, type, and flags.
1148 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
1149 virtual ~Output_section();
1150
1151 // Add a new input section SHNDX, named NAME, with header SHDR, from
1152 // object OBJECT. Return the offset within the output section.
1153 template<int size, bool big_endian>
1154 off_t
1155 add_input_section(Relobj* object, unsigned int shndx, const char *name,
1156 const elfcpp::Shdr<size, big_endian>& shdr);
1157
1158 // Add generated data POSD to this output section.
1159 void
1160 add_output_section_data(Output_section_data* posd);
1161
1162 // Return the section name.
1163 const char*
1164 name() const
1165 { return this->name_; }
1166
1167 // Return the section type.
1168 elfcpp::Elf_Word
1169 type() const
1170 { return this->type_; }
1171
1172 // Return the section flags.
1173 elfcpp::Elf_Xword
1174 flags() const
1175 { return this->flags_; }
1176
1177 // Return the section index in the output file.
1178 unsigned int
1179 do_out_shndx() const
1180 { return this->out_shndx_; }
1181
1182 // Set the output section index.
1183 void
1184 do_set_out_shndx(unsigned int shndx)
1185 { this->out_shndx_ = shndx; }
1186
1187 // Return the entsize field.
1188 uint64_t
1189 entsize() const
1190 { return this->entsize_; }
1191
1192 // Set the entsize field.
1193 void
1194 set_entsize(uint64_t v);
1195
1196 // Set the link field to the output section index of a section.
1197 void
1198 set_link_section(const Output_data* od)
1199 {
1200 gold_assert(this->link_ == 0
1201 && !this->should_link_to_symtab_
1202 && !this->should_link_to_dynsym_);
1203 this->link_section_ = od;
1204 }
1205
1206 // Set the link field to a constant.
1207 void
1208 set_link(unsigned int v)
1209 {
1210 gold_assert(this->link_section_ == NULL
1211 && !this->should_link_to_symtab_
1212 && !this->should_link_to_dynsym_);
1213 this->link_ = v;
1214 }
1215
1216 // Record that this section should link to the normal symbol table.
1217 void
1218 set_should_link_to_symtab()
1219 {
1220 gold_assert(this->link_section_ == NULL
1221 && this->link_ == 0
1222 && !this->should_link_to_dynsym_);
1223 this->should_link_to_symtab_ = true;
1224 }
1225
1226 // Record that this section should link to the dynamic symbol table.
1227 void
1228 set_should_link_to_dynsym()
1229 {
1230 gold_assert(this->link_section_ == NULL
1231 && this->link_ == 0
1232 && !this->should_link_to_symtab_);
1233 this->should_link_to_dynsym_ = true;
1234 }
1235
1236 // Return the info field.
1237 unsigned int
1238 info() const
1239 {
1240 gold_assert(this->info_section_ == NULL);
1241 return this->info_;
1242 }
1243
1244 // Set the info field to the output section index of a section.
1245 void
1246 set_info_section(const Output_data* od)
1247 {
1248 gold_assert(this->info_ == 0);
1249 this->info_section_ = od;
1250 }
1251
1252 // Set the info field to a constant.
1253 void
1254 set_info(unsigned int v)
1255 {
1256 gold_assert(this->info_section_ == NULL);
1257 this->info_ = v;
1258 }
1259
1260 // Set the addralign field.
1261 void
1262 set_addralign(uint64_t v)
1263 { this->addralign_ = v; }
1264
1265 // Indicate that we need a symtab index.
1266 void
1267 set_needs_symtab_index()
1268 { this->needs_symtab_index_ = true; }
1269
1270 // Return whether we need a symtab index.
1271 bool
1272 needs_symtab_index() const
1273 { return this->needs_symtab_index_; }
1274
1275 // Get the symtab index.
1276 unsigned int
1277 symtab_index() const
1278 {
1279 gold_assert(this->symtab_index_ != 0);
1280 return this->symtab_index_;
1281 }
1282
1283 // Set the symtab index.
1284 void
1285 set_symtab_index(unsigned int index)
1286 {
1287 gold_assert(index != 0);
1288 this->symtab_index_ = index;
1289 }
1290
1291 // Indicate that we need a dynsym index.
1292 void
1293 set_needs_dynsym_index()
1294 { this->needs_dynsym_index_ = true; }
1295
1296 // Return whether we need a dynsym index.
1297 bool
1298 needs_dynsym_index() const
1299 { return this->needs_dynsym_index_; }
1300
1301 // Get the dynsym index.
1302 unsigned int
1303 dynsym_index() const
1304 {
1305 gold_assert(this->dynsym_index_ != 0);
1306 return this->dynsym_index_;
1307 }
1308
1309 // Set the dynsym index.
1310 void
1311 set_dynsym_index(unsigned int index)
1312 {
1313 gold_assert(index != 0);
1314 this->dynsym_index_ = index;
1315 }
1316
1317 // Return the output virtual address of OFFSET relative to the start
1318 // of input section SHNDX in object OBJECT.
1319 uint64_t
1320 output_address(const Relobj* object, unsigned int shndx,
1321 off_t offset) const;
1322
1323 // Set the address of the Output_section. For a typical
1324 // Output_section, there is nothing to do, but if there are any
1325 // Output_section_data objects we need to set the final addresses
1326 // here.
1327 void
1328 do_set_address(uint64_t, off_t);
1329
1330 // Write the data to the file. For a typical Output_section, this
1331 // does nothing: the data is written out by calling Object::Relocate
1332 // on each input object. But if there are any Output_section_data
1333 // objects we do need to write them out here.
1334 void
1335 do_write(Output_file*);
1336
1337 // Return the address alignment--function required by parent class.
1338 uint64_t
1339 do_addralign() const
1340 { return this->addralign_; }
1341
1342 // Return whether this is an Output_section.
1343 bool
1344 do_is_section() const
1345 { return true; }
1346
1347 // Return whether this is a section of the specified type.
1348 bool
1349 do_is_section_type(elfcpp::Elf_Word type) const
1350 { return this->type_ == type; }
1351
1352 // Return whether the specified section flag is set.
1353 bool
1354 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
1355 { return (this->flags_ & flag) != 0; }
1356
1357 // Write the section header into *OPHDR.
1358 template<int size, bool big_endian>
1359 void
1360 write_header(const Layout*, const Stringpool*,
1361 elfcpp::Shdr_write<size, big_endian>*) const;
1362
1363 private:
1364 // In some cases we need to keep a list of the input sections
1365 // associated with this output section. We only need the list if we
1366 // might have to change the offsets of the input section within the
1367 // output section after we add the input section. The ordinary
1368 // input sections will be written out when we process the object
1369 // file, and as such we don't need to track them here. We do need
1370 // to track Output_section_data objects here. We store instances of
1371 // this structure in a std::vector, so it must be a POD. There can
1372 // be many instances of this structure, so we use a union to save
1373 // some space.
1374 class Input_section
1375 {
1376 public:
1377 Input_section()
1378 : shndx_(0), p2align_(0)
1379 {
1380 this->u1_.data_size = 0;
1381 this->u2_.object = NULL;
1382 }
1383
1384 // For an ordinary input section.
1385 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
1386 uint64_t addralign)
1387 : shndx_(shndx),
1388 p2align_(ffsll(static_cast<long long>(addralign)))
1389 {
1390 gold_assert(shndx != OUTPUT_SECTION_CODE
1391 && shndx != MERGE_DATA_SECTION_CODE
1392 && shndx != MERGE_STRING_SECTION_CODE);
1393 this->u1_.data_size = data_size;
1394 this->u2_.object = object;
1395 }
1396
1397 // For a non-merge output section.
1398 Input_section(Output_section_data* posd)
1399 : shndx_(OUTPUT_SECTION_CODE),
1400 p2align_(ffsll(static_cast<long long>(posd->addralign())))
1401 {
1402 this->u1_.data_size = 0;
1403 this->u2_.posd = posd;
1404 }
1405
1406 // For a merge section.
1407 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
1408 : shndx_(is_string
1409 ? MERGE_STRING_SECTION_CODE
1410 : MERGE_DATA_SECTION_CODE),
1411 p2align_(ffsll(static_cast<long long>(posd->addralign())))
1412 {
1413 this->u1_.entsize = entsize;
1414 this->u2_.posd = posd;
1415 }
1416
1417 // The required alignment.
1418 uint64_t
1419 addralign() const
1420 {
1421 return (this->p2align_ == 0
1422 ? 0
1423 : static_cast<uint64_t>(1) << (this->p2align_ - 1));
1424 }
1425
1426 // Return the required size.
1427 off_t
1428 data_size() const;
1429
1430 // Return whether this is a merge section which matches the
1431 // parameters.
1432 bool
1433 is_merge_section(bool is_string, uint64_t entsize) const
1434 {
1435 return (this->shndx_ == (is_string
1436 ? MERGE_STRING_SECTION_CODE
1437 : MERGE_DATA_SECTION_CODE)
1438 && this->u1_.entsize == entsize);
1439 }
1440
1441 // Set the output section.
1442 void
1443 set_output_section(Output_section* os)
1444 {
1445 gold_assert(!this->is_input_section());
1446 this->u2_.posd->set_output_section(os);
1447 }
1448
1449 // Set the address and file offset. This is called during
1450 // Layout::finalize. SECOFF is the file offset of the enclosing
1451 // section.
1452 void
1453 set_address(uint64_t addr, off_t off, off_t secoff);
1454
1455 // Add an input section, for SHF_MERGE sections.
1456 bool
1457 add_input_section(Relobj* object, unsigned int shndx)
1458 {
1459 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
1460 || this->shndx_ == MERGE_STRING_SECTION_CODE);
1461 return this->u2_.posd->add_input_section(object, shndx);
1462 }
1463
1464 // Given an input OBJECT, an input section index SHNDX within that
1465 // object, and an OFFSET relative to the start of that input
1466 // section, return whether or not the output address is known.
1467 // OUTPUT_SECTION_ADDRESS is the address of the output section
1468 // which this is a part of. If this function returns true, it
1469 // sets *POUTPUT to the output address.
1470 bool
1471 output_address(const Relobj* object, unsigned int shndx, off_t offset,
1472 uint64_t output_section_address, uint64_t *poutput) const;
1473
1474 // Write out the data. This does nothing for an input section.
1475 void
1476 write(Output_file*);
1477
1478 private:
1479 // Code values which appear in shndx_. If the value is not one of
1480 // these codes, it is the input section index in the object file.
1481 enum
1482 {
1483 // An Output_section_data.
1484 OUTPUT_SECTION_CODE = -1U,
1485 // An Output_section_data for an SHF_MERGE section with
1486 // SHF_STRINGS not set.
1487 MERGE_DATA_SECTION_CODE = -2U,
1488 // An Output_section_data for an SHF_MERGE section with
1489 // SHF_STRINGS set.
1490 MERGE_STRING_SECTION_CODE = -3U
1491 };
1492
1493 // Whether this is an input section.
1494 bool
1495 is_input_section() const
1496 {
1497 return (this->shndx_ != OUTPUT_SECTION_CODE
1498 && this->shndx_ != MERGE_DATA_SECTION_CODE
1499 && this->shndx_ != MERGE_STRING_SECTION_CODE);
1500 }
1501
1502 // For an ordinary input section, this is the section index in the
1503 // input file. For an Output_section_data, this is
1504 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
1505 // MERGE_STRING_SECTION_CODE.
1506 unsigned int shndx_;
1507 // The required alignment, stored as a power of 2.
1508 unsigned int p2align_;
1509 union
1510 {
1511 // For an ordinary input section, the section size.
1512 off_t data_size;
1513 // For OUTPUT_SECTION_CODE, this is not used. For
1514 // MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
1515 // entity size.
1516 uint64_t entsize;
1517 } u1_;
1518 union
1519 {
1520 // For an ordinary input section, the object which holds the
1521 // input section.
1522 Relobj* object;
1523 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
1524 // MERGE_STRING_SECTION_CODE, the data.
1525 Output_section_data* posd;
1526 } u2_;
1527 };
1528
1529 typedef std::vector<Input_section> Input_section_list;
1530
1531 // Fill data. This is used to fill in data between input sections.
1532 // When we have to keep track of the input sections, we can use an
1533 // Output_data_const, but we don't want to have to keep track of
1534 // input sections just to implement fills. For a fill we record the
1535 // offset, and the actual data to be written out.
1536 class Fill
1537 {
1538 public:
1539 Fill(off_t section_offset, off_t length)
1540 : section_offset_(section_offset), length_(length)
1541 { }
1542
1543 // Return section offset.
1544 off_t
1545 section_offset() const
1546 { return this->section_offset_; }
1547
1548 // Return fill length.
1549 off_t
1550 length() const
1551 { return this->length_; }
1552
1553 private:
1554 // The offset within the output section.
1555 off_t section_offset_;
1556 // The length of the space to fill.
1557 off_t length_;
1558 };
1559
1560 typedef std::vector<Fill> Fill_list;
1561
1562 // Add a new output section by Input_section.
1563 void
1564 add_output_section_data(Input_section*);
1565
1566 // Add an SHF_MERGE input section. Returns true if the section was
1567 // handled.
1568 bool
1569 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
1570 uint64_t entsize, uint64_t addralign);
1571
1572 // Add an output SHF_MERGE section POSD to this output section.
1573 // IS_STRING indicates whether it is a SHF_STRINGS section, and
1574 // ENTSIZE is the entity size. This returns the entry added to
1575 // input_sections_.
1576 void
1577 add_output_merge_section(Output_section_data* posd, bool is_string,
1578 uint64_t entsize);
1579
1580 // Most of these fields are only valid after layout.
1581
1582 // The name of the section. This will point into a Stringpool.
1583 const char* name_;
1584 // The section address is in the parent class.
1585 // The section alignment.
1586 uint64_t addralign_;
1587 // The section entry size.
1588 uint64_t entsize_;
1589 // The file offset is in the parent class.
1590 // Set the section link field to the index of this section.
1591 const Output_data* link_section_;
1592 // If link_section_ is NULL, this is the link field.
1593 unsigned int link_;
1594 // Set the section info field to the index of this section.
1595 const Output_data* info_section_;
1596 // If info_section_ is NULL, this is the section info field.
1597 unsigned int info_;
1598 // The section type.
1599 elfcpp::Elf_Word type_;
1600 // The section flags.
1601 elfcpp::Elf_Xword flags_;
1602 // The section index.
1603 unsigned int out_shndx_;
1604 // If there is a STT_SECTION for this output section in the normal
1605 // symbol table, this is the symbol index. This starts out as zero.
1606 // It is initialized in Layout::finalize() to be the index, or -1U
1607 // if there isn't one.
1608 unsigned int symtab_index_;
1609 // If there is a STT_SECTION for this output section in the dynamic
1610 // symbol table, this is the symbol index. This starts out as zero.
1611 // It is initialized in Layout::finalize() to be the index, or -1U
1612 // if there isn't one.
1613 unsigned int dynsym_index_;
1614 // The input sections. This will be empty in cases where we don't
1615 // need to keep track of them.
1616 Input_section_list input_sections_;
1617 // The offset of the first entry in input_sections_.
1618 off_t first_input_offset_;
1619 // The fill data. This is separate from input_sections_ because we
1620 // often will need fill sections without needing to keep track of
1621 // input sections.
1622 Fill_list fills_;
1623 // Whether this output section needs a STT_SECTION symbol in the
1624 // normal symbol table. This will be true if there is a relocation
1625 // which needs it.
1626 bool needs_symtab_index_ : 1;
1627 // Whether this output section needs a STT_SECTION symbol in the
1628 // dynamic symbol table. This will be true if there is a dynamic
1629 // relocation which needs it.
1630 bool needs_dynsym_index_ : 1;
1631 // Whether the link field of this output section should point to the
1632 // normal symbol table.
1633 bool should_link_to_symtab_ : 1;
1634 // Whether the link field of this output section should point to the
1635 // dynamic symbol table.
1636 bool should_link_to_dynsym_ : 1;
1637 };
1638
1639 // An output segment. PT_LOAD segments are built from collections of
1640 // output sections. Other segments typically point within PT_LOAD
1641 // segments, and are built directly as needed.
1642
1643 class Output_segment
1644 {
1645 public:
1646 // Create an output segment, specifying the type and flags.
1647 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
1648
1649 // Return the virtual address.
1650 uint64_t
1651 vaddr() const
1652 { return this->vaddr_; }
1653
1654 // Return the physical address.
1655 uint64_t
1656 paddr() const
1657 { return this->paddr_; }
1658
1659 // Return the segment type.
1660 elfcpp::Elf_Word
1661 type() const
1662 { return this->type_; }
1663
1664 // Return the segment flags.
1665 elfcpp::Elf_Word
1666 flags() const
1667 { return this->flags_; }
1668
1669 // Return the memory size.
1670 uint64_t
1671 memsz() const
1672 { return this->memsz_; }
1673
1674 // Return the file size.
1675 off_t
1676 filesz() const
1677 { return this->filesz_; }
1678
1679 // Return the maximum alignment of the Output_data.
1680 uint64_t
1681 addralign();
1682
1683 // Add an Output_section to this segment.
1684 void
1685 add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags)
1686 { this->add_output_section(os, seg_flags, false); }
1687
1688 // Add an Output_section to the start of this segment.
1689 void
1690 add_initial_output_section(Output_section* os, elfcpp::Elf_Word seg_flags)
1691 { this->add_output_section(os, seg_flags, true); }
1692
1693 // Add an Output_data (which is not an Output_section) to the start
1694 // of this segment.
1695 void
1696 add_initial_output_data(Output_data*);
1697
1698 // Set the address of the segment to ADDR and the offset to *POFF
1699 // (aligned if necessary), and set the addresses and offsets of all
1700 // contained output sections accordingly. Set the section indexes
1701 // of all contained output sections starting with *PSHNDX. Return
1702 // the address of the immediately following segment. Update *POFF
1703 // and *PSHNDX. This should only be called for a PT_LOAD segment.
1704 uint64_t
1705 set_section_addresses(uint64_t addr, off_t* poff, unsigned int* pshndx);
1706
1707 // Set the minimum alignment of this segment. This may be adjusted
1708 // upward based on the section alignments.
1709 void
1710 set_minimum_addralign(uint64_t align)
1711 {
1712 gold_assert(!this->is_align_known_);
1713 this->align_ = align;
1714 }
1715
1716 // Set the offset of this segment based on the section. This should
1717 // only be called for a non-PT_LOAD segment.
1718 void
1719 set_offset();
1720
1721 // Return the number of output sections.
1722 unsigned int
1723 output_section_count() const;
1724
1725 // Write the segment header into *OPHDR.
1726 template<int size, bool big_endian>
1727 void
1728 write_header(elfcpp::Phdr_write<size, big_endian>*);
1729
1730 // Write the section headers of associated sections into V.
1731 template<int size, bool big_endian>
1732 unsigned char*
1733 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
1734 unsigned int* pshndx ACCEPT_SIZE_ENDIAN) const;
1735
1736 private:
1737 Output_segment(const Output_segment&);
1738 Output_segment& operator=(const Output_segment&);
1739
1740 typedef std::list<Output_data*> Output_data_list;
1741
1742 // Add an Output_section to this segment, specifying front or back.
1743 void
1744 add_output_section(Output_section*, elfcpp::Elf_Word seg_flags,
1745 bool front);
1746
1747 // Find the maximum alignment in an Output_data_list.
1748 static uint64_t
1749 maximum_alignment(const Output_data_list*);
1750
1751 // Set the section addresses in an Output_data_list.
1752 uint64_t
1753 set_section_list_addresses(Output_data_list*, uint64_t addr, off_t* poff,
1754 unsigned int* pshndx);
1755
1756 // Return the number of Output_sections in an Output_data_list.
1757 unsigned int
1758 output_section_count_list(const Output_data_list*) const;
1759
1760 // Write the section headers in the list into V.
1761 template<int size, bool big_endian>
1762 unsigned char*
1763 write_section_headers_list(const Layout*, const Stringpool*,
1764 const Output_data_list*, unsigned char* v,
1765 unsigned int* pshdx ACCEPT_SIZE_ENDIAN) const;
1766
1767 // The list of output data with contents attached to this segment.
1768 Output_data_list output_data_;
1769 // The list of output data without contents attached to this segment.
1770 Output_data_list output_bss_;
1771 // The segment virtual address.
1772 uint64_t vaddr_;
1773 // The segment physical address.
1774 uint64_t paddr_;
1775 // The size of the segment in memory.
1776 uint64_t memsz_;
1777 // The segment alignment. The is_align_known_ field indicates
1778 // whether this has been finalized. It can be set to a minimum
1779 // value before it is finalized.
1780 uint64_t align_;
1781 // The offset of the segment data within the file.
1782 off_t offset_;
1783 // The size of the segment data in the file.
1784 off_t filesz_;
1785 // The segment type;
1786 elfcpp::Elf_Word type_;
1787 // The segment flags.
1788 elfcpp::Elf_Word flags_;
1789 // Whether we have finalized align_.
1790 bool is_align_known_;
1791 };
1792
1793 // This class represents the output file.
1794
1795 class Output_file
1796 {
1797 public:
1798 Output_file(const General_options& options, Target*);
1799
1800 // Get a pointer to the target.
1801 Target*
1802 target() const
1803 { return this->target_; }
1804
1805 // Open the output file. FILE_SIZE is the final size of the file.
1806 void
1807 open(off_t file_size);
1808
1809 // Close the output file and make sure there are no error.
1810 void
1811 close();
1812
1813 // We currently always use mmap which makes the view handling quite
1814 // simple. In the future we may support other approaches.
1815
1816 // Write data to the output file.
1817 void
1818 write(off_t offset, const void* data, off_t len)
1819 { memcpy(this->base_ + offset, data, len); }
1820
1821 // Get a buffer to use to write to the file, given the offset into
1822 // the file and the size.
1823 unsigned char*
1824 get_output_view(off_t start, off_t size)
1825 {
1826 gold_assert(start >= 0 && size >= 0 && start + size <= this->file_size_);
1827 return this->base_ + start;
1828 }
1829
1830 // VIEW must have been returned by get_output_view. Write the
1831 // buffer to the file, passing in the offset and the size.
1832 void
1833 write_output_view(off_t, off_t, unsigned char*)
1834 { }
1835
1836 private:
1837 // General options.
1838 const General_options& options_;
1839 // Target.
1840 Target* target_;
1841 // File name.
1842 const char* name_;
1843 // File descriptor.
1844 int o_;
1845 // File size.
1846 off_t file_size_;
1847 // Base of file mapped into memory.
1848 unsigned char* base_;
1849 };
1850
1851 } // End namespace gold.
1852
1853 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.067779 seconds and 5 git commands to generate.