10780179696f7d92841770dcacb271a4c361dd03
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74 typedef Unordered_map<Address, Section_refs> Access_from;
75
76 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80 opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81 e_flags_(ehdr.get_e_flags()), st_other_()
82 {
83 this->set_abiversion(0);
84 }
85
86 ~Powerpc_relobj()
87 { }
88
89 // Read the symbols then set up st_other vector.
90 void
91 do_read_symbols(Read_symbols_data*);
92
93 // The .got2 section shndx.
94 unsigned int
95 got2_shndx() const
96 {
97 if (size == 32)
98 return this->special_;
99 else
100 return 0;
101 }
102
103 // The .opd section shndx.
104 unsigned int
105 opd_shndx() const
106 {
107 if (size == 32)
108 return 0;
109 else
110 return this->special_;
111 }
112
113 // Init OPD entry arrays.
114 void
115 init_opd(size_t opd_size)
116 {
117 size_t count = this->opd_ent_ndx(opd_size);
118 this->opd_ent_.resize(count);
119 }
120
121 // Return section and offset of function entry for .opd + R_OFF.
122 unsigned int
123 get_opd_ent(Address r_off, Address* value = NULL) const
124 {
125 size_t ndx = this->opd_ent_ndx(r_off);
126 gold_assert(ndx < this->opd_ent_.size());
127 gold_assert(this->opd_ent_[ndx].shndx != 0);
128 if (value != NULL)
129 *value = this->opd_ent_[ndx].off;
130 return this->opd_ent_[ndx].shndx;
131 }
132
133 // Set section and offset of function entry for .opd + R_OFF.
134 void
135 set_opd_ent(Address r_off, unsigned int shndx, Address value)
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 this->opd_ent_[ndx].shndx = shndx;
140 this->opd_ent_[ndx].off = value;
141 }
142
143 // Return discard flag for .opd + R_OFF.
144 bool
145 get_opd_discard(Address r_off) const
146 {
147 size_t ndx = this->opd_ent_ndx(r_off);
148 gold_assert(ndx < this->opd_ent_.size());
149 return this->opd_ent_[ndx].discard;
150 }
151
152 // Set discard flag for .opd + R_OFF.
153 void
154 set_opd_discard(Address r_off)
155 {
156 size_t ndx = this->opd_ent_ndx(r_off);
157 gold_assert(ndx < this->opd_ent_.size());
158 this->opd_ent_[ndx].discard = true;
159 }
160
161 bool
162 opd_valid() const
163 { return this->opd_valid_; }
164
165 void
166 set_opd_valid()
167 { this->opd_valid_ = true; }
168
169 // Examine .rela.opd to build info about function entry points.
170 void
171 scan_opd_relocs(size_t reloc_count,
172 const unsigned char* prelocs,
173 const unsigned char* plocal_syms);
174
175 // Perform the Sized_relobj_file method, then set up opd info from
176 // .opd relocs.
177 void
178 do_read_relocs(Read_relocs_data*);
179
180 bool
181 do_find_special_sections(Read_symbols_data* sd);
182
183 // Adjust this local symbol value. Return false if the symbol
184 // should be discarded from the output file.
185 bool
186 do_adjust_local_symbol(Symbol_value<size>* lv) const
187 {
188 if (size == 64 && this->opd_shndx() != 0)
189 {
190 bool is_ordinary;
191 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192 return true;
193 if (this->get_opd_discard(lv->input_value()))
194 return false;
195 }
196 return true;
197 }
198
199 Access_from*
200 access_from_map()
201 { return &this->access_from_map_; }
202
203 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204 // section at DST_OFF.
205 void
206 add_reference(Object* src_obj,
207 unsigned int src_indx,
208 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209 {
210 Section_id src_id(src_obj, src_indx);
211 this->access_from_map_[dst_off].insert(src_id);
212 }
213
214 // Add a reference to the code section specified by the .opd entry
215 // at DST_OFF
216 void
217 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218 {
219 size_t ndx = this->opd_ent_ndx(dst_off);
220 if (ndx >= this->opd_ent_.size())
221 this->opd_ent_.resize(ndx + 1);
222 this->opd_ent_[ndx].gc_mark = true;
223 }
224
225 void
226 process_gc_mark(Symbol_table* symtab)
227 {
228 for (size_t i = 0; i < this->opd_ent_.size(); i++)
229 if (this->opd_ent_[i].gc_mark)
230 {
231 unsigned int shndx = this->opd_ent_[i].shndx;
232 symtab->gc()->worklist().push(Section_id(this, shndx));
233 }
234 }
235
236 // Return offset in output GOT section that this object will use
237 // as a TOC pointer. Won't be just a constant with multi-toc support.
238 Address
239 toc_base_offset() const
240 { return 0x8000; }
241
242 void
243 set_has_small_toc_reloc()
244 { has_small_toc_reloc_ = true; }
245
246 bool
247 has_small_toc_reloc() const
248 { return has_small_toc_reloc_; }
249
250 void
251 set_has_14bit_branch(unsigned int shndx)
252 {
253 if (shndx >= this->has14_.size())
254 this->has14_.resize(shndx + 1);
255 this->has14_[shndx] = true;
256 }
257
258 bool
259 has_14bit_branch(unsigned int shndx) const
260 { return shndx < this->has14_.size() && this->has14_[shndx]; }
261
262 void
263 set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264 {
265 if (shndx >= this->stub_table_.size())
266 this->stub_table_.resize(shndx + 1);
267 this->stub_table_[shndx] = stub_table;
268 }
269
270 Stub_table<size, big_endian>*
271 stub_table(unsigned int shndx)
272 {
273 if (shndx < this->stub_table_.size())
274 return this->stub_table_[shndx];
275 return NULL;
276 }
277
278 int
279 abiversion() const
280 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282 // Set ABI version for input and output
283 void
284 set_abiversion(int ver);
285
286 unsigned int
287 ppc64_local_entry_offset(const Symbol* sym) const
288 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290 unsigned int
291 ppc64_local_entry_offset(unsigned int symndx) const
292 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295 struct Opd_ent
296 {
297 unsigned int shndx;
298 bool discard : 1;
299 bool gc_mark : 1;
300 Address off;
301 };
302
303 // Return index into opd_ent_ array for .opd entry at OFF.
304 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305 // apart when the language doesn't use the last 8-byte word, the
306 // environment pointer. Thus dividing the entry section offset by
307 // 16 will give an index into opd_ent_ that works for either layout
308 // of .opd. (It leaves some elements of the vector unused when .opd
309 // entries are spaced 24 bytes apart, but we don't know the spacing
310 // until relocations are processed, and in any case it is possible
311 // for an object to have some entries spaced 16 bytes apart and
312 // others 24 bytes apart.)
313 size_t
314 opd_ent_ndx(size_t off) const
315 { return off >> 4;}
316
317 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318 unsigned int special_;
319
320 // For 64-bit, whether this object uses small model relocs to access
321 // the toc.
322 bool has_small_toc_reloc_;
323
324 // Set at the start of gc_process_relocs, when we know opd_ent_
325 // vector is valid. The flag could be made atomic and set in
326 // do_read_relocs with memory_order_release and then tested with
327 // memory_order_acquire, potentially resulting in fewer entries in
328 // access_from_map_.
329 bool opd_valid_;
330
331 // The first 8-byte word of an OPD entry gives the address of the
332 // entry point of the function. Relocatable object files have a
333 // relocation on this word. The following vector records the
334 // section and offset specified by these relocations.
335 std::vector<Opd_ent> opd_ent_;
336
337 // References made to this object's .opd section when running
338 // gc_process_relocs for another object, before the opd_ent_ vector
339 // is valid for this object.
340 Access_from access_from_map_;
341
342 // Whether input section has a 14-bit branch reloc.
343 std::vector<bool> has14_;
344
345 // The stub table to use for a given input section.
346 std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348 // Header e_flags
349 elfcpp::Elf_Word e_flags_;
350
351 // ELF st_other field for local symbols.
352 std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365 {
366 this->set_abiversion(0);
367 }
368
369 ~Powerpc_dynobj()
370 { }
371
372 // Call Sized_dynobj::do_read_symbols to read the symbols then
373 // read .opd from a dynamic object, filling in opd_ent_ vector,
374 void
375 do_read_symbols(Read_symbols_data*);
376
377 // The .opd section shndx.
378 unsigned int
379 opd_shndx() const
380 {
381 return this->opd_shndx_;
382 }
383
384 // The .opd section address.
385 Address
386 opd_address() const
387 {
388 return this->opd_address_;
389 }
390
391 // Init OPD entry arrays.
392 void
393 init_opd(size_t opd_size)
394 {
395 size_t count = this->opd_ent_ndx(opd_size);
396 this->opd_ent_.resize(count);
397 }
398
399 // Return section and offset of function entry for .opd + R_OFF.
400 unsigned int
401 get_opd_ent(Address r_off, Address* value = NULL) const
402 {
403 size_t ndx = this->opd_ent_ndx(r_off);
404 gold_assert(ndx < this->opd_ent_.size());
405 gold_assert(this->opd_ent_[ndx].shndx != 0);
406 if (value != NULL)
407 *value = this->opd_ent_[ndx].off;
408 return this->opd_ent_[ndx].shndx;
409 }
410
411 // Set section and offset of function entry for .opd + R_OFF.
412 void
413 set_opd_ent(Address r_off, unsigned int shndx, Address value)
414 {
415 size_t ndx = this->opd_ent_ndx(r_off);
416 gold_assert(ndx < this->opd_ent_.size());
417 this->opd_ent_[ndx].shndx = shndx;
418 this->opd_ent_[ndx].off = value;
419 }
420
421 int
422 abiversion() const
423 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425 // Set ABI version for input and output.
426 void
427 set_abiversion(int ver);
428
429 private:
430 // Used to specify extent of executable sections.
431 struct Sec_info
432 {
433 Sec_info(Address start_, Address len_, unsigned int shndx_)
434 : start(start_), len(len_), shndx(shndx_)
435 { }
436
437 bool
438 operator<(const Sec_info& that) const
439 { return this->start < that.start; }
440
441 Address start;
442 Address len;
443 unsigned int shndx;
444 };
445
446 struct Opd_ent
447 {
448 unsigned int shndx;
449 Address off;
450 };
451
452 // Return index into opd_ent_ array for .opd entry at OFF.
453 size_t
454 opd_ent_ndx(size_t off) const
455 { return off >> 4;}
456
457 // For 64-bit the .opd section shndx and address.
458 unsigned int opd_shndx_;
459 Address opd_address_;
460
461 // The first 8-byte word of an OPD entry gives the address of the
462 // entry point of the function. Records the section and offset
463 // corresponding to the address. Note that in dynamic objects,
464 // offset is *not* relative to the section.
465 std::vector<Opd_ent> opd_ent_;
466
467 // Header e_flags
468 elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474 public:
475 typedef
476 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479 static const Address invalid_address = static_cast<Address>(0) - 1;
480 // Offset of tp and dtp pointers from start of TLS block.
481 static const Address tp_offset = 0x7000;
482 static const Address dtp_offset = 0x8000;
483
484 Target_powerpc()
485 : Sized_target<size, big_endian>(&powerpc_info),
486 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488 tlsld_got_offset_(-1U),
489 stub_tables_(), branch_lookup_table_(), branch_info_(),
490 plt_thread_safe_(false)
491 {
492 }
493
494 // Process the relocations to determine unreferenced sections for
495 // garbage collection.
496 void
497 gc_process_relocs(Symbol_table* symtab,
498 Layout* layout,
499 Sized_relobj_file<size, big_endian>* object,
500 unsigned int data_shndx,
501 unsigned int sh_type,
502 const unsigned char* prelocs,
503 size_t reloc_count,
504 Output_section* output_section,
505 bool needs_special_offset_handling,
506 size_t local_symbol_count,
507 const unsigned char* plocal_symbols);
508
509 // Scan the relocations to look for symbol adjustments.
510 void
511 scan_relocs(Symbol_table* symtab,
512 Layout* layout,
513 Sized_relobj_file<size, big_endian>* object,
514 unsigned int data_shndx,
515 unsigned int sh_type,
516 const unsigned char* prelocs,
517 size_t reloc_count,
518 Output_section* output_section,
519 bool needs_special_offset_handling,
520 size_t local_symbol_count,
521 const unsigned char* plocal_symbols);
522
523 // Map input .toc section to output .got section.
524 const char*
525 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526 {
527 if (size == 64 && strcmp(name, ".toc") == 0)
528 {
529 *plen = 4;
530 return ".got";
531 }
532 return NULL;
533 }
534
535 // Provide linker defined save/restore functions.
536 void
537 define_save_restore_funcs(Layout*, Symbol_table*);
538
539 // No stubs unless a final link.
540 bool
541 do_may_relax() const
542 { return !parameters->options().relocatable(); }
543
544 bool
545 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547 void
548 do_plt_fde_location(const Output_data*, unsigned char*,
549 uint64_t*, off_t*) const;
550
551 // Stash info about branches, for stub generation.
552 void
553 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554 unsigned int data_shndx, Address r_offset,
555 unsigned int r_type, unsigned int r_sym, Address addend)
556 {
557 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558 this->branch_info_.push_back(info);
559 if (r_type == elfcpp::R_POWERPC_REL14
560 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562 ppc_object->set_has_14bit_branch(data_shndx);
563 }
564
565 Stub_table<size, big_endian>*
566 new_stub_table();
567
568 void
569 do_define_standard_symbols(Symbol_table*, Layout*);
570
571 // Finalize the sections.
572 void
573 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575 // Return the value to use for a dynamic which requires special
576 // treatment.
577 uint64_t
578 do_dynsym_value(const Symbol*) const;
579
580 // Return the PLT address to use for a local symbol.
581 uint64_t
582 do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584 // Return the PLT address to use for a global symbol.
585 uint64_t
586 do_plt_address_for_global(const Symbol*) const;
587
588 // Return the offset to use for the GOT_INDX'th got entry which is
589 // for a local tls symbol specified by OBJECT, SYMNDX.
590 int64_t
591 do_tls_offset_for_local(const Relobj* object,
592 unsigned int symndx,
593 unsigned int got_indx) const;
594
595 // Return the offset to use for the GOT_INDX'th got entry which is
596 // for global tls symbol GSYM.
597 int64_t
598 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600 void
601 do_function_location(Symbol_location*) const;
602
603 bool
604 do_can_check_for_function_pointers() const
605 { return true; }
606
607 // Relocate a section.
608 void
609 relocate_section(const Relocate_info<size, big_endian>*,
610 unsigned int sh_type,
611 const unsigned char* prelocs,
612 size_t reloc_count,
613 Output_section* output_section,
614 bool needs_special_offset_handling,
615 unsigned char* view,
616 Address view_address,
617 section_size_type view_size,
618 const Reloc_symbol_changes*);
619
620 // Scan the relocs during a relocatable link.
621 void
622 scan_relocatable_relocs(Symbol_table* symtab,
623 Layout* layout,
624 Sized_relobj_file<size, big_endian>* object,
625 unsigned int data_shndx,
626 unsigned int sh_type,
627 const unsigned char* prelocs,
628 size_t reloc_count,
629 Output_section* output_section,
630 bool needs_special_offset_handling,
631 size_t local_symbol_count,
632 const unsigned char* plocal_symbols,
633 Relocatable_relocs*);
634
635 // Emit relocations for a section.
636 void
637 relocate_relocs(const Relocate_info<size, big_endian>*,
638 unsigned int sh_type,
639 const unsigned char* prelocs,
640 size_t reloc_count,
641 Output_section* output_section,
642 typename elfcpp::Elf_types<size>::Elf_Off
643 offset_in_output_section,
644 const Relocatable_relocs*,
645 unsigned char*,
646 Address view_address,
647 section_size_type,
648 unsigned char* reloc_view,
649 section_size_type reloc_view_size);
650
651 // Return whether SYM is defined by the ABI.
652 bool
653 do_is_defined_by_abi(const Symbol* sym) const
654 {
655 return strcmp(sym->name(), "__tls_get_addr") == 0;
656 }
657
658 // Return the size of the GOT section.
659 section_size_type
660 got_size() const
661 {
662 gold_assert(this->got_ != NULL);
663 return this->got_->data_size();
664 }
665
666 // Get the PLT section.
667 const Output_data_plt_powerpc<size, big_endian>*
668 plt_section() const
669 {
670 gold_assert(this->plt_ != NULL);
671 return this->plt_;
672 }
673
674 // Get the IPLT section.
675 const Output_data_plt_powerpc<size, big_endian>*
676 iplt_section() const
677 {
678 gold_assert(this->iplt_ != NULL);
679 return this->iplt_;
680 }
681
682 // Get the .glink section.
683 const Output_data_glink<size, big_endian>*
684 glink_section() const
685 {
686 gold_assert(this->glink_ != NULL);
687 return this->glink_;
688 }
689
690 Output_data_glink<size, big_endian>*
691 glink_section()
692 {
693 gold_assert(this->glink_ != NULL);
694 return this->glink_;
695 }
696
697 bool has_glink() const
698 { return this->glink_ != NULL; }
699
700 // Get the GOT section.
701 const Output_data_got_powerpc<size, big_endian>*
702 got_section() const
703 {
704 gold_assert(this->got_ != NULL);
705 return this->got_;
706 }
707
708 // Get the GOT section, creating it if necessary.
709 Output_data_got_powerpc<size, big_endian>*
710 got_section(Symbol_table*, Layout*);
711
712 Object*
713 do_make_elf_object(const std::string&, Input_file*, off_t,
714 const elfcpp::Ehdr<size, big_endian>&);
715
716 // Return the number of entries in the GOT.
717 unsigned int
718 got_entry_count() const
719 {
720 if (this->got_ == NULL)
721 return 0;
722 return this->got_size() / (size / 8);
723 }
724
725 // Return the number of entries in the PLT.
726 unsigned int
727 plt_entry_count() const;
728
729 // Return the offset of the first non-reserved PLT entry.
730 unsigned int
731 first_plt_entry_offset() const
732 {
733 if (size == 32)
734 return 0;
735 if (this->abiversion() >= 2)
736 return 16;
737 return 24;
738 }
739
740 // Return the size of each PLT entry.
741 unsigned int
742 plt_entry_size() const
743 {
744 if (size == 32)
745 return 4;
746 if (this->abiversion() >= 2)
747 return 8;
748 return 24;
749 }
750
751 // Add any special sections for this symbol to the gc work list.
752 // For powerpc64, this adds the code section of a function
753 // descriptor.
754 void
755 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757 // Handle target specific gc actions when adding a gc reference from
758 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759 // and DST_OFF. For powerpc64, this adds a referenc to the code
760 // section of a function descriptor.
761 void
762 do_gc_add_reference(Symbol_table* symtab,
763 Object* src_obj,
764 unsigned int src_shndx,
765 Object* dst_obj,
766 unsigned int dst_shndx,
767 Address dst_off) const;
768
769 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770 const Stub_tables&
771 stub_tables() const
772 { return this->stub_tables_; }
773
774 const Output_data_brlt_powerpc<size, big_endian>*
775 brlt_section() const
776 { return this->brlt_section_; }
777
778 void
779 add_branch_lookup_table(Address to)
780 {
781 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782 this->branch_lookup_table_.insert(std::make_pair(to, off));
783 }
784
785 Address
786 find_branch_lookup_table(Address to)
787 {
788 typename Branch_lookup_table::const_iterator p
789 = this->branch_lookup_table_.find(to);
790 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791 }
792
793 void
794 write_branch_lookup_table(unsigned char *oview)
795 {
796 for (typename Branch_lookup_table::const_iterator p
797 = this->branch_lookup_table_.begin();
798 p != this->branch_lookup_table_.end();
799 ++p)
800 {
801 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802 }
803 }
804
805 bool
806 plt_thread_safe() const
807 { return this->plt_thread_safe_; }
808
809 int
810 abiversion () const
811 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813 void
814 set_abiversion (int ver)
815 {
816 elfcpp::Elf_Word flags = this->processor_specific_flags();
817 flags &= ~elfcpp::EF_PPC64_ABI;
818 flags |= ver & elfcpp::EF_PPC64_ABI;
819 this->set_processor_specific_flags(flags);
820 }
821
822 // Offset to to save stack slot
823 int
824 stk_toc () const
825 { return this->abiversion() < 2 ? 40 : 24; }
826
827 private:
828
829 class Track_tls
830 {
831 public:
832 enum Tls_get_addr
833 {
834 NOT_EXPECTED = 0,
835 EXPECTED = 1,
836 SKIP = 2,
837 NORMAL = 3
838 };
839
840 Track_tls()
841 : tls_get_addr_(NOT_EXPECTED),
842 relinfo_(NULL), relnum_(0), r_offset_(0)
843 { }
844
845 ~Track_tls()
846 {
847 if (this->tls_get_addr_ != NOT_EXPECTED)
848 this->missing();
849 }
850
851 void
852 missing(void)
853 {
854 if (this->relinfo_ != NULL)
855 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856 _("missing expected __tls_get_addr call"));
857 }
858
859 void
860 expect_tls_get_addr_call(
861 const Relocate_info<size, big_endian>* relinfo,
862 size_t relnum,
863 Address r_offset)
864 {
865 this->tls_get_addr_ = EXPECTED;
866 this->relinfo_ = relinfo;
867 this->relnum_ = relnum;
868 this->r_offset_ = r_offset;
869 }
870
871 void
872 expect_tls_get_addr_call()
873 { this->tls_get_addr_ = EXPECTED; }
874
875 void
876 skip_next_tls_get_addr_call()
877 {this->tls_get_addr_ = SKIP; }
878
879 Tls_get_addr
880 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881 {
882 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883 || r_type == elfcpp::R_PPC_PLTREL24)
884 && gsym != NULL
885 && strcmp(gsym->name(), "__tls_get_addr") == 0);
886 Tls_get_addr last_tls = this->tls_get_addr_;
887 this->tls_get_addr_ = NOT_EXPECTED;
888 if (is_tls_call && last_tls != EXPECTED)
889 return last_tls;
890 else if (!is_tls_call && last_tls != NOT_EXPECTED)
891 {
892 this->missing();
893 return EXPECTED;
894 }
895 return NORMAL;
896 }
897
898 private:
899 // What we're up to regarding calls to __tls_get_addr.
900 // On powerpc, the branch and link insn making a call to
901 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904 // The marker relocation always comes first, and has the same
905 // symbol as the reloc on the insn setting up the __tls_get_addr
906 // argument. This ties the arg setup insn with the call insn,
907 // allowing ld to safely optimize away the call. We check that
908 // every call to __tls_get_addr has a marker relocation, and that
909 // every marker relocation is on a call to __tls_get_addr.
910 Tls_get_addr tls_get_addr_;
911 // Info about the last reloc for error message.
912 const Relocate_info<size, big_endian>* relinfo_;
913 size_t relnum_;
914 Address r_offset_;
915 };
916
917 // The class which scans relocations.
918 class Scan : protected Track_tls
919 {
920 public:
921 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923 Scan()
924 : Track_tls(), issued_non_pic_error_(false)
925 { }
926
927 static inline int
928 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930 inline void
931 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932 Sized_relobj_file<size, big_endian>* object,
933 unsigned int data_shndx,
934 Output_section* output_section,
935 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936 const elfcpp::Sym<size, big_endian>& lsym,
937 bool is_discarded);
938
939 inline void
940 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941 Sized_relobj_file<size, big_endian>* object,
942 unsigned int data_shndx,
943 Output_section* output_section,
944 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945 Symbol* gsym);
946
947 inline bool
948 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949 Target_powerpc* ,
950 Sized_relobj_file<size, big_endian>* relobj,
951 unsigned int ,
952 Output_section* ,
953 const elfcpp::Rela<size, big_endian>& ,
954 unsigned int r_type,
955 const elfcpp::Sym<size, big_endian>&)
956 {
957 // PowerPC64 .opd is not folded, so any identical function text
958 // may be folded and we'll still keep function addresses distinct.
959 // That means no reloc is of concern here.
960 if (size == 64)
961 {
962 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
963 <Powerpc_relobj<size, big_endian>*>(relobj);
964 if (ppcobj->abiversion() == 1)
965 return false;
966 }
967 // For 32-bit and ELFv2, conservatively assume anything but calls to
968 // function code might be taking the address of the function.
969 return !is_branch_reloc(r_type);
970 }
971
972 inline bool
973 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
974 Target_powerpc* ,
975 Sized_relobj_file<size, big_endian>* relobj,
976 unsigned int ,
977 Output_section* ,
978 const elfcpp::Rela<size, big_endian>& ,
979 unsigned int r_type,
980 Symbol*)
981 {
982 // As above.
983 if (size == 64)
984 {
985 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
986 <Powerpc_relobj<size, big_endian>*>(relobj);
987 if (ppcobj->abiversion() == 1)
988 return false;
989 }
990 return !is_branch_reloc(r_type);
991 }
992
993 static bool
994 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
995 Sized_relobj_file<size, big_endian>* object,
996 unsigned int r_type, bool report_err);
997
998 private:
999 static void
1000 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1001 unsigned int r_type);
1002
1003 static void
1004 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1005 unsigned int r_type, Symbol*);
1006
1007 static void
1008 generate_tls_call(Symbol_table* symtab, Layout* layout,
1009 Target_powerpc* target);
1010
1011 void
1012 check_non_pic(Relobj*, unsigned int r_type);
1013
1014 // Whether we have issued an error about a non-PIC compilation.
1015 bool issued_non_pic_error_;
1016 };
1017
1018 Address
1019 symval_for_branch(const Symbol_table* symtab, Address value,
1020 const Sized_symbol<size>* gsym,
1021 Powerpc_relobj<size, big_endian>* object,
1022 unsigned int *dest_shndx);
1023
1024 // The class which implements relocation.
1025 class Relocate : protected Track_tls
1026 {
1027 public:
1028 // Use 'at' branch hints when true, 'y' when false.
1029 // FIXME maybe: set this with an option.
1030 static const bool is_isa_v2 = true;
1031
1032 Relocate()
1033 : Track_tls()
1034 { }
1035
1036 // Do a relocation. Return false if the caller should not issue
1037 // any warnings about this relocation.
1038 inline bool
1039 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1040 Output_section*, size_t relnum,
1041 const elfcpp::Rela<size, big_endian>&,
1042 unsigned int r_type, const Sized_symbol<size>*,
1043 const Symbol_value<size>*,
1044 unsigned char*,
1045 typename elfcpp::Elf_types<size>::Elf_Addr,
1046 section_size_type);
1047 };
1048
1049 class Relocate_comdat_behavior
1050 {
1051 public:
1052 // Decide what the linker should do for relocations that refer to
1053 // discarded comdat sections.
1054 inline Comdat_behavior
1055 get(const char* name)
1056 {
1057 gold::Default_comdat_behavior default_behavior;
1058 Comdat_behavior ret = default_behavior.get(name);
1059 if (ret == CB_WARNING)
1060 {
1061 if (size == 32
1062 && (strcmp(name, ".fixup") == 0
1063 || strcmp(name, ".got2") == 0))
1064 ret = CB_IGNORE;
1065 if (size == 64
1066 && (strcmp(name, ".opd") == 0
1067 || strcmp(name, ".toc") == 0
1068 || strcmp(name, ".toc1") == 0))
1069 ret = CB_IGNORE;
1070 }
1071 return ret;
1072 }
1073 };
1074
1075 // A class which returns the size required for a relocation type,
1076 // used while scanning relocs during a relocatable link.
1077 class Relocatable_size_for_reloc
1078 {
1079 public:
1080 unsigned int
1081 get_size_for_reloc(unsigned int, Relobj*)
1082 {
1083 gold_unreachable();
1084 return 0;
1085 }
1086 };
1087
1088 // Optimize the TLS relocation type based on what we know about the
1089 // symbol. IS_FINAL is true if the final address of this symbol is
1090 // known at link time.
1091
1092 tls::Tls_optimization
1093 optimize_tls_gd(bool is_final)
1094 {
1095 // If we are generating a shared library, then we can't do anything
1096 // in the linker.
1097 if (parameters->options().shared())
1098 return tls::TLSOPT_NONE;
1099
1100 if (!is_final)
1101 return tls::TLSOPT_TO_IE;
1102 return tls::TLSOPT_TO_LE;
1103 }
1104
1105 tls::Tls_optimization
1106 optimize_tls_ld()
1107 {
1108 if (parameters->options().shared())
1109 return tls::TLSOPT_NONE;
1110
1111 return tls::TLSOPT_TO_LE;
1112 }
1113
1114 tls::Tls_optimization
1115 optimize_tls_ie(bool is_final)
1116 {
1117 if (!is_final || parameters->options().shared())
1118 return tls::TLSOPT_NONE;
1119
1120 return tls::TLSOPT_TO_LE;
1121 }
1122
1123 // Create glink.
1124 void
1125 make_glink_section(Layout*);
1126
1127 // Create the PLT section.
1128 void
1129 make_plt_section(Symbol_table*, Layout*);
1130
1131 void
1132 make_iplt_section(Symbol_table*, Layout*);
1133
1134 void
1135 make_brlt_section(Layout*);
1136
1137 // Create a PLT entry for a global symbol.
1138 void
1139 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1140
1141 // Create a PLT entry for a local IFUNC symbol.
1142 void
1143 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1144 Sized_relobj_file<size, big_endian>*,
1145 unsigned int);
1146
1147
1148 // Create a GOT entry for local dynamic __tls_get_addr.
1149 unsigned int
1150 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1151 Sized_relobj_file<size, big_endian>* object);
1152
1153 unsigned int
1154 tlsld_got_offset() const
1155 {
1156 return this->tlsld_got_offset_;
1157 }
1158
1159 // Get the dynamic reloc section, creating it if necessary.
1160 Reloc_section*
1161 rela_dyn_section(Layout*);
1162
1163 // Similarly, but for ifunc symbols get the one for ifunc.
1164 Reloc_section*
1165 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1166
1167 // Copy a relocation against a global symbol.
1168 void
1169 copy_reloc(Symbol_table* symtab, Layout* layout,
1170 Sized_relobj_file<size, big_endian>* object,
1171 unsigned int shndx, Output_section* output_section,
1172 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1173 {
1174 this->copy_relocs_.copy_reloc(symtab, layout,
1175 symtab->get_sized_symbol<size>(sym),
1176 object, shndx, output_section,
1177 reloc, this->rela_dyn_section(layout));
1178 }
1179
1180 // Look over all the input sections, deciding where to place stubs.
1181 void
1182 group_sections(Layout*, const Task*);
1183
1184 // Sort output sections by address.
1185 struct Sort_sections
1186 {
1187 bool
1188 operator()(const Output_section* sec1, const Output_section* sec2)
1189 { return sec1->address() < sec2->address(); }
1190 };
1191
1192 class Branch_info
1193 {
1194 public:
1195 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1196 unsigned int data_shndx,
1197 Address r_offset,
1198 unsigned int r_type,
1199 unsigned int r_sym,
1200 Address addend)
1201 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1202 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1203 { }
1204
1205 ~Branch_info()
1206 { }
1207
1208 // If this branch needs a plt call stub, or a long branch stub, make one.
1209 void
1210 make_stub(Stub_table<size, big_endian>*,
1211 Stub_table<size, big_endian>*,
1212 Symbol_table*) const;
1213
1214 private:
1215 // The branch location..
1216 Powerpc_relobj<size, big_endian>* object_;
1217 unsigned int shndx_;
1218 Address offset_;
1219 // ..and the branch type and destination.
1220 unsigned int r_type_;
1221 unsigned int r_sym_;
1222 Address addend_;
1223 };
1224
1225 // Information about this specific target which we pass to the
1226 // general Target structure.
1227 static Target::Target_info powerpc_info;
1228
1229 // The types of GOT entries needed for this platform.
1230 // These values are exposed to the ABI in an incremental link.
1231 // Do not renumber existing values without changing the version
1232 // number of the .gnu_incremental_inputs section.
1233 enum Got_type
1234 {
1235 GOT_TYPE_STANDARD,
1236 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1237 GOT_TYPE_DTPREL, // entry for @got@dtprel
1238 GOT_TYPE_TPREL // entry for @got@tprel
1239 };
1240
1241 // The GOT section.
1242 Output_data_got_powerpc<size, big_endian>* got_;
1243 // The PLT section. This is a container for a table of addresses,
1244 // and their relocations. Each address in the PLT has a dynamic
1245 // relocation (R_*_JMP_SLOT) and each address will have a
1246 // corresponding entry in .glink for lazy resolution of the PLT.
1247 // ppc32 initialises the PLT to point at the .glink entry, while
1248 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1249 // linker adds a stub that loads the PLT entry into ctr then
1250 // branches to ctr. There may be more than one stub for each PLT
1251 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1252 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1253 Output_data_plt_powerpc<size, big_endian>* plt_;
1254 // The IPLT section. Like plt_, this is a container for a table of
1255 // addresses and their relocations, specifically for STT_GNU_IFUNC
1256 // functions that resolve locally (STT_GNU_IFUNC functions that
1257 // don't resolve locally go in PLT). Unlike plt_, these have no
1258 // entry in .glink for lazy resolution, and the relocation section
1259 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1260 // the relocation section may contain relocations against
1261 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1262 // relocation section will appear at the end of other dynamic
1263 // relocations, so that ld.so applies these relocations after other
1264 // dynamic relocations. In a static executable, the relocation
1265 // section is emitted and marked with __rela_iplt_start and
1266 // __rela_iplt_end symbols.
1267 Output_data_plt_powerpc<size, big_endian>* iplt_;
1268 // Section holding long branch destinations.
1269 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1270 // The .glink section.
1271 Output_data_glink<size, big_endian>* glink_;
1272 // The dynamic reloc section.
1273 Reloc_section* rela_dyn_;
1274 // Relocs saved to avoid a COPY reloc.
1275 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1276 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1277 unsigned int tlsld_got_offset_;
1278
1279 Stub_tables stub_tables_;
1280 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1281 Branch_lookup_table branch_lookup_table_;
1282
1283 typedef std::vector<Branch_info> Branches;
1284 Branches branch_info_;
1285
1286 bool plt_thread_safe_;
1287 };
1288
1289 template<>
1290 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1291 {
1292 32, // size
1293 true, // is_big_endian
1294 elfcpp::EM_PPC, // machine_code
1295 false, // has_make_symbol
1296 false, // has_resolve
1297 false, // has_code_fill
1298 true, // is_default_stack_executable
1299 false, // can_icf_inline_merge_sections
1300 '\0', // wrap_char
1301 "/usr/lib/ld.so.1", // dynamic_linker
1302 0x10000000, // default_text_segment_address
1303 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1304 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1305 false, // isolate_execinstr
1306 0, // rosegment_gap
1307 elfcpp::SHN_UNDEF, // small_common_shndx
1308 elfcpp::SHN_UNDEF, // large_common_shndx
1309 0, // small_common_section_flags
1310 0, // large_common_section_flags
1311 NULL, // attributes_section
1312 NULL, // attributes_vendor
1313 "_start" // entry_symbol_name
1314 };
1315
1316 template<>
1317 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1318 {
1319 32, // size
1320 false, // is_big_endian
1321 elfcpp::EM_PPC, // machine_code
1322 false, // has_make_symbol
1323 false, // has_resolve
1324 false, // has_code_fill
1325 true, // is_default_stack_executable
1326 false, // can_icf_inline_merge_sections
1327 '\0', // wrap_char
1328 "/usr/lib/ld.so.1", // dynamic_linker
1329 0x10000000, // default_text_segment_address
1330 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1331 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1332 false, // isolate_execinstr
1333 0, // rosegment_gap
1334 elfcpp::SHN_UNDEF, // small_common_shndx
1335 elfcpp::SHN_UNDEF, // large_common_shndx
1336 0, // small_common_section_flags
1337 0, // large_common_section_flags
1338 NULL, // attributes_section
1339 NULL, // attributes_vendor
1340 "_start" // entry_symbol_name
1341 };
1342
1343 template<>
1344 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1345 {
1346 64, // size
1347 true, // is_big_endian
1348 elfcpp::EM_PPC64, // machine_code
1349 false, // has_make_symbol
1350 false, // has_resolve
1351 false, // has_code_fill
1352 true, // is_default_stack_executable
1353 false, // can_icf_inline_merge_sections
1354 '\0', // wrap_char
1355 "/usr/lib/ld.so.1", // dynamic_linker
1356 0x10000000, // default_text_segment_address
1357 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1358 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1359 false, // isolate_execinstr
1360 0, // rosegment_gap
1361 elfcpp::SHN_UNDEF, // small_common_shndx
1362 elfcpp::SHN_UNDEF, // large_common_shndx
1363 0, // small_common_section_flags
1364 0, // large_common_section_flags
1365 NULL, // attributes_section
1366 NULL, // attributes_vendor
1367 "_start" // entry_symbol_name
1368 };
1369
1370 template<>
1371 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1372 {
1373 64, // size
1374 false, // is_big_endian
1375 elfcpp::EM_PPC64, // machine_code
1376 false, // has_make_symbol
1377 false, // has_resolve
1378 false, // has_code_fill
1379 true, // is_default_stack_executable
1380 false, // can_icf_inline_merge_sections
1381 '\0', // wrap_char
1382 "/usr/lib/ld.so.1", // dynamic_linker
1383 0x10000000, // default_text_segment_address
1384 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1385 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1386 false, // isolate_execinstr
1387 0, // rosegment_gap
1388 elfcpp::SHN_UNDEF, // small_common_shndx
1389 elfcpp::SHN_UNDEF, // large_common_shndx
1390 0, // small_common_section_flags
1391 0, // large_common_section_flags
1392 NULL, // attributes_section
1393 NULL, // attributes_vendor
1394 "_start" // entry_symbol_name
1395 };
1396
1397 inline bool
1398 is_branch_reloc(unsigned int r_type)
1399 {
1400 return (r_type == elfcpp::R_POWERPC_REL24
1401 || r_type == elfcpp::R_PPC_PLTREL24
1402 || r_type == elfcpp::R_PPC_LOCAL24PC
1403 || r_type == elfcpp::R_POWERPC_REL14
1404 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1405 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1406 || r_type == elfcpp::R_POWERPC_ADDR24
1407 || r_type == elfcpp::R_POWERPC_ADDR14
1408 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1409 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1410 }
1411
1412 // If INSN is an opcode that may be used with an @tls operand, return
1413 // the transformed insn for TLS optimisation, otherwise return 0. If
1414 // REG is non-zero only match an insn with RB or RA equal to REG.
1415 uint32_t
1416 at_tls_transform(uint32_t insn, unsigned int reg)
1417 {
1418 if ((insn & (0x3f << 26)) != 31 << 26)
1419 return 0;
1420
1421 unsigned int rtra;
1422 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1423 rtra = insn & ((1 << 26) - (1 << 16));
1424 else if (((insn >> 16) & 0x1f) == reg)
1425 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1426 else
1427 return 0;
1428
1429 if ((insn & (0x3ff << 1)) == 266 << 1)
1430 // add -> addi
1431 insn = 14 << 26;
1432 else if ((insn & (0x1f << 1)) == 23 << 1
1433 && ((insn & (0x1f << 6)) < 14 << 6
1434 || ((insn & (0x1f << 6)) >= 16 << 6
1435 && (insn & (0x1f << 6)) < 24 << 6)))
1436 // load and store indexed -> dform
1437 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1438 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1439 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1440 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1441 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1442 // lwax -> lwa
1443 insn = (58 << 26) | 2;
1444 else
1445 return 0;
1446 insn |= rtra;
1447 return insn;
1448 }
1449
1450
1451 template<int size, bool big_endian>
1452 class Powerpc_relocate_functions
1453 {
1454 public:
1455 enum Overflow_check
1456 {
1457 CHECK_NONE,
1458 CHECK_SIGNED,
1459 CHECK_UNSIGNED,
1460 CHECK_BITFIELD,
1461 CHECK_LOW_INSN,
1462 CHECK_HIGH_INSN
1463 };
1464
1465 enum Status
1466 {
1467 STATUS_OK,
1468 STATUS_OVERFLOW
1469 };
1470
1471 private:
1472 typedef Powerpc_relocate_functions<size, big_endian> This;
1473 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1474
1475 template<int valsize>
1476 static inline bool
1477 has_overflow_signed(Address value)
1478 {
1479 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1480 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481 limit <<= ((valsize - 1) >> 1);
1482 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483 return value + limit > (limit << 1) - 1;
1484 }
1485
1486 template<int valsize>
1487 static inline bool
1488 has_overflow_unsigned(Address value)
1489 {
1490 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1491 limit <<= ((valsize - 1) >> 1);
1492 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1493 return value > (limit << 1) - 1;
1494 }
1495
1496 template<int valsize>
1497 static inline bool
1498 has_overflow_bitfield(Address value)
1499 {
1500 return (has_overflow_unsigned<valsize>(value)
1501 && has_overflow_signed<valsize>(value));
1502 }
1503
1504 template<int valsize>
1505 static inline Status
1506 overflowed(Address value, Overflow_check overflow)
1507 {
1508 if (overflow == CHECK_SIGNED)
1509 {
1510 if (has_overflow_signed<valsize>(value))
1511 return STATUS_OVERFLOW;
1512 }
1513 else if (overflow == CHECK_UNSIGNED)
1514 {
1515 if (has_overflow_unsigned<valsize>(value))
1516 return STATUS_OVERFLOW;
1517 }
1518 else if (overflow == CHECK_BITFIELD)
1519 {
1520 if (has_overflow_bitfield<valsize>(value))
1521 return STATUS_OVERFLOW;
1522 }
1523 return STATUS_OK;
1524 }
1525
1526 // Do a simple RELA relocation
1527 template<int valsize>
1528 static inline Status
1529 rela(unsigned char* view, Address value, Overflow_check overflow)
1530 {
1531 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1532 Valtype* wv = reinterpret_cast<Valtype*>(view);
1533 elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1534 return overflowed<valsize>(value, overflow);
1535 }
1536
1537 template<int valsize>
1538 static inline Status
1539 rela(unsigned char* view,
1540 unsigned int right_shift,
1541 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1542 Address value,
1543 Overflow_check overflow)
1544 {
1545 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1546 Valtype* wv = reinterpret_cast<Valtype*>(view);
1547 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1548 Valtype reloc = value >> right_shift;
1549 val &= ~dst_mask;
1550 reloc &= dst_mask;
1551 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1552 return overflowed<valsize>(value >> right_shift, overflow);
1553 }
1554
1555 // Do a simple RELA relocation, unaligned.
1556 template<int valsize>
1557 static inline Status
1558 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1559 {
1560 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1561 return overflowed<valsize>(value, overflow);
1562 }
1563
1564 template<int valsize>
1565 static inline Status
1566 rela_ua(unsigned char* view,
1567 unsigned int right_shift,
1568 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1569 Address value,
1570 Overflow_check overflow)
1571 {
1572 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1573 Valtype;
1574 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1575 Valtype reloc = value >> right_shift;
1576 val &= ~dst_mask;
1577 reloc &= dst_mask;
1578 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1579 return overflowed<valsize>(value >> right_shift, overflow);
1580 }
1581
1582 public:
1583 // R_PPC64_ADDR64: (Symbol + Addend)
1584 static inline void
1585 addr64(unsigned char* view, Address value)
1586 { This::template rela<64>(view, value, CHECK_NONE); }
1587
1588 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1589 static inline void
1590 addr64_u(unsigned char* view, Address value)
1591 { This::template rela_ua<64>(view, value, CHECK_NONE); }
1592
1593 // R_POWERPC_ADDR32: (Symbol + Addend)
1594 static inline Status
1595 addr32(unsigned char* view, Address value, Overflow_check overflow)
1596 { return This::template rela<32>(view, value, overflow); }
1597
1598 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1599 static inline Status
1600 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1601 { return This::template rela_ua<32>(view, value, overflow); }
1602
1603 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1604 static inline Status
1605 addr24(unsigned char* view, Address value, Overflow_check overflow)
1606 {
1607 Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1608 if (overflow != CHECK_NONE && (value & 3) != 0)
1609 stat = STATUS_OVERFLOW;
1610 return stat;
1611 }
1612
1613 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1614 static inline Status
1615 addr16(unsigned char* view, Address value, Overflow_check overflow)
1616 { return This::template rela<16>(view, value, overflow); }
1617
1618 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1619 static inline Status
1620 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1621 { return This::template rela_ua<16>(view, value, overflow); }
1622
1623 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1624 static inline Status
1625 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1626 {
1627 Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1628 if (overflow != CHECK_NONE && (value & 3) != 0)
1629 stat = STATUS_OVERFLOW;
1630 return stat;
1631 }
1632
1633 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1634 static inline void
1635 addr16_hi(unsigned char* view, Address value)
1636 { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1637
1638 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1639 static inline void
1640 addr16_ha(unsigned char* view, Address value)
1641 { This::addr16_hi(view, value + 0x8000); }
1642
1643 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1644 static inline void
1645 addr16_hi2(unsigned char* view, Address value)
1646 { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1647
1648 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1649 static inline void
1650 addr16_ha2(unsigned char* view, Address value)
1651 { This::addr16_hi2(view, value + 0x8000); }
1652
1653 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1654 static inline void
1655 addr16_hi3(unsigned char* view, Address value)
1656 { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1657
1658 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1659 static inline void
1660 addr16_ha3(unsigned char* view, Address value)
1661 { This::addr16_hi3(view, value + 0x8000); }
1662
1663 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1664 static inline Status
1665 addr14(unsigned char* view, Address value, Overflow_check overflow)
1666 {
1667 Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1668 if (overflow != CHECK_NONE && (value & 3) != 0)
1669 stat = STATUS_OVERFLOW;
1670 return stat;
1671 }
1672 };
1673
1674 // Set ABI version for input and output.
1675
1676 template<int size, bool big_endian>
1677 void
1678 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1679 {
1680 this->e_flags_ |= ver;
1681 if (this->abiversion() != 0)
1682 {
1683 Target_powerpc<size, big_endian>* target =
1684 static_cast<Target_powerpc<size, big_endian>*>(
1685 parameters->sized_target<size, big_endian>());
1686 if (target->abiversion() == 0)
1687 target->set_abiversion(this->abiversion());
1688 else if (target->abiversion() != this->abiversion())
1689 gold_error(_("%s: ABI version %d is not compatible "
1690 "with ABI version %d output"),
1691 this->name().c_str(),
1692 this->abiversion(), target->abiversion());
1693
1694 }
1695 }
1696
1697 // Stash away the index of .got2 or .opd in a relocatable object, if
1698 // such a section exists.
1699
1700 template<int size, bool big_endian>
1701 bool
1702 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1703 Read_symbols_data* sd)
1704 {
1705 const unsigned char* const pshdrs = sd->section_headers->data();
1706 const unsigned char* namesu = sd->section_names->data();
1707 const char* names = reinterpret_cast<const char*>(namesu);
1708 section_size_type names_size = sd->section_names_size;
1709 const unsigned char* s;
1710
1711 s = this->template find_shdr<size, big_endian>(pshdrs,
1712 size == 32 ? ".got2" : ".opd",
1713 names, names_size, NULL);
1714 if (s != NULL)
1715 {
1716 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1717 this->special_ = ndx;
1718 if (size == 64)
1719 {
1720 if (this->abiversion() == 0)
1721 this->set_abiversion(1);
1722 else if (this->abiversion() > 1)
1723 gold_error(_("%s: .opd invalid in abiv%d"),
1724 this->name().c_str(), this->abiversion());
1725 }
1726 }
1727 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1728 }
1729
1730 // Examine .rela.opd to build info about function entry points.
1731
1732 template<int size, bool big_endian>
1733 void
1734 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1735 size_t reloc_count,
1736 const unsigned char* prelocs,
1737 const unsigned char* plocal_syms)
1738 {
1739 if (size == 64)
1740 {
1741 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1742 Reltype;
1743 const int reloc_size
1744 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1745 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1746 Address expected_off = 0;
1747 bool regular = true;
1748 unsigned int opd_ent_size = 0;
1749
1750 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1751 {
1752 Reltype reloc(prelocs);
1753 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1754 = reloc.get_r_info();
1755 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1756 if (r_type == elfcpp::R_PPC64_ADDR64)
1757 {
1758 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1759 typename elfcpp::Elf_types<size>::Elf_Addr value;
1760 bool is_ordinary;
1761 unsigned int shndx;
1762 if (r_sym < this->local_symbol_count())
1763 {
1764 typename elfcpp::Sym<size, big_endian>
1765 lsym(plocal_syms + r_sym * sym_size);
1766 shndx = lsym.get_st_shndx();
1767 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1768 value = lsym.get_st_value();
1769 }
1770 else
1771 shndx = this->symbol_section_and_value(r_sym, &value,
1772 &is_ordinary);
1773 this->set_opd_ent(reloc.get_r_offset(), shndx,
1774 value + reloc.get_r_addend());
1775 if (i == 2)
1776 {
1777 expected_off = reloc.get_r_offset();
1778 opd_ent_size = expected_off;
1779 }
1780 else if (expected_off != reloc.get_r_offset())
1781 regular = false;
1782 expected_off += opd_ent_size;
1783 }
1784 else if (r_type == elfcpp::R_PPC64_TOC)
1785 {
1786 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1787 regular = false;
1788 }
1789 else
1790 {
1791 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1792 this->name().c_str(), r_type);
1793 regular = false;
1794 }
1795 }
1796 if (reloc_count <= 2)
1797 opd_ent_size = this->section_size(this->opd_shndx());
1798 if (opd_ent_size != 24 && opd_ent_size != 16)
1799 regular = false;
1800 if (!regular)
1801 {
1802 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1803 this->name().c_str());
1804 opd_ent_size = 0;
1805 }
1806 }
1807 }
1808
1809 template<int size, bool big_endian>
1810 void
1811 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1812 {
1813 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1814 if (size == 64)
1815 {
1816 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1817 p != rd->relocs.end();
1818 ++p)
1819 {
1820 if (p->data_shndx == this->opd_shndx())
1821 {
1822 uint64_t opd_size = this->section_size(this->opd_shndx());
1823 gold_assert(opd_size == static_cast<size_t>(opd_size));
1824 if (opd_size != 0)
1825 {
1826 this->init_opd(opd_size);
1827 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1828 rd->local_symbols->data());
1829 }
1830 break;
1831 }
1832 }
1833 }
1834 }
1835
1836 // Read the symbols then set up st_other vector.
1837
1838 template<int size, bool big_endian>
1839 void
1840 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1841 {
1842 Sized_relobj_file<size, big_endian>::do_read_symbols(sd);
1843 if (size == 64)
1844 {
1845 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1846 const unsigned char* const pshdrs = sd->section_headers->data();
1847 const unsigned int loccount = this->do_local_symbol_count();
1848 if (loccount != 0)
1849 {
1850 this->st_other_.resize(loccount);
1851 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1852 off_t locsize = loccount * sym_size;
1853 const unsigned int symtab_shndx = this->symtab_shndx();
1854 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1855 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1856 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1857 locsize, true, false);
1858 psyms += sym_size;
1859 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1860 {
1861 elfcpp::Sym<size, big_endian> sym(psyms);
1862 unsigned char st_other = sym.get_st_other();
1863 this->st_other_[i] = st_other;
1864 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1865 {
1866 if (this->abiversion() == 0)
1867 this->set_abiversion(2);
1868 else if (this->abiversion() < 2)
1869 gold_error(_("%s: local symbol %d has invalid st_other"
1870 " for ABI version 1"),
1871 this->name().c_str(), i);
1872 }
1873 }
1874 }
1875 }
1876 }
1877
1878 template<int size, bool big_endian>
1879 void
1880 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1881 {
1882 this->e_flags_ |= ver;
1883 if (this->abiversion() != 0)
1884 {
1885 Target_powerpc<size, big_endian>* target =
1886 static_cast<Target_powerpc<size, big_endian>*>(
1887 parameters->sized_target<size, big_endian>());
1888 if (target->abiversion() == 0)
1889 target->set_abiversion(this->abiversion());
1890 else if (target->abiversion() != this->abiversion())
1891 gold_error(_("%s: ABI version %d is not compatible "
1892 "with ABI version %d output"),
1893 this->name().c_str(),
1894 this->abiversion(), target->abiversion());
1895
1896 }
1897 }
1898
1899 // Call Sized_dynobj::do_read_symbols to read the symbols then
1900 // read .opd from a dynamic object, filling in opd_ent_ vector,
1901
1902 template<int size, bool big_endian>
1903 void
1904 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1905 {
1906 Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1907 if (size == 64)
1908 {
1909 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1910 const unsigned char* const pshdrs = sd->section_headers->data();
1911 const unsigned char* namesu = sd->section_names->data();
1912 const char* names = reinterpret_cast<const char*>(namesu);
1913 const unsigned char* s = NULL;
1914 const unsigned char* opd;
1915 section_size_type opd_size;
1916
1917 // Find and read .opd section.
1918 while (1)
1919 {
1920 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1921 sd->section_names_size,
1922 s);
1923 if (s == NULL)
1924 return;
1925
1926 typename elfcpp::Shdr<size, big_endian> shdr(s);
1927 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1928 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1929 {
1930 if (this->abiversion() == 0)
1931 this->set_abiversion(1);
1932 else if (this->abiversion() > 1)
1933 gold_error(_("%s: .opd invalid in abiv%d"),
1934 this->name().c_str(), this->abiversion());
1935
1936 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1937 this->opd_address_ = shdr.get_sh_addr();
1938 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1939 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1940 true, false);
1941 break;
1942 }
1943 }
1944
1945 // Build set of executable sections.
1946 // Using a set is probably overkill. There is likely to be only
1947 // a few executable sections, typically .init, .text and .fini,
1948 // and they are generally grouped together.
1949 typedef std::set<Sec_info> Exec_sections;
1950 Exec_sections exec_sections;
1951 s = pshdrs;
1952 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1953 {
1954 typename elfcpp::Shdr<size, big_endian> shdr(s);
1955 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1956 && ((shdr.get_sh_flags()
1957 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1958 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1959 && shdr.get_sh_size() != 0)
1960 {
1961 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1962 shdr.get_sh_size(), i));
1963 }
1964 }
1965 if (exec_sections.empty())
1966 return;
1967
1968 // Look over the OPD entries. This is complicated by the fact
1969 // that some binaries will use two-word entries while others
1970 // will use the standard three-word entries. In most cases
1971 // the third word (the environment pointer for languages like
1972 // Pascal) is unused and will be zero. If the third word is
1973 // used it should not be pointing into executable sections,
1974 // I think.
1975 this->init_opd(opd_size);
1976 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1977 {
1978 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1979 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1980 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1981 if (val == 0)
1982 // Chances are that this is the third word of an OPD entry.
1983 continue;
1984 typename Exec_sections::const_iterator e
1985 = exec_sections.upper_bound(Sec_info(val, 0, 0));
1986 if (e != exec_sections.begin())
1987 {
1988 --e;
1989 if (e->start <= val && val < e->start + e->len)
1990 {
1991 // We have an address in an executable section.
1992 // VAL ought to be the function entry, set it up.
1993 this->set_opd_ent(p - opd, e->shndx, val);
1994 // Skip second word of OPD entry, the TOC pointer.
1995 p += 8;
1996 }
1997 }
1998 // If we didn't match any executable sections, we likely
1999 // have a non-zero third word in the OPD entry.
2000 }
2001 }
2002 }
2003
2004 // Set up some symbols.
2005
2006 template<int size, bool big_endian>
2007 void
2008 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2009 Symbol_table* symtab,
2010 Layout* layout)
2011 {
2012 if (size == 32)
2013 {
2014 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2015 // undefined when scanning relocs (and thus requires
2016 // non-relative dynamic relocs). The proper value will be
2017 // updated later.
2018 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2019 if (gotsym != NULL && gotsym->is_undefined())
2020 {
2021 Target_powerpc<size, big_endian>* target =
2022 static_cast<Target_powerpc<size, big_endian>*>(
2023 parameters->sized_target<size, big_endian>());
2024 Output_data_got_powerpc<size, big_endian>* got
2025 = target->got_section(symtab, layout);
2026 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2027 Symbol_table::PREDEFINED,
2028 got, 0, 0,
2029 elfcpp::STT_OBJECT,
2030 elfcpp::STB_LOCAL,
2031 elfcpp::STV_HIDDEN, 0,
2032 false, false);
2033 }
2034
2035 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2036 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2037 if (sdasym != NULL && sdasym->is_undefined())
2038 {
2039 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2040 Output_section* os
2041 = layout->add_output_section_data(".sdata", 0,
2042 elfcpp::SHF_ALLOC
2043 | elfcpp::SHF_WRITE,
2044 sdata, ORDER_SMALL_DATA, false);
2045 symtab->define_in_output_data("_SDA_BASE_", NULL,
2046 Symbol_table::PREDEFINED,
2047 os, 32768, 0, elfcpp::STT_OBJECT,
2048 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2049 0, false, false);
2050 }
2051 }
2052 else
2053 {
2054 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2055 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2056 if (gotsym != NULL && gotsym->is_undefined())
2057 {
2058 Target_powerpc<size, big_endian>* target =
2059 static_cast<Target_powerpc<size, big_endian>*>(
2060 parameters->sized_target<size, big_endian>());
2061 Output_data_got_powerpc<size, big_endian>* got
2062 = target->got_section(symtab, layout);
2063 symtab->define_in_output_data(".TOC.", NULL,
2064 Symbol_table::PREDEFINED,
2065 got, 0x8000, 0,
2066 elfcpp::STT_OBJECT,
2067 elfcpp::STB_LOCAL,
2068 elfcpp::STV_HIDDEN, 0,
2069 false, false);
2070 }
2071 }
2072 }
2073
2074 // Set up PowerPC target specific relobj.
2075
2076 template<int size, bool big_endian>
2077 Object*
2078 Target_powerpc<size, big_endian>::do_make_elf_object(
2079 const std::string& name,
2080 Input_file* input_file,
2081 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2082 {
2083 int et = ehdr.get_e_type();
2084 // ET_EXEC files are valid input for --just-symbols/-R,
2085 // and we treat them as relocatable objects.
2086 if (et == elfcpp::ET_REL
2087 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2088 {
2089 Powerpc_relobj<size, big_endian>* obj =
2090 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2091 obj->setup();
2092 return obj;
2093 }
2094 else if (et == elfcpp::ET_DYN)
2095 {
2096 Powerpc_dynobj<size, big_endian>* obj =
2097 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2098 obj->setup();
2099 return obj;
2100 }
2101 else
2102 {
2103 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2104 return NULL;
2105 }
2106 }
2107
2108 template<int size, bool big_endian>
2109 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2110 {
2111 public:
2112 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2113 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2114
2115 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2116 : Output_data_got<size, big_endian>(),
2117 symtab_(symtab), layout_(layout),
2118 header_ent_cnt_(size == 32 ? 3 : 1),
2119 header_index_(size == 32 ? 0x2000 : 0)
2120 { }
2121
2122 // Override all the Output_data_got methods we use so as to first call
2123 // reserve_ent().
2124 bool
2125 add_global(Symbol* gsym, unsigned int got_type)
2126 {
2127 this->reserve_ent();
2128 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2129 }
2130
2131 bool
2132 add_global_plt(Symbol* gsym, unsigned int got_type)
2133 {
2134 this->reserve_ent();
2135 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2136 }
2137
2138 bool
2139 add_global_tls(Symbol* gsym, unsigned int got_type)
2140 { return this->add_global_plt(gsym, got_type); }
2141
2142 void
2143 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2144 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2145 {
2146 this->reserve_ent();
2147 Output_data_got<size, big_endian>::
2148 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2149 }
2150
2151 void
2152 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2153 Output_data_reloc_generic* rel_dyn,
2154 unsigned int r_type_1, unsigned int r_type_2)
2155 {
2156 this->reserve_ent(2);
2157 Output_data_got<size, big_endian>::
2158 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2159 }
2160
2161 bool
2162 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2163 {
2164 this->reserve_ent();
2165 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2166 got_type);
2167 }
2168
2169 bool
2170 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2171 {
2172 this->reserve_ent();
2173 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2174 got_type);
2175 }
2176
2177 bool
2178 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2179 { return this->add_local_plt(object, sym_index, got_type); }
2180
2181 void
2182 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2183 unsigned int got_type,
2184 Output_data_reloc_generic* rel_dyn,
2185 unsigned int r_type)
2186 {
2187 this->reserve_ent(2);
2188 Output_data_got<size, big_endian>::
2189 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2190 }
2191
2192 unsigned int
2193 add_constant(Valtype constant)
2194 {
2195 this->reserve_ent();
2196 return Output_data_got<size, big_endian>::add_constant(constant);
2197 }
2198
2199 unsigned int
2200 add_constant_pair(Valtype c1, Valtype c2)
2201 {
2202 this->reserve_ent(2);
2203 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2204 }
2205
2206 // Offset of _GLOBAL_OFFSET_TABLE_.
2207 unsigned int
2208 g_o_t() const
2209 {
2210 return this->got_offset(this->header_index_);
2211 }
2212
2213 // Offset of base used to access the GOT/TOC.
2214 // The got/toc pointer reg will be set to this value.
2215 Valtype
2216 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2217 {
2218 if (size == 32)
2219 return this->g_o_t();
2220 else
2221 return (this->output_section()->address()
2222 + object->toc_base_offset()
2223 - this->address());
2224 }
2225
2226 // Ensure our GOT has a header.
2227 void
2228 set_final_data_size()
2229 {
2230 if (this->header_ent_cnt_ != 0)
2231 this->make_header();
2232 Output_data_got<size, big_endian>::set_final_data_size();
2233 }
2234
2235 // First word of GOT header needs some values that are not
2236 // handled by Output_data_got so poke them in here.
2237 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2238 void
2239 do_write(Output_file* of)
2240 {
2241 Valtype val = 0;
2242 if (size == 32 && this->layout_->dynamic_data() != NULL)
2243 val = this->layout_->dynamic_section()->address();
2244 if (size == 64)
2245 val = this->output_section()->address() + 0x8000;
2246 this->replace_constant(this->header_index_, val);
2247 Output_data_got<size, big_endian>::do_write(of);
2248 }
2249
2250 private:
2251 void
2252 reserve_ent(unsigned int cnt = 1)
2253 {
2254 if (this->header_ent_cnt_ == 0)
2255 return;
2256 if (this->num_entries() + cnt > this->header_index_)
2257 this->make_header();
2258 }
2259
2260 void
2261 make_header()
2262 {
2263 this->header_ent_cnt_ = 0;
2264 this->header_index_ = this->num_entries();
2265 if (size == 32)
2266 {
2267 Output_data_got<size, big_endian>::add_constant(0);
2268 Output_data_got<size, big_endian>::add_constant(0);
2269 Output_data_got<size, big_endian>::add_constant(0);
2270
2271 // Define _GLOBAL_OFFSET_TABLE_ at the header
2272 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2273 if (gotsym != NULL)
2274 {
2275 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2276 sym->set_value(this->g_o_t());
2277 }
2278 else
2279 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2280 Symbol_table::PREDEFINED,
2281 this, this->g_o_t(), 0,
2282 elfcpp::STT_OBJECT,
2283 elfcpp::STB_LOCAL,
2284 elfcpp::STV_HIDDEN, 0,
2285 false, false);
2286 }
2287 else
2288 Output_data_got<size, big_endian>::add_constant(0);
2289 }
2290
2291 // Stashed pointers.
2292 Symbol_table* symtab_;
2293 Layout* layout_;
2294
2295 // GOT header size.
2296 unsigned int header_ent_cnt_;
2297 // GOT header index.
2298 unsigned int header_index_;
2299 };
2300
2301 // Get the GOT section, creating it if necessary.
2302
2303 template<int size, bool big_endian>
2304 Output_data_got_powerpc<size, big_endian>*
2305 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2306 Layout* layout)
2307 {
2308 if (this->got_ == NULL)
2309 {
2310 gold_assert(symtab != NULL && layout != NULL);
2311
2312 this->got_
2313 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2314
2315 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2316 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2317 this->got_, ORDER_DATA, false);
2318 }
2319
2320 return this->got_;
2321 }
2322
2323 // Get the dynamic reloc section, creating it if necessary.
2324
2325 template<int size, bool big_endian>
2326 typename Target_powerpc<size, big_endian>::Reloc_section*
2327 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2328 {
2329 if (this->rela_dyn_ == NULL)
2330 {
2331 gold_assert(layout != NULL);
2332 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2333 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2334 elfcpp::SHF_ALLOC, this->rela_dyn_,
2335 ORDER_DYNAMIC_RELOCS, false);
2336 }
2337 return this->rela_dyn_;
2338 }
2339
2340 // Similarly, but for ifunc symbols get the one for ifunc.
2341
2342 template<int size, bool big_endian>
2343 typename Target_powerpc<size, big_endian>::Reloc_section*
2344 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2345 Layout* layout,
2346 bool for_ifunc)
2347 {
2348 if (!for_ifunc)
2349 return this->rela_dyn_section(layout);
2350
2351 if (this->iplt_ == NULL)
2352 this->make_iplt_section(symtab, layout);
2353 return this->iplt_->rel_plt();
2354 }
2355
2356 class Stub_control
2357 {
2358 public:
2359 // Determine the stub group size. The group size is the absolute
2360 // value of the parameter --stub-group-size. If --stub-group-size
2361 // is passed a negative value, we restrict stubs to be always before
2362 // the stubbed branches.
2363 Stub_control(int32_t size)
2364 : state_(NO_GROUP), stub_group_size_(abs(size)),
2365 stub14_group_size_(abs(size)),
2366 stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2367 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2368 {
2369 if (stub_group_size_ == 1)
2370 {
2371 // Default values.
2372 if (stubs_always_before_branch_)
2373 {
2374 stub_group_size_ = 0x1e00000;
2375 stub14_group_size_ = 0x7800;
2376 }
2377 else
2378 {
2379 stub_group_size_ = 0x1c00000;
2380 stub14_group_size_ = 0x7000;
2381 }
2382 suppress_size_errors_ = true;
2383 }
2384 }
2385
2386 // Return true iff input section can be handled by current stub
2387 // group.
2388 bool
2389 can_add_to_stub_group(Output_section* o,
2390 const Output_section::Input_section* i,
2391 bool has14);
2392
2393 const Output_section::Input_section*
2394 owner()
2395 { return owner_; }
2396
2397 Output_section*
2398 output_section()
2399 { return output_section_; }
2400
2401 private:
2402 typedef enum
2403 {
2404 NO_GROUP,
2405 FINDING_STUB_SECTION,
2406 HAS_STUB_SECTION
2407 } State;
2408
2409 State state_;
2410 uint32_t stub_group_size_;
2411 uint32_t stub14_group_size_;
2412 bool stubs_always_before_branch_;
2413 bool suppress_size_errors_;
2414 uint64_t group_end_addr_;
2415 const Output_section::Input_section* owner_;
2416 Output_section* output_section_;
2417 };
2418
2419 // Return true iff input section can be handled by current stub
2420 // group.
2421
2422 bool
2423 Stub_control::can_add_to_stub_group(Output_section* o,
2424 const Output_section::Input_section* i,
2425 bool has14)
2426 {
2427 uint32_t group_size
2428 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2429 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2430 uint64_t this_size;
2431 uint64_t start_addr = o->address();
2432
2433 if (whole_sec)
2434 // .init and .fini sections are pasted together to form a single
2435 // function. We can't be adding stubs in the middle of the function.
2436 this_size = o->data_size();
2437 else
2438 {
2439 start_addr += i->relobj()->output_section_offset(i->shndx());
2440 this_size = i->data_size();
2441 }
2442 uint64_t end_addr = start_addr + this_size;
2443 bool toobig = this_size > group_size;
2444
2445 if (toobig && !this->suppress_size_errors_)
2446 gold_warning(_("%s:%s exceeds group size"),
2447 i->relobj()->name().c_str(),
2448 i->relobj()->section_name(i->shndx()).c_str());
2449
2450 if (this->state_ != HAS_STUB_SECTION
2451 && (!whole_sec || this->output_section_ != o)
2452 && (this->state_ == NO_GROUP
2453 || this->group_end_addr_ - end_addr < group_size))
2454 {
2455 this->owner_ = i;
2456 this->output_section_ = o;
2457 }
2458
2459 if (this->state_ == NO_GROUP)
2460 {
2461 this->state_ = FINDING_STUB_SECTION;
2462 this->group_end_addr_ = end_addr;
2463 }
2464 else if (this->group_end_addr_ - start_addr < group_size)
2465 ;
2466 // Adding this section would make the group larger than GROUP_SIZE.
2467 else if (this->state_ == FINDING_STUB_SECTION
2468 && !this->stubs_always_before_branch_
2469 && !toobig)
2470 {
2471 // But wait, there's more! Input sections up to GROUP_SIZE
2472 // bytes before the stub table can be handled by it too.
2473 this->state_ = HAS_STUB_SECTION;
2474 this->group_end_addr_ = end_addr;
2475 }
2476 else
2477 {
2478 this->state_ = NO_GROUP;
2479 return false;
2480 }
2481 return true;
2482 }
2483
2484 // Look over all the input sections, deciding where to place stubs.
2485
2486 template<int size, bool big_endian>
2487 void
2488 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2489 const Task*)
2490 {
2491 Stub_control stub_control(parameters->options().stub_group_size());
2492
2493 // Group input sections and insert stub table
2494 Stub_table<size, big_endian>* stub_table = NULL;
2495 Layout::Section_list section_list;
2496 layout->get_executable_sections(&section_list);
2497 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2498 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2499 o != section_list.rend();
2500 ++o)
2501 {
2502 typedef Output_section::Input_section_list Input_section_list;
2503 for (Input_section_list::const_reverse_iterator i
2504 = (*o)->input_sections().rbegin();
2505 i != (*o)->input_sections().rend();
2506 ++i)
2507 {
2508 if (i->is_input_section())
2509 {
2510 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2511 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2512 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2513 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2514 {
2515 stub_table->init(stub_control.owner(),
2516 stub_control.output_section());
2517 stub_table = NULL;
2518 }
2519 if (stub_table == NULL)
2520 stub_table = this->new_stub_table();
2521 ppcobj->set_stub_table(i->shndx(), stub_table);
2522 }
2523 }
2524 }
2525 if (stub_table != NULL)
2526 {
2527 const Output_section::Input_section* i = stub_control.owner();
2528 if (!i->is_input_section())
2529 {
2530 // Corner case. A new stub group was made for the first
2531 // section (last one looked at here) for some reason, but
2532 // the first section is already being used as the owner for
2533 // a stub table for following sections. Force it into that
2534 // stub group.
2535 gold_assert(this->stub_tables_.size() >= 2);
2536 this->stub_tables_.pop_back();
2537 delete stub_table;
2538 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2539 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2540 ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2541 }
2542 else
2543 stub_table->init(i, stub_control.output_section());
2544 }
2545 }
2546
2547 // If this branch needs a plt call stub, or a long branch stub, make one.
2548
2549 template<int size, bool big_endian>
2550 void
2551 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2552 Stub_table<size, big_endian>* stub_table,
2553 Stub_table<size, big_endian>* ifunc_stub_table,
2554 Symbol_table* symtab) const
2555 {
2556 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2557 if (sym != NULL && sym->is_forwarder())
2558 sym = symtab->resolve_forwards(sym);
2559 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2560 Target_powerpc<size, big_endian>* target =
2561 static_cast<Target_powerpc<size, big_endian>*>(
2562 parameters->sized_target<size, big_endian>());
2563 if (gsym != NULL
2564 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2565 : this->object_->local_has_plt_offset(this->r_sym_))
2566 {
2567 if (size == 64
2568 && gsym != NULL
2569 && target->abiversion() >= 2
2570 && !parameters->options().output_is_position_independent()
2571 && !is_branch_reloc(this->r_type_))
2572 target->glink_section()->add_global_entry(gsym);
2573 else
2574 {
2575 if (stub_table == NULL)
2576 stub_table = this->object_->stub_table(this->shndx_);
2577 if (stub_table == NULL)
2578 {
2579 // This is a ref from a data section to an ifunc symbol.
2580 stub_table = ifunc_stub_table;
2581 }
2582 gold_assert(stub_table != NULL);
2583 if (gsym != NULL)
2584 stub_table->add_plt_call_entry(this->object_, gsym,
2585 this->r_type_, this->addend_);
2586 else
2587 stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2588 this->r_type_, this->addend_);
2589 }
2590 }
2591 else
2592 {
2593 unsigned long max_branch_offset;
2594 if (this->r_type_ == elfcpp::R_POWERPC_REL14
2595 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2596 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2597 max_branch_offset = 1 << 15;
2598 else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2599 || this->r_type_ == elfcpp::R_PPC_PLTREL24
2600 || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2601 max_branch_offset = 1 << 25;
2602 else
2603 return;
2604 Address from = this->object_->get_output_section_offset(this->shndx_);
2605 gold_assert(from != invalid_address);
2606 from += (this->object_->output_section(this->shndx_)->address()
2607 + this->offset_);
2608 Address to;
2609 if (gsym != NULL)
2610 {
2611 switch (gsym->source())
2612 {
2613 case Symbol::FROM_OBJECT:
2614 {
2615 Object* symobj = gsym->object();
2616 if (symobj->is_dynamic()
2617 || symobj->pluginobj() != NULL)
2618 return;
2619 bool is_ordinary;
2620 unsigned int shndx = gsym->shndx(&is_ordinary);
2621 if (shndx == elfcpp::SHN_UNDEF)
2622 return;
2623 }
2624 break;
2625
2626 case Symbol::IS_UNDEFINED:
2627 return;
2628
2629 default:
2630 break;
2631 }
2632 Symbol_table::Compute_final_value_status status;
2633 to = symtab->compute_final_value<size>(gsym, &status);
2634 if (status != Symbol_table::CFVS_OK)
2635 return;
2636 if (size == 64)
2637 to += this->object_->ppc64_local_entry_offset(gsym);
2638 }
2639 else
2640 {
2641 const Symbol_value<size>* psymval
2642 = this->object_->local_symbol(this->r_sym_);
2643 Symbol_value<size> symval;
2644 typedef Sized_relobj_file<size, big_endian> ObjType;
2645 typename ObjType::Compute_final_local_value_status status
2646 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2647 &symval, symtab);
2648 if (status != ObjType::CFLV_OK
2649 || !symval.has_output_value())
2650 return;
2651 to = symval.value(this->object_, 0);
2652 if (size == 64)
2653 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2654 }
2655 to += this->addend_;
2656 if (stub_table == NULL)
2657 stub_table = this->object_->stub_table(this->shndx_);
2658 if (size == 64 && target->abiversion() < 2)
2659 {
2660 unsigned int dest_shndx;
2661 to = target->symval_for_branch(symtab, to, gsym,
2662 this->object_, &dest_shndx);
2663 }
2664 Address delta = to - from;
2665 if (delta + max_branch_offset >= 2 * max_branch_offset)
2666 {
2667 if (stub_table == NULL)
2668 {
2669 gold_warning(_("%s:%s: branch in non-executable section,"
2670 " no long branch stub for you"),
2671 this->object_->name().c_str(),
2672 this->object_->section_name(this->shndx_).c_str());
2673 return;
2674 }
2675 stub_table->add_long_branch_entry(this->object_, to);
2676 }
2677 }
2678 }
2679
2680 // Relaxation hook. This is where we do stub generation.
2681
2682 template<int size, bool big_endian>
2683 bool
2684 Target_powerpc<size, big_endian>::do_relax(int pass,
2685 const Input_objects*,
2686 Symbol_table* symtab,
2687 Layout* layout,
2688 const Task* task)
2689 {
2690 unsigned int prev_brlt_size = 0;
2691 if (pass == 1)
2692 {
2693 bool thread_safe
2694 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2695 if (size == 64
2696 && this->abiversion() < 2
2697 && !thread_safe
2698 && !parameters->options().user_set_plt_thread_safe())
2699 {
2700 static const char* const thread_starter[] =
2701 {
2702 "pthread_create",
2703 /* libstdc++ */
2704 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2705 /* librt */
2706 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2707 "mq_notify", "create_timer",
2708 /* libanl */
2709 "getaddrinfo_a",
2710 /* libgomp */
2711 "GOMP_parallel_start",
2712 "GOMP_parallel_loop_static_start",
2713 "GOMP_parallel_loop_dynamic_start",
2714 "GOMP_parallel_loop_guided_start",
2715 "GOMP_parallel_loop_runtime_start",
2716 "GOMP_parallel_sections_start",
2717 };
2718
2719 if (parameters->options().shared())
2720 thread_safe = true;
2721 else
2722 {
2723 for (unsigned int i = 0;
2724 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2725 i++)
2726 {
2727 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2728 thread_safe = (sym != NULL
2729 && sym->in_reg()
2730 && sym->in_real_elf());
2731 if (thread_safe)
2732 break;
2733 }
2734 }
2735 }
2736 this->plt_thread_safe_ = thread_safe;
2737 this->group_sections(layout, task);
2738 }
2739
2740 // We need address of stub tables valid for make_stub.
2741 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2742 p != this->stub_tables_.end();
2743 ++p)
2744 {
2745 const Powerpc_relobj<size, big_endian>* object
2746 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2747 Address off = object->get_output_section_offset((*p)->shndx());
2748 gold_assert(off != invalid_address);
2749 Output_section* os = (*p)->output_section();
2750 (*p)->set_address_and_size(os, off);
2751 }
2752
2753 if (pass != 1)
2754 {
2755 // Clear plt call stubs, long branch stubs and branch lookup table.
2756 prev_brlt_size = this->branch_lookup_table_.size();
2757 this->branch_lookup_table_.clear();
2758 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2759 p != this->stub_tables_.end();
2760 ++p)
2761 {
2762 (*p)->clear_stubs();
2763 }
2764 }
2765
2766 // Build all the stubs.
2767 Stub_table<size, big_endian>* ifunc_stub_table
2768 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2769 Stub_table<size, big_endian>* one_stub_table
2770 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2771 for (typename Branches::const_iterator b = this->branch_info_.begin();
2772 b != this->branch_info_.end();
2773 b++)
2774 {
2775 b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2776 }
2777
2778 // Did anything change size?
2779 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2780 bool again = num_huge_branches != prev_brlt_size;
2781 if (size == 64 && num_huge_branches != 0)
2782 this->make_brlt_section(layout);
2783 if (size == 64 && again)
2784 this->brlt_section_->set_current_size(num_huge_branches);
2785
2786 typedef Unordered_set<Output_section*> Output_sections;
2787 Output_sections os_need_update;
2788 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2789 p != this->stub_tables_.end();
2790 ++p)
2791 {
2792 if ((*p)->size_update())
2793 {
2794 again = true;
2795 (*p)->add_eh_frame(layout);
2796 os_need_update.insert((*p)->output_section());
2797 }
2798 }
2799
2800 // Set output section offsets for all input sections in an output
2801 // section that just changed size. Anything past the stubs will
2802 // need updating.
2803 for (typename Output_sections::iterator p = os_need_update.begin();
2804 p != os_need_update.end();
2805 p++)
2806 {
2807 Output_section* os = *p;
2808 Address off = 0;
2809 typedef Output_section::Input_section_list Input_section_list;
2810 for (Input_section_list::const_iterator i = os->input_sections().begin();
2811 i != os->input_sections().end();
2812 ++i)
2813 {
2814 off = align_address(off, i->addralign());
2815 if (i->is_input_section() || i->is_relaxed_input_section())
2816 i->relobj()->set_section_offset(i->shndx(), off);
2817 if (i->is_relaxed_input_section())
2818 {
2819 Stub_table<size, big_endian>* stub_table
2820 = static_cast<Stub_table<size, big_endian>*>(
2821 i->relaxed_input_section());
2822 off += stub_table->set_address_and_size(os, off);
2823 }
2824 else
2825 off += i->data_size();
2826 }
2827 // If .branch_lt is part of this output section, then we have
2828 // just done the offset adjustment.
2829 os->clear_section_offsets_need_adjustment();
2830 }
2831
2832 if (size == 64
2833 && !again
2834 && num_huge_branches != 0
2835 && parameters->options().output_is_position_independent())
2836 {
2837 // Fill in the BRLT relocs.
2838 this->brlt_section_->reset_brlt_sizes();
2839 for (typename Branch_lookup_table::const_iterator p
2840 = this->branch_lookup_table_.begin();
2841 p != this->branch_lookup_table_.end();
2842 ++p)
2843 {
2844 this->brlt_section_->add_reloc(p->first, p->second);
2845 }
2846 this->brlt_section_->finalize_brlt_sizes();
2847 }
2848 return again;
2849 }
2850
2851 template<int size, bool big_endian>
2852 void
2853 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2854 unsigned char* oview,
2855 uint64_t* paddress,
2856 off_t* plen) const
2857 {
2858 uint64_t address = plt->address();
2859 off_t len = plt->data_size();
2860
2861 if (plt == this->glink_)
2862 {
2863 // See Output_data_glink::do_write() for glink contents.
2864 if (len == 0)
2865 {
2866 gold_assert(parameters->doing_static_link());
2867 // Static linking may need stubs, to support ifunc and long
2868 // branches. We need to create an output section for
2869 // .eh_frame early in the link process, to have a place to
2870 // attach stub .eh_frame info. We also need to have
2871 // registered a CIE that matches the stub CIE. Both of
2872 // these requirements are satisfied by creating an FDE and
2873 // CIE for .glink, even though static linking will leave
2874 // .glink zero length.
2875 // ??? Hopefully generating an FDE with a zero address range
2876 // won't confuse anything that consumes .eh_frame info.
2877 }
2878 else if (size == 64)
2879 {
2880 // There is one word before __glink_PLTresolve
2881 address += 8;
2882 len -= 8;
2883 }
2884 else if (parameters->options().output_is_position_independent())
2885 {
2886 // There are two FDEs for a position independent glink.
2887 // The first covers the branch table, the second
2888 // __glink_PLTresolve at the end of glink.
2889 off_t resolve_size = this->glink_->pltresolve_size;
2890 if (oview[9] == elfcpp::DW_CFA_nop)
2891 len -= resolve_size;
2892 else
2893 {
2894 address += len - resolve_size;
2895 len = resolve_size;
2896 }
2897 }
2898 }
2899 else
2900 {
2901 // Must be a stub table.
2902 const Stub_table<size, big_endian>* stub_table
2903 = static_cast<const Stub_table<size, big_endian>*>(plt);
2904 uint64_t stub_address = stub_table->stub_address();
2905 len -= stub_address - address;
2906 address = stub_address;
2907 }
2908
2909 *paddress = address;
2910 *plen = len;
2911 }
2912
2913 // A class to handle the PLT data.
2914
2915 template<int size, bool big_endian>
2916 class Output_data_plt_powerpc : public Output_section_data_build
2917 {
2918 public:
2919 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2920 size, big_endian> Reloc_section;
2921
2922 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2923 Reloc_section* plt_rel,
2924 const char* name)
2925 : Output_section_data_build(size == 32 ? 4 : 8),
2926 rel_(plt_rel),
2927 targ_(targ),
2928 name_(name)
2929 { }
2930
2931 // Add an entry to the PLT.
2932 void
2933 add_entry(Symbol*);
2934
2935 void
2936 add_ifunc_entry(Symbol*);
2937
2938 void
2939 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2940
2941 // Return the .rela.plt section data.
2942 Reloc_section*
2943 rel_plt() const
2944 {
2945 return this->rel_;
2946 }
2947
2948 // Return the number of PLT entries.
2949 unsigned int
2950 entry_count() const
2951 {
2952 if (this->current_data_size() == 0)
2953 return 0;
2954 return ((this->current_data_size() - this->first_plt_entry_offset())
2955 / this->plt_entry_size());
2956 }
2957
2958 protected:
2959 void
2960 do_adjust_output_section(Output_section* os)
2961 {
2962 os->set_entsize(0);
2963 }
2964
2965 // Write to a map file.
2966 void
2967 do_print_to_mapfile(Mapfile* mapfile) const
2968 { mapfile->print_output_data(this, this->name_); }
2969
2970 private:
2971 // Return the offset of the first non-reserved PLT entry.
2972 unsigned int
2973 first_plt_entry_offset() const
2974 {
2975 // IPLT has no reserved entry.
2976 if (this->name_[3] == 'I')
2977 return 0;
2978 return this->targ_->first_plt_entry_offset();
2979 }
2980
2981 // Return the size of each PLT entry.
2982 unsigned int
2983 plt_entry_size() const
2984 {
2985 return this->targ_->plt_entry_size();
2986 }
2987
2988 // Write out the PLT data.
2989 void
2990 do_write(Output_file*);
2991
2992 // The reloc section.
2993 Reloc_section* rel_;
2994 // Allows access to .glink for do_write.
2995 Target_powerpc<size, big_endian>* targ_;
2996 // What to report in map file.
2997 const char *name_;
2998 };
2999
3000 // Add an entry to the PLT.
3001
3002 template<int size, bool big_endian>
3003 void
3004 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3005 {
3006 if (!gsym->has_plt_offset())
3007 {
3008 section_size_type off = this->current_data_size();
3009 if (off == 0)
3010 off += this->first_plt_entry_offset();
3011 gsym->set_plt_offset(off);
3012 gsym->set_needs_dynsym_entry();
3013 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3014 this->rel_->add_global(gsym, dynrel, this, off, 0);
3015 off += this->plt_entry_size();
3016 this->set_current_data_size(off);
3017 }
3018 }
3019
3020 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3021
3022 template<int size, bool big_endian>
3023 void
3024 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3025 {
3026 if (!gsym->has_plt_offset())
3027 {
3028 section_size_type off = this->current_data_size();
3029 gsym->set_plt_offset(off);
3030 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3031 if (size == 64 && this->targ_->abiversion() < 2)
3032 dynrel = elfcpp::R_PPC64_JMP_IREL;
3033 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3034 off += this->plt_entry_size();
3035 this->set_current_data_size(off);
3036 }
3037 }
3038
3039 // Add an entry for a local ifunc symbol to the IPLT.
3040
3041 template<int size, bool big_endian>
3042 void
3043 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3044 Sized_relobj_file<size, big_endian>* relobj,
3045 unsigned int local_sym_index)
3046 {
3047 if (!relobj->local_has_plt_offset(local_sym_index))
3048 {
3049 section_size_type off = this->current_data_size();
3050 relobj->set_local_plt_offset(local_sym_index, off);
3051 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3052 if (size == 64 && this->targ_->abiversion() < 2)
3053 dynrel = elfcpp::R_PPC64_JMP_IREL;
3054 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3055 this, off, 0);
3056 off += this->plt_entry_size();
3057 this->set_current_data_size(off);
3058 }
3059 }
3060
3061 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3062 static const uint32_t add_2_2_11 = 0x7c425a14;
3063 static const uint32_t add_3_3_2 = 0x7c631214;
3064 static const uint32_t add_3_3_13 = 0x7c636a14;
3065 static const uint32_t add_11_0_11 = 0x7d605a14;
3066 static const uint32_t add_11_2_11 = 0x7d625a14;
3067 static const uint32_t add_11_11_2 = 0x7d6b1214;
3068 static const uint32_t addi_0_12 = 0x380c0000;
3069 static const uint32_t addi_2_2 = 0x38420000;
3070 static const uint32_t addi_3_3 = 0x38630000;
3071 static const uint32_t addi_11_11 = 0x396b0000;
3072 static const uint32_t addi_12_12 = 0x398c0000;
3073 static const uint32_t addis_0_2 = 0x3c020000;
3074 static const uint32_t addis_0_13 = 0x3c0d0000;
3075 static const uint32_t addis_3_2 = 0x3c620000;
3076 static const uint32_t addis_3_13 = 0x3c6d0000;
3077 static const uint32_t addis_11_2 = 0x3d620000;
3078 static const uint32_t addis_11_11 = 0x3d6b0000;
3079 static const uint32_t addis_11_30 = 0x3d7e0000;
3080 static const uint32_t addis_12_12 = 0x3d8c0000;
3081 static const uint32_t b = 0x48000000;
3082 static const uint32_t bcl_20_31 = 0x429f0005;
3083 static const uint32_t bctr = 0x4e800420;
3084 static const uint32_t blr = 0x4e800020;
3085 static const uint32_t bnectr_p4 = 0x4ce20420;
3086 static const uint32_t cmpldi_2_0 = 0x28220000;
3087 static const uint32_t cror_15_15_15 = 0x4def7b82;
3088 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3089 static const uint32_t ld_0_1 = 0xe8010000;
3090 static const uint32_t ld_0_12 = 0xe80c0000;
3091 static const uint32_t ld_2_1 = 0xe8410000;
3092 static const uint32_t ld_2_2 = 0xe8420000;
3093 static const uint32_t ld_2_11 = 0xe84b0000;
3094 static const uint32_t ld_11_2 = 0xe9620000;
3095 static const uint32_t ld_11_11 = 0xe96b0000;
3096 static const uint32_t ld_12_2 = 0xe9820000;
3097 static const uint32_t ld_12_11 = 0xe98b0000;
3098 static const uint32_t ld_12_12 = 0xe98c0000;
3099 static const uint32_t lfd_0_1 = 0xc8010000;
3100 static const uint32_t li_0_0 = 0x38000000;
3101 static const uint32_t li_12_0 = 0x39800000;
3102 static const uint32_t lis_0_0 = 0x3c000000;
3103 static const uint32_t lis_11 = 0x3d600000;
3104 static const uint32_t lis_12 = 0x3d800000;
3105 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3106 static const uint32_t lwz_0_12 = 0x800c0000;
3107 static const uint32_t lwz_11_11 = 0x816b0000;
3108 static const uint32_t lwz_11_30 = 0x817e0000;
3109 static const uint32_t lwz_12_12 = 0x818c0000;
3110 static const uint32_t lwzu_0_12 = 0x840c0000;
3111 static const uint32_t mflr_0 = 0x7c0802a6;
3112 static const uint32_t mflr_11 = 0x7d6802a6;
3113 static const uint32_t mflr_12 = 0x7d8802a6;
3114 static const uint32_t mtctr_0 = 0x7c0903a6;
3115 static const uint32_t mtctr_11 = 0x7d6903a6;
3116 static const uint32_t mtctr_12 = 0x7d8903a6;
3117 static const uint32_t mtlr_0 = 0x7c0803a6;
3118 static const uint32_t mtlr_12 = 0x7d8803a6;
3119 static const uint32_t nop = 0x60000000;
3120 static const uint32_t ori_0_0_0 = 0x60000000;
3121 static const uint32_t srdi_0_0_2 = 0x7800f082;
3122 static const uint32_t std_0_1 = 0xf8010000;
3123 static const uint32_t std_0_12 = 0xf80c0000;
3124 static const uint32_t std_2_1 = 0xf8410000;
3125 static const uint32_t stfd_0_1 = 0xd8010000;
3126 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3127 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3128 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3129 static const uint32_t xor_2_12_12 = 0x7d826278;
3130 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3131
3132 // Write out the PLT.
3133
3134 template<int size, bool big_endian>
3135 void
3136 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3137 {
3138 if (size == 32 && this->name_[3] != 'I')
3139 {
3140 const section_size_type offset = this->offset();
3141 const section_size_type oview_size
3142 = convert_to_section_size_type(this->data_size());
3143 unsigned char* const oview = of->get_output_view(offset, oview_size);
3144 unsigned char* pov = oview;
3145 unsigned char* endpov = oview + oview_size;
3146
3147 // The address of the .glink branch table
3148 const Output_data_glink<size, big_endian>* glink
3149 = this->targ_->glink_section();
3150 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3151
3152 while (pov < endpov)
3153 {
3154 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3155 pov += 4;
3156 branch_tab += 4;
3157 }
3158
3159 of->write_output_view(offset, oview_size, oview);
3160 }
3161 }
3162
3163 // Create the PLT section.
3164
3165 template<int size, bool big_endian>
3166 void
3167 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3168 Layout* layout)
3169 {
3170 if (this->plt_ == NULL)
3171 {
3172 if (this->got_ == NULL)
3173 this->got_section(symtab, layout);
3174
3175 if (this->glink_ == NULL)
3176 make_glink_section(layout);
3177
3178 // Ensure that .rela.dyn always appears before .rela.plt This is
3179 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3180 // needs to include .rela.plt in its range.
3181 this->rela_dyn_section(layout);
3182
3183 Reloc_section* plt_rel = new Reloc_section(false);
3184 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3185 elfcpp::SHF_ALLOC, plt_rel,
3186 ORDER_DYNAMIC_PLT_RELOCS, false);
3187 this->plt_
3188 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3189 "** PLT");
3190 layout->add_output_section_data(".plt",
3191 (size == 32
3192 ? elfcpp::SHT_PROGBITS
3193 : elfcpp::SHT_NOBITS),
3194 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3195 this->plt_,
3196 (size == 32
3197 ? ORDER_SMALL_DATA
3198 : ORDER_SMALL_BSS),
3199 false);
3200 }
3201 }
3202
3203 // Create the IPLT section.
3204
3205 template<int size, bool big_endian>
3206 void
3207 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3208 Layout* layout)
3209 {
3210 if (this->iplt_ == NULL)
3211 {
3212 this->make_plt_section(symtab, layout);
3213
3214 Reloc_section* iplt_rel = new Reloc_section(false);
3215 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3216 this->iplt_
3217 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3218 "** IPLT");
3219 this->plt_->output_section()->add_output_section_data(this->iplt_);
3220 }
3221 }
3222
3223 // A section for huge long branch addresses, similar to plt section.
3224
3225 template<int size, bool big_endian>
3226 class Output_data_brlt_powerpc : public Output_section_data_build
3227 {
3228 public:
3229 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3230 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3231 size, big_endian> Reloc_section;
3232
3233 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3234 Reloc_section* brlt_rel)
3235 : Output_section_data_build(size == 32 ? 4 : 8),
3236 rel_(brlt_rel),
3237 targ_(targ)
3238 { }
3239
3240 void
3241 reset_brlt_sizes()
3242 {
3243 this->reset_data_size();
3244 this->rel_->reset_data_size();
3245 }
3246
3247 void
3248 finalize_brlt_sizes()
3249 {
3250 this->finalize_data_size();
3251 this->rel_->finalize_data_size();
3252 }
3253
3254 // Add a reloc for an entry in the BRLT.
3255 void
3256 add_reloc(Address to, unsigned int off)
3257 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3258
3259 // Update section and reloc section size.
3260 void
3261 set_current_size(unsigned int num_branches)
3262 {
3263 this->reset_address_and_file_offset();
3264 this->set_current_data_size(num_branches * 16);
3265 this->finalize_data_size();
3266 Output_section* os = this->output_section();
3267 os->set_section_offsets_need_adjustment();
3268 if (this->rel_ != NULL)
3269 {
3270 unsigned int reloc_size
3271 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3272 this->rel_->reset_address_and_file_offset();
3273 this->rel_->set_current_data_size(num_branches * reloc_size);
3274 this->rel_->finalize_data_size();
3275 Output_section* os = this->rel_->output_section();
3276 os->set_section_offsets_need_adjustment();
3277 }
3278 }
3279
3280 protected:
3281 void
3282 do_adjust_output_section(Output_section* os)
3283 {
3284 os->set_entsize(0);
3285 }
3286
3287 // Write to a map file.
3288 void
3289 do_print_to_mapfile(Mapfile* mapfile) const
3290 { mapfile->print_output_data(this, "** BRLT"); }
3291
3292 private:
3293 // Write out the BRLT data.
3294 void
3295 do_write(Output_file*);
3296
3297 // The reloc section.
3298 Reloc_section* rel_;
3299 Target_powerpc<size, big_endian>* targ_;
3300 };
3301
3302 // Make the branch lookup table section.
3303
3304 template<int size, bool big_endian>
3305 void
3306 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3307 {
3308 if (size == 64 && this->brlt_section_ == NULL)
3309 {
3310 Reloc_section* brlt_rel = NULL;
3311 bool is_pic = parameters->options().output_is_position_independent();
3312 if (is_pic)
3313 {
3314 // When PIC we can't fill in .branch_lt (like .plt it can be
3315 // a bss style section) but must initialise at runtime via
3316 // dynamic relocats.
3317 this->rela_dyn_section(layout);
3318 brlt_rel = new Reloc_section(false);
3319 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3320 }
3321 this->brlt_section_
3322 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3323 if (this->plt_ && is_pic)
3324 this->plt_->output_section()
3325 ->add_output_section_data(this->brlt_section_);
3326 else
3327 layout->add_output_section_data(".branch_lt",
3328 (is_pic ? elfcpp::SHT_NOBITS
3329 : elfcpp::SHT_PROGBITS),
3330 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3331 this->brlt_section_,
3332 (is_pic ? ORDER_SMALL_BSS
3333 : ORDER_SMALL_DATA),
3334 false);
3335 }
3336 }
3337
3338 // Write out .branch_lt when non-PIC.
3339
3340 template<int size, bool big_endian>
3341 void
3342 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3343 {
3344 if (size == 64 && !parameters->options().output_is_position_independent())
3345 {
3346 const section_size_type offset = this->offset();
3347 const section_size_type oview_size
3348 = convert_to_section_size_type(this->data_size());
3349 unsigned char* const oview = of->get_output_view(offset, oview_size);
3350
3351 this->targ_->write_branch_lookup_table(oview);
3352 of->write_output_view(offset, oview_size, oview);
3353 }
3354 }
3355
3356 static inline uint32_t
3357 l(uint32_t a)
3358 {
3359 return a & 0xffff;
3360 }
3361
3362 static inline uint32_t
3363 hi(uint32_t a)
3364 {
3365 return l(a >> 16);
3366 }
3367
3368 static inline uint32_t
3369 ha(uint32_t a)
3370 {
3371 return hi(a + 0x8000);
3372 }
3373
3374 template<int size>
3375 struct Eh_cie
3376 {
3377 static const unsigned char eh_frame_cie[12];
3378 };
3379
3380 template<int size>
3381 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3382 {
3383 1, // CIE version.
3384 'z', 'R', 0, // Augmentation string.
3385 4, // Code alignment.
3386 0x80 - size / 8 , // Data alignment.
3387 65, // RA reg.
3388 1, // Augmentation size.
3389 (elfcpp::DW_EH_PE_pcrel
3390 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3391 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3392 };
3393
3394 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3395 static const unsigned char glink_eh_frame_fde_64v1[] =
3396 {
3397 0, 0, 0, 0, // Replaced with offset to .glink.
3398 0, 0, 0, 0, // Replaced with size of .glink.
3399 0, // Augmentation size.
3400 elfcpp::DW_CFA_advance_loc + 1,
3401 elfcpp::DW_CFA_register, 65, 12,
3402 elfcpp::DW_CFA_advance_loc + 4,
3403 elfcpp::DW_CFA_restore_extended, 65
3404 };
3405
3406 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3407 static const unsigned char glink_eh_frame_fde_64v2[] =
3408 {
3409 0, 0, 0, 0, // Replaced with offset to .glink.
3410 0, 0, 0, 0, // Replaced with size of .glink.
3411 0, // Augmentation size.
3412 elfcpp::DW_CFA_advance_loc + 1,
3413 elfcpp::DW_CFA_register, 65, 0,
3414 elfcpp::DW_CFA_advance_loc + 4,
3415 elfcpp::DW_CFA_restore_extended, 65
3416 };
3417
3418 // Describe __glink_PLTresolve use of LR, 32-bit version.
3419 static const unsigned char glink_eh_frame_fde_32[] =
3420 {
3421 0, 0, 0, 0, // Replaced with offset to .glink.
3422 0, 0, 0, 0, // Replaced with size of .glink.
3423 0, // Augmentation size.
3424 elfcpp::DW_CFA_advance_loc + 2,
3425 elfcpp::DW_CFA_register, 65, 0,
3426 elfcpp::DW_CFA_advance_loc + 4,
3427 elfcpp::DW_CFA_restore_extended, 65
3428 };
3429
3430 static const unsigned char default_fde[] =
3431 {
3432 0, 0, 0, 0, // Replaced with offset to stubs.
3433 0, 0, 0, 0, // Replaced with size of stubs.
3434 0, // Augmentation size.
3435 elfcpp::DW_CFA_nop, // Pad.
3436 elfcpp::DW_CFA_nop,
3437 elfcpp::DW_CFA_nop
3438 };
3439
3440 template<bool big_endian>
3441 static inline void
3442 write_insn(unsigned char* p, uint32_t v)
3443 {
3444 elfcpp::Swap<32, big_endian>::writeval(p, v);
3445 }
3446
3447 // Stub_table holds information about plt and long branch stubs.
3448 // Stubs are built in an area following some input section determined
3449 // by group_sections(). This input section is converted to a relaxed
3450 // input section allowing it to be resized to accommodate the stubs
3451
3452 template<int size, bool big_endian>
3453 class Stub_table : public Output_relaxed_input_section
3454 {
3455 public:
3456 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3457 static const Address invalid_address = static_cast<Address>(0) - 1;
3458
3459 Stub_table(Target_powerpc<size, big_endian>* targ)
3460 : Output_relaxed_input_section(NULL, 0, 0),
3461 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3462 orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3463 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3464 { }
3465
3466 // Delayed Output_relaxed_input_section init.
3467 void
3468 init(const Output_section::Input_section*, Output_section*);
3469
3470 // Add a plt call stub.
3471 void
3472 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3473 const Symbol*,
3474 unsigned int,
3475 Address);
3476
3477 void
3478 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3479 unsigned int,
3480 unsigned int,
3481 Address);
3482
3483 // Find a given plt call stub.
3484 Address
3485 find_plt_call_entry(const Symbol*) const;
3486
3487 Address
3488 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3489 unsigned int) const;
3490
3491 Address
3492 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3493 const Symbol*,
3494 unsigned int,
3495 Address) const;
3496
3497 Address
3498 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3499 unsigned int,
3500 unsigned int,
3501 Address) const;
3502
3503 // Add a long branch stub.
3504 void
3505 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3506
3507 Address
3508 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3509 Address) const;
3510
3511 void
3512 clear_stubs()
3513 {
3514 this->plt_call_stubs_.clear();
3515 this->plt_size_ = 0;
3516 this->long_branch_stubs_.clear();
3517 this->branch_size_ = 0;
3518 }
3519
3520 Address
3521 set_address_and_size(const Output_section* os, Address off)
3522 {
3523 Address start_off = off;
3524 off += this->orig_data_size_;
3525 Address my_size = this->plt_size_ + this->branch_size_;
3526 if (my_size != 0)
3527 off = align_address(off, this->stub_align());
3528 // Include original section size and alignment padding in size
3529 my_size += off - start_off;
3530 this->reset_address_and_file_offset();
3531 this->set_current_data_size(my_size);
3532 this->set_address_and_file_offset(os->address() + start_off,
3533 os->offset() + start_off);
3534 return my_size;
3535 }
3536
3537 Address
3538 stub_address() const
3539 {
3540 return align_address(this->address() + this->orig_data_size_,
3541 this->stub_align());
3542 }
3543
3544 Address
3545 stub_offset() const
3546 {
3547 return align_address(this->offset() + this->orig_data_size_,
3548 this->stub_align());
3549 }
3550
3551 section_size_type
3552 plt_size() const
3553 { return this->plt_size_; }
3554
3555 bool
3556 size_update()
3557 {
3558 Output_section* os = this->output_section();
3559 if (os->addralign() < this->stub_align())
3560 {
3561 os->set_addralign(this->stub_align());
3562 // FIXME: get rid of the insane checkpointing.
3563 // We can't increase alignment of the input section to which
3564 // stubs are attached; The input section may be .init which
3565 // is pasted together with other .init sections to form a
3566 // function. Aligning might insert zero padding resulting in
3567 // sigill. However we do need to increase alignment of the
3568 // output section so that the align_address() on offset in
3569 // set_address_and_size() adds the same padding as the
3570 // align_address() on address in stub_address().
3571 // What's more, we need this alignment for the layout done in
3572 // relaxation_loop_body() so that the output section starts at
3573 // a suitably aligned address.
3574 os->checkpoint_set_addralign(this->stub_align());
3575 }
3576 if (this->last_plt_size_ != this->plt_size_
3577 || this->last_branch_size_ != this->branch_size_)
3578 {
3579 this->last_plt_size_ = this->plt_size_;
3580 this->last_branch_size_ = this->branch_size_;
3581 return true;
3582 }
3583 return false;
3584 }
3585
3586 // Add .eh_frame info for this stub section. Unlike other linker
3587 // generated .eh_frame this is added late in the link, because we
3588 // only want the .eh_frame info if this particular stub section is
3589 // non-empty.
3590 void
3591 add_eh_frame(Layout* layout)
3592 {
3593 if (!this->eh_frame_added_)
3594 {
3595 if (!parameters->options().ld_generated_unwind_info())
3596 return;
3597
3598 // Since we add stub .eh_frame info late, it must be placed
3599 // after all other linker generated .eh_frame info so that
3600 // merge mapping need not be updated for input sections.
3601 // There is no provision to use a different CIE to that used
3602 // by .glink.
3603 if (!this->targ_->has_glink())
3604 return;
3605
3606 layout->add_eh_frame_for_plt(this,
3607 Eh_cie<size>::eh_frame_cie,
3608 sizeof (Eh_cie<size>::eh_frame_cie),
3609 default_fde,
3610 sizeof (default_fde));
3611 this->eh_frame_added_ = true;
3612 }
3613 }
3614
3615 Target_powerpc<size, big_endian>*
3616 targ() const
3617 { return targ_; }
3618
3619 private:
3620 class Plt_stub_ent;
3621 class Plt_stub_ent_hash;
3622 typedef Unordered_map<Plt_stub_ent, unsigned int,
3623 Plt_stub_ent_hash> Plt_stub_entries;
3624
3625 // Alignment of stub section.
3626 unsigned int
3627 stub_align() const
3628 {
3629 if (size == 32)
3630 return 16;
3631 unsigned int min_align = 32;
3632 unsigned int user_align = 1 << parameters->options().plt_align();
3633 return std::max(user_align, min_align);
3634 }
3635
3636 // Return the plt offset for the given call stub.
3637 Address
3638 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3639 {
3640 const Symbol* gsym = p->first.sym_;
3641 if (gsym != NULL)
3642 {
3643 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3644 && gsym->can_use_relative_reloc(false));
3645 return gsym->plt_offset();
3646 }
3647 else
3648 {
3649 *is_iplt = true;
3650 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3651 unsigned int local_sym_index = p->first.locsym_;
3652 return relobj->local_plt_offset(local_sym_index);
3653 }
3654 }
3655
3656 // Size of a given plt call stub.
3657 unsigned int
3658 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3659 {
3660 if (size == 32)
3661 return 16;
3662
3663 bool is_iplt;
3664 Address plt_addr = this->plt_off(p, &is_iplt);
3665 if (is_iplt)
3666 plt_addr += this->targ_->iplt_section()->address();
3667 else
3668 plt_addr += this->targ_->plt_section()->address();
3669 Address got_addr = this->targ_->got_section()->output_section()->address();
3670 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3671 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3672 got_addr += ppcobj->toc_base_offset();
3673 Address off = plt_addr - got_addr;
3674 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3675 if (this->targ_->abiversion() < 2)
3676 {
3677 bool static_chain = parameters->options().plt_static_chain();
3678 bool thread_safe = this->targ_->plt_thread_safe();
3679 bytes += (4
3680 + 4 * static_chain
3681 + 8 * thread_safe
3682 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3683 }
3684 unsigned int align = 1 << parameters->options().plt_align();
3685 if (align > 1)
3686 bytes = (bytes + align - 1) & -align;
3687 return bytes;
3688 }
3689
3690 // Return long branch stub size.
3691 unsigned int
3692 branch_stub_size(Address to)
3693 {
3694 Address loc
3695 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3696 if (to - loc + (1 << 25) < 2 << 25)
3697 return 4;
3698 if (size == 64 || !parameters->options().output_is_position_independent())
3699 return 16;
3700 return 32;
3701 }
3702
3703 // Write out stubs.
3704 void
3705 do_write(Output_file*);
3706
3707 // Plt call stub keys.
3708 class Plt_stub_ent
3709 {
3710 public:
3711 Plt_stub_ent(const Symbol* sym)
3712 : sym_(sym), object_(0), addend_(0), locsym_(0)
3713 { }
3714
3715 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3716 unsigned int locsym_index)
3717 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3718 { }
3719
3720 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3721 const Symbol* sym,
3722 unsigned int r_type,
3723 Address addend)
3724 : sym_(sym), object_(0), addend_(0), locsym_(0)
3725 {
3726 if (size != 32)
3727 this->addend_ = addend;
3728 else if (parameters->options().output_is_position_independent()
3729 && r_type == elfcpp::R_PPC_PLTREL24)
3730 {
3731 this->addend_ = addend;
3732 if (this->addend_ >= 32768)
3733 this->object_ = object;
3734 }
3735 }
3736
3737 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3738 unsigned int locsym_index,
3739 unsigned int r_type,
3740 Address addend)
3741 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3742 {
3743 if (size != 32)
3744 this->addend_ = addend;
3745 else if (parameters->options().output_is_position_independent()
3746 && r_type == elfcpp::R_PPC_PLTREL24)
3747 this->addend_ = addend;
3748 }
3749
3750 bool operator==(const Plt_stub_ent& that) const
3751 {
3752 return (this->sym_ == that.sym_
3753 && this->object_ == that.object_
3754 && this->addend_ == that.addend_
3755 && this->locsym_ == that.locsym_);
3756 }
3757
3758 const Symbol* sym_;
3759 const Sized_relobj_file<size, big_endian>* object_;
3760 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3761 unsigned int locsym_;
3762 };
3763
3764 class Plt_stub_ent_hash
3765 {
3766 public:
3767 size_t operator()(const Plt_stub_ent& ent) const
3768 {
3769 return (reinterpret_cast<uintptr_t>(ent.sym_)
3770 ^ reinterpret_cast<uintptr_t>(ent.object_)
3771 ^ ent.addend_
3772 ^ ent.locsym_);
3773 }
3774 };
3775
3776 // Long branch stub keys.
3777 class Branch_stub_ent
3778 {
3779 public:
3780 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3781 : dest_(to), toc_base_off_(0)
3782 {
3783 if (size == 64)
3784 toc_base_off_ = obj->toc_base_offset();
3785 }
3786
3787 bool operator==(const Branch_stub_ent& that) const
3788 {
3789 return (this->dest_ == that.dest_
3790 && (size == 32
3791 || this->toc_base_off_ == that.toc_base_off_));
3792 }
3793
3794 Address dest_;
3795 unsigned int toc_base_off_;
3796 };
3797
3798 class Branch_stub_ent_hash
3799 {
3800 public:
3801 size_t operator()(const Branch_stub_ent& ent) const
3802 { return ent.dest_ ^ ent.toc_base_off_; }
3803 };
3804
3805 // In a sane world this would be a global.
3806 Target_powerpc<size, big_endian>* targ_;
3807 // Map sym/object/addend to stub offset.
3808 Plt_stub_entries plt_call_stubs_;
3809 // Map destination address to stub offset.
3810 typedef Unordered_map<Branch_stub_ent, unsigned int,
3811 Branch_stub_ent_hash> Branch_stub_entries;
3812 Branch_stub_entries long_branch_stubs_;
3813 // size of input section
3814 section_size_type orig_data_size_;
3815 // size of stubs
3816 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3817 // Whether .eh_frame info has been created for this stub section.
3818 bool eh_frame_added_;
3819 };
3820
3821 // Make a new stub table, and record.
3822
3823 template<int size, bool big_endian>
3824 Stub_table<size, big_endian>*
3825 Target_powerpc<size, big_endian>::new_stub_table()
3826 {
3827 Stub_table<size, big_endian>* stub_table
3828 = new Stub_table<size, big_endian>(this);
3829 this->stub_tables_.push_back(stub_table);
3830 return stub_table;
3831 }
3832
3833 // Delayed stub table initialisation, because we create the stub table
3834 // before we know to which section it will be attached.
3835
3836 template<int size, bool big_endian>
3837 void
3838 Stub_table<size, big_endian>::init(
3839 const Output_section::Input_section* owner,
3840 Output_section* output_section)
3841 {
3842 this->set_relobj(owner->relobj());
3843 this->set_shndx(owner->shndx());
3844 this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3845 this->set_output_section(output_section);
3846 this->orig_data_size_ = owner->current_data_size();
3847
3848 std::vector<Output_relaxed_input_section*> new_relaxed;
3849 new_relaxed.push_back(this);
3850 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3851 }
3852
3853 // Add a plt call stub, if we do not already have one for this
3854 // sym/object/addend combo.
3855
3856 template<int size, bool big_endian>
3857 void
3858 Stub_table<size, big_endian>::add_plt_call_entry(
3859 const Sized_relobj_file<size, big_endian>* object,
3860 const Symbol* gsym,
3861 unsigned int r_type,
3862 Address addend)
3863 {
3864 Plt_stub_ent ent(object, gsym, r_type, addend);
3865 unsigned int off = this->plt_size_;
3866 std::pair<typename Plt_stub_entries::iterator, bool> p
3867 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3868 if (p.second)
3869 this->plt_size_ = off + this->plt_call_size(p.first);
3870 }
3871
3872 template<int size, bool big_endian>
3873 void
3874 Stub_table<size, big_endian>::add_plt_call_entry(
3875 const Sized_relobj_file<size, big_endian>* object,
3876 unsigned int locsym_index,
3877 unsigned int r_type,
3878 Address addend)
3879 {
3880 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3881 unsigned int off = this->plt_size_;
3882 std::pair<typename Plt_stub_entries::iterator, bool> p
3883 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3884 if (p.second)
3885 this->plt_size_ = off + this->plt_call_size(p.first);
3886 }
3887
3888 // Find a plt call stub.
3889
3890 template<int size, bool big_endian>
3891 typename Stub_table<size, big_endian>::Address
3892 Stub_table<size, big_endian>::find_plt_call_entry(
3893 const Sized_relobj_file<size, big_endian>* object,
3894 const Symbol* gsym,
3895 unsigned int r_type,
3896 Address addend) const
3897 {
3898 Plt_stub_ent ent(object, gsym, r_type, addend);
3899 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3900 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3901 }
3902
3903 template<int size, bool big_endian>
3904 typename Stub_table<size, big_endian>::Address
3905 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3906 {
3907 Plt_stub_ent ent(gsym);
3908 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3909 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3910 }
3911
3912 template<int size, bool big_endian>
3913 typename Stub_table<size, big_endian>::Address
3914 Stub_table<size, big_endian>::find_plt_call_entry(
3915 const Sized_relobj_file<size, big_endian>* object,
3916 unsigned int locsym_index,
3917 unsigned int r_type,
3918 Address addend) const
3919 {
3920 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3921 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3922 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3923 }
3924
3925 template<int size, bool big_endian>
3926 typename Stub_table<size, big_endian>::Address
3927 Stub_table<size, big_endian>::find_plt_call_entry(
3928 const Sized_relobj_file<size, big_endian>* object,
3929 unsigned int locsym_index) const
3930 {
3931 Plt_stub_ent ent(object, locsym_index);
3932 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3933 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3934 }
3935
3936 // Add a long branch stub if we don't already have one to given
3937 // destination.
3938
3939 template<int size, bool big_endian>
3940 void
3941 Stub_table<size, big_endian>::add_long_branch_entry(
3942 const Powerpc_relobj<size, big_endian>* object,
3943 Address to)
3944 {
3945 Branch_stub_ent ent(object, to);
3946 Address off = this->branch_size_;
3947 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3948 {
3949 unsigned int stub_size = this->branch_stub_size(to);
3950 this->branch_size_ = off + stub_size;
3951 if (size == 64 && stub_size != 4)
3952 this->targ_->add_branch_lookup_table(to);
3953 }
3954 }
3955
3956 // Find long branch stub.
3957
3958 template<int size, bool big_endian>
3959 typename Stub_table<size, big_endian>::Address
3960 Stub_table<size, big_endian>::find_long_branch_entry(
3961 const Powerpc_relobj<size, big_endian>* object,
3962 Address to) const
3963 {
3964 Branch_stub_ent ent(object, to);
3965 typename Branch_stub_entries::const_iterator p
3966 = this->long_branch_stubs_.find(ent);
3967 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3968 }
3969
3970 // A class to handle .glink.
3971
3972 template<int size, bool big_endian>
3973 class Output_data_glink : public Output_section_data
3974 {
3975 public:
3976 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3977 static const Address invalid_address = static_cast<Address>(0) - 1;
3978 static const int pltresolve_size = 16*4;
3979
3980 Output_data_glink(Target_powerpc<size, big_endian>* targ)
3981 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
3982 end_branch_table_(), ge_size_(0)
3983 { }
3984
3985 void
3986 add_eh_frame(Layout* layout);
3987
3988 void
3989 add_global_entry(const Symbol*);
3990
3991 Address
3992 find_global_entry(const Symbol*) const;
3993
3994 Address
3995 global_entry_address() const
3996 {
3997 gold_assert(this->is_data_size_valid());
3998 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
3999 return this->address() + global_entry_off;
4000 }
4001
4002 protected:
4003 // Write to a map file.
4004 void
4005 do_print_to_mapfile(Mapfile* mapfile) const
4006 { mapfile->print_output_data(this, _("** glink")); }
4007
4008 private:
4009 void
4010 set_final_data_size();
4011
4012 // Write out .glink
4013 void
4014 do_write(Output_file*);
4015
4016 // Allows access to .got and .plt for do_write.
4017 Target_powerpc<size, big_endian>* targ_;
4018
4019 // Map sym to stub offset.
4020 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4021 Global_entry_stub_entries global_entry_stubs_;
4022
4023 unsigned int end_branch_table_, ge_size_;
4024 };
4025
4026 template<int size, bool big_endian>
4027 void
4028 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4029 {
4030 if (!parameters->options().ld_generated_unwind_info())
4031 return;
4032
4033 if (size == 64)
4034 {
4035 if (this->targ_->abiversion() < 2)
4036 layout->add_eh_frame_for_plt(this,
4037 Eh_cie<64>::eh_frame_cie,
4038 sizeof (Eh_cie<64>::eh_frame_cie),
4039 glink_eh_frame_fde_64v1,
4040 sizeof (glink_eh_frame_fde_64v1));
4041 else
4042 layout->add_eh_frame_for_plt(this,
4043 Eh_cie<64>::eh_frame_cie,
4044 sizeof (Eh_cie<64>::eh_frame_cie),
4045 glink_eh_frame_fde_64v2,
4046 sizeof (glink_eh_frame_fde_64v2));
4047 }
4048 else
4049 {
4050 // 32-bit .glink can use the default since the CIE return
4051 // address reg, LR, is valid.
4052 layout->add_eh_frame_for_plt(this,
4053 Eh_cie<32>::eh_frame_cie,
4054 sizeof (Eh_cie<32>::eh_frame_cie),
4055 default_fde,
4056 sizeof (default_fde));
4057 // Except where LR is used in a PIC __glink_PLTresolve.
4058 if (parameters->options().output_is_position_independent())
4059 layout->add_eh_frame_for_plt(this,
4060 Eh_cie<32>::eh_frame_cie,
4061 sizeof (Eh_cie<32>::eh_frame_cie),
4062 glink_eh_frame_fde_32,
4063 sizeof (glink_eh_frame_fde_32));
4064 }
4065 }
4066
4067 template<int size, bool big_endian>
4068 void
4069 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4070 {
4071 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4072 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4073 if (p.second)
4074 this->ge_size_ += 16;
4075 }
4076
4077 template<int size, bool big_endian>
4078 typename Output_data_glink<size, big_endian>::Address
4079 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4080 {
4081 typename Global_entry_stub_entries::const_iterator p
4082 = this->global_entry_stubs_.find(gsym);
4083 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4084 }
4085
4086 template<int size, bool big_endian>
4087 void
4088 Output_data_glink<size, big_endian>::set_final_data_size()
4089 {
4090 unsigned int count = this->targ_->plt_entry_count();
4091 section_size_type total = 0;
4092
4093 if (count != 0)
4094 {
4095 if (size == 32)
4096 {
4097 // space for branch table
4098 total += 4 * (count - 1);
4099
4100 total += -total & 15;
4101 total += this->pltresolve_size;
4102 }
4103 else
4104 {
4105 total += this->pltresolve_size;
4106
4107 // space for branch table
4108 total += 4 * count;
4109 if (this->targ_->abiversion() < 2)
4110 {
4111 total += 4 * count;
4112 if (count > 0x8000)
4113 total += 4 * (count - 0x8000);
4114 }
4115 }
4116 }
4117 this->end_branch_table_ = total;
4118 total = (total + 15) & -16;
4119 total += this->ge_size_;
4120
4121 this->set_data_size(total);
4122 }
4123
4124 // Write out plt and long branch stub code.
4125
4126 template<int size, bool big_endian>
4127 void
4128 Stub_table<size, big_endian>::do_write(Output_file* of)
4129 {
4130 if (this->plt_call_stubs_.empty()
4131 && this->long_branch_stubs_.empty())
4132 return;
4133
4134 const section_size_type start_off = this->offset();
4135 const section_size_type off = this->stub_offset();
4136 const section_size_type oview_size =
4137 convert_to_section_size_type(this->data_size() - (off - start_off));
4138 unsigned char* const oview = of->get_output_view(off, oview_size);
4139 unsigned char* p;
4140
4141 if (size == 64)
4142 {
4143 const Output_data_got_powerpc<size, big_endian>* got
4144 = this->targ_->got_section();
4145 Address got_os_addr = got->output_section()->address();
4146
4147 if (!this->plt_call_stubs_.empty())
4148 {
4149 // The base address of the .plt section.
4150 Address plt_base = this->targ_->plt_section()->address();
4151 Address iplt_base = invalid_address;
4152
4153 // Write out plt call stubs.
4154 typename Plt_stub_entries::const_iterator cs;
4155 for (cs = this->plt_call_stubs_.begin();
4156 cs != this->plt_call_stubs_.end();
4157 ++cs)
4158 {
4159 bool is_iplt;
4160 Address pltoff = this->plt_off(cs, &is_iplt);
4161 Address plt_addr = pltoff;
4162 if (is_iplt)
4163 {
4164 if (iplt_base == invalid_address)
4165 iplt_base = this->targ_->iplt_section()->address();
4166 plt_addr += iplt_base;
4167 }
4168 else
4169 plt_addr += plt_base;
4170 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4171 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4172 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4173 Address off = plt_addr - got_addr;
4174
4175 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4176 gold_error(_("%s: linkage table error against `%s'"),
4177 cs->first.object_->name().c_str(),
4178 cs->first.sym_->demangled_name().c_str());
4179
4180 bool plt_load_toc = this->targ_->abiversion() < 2;
4181 bool static_chain
4182 = plt_load_toc && parameters->options().plt_static_chain();
4183 bool thread_safe
4184 = plt_load_toc && this->targ_->plt_thread_safe();
4185 bool use_fake_dep = false;
4186 Address cmp_branch_off = 0;
4187 if (thread_safe)
4188 {
4189 unsigned int pltindex
4190 = ((pltoff - this->targ_->first_plt_entry_offset())
4191 / this->targ_->plt_entry_size());
4192 Address glinkoff
4193 = (this->targ_->glink_section()->pltresolve_size
4194 + pltindex * 8);
4195 if (pltindex > 32768)
4196 glinkoff += (pltindex - 32768) * 4;
4197 Address to
4198 = this->targ_->glink_section()->address() + glinkoff;
4199 Address from
4200 = (this->stub_address() + cs->second + 24
4201 + 4 * (ha(off) != 0)
4202 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4203 + 4 * static_chain);
4204 cmp_branch_off = to - from;
4205 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4206 }
4207
4208 p = oview + cs->second;
4209 if (ha(off) != 0)
4210 {
4211 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4212 p += 4;
4213 write_insn<big_endian>(p, addis_11_2 + ha(off));
4214 p += 4;
4215 write_insn<big_endian>(p, ld_12_11 + l(off));
4216 p += 4;
4217 if (plt_load_toc
4218 && ha(off + 8 + 8 * static_chain) != ha(off))
4219 {
4220 write_insn<big_endian>(p, addi_11_11 + l(off));
4221 p += 4;
4222 off = 0;
4223 }
4224 write_insn<big_endian>(p, mtctr_12);
4225 p += 4;
4226 if (plt_load_toc)
4227 {
4228 if (use_fake_dep)
4229 {
4230 write_insn<big_endian>(p, xor_2_12_12);
4231 p += 4;
4232 write_insn<big_endian>(p, add_11_11_2);
4233 p += 4;
4234 }
4235 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4236 p += 4;
4237 if (static_chain)
4238 {
4239 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4240 p += 4;
4241 }
4242 }
4243 }
4244 else
4245 {
4246 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4247 p += 4;
4248 write_insn<big_endian>(p, ld_12_2 + l(off));
4249 p += 4;
4250 if (plt_load_toc
4251 && ha(off + 8 + 8 * static_chain) != ha(off))
4252 {
4253 write_insn<big_endian>(p, addi_2_2 + l(off));
4254 p += 4;
4255 off = 0;
4256 }
4257 write_insn<big_endian>(p, mtctr_12);
4258 p += 4;
4259 if (plt_load_toc)
4260 {
4261 if (use_fake_dep)
4262 {
4263 write_insn<big_endian>(p, xor_11_12_12);
4264 p += 4;
4265 write_insn<big_endian>(p, add_2_2_11);
4266 p += 4;
4267 }
4268 if (static_chain)
4269 {
4270 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4271 p += 4;
4272 }
4273 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4274 p += 4;
4275 }
4276 }
4277 if (thread_safe && !use_fake_dep)
4278 {
4279 write_insn<big_endian>(p, cmpldi_2_0);
4280 p += 4;
4281 write_insn<big_endian>(p, bnectr_p4);
4282 p += 4;
4283 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4284 }
4285 else
4286 write_insn<big_endian>(p, bctr);
4287 }
4288 }
4289
4290 // Write out long branch stubs.
4291 typename Branch_stub_entries::const_iterator bs;
4292 for (bs = this->long_branch_stubs_.begin();
4293 bs != this->long_branch_stubs_.end();
4294 ++bs)
4295 {
4296 p = oview + this->plt_size_ + bs->second;
4297 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4298 Address delta = bs->first.dest_ - loc;
4299 if (delta + (1 << 25) < 2 << 25)
4300 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4301 else
4302 {
4303 Address brlt_addr
4304 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4305 gold_assert(brlt_addr != invalid_address);
4306 brlt_addr += this->targ_->brlt_section()->address();
4307 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4308 Address brltoff = brlt_addr - got_addr;
4309 if (ha(brltoff) == 0)
4310 {
4311 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4312 }
4313 else
4314 {
4315 write_insn<big_endian>(p, addis_11_2 + ha(brltoff)), p += 4;
4316 write_insn<big_endian>(p, ld_12_11 + l(brltoff)), p += 4;
4317 }
4318 write_insn<big_endian>(p, mtctr_12), p += 4;
4319 write_insn<big_endian>(p, bctr);
4320 }
4321 }
4322 }
4323 else
4324 {
4325 if (!this->plt_call_stubs_.empty())
4326 {
4327 // The base address of the .plt section.
4328 Address plt_base = this->targ_->plt_section()->address();
4329 Address iplt_base = invalid_address;
4330 // The address of _GLOBAL_OFFSET_TABLE_.
4331 Address g_o_t = invalid_address;
4332
4333 // Write out plt call stubs.
4334 typename Plt_stub_entries::const_iterator cs;
4335 for (cs = this->plt_call_stubs_.begin();
4336 cs != this->plt_call_stubs_.end();
4337 ++cs)
4338 {
4339 bool is_iplt;
4340 Address plt_addr = this->plt_off(cs, &is_iplt);
4341 if (is_iplt)
4342 {
4343 if (iplt_base == invalid_address)
4344 iplt_base = this->targ_->iplt_section()->address();
4345 plt_addr += iplt_base;
4346 }
4347 else
4348 plt_addr += plt_base;
4349
4350 p = oview + cs->second;
4351 if (parameters->options().output_is_position_independent())
4352 {
4353 Address got_addr;
4354 const Powerpc_relobj<size, big_endian>* ppcobj
4355 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4356 (cs->first.object_));
4357 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4358 {
4359 unsigned int got2 = ppcobj->got2_shndx();
4360 got_addr = ppcobj->get_output_section_offset(got2);
4361 gold_assert(got_addr != invalid_address);
4362 got_addr += (ppcobj->output_section(got2)->address()
4363 + cs->first.addend_);
4364 }
4365 else
4366 {
4367 if (g_o_t == invalid_address)
4368 {
4369 const Output_data_got_powerpc<size, big_endian>* got
4370 = this->targ_->got_section();
4371 g_o_t = got->address() + got->g_o_t();
4372 }
4373 got_addr = g_o_t;
4374 }
4375
4376 Address off = plt_addr - got_addr;
4377 if (ha(off) == 0)
4378 {
4379 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4380 write_insn<big_endian>(p + 4, mtctr_11);
4381 write_insn<big_endian>(p + 8, bctr);
4382 }
4383 else
4384 {
4385 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4386 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4387 write_insn<big_endian>(p + 8, mtctr_11);
4388 write_insn<big_endian>(p + 12, bctr);
4389 }
4390 }
4391 else
4392 {
4393 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4394 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4395 write_insn<big_endian>(p + 8, mtctr_11);
4396 write_insn<big_endian>(p + 12, bctr);
4397 }
4398 }
4399 }
4400
4401 // Write out long branch stubs.
4402 typename Branch_stub_entries::const_iterator bs;
4403 for (bs = this->long_branch_stubs_.begin();
4404 bs != this->long_branch_stubs_.end();
4405 ++bs)
4406 {
4407 p = oview + this->plt_size_ + bs->second;
4408 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4409 Address delta = bs->first.dest_ - loc;
4410 if (delta + (1 << 25) < 2 << 25)
4411 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4412 else if (!parameters->options().output_is_position_independent())
4413 {
4414 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4415 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4416 write_insn<big_endian>(p + 8, mtctr_12);
4417 write_insn<big_endian>(p + 12, bctr);
4418 }
4419 else
4420 {
4421 delta -= 8;
4422 write_insn<big_endian>(p + 0, mflr_0);
4423 write_insn<big_endian>(p + 4, bcl_20_31);
4424 write_insn<big_endian>(p + 8, mflr_12);
4425 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4426 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4427 write_insn<big_endian>(p + 20, mtlr_0);
4428 write_insn<big_endian>(p + 24, mtctr_12);
4429 write_insn<big_endian>(p + 28, bctr);
4430 }
4431 }
4432 }
4433 }
4434
4435 // Write out .glink.
4436
4437 template<int size, bool big_endian>
4438 void
4439 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4440 {
4441 const section_size_type off = this->offset();
4442 const section_size_type oview_size =
4443 convert_to_section_size_type(this->data_size());
4444 unsigned char* const oview = of->get_output_view(off, oview_size);
4445 unsigned char* p;
4446
4447 // The base address of the .plt section.
4448 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4449 Address plt_base = this->targ_->plt_section()->address();
4450
4451 if (size == 64)
4452 {
4453 if (this->end_branch_table_ != 0)
4454 {
4455 // Write pltresolve stub.
4456 p = oview;
4457 Address after_bcl = this->address() + 16;
4458 Address pltoff = plt_base - after_bcl;
4459
4460 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4461
4462 if (this->targ_->abiversion() < 2)
4463 {
4464 write_insn<big_endian>(p, mflr_12), p += 4;
4465 write_insn<big_endian>(p, bcl_20_31), p += 4;
4466 write_insn<big_endian>(p, mflr_11), p += 4;
4467 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4468 write_insn<big_endian>(p, mtlr_12), p += 4;
4469 write_insn<big_endian>(p, add_11_2_11), p += 4;
4470 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4471 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4472 write_insn<big_endian>(p, mtctr_12), p += 4;
4473 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4474 }
4475 else
4476 {
4477 write_insn<big_endian>(p, mflr_0), p += 4;
4478 write_insn<big_endian>(p, bcl_20_31), p += 4;
4479 write_insn<big_endian>(p, mflr_11), p += 4;
4480 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4481 write_insn<big_endian>(p, mtlr_0), p += 4;
4482 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4483 write_insn<big_endian>(p, add_11_2_11), p += 4;
4484 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4485 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4486 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4487 write_insn<big_endian>(p, mtctr_12), p += 4;
4488 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4489 }
4490 write_insn<big_endian>(p, bctr), p += 4;
4491 while (p < oview + this->pltresolve_size)
4492 write_insn<big_endian>(p, nop), p += 4;
4493
4494 // Write lazy link call stubs.
4495 uint32_t indx = 0;
4496 while (p < oview + this->end_branch_table_)
4497 {
4498 if (this->targ_->abiversion() < 2)
4499 {
4500 if (indx < 0x8000)
4501 {
4502 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4503 }
4504 else
4505 {
4506 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
4507 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4508 }
4509 }
4510 uint32_t branch_off = 8 - (p - oview);
4511 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4512 indx++;
4513 }
4514 }
4515
4516 Address plt_base = this->targ_->plt_section()->address();
4517 Address iplt_base = invalid_address;
4518 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4519 Address global_entry_base = this->address() + global_entry_off;
4520 typename Global_entry_stub_entries::const_iterator ge;
4521 for (ge = this->global_entry_stubs_.begin();
4522 ge != this->global_entry_stubs_.end();
4523 ++ge)
4524 {
4525 p = oview + global_entry_off + ge->second;
4526 Address plt_addr = ge->first->plt_offset();
4527 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4528 && ge->first->can_use_relative_reloc(false))
4529 {
4530 if (iplt_base == invalid_address)
4531 iplt_base = this->targ_->iplt_section()->address();
4532 plt_addr += iplt_base;
4533 }
4534 else
4535 plt_addr += plt_base;
4536 Address my_addr = global_entry_base + ge->second;
4537 Address off = plt_addr - my_addr;
4538
4539 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4540 gold_error(_("%s: linkage table error against `%s'"),
4541 ge->first->object()->name().c_str(),
4542 ge->first->demangled_name().c_str());
4543
4544 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4545 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4546 write_insn<big_endian>(p, mtctr_12), p += 4;
4547 write_insn<big_endian>(p, bctr);
4548 }
4549 }
4550 else
4551 {
4552 const Output_data_got_powerpc<size, big_endian>* got
4553 = this->targ_->got_section();
4554 // The address of _GLOBAL_OFFSET_TABLE_.
4555 Address g_o_t = got->address() + got->g_o_t();
4556
4557 // Write out pltresolve branch table.
4558 p = oview;
4559 unsigned int the_end = oview_size - this->pltresolve_size;
4560 unsigned char* end_p = oview + the_end;
4561 while (p < end_p - 8 * 4)
4562 write_insn<big_endian>(p, b + end_p - p), p += 4;
4563 while (p < end_p)
4564 write_insn<big_endian>(p, nop), p += 4;
4565
4566 // Write out pltresolve call stub.
4567 if (parameters->options().output_is_position_independent())
4568 {
4569 Address res0_off = 0;
4570 Address after_bcl_off = the_end + 12;
4571 Address bcl_res0 = after_bcl_off - res0_off;
4572
4573 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4574 write_insn<big_endian>(p + 4, mflr_0);
4575 write_insn<big_endian>(p + 8, bcl_20_31);
4576 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4577 write_insn<big_endian>(p + 16, mflr_12);
4578 write_insn<big_endian>(p + 20, mtlr_0);
4579 write_insn<big_endian>(p + 24, sub_11_11_12);
4580
4581 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4582
4583 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4584 if (ha(got_bcl) == ha(got_bcl + 4))
4585 {
4586 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4587 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4588 }
4589 else
4590 {
4591 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4592 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4593 }
4594 write_insn<big_endian>(p + 40, mtctr_0);
4595 write_insn<big_endian>(p + 44, add_0_11_11);
4596 write_insn<big_endian>(p + 48, add_11_0_11);
4597 write_insn<big_endian>(p + 52, bctr);
4598 write_insn<big_endian>(p + 56, nop);
4599 write_insn<big_endian>(p + 60, nop);
4600 }
4601 else
4602 {
4603 Address res0 = this->address();
4604
4605 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4606 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4607 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4608 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4609 else
4610 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4611 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4612 write_insn<big_endian>(p + 16, mtctr_0);
4613 write_insn<big_endian>(p + 20, add_0_11_11);
4614 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4615 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4616 else
4617 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4618 write_insn<big_endian>(p + 28, add_11_0_11);
4619 write_insn<big_endian>(p + 32, bctr);
4620 write_insn<big_endian>(p + 36, nop);
4621 write_insn<big_endian>(p + 40, nop);
4622 write_insn<big_endian>(p + 44, nop);
4623 write_insn<big_endian>(p + 48, nop);
4624 write_insn<big_endian>(p + 52, nop);
4625 write_insn<big_endian>(p + 56, nop);
4626 write_insn<big_endian>(p + 60, nop);
4627 }
4628 p += 64;
4629 }
4630
4631 of->write_output_view(off, oview_size, oview);
4632 }
4633
4634
4635 // A class to handle linker generated save/restore functions.
4636
4637 template<int size, bool big_endian>
4638 class Output_data_save_res : public Output_section_data_build
4639 {
4640 public:
4641 Output_data_save_res(Symbol_table* symtab);
4642
4643 protected:
4644 // Write to a map file.
4645 void
4646 do_print_to_mapfile(Mapfile* mapfile) const
4647 { mapfile->print_output_data(this, _("** save/restore")); }
4648
4649 void
4650 do_write(Output_file*);
4651
4652 private:
4653 // The maximum size of save/restore contents.
4654 static const unsigned int savres_max = 218*4;
4655
4656 void
4657 savres_define(Symbol_table* symtab,
4658 const char *name,
4659 unsigned int lo, unsigned int hi,
4660 unsigned char* write_ent(unsigned char*, int),
4661 unsigned char* write_tail(unsigned char*, int));
4662
4663 unsigned char *contents_;
4664 };
4665
4666 template<bool big_endian>
4667 static unsigned char*
4668 savegpr0(unsigned char* p, int r)
4669 {
4670 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4671 write_insn<big_endian>(p, insn);
4672 return p + 4;
4673 }
4674
4675 template<bool big_endian>
4676 static unsigned char*
4677 savegpr0_tail(unsigned char* p, int r)
4678 {
4679 p = savegpr0<big_endian>(p, r);
4680 uint32_t insn = std_0_1 + 16;
4681 write_insn<big_endian>(p, insn);
4682 p = p + 4;
4683 write_insn<big_endian>(p, blr);
4684 return p + 4;
4685 }
4686
4687 template<bool big_endian>
4688 static unsigned char*
4689 restgpr0(unsigned char* p, int r)
4690 {
4691 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4692 write_insn<big_endian>(p, insn);
4693 return p + 4;
4694 }
4695
4696 template<bool big_endian>
4697 static unsigned char*
4698 restgpr0_tail(unsigned char* p, int r)
4699 {
4700 uint32_t insn = ld_0_1 + 16;
4701 write_insn<big_endian>(p, insn);
4702 p = p + 4;
4703 p = restgpr0<big_endian>(p, r);
4704 write_insn<big_endian>(p, mtlr_0);
4705 p = p + 4;
4706 if (r == 29)
4707 {
4708 p = restgpr0<big_endian>(p, 30);
4709 p = restgpr0<big_endian>(p, 31);
4710 }
4711 write_insn<big_endian>(p, blr);
4712 return p + 4;
4713 }
4714
4715 template<bool big_endian>
4716 static unsigned char*
4717 savegpr1(unsigned char* p, int r)
4718 {
4719 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4720 write_insn<big_endian>(p, insn);
4721 return p + 4;
4722 }
4723
4724 template<bool big_endian>
4725 static unsigned char*
4726 savegpr1_tail(unsigned char* p, int r)
4727 {
4728 p = savegpr1<big_endian>(p, r);
4729 write_insn<big_endian>(p, blr);
4730 return p + 4;
4731 }
4732
4733 template<bool big_endian>
4734 static unsigned char*
4735 restgpr1(unsigned char* p, int r)
4736 {
4737 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4738 write_insn<big_endian>(p, insn);
4739 return p + 4;
4740 }
4741
4742 template<bool big_endian>
4743 static unsigned char*
4744 restgpr1_tail(unsigned char* p, int r)
4745 {
4746 p = restgpr1<big_endian>(p, r);
4747 write_insn<big_endian>(p, blr);
4748 return p + 4;
4749 }
4750
4751 template<bool big_endian>
4752 static unsigned char*
4753 savefpr(unsigned char* p, int r)
4754 {
4755 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4756 write_insn<big_endian>(p, insn);
4757 return p + 4;
4758 }
4759
4760 template<bool big_endian>
4761 static unsigned char*
4762 savefpr0_tail(unsigned char* p, int r)
4763 {
4764 p = savefpr<big_endian>(p, r);
4765 write_insn<big_endian>(p, std_0_1 + 16);
4766 p = p + 4;
4767 write_insn<big_endian>(p, blr);
4768 return p + 4;
4769 }
4770
4771 template<bool big_endian>
4772 static unsigned char*
4773 restfpr(unsigned char* p, int r)
4774 {
4775 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4776 write_insn<big_endian>(p, insn);
4777 return p + 4;
4778 }
4779
4780 template<bool big_endian>
4781 static unsigned char*
4782 restfpr0_tail(unsigned char* p, int r)
4783 {
4784 write_insn<big_endian>(p, ld_0_1 + 16);
4785 p = p + 4;
4786 p = restfpr<big_endian>(p, r);
4787 write_insn<big_endian>(p, mtlr_0);
4788 p = p + 4;
4789 if (r == 29)
4790 {
4791 p = restfpr<big_endian>(p, 30);
4792 p = restfpr<big_endian>(p, 31);
4793 }
4794 write_insn<big_endian>(p, blr);
4795 return p + 4;
4796 }
4797
4798 template<bool big_endian>
4799 static unsigned char*
4800 savefpr1_tail(unsigned char* p, int r)
4801 {
4802 p = savefpr<big_endian>(p, r);
4803 write_insn<big_endian>(p, blr);
4804 return p + 4;
4805 }
4806
4807 template<bool big_endian>
4808 static unsigned char*
4809 restfpr1_tail(unsigned char* p, int r)
4810 {
4811 p = restfpr<big_endian>(p, r);
4812 write_insn<big_endian>(p, blr);
4813 return p + 4;
4814 }
4815
4816 template<bool big_endian>
4817 static unsigned char*
4818 savevr(unsigned char* p, int r)
4819 {
4820 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4821 write_insn<big_endian>(p, insn);
4822 p = p + 4;
4823 insn = stvx_0_12_0 + (r << 21);
4824 write_insn<big_endian>(p, insn);
4825 return p + 4;
4826 }
4827
4828 template<bool big_endian>
4829 static unsigned char*
4830 savevr_tail(unsigned char* p, int r)
4831 {
4832 p = savevr<big_endian>(p, r);
4833 write_insn<big_endian>(p, blr);
4834 return p + 4;
4835 }
4836
4837 template<bool big_endian>
4838 static unsigned char*
4839 restvr(unsigned char* p, int r)
4840 {
4841 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4842 write_insn<big_endian>(p, insn);
4843 p = p + 4;
4844 insn = lvx_0_12_0 + (r << 21);
4845 write_insn<big_endian>(p, insn);
4846 return p + 4;
4847 }
4848
4849 template<bool big_endian>
4850 static unsigned char*
4851 restvr_tail(unsigned char* p, int r)
4852 {
4853 p = restvr<big_endian>(p, r);
4854 write_insn<big_endian>(p, blr);
4855 return p + 4;
4856 }
4857
4858
4859 template<int size, bool big_endian>
4860 Output_data_save_res<size, big_endian>::Output_data_save_res(
4861 Symbol_table* symtab)
4862 : Output_section_data_build(4),
4863 contents_(NULL)
4864 {
4865 this->savres_define(symtab,
4866 "_savegpr0_", 14, 31,
4867 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4868 this->savres_define(symtab,
4869 "_restgpr0_", 14, 29,
4870 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4871 this->savres_define(symtab,
4872 "_restgpr0_", 30, 31,
4873 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4874 this->savres_define(symtab,
4875 "_savegpr1_", 14, 31,
4876 savegpr1<big_endian>, savegpr1_tail<big_endian>);
4877 this->savres_define(symtab,
4878 "_restgpr1_", 14, 31,
4879 restgpr1<big_endian>, restgpr1_tail<big_endian>);
4880 this->savres_define(symtab,
4881 "_savefpr_", 14, 31,
4882 savefpr<big_endian>, savefpr0_tail<big_endian>);
4883 this->savres_define(symtab,
4884 "_restfpr_", 14, 29,
4885 restfpr<big_endian>, restfpr0_tail<big_endian>);
4886 this->savres_define(symtab,
4887 "_restfpr_", 30, 31,
4888 restfpr<big_endian>, restfpr0_tail<big_endian>);
4889 this->savres_define(symtab,
4890 "._savef", 14, 31,
4891 savefpr<big_endian>, savefpr1_tail<big_endian>);
4892 this->savres_define(symtab,
4893 "._restf", 14, 31,
4894 restfpr<big_endian>, restfpr1_tail<big_endian>);
4895 this->savres_define(symtab,
4896 "_savevr_", 20, 31,
4897 savevr<big_endian>, savevr_tail<big_endian>);
4898 this->savres_define(symtab,
4899 "_restvr_", 20, 31,
4900 restvr<big_endian>, restvr_tail<big_endian>);
4901 }
4902
4903 template<int size, bool big_endian>
4904 void
4905 Output_data_save_res<size, big_endian>::savres_define(
4906 Symbol_table* symtab,
4907 const char *name,
4908 unsigned int lo, unsigned int hi,
4909 unsigned char* write_ent(unsigned char*, int),
4910 unsigned char* write_tail(unsigned char*, int))
4911 {
4912 size_t len = strlen(name);
4913 bool writing = false;
4914 char sym[16];
4915
4916 memcpy(sym, name, len);
4917 sym[len + 2] = 0;
4918
4919 for (unsigned int i = lo; i <= hi; i++)
4920 {
4921 sym[len + 0] = i / 10 + '0';
4922 sym[len + 1] = i % 10 + '0';
4923 Symbol* gsym = symtab->lookup(sym);
4924 bool refd = gsym != NULL && gsym->is_undefined();
4925 writing = writing || refd;
4926 if (writing)
4927 {
4928 if (this->contents_ == NULL)
4929 this->contents_ = new unsigned char[this->savres_max];
4930
4931 section_size_type value = this->current_data_size();
4932 unsigned char* p = this->contents_ + value;
4933 if (i != hi)
4934 p = write_ent(p, i);
4935 else
4936 p = write_tail(p, i);
4937 section_size_type cur_size = p - this->contents_;
4938 this->set_current_data_size(cur_size);
4939 if (refd)
4940 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4941 this, value, cur_size - value,
4942 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4943 elfcpp::STV_HIDDEN, 0, false, false);
4944 }
4945 }
4946 }
4947
4948 // Write out save/restore.
4949
4950 template<int size, bool big_endian>
4951 void
4952 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4953 {
4954 const section_size_type off = this->offset();
4955 const section_size_type oview_size =
4956 convert_to_section_size_type(this->data_size());
4957 unsigned char* const oview = of->get_output_view(off, oview_size);
4958 memcpy(oview, this->contents_, oview_size);
4959 of->write_output_view(off, oview_size, oview);
4960 }
4961
4962
4963 // Create the glink section.
4964
4965 template<int size, bool big_endian>
4966 void
4967 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4968 {
4969 if (this->glink_ == NULL)
4970 {
4971 this->glink_ = new Output_data_glink<size, big_endian>(this);
4972 this->glink_->add_eh_frame(layout);
4973 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4974 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4975 this->glink_, ORDER_TEXT, false);
4976 }
4977 }
4978
4979 // Create a PLT entry for a global symbol.
4980
4981 template<int size, bool big_endian>
4982 void
4983 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4984 Layout* layout,
4985 Symbol* gsym)
4986 {
4987 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4988 && gsym->can_use_relative_reloc(false))
4989 {
4990 if (this->iplt_ == NULL)
4991 this->make_iplt_section(symtab, layout);
4992 this->iplt_->add_ifunc_entry(gsym);
4993 }
4994 else
4995 {
4996 if (this->plt_ == NULL)
4997 this->make_plt_section(symtab, layout);
4998 this->plt_->add_entry(gsym);
4999 }
5000 }
5001
5002 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5003
5004 template<int size, bool big_endian>
5005 void
5006 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5007 Symbol_table* symtab,
5008 Layout* layout,
5009 Sized_relobj_file<size, big_endian>* relobj,
5010 unsigned int r_sym)
5011 {
5012 if (this->iplt_ == NULL)
5013 this->make_iplt_section(symtab, layout);
5014 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5015 }
5016
5017 // Return the number of entries in the PLT.
5018
5019 template<int size, bool big_endian>
5020 unsigned int
5021 Target_powerpc<size, big_endian>::plt_entry_count() const
5022 {
5023 if (this->plt_ == NULL)
5024 return 0;
5025 return this->plt_->entry_count();
5026 }
5027
5028 // Create a GOT entry for local dynamic __tls_get_addr calls.
5029
5030 template<int size, bool big_endian>
5031 unsigned int
5032 Target_powerpc<size, big_endian>::tlsld_got_offset(
5033 Symbol_table* symtab,
5034 Layout* layout,
5035 Sized_relobj_file<size, big_endian>* object)
5036 {
5037 if (this->tlsld_got_offset_ == -1U)
5038 {
5039 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5040 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5041 Output_data_got_powerpc<size, big_endian>* got
5042 = this->got_section(symtab, layout);
5043 unsigned int got_offset = got->add_constant_pair(0, 0);
5044 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5045 got_offset, 0);
5046 this->tlsld_got_offset_ = got_offset;
5047 }
5048 return this->tlsld_got_offset_;
5049 }
5050
5051 // Get the Reference_flags for a particular relocation.
5052
5053 template<int size, bool big_endian>
5054 int
5055 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5056 unsigned int r_type,
5057 const Target_powerpc* target)
5058 {
5059 int ref = 0;
5060
5061 switch (r_type)
5062 {
5063 case elfcpp::R_POWERPC_NONE:
5064 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5065 case elfcpp::R_POWERPC_GNU_VTENTRY:
5066 case elfcpp::R_PPC64_TOC:
5067 // No symbol reference.
5068 break;
5069
5070 case elfcpp::R_PPC64_ADDR64:
5071 case elfcpp::R_PPC64_UADDR64:
5072 case elfcpp::R_POWERPC_ADDR32:
5073 case elfcpp::R_POWERPC_UADDR32:
5074 case elfcpp::R_POWERPC_ADDR16:
5075 case elfcpp::R_POWERPC_UADDR16:
5076 case elfcpp::R_POWERPC_ADDR16_LO:
5077 case elfcpp::R_POWERPC_ADDR16_HI:
5078 case elfcpp::R_POWERPC_ADDR16_HA:
5079 ref = Symbol::ABSOLUTE_REF;
5080 break;
5081
5082 case elfcpp::R_POWERPC_ADDR24:
5083 case elfcpp::R_POWERPC_ADDR14:
5084 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5085 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5086 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5087 break;
5088
5089 case elfcpp::R_PPC64_REL64:
5090 case elfcpp::R_POWERPC_REL32:
5091 case elfcpp::R_PPC_LOCAL24PC:
5092 case elfcpp::R_POWERPC_REL16:
5093 case elfcpp::R_POWERPC_REL16_LO:
5094 case elfcpp::R_POWERPC_REL16_HI:
5095 case elfcpp::R_POWERPC_REL16_HA:
5096 ref = Symbol::RELATIVE_REF;
5097 break;
5098
5099 case elfcpp::R_POWERPC_REL24:
5100 case elfcpp::R_PPC_PLTREL24:
5101 case elfcpp::R_POWERPC_REL14:
5102 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5103 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5104 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5105 break;
5106
5107 case elfcpp::R_POWERPC_GOT16:
5108 case elfcpp::R_POWERPC_GOT16_LO:
5109 case elfcpp::R_POWERPC_GOT16_HI:
5110 case elfcpp::R_POWERPC_GOT16_HA:
5111 case elfcpp::R_PPC64_GOT16_DS:
5112 case elfcpp::R_PPC64_GOT16_LO_DS:
5113 case elfcpp::R_PPC64_TOC16:
5114 case elfcpp::R_PPC64_TOC16_LO:
5115 case elfcpp::R_PPC64_TOC16_HI:
5116 case elfcpp::R_PPC64_TOC16_HA:
5117 case elfcpp::R_PPC64_TOC16_DS:
5118 case elfcpp::R_PPC64_TOC16_LO_DS:
5119 // Absolute in GOT.
5120 ref = Symbol::ABSOLUTE_REF;
5121 break;
5122
5123 case elfcpp::R_POWERPC_GOT_TPREL16:
5124 case elfcpp::R_POWERPC_TLS:
5125 ref = Symbol::TLS_REF;
5126 break;
5127
5128 case elfcpp::R_POWERPC_COPY:
5129 case elfcpp::R_POWERPC_GLOB_DAT:
5130 case elfcpp::R_POWERPC_JMP_SLOT:
5131 case elfcpp::R_POWERPC_RELATIVE:
5132 case elfcpp::R_POWERPC_DTPMOD:
5133 default:
5134 // Not expected. We will give an error later.
5135 break;
5136 }
5137
5138 if (size == 64 && target->abiversion() < 2)
5139 ref |= Symbol::FUNC_DESC_ABI;
5140 return ref;
5141 }
5142
5143 // Report an unsupported relocation against a local symbol.
5144
5145 template<int size, bool big_endian>
5146 void
5147 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5148 Sized_relobj_file<size, big_endian>* object,
5149 unsigned int r_type)
5150 {
5151 gold_error(_("%s: unsupported reloc %u against local symbol"),
5152 object->name().c_str(), r_type);
5153 }
5154
5155 // We are about to emit a dynamic relocation of type R_TYPE. If the
5156 // dynamic linker does not support it, issue an error.
5157
5158 template<int size, bool big_endian>
5159 void
5160 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5161 unsigned int r_type)
5162 {
5163 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5164
5165 // These are the relocation types supported by glibc for both 32-bit
5166 // and 64-bit powerpc.
5167 switch (r_type)
5168 {
5169 case elfcpp::R_POWERPC_NONE:
5170 case elfcpp::R_POWERPC_RELATIVE:
5171 case elfcpp::R_POWERPC_GLOB_DAT:
5172 case elfcpp::R_POWERPC_DTPMOD:
5173 case elfcpp::R_POWERPC_DTPREL:
5174 case elfcpp::R_POWERPC_TPREL:
5175 case elfcpp::R_POWERPC_JMP_SLOT:
5176 case elfcpp::R_POWERPC_COPY:
5177 case elfcpp::R_POWERPC_IRELATIVE:
5178 case elfcpp::R_POWERPC_ADDR32:
5179 case elfcpp::R_POWERPC_UADDR32:
5180 case elfcpp::R_POWERPC_ADDR24:
5181 case elfcpp::R_POWERPC_ADDR16:
5182 case elfcpp::R_POWERPC_UADDR16:
5183 case elfcpp::R_POWERPC_ADDR16_LO:
5184 case elfcpp::R_POWERPC_ADDR16_HI:
5185 case elfcpp::R_POWERPC_ADDR16_HA:
5186 case elfcpp::R_POWERPC_ADDR14:
5187 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5188 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5189 case elfcpp::R_POWERPC_REL32:
5190 case elfcpp::R_POWERPC_REL24:
5191 case elfcpp::R_POWERPC_TPREL16:
5192 case elfcpp::R_POWERPC_TPREL16_LO:
5193 case elfcpp::R_POWERPC_TPREL16_HI:
5194 case elfcpp::R_POWERPC_TPREL16_HA:
5195 return;
5196
5197 default:
5198 break;
5199 }
5200
5201 if (size == 64)
5202 {
5203 switch (r_type)
5204 {
5205 // These are the relocation types supported only on 64-bit.
5206 case elfcpp::R_PPC64_ADDR64:
5207 case elfcpp::R_PPC64_UADDR64:
5208 case elfcpp::R_PPC64_JMP_IREL:
5209 case elfcpp::R_PPC64_ADDR16_DS:
5210 case elfcpp::R_PPC64_ADDR16_LO_DS:
5211 case elfcpp::R_PPC64_ADDR16_HIGH:
5212 case elfcpp::R_PPC64_ADDR16_HIGHA:
5213 case elfcpp::R_PPC64_ADDR16_HIGHER:
5214 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5215 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5216 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5217 case elfcpp::R_PPC64_REL64:
5218 case elfcpp::R_POWERPC_ADDR30:
5219 case elfcpp::R_PPC64_TPREL16_DS:
5220 case elfcpp::R_PPC64_TPREL16_LO_DS:
5221 case elfcpp::R_PPC64_TPREL16_HIGH:
5222 case elfcpp::R_PPC64_TPREL16_HIGHA:
5223 case elfcpp::R_PPC64_TPREL16_HIGHER:
5224 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5225 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5226 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5227 return;
5228
5229 default:
5230 break;
5231 }
5232 }
5233 else
5234 {
5235 switch (r_type)
5236 {
5237 // These are the relocation types supported only on 32-bit.
5238 // ??? glibc ld.so doesn't need to support these.
5239 case elfcpp::R_POWERPC_DTPREL16:
5240 case elfcpp::R_POWERPC_DTPREL16_LO:
5241 case elfcpp::R_POWERPC_DTPREL16_HI:
5242 case elfcpp::R_POWERPC_DTPREL16_HA:
5243 return;
5244
5245 default:
5246 break;
5247 }
5248 }
5249
5250 // This prevents us from issuing more than one error per reloc
5251 // section. But we can still wind up issuing more than one
5252 // error per object file.
5253 if (this->issued_non_pic_error_)
5254 return;
5255 gold_assert(parameters->options().output_is_position_independent());
5256 object->error(_("requires unsupported dynamic reloc; "
5257 "recompile with -fPIC"));
5258 this->issued_non_pic_error_ = true;
5259 return;
5260 }
5261
5262 // Return whether we need to make a PLT entry for a relocation of the
5263 // given type against a STT_GNU_IFUNC symbol.
5264
5265 template<int size, bool big_endian>
5266 bool
5267 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5268 Target_powerpc<size, big_endian>* target,
5269 Sized_relobj_file<size, big_endian>* object,
5270 unsigned int r_type,
5271 bool report_err)
5272 {
5273 // In non-pic code any reference will resolve to the plt call stub
5274 // for the ifunc symbol.
5275 if ((size == 32 || target->abiversion() >= 2)
5276 && !parameters->options().output_is_position_independent())
5277 return true;
5278
5279 switch (r_type)
5280 {
5281 // Word size refs from data sections are OK, but don't need a PLT entry.
5282 case elfcpp::R_POWERPC_ADDR32:
5283 case elfcpp::R_POWERPC_UADDR32:
5284 if (size == 32)
5285 return false;
5286 break;
5287
5288 case elfcpp::R_PPC64_ADDR64:
5289 case elfcpp::R_PPC64_UADDR64:
5290 if (size == 64)
5291 return false;
5292 break;
5293
5294 // GOT refs are good, but also don't need a PLT entry.
5295 case elfcpp::R_POWERPC_GOT16:
5296 case elfcpp::R_POWERPC_GOT16_LO:
5297 case elfcpp::R_POWERPC_GOT16_HI:
5298 case elfcpp::R_POWERPC_GOT16_HA:
5299 case elfcpp::R_PPC64_GOT16_DS:
5300 case elfcpp::R_PPC64_GOT16_LO_DS:
5301 return false;
5302
5303 // Function calls are good, and these do need a PLT entry.
5304 case elfcpp::R_POWERPC_ADDR24:
5305 case elfcpp::R_POWERPC_ADDR14:
5306 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5307 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5308 case elfcpp::R_POWERPC_REL24:
5309 case elfcpp::R_PPC_PLTREL24:
5310 case elfcpp::R_POWERPC_REL14:
5311 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5312 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5313 return true;
5314
5315 default:
5316 break;
5317 }
5318
5319 // Anything else is a problem.
5320 // If we are building a static executable, the libc startup function
5321 // responsible for applying indirect function relocations is going
5322 // to complain about the reloc type.
5323 // If we are building a dynamic executable, we will have a text
5324 // relocation. The dynamic loader will set the text segment
5325 // writable and non-executable to apply text relocations. So we'll
5326 // segfault when trying to run the indirection function to resolve
5327 // the reloc.
5328 if (report_err)
5329 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5330 object->name().c_str(), r_type);
5331 return false;
5332 }
5333
5334 // Scan a relocation for a local symbol.
5335
5336 template<int size, bool big_endian>
5337 inline void
5338 Target_powerpc<size, big_endian>::Scan::local(
5339 Symbol_table* symtab,
5340 Layout* layout,
5341 Target_powerpc<size, big_endian>* target,
5342 Sized_relobj_file<size, big_endian>* object,
5343 unsigned int data_shndx,
5344 Output_section* output_section,
5345 const elfcpp::Rela<size, big_endian>& reloc,
5346 unsigned int r_type,
5347 const elfcpp::Sym<size, big_endian>& lsym,
5348 bool is_discarded)
5349 {
5350 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5351
5352 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5353 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5354 {
5355 this->expect_tls_get_addr_call();
5356 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5357 if (tls_type != tls::TLSOPT_NONE)
5358 this->skip_next_tls_get_addr_call();
5359 }
5360 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5361 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5362 {
5363 this->expect_tls_get_addr_call();
5364 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5365 if (tls_type != tls::TLSOPT_NONE)
5366 this->skip_next_tls_get_addr_call();
5367 }
5368
5369 Powerpc_relobj<size, big_endian>* ppc_object
5370 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5371
5372 if (is_discarded)
5373 {
5374 if (size == 64
5375 && data_shndx == ppc_object->opd_shndx()
5376 && r_type == elfcpp::R_PPC64_ADDR64)
5377 ppc_object->set_opd_discard(reloc.get_r_offset());
5378 return;
5379 }
5380
5381 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5382 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5383 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5384 {
5385 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5386 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5387 r_type, r_sym, reloc.get_r_addend());
5388 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5389 }
5390
5391 switch (r_type)
5392 {
5393 case elfcpp::R_POWERPC_NONE:
5394 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5395 case elfcpp::R_POWERPC_GNU_VTENTRY:
5396 case elfcpp::R_PPC64_TOCSAVE:
5397 case elfcpp::R_POWERPC_TLS:
5398 break;
5399
5400 case elfcpp::R_PPC64_TOC:
5401 {
5402 Output_data_got_powerpc<size, big_endian>* got
5403 = target->got_section(symtab, layout);
5404 if (parameters->options().output_is_position_independent())
5405 {
5406 Address off = reloc.get_r_offset();
5407 if (size == 64
5408 && target->abiversion() < 2
5409 && data_shndx == ppc_object->opd_shndx()
5410 && ppc_object->get_opd_discard(off - 8))
5411 break;
5412
5413 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5414 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5415 rela_dyn->add_output_section_relative(got->output_section(),
5416 elfcpp::R_POWERPC_RELATIVE,
5417 output_section,
5418 object, data_shndx, off,
5419 symobj->toc_base_offset());
5420 }
5421 }
5422 break;
5423
5424 case elfcpp::R_PPC64_ADDR64:
5425 case elfcpp::R_PPC64_UADDR64:
5426 case elfcpp::R_POWERPC_ADDR32:
5427 case elfcpp::R_POWERPC_UADDR32:
5428 case elfcpp::R_POWERPC_ADDR24:
5429 case elfcpp::R_POWERPC_ADDR16:
5430 case elfcpp::R_POWERPC_ADDR16_LO:
5431 case elfcpp::R_POWERPC_ADDR16_HI:
5432 case elfcpp::R_POWERPC_ADDR16_HA:
5433 case elfcpp::R_POWERPC_UADDR16:
5434 case elfcpp::R_PPC64_ADDR16_HIGH:
5435 case elfcpp::R_PPC64_ADDR16_HIGHA:
5436 case elfcpp::R_PPC64_ADDR16_HIGHER:
5437 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5438 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5439 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5440 case elfcpp::R_PPC64_ADDR16_DS:
5441 case elfcpp::R_PPC64_ADDR16_LO_DS:
5442 case elfcpp::R_POWERPC_ADDR14:
5443 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5444 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5445 // If building a shared library (or a position-independent
5446 // executable), we need to create a dynamic relocation for
5447 // this location.
5448 if (parameters->options().output_is_position_independent()
5449 || (size == 64 && is_ifunc && target->abiversion() < 2))
5450 {
5451 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5452 is_ifunc);
5453 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5454 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5455 {
5456 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5457 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5458 : elfcpp::R_POWERPC_RELATIVE);
5459 rela_dyn->add_local_relative(object, r_sym, dynrel,
5460 output_section, data_shndx,
5461 reloc.get_r_offset(),
5462 reloc.get_r_addend(), false);
5463 }
5464 else
5465 {
5466 check_non_pic(object, r_type);
5467 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5468 rela_dyn->add_local(object, r_sym, r_type, output_section,
5469 data_shndx, reloc.get_r_offset(),
5470 reloc.get_r_addend());
5471 }
5472 }
5473 break;
5474
5475 case elfcpp::R_POWERPC_REL24:
5476 case elfcpp::R_PPC_PLTREL24:
5477 case elfcpp::R_PPC_LOCAL24PC:
5478 case elfcpp::R_POWERPC_REL14:
5479 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5480 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5481 if (!is_ifunc)
5482 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5483 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5484 reloc.get_r_addend());
5485 break;
5486
5487 case elfcpp::R_PPC64_REL64:
5488 case elfcpp::R_POWERPC_REL32:
5489 case elfcpp::R_POWERPC_REL16:
5490 case elfcpp::R_POWERPC_REL16_LO:
5491 case elfcpp::R_POWERPC_REL16_HI:
5492 case elfcpp::R_POWERPC_REL16_HA:
5493 case elfcpp::R_POWERPC_SECTOFF:
5494 case elfcpp::R_POWERPC_SECTOFF_LO:
5495 case elfcpp::R_POWERPC_SECTOFF_HI:
5496 case elfcpp::R_POWERPC_SECTOFF_HA:
5497 case elfcpp::R_PPC64_SECTOFF_DS:
5498 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5499 case elfcpp::R_POWERPC_TPREL16:
5500 case elfcpp::R_POWERPC_TPREL16_LO:
5501 case elfcpp::R_POWERPC_TPREL16_HI:
5502 case elfcpp::R_POWERPC_TPREL16_HA:
5503 case elfcpp::R_PPC64_TPREL16_DS:
5504 case elfcpp::R_PPC64_TPREL16_LO_DS:
5505 case elfcpp::R_PPC64_TPREL16_HIGH:
5506 case elfcpp::R_PPC64_TPREL16_HIGHA:
5507 case elfcpp::R_PPC64_TPREL16_HIGHER:
5508 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5509 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5510 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5511 case elfcpp::R_POWERPC_DTPREL16:
5512 case elfcpp::R_POWERPC_DTPREL16_LO:
5513 case elfcpp::R_POWERPC_DTPREL16_HI:
5514 case elfcpp::R_POWERPC_DTPREL16_HA:
5515 case elfcpp::R_PPC64_DTPREL16_DS:
5516 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5517 case elfcpp::R_PPC64_DTPREL16_HIGH:
5518 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5519 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5520 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5521 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5522 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5523 case elfcpp::R_PPC64_TLSGD:
5524 case elfcpp::R_PPC64_TLSLD:
5525 case elfcpp::R_PPC64_ADDR64_LOCAL:
5526 break;
5527
5528 case elfcpp::R_POWERPC_GOT16:
5529 case elfcpp::R_POWERPC_GOT16_LO:
5530 case elfcpp::R_POWERPC_GOT16_HI:
5531 case elfcpp::R_POWERPC_GOT16_HA:
5532 case elfcpp::R_PPC64_GOT16_DS:
5533 case elfcpp::R_PPC64_GOT16_LO_DS:
5534 {
5535 // The symbol requires a GOT entry.
5536 Output_data_got_powerpc<size, big_endian>* got
5537 = target->got_section(symtab, layout);
5538 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5539
5540 if (!parameters->options().output_is_position_independent())
5541 {
5542 if ((size == 32 && is_ifunc)
5543 || (size == 64 && target->abiversion() >= 2))
5544 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5545 else
5546 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5547 }
5548 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5549 {
5550 // If we are generating a shared object or a pie, this
5551 // symbol's GOT entry will be set by a dynamic relocation.
5552 unsigned int off;
5553 off = got->add_constant(0);
5554 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5555
5556 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5557 is_ifunc);
5558 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5559 : elfcpp::R_POWERPC_RELATIVE);
5560 rela_dyn->add_local_relative(object, r_sym, dynrel,
5561 got, off, 0, false);
5562 }
5563 }
5564 break;
5565
5566 case elfcpp::R_PPC64_TOC16:
5567 case elfcpp::R_PPC64_TOC16_LO:
5568 case elfcpp::R_PPC64_TOC16_HI:
5569 case elfcpp::R_PPC64_TOC16_HA:
5570 case elfcpp::R_PPC64_TOC16_DS:
5571 case elfcpp::R_PPC64_TOC16_LO_DS:
5572 // We need a GOT section.
5573 target->got_section(symtab, layout);
5574 break;
5575
5576 case elfcpp::R_POWERPC_GOT_TLSGD16:
5577 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5578 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5579 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5580 {
5581 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5582 if (tls_type == tls::TLSOPT_NONE)
5583 {
5584 Output_data_got_powerpc<size, big_endian>* got
5585 = target->got_section(symtab, layout);
5586 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5587 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5588 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5589 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5590 }
5591 else if (tls_type == tls::TLSOPT_TO_LE)
5592 {
5593 // no GOT relocs needed for Local Exec.
5594 }
5595 else
5596 gold_unreachable();
5597 }
5598 break;
5599
5600 case elfcpp::R_POWERPC_GOT_TLSLD16:
5601 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5602 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5603 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5604 {
5605 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5606 if (tls_type == tls::TLSOPT_NONE)
5607 target->tlsld_got_offset(symtab, layout, object);
5608 else if (tls_type == tls::TLSOPT_TO_LE)
5609 {
5610 // no GOT relocs needed for Local Exec.
5611 if (parameters->options().emit_relocs())
5612 {
5613 Output_section* os = layout->tls_segment()->first_section();
5614 gold_assert(os != NULL);
5615 os->set_needs_symtab_index();
5616 }
5617 }
5618 else
5619 gold_unreachable();
5620 }
5621 break;
5622
5623 case elfcpp::R_POWERPC_GOT_DTPREL16:
5624 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5625 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5626 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5627 {
5628 Output_data_got_powerpc<size, big_endian>* got
5629 = target->got_section(symtab, layout);
5630 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5631 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5632 }
5633 break;
5634
5635 case elfcpp::R_POWERPC_GOT_TPREL16:
5636 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5637 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5638 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5639 {
5640 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5641 if (tls_type == tls::TLSOPT_NONE)
5642 {
5643 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5644 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5645 {
5646 Output_data_got_powerpc<size, big_endian>* got
5647 = target->got_section(symtab, layout);
5648 unsigned int off = got->add_constant(0);
5649 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5650
5651 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5652 rela_dyn->add_symbolless_local_addend(object, r_sym,
5653 elfcpp::R_POWERPC_TPREL,
5654 got, off, 0);
5655 }
5656 }
5657 else if (tls_type == tls::TLSOPT_TO_LE)
5658 {
5659 // no GOT relocs needed for Local Exec.
5660 }
5661 else
5662 gold_unreachable();
5663 }
5664 break;
5665
5666 default:
5667 unsupported_reloc_local(object, r_type);
5668 break;
5669 }
5670
5671 switch (r_type)
5672 {
5673 case elfcpp::R_POWERPC_GOT_TLSLD16:
5674 case elfcpp::R_POWERPC_GOT_TLSGD16:
5675 case elfcpp::R_POWERPC_GOT_TPREL16:
5676 case elfcpp::R_POWERPC_GOT_DTPREL16:
5677 case elfcpp::R_POWERPC_GOT16:
5678 case elfcpp::R_PPC64_GOT16_DS:
5679 case elfcpp::R_PPC64_TOC16:
5680 case elfcpp::R_PPC64_TOC16_DS:
5681 ppc_object->set_has_small_toc_reloc();
5682 default:
5683 break;
5684 }
5685 }
5686
5687 // Report an unsupported relocation against a global symbol.
5688
5689 template<int size, bool big_endian>
5690 void
5691 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5692 Sized_relobj_file<size, big_endian>* object,
5693 unsigned int r_type,
5694 Symbol* gsym)
5695 {
5696 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5697 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5698 }
5699
5700 // Scan a relocation for a global symbol.
5701
5702 template<int size, bool big_endian>
5703 inline void
5704 Target_powerpc<size, big_endian>::Scan::global(
5705 Symbol_table* symtab,
5706 Layout* layout,
5707 Target_powerpc<size, big_endian>* target,
5708 Sized_relobj_file<size, big_endian>* object,
5709 unsigned int data_shndx,
5710 Output_section* output_section,
5711 const elfcpp::Rela<size, big_endian>& reloc,
5712 unsigned int r_type,
5713 Symbol* gsym)
5714 {
5715 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5716 return;
5717
5718 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5719 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5720 {
5721 this->expect_tls_get_addr_call();
5722 const bool final = gsym->final_value_is_known();
5723 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5724 if (tls_type != tls::TLSOPT_NONE)
5725 this->skip_next_tls_get_addr_call();
5726 }
5727 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5728 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5729 {
5730 this->expect_tls_get_addr_call();
5731 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5732 if (tls_type != tls::TLSOPT_NONE)
5733 this->skip_next_tls_get_addr_call();
5734 }
5735
5736 Powerpc_relobj<size, big_endian>* ppc_object
5737 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5738
5739 // A STT_GNU_IFUNC symbol may require a PLT entry.
5740 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5741 bool pushed_ifunc = false;
5742 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5743 {
5744 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5745 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5746 reloc.get_r_addend());
5747 target->make_plt_entry(symtab, layout, gsym);
5748 pushed_ifunc = true;
5749 }
5750
5751 switch (r_type)
5752 {
5753 case elfcpp::R_POWERPC_NONE:
5754 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5755 case elfcpp::R_POWERPC_GNU_VTENTRY:
5756 case elfcpp::R_PPC_LOCAL24PC:
5757 case elfcpp::R_POWERPC_TLS:
5758 break;
5759
5760 case elfcpp::R_PPC64_TOC:
5761 {
5762 Output_data_got_powerpc<size, big_endian>* got
5763 = target->got_section(symtab, layout);
5764 if (parameters->options().output_is_position_independent())
5765 {
5766 Address off = reloc.get_r_offset();
5767 if (size == 64
5768 && data_shndx == ppc_object->opd_shndx()
5769 && ppc_object->get_opd_discard(off - 8))
5770 break;
5771
5772 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5773 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5774 if (data_shndx != ppc_object->opd_shndx())
5775 symobj = static_cast
5776 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5777 rela_dyn->add_output_section_relative(got->output_section(),
5778 elfcpp::R_POWERPC_RELATIVE,
5779 output_section,
5780 object, data_shndx, off,
5781 symobj->toc_base_offset());
5782 }
5783 }
5784 break;
5785
5786 case elfcpp::R_PPC64_ADDR64:
5787 if (size == 64
5788 && target->abiversion() < 2
5789 && data_shndx == ppc_object->opd_shndx()
5790 && (gsym->is_defined_in_discarded_section()
5791 || gsym->object() != object))
5792 {
5793 ppc_object->set_opd_discard(reloc.get_r_offset());
5794 break;
5795 }
5796 // Fall thru
5797 case elfcpp::R_PPC64_UADDR64:
5798 case elfcpp::R_POWERPC_ADDR32:
5799 case elfcpp::R_POWERPC_UADDR32:
5800 case elfcpp::R_POWERPC_ADDR24:
5801 case elfcpp::R_POWERPC_ADDR16:
5802 case elfcpp::R_POWERPC_ADDR16_LO:
5803 case elfcpp::R_POWERPC_ADDR16_HI:
5804 case elfcpp::R_POWERPC_ADDR16_HA:
5805 case elfcpp::R_POWERPC_UADDR16:
5806 case elfcpp::R_PPC64_ADDR16_HIGH:
5807 case elfcpp::R_PPC64_ADDR16_HIGHA:
5808 case elfcpp::R_PPC64_ADDR16_HIGHER:
5809 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5810 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5811 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5812 case elfcpp::R_PPC64_ADDR16_DS:
5813 case elfcpp::R_PPC64_ADDR16_LO_DS:
5814 case elfcpp::R_POWERPC_ADDR14:
5815 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5816 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5817 {
5818 // Make a PLT entry if necessary.
5819 if (gsym->needs_plt_entry())
5820 {
5821 // Since this is not a PC-relative relocation, we may be
5822 // taking the address of a function. In that case we need to
5823 // set the entry in the dynamic symbol table to the address of
5824 // the PLT call stub.
5825 bool need_ifunc_plt = false;
5826 if ((size == 32 || target->abiversion() >= 2)
5827 && gsym->is_from_dynobj()
5828 && !parameters->options().output_is_position_independent())
5829 {
5830 gsym->set_needs_dynsym_value();
5831 need_ifunc_plt = true;
5832 }
5833 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5834 {
5835 target->push_branch(ppc_object, data_shndx,
5836 reloc.get_r_offset(), r_type,
5837 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5838 reloc.get_r_addend());
5839 target->make_plt_entry(symtab, layout, gsym);
5840 }
5841 }
5842 // Make a dynamic relocation if necessary.
5843 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5844 || (size == 64 && is_ifunc && target->abiversion() < 2))
5845 {
5846 if (!parameters->options().output_is_position_independent()
5847 && gsym->may_need_copy_reloc())
5848 {
5849 target->copy_reloc(symtab, layout, object,
5850 data_shndx, output_section, gsym, reloc);
5851 }
5852 else if ((((size == 32
5853 && r_type == elfcpp::R_POWERPC_ADDR32)
5854 || (size == 64
5855 && r_type == elfcpp::R_PPC64_ADDR64
5856 && target->abiversion() >= 2))
5857 && gsym->can_use_relative_reloc(false)
5858 && !(gsym->visibility() == elfcpp::STV_PROTECTED
5859 && parameters->options().shared()))
5860 || (size == 64
5861 && r_type == elfcpp::R_PPC64_ADDR64
5862 && target->abiversion() < 2
5863 && (gsym->can_use_relative_reloc(false)
5864 || data_shndx == ppc_object->opd_shndx())))
5865 {
5866 Reloc_section* rela_dyn
5867 = target->rela_dyn_section(symtab, layout, is_ifunc);
5868 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5869 : elfcpp::R_POWERPC_RELATIVE);
5870 rela_dyn->add_symbolless_global_addend(
5871 gsym, dynrel, output_section, object, data_shndx,
5872 reloc.get_r_offset(), reloc.get_r_addend());
5873 }
5874 else
5875 {
5876 Reloc_section* rela_dyn
5877 = target->rela_dyn_section(symtab, layout, is_ifunc);
5878 check_non_pic(object, r_type);
5879 rela_dyn->add_global(gsym, r_type, output_section,
5880 object, data_shndx,
5881 reloc.get_r_offset(),
5882 reloc.get_r_addend());
5883 }
5884 }
5885 }
5886 break;
5887
5888 case elfcpp::R_PPC_PLTREL24:
5889 case elfcpp::R_POWERPC_REL24:
5890 if (!is_ifunc)
5891 {
5892 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5893 r_type,
5894 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5895 reloc.get_r_addend());
5896 if (gsym->needs_plt_entry()
5897 || (!gsym->final_value_is_known()
5898 && (gsym->is_undefined()
5899 || gsym->is_from_dynobj()
5900 || gsym->is_preemptible())))
5901 target->make_plt_entry(symtab, layout, gsym);
5902 }
5903 // Fall thru
5904
5905 case elfcpp::R_PPC64_REL64:
5906 case elfcpp::R_POWERPC_REL32:
5907 // Make a dynamic relocation if necessary.
5908 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5909 {
5910 if (!parameters->options().output_is_position_independent()
5911 && gsym->may_need_copy_reloc())
5912 {
5913 target->copy_reloc(symtab, layout, object,
5914 data_shndx, output_section, gsym,
5915 reloc);
5916 }
5917 else
5918 {
5919 Reloc_section* rela_dyn
5920 = target->rela_dyn_section(symtab, layout, is_ifunc);
5921 check_non_pic(object, r_type);
5922 rela_dyn->add_global(gsym, r_type, output_section, object,
5923 data_shndx, reloc.get_r_offset(),
5924 reloc.get_r_addend());
5925 }
5926 }
5927 break;
5928
5929 case elfcpp::R_POWERPC_REL14:
5930 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5931 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5932 if (!is_ifunc)
5933 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5934 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5935 reloc.get_r_addend());
5936 break;
5937
5938 case elfcpp::R_POWERPC_REL16:
5939 case elfcpp::R_POWERPC_REL16_LO:
5940 case elfcpp::R_POWERPC_REL16_HI:
5941 case elfcpp::R_POWERPC_REL16_HA:
5942 case elfcpp::R_POWERPC_SECTOFF:
5943 case elfcpp::R_POWERPC_SECTOFF_LO:
5944 case elfcpp::R_POWERPC_SECTOFF_HI:
5945 case elfcpp::R_POWERPC_SECTOFF_HA:
5946 case elfcpp::R_PPC64_SECTOFF_DS:
5947 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5948 case elfcpp::R_POWERPC_TPREL16:
5949 case elfcpp::R_POWERPC_TPREL16_LO:
5950 case elfcpp::R_POWERPC_TPREL16_HI:
5951 case elfcpp::R_POWERPC_TPREL16_HA:
5952 case elfcpp::R_PPC64_TPREL16_DS:
5953 case elfcpp::R_PPC64_TPREL16_LO_DS:
5954 case elfcpp::R_PPC64_TPREL16_HIGH:
5955 case elfcpp::R_PPC64_TPREL16_HIGHA:
5956 case elfcpp::R_PPC64_TPREL16_HIGHER:
5957 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5958 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5959 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5960 case elfcpp::R_POWERPC_DTPREL16:
5961 case elfcpp::R_POWERPC_DTPREL16_LO:
5962 case elfcpp::R_POWERPC_DTPREL16_HI:
5963 case elfcpp::R_POWERPC_DTPREL16_HA:
5964 case elfcpp::R_PPC64_DTPREL16_DS:
5965 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5966 case elfcpp::R_PPC64_DTPREL16_HIGH:
5967 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5968 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5969 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5970 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5971 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5972 case elfcpp::R_PPC64_TLSGD:
5973 case elfcpp::R_PPC64_TLSLD:
5974 case elfcpp::R_PPC64_ADDR64_LOCAL:
5975 break;
5976
5977 case elfcpp::R_POWERPC_GOT16:
5978 case elfcpp::R_POWERPC_GOT16_LO:
5979 case elfcpp::R_POWERPC_GOT16_HI:
5980 case elfcpp::R_POWERPC_GOT16_HA:
5981 case elfcpp::R_PPC64_GOT16_DS:
5982 case elfcpp::R_PPC64_GOT16_LO_DS:
5983 {
5984 // The symbol requires a GOT entry.
5985 Output_data_got_powerpc<size, big_endian>* got;
5986
5987 got = target->got_section(symtab, layout);
5988 if (gsym->final_value_is_known())
5989 {
5990 if ((size == 32 && is_ifunc)
5991 || (size == 64 && target->abiversion() >= 2))
5992 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5993 else
5994 got->add_global(gsym, GOT_TYPE_STANDARD);
5995 }
5996 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5997 {
5998 // If we are generating a shared object or a pie, this
5999 // symbol's GOT entry will be set by a dynamic relocation.
6000 unsigned int off = got->add_constant(0);
6001 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6002
6003 Reloc_section* rela_dyn
6004 = target->rela_dyn_section(symtab, layout, is_ifunc);
6005
6006 if (gsym->can_use_relative_reloc(false)
6007 && !((size == 32
6008 || target->abiversion() >= 2)
6009 && gsym->visibility() == elfcpp::STV_PROTECTED
6010 && parameters->options().shared()))
6011 {
6012 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6013 : elfcpp::R_POWERPC_RELATIVE);
6014 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6015 }
6016 else
6017 {
6018 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6019 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6020 }
6021 }
6022 }
6023 break;
6024
6025 case elfcpp::R_PPC64_TOC16:
6026 case elfcpp::R_PPC64_TOC16_LO:
6027 case elfcpp::R_PPC64_TOC16_HI:
6028 case elfcpp::R_PPC64_TOC16_HA:
6029 case elfcpp::R_PPC64_TOC16_DS:
6030 case elfcpp::R_PPC64_TOC16_LO_DS:
6031 // We need a GOT section.
6032 target->got_section(symtab, layout);
6033 break;
6034
6035 case elfcpp::R_POWERPC_GOT_TLSGD16:
6036 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6037 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6038 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6039 {
6040 const bool final = gsym->final_value_is_known();
6041 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6042 if (tls_type == tls::TLSOPT_NONE)
6043 {
6044 Output_data_got_powerpc<size, big_endian>* got
6045 = target->got_section(symtab, layout);
6046 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6047 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6048 elfcpp::R_POWERPC_DTPMOD,
6049 elfcpp::R_POWERPC_DTPREL);
6050 }
6051 else if (tls_type == tls::TLSOPT_TO_IE)
6052 {
6053 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6054 {
6055 Output_data_got_powerpc<size, big_endian>* got
6056 = target->got_section(symtab, layout);
6057 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6058 if (gsym->is_undefined()
6059 || gsym->is_from_dynobj())
6060 {
6061 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6062 elfcpp::R_POWERPC_TPREL);
6063 }
6064 else
6065 {
6066 unsigned int off = got->add_constant(0);
6067 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6068 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6069 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6070 got, off, 0);
6071 }
6072 }
6073 }
6074 else if (tls_type == tls::TLSOPT_TO_LE)
6075 {
6076 // no GOT relocs needed for Local Exec.
6077 }
6078 else
6079 gold_unreachable();
6080 }
6081 break;
6082
6083 case elfcpp::R_POWERPC_GOT_TLSLD16:
6084 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6085 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6086 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6087 {
6088 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6089 if (tls_type == tls::TLSOPT_NONE)
6090 target->tlsld_got_offset(symtab, layout, object);
6091 else if (tls_type == tls::TLSOPT_TO_LE)
6092 {
6093 // no GOT relocs needed for Local Exec.
6094 if (parameters->options().emit_relocs())
6095 {
6096 Output_section* os = layout->tls_segment()->first_section();
6097 gold_assert(os != NULL);
6098 os->set_needs_symtab_index();
6099 }
6100 }
6101 else
6102 gold_unreachable();
6103 }
6104 break;
6105
6106 case elfcpp::R_POWERPC_GOT_DTPREL16:
6107 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6108 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6109 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6110 {
6111 Output_data_got_powerpc<size, big_endian>* got
6112 = target->got_section(symtab, layout);
6113 if (!gsym->final_value_is_known()
6114 && (gsym->is_from_dynobj()
6115 || gsym->is_undefined()
6116 || gsym->is_preemptible()))
6117 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6118 target->rela_dyn_section(layout),
6119 elfcpp::R_POWERPC_DTPREL);
6120 else
6121 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6122 }
6123 break;
6124
6125 case elfcpp::R_POWERPC_GOT_TPREL16:
6126 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6127 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6128 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6129 {
6130 const bool final = gsym->final_value_is_known();
6131 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6132 if (tls_type == tls::TLSOPT_NONE)
6133 {
6134 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6135 {
6136 Output_data_got_powerpc<size, big_endian>* got
6137 = target->got_section(symtab, layout);
6138 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6139 if (gsym->is_undefined()
6140 || gsym->is_from_dynobj())
6141 {
6142 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6143 elfcpp::R_POWERPC_TPREL);
6144 }
6145 else
6146 {
6147 unsigned int off = got->add_constant(0);
6148 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6149 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6150 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6151 got, off, 0);
6152 }
6153 }
6154 }
6155 else if (tls_type == tls::TLSOPT_TO_LE)
6156 {
6157 // no GOT relocs needed for Local Exec.
6158 }
6159 else
6160 gold_unreachable();
6161 }
6162 break;
6163
6164 default:
6165 unsupported_reloc_global(object, r_type, gsym);
6166 break;
6167 }
6168
6169 switch (r_type)
6170 {
6171 case elfcpp::R_POWERPC_GOT_TLSLD16:
6172 case elfcpp::R_POWERPC_GOT_TLSGD16:
6173 case elfcpp::R_POWERPC_GOT_TPREL16:
6174 case elfcpp::R_POWERPC_GOT_DTPREL16:
6175 case elfcpp::R_POWERPC_GOT16:
6176 case elfcpp::R_PPC64_GOT16_DS:
6177 case elfcpp::R_PPC64_TOC16:
6178 case elfcpp::R_PPC64_TOC16_DS:
6179 ppc_object->set_has_small_toc_reloc();
6180 default:
6181 break;
6182 }
6183 }
6184
6185 // Process relocations for gc.
6186
6187 template<int size, bool big_endian>
6188 void
6189 Target_powerpc<size, big_endian>::gc_process_relocs(
6190 Symbol_table* symtab,
6191 Layout* layout,
6192 Sized_relobj_file<size, big_endian>* object,
6193 unsigned int data_shndx,
6194 unsigned int,
6195 const unsigned char* prelocs,
6196 size_t reloc_count,
6197 Output_section* output_section,
6198 bool needs_special_offset_handling,
6199 size_t local_symbol_count,
6200 const unsigned char* plocal_symbols)
6201 {
6202 typedef Target_powerpc<size, big_endian> Powerpc;
6203 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6204 Powerpc_relobj<size, big_endian>* ppc_object
6205 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6206 if (size == 64)
6207 ppc_object->set_opd_valid();
6208 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6209 {
6210 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6211 for (p = ppc_object->access_from_map()->begin();
6212 p != ppc_object->access_from_map()->end();
6213 ++p)
6214 {
6215 Address dst_off = p->first;
6216 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6217 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6218 for (s = p->second.begin(); s != p->second.end(); ++s)
6219 {
6220 Object* src_obj = s->first;
6221 unsigned int src_indx = s->second;
6222 symtab->gc()->add_reference(src_obj, src_indx,
6223 ppc_object, dst_indx);
6224 }
6225 p->second.clear();
6226 }
6227 ppc_object->access_from_map()->clear();
6228 ppc_object->process_gc_mark(symtab);
6229 // Don't look at .opd relocs as .opd will reference everything.
6230 return;
6231 }
6232
6233 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6234 typename Target_powerpc::Relocatable_size_for_reloc>(
6235 symtab,
6236 layout,
6237 this,
6238 object,
6239 data_shndx,
6240 prelocs,
6241 reloc_count,
6242 output_section,
6243 needs_special_offset_handling,
6244 local_symbol_count,
6245 plocal_symbols);
6246 }
6247
6248 // Handle target specific gc actions when adding a gc reference from
6249 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6250 // and DST_OFF. For powerpc64, this adds a referenc to the code
6251 // section of a function descriptor.
6252
6253 template<int size, bool big_endian>
6254 void
6255 Target_powerpc<size, big_endian>::do_gc_add_reference(
6256 Symbol_table* symtab,
6257 Object* src_obj,
6258 unsigned int src_shndx,
6259 Object* dst_obj,
6260 unsigned int dst_shndx,
6261 Address dst_off) const
6262 {
6263 if (size != 64 || dst_obj->is_dynamic())
6264 return;
6265
6266 Powerpc_relobj<size, big_endian>* ppc_object
6267 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6268 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6269 {
6270 if (ppc_object->opd_valid())
6271 {
6272 dst_shndx = ppc_object->get_opd_ent(dst_off);
6273 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6274 }
6275 else
6276 {
6277 // If we haven't run scan_opd_relocs, we must delay
6278 // processing this function descriptor reference.
6279 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6280 }
6281 }
6282 }
6283
6284 // Add any special sections for this symbol to the gc work list.
6285 // For powerpc64, this adds the code section of a function
6286 // descriptor.
6287
6288 template<int size, bool big_endian>
6289 void
6290 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6291 Symbol_table* symtab,
6292 Symbol* sym) const
6293 {
6294 if (size == 64)
6295 {
6296 Powerpc_relobj<size, big_endian>* ppc_object
6297 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6298 bool is_ordinary;
6299 unsigned int shndx = sym->shndx(&is_ordinary);
6300 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6301 {
6302 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6303 Address dst_off = gsym->value();
6304 if (ppc_object->opd_valid())
6305 {
6306 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6307 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6308 }
6309 else
6310 ppc_object->add_gc_mark(dst_off);
6311 }
6312 }
6313 }
6314
6315 // For a symbol location in .opd, set LOC to the location of the
6316 // function entry.
6317
6318 template<int size, bool big_endian>
6319 void
6320 Target_powerpc<size, big_endian>::do_function_location(
6321 Symbol_location* loc) const
6322 {
6323 if (size == 64 && loc->shndx != 0)
6324 {
6325 if (loc->object->is_dynamic())
6326 {
6327 Powerpc_dynobj<size, big_endian>* ppc_object
6328 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6329 if (loc->shndx == ppc_object->opd_shndx())
6330 {
6331 Address dest_off;
6332 Address off = loc->offset - ppc_object->opd_address();
6333 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6334 loc->offset = dest_off;
6335 }
6336 }
6337 else
6338 {
6339 const Powerpc_relobj<size, big_endian>* ppc_object
6340 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6341 if (loc->shndx == ppc_object->opd_shndx())
6342 {
6343 Address dest_off;
6344 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6345 loc->offset = dest_off;
6346 }
6347 }
6348 }
6349 }
6350
6351 // Scan relocations for a section.
6352
6353 template<int size, bool big_endian>
6354 void
6355 Target_powerpc<size, big_endian>::scan_relocs(
6356 Symbol_table* symtab,
6357 Layout* layout,
6358 Sized_relobj_file<size, big_endian>* object,
6359 unsigned int data_shndx,
6360 unsigned int sh_type,
6361 const unsigned char* prelocs,
6362 size_t reloc_count,
6363 Output_section* output_section,
6364 bool needs_special_offset_handling,
6365 size_t local_symbol_count,
6366 const unsigned char* plocal_symbols)
6367 {
6368 typedef Target_powerpc<size, big_endian> Powerpc;
6369 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6370
6371 if (sh_type == elfcpp::SHT_REL)
6372 {
6373 gold_error(_("%s: unsupported REL reloc section"),
6374 object->name().c_str());
6375 return;
6376 }
6377
6378 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6379 symtab,
6380 layout,
6381 this,
6382 object,
6383 data_shndx,
6384 prelocs,
6385 reloc_count,
6386 output_section,
6387 needs_special_offset_handling,
6388 local_symbol_count,
6389 plocal_symbols);
6390 }
6391
6392 // Functor class for processing the global symbol table.
6393 // Removes symbols defined on discarded opd entries.
6394
6395 template<bool big_endian>
6396 class Global_symbol_visitor_opd
6397 {
6398 public:
6399 Global_symbol_visitor_opd()
6400 { }
6401
6402 void
6403 operator()(Sized_symbol<64>* sym)
6404 {
6405 if (sym->has_symtab_index()
6406 || sym->source() != Symbol::FROM_OBJECT
6407 || !sym->in_real_elf())
6408 return;
6409
6410 if (sym->object()->is_dynamic())
6411 return;
6412
6413 Powerpc_relobj<64, big_endian>* symobj
6414 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6415 if (symobj->opd_shndx() == 0)
6416 return;
6417
6418 bool is_ordinary;
6419 unsigned int shndx = sym->shndx(&is_ordinary);
6420 if (shndx == symobj->opd_shndx()
6421 && symobj->get_opd_discard(sym->value()))
6422 sym->set_symtab_index(-1U);
6423 }
6424 };
6425
6426 template<int size, bool big_endian>
6427 void
6428 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6429 Layout* layout,
6430 Symbol_table* symtab)
6431 {
6432 if (size == 64)
6433 {
6434 Output_data_save_res<64, big_endian>* savres
6435 = new Output_data_save_res<64, big_endian>(symtab);
6436 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6437 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6438 savres, ORDER_TEXT, false);
6439 }
6440 }
6441
6442 // Sort linker created .got section first (for the header), then input
6443 // sections belonging to files using small model code.
6444
6445 template<bool big_endian>
6446 class Sort_toc_sections
6447 {
6448 public:
6449 bool
6450 operator()(const Output_section::Input_section& is1,
6451 const Output_section::Input_section& is2) const
6452 {
6453 if (!is1.is_input_section() && is2.is_input_section())
6454 return true;
6455 bool small1
6456 = (is1.is_input_section()
6457 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6458 ->has_small_toc_reloc()));
6459 bool small2
6460 = (is2.is_input_section()
6461 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6462 ->has_small_toc_reloc()));
6463 return small1 && !small2;
6464 }
6465 };
6466
6467 // Finalize the sections.
6468
6469 template<int size, bool big_endian>
6470 void
6471 Target_powerpc<size, big_endian>::do_finalize_sections(
6472 Layout* layout,
6473 const Input_objects*,
6474 Symbol_table* symtab)
6475 {
6476 if (parameters->doing_static_link())
6477 {
6478 // At least some versions of glibc elf-init.o have a strong
6479 // reference to __rela_iplt marker syms. A weak ref would be
6480 // better..
6481 if (this->iplt_ != NULL)
6482 {
6483 Reloc_section* rel = this->iplt_->rel_plt();
6484 symtab->define_in_output_data("__rela_iplt_start", NULL,
6485 Symbol_table::PREDEFINED, rel, 0, 0,
6486 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6487 elfcpp::STV_HIDDEN, 0, false, true);
6488 symtab->define_in_output_data("__rela_iplt_end", NULL,
6489 Symbol_table::PREDEFINED, rel, 0, 0,
6490 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6491 elfcpp::STV_HIDDEN, 0, true, true);
6492 }
6493 else
6494 {
6495 symtab->define_as_constant("__rela_iplt_start", NULL,
6496 Symbol_table::PREDEFINED, 0, 0,
6497 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6498 elfcpp::STV_HIDDEN, 0, true, false);
6499 symtab->define_as_constant("__rela_iplt_end", NULL,
6500 Symbol_table::PREDEFINED, 0, 0,
6501 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6502 elfcpp::STV_HIDDEN, 0, true, false);
6503 }
6504 }
6505
6506 if (size == 64)
6507 {
6508 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6509 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6510
6511 if (!parameters->options().relocatable())
6512 {
6513 this->define_save_restore_funcs(layout, symtab);
6514
6515 // Annoyingly, we need to make these sections now whether or
6516 // not we need them. If we delay until do_relax then we
6517 // need to mess with the relaxation machinery checkpointing.
6518 this->got_section(symtab, layout);
6519 this->make_brlt_section(layout);
6520
6521 if (parameters->options().toc_sort())
6522 {
6523 Output_section* os = this->got_->output_section();
6524 if (os != NULL && os->input_sections().size() > 1)
6525 std::stable_sort(os->input_sections().begin(),
6526 os->input_sections().end(),
6527 Sort_toc_sections<big_endian>());
6528 }
6529 }
6530 }
6531
6532 // Fill in some more dynamic tags.
6533 Output_data_dynamic* odyn = layout->dynamic_data();
6534 if (odyn != NULL)
6535 {
6536 const Reloc_section* rel_plt = (this->plt_ == NULL
6537 ? NULL
6538 : this->plt_->rel_plt());
6539 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6540 this->rela_dyn_, true, size == 32);
6541
6542 if (size == 32)
6543 {
6544 if (this->got_ != NULL)
6545 {
6546 this->got_->finalize_data_size();
6547 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6548 this->got_, this->got_->g_o_t());
6549 }
6550 }
6551 else
6552 {
6553 if (this->glink_ != NULL)
6554 {
6555 this->glink_->finalize_data_size();
6556 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6557 this->glink_,
6558 (this->glink_->pltresolve_size
6559 - 32));
6560 }
6561 }
6562 }
6563
6564 // Emit any relocs we saved in an attempt to avoid generating COPY
6565 // relocs.
6566 if (this->copy_relocs_.any_saved_relocs())
6567 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6568 }
6569
6570 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6571 // reloc.
6572
6573 static bool
6574 ok_lo_toc_insn(uint32_t insn)
6575 {
6576 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6577 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6578 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6579 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6580 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6581 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6582 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6583 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6584 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6585 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6586 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6587 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6588 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6589 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6590 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6591 && (insn & 3) != 1)
6592 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6593 && ((insn & 3) == 0 || (insn & 3) == 3))
6594 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6595 }
6596
6597 // Return the value to use for a branch relocation.
6598
6599 template<int size, bool big_endian>
6600 typename Target_powerpc<size, big_endian>::Address
6601 Target_powerpc<size, big_endian>::symval_for_branch(
6602 const Symbol_table* symtab,
6603 Address value,
6604 const Sized_symbol<size>* gsym,
6605 Powerpc_relobj<size, big_endian>* object,
6606 unsigned int *dest_shndx)
6607 {
6608 if (size == 32 || this->abiversion() >= 2)
6609 gold_unreachable();
6610 *dest_shndx = 0;
6611
6612 // If the symbol is defined in an opd section, ie. is a function
6613 // descriptor, use the function descriptor code entry address
6614 Powerpc_relobj<size, big_endian>* symobj = object;
6615 if (gsym != NULL
6616 && gsym->source() != Symbol::FROM_OBJECT)
6617 return value;
6618 if (gsym != NULL)
6619 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6620 unsigned int shndx = symobj->opd_shndx();
6621 if (shndx == 0)
6622 return value;
6623 Address opd_addr = symobj->get_output_section_offset(shndx);
6624 if (opd_addr == invalid_address)
6625 return value;
6626 opd_addr += symobj->output_section_address(shndx);
6627 if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6628 {
6629 Address sec_off;
6630 *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6631 if (symtab->is_section_folded(symobj, *dest_shndx))
6632 {
6633 Section_id folded
6634 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6635 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6636 *dest_shndx = folded.second;
6637 }
6638 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6639 gold_assert(sec_addr != invalid_address);
6640 sec_addr += symobj->output_section(*dest_shndx)->address();
6641 value = sec_addr + sec_off;
6642 }
6643 return value;
6644 }
6645
6646 // Perform a relocation.
6647
6648 template<int size, bool big_endian>
6649 inline bool
6650 Target_powerpc<size, big_endian>::Relocate::relocate(
6651 const Relocate_info<size, big_endian>* relinfo,
6652 Target_powerpc* target,
6653 Output_section* os,
6654 size_t relnum,
6655 const elfcpp::Rela<size, big_endian>& rela,
6656 unsigned int r_type,
6657 const Sized_symbol<size>* gsym,
6658 const Symbol_value<size>* psymval,
6659 unsigned char* view,
6660 Address address,
6661 section_size_type view_size)
6662 {
6663 if (view == NULL)
6664 return true;
6665
6666 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6667 {
6668 case Track_tls::NOT_EXPECTED:
6669 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6670 _("__tls_get_addr call lacks marker reloc"));
6671 break;
6672 case Track_tls::EXPECTED:
6673 // We have already complained.
6674 break;
6675 case Track_tls::SKIP:
6676 return true;
6677 case Track_tls::NORMAL:
6678 break;
6679 }
6680
6681 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6682 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6683 Powerpc_relobj<size, big_endian>* const object
6684 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6685 Address value = 0;
6686 bool has_plt_value = false;
6687 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6688 if ((gsym != NULL
6689 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6690 : object->local_has_plt_offset(r_sym))
6691 && (!psymval->is_ifunc_symbol()
6692 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6693 {
6694 if (size == 64
6695 && gsym != NULL
6696 && target->abiversion() >= 2
6697 && !parameters->options().output_is_position_independent()
6698 && !is_branch_reloc(r_type))
6699 {
6700 unsigned int off = target->glink_section()->find_global_entry(gsym);
6701 gold_assert(off != (unsigned int)-1);
6702 value = target->glink_section()->global_entry_address() + off;
6703 }
6704 else
6705 {
6706 Stub_table<size, big_endian>* stub_table
6707 = object->stub_table(relinfo->data_shndx);
6708 if (stub_table == NULL)
6709 {
6710 // This is a ref from a data section to an ifunc symbol.
6711 if (target->stub_tables().size() != 0)
6712 stub_table = target->stub_tables()[0];
6713 }
6714 gold_assert(stub_table != NULL);
6715 Address off;
6716 if (gsym != NULL)
6717 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6718 rela.get_r_addend());
6719 else
6720 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6721 rela.get_r_addend());
6722 gold_assert(off != invalid_address);
6723 value = stub_table->stub_address() + off;
6724 }
6725 has_plt_value = true;
6726 }
6727
6728 if (r_type == elfcpp::R_POWERPC_GOT16
6729 || r_type == elfcpp::R_POWERPC_GOT16_LO
6730 || r_type == elfcpp::R_POWERPC_GOT16_HI
6731 || r_type == elfcpp::R_POWERPC_GOT16_HA
6732 || r_type == elfcpp::R_PPC64_GOT16_DS
6733 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6734 {
6735 if (gsym != NULL)
6736 {
6737 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6738 value = gsym->got_offset(GOT_TYPE_STANDARD);
6739 }
6740 else
6741 {
6742 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6743 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6744 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6745 }
6746 value -= target->got_section()->got_base_offset(object);
6747 }
6748 else if (r_type == elfcpp::R_PPC64_TOC)
6749 {
6750 value = (target->got_section()->output_section()->address()
6751 + object->toc_base_offset());
6752 }
6753 else if (gsym != NULL
6754 && (r_type == elfcpp::R_POWERPC_REL24
6755 || r_type == elfcpp::R_PPC_PLTREL24)
6756 && has_plt_value)
6757 {
6758 if (size == 64)
6759 {
6760 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6761 Valtype* wv = reinterpret_cast<Valtype*>(view);
6762 bool can_plt_call = false;
6763 if (rela.get_r_offset() + 8 <= view_size)
6764 {
6765 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6766 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6767 if ((insn & 1) != 0
6768 && (insn2 == nop
6769 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6770 {
6771 elfcpp::Swap<32, big_endian>::
6772 writeval(wv + 1, ld_2_1 + target->stk_toc());
6773 can_plt_call = true;
6774 }
6775 }
6776 if (!can_plt_call)
6777 {
6778 // If we don't have a branch and link followed by a nop,
6779 // we can't go via the plt because there is no place to
6780 // put a toc restoring instruction.
6781 // Unless we know we won't be returning.
6782 if (strcmp(gsym->name(), "__libc_start_main") == 0)
6783 can_plt_call = true;
6784 }
6785 if (!can_plt_call)
6786 {
6787 // g++ as of 20130507 emits self-calls without a
6788 // following nop. This is arguably wrong since we have
6789 // conflicting information. On the one hand a global
6790 // symbol and on the other a local call sequence, but
6791 // don't error for this special case.
6792 // It isn't possible to cheaply verify we have exactly
6793 // such a call. Allow all calls to the same section.
6794 bool ok = false;
6795 Address code = value;
6796 if (gsym->source() == Symbol::FROM_OBJECT
6797 && gsym->object() == object)
6798 {
6799 unsigned int dest_shndx = 0;
6800 if (target->abiversion() < 2)
6801 {
6802 Address addend = rela.get_r_addend();
6803 Address opdent = psymval->value(object, addend);
6804 code = target->symval_for_branch(relinfo->symtab,
6805 opdent, gsym, object,
6806 &dest_shndx);
6807 }
6808 bool is_ordinary;
6809 if (dest_shndx == 0)
6810 dest_shndx = gsym->shndx(&is_ordinary);
6811 ok = dest_shndx == relinfo->data_shndx;
6812 }
6813 if (!ok)
6814 {
6815 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6816 _("call lacks nop, can't restore toc; "
6817 "recompile with -fPIC"));
6818 value = code;
6819 }
6820 }
6821 }
6822 }
6823 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6824 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6825 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6826 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6827 {
6828 // First instruction of a global dynamic sequence, arg setup insn.
6829 const bool final = gsym == NULL || gsym->final_value_is_known();
6830 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6831 enum Got_type got_type = GOT_TYPE_STANDARD;
6832 if (tls_type == tls::TLSOPT_NONE)
6833 got_type = GOT_TYPE_TLSGD;
6834 else if (tls_type == tls::TLSOPT_TO_IE)
6835 got_type = GOT_TYPE_TPREL;
6836 if (got_type != GOT_TYPE_STANDARD)
6837 {
6838 if (gsym != NULL)
6839 {
6840 gold_assert(gsym->has_got_offset(got_type));
6841 value = gsym->got_offset(got_type);
6842 }
6843 else
6844 {
6845 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6846 gold_assert(object->local_has_got_offset(r_sym, got_type));
6847 value = object->local_got_offset(r_sym, got_type);
6848 }
6849 value -= target->got_section()->got_base_offset(object);
6850 }
6851 if (tls_type == tls::TLSOPT_TO_IE)
6852 {
6853 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6854 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6855 {
6856 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6857 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6858 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6859 if (size == 32)
6860 insn |= 32 << 26; // lwz
6861 else
6862 insn |= 58 << 26; // ld
6863 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6864 }
6865 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6866 - elfcpp::R_POWERPC_GOT_TLSGD16);
6867 }
6868 else if (tls_type == tls::TLSOPT_TO_LE)
6869 {
6870 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6871 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6872 {
6873 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6874 Insn insn = addis_3_13;
6875 if (size == 32)
6876 insn = addis_3_2;
6877 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6878 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6879 value = psymval->value(object, rela.get_r_addend());
6880 }
6881 else
6882 {
6883 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6884 Insn insn = nop;
6885 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6886 r_type = elfcpp::R_POWERPC_NONE;
6887 }
6888 }
6889 }
6890 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6891 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6892 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6893 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6894 {
6895 // First instruction of a local dynamic sequence, arg setup insn.
6896 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6897 if (tls_type == tls::TLSOPT_NONE)
6898 {
6899 value = target->tlsld_got_offset();
6900 value -= target->got_section()->got_base_offset(object);
6901 }
6902 else
6903 {
6904 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6905 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6906 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6907 {
6908 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6909 Insn insn = addis_3_13;
6910 if (size == 32)
6911 insn = addis_3_2;
6912 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6913 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6914 value = dtp_offset;
6915 }
6916 else
6917 {
6918 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6919 Insn insn = nop;
6920 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6921 r_type = elfcpp::R_POWERPC_NONE;
6922 }
6923 }
6924 }
6925 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6926 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6927 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6928 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6929 {
6930 // Accesses relative to a local dynamic sequence address,
6931 // no optimisation here.
6932 if (gsym != NULL)
6933 {
6934 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6935 value = gsym->got_offset(GOT_TYPE_DTPREL);
6936 }
6937 else
6938 {
6939 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6940 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6941 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6942 }
6943 value -= target->got_section()->got_base_offset(object);
6944 }
6945 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6946 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6947 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6948 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6949 {
6950 // First instruction of initial exec sequence.
6951 const bool final = gsym == NULL || gsym->final_value_is_known();
6952 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6953 if (tls_type == tls::TLSOPT_NONE)
6954 {
6955 if (gsym != NULL)
6956 {
6957 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6958 value = gsym->got_offset(GOT_TYPE_TPREL);
6959 }
6960 else
6961 {
6962 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6963 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6964 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6965 }
6966 value -= target->got_section()->got_base_offset(object);
6967 }
6968 else
6969 {
6970 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6971 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6972 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6973 {
6974 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6975 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6976 insn &= (1 << 26) - (1 << 21); // extract rt from ld
6977 if (size == 32)
6978 insn |= addis_0_2;
6979 else
6980 insn |= addis_0_13;
6981 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6982 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6983 value = psymval->value(object, rela.get_r_addend());
6984 }
6985 else
6986 {
6987 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6988 Insn insn = nop;
6989 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6990 r_type = elfcpp::R_POWERPC_NONE;
6991 }
6992 }
6993 }
6994 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6995 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6996 {
6997 // Second instruction of a global dynamic sequence,
6998 // the __tls_get_addr call
6999 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7000 const bool final = gsym == NULL || gsym->final_value_is_known();
7001 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7002 if (tls_type != tls::TLSOPT_NONE)
7003 {
7004 if (tls_type == tls::TLSOPT_TO_IE)
7005 {
7006 Insn* iview = reinterpret_cast<Insn*>(view);
7007 Insn insn = add_3_3_13;
7008 if (size == 32)
7009 insn = add_3_3_2;
7010 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7011 r_type = elfcpp::R_POWERPC_NONE;
7012 }
7013 else
7014 {
7015 Insn* iview = reinterpret_cast<Insn*>(view);
7016 Insn insn = addi_3_3;
7017 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7018 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7019 view += 2 * big_endian;
7020 value = psymval->value(object, rela.get_r_addend());
7021 }
7022 this->skip_next_tls_get_addr_call();
7023 }
7024 }
7025 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7026 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7027 {
7028 // Second instruction of a local dynamic sequence,
7029 // the __tls_get_addr call
7030 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7031 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7032 if (tls_type == tls::TLSOPT_TO_LE)
7033 {
7034 Insn* iview = reinterpret_cast<Insn*>(view);
7035 Insn insn = addi_3_3;
7036 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7037 this->skip_next_tls_get_addr_call();
7038 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7039 view += 2 * big_endian;
7040 value = dtp_offset;
7041 }
7042 }
7043 else if (r_type == elfcpp::R_POWERPC_TLS)
7044 {
7045 // Second instruction of an initial exec sequence
7046 const bool final = gsym == NULL || gsym->final_value_is_known();
7047 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7048 if (tls_type == tls::TLSOPT_TO_LE)
7049 {
7050 Insn* iview = reinterpret_cast<Insn*>(view);
7051 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7052 unsigned int reg = size == 32 ? 2 : 13;
7053 insn = at_tls_transform(insn, reg);
7054 gold_assert(insn != 0);
7055 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7056 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7057 view += 2 * big_endian;
7058 value = psymval->value(object, rela.get_r_addend());
7059 }
7060 }
7061 else if (!has_plt_value)
7062 {
7063 Address addend = 0;
7064 unsigned int dest_shndx;
7065 if (r_type != elfcpp::R_PPC_PLTREL24)
7066 addend = rela.get_r_addend();
7067 value = psymval->value(object, addend);
7068 if (size == 64 && is_branch_reloc(r_type))
7069 {
7070 if (target->abiversion() >= 2)
7071 {
7072 if (gsym != NULL)
7073 value += object->ppc64_local_entry_offset(gsym);
7074 else
7075 value += object->ppc64_local_entry_offset(r_sym);
7076 }
7077 else
7078 value = target->symval_for_branch(relinfo->symtab, value,
7079 gsym, object, &dest_shndx);
7080 }
7081 unsigned int max_branch_offset = 0;
7082 if (r_type == elfcpp::R_POWERPC_REL24
7083 || r_type == elfcpp::R_PPC_PLTREL24
7084 || r_type == elfcpp::R_PPC_LOCAL24PC)
7085 max_branch_offset = 1 << 25;
7086 else if (r_type == elfcpp::R_POWERPC_REL14
7087 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7088 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7089 max_branch_offset = 1 << 15;
7090 if (max_branch_offset != 0
7091 && value - address + max_branch_offset >= 2 * max_branch_offset)
7092 {
7093 Stub_table<size, big_endian>* stub_table
7094 = object->stub_table(relinfo->data_shndx);
7095 if (stub_table != NULL)
7096 {
7097 Address off = stub_table->find_long_branch_entry(object, value);
7098 if (off != invalid_address)
7099 value = (stub_table->stub_address() + stub_table->plt_size()
7100 + off);
7101 }
7102 }
7103 }
7104
7105 switch (r_type)
7106 {
7107 case elfcpp::R_PPC64_REL64:
7108 case elfcpp::R_POWERPC_REL32:
7109 case elfcpp::R_POWERPC_REL24:
7110 case elfcpp::R_PPC_PLTREL24:
7111 case elfcpp::R_PPC_LOCAL24PC:
7112 case elfcpp::R_POWERPC_REL16:
7113 case elfcpp::R_POWERPC_REL16_LO:
7114 case elfcpp::R_POWERPC_REL16_HI:
7115 case elfcpp::R_POWERPC_REL16_HA:
7116 case elfcpp::R_POWERPC_REL14:
7117 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7118 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7119 value -= address;
7120 break;
7121
7122 case elfcpp::R_PPC64_TOC16:
7123 case elfcpp::R_PPC64_TOC16_LO:
7124 case elfcpp::R_PPC64_TOC16_HI:
7125 case elfcpp::R_PPC64_TOC16_HA:
7126 case elfcpp::R_PPC64_TOC16_DS:
7127 case elfcpp::R_PPC64_TOC16_LO_DS:
7128 // Subtract the TOC base address.
7129 value -= (target->got_section()->output_section()->address()
7130 + object->toc_base_offset());
7131 break;
7132
7133 case elfcpp::R_POWERPC_SECTOFF:
7134 case elfcpp::R_POWERPC_SECTOFF_LO:
7135 case elfcpp::R_POWERPC_SECTOFF_HI:
7136 case elfcpp::R_POWERPC_SECTOFF_HA:
7137 case elfcpp::R_PPC64_SECTOFF_DS:
7138 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7139 if (os != NULL)
7140 value -= os->address();
7141 break;
7142
7143 case elfcpp::R_PPC64_TPREL16_DS:
7144 case elfcpp::R_PPC64_TPREL16_LO_DS:
7145 case elfcpp::R_PPC64_TPREL16_HIGH:
7146 case elfcpp::R_PPC64_TPREL16_HIGHA:
7147 if (size != 64)
7148 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7149 break;
7150 case elfcpp::R_POWERPC_TPREL16:
7151 case elfcpp::R_POWERPC_TPREL16_LO:
7152 case elfcpp::R_POWERPC_TPREL16_HI:
7153 case elfcpp::R_POWERPC_TPREL16_HA:
7154 case elfcpp::R_POWERPC_TPREL:
7155 case elfcpp::R_PPC64_TPREL16_HIGHER:
7156 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7157 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7158 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7159 // tls symbol values are relative to tls_segment()->vaddr()
7160 value -= tp_offset;
7161 break;
7162
7163 case elfcpp::R_PPC64_DTPREL16_DS:
7164 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7165 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7166 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7167 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7168 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7169 if (size != 64)
7170 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7171 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7172 break;
7173 case elfcpp::R_POWERPC_DTPREL16:
7174 case elfcpp::R_POWERPC_DTPREL16_LO:
7175 case elfcpp::R_POWERPC_DTPREL16_HI:
7176 case elfcpp::R_POWERPC_DTPREL16_HA:
7177 case elfcpp::R_POWERPC_DTPREL:
7178 case elfcpp::R_PPC64_DTPREL16_HIGH:
7179 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7180 // tls symbol values are relative to tls_segment()->vaddr()
7181 value -= dtp_offset;
7182 break;
7183
7184 case elfcpp::R_PPC64_ADDR64_LOCAL:
7185 if (gsym != NULL)
7186 value += object->ppc64_local_entry_offset(gsym);
7187 else
7188 value += object->ppc64_local_entry_offset(r_sym);
7189 break;
7190
7191 default:
7192 break;
7193 }
7194
7195 Insn branch_bit = 0;
7196 switch (r_type)
7197 {
7198 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7199 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7200 branch_bit = 1 << 21;
7201 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7202 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7203 {
7204 Insn* iview = reinterpret_cast<Insn*>(view);
7205 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7206 insn &= ~(1 << 21);
7207 insn |= branch_bit;
7208 if (this->is_isa_v2)
7209 {
7210 // Set 'a' bit. This is 0b00010 in BO field for branch
7211 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7212 // for branch on CTR insns (BO == 1a00t or 1a01t).
7213 if ((insn & (0x14 << 21)) == (0x04 << 21))
7214 insn |= 0x02 << 21;
7215 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7216 insn |= 0x08 << 21;
7217 else
7218 break;
7219 }
7220 else
7221 {
7222 // Invert 'y' bit if not the default.
7223 if (static_cast<Signed_address>(value) < 0)
7224 insn ^= 1 << 21;
7225 }
7226 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7227 }
7228 break;
7229
7230 default:
7231 break;
7232 }
7233
7234 if (size == 64)
7235 {
7236 // Multi-instruction sequences that access the TOC can be
7237 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7238 // to nop; addi rb,r2,x;
7239 switch (r_type)
7240 {
7241 default:
7242 break;
7243
7244 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7245 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7246 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7247 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7248 case elfcpp::R_POWERPC_GOT16_HA:
7249 case elfcpp::R_PPC64_TOC16_HA:
7250 if (parameters->options().toc_optimize())
7251 {
7252 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7253 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7254 if ((insn & ((0x3f << 26) | 0x1f << 16))
7255 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7256 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7257 _("toc optimization is not supported "
7258 "for %#08x instruction"), insn);
7259 else if (value + 0x8000 < 0x10000)
7260 {
7261 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7262 return true;
7263 }
7264 }
7265 break;
7266
7267 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7268 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7269 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7270 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7271 case elfcpp::R_POWERPC_GOT16_LO:
7272 case elfcpp::R_PPC64_GOT16_LO_DS:
7273 case elfcpp::R_PPC64_TOC16_LO:
7274 case elfcpp::R_PPC64_TOC16_LO_DS:
7275 if (parameters->options().toc_optimize())
7276 {
7277 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7278 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7279 if (!ok_lo_toc_insn(insn))
7280 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7281 _("toc optimization is not supported "
7282 "for %#08x instruction"), insn);
7283 else if (value + 0x8000 < 0x10000)
7284 {
7285 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7286 {
7287 // Transform addic to addi when we change reg.
7288 insn &= ~((0x3f << 26) | (0x1f << 16));
7289 insn |= (14u << 26) | (2 << 16);
7290 }
7291 else
7292 {
7293 insn &= ~(0x1f << 16);
7294 insn |= 2 << 16;
7295 }
7296 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7297 }
7298 }
7299 break;
7300 }
7301 }
7302
7303 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7304 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7305 switch (r_type)
7306 {
7307 case elfcpp::R_POWERPC_ADDR32:
7308 case elfcpp::R_POWERPC_UADDR32:
7309 if (size == 64)
7310 overflow = Reloc::CHECK_BITFIELD;
7311 break;
7312
7313 case elfcpp::R_POWERPC_REL32:
7314 if (size == 64)
7315 overflow = Reloc::CHECK_SIGNED;
7316 break;
7317
7318 case elfcpp::R_POWERPC_UADDR16:
7319 overflow = Reloc::CHECK_BITFIELD;
7320 break;
7321
7322 case elfcpp::R_POWERPC_ADDR16:
7323 // We really should have three separate relocations,
7324 // one for 16-bit data, one for insns with 16-bit signed fields,
7325 // and one for insns with 16-bit unsigned fields.
7326 overflow = Reloc::CHECK_BITFIELD;
7327 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7328 overflow = Reloc::CHECK_LOW_INSN;
7329 break;
7330
7331 case elfcpp::R_POWERPC_ADDR16_HI:
7332 case elfcpp::R_POWERPC_ADDR16_HA:
7333 case elfcpp::R_POWERPC_GOT16_HI:
7334 case elfcpp::R_POWERPC_GOT16_HA:
7335 case elfcpp::R_POWERPC_PLT16_HI:
7336 case elfcpp::R_POWERPC_PLT16_HA:
7337 case elfcpp::R_POWERPC_SECTOFF_HI:
7338 case elfcpp::R_POWERPC_SECTOFF_HA:
7339 case elfcpp::R_PPC64_TOC16_HI:
7340 case elfcpp::R_PPC64_TOC16_HA:
7341 case elfcpp::R_PPC64_PLTGOT16_HI:
7342 case elfcpp::R_PPC64_PLTGOT16_HA:
7343 case elfcpp::R_POWERPC_TPREL16_HI:
7344 case elfcpp::R_POWERPC_TPREL16_HA:
7345 case elfcpp::R_POWERPC_DTPREL16_HI:
7346 case elfcpp::R_POWERPC_DTPREL16_HA:
7347 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7348 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7349 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7350 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7351 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7352 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7353 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7354 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7355 case elfcpp::R_POWERPC_REL16_HI:
7356 case elfcpp::R_POWERPC_REL16_HA:
7357 if (size != 32)
7358 overflow = Reloc::CHECK_HIGH_INSN;
7359 break;
7360
7361 case elfcpp::R_POWERPC_REL16:
7362 case elfcpp::R_PPC64_TOC16:
7363 case elfcpp::R_POWERPC_GOT16:
7364 case elfcpp::R_POWERPC_SECTOFF:
7365 case elfcpp::R_POWERPC_TPREL16:
7366 case elfcpp::R_POWERPC_DTPREL16:
7367 case elfcpp::R_POWERPC_GOT_TLSGD16:
7368 case elfcpp::R_POWERPC_GOT_TLSLD16:
7369 case elfcpp::R_POWERPC_GOT_TPREL16:
7370 case elfcpp::R_POWERPC_GOT_DTPREL16:
7371 overflow = Reloc::CHECK_LOW_INSN;
7372 break;
7373
7374 case elfcpp::R_POWERPC_ADDR24:
7375 case elfcpp::R_POWERPC_ADDR14:
7376 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7377 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7378 case elfcpp::R_PPC64_ADDR16_DS:
7379 case elfcpp::R_POWERPC_REL24:
7380 case elfcpp::R_PPC_PLTREL24:
7381 case elfcpp::R_PPC_LOCAL24PC:
7382 case elfcpp::R_PPC64_TPREL16_DS:
7383 case elfcpp::R_PPC64_DTPREL16_DS:
7384 case elfcpp::R_PPC64_TOC16_DS:
7385 case elfcpp::R_PPC64_GOT16_DS:
7386 case elfcpp::R_PPC64_SECTOFF_DS:
7387 case elfcpp::R_POWERPC_REL14:
7388 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7389 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7390 overflow = Reloc::CHECK_SIGNED;
7391 break;
7392 }
7393
7394 if (overflow == Reloc::CHECK_LOW_INSN
7395 || overflow == Reloc::CHECK_HIGH_INSN)
7396 {
7397 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7398 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7399
7400 overflow = Reloc::CHECK_SIGNED;
7401 if (overflow == Reloc::CHECK_LOW_INSN
7402 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7403 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7404 || (insn & (0x3f << 26)) == 26u << 26 /* xori */
7405 || (insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7406 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7407 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7408 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7409 overflow = Reloc::CHECK_UNSIGNED;
7410 }
7411
7412 typename Powerpc_relocate_functions<size, big_endian>::Status status
7413 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7414 switch (r_type)
7415 {
7416 case elfcpp::R_POWERPC_NONE:
7417 case elfcpp::R_POWERPC_TLS:
7418 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7419 case elfcpp::R_POWERPC_GNU_VTENTRY:
7420 break;
7421
7422 case elfcpp::R_PPC64_ADDR64:
7423 case elfcpp::R_PPC64_REL64:
7424 case elfcpp::R_PPC64_TOC:
7425 case elfcpp::R_PPC64_ADDR64_LOCAL:
7426 Reloc::addr64(view, value);
7427 break;
7428
7429 case elfcpp::R_POWERPC_TPREL:
7430 case elfcpp::R_POWERPC_DTPREL:
7431 if (size == 64)
7432 Reloc::addr64(view, value);
7433 else
7434 status = Reloc::addr32(view, value, overflow);
7435 break;
7436
7437 case elfcpp::R_PPC64_UADDR64:
7438 Reloc::addr64_u(view, value);
7439 break;
7440
7441 case elfcpp::R_POWERPC_ADDR32:
7442 status = Reloc::addr32(view, value, overflow);
7443 break;
7444
7445 case elfcpp::R_POWERPC_REL32:
7446 case elfcpp::R_POWERPC_UADDR32:
7447 status = Reloc::addr32_u(view, value, overflow);
7448 break;
7449
7450 case elfcpp::R_POWERPC_ADDR24:
7451 case elfcpp::R_POWERPC_REL24:
7452 case elfcpp::R_PPC_PLTREL24:
7453 case elfcpp::R_PPC_LOCAL24PC:
7454 status = Reloc::addr24(view, value, overflow);
7455 break;
7456
7457 case elfcpp::R_POWERPC_GOT_DTPREL16:
7458 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7459 if (size == 64)
7460 {
7461 status = Reloc::addr16_ds(view, value, overflow);
7462 break;
7463 }
7464 case elfcpp::R_POWERPC_ADDR16:
7465 case elfcpp::R_POWERPC_REL16:
7466 case elfcpp::R_PPC64_TOC16:
7467 case elfcpp::R_POWERPC_GOT16:
7468 case elfcpp::R_POWERPC_SECTOFF:
7469 case elfcpp::R_POWERPC_TPREL16:
7470 case elfcpp::R_POWERPC_DTPREL16:
7471 case elfcpp::R_POWERPC_GOT_TLSGD16:
7472 case elfcpp::R_POWERPC_GOT_TLSLD16:
7473 case elfcpp::R_POWERPC_GOT_TPREL16:
7474 case elfcpp::R_POWERPC_ADDR16_LO:
7475 case elfcpp::R_POWERPC_REL16_LO:
7476 case elfcpp::R_PPC64_TOC16_LO:
7477 case elfcpp::R_POWERPC_GOT16_LO:
7478 case elfcpp::R_POWERPC_SECTOFF_LO:
7479 case elfcpp::R_POWERPC_TPREL16_LO:
7480 case elfcpp::R_POWERPC_DTPREL16_LO:
7481 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7482 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7483 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7484 status = Reloc::addr16(view, value, overflow);
7485 break;
7486
7487 case elfcpp::R_POWERPC_UADDR16:
7488 status = Reloc::addr16_u(view, value, overflow);
7489 break;
7490
7491 case elfcpp::R_PPC64_ADDR16_HIGH:
7492 case elfcpp::R_PPC64_TPREL16_HIGH:
7493 case elfcpp::R_PPC64_DTPREL16_HIGH:
7494 if (size == 32)
7495 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7496 goto unsupp;
7497 case elfcpp::R_POWERPC_ADDR16_HI:
7498 case elfcpp::R_POWERPC_REL16_HI:
7499 case elfcpp::R_PPC64_TOC16_HI:
7500 case elfcpp::R_POWERPC_GOT16_HI:
7501 case elfcpp::R_POWERPC_SECTOFF_HI:
7502 case elfcpp::R_POWERPC_TPREL16_HI:
7503 case elfcpp::R_POWERPC_DTPREL16_HI:
7504 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7505 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7506 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7507 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7508 Reloc::addr16_hi(view, value);
7509 break;
7510
7511 case elfcpp::R_PPC64_ADDR16_HIGHA:
7512 case elfcpp::R_PPC64_TPREL16_HIGHA:
7513 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7514 if (size == 32)
7515 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7516 goto unsupp;
7517 case elfcpp::R_POWERPC_ADDR16_HA:
7518 case elfcpp::R_POWERPC_REL16_HA:
7519 case elfcpp::R_PPC64_TOC16_HA:
7520 case elfcpp::R_POWERPC_GOT16_HA:
7521 case elfcpp::R_POWERPC_SECTOFF_HA:
7522 case elfcpp::R_POWERPC_TPREL16_HA:
7523 case elfcpp::R_POWERPC_DTPREL16_HA:
7524 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7525 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7526 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7527 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7528 Reloc::addr16_ha(view, value);
7529 break;
7530
7531 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7532 if (size == 32)
7533 // R_PPC_EMB_NADDR16_LO
7534 goto unsupp;
7535 case elfcpp::R_PPC64_ADDR16_HIGHER:
7536 case elfcpp::R_PPC64_TPREL16_HIGHER:
7537 Reloc::addr16_hi2(view, value);
7538 break;
7539
7540 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7541 if (size == 32)
7542 // R_PPC_EMB_NADDR16_HI
7543 goto unsupp;
7544 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7545 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7546 Reloc::addr16_ha2(view, value);
7547 break;
7548
7549 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7550 if (size == 32)
7551 // R_PPC_EMB_NADDR16_HA
7552 goto unsupp;
7553 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7554 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7555 Reloc::addr16_hi3(view, value);
7556 break;
7557
7558 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7559 if (size == 32)
7560 // R_PPC_EMB_SDAI16
7561 goto unsupp;
7562 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7563 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7564 Reloc::addr16_ha3(view, value);
7565 break;
7566
7567 case elfcpp::R_PPC64_DTPREL16_DS:
7568 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7569 if (size == 32)
7570 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7571 goto unsupp;
7572 case elfcpp::R_PPC64_TPREL16_DS:
7573 case elfcpp::R_PPC64_TPREL16_LO_DS:
7574 if (size == 32)
7575 // R_PPC_TLSGD, R_PPC_TLSLD
7576 break;
7577 case elfcpp::R_PPC64_ADDR16_DS:
7578 case elfcpp::R_PPC64_ADDR16_LO_DS:
7579 case elfcpp::R_PPC64_TOC16_DS:
7580 case elfcpp::R_PPC64_TOC16_LO_DS:
7581 case elfcpp::R_PPC64_GOT16_DS:
7582 case elfcpp::R_PPC64_GOT16_LO_DS:
7583 case elfcpp::R_PPC64_SECTOFF_DS:
7584 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7585 status = Reloc::addr16_ds(view, value, overflow);
7586 break;
7587
7588 case elfcpp::R_POWERPC_ADDR14:
7589 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7590 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7591 case elfcpp::R_POWERPC_REL14:
7592 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7593 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7594 status = Reloc::addr14(view, value, overflow);
7595 break;
7596
7597 case elfcpp::R_POWERPC_COPY:
7598 case elfcpp::R_POWERPC_GLOB_DAT:
7599 case elfcpp::R_POWERPC_JMP_SLOT:
7600 case elfcpp::R_POWERPC_RELATIVE:
7601 case elfcpp::R_POWERPC_DTPMOD:
7602 case elfcpp::R_PPC64_JMP_IREL:
7603 case elfcpp::R_POWERPC_IRELATIVE:
7604 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7605 _("unexpected reloc %u in object file"),
7606 r_type);
7607 break;
7608
7609 case elfcpp::R_PPC_EMB_SDA21:
7610 if (size == 32)
7611 goto unsupp;
7612 else
7613 {
7614 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7615 }
7616 break;
7617
7618 case elfcpp::R_PPC_EMB_SDA2I16:
7619 case elfcpp::R_PPC_EMB_SDA2REL:
7620 if (size == 32)
7621 goto unsupp;
7622 // R_PPC64_TLSGD, R_PPC64_TLSLD
7623 break;
7624
7625 case elfcpp::R_POWERPC_PLT32:
7626 case elfcpp::R_POWERPC_PLTREL32:
7627 case elfcpp::R_POWERPC_PLT16_LO:
7628 case elfcpp::R_POWERPC_PLT16_HI:
7629 case elfcpp::R_POWERPC_PLT16_HA:
7630 case elfcpp::R_PPC_SDAREL16:
7631 case elfcpp::R_POWERPC_ADDR30:
7632 case elfcpp::R_PPC64_PLT64:
7633 case elfcpp::R_PPC64_PLTREL64:
7634 case elfcpp::R_PPC64_PLTGOT16:
7635 case elfcpp::R_PPC64_PLTGOT16_LO:
7636 case elfcpp::R_PPC64_PLTGOT16_HI:
7637 case elfcpp::R_PPC64_PLTGOT16_HA:
7638 case elfcpp::R_PPC64_PLT16_LO_DS:
7639 case elfcpp::R_PPC64_PLTGOT16_DS:
7640 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7641 case elfcpp::R_PPC_EMB_RELSDA:
7642 case elfcpp::R_PPC_TOC16:
7643 default:
7644 unsupp:
7645 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7646 _("unsupported reloc %u"),
7647 r_type);
7648 break;
7649 }
7650 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7651 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7652 _("relocation overflow"));
7653
7654 return true;
7655 }
7656
7657 // Relocate section data.
7658
7659 template<int size, bool big_endian>
7660 void
7661 Target_powerpc<size, big_endian>::relocate_section(
7662 const Relocate_info<size, big_endian>* relinfo,
7663 unsigned int sh_type,
7664 const unsigned char* prelocs,
7665 size_t reloc_count,
7666 Output_section* output_section,
7667 bool needs_special_offset_handling,
7668 unsigned char* view,
7669 Address address,
7670 section_size_type view_size,
7671 const Reloc_symbol_changes* reloc_symbol_changes)
7672 {
7673 typedef Target_powerpc<size, big_endian> Powerpc;
7674 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7675 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7676 Powerpc_comdat_behavior;
7677
7678 gold_assert(sh_type == elfcpp::SHT_RELA);
7679
7680 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7681 Powerpc_relocate, Powerpc_comdat_behavior>(
7682 relinfo,
7683 this,
7684 prelocs,
7685 reloc_count,
7686 output_section,
7687 needs_special_offset_handling,
7688 view,
7689 address,
7690 view_size,
7691 reloc_symbol_changes);
7692 }
7693
7694 class Powerpc_scan_relocatable_reloc
7695 {
7696 public:
7697 // Return the strategy to use for a local symbol which is not a
7698 // section symbol, given the relocation type.
7699 inline Relocatable_relocs::Reloc_strategy
7700 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7701 {
7702 if (r_type == 0 && r_sym == 0)
7703 return Relocatable_relocs::RELOC_DISCARD;
7704 return Relocatable_relocs::RELOC_COPY;
7705 }
7706
7707 // Return the strategy to use for a local symbol which is a section
7708 // symbol, given the relocation type.
7709 inline Relocatable_relocs::Reloc_strategy
7710 local_section_strategy(unsigned int, Relobj*)
7711 {
7712 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7713 }
7714
7715 // Return the strategy to use for a global symbol, given the
7716 // relocation type, the object, and the symbol index.
7717 inline Relocatable_relocs::Reloc_strategy
7718 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7719 {
7720 if (r_type == elfcpp::R_PPC_PLTREL24)
7721 return Relocatable_relocs::RELOC_SPECIAL;
7722 return Relocatable_relocs::RELOC_COPY;
7723 }
7724 };
7725
7726 // Scan the relocs during a relocatable link.
7727
7728 template<int size, bool big_endian>
7729 void
7730 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7731 Symbol_table* symtab,
7732 Layout* layout,
7733 Sized_relobj_file<size, big_endian>* object,
7734 unsigned int data_shndx,
7735 unsigned int sh_type,
7736 const unsigned char* prelocs,
7737 size_t reloc_count,
7738 Output_section* output_section,
7739 bool needs_special_offset_handling,
7740 size_t local_symbol_count,
7741 const unsigned char* plocal_symbols,
7742 Relocatable_relocs* rr)
7743 {
7744 gold_assert(sh_type == elfcpp::SHT_RELA);
7745
7746 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7747 Powerpc_scan_relocatable_reloc>(
7748 symtab,
7749 layout,
7750 object,
7751 data_shndx,
7752 prelocs,
7753 reloc_count,
7754 output_section,
7755 needs_special_offset_handling,
7756 local_symbol_count,
7757 plocal_symbols,
7758 rr);
7759 }
7760
7761 // Emit relocations for a section.
7762 // This is a modified version of the function by the same name in
7763 // target-reloc.h. Using relocate_special_relocatable for
7764 // R_PPC_PLTREL24 would require duplication of the entire body of the
7765 // loop, so we may as well duplicate the whole thing.
7766
7767 template<int size, bool big_endian>
7768 void
7769 Target_powerpc<size, big_endian>::relocate_relocs(
7770 const Relocate_info<size, big_endian>* relinfo,
7771 unsigned int sh_type,
7772 const unsigned char* prelocs,
7773 size_t reloc_count,
7774 Output_section* output_section,
7775 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7776 const Relocatable_relocs* rr,
7777 unsigned char*,
7778 Address view_address,
7779 section_size_type,
7780 unsigned char* reloc_view,
7781 section_size_type reloc_view_size)
7782 {
7783 gold_assert(sh_type == elfcpp::SHT_RELA);
7784
7785 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7786 Reltype;
7787 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7788 Reltype_write;
7789 const int reloc_size
7790 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7791
7792 Powerpc_relobj<size, big_endian>* const object
7793 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7794 const unsigned int local_count = object->local_symbol_count();
7795 unsigned int got2_shndx = object->got2_shndx();
7796 Address got2_addend = 0;
7797 if (got2_shndx != 0)
7798 {
7799 got2_addend = object->get_output_section_offset(got2_shndx);
7800 gold_assert(got2_addend != invalid_address);
7801 }
7802
7803 unsigned char* pwrite = reloc_view;
7804 bool zap_next = false;
7805 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7806 {
7807 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7808 if (strategy == Relocatable_relocs::RELOC_DISCARD)
7809 continue;
7810
7811 Reltype reloc(prelocs);
7812 Reltype_write reloc_write(pwrite);
7813
7814 Address offset = reloc.get_r_offset();
7815 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7816 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7817 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7818 const unsigned int orig_r_sym = r_sym;
7819 typename elfcpp::Elf_types<size>::Elf_Swxword addend
7820 = reloc.get_r_addend();
7821 const Symbol* gsym = NULL;
7822
7823 if (zap_next)
7824 {
7825 // We could arrange to discard these and other relocs for
7826 // tls optimised sequences in the strategy methods, but for
7827 // now do as BFD ld does.
7828 r_type = elfcpp::R_POWERPC_NONE;
7829 zap_next = false;
7830 }
7831
7832 // Get the new symbol index.
7833 if (r_sym < local_count)
7834 {
7835 switch (strategy)
7836 {
7837 case Relocatable_relocs::RELOC_COPY:
7838 case Relocatable_relocs::RELOC_SPECIAL:
7839 if (r_sym != 0)
7840 {
7841 r_sym = object->symtab_index(r_sym);
7842 gold_assert(r_sym != -1U);
7843 }
7844 break;
7845
7846 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7847 {
7848 // We are adjusting a section symbol. We need to find
7849 // the symbol table index of the section symbol for
7850 // the output section corresponding to input section
7851 // in which this symbol is defined.
7852 gold_assert(r_sym < local_count);
7853 bool is_ordinary;
7854 unsigned int shndx =
7855 object->local_symbol_input_shndx(r_sym, &is_ordinary);
7856 gold_assert(is_ordinary);
7857 Output_section* os = object->output_section(shndx);
7858 gold_assert(os != NULL);
7859 gold_assert(os->needs_symtab_index());
7860 r_sym = os->symtab_index();
7861 }
7862 break;
7863
7864 default:
7865 gold_unreachable();
7866 }
7867 }
7868 else
7869 {
7870 gsym = object->global_symbol(r_sym);
7871 gold_assert(gsym != NULL);
7872 if (gsym->is_forwarder())
7873 gsym = relinfo->symtab->resolve_forwards(gsym);
7874
7875 gold_assert(gsym->has_symtab_index());
7876 r_sym = gsym->symtab_index();
7877 }
7878
7879 // Get the new offset--the location in the output section where
7880 // this relocation should be applied.
7881 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7882 offset += offset_in_output_section;
7883 else
7884 {
7885 section_offset_type sot_offset =
7886 convert_types<section_offset_type, Address>(offset);
7887 section_offset_type new_sot_offset =
7888 output_section->output_offset(object, relinfo->data_shndx,
7889 sot_offset);
7890 gold_assert(new_sot_offset != -1);
7891 offset = new_sot_offset;
7892 }
7893
7894 // In an object file, r_offset is an offset within the section.
7895 // In an executable or dynamic object, generated by
7896 // --emit-relocs, r_offset is an absolute address.
7897 if (!parameters->options().relocatable())
7898 {
7899 offset += view_address;
7900 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7901 offset -= offset_in_output_section;
7902 }
7903
7904 // Handle the reloc addend based on the strategy.
7905 if (strategy == Relocatable_relocs::RELOC_COPY)
7906 ;
7907 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7908 {
7909 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7910 addend = psymval->value(object, addend);
7911 }
7912 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7913 {
7914 if (addend >= 32768)
7915 addend += got2_addend;
7916 }
7917 else
7918 gold_unreachable();
7919
7920 if (!parameters->options().relocatable())
7921 {
7922 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7923 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7924 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7925 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7926 {
7927 // First instruction of a global dynamic sequence,
7928 // arg setup insn.
7929 const bool final = gsym == NULL || gsym->final_value_is_known();
7930 switch (this->optimize_tls_gd(final))
7931 {
7932 case tls::TLSOPT_TO_IE:
7933 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7934 - elfcpp::R_POWERPC_GOT_TLSGD16);
7935 break;
7936 case tls::TLSOPT_TO_LE:
7937 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7938 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7939 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7940 else
7941 {
7942 r_type = elfcpp::R_POWERPC_NONE;
7943 offset -= 2 * big_endian;
7944 }
7945 break;
7946 default:
7947 break;
7948 }
7949 }
7950 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7951 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7952 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7953 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7954 {
7955 // First instruction of a local dynamic sequence,
7956 // arg setup insn.
7957 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7958 {
7959 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7960 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7961 {
7962 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7963 const Output_section* os = relinfo->layout->tls_segment()
7964 ->first_section();
7965 gold_assert(os != NULL);
7966 gold_assert(os->needs_symtab_index());
7967 r_sym = os->symtab_index();
7968 addend = dtp_offset;
7969 }
7970 else
7971 {
7972 r_type = elfcpp::R_POWERPC_NONE;
7973 offset -= 2 * big_endian;
7974 }
7975 }
7976 }
7977 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7978 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7979 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7980 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7981 {
7982 // First instruction of initial exec sequence.
7983 const bool final = gsym == NULL || gsym->final_value_is_known();
7984 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7985 {
7986 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7987 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7988 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7989 else
7990 {
7991 r_type = elfcpp::R_POWERPC_NONE;
7992 offset -= 2 * big_endian;
7993 }
7994 }
7995 }
7996 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7997 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7998 {
7999 // Second instruction of a global dynamic sequence,
8000 // the __tls_get_addr call
8001 const bool final = gsym == NULL || gsym->final_value_is_known();
8002 switch (this->optimize_tls_gd(final))
8003 {
8004 case tls::TLSOPT_TO_IE:
8005 r_type = elfcpp::R_POWERPC_NONE;
8006 zap_next = true;
8007 break;
8008 case tls::TLSOPT_TO_LE:
8009 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8010 offset += 2 * big_endian;
8011 zap_next = true;
8012 break;
8013 default:
8014 break;
8015 }
8016 }
8017 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8018 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8019 {
8020 // Second instruction of a local dynamic sequence,
8021 // the __tls_get_addr call
8022 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8023 {
8024 const Output_section* os = relinfo->layout->tls_segment()
8025 ->first_section();
8026 gold_assert(os != NULL);
8027 gold_assert(os->needs_symtab_index());
8028 r_sym = os->symtab_index();
8029 addend = dtp_offset;
8030 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8031 offset += 2 * big_endian;
8032 zap_next = true;
8033 }
8034 }
8035 else if (r_type == elfcpp::R_POWERPC_TLS)
8036 {
8037 // Second instruction of an initial exec sequence
8038 const bool final = gsym == NULL || gsym->final_value_is_known();
8039 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8040 {
8041 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8042 offset += 2 * big_endian;
8043 }
8044 }
8045 }
8046
8047 reloc_write.put_r_offset(offset);
8048 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8049 reloc_write.put_r_addend(addend);
8050
8051 pwrite += reloc_size;
8052 }
8053
8054 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8055 == reloc_view_size);
8056 }
8057
8058 // Return the value to use for a dynamic symbol which requires special
8059 // treatment. This is how we support equality comparisons of function
8060 // pointers across shared library boundaries, as described in the
8061 // processor specific ABI supplement.
8062
8063 template<int size, bool big_endian>
8064 uint64_t
8065 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8066 {
8067 if (size == 32)
8068 {
8069 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8070 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8071 p != this->stub_tables_.end();
8072 ++p)
8073 {
8074 Address off = (*p)->find_plt_call_entry(gsym);
8075 if (off != invalid_address)
8076 return (*p)->stub_address() + off;
8077 }
8078 }
8079 else if (this->abiversion() >= 2)
8080 {
8081 unsigned int off = this->glink_section()->find_global_entry(gsym);
8082 if (off != (unsigned int)-1)
8083 return this->glink_section()->global_entry_address() + off;
8084 }
8085 gold_unreachable();
8086 }
8087
8088 // Return the PLT address to use for a local symbol.
8089 template<int size, bool big_endian>
8090 uint64_t
8091 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8092 const Relobj* object,
8093 unsigned int symndx) const
8094 {
8095 if (size == 32)
8096 {
8097 const Sized_relobj<size, big_endian>* relobj
8098 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8099 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8100 p != this->stub_tables_.end();
8101 ++p)
8102 {
8103 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8104 symndx);
8105 if (off != invalid_address)
8106 return (*p)->stub_address() + off;
8107 }
8108 }
8109 gold_unreachable();
8110 }
8111
8112 // Return the PLT address to use for a global symbol.
8113 template<int size, bool big_endian>
8114 uint64_t
8115 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8116 const Symbol* gsym) const
8117 {
8118 if (size == 32)
8119 {
8120 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8121 p != this->stub_tables_.end();
8122 ++p)
8123 {
8124 Address off = (*p)->find_plt_call_entry(gsym);
8125 if (off != invalid_address)
8126 return (*p)->stub_address() + off;
8127 }
8128 }
8129 else if (this->abiversion() >= 2)
8130 {
8131 unsigned int off = this->glink_section()->find_global_entry(gsym);
8132 if (off != (unsigned int)-1)
8133 return this->glink_section()->global_entry_address() + off;
8134 }
8135 gold_unreachable();
8136 }
8137
8138 // Return the offset to use for the GOT_INDX'th got entry which is
8139 // for a local tls symbol specified by OBJECT, SYMNDX.
8140 template<int size, bool big_endian>
8141 int64_t
8142 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8143 const Relobj* object,
8144 unsigned int symndx,
8145 unsigned int got_indx) const
8146 {
8147 const Powerpc_relobj<size, big_endian>* ppc_object
8148 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8149 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8150 {
8151 for (Got_type got_type = GOT_TYPE_TLSGD;
8152 got_type <= GOT_TYPE_TPREL;
8153 got_type = Got_type(got_type + 1))
8154 if (ppc_object->local_has_got_offset(symndx, got_type))
8155 {
8156 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8157 if (got_type == GOT_TYPE_TLSGD)
8158 off += size / 8;
8159 if (off == got_indx * (size / 8))
8160 {
8161 if (got_type == GOT_TYPE_TPREL)
8162 return -tp_offset;
8163 else
8164 return -dtp_offset;
8165 }
8166 }
8167 }
8168 gold_unreachable();
8169 }
8170
8171 // Return the offset to use for the GOT_INDX'th got entry which is
8172 // for global tls symbol GSYM.
8173 template<int size, bool big_endian>
8174 int64_t
8175 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8176 Symbol* gsym,
8177 unsigned int got_indx) const
8178 {
8179 if (gsym->type() == elfcpp::STT_TLS)
8180 {
8181 for (Got_type got_type = GOT_TYPE_TLSGD;
8182 got_type <= GOT_TYPE_TPREL;
8183 got_type = Got_type(got_type + 1))
8184 if (gsym->has_got_offset(got_type))
8185 {
8186 unsigned int off = gsym->got_offset(got_type);
8187 if (got_type == GOT_TYPE_TLSGD)
8188 off += size / 8;
8189 if (off == got_indx * (size / 8))
8190 {
8191 if (got_type == GOT_TYPE_TPREL)
8192 return -tp_offset;
8193 else
8194 return -dtp_offset;
8195 }
8196 }
8197 }
8198 gold_unreachable();
8199 }
8200
8201 // The selector for powerpc object files.
8202
8203 template<int size, bool big_endian>
8204 class Target_selector_powerpc : public Target_selector
8205 {
8206 public:
8207 Target_selector_powerpc()
8208 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8209 size, big_endian,
8210 (size == 64
8211 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8212 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8213 (size == 64
8214 ? (big_endian ? "elf64ppc" : "elf64lppc")
8215 : (big_endian ? "elf32ppc" : "elf32lppc")))
8216 { }
8217
8218 virtual Target*
8219 do_instantiate_target()
8220 { return new Target_powerpc<size, big_endian>(); }
8221 };
8222
8223 Target_selector_powerpc<32, true> target_selector_ppc32;
8224 Target_selector_powerpc<32, false> target_selector_ppc32le;
8225 Target_selector_powerpc<64, true> target_selector_ppc64;
8226 Target_selector_powerpc<64, false> target_selector_ppc64le;
8227
8228 // Instantiate these constants for -O0
8229 template<int size, bool big_endian>
8230 const int Output_data_glink<size, big_endian>::pltresolve_size;
8231 template<int size, bool big_endian>
8232 const typename Output_data_glink<size, big_endian>::Address
8233 Output_data_glink<size, big_endian>::invalid_address;
8234 template<int size, bool big_endian>
8235 const typename Stub_table<size, big_endian>::Address
8236 Stub_table<size, big_endian>::invalid_address;
8237 template<int size, bool big_endian>
8238 const typename Target_powerpc<size, big_endian>::Address
8239 Target_powerpc<size, big_endian>::invalid_address;
8240
8241 } // End anonymous namespace.
This page took 0.275322 seconds and 4 git commands to generate.