gold/
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74 typedef Unordered_map<Address, Section_refs> Access_from;
75
76 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80 opd_ent_(), access_from_map_(), has14_(), stub_table_()
81 { }
82
83 ~Powerpc_relobj()
84 { }
85
86 // The .got2 section shndx.
87 unsigned int
88 got2_shndx() const
89 {
90 if (size == 32)
91 return this->special_;
92 else
93 return 0;
94 }
95
96 // The .opd section shndx.
97 unsigned int
98 opd_shndx() const
99 {
100 if (size == 32)
101 return 0;
102 else
103 return this->special_;
104 }
105
106 // Init OPD entry arrays.
107 void
108 init_opd(size_t opd_size)
109 {
110 size_t count = this->opd_ent_ndx(opd_size);
111 this->opd_ent_.resize(count);
112 }
113
114 // Return section and offset of function entry for .opd + R_OFF.
115 unsigned int
116 get_opd_ent(Address r_off, Address* value = NULL) const
117 {
118 size_t ndx = this->opd_ent_ndx(r_off);
119 gold_assert(ndx < this->opd_ent_.size());
120 gold_assert(this->opd_ent_[ndx].shndx != 0);
121 if (value != NULL)
122 *value = this->opd_ent_[ndx].off;
123 return this->opd_ent_[ndx].shndx;
124 }
125
126 // Set section and offset of function entry for .opd + R_OFF.
127 void
128 set_opd_ent(Address r_off, unsigned int shndx, Address value)
129 {
130 size_t ndx = this->opd_ent_ndx(r_off);
131 gold_assert(ndx < this->opd_ent_.size());
132 this->opd_ent_[ndx].shndx = shndx;
133 this->opd_ent_[ndx].off = value;
134 }
135
136 // Return discard flag for .opd + R_OFF.
137 bool
138 get_opd_discard(Address r_off) const
139 {
140 size_t ndx = this->opd_ent_ndx(r_off);
141 gold_assert(ndx < this->opd_ent_.size());
142 return this->opd_ent_[ndx].discard;
143 }
144
145 // Set discard flag for .opd + R_OFF.
146 void
147 set_opd_discard(Address r_off)
148 {
149 size_t ndx = this->opd_ent_ndx(r_off);
150 gold_assert(ndx < this->opd_ent_.size());
151 this->opd_ent_[ndx].discard = true;
152 }
153
154 bool
155 opd_valid() const
156 { return this->opd_valid_; }
157
158 void
159 set_opd_valid()
160 { this->opd_valid_ = true; }
161
162 // Examine .rela.opd to build info about function entry points.
163 void
164 scan_opd_relocs(size_t reloc_count,
165 const unsigned char* prelocs,
166 const unsigned char* plocal_syms);
167
168 // Perform the Sized_relobj_file method, then set up opd info from
169 // .opd relocs.
170 void
171 do_read_relocs(Read_relocs_data*);
172
173 bool
174 do_find_special_sections(Read_symbols_data* sd);
175
176 // Adjust this local symbol value. Return false if the symbol
177 // should be discarded from the output file.
178 bool
179 do_adjust_local_symbol(Symbol_value<size>* lv) const
180 {
181 if (size == 64 && this->opd_shndx() != 0)
182 {
183 bool is_ordinary;
184 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
185 return true;
186 if (this->get_opd_discard(lv->input_value()))
187 return false;
188 }
189 return true;
190 }
191
192 Access_from*
193 access_from_map()
194 { return &this->access_from_map_; }
195
196 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
197 // section at DST_OFF.
198 void
199 add_reference(Object* src_obj,
200 unsigned int src_indx,
201 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
202 {
203 Section_id src_id(src_obj, src_indx);
204 this->access_from_map_[dst_off].insert(src_id);
205 }
206
207 // Add a reference to the code section specified by the .opd entry
208 // at DST_OFF
209 void
210 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
211 {
212 size_t ndx = this->opd_ent_ndx(dst_off);
213 if (ndx >= this->opd_ent_.size())
214 this->opd_ent_.resize(ndx + 1);
215 this->opd_ent_[ndx].gc_mark = true;
216 }
217
218 void
219 process_gc_mark(Symbol_table* symtab)
220 {
221 for (size_t i = 0; i < this->opd_ent_.size(); i++)
222 if (this->opd_ent_[i].gc_mark)
223 {
224 unsigned int shndx = this->opd_ent_[i].shndx;
225 symtab->gc()->worklist().push(Section_id(this, shndx));
226 }
227 }
228
229 // Return offset in output GOT section that this object will use
230 // as a TOC pointer. Won't be just a constant with multi-toc support.
231 Address
232 toc_base_offset() const
233 { return 0x8000; }
234
235 void
236 set_has_small_toc_reloc()
237 { has_small_toc_reloc_ = true; }
238
239 bool
240 has_small_toc_reloc() const
241 { return has_small_toc_reloc_; }
242
243 void
244 set_has_14bit_branch(unsigned int shndx)
245 {
246 if (shndx >= this->has14_.size())
247 this->has14_.resize(shndx + 1);
248 this->has14_[shndx] = true;
249 }
250
251 bool
252 has_14bit_branch(unsigned int shndx) const
253 { return shndx < this->has14_.size() && this->has14_[shndx]; }
254
255 void
256 set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
257 {
258 if (shndx >= this->stub_table_.size())
259 this->stub_table_.resize(shndx + 1);
260 this->stub_table_[shndx] = stub_table;
261 }
262
263 Stub_table<size, big_endian>*
264 stub_table(unsigned int shndx)
265 {
266 if (shndx < this->stub_table_.size())
267 return this->stub_table_[shndx];
268 return NULL;
269 }
270
271 private:
272 struct Opd_ent
273 {
274 unsigned int shndx;
275 bool discard : 1;
276 bool gc_mark : 1;
277 Address off;
278 };
279
280 // Return index into opd_ent_ array for .opd entry at OFF.
281 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
282 // apart when the language doesn't use the last 8-byte word, the
283 // environment pointer. Thus dividing the entry section offset by
284 // 16 will give an index into opd_ent_ that works for either layout
285 // of .opd. (It leaves some elements of the vector unused when .opd
286 // entries are spaced 24 bytes apart, but we don't know the spacing
287 // until relocations are processed, and in any case it is possible
288 // for an object to have some entries spaced 16 bytes apart and
289 // others 24 bytes apart.)
290 size_t
291 opd_ent_ndx(size_t off) const
292 { return off >> 4;}
293
294 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
295 unsigned int special_;
296
297 // For 64-bit, whether this object uses small model relocs to access
298 // the toc.
299 bool has_small_toc_reloc_;
300
301 // Set at the start of gc_process_relocs, when we know opd_ent_
302 // vector is valid. The flag could be made atomic and set in
303 // do_read_relocs with memory_order_release and then tested with
304 // memory_order_acquire, potentially resulting in fewer entries in
305 // access_from_map_.
306 bool opd_valid_;
307
308 // The first 8-byte word of an OPD entry gives the address of the
309 // entry point of the function. Relocatable object files have a
310 // relocation on this word. The following vector records the
311 // section and offset specified by these relocations.
312 std::vector<Opd_ent> opd_ent_;
313
314 // References made to this object's .opd section when running
315 // gc_process_relocs for another object, before the opd_ent_ vector
316 // is valid for this object.
317 Access_from access_from_map_;
318
319 // Whether input section has a 14-bit branch reloc.
320 std::vector<bool> has14_;
321
322 // The stub table to use for a given input section.
323 std::vector<Stub_table<size, big_endian>*> stub_table_;
324 };
325
326 template<int size, bool big_endian>
327 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
328 {
329 public:
330 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
331
332 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
333 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
334 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
335 opd_shndx_(0), opd_ent_()
336 { }
337
338 ~Powerpc_dynobj()
339 { }
340
341 // Call Sized_dynobj::do_read_symbols to read the symbols then
342 // read .opd from a dynamic object, filling in opd_ent_ vector,
343 void
344 do_read_symbols(Read_symbols_data*);
345
346 // The .opd section shndx.
347 unsigned int
348 opd_shndx() const
349 {
350 return this->opd_shndx_;
351 }
352
353 // The .opd section address.
354 Address
355 opd_address() const
356 {
357 return this->opd_address_;
358 }
359
360 // Init OPD entry arrays.
361 void
362 init_opd(size_t opd_size)
363 {
364 size_t count = this->opd_ent_ndx(opd_size);
365 this->opd_ent_.resize(count);
366 }
367
368 // Return section and offset of function entry for .opd + R_OFF.
369 unsigned int
370 get_opd_ent(Address r_off, Address* value = NULL) const
371 {
372 size_t ndx = this->opd_ent_ndx(r_off);
373 gold_assert(ndx < this->opd_ent_.size());
374 gold_assert(this->opd_ent_[ndx].shndx != 0);
375 if (value != NULL)
376 *value = this->opd_ent_[ndx].off;
377 return this->opd_ent_[ndx].shndx;
378 }
379
380 // Set section and offset of function entry for .opd + R_OFF.
381 void
382 set_opd_ent(Address r_off, unsigned int shndx, Address value)
383 {
384 size_t ndx = this->opd_ent_ndx(r_off);
385 gold_assert(ndx < this->opd_ent_.size());
386 this->opd_ent_[ndx].shndx = shndx;
387 this->opd_ent_[ndx].off = value;
388 }
389
390 private:
391 // Used to specify extent of executable sections.
392 struct Sec_info
393 {
394 Sec_info(Address start_, Address len_, unsigned int shndx_)
395 : start(start_), len(len_), shndx(shndx_)
396 { }
397
398 bool
399 operator<(const Sec_info& that) const
400 { return this->start < that.start; }
401
402 Address start;
403 Address len;
404 unsigned int shndx;
405 };
406
407 struct Opd_ent
408 {
409 unsigned int shndx;
410 Address off;
411 };
412
413 // Return index into opd_ent_ array for .opd entry at OFF.
414 size_t
415 opd_ent_ndx(size_t off) const
416 { return off >> 4;}
417
418 // For 64-bit the .opd section shndx and address.
419 unsigned int opd_shndx_;
420 Address opd_address_;
421
422 // The first 8-byte word of an OPD entry gives the address of the
423 // entry point of the function. Records the section and offset
424 // corresponding to the address. Note that in dynamic objects,
425 // offset is *not* relative to the section.
426 std::vector<Opd_ent> opd_ent_;
427 };
428
429 template<int size, bool big_endian>
430 class Target_powerpc : public Sized_target<size, big_endian>
431 {
432 public:
433 typedef
434 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
435 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
436 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
437 static const Address invalid_address = static_cast<Address>(0) - 1;
438 // Offset of tp and dtp pointers from start of TLS block.
439 static const Address tp_offset = 0x7000;
440 static const Address dtp_offset = 0x8000;
441
442 Target_powerpc()
443 : Sized_target<size, big_endian>(&powerpc_info),
444 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
445 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
446 dynbss_(NULL), tlsld_got_offset_(-1U),
447 stub_tables_(), branch_lookup_table_(), branch_info_(),
448 plt_thread_safe_(false)
449 {
450 }
451
452 // Process the relocations to determine unreferenced sections for
453 // garbage collection.
454 void
455 gc_process_relocs(Symbol_table* symtab,
456 Layout* layout,
457 Sized_relobj_file<size, big_endian>* object,
458 unsigned int data_shndx,
459 unsigned int sh_type,
460 const unsigned char* prelocs,
461 size_t reloc_count,
462 Output_section* output_section,
463 bool needs_special_offset_handling,
464 size_t local_symbol_count,
465 const unsigned char* plocal_symbols);
466
467 // Scan the relocations to look for symbol adjustments.
468 void
469 scan_relocs(Symbol_table* symtab,
470 Layout* layout,
471 Sized_relobj_file<size, big_endian>* object,
472 unsigned int data_shndx,
473 unsigned int sh_type,
474 const unsigned char* prelocs,
475 size_t reloc_count,
476 Output_section* output_section,
477 bool needs_special_offset_handling,
478 size_t local_symbol_count,
479 const unsigned char* plocal_symbols);
480
481 // Map input .toc section to output .got section.
482 const char*
483 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
484 {
485 if (size == 64 && strcmp(name, ".toc") == 0)
486 {
487 *plen = 4;
488 return ".got";
489 }
490 return NULL;
491 }
492
493 // Provide linker defined save/restore functions.
494 void
495 define_save_restore_funcs(Layout*, Symbol_table*);
496
497 // No stubs unless a final link.
498 bool
499 do_may_relax() const
500 { return !parameters->options().relocatable(); }
501
502 bool
503 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
504
505 void
506 do_plt_fde_location(const Output_data*, unsigned char*,
507 uint64_t*, off_t*) const;
508
509 // Stash info about branches, for stub generation.
510 void
511 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
512 unsigned int data_shndx, Address r_offset,
513 unsigned int r_type, unsigned int r_sym, Address addend)
514 {
515 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
516 this->branch_info_.push_back(info);
517 if (r_type == elfcpp::R_POWERPC_REL14
518 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
519 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
520 ppc_object->set_has_14bit_branch(data_shndx);
521 }
522
523 Stub_table<size, big_endian>*
524 new_stub_table();
525
526 void
527 do_define_standard_symbols(Symbol_table*, Layout*);
528
529 // Finalize the sections.
530 void
531 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
532
533 // Return the value to use for a dynamic which requires special
534 // treatment.
535 uint64_t
536 do_dynsym_value(const Symbol*) const;
537
538 // Return the PLT address to use for a local symbol.
539 uint64_t
540 do_plt_address_for_local(const Relobj*, unsigned int) const;
541
542 // Return the PLT address to use for a global symbol.
543 uint64_t
544 do_plt_address_for_global(const Symbol*) const;
545
546 // Return the offset to use for the GOT_INDX'th got entry which is
547 // for a local tls symbol specified by OBJECT, SYMNDX.
548 int64_t
549 do_tls_offset_for_local(const Relobj* object,
550 unsigned int symndx,
551 unsigned int got_indx) const;
552
553 // Return the offset to use for the GOT_INDX'th got entry which is
554 // for global tls symbol GSYM.
555 int64_t
556 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
557
558 void
559 do_function_location(Symbol_location*) const;
560
561 bool
562 do_can_check_for_function_pointers() const
563 { return true; }
564
565 // Relocate a section.
566 void
567 relocate_section(const Relocate_info<size, big_endian>*,
568 unsigned int sh_type,
569 const unsigned char* prelocs,
570 size_t reloc_count,
571 Output_section* output_section,
572 bool needs_special_offset_handling,
573 unsigned char* view,
574 Address view_address,
575 section_size_type view_size,
576 const Reloc_symbol_changes*);
577
578 // Scan the relocs during a relocatable link.
579 void
580 scan_relocatable_relocs(Symbol_table* symtab,
581 Layout* layout,
582 Sized_relobj_file<size, big_endian>* object,
583 unsigned int data_shndx,
584 unsigned int sh_type,
585 const unsigned char* prelocs,
586 size_t reloc_count,
587 Output_section* output_section,
588 bool needs_special_offset_handling,
589 size_t local_symbol_count,
590 const unsigned char* plocal_symbols,
591 Relocatable_relocs*);
592
593 // Emit relocations for a section.
594 void
595 relocate_relocs(const Relocate_info<size, big_endian>*,
596 unsigned int sh_type,
597 const unsigned char* prelocs,
598 size_t reloc_count,
599 Output_section* output_section,
600 typename elfcpp::Elf_types<size>::Elf_Off
601 offset_in_output_section,
602 const Relocatable_relocs*,
603 unsigned char*,
604 Address view_address,
605 section_size_type,
606 unsigned char* reloc_view,
607 section_size_type reloc_view_size);
608
609 // Return whether SYM is defined by the ABI.
610 bool
611 do_is_defined_by_abi(const Symbol* sym) const
612 {
613 return strcmp(sym->name(), "__tls_get_addr") == 0;
614 }
615
616 // Return the size of the GOT section.
617 section_size_type
618 got_size() const
619 {
620 gold_assert(this->got_ != NULL);
621 return this->got_->data_size();
622 }
623
624 // Get the PLT section.
625 const Output_data_plt_powerpc<size, big_endian>*
626 plt_section() const
627 {
628 gold_assert(this->plt_ != NULL);
629 return this->plt_;
630 }
631
632 // Get the IPLT section.
633 const Output_data_plt_powerpc<size, big_endian>*
634 iplt_section() const
635 {
636 gold_assert(this->iplt_ != NULL);
637 return this->iplt_;
638 }
639
640 // Get the .glink section.
641 const Output_data_glink<size, big_endian>*
642 glink_section() const
643 {
644 gold_assert(this->glink_ != NULL);
645 return this->glink_;
646 }
647
648 bool has_glink() const
649 { return this->glink_ != NULL; }
650
651 // Get the GOT section.
652 const Output_data_got_powerpc<size, big_endian>*
653 got_section() const
654 {
655 gold_assert(this->got_ != NULL);
656 return this->got_;
657 }
658
659 // Get the GOT section, creating it if necessary.
660 Output_data_got_powerpc<size, big_endian>*
661 got_section(Symbol_table*, Layout*);
662
663 Object*
664 do_make_elf_object(const std::string&, Input_file*, off_t,
665 const elfcpp::Ehdr<size, big_endian>&);
666
667 // Return the number of entries in the GOT.
668 unsigned int
669 got_entry_count() const
670 {
671 if (this->got_ == NULL)
672 return 0;
673 return this->got_size() / (size / 8);
674 }
675
676 // Return the number of entries in the PLT.
677 unsigned int
678 plt_entry_count() const;
679
680 // Return the offset of the first non-reserved PLT entry.
681 unsigned int
682 first_plt_entry_offset() const;
683
684 // Return the size of each PLT entry.
685 unsigned int
686 plt_entry_size() const;
687
688 // Add any special sections for this symbol to the gc work list.
689 // For powerpc64, this adds the code section of a function
690 // descriptor.
691 void
692 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
693
694 // Handle target specific gc actions when adding a gc reference from
695 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
696 // and DST_OFF. For powerpc64, this adds a referenc to the code
697 // section of a function descriptor.
698 void
699 do_gc_add_reference(Symbol_table* symtab,
700 Object* src_obj,
701 unsigned int src_shndx,
702 Object* dst_obj,
703 unsigned int dst_shndx,
704 Address dst_off) const;
705
706 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
707 const Stub_tables&
708 stub_tables() const
709 { return this->stub_tables_; }
710
711 const Output_data_brlt_powerpc<size, big_endian>*
712 brlt_section() const
713 { return this->brlt_section_; }
714
715 void
716 add_branch_lookup_table(Address to)
717 {
718 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
719 this->branch_lookup_table_.insert(std::make_pair(to, off));
720 }
721
722 Address
723 find_branch_lookup_table(Address to)
724 {
725 typename Branch_lookup_table::const_iterator p
726 = this->branch_lookup_table_.find(to);
727 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
728 }
729
730 void
731 write_branch_lookup_table(unsigned char *oview)
732 {
733 for (typename Branch_lookup_table::const_iterator p
734 = this->branch_lookup_table_.begin();
735 p != this->branch_lookup_table_.end();
736 ++p)
737 {
738 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
739 }
740 }
741
742 bool
743 plt_thread_safe() const
744 { return this->plt_thread_safe_; }
745
746 private:
747
748 class Track_tls
749 {
750 public:
751 enum Tls_get_addr
752 {
753 NOT_EXPECTED = 0,
754 EXPECTED = 1,
755 SKIP = 2,
756 NORMAL = 3
757 };
758
759 Track_tls()
760 : tls_get_addr_(NOT_EXPECTED),
761 relinfo_(NULL), relnum_(0), r_offset_(0)
762 { }
763
764 ~Track_tls()
765 {
766 if (this->tls_get_addr_ != NOT_EXPECTED)
767 this->missing();
768 }
769
770 void
771 missing(void)
772 {
773 if (this->relinfo_ != NULL)
774 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
775 _("missing expected __tls_get_addr call"));
776 }
777
778 void
779 expect_tls_get_addr_call(
780 const Relocate_info<size, big_endian>* relinfo,
781 size_t relnum,
782 Address r_offset)
783 {
784 this->tls_get_addr_ = EXPECTED;
785 this->relinfo_ = relinfo;
786 this->relnum_ = relnum;
787 this->r_offset_ = r_offset;
788 }
789
790 void
791 expect_tls_get_addr_call()
792 { this->tls_get_addr_ = EXPECTED; }
793
794 void
795 skip_next_tls_get_addr_call()
796 {this->tls_get_addr_ = SKIP; }
797
798 Tls_get_addr
799 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
800 {
801 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
802 || r_type == elfcpp::R_PPC_PLTREL24)
803 && gsym != NULL
804 && strcmp(gsym->name(), "__tls_get_addr") == 0);
805 Tls_get_addr last_tls = this->tls_get_addr_;
806 this->tls_get_addr_ = NOT_EXPECTED;
807 if (is_tls_call && last_tls != EXPECTED)
808 return last_tls;
809 else if (!is_tls_call && last_tls != NOT_EXPECTED)
810 {
811 this->missing();
812 return EXPECTED;
813 }
814 return NORMAL;
815 }
816
817 private:
818 // What we're up to regarding calls to __tls_get_addr.
819 // On powerpc, the branch and link insn making a call to
820 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
821 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
822 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
823 // The marker relocation always comes first, and has the same
824 // symbol as the reloc on the insn setting up the __tls_get_addr
825 // argument. This ties the arg setup insn with the call insn,
826 // allowing ld to safely optimize away the call. We check that
827 // every call to __tls_get_addr has a marker relocation, and that
828 // every marker relocation is on a call to __tls_get_addr.
829 Tls_get_addr tls_get_addr_;
830 // Info about the last reloc for error message.
831 const Relocate_info<size, big_endian>* relinfo_;
832 size_t relnum_;
833 Address r_offset_;
834 };
835
836 // The class which scans relocations.
837 class Scan : protected Track_tls
838 {
839 public:
840 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
841
842 Scan()
843 : Track_tls(), issued_non_pic_error_(false)
844 { }
845
846 static inline int
847 get_reference_flags(unsigned int r_type);
848
849 inline void
850 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
851 Sized_relobj_file<size, big_endian>* object,
852 unsigned int data_shndx,
853 Output_section* output_section,
854 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
855 const elfcpp::Sym<size, big_endian>& lsym,
856 bool is_discarded);
857
858 inline void
859 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
860 Sized_relobj_file<size, big_endian>* object,
861 unsigned int data_shndx,
862 Output_section* output_section,
863 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
864 Symbol* gsym);
865
866 inline bool
867 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
868 Target_powerpc* ,
869 Sized_relobj_file<size, big_endian>* ,
870 unsigned int ,
871 Output_section* ,
872 const elfcpp::Rela<size, big_endian>& ,
873 unsigned int r_type,
874 const elfcpp::Sym<size, big_endian>&)
875 {
876 // PowerPC64 .opd is not folded, so any identical function text
877 // may be folded and we'll still keep function addresses distinct.
878 // That means no reloc is of concern here.
879 if (size == 64)
880 return false;
881 // For 32-bit, conservatively assume anything but calls to
882 // function code might be taking the address of the function.
883 return !is_branch_reloc(r_type);
884 }
885
886 inline bool
887 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
888 Target_powerpc* ,
889 Sized_relobj_file<size, big_endian>* ,
890 unsigned int ,
891 Output_section* ,
892 const elfcpp::Rela<size, big_endian>& ,
893 unsigned int r_type,
894 Symbol*)
895 {
896 // As above.
897 if (size == 64)
898 return false;
899 return !is_branch_reloc(r_type);
900 }
901
902 static bool
903 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
904 unsigned int r_type, bool report_err);
905
906 private:
907 static void
908 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
909 unsigned int r_type);
910
911 static void
912 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
913 unsigned int r_type, Symbol*);
914
915 static void
916 generate_tls_call(Symbol_table* symtab, Layout* layout,
917 Target_powerpc* target);
918
919 void
920 check_non_pic(Relobj*, unsigned int r_type);
921
922 // Whether we have issued an error about a non-PIC compilation.
923 bool issued_non_pic_error_;
924 };
925
926 Address
927 symval_for_branch(const Symbol_table* symtab, Address value,
928 const Sized_symbol<size>* gsym,
929 Powerpc_relobj<size, big_endian>* object,
930 unsigned int *dest_shndx);
931
932 // The class which implements relocation.
933 class Relocate : protected Track_tls
934 {
935 public:
936 // Use 'at' branch hints when true, 'y' when false.
937 // FIXME maybe: set this with an option.
938 static const bool is_isa_v2 = true;
939
940 Relocate()
941 : Track_tls()
942 { }
943
944 // Do a relocation. Return false if the caller should not issue
945 // any warnings about this relocation.
946 inline bool
947 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
948 Output_section*, size_t relnum,
949 const elfcpp::Rela<size, big_endian>&,
950 unsigned int r_type, const Sized_symbol<size>*,
951 const Symbol_value<size>*,
952 unsigned char*,
953 typename elfcpp::Elf_types<size>::Elf_Addr,
954 section_size_type);
955 };
956
957 class Relocate_comdat_behavior
958 {
959 public:
960 // Decide what the linker should do for relocations that refer to
961 // discarded comdat sections.
962 inline Comdat_behavior
963 get(const char* name)
964 {
965 gold::Default_comdat_behavior default_behavior;
966 Comdat_behavior ret = default_behavior.get(name);
967 if (ret == CB_WARNING)
968 {
969 if (size == 32
970 && (strcmp(name, ".fixup") == 0
971 || strcmp(name, ".got2") == 0))
972 ret = CB_IGNORE;
973 if (size == 64
974 && (strcmp(name, ".opd") == 0
975 || strcmp(name, ".toc") == 0
976 || strcmp(name, ".toc1") == 0))
977 ret = CB_IGNORE;
978 }
979 return ret;
980 }
981 };
982
983 // A class which returns the size required for a relocation type,
984 // used while scanning relocs during a relocatable link.
985 class Relocatable_size_for_reloc
986 {
987 public:
988 unsigned int
989 get_size_for_reloc(unsigned int, Relobj*)
990 {
991 gold_unreachable();
992 return 0;
993 }
994 };
995
996 // Optimize the TLS relocation type based on what we know about the
997 // symbol. IS_FINAL is true if the final address of this symbol is
998 // known at link time.
999
1000 tls::Tls_optimization
1001 optimize_tls_gd(bool is_final)
1002 {
1003 // If we are generating a shared library, then we can't do anything
1004 // in the linker.
1005 if (parameters->options().shared())
1006 return tls::TLSOPT_NONE;
1007
1008 if (!is_final)
1009 return tls::TLSOPT_TO_IE;
1010 return tls::TLSOPT_TO_LE;
1011 }
1012
1013 tls::Tls_optimization
1014 optimize_tls_ld()
1015 {
1016 if (parameters->options().shared())
1017 return tls::TLSOPT_NONE;
1018
1019 return tls::TLSOPT_TO_LE;
1020 }
1021
1022 tls::Tls_optimization
1023 optimize_tls_ie(bool is_final)
1024 {
1025 if (!is_final || parameters->options().shared())
1026 return tls::TLSOPT_NONE;
1027
1028 return tls::TLSOPT_TO_LE;
1029 }
1030
1031 // Create glink.
1032 void
1033 make_glink_section(Layout*);
1034
1035 // Create the PLT section.
1036 void
1037 make_plt_section(Symbol_table*, Layout*);
1038
1039 void
1040 make_iplt_section(Symbol_table*, Layout*);
1041
1042 void
1043 make_brlt_section(Layout*);
1044
1045 // Create a PLT entry for a global symbol.
1046 void
1047 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1048
1049 // Create a PLT entry for a local IFUNC symbol.
1050 void
1051 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1052 Sized_relobj_file<size, big_endian>*,
1053 unsigned int);
1054
1055
1056 // Create a GOT entry for local dynamic __tls_get_addr.
1057 unsigned int
1058 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1059 Sized_relobj_file<size, big_endian>* object);
1060
1061 unsigned int
1062 tlsld_got_offset() const
1063 {
1064 return this->tlsld_got_offset_;
1065 }
1066
1067 // Get the dynamic reloc section, creating it if necessary.
1068 Reloc_section*
1069 rela_dyn_section(Layout*);
1070
1071 // Similarly, but for ifunc symbols get the one for ifunc.
1072 Reloc_section*
1073 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1074
1075 // Copy a relocation against a global symbol.
1076 void
1077 copy_reloc(Symbol_table* symtab, Layout* layout,
1078 Sized_relobj_file<size, big_endian>* object,
1079 unsigned int shndx, Output_section* output_section,
1080 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1081 {
1082 this->copy_relocs_.copy_reloc(symtab, layout,
1083 symtab->get_sized_symbol<size>(sym),
1084 object, shndx, output_section,
1085 reloc, this->rela_dyn_section(layout));
1086 }
1087
1088 // Look over all the input sections, deciding where to place stubs.
1089 void
1090 group_sections(Layout*, const Task*);
1091
1092 // Sort output sections by address.
1093 struct Sort_sections
1094 {
1095 bool
1096 operator()(const Output_section* sec1, const Output_section* sec2)
1097 { return sec1->address() < sec2->address(); }
1098 };
1099
1100 class Branch_info
1101 {
1102 public:
1103 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1104 unsigned int data_shndx,
1105 Address r_offset,
1106 unsigned int r_type,
1107 unsigned int r_sym,
1108 Address addend)
1109 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1110 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1111 { }
1112
1113 ~Branch_info()
1114 { }
1115
1116 // If this branch needs a plt call stub, or a long branch stub, make one.
1117 void
1118 make_stub(Stub_table<size, big_endian>*,
1119 Stub_table<size, big_endian>*,
1120 Symbol_table*) const;
1121
1122 private:
1123 // The branch location..
1124 Powerpc_relobj<size, big_endian>* object_;
1125 unsigned int shndx_;
1126 Address offset_;
1127 // ..and the branch type and destination.
1128 unsigned int r_type_;
1129 unsigned int r_sym_;
1130 Address addend_;
1131 };
1132
1133 // Information about this specific target which we pass to the
1134 // general Target structure.
1135 static Target::Target_info powerpc_info;
1136
1137 // The types of GOT entries needed for this platform.
1138 // These values are exposed to the ABI in an incremental link.
1139 // Do not renumber existing values without changing the version
1140 // number of the .gnu_incremental_inputs section.
1141 enum Got_type
1142 {
1143 GOT_TYPE_STANDARD,
1144 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1145 GOT_TYPE_DTPREL, // entry for @got@dtprel
1146 GOT_TYPE_TPREL // entry for @got@tprel
1147 };
1148
1149 // The GOT section.
1150 Output_data_got_powerpc<size, big_endian>* got_;
1151 // The PLT section. This is a container for a table of addresses,
1152 // and their relocations. Each address in the PLT has a dynamic
1153 // relocation (R_*_JMP_SLOT) and each address will have a
1154 // corresponding entry in .glink for lazy resolution of the PLT.
1155 // ppc32 initialises the PLT to point at the .glink entry, while
1156 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1157 // linker adds a stub that loads the PLT entry into ctr then
1158 // branches to ctr. There may be more than one stub for each PLT
1159 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1160 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1161 Output_data_plt_powerpc<size, big_endian>* plt_;
1162 // The IPLT section. Like plt_, this is a container for a table of
1163 // addresses and their relocations, specifically for STT_GNU_IFUNC
1164 // functions that resolve locally (STT_GNU_IFUNC functions that
1165 // don't resolve locally go in PLT). Unlike plt_, these have no
1166 // entry in .glink for lazy resolution, and the relocation section
1167 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1168 // the relocation section may contain relocations against
1169 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1170 // relocation section will appear at the end of other dynamic
1171 // relocations, so that ld.so applies these relocations after other
1172 // dynamic relocations. In a static executable, the relocation
1173 // section is emitted and marked with __rela_iplt_start and
1174 // __rela_iplt_end symbols.
1175 Output_data_plt_powerpc<size, big_endian>* iplt_;
1176 // Section holding long branch destinations.
1177 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1178 // The .glink section.
1179 Output_data_glink<size, big_endian>* glink_;
1180 // The dynamic reloc section.
1181 Reloc_section* rela_dyn_;
1182 // Relocs saved to avoid a COPY reloc.
1183 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1184 // Space for variables copied with a COPY reloc.
1185 Output_data_space* dynbss_;
1186 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1187 unsigned int tlsld_got_offset_;
1188
1189 Stub_tables stub_tables_;
1190 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1191 Branch_lookup_table branch_lookup_table_;
1192
1193 typedef std::vector<Branch_info> Branches;
1194 Branches branch_info_;
1195
1196 bool plt_thread_safe_;
1197 };
1198
1199 template<>
1200 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1201 {
1202 32, // size
1203 true, // is_big_endian
1204 elfcpp::EM_PPC, // machine_code
1205 false, // has_make_symbol
1206 false, // has_resolve
1207 false, // has_code_fill
1208 true, // is_default_stack_executable
1209 false, // can_icf_inline_merge_sections
1210 '\0', // wrap_char
1211 "/usr/lib/ld.so.1", // dynamic_linker
1212 0x10000000, // default_text_segment_address
1213 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1214 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1215 false, // isolate_execinstr
1216 0, // rosegment_gap
1217 elfcpp::SHN_UNDEF, // small_common_shndx
1218 elfcpp::SHN_UNDEF, // large_common_shndx
1219 0, // small_common_section_flags
1220 0, // large_common_section_flags
1221 NULL, // attributes_section
1222 NULL, // attributes_vendor
1223 "_start" // entry_symbol_name
1224 };
1225
1226 template<>
1227 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1228 {
1229 32, // size
1230 false, // is_big_endian
1231 elfcpp::EM_PPC, // machine_code
1232 false, // has_make_symbol
1233 false, // has_resolve
1234 false, // has_code_fill
1235 true, // is_default_stack_executable
1236 false, // can_icf_inline_merge_sections
1237 '\0', // wrap_char
1238 "/usr/lib/ld.so.1", // dynamic_linker
1239 0x10000000, // default_text_segment_address
1240 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1241 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1242 false, // isolate_execinstr
1243 0, // rosegment_gap
1244 elfcpp::SHN_UNDEF, // small_common_shndx
1245 elfcpp::SHN_UNDEF, // large_common_shndx
1246 0, // small_common_section_flags
1247 0, // large_common_section_flags
1248 NULL, // attributes_section
1249 NULL, // attributes_vendor
1250 "_start" // entry_symbol_name
1251 };
1252
1253 template<>
1254 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1255 {
1256 64, // size
1257 true, // is_big_endian
1258 elfcpp::EM_PPC64, // machine_code
1259 false, // has_make_symbol
1260 false, // has_resolve
1261 false, // has_code_fill
1262 true, // is_default_stack_executable
1263 false, // can_icf_inline_merge_sections
1264 '\0', // wrap_char
1265 "/usr/lib/ld.so.1", // dynamic_linker
1266 0x10000000, // default_text_segment_address
1267 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1268 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1269 false, // isolate_execinstr
1270 0, // rosegment_gap
1271 elfcpp::SHN_UNDEF, // small_common_shndx
1272 elfcpp::SHN_UNDEF, // large_common_shndx
1273 0, // small_common_section_flags
1274 0, // large_common_section_flags
1275 NULL, // attributes_section
1276 NULL, // attributes_vendor
1277 "_start" // entry_symbol_name
1278 };
1279
1280 template<>
1281 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1282 {
1283 64, // size
1284 false, // is_big_endian
1285 elfcpp::EM_PPC64, // machine_code
1286 false, // has_make_symbol
1287 false, // has_resolve
1288 false, // has_code_fill
1289 true, // is_default_stack_executable
1290 false, // can_icf_inline_merge_sections
1291 '\0', // wrap_char
1292 "/usr/lib/ld.so.1", // dynamic_linker
1293 0x10000000, // default_text_segment_address
1294 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1295 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1296 false, // isolate_execinstr
1297 0, // rosegment_gap
1298 elfcpp::SHN_UNDEF, // small_common_shndx
1299 elfcpp::SHN_UNDEF, // large_common_shndx
1300 0, // small_common_section_flags
1301 0, // large_common_section_flags
1302 NULL, // attributes_section
1303 NULL, // attributes_vendor
1304 "_start" // entry_symbol_name
1305 };
1306
1307 inline bool
1308 is_branch_reloc(unsigned int r_type)
1309 {
1310 return (r_type == elfcpp::R_POWERPC_REL24
1311 || r_type == elfcpp::R_PPC_PLTREL24
1312 || r_type == elfcpp::R_PPC_LOCAL24PC
1313 || r_type == elfcpp::R_POWERPC_REL14
1314 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1315 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1316 || r_type == elfcpp::R_POWERPC_ADDR24
1317 || r_type == elfcpp::R_POWERPC_ADDR14
1318 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1319 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1320 }
1321
1322 // If INSN is an opcode that may be used with an @tls operand, return
1323 // the transformed insn for TLS optimisation, otherwise return 0. If
1324 // REG is non-zero only match an insn with RB or RA equal to REG.
1325 uint32_t
1326 at_tls_transform(uint32_t insn, unsigned int reg)
1327 {
1328 if ((insn & (0x3f << 26)) != 31 << 26)
1329 return 0;
1330
1331 unsigned int rtra;
1332 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1333 rtra = insn & ((1 << 26) - (1 << 16));
1334 else if (((insn >> 16) & 0x1f) == reg)
1335 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1336 else
1337 return 0;
1338
1339 if ((insn & (0x3ff << 1)) == 266 << 1)
1340 // add -> addi
1341 insn = 14 << 26;
1342 else if ((insn & (0x1f << 1)) == 23 << 1
1343 && ((insn & (0x1f << 6)) < 14 << 6
1344 || ((insn & (0x1f << 6)) >= 16 << 6
1345 && (insn & (0x1f << 6)) < 24 << 6)))
1346 // load and store indexed -> dform
1347 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1348 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1349 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1350 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1351 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1352 // lwax -> lwa
1353 insn = (58 << 26) | 2;
1354 else
1355 return 0;
1356 insn |= rtra;
1357 return insn;
1358 }
1359
1360 // Modified version of symtab.h class Symbol member
1361 // Given a direct absolute or pc-relative static relocation against
1362 // the global symbol, this function returns whether a dynamic relocation
1363 // is needed.
1364
1365 template<int size>
1366 bool
1367 needs_dynamic_reloc(const Symbol* gsym, int flags)
1368 {
1369 // No dynamic relocations in a static link!
1370 if (parameters->doing_static_link())
1371 return false;
1372
1373 // A reference to an undefined symbol from an executable should be
1374 // statically resolved to 0, and does not need a dynamic relocation.
1375 // This matches gnu ld behavior.
1376 if (gsym->is_undefined() && !parameters->options().shared())
1377 return false;
1378
1379 // A reference to an absolute symbol does not need a dynamic relocation.
1380 if (gsym->is_absolute())
1381 return false;
1382
1383 // An absolute reference within a position-independent output file
1384 // will need a dynamic relocation.
1385 if ((flags & Symbol::ABSOLUTE_REF)
1386 && parameters->options().output_is_position_independent())
1387 return true;
1388
1389 // A function call that can branch to a local PLT entry does not need
1390 // a dynamic relocation.
1391 if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
1392 return false;
1393
1394 // A reference to any PLT entry in a non-position-independent executable
1395 // does not need a dynamic relocation.
1396 // Except due to having function descriptors on powerpc64 we don't define
1397 // functions to their plt code in an executable, so this doesn't apply.
1398 if (size == 32
1399 && !parameters->options().output_is_position_independent()
1400 && gsym->has_plt_offset())
1401 return false;
1402
1403 // A reference to a symbol defined in a dynamic object or to a
1404 // symbol that is preemptible will need a dynamic relocation.
1405 if (gsym->is_from_dynobj()
1406 || gsym->is_undefined()
1407 || gsym->is_preemptible())
1408 return true;
1409
1410 // For all other cases, return FALSE.
1411 return false;
1412 }
1413
1414 // Modified version of symtab.h class Symbol member
1415 // Whether we should use the PLT offset associated with a symbol for
1416 // a relocation. FLAGS is a set of Reference_flags.
1417
1418 template<int size>
1419 bool
1420 use_plt_offset(const Symbol* gsym, int flags)
1421 {
1422 // If the symbol doesn't have a PLT offset, then naturally we
1423 // don't want to use it.
1424 if (!gsym->has_plt_offset())
1425 return false;
1426
1427 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
1428 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1429 return true;
1430
1431 // If we are going to generate a dynamic relocation, then we will
1432 // wind up using that, so no need to use the PLT entry.
1433 if (needs_dynamic_reloc<size>(gsym, flags))
1434 return false;
1435
1436 // If the symbol is from a dynamic object, we need to use the PLT
1437 // entry.
1438 if (gsym->is_from_dynobj())
1439 return true;
1440
1441 // If we are generating a shared object, and this symbol is
1442 // undefined or preemptible, we need to use the PLT entry.
1443 if (parameters->options().shared()
1444 && (gsym->is_undefined() || gsym->is_preemptible()))
1445 return true;
1446
1447 // If this is a call to a weak undefined symbol, we need to use
1448 // the PLT entry; the symbol may be defined by a library loaded
1449 // at runtime.
1450 if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
1451 return true;
1452
1453 // Otherwise we can use the regular definition.
1454 return false;
1455 }
1456
1457 template<int size, bool big_endian>
1458 class Powerpc_relocate_functions
1459 {
1460 public:
1461 enum Overflow_check
1462 {
1463 CHECK_NONE,
1464 CHECK_SIGNED,
1465 CHECK_BITFIELD
1466 };
1467
1468 enum Status
1469 {
1470 STATUS_OK,
1471 STATUS_OVERFLOW
1472 };
1473
1474 private:
1475 typedef Powerpc_relocate_functions<size, big_endian> This;
1476 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1477
1478 template<int valsize>
1479 static inline bool
1480 has_overflow_signed(Address value)
1481 {
1482 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1483 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1484 limit <<= ((valsize - 1) >> 1);
1485 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1486 return value + limit > (limit << 1) - 1;
1487 }
1488
1489 template<int valsize>
1490 static inline bool
1491 has_overflow_bitfield(Address value)
1492 {
1493 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1494 limit <<= ((valsize - 1) >> 1);
1495 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1496 return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1497 }
1498
1499 template<int valsize>
1500 static inline Status
1501 overflowed(Address value, Overflow_check overflow)
1502 {
1503 if (overflow == CHECK_SIGNED)
1504 {
1505 if (has_overflow_signed<valsize>(value))
1506 return STATUS_OVERFLOW;
1507 }
1508 else if (overflow == CHECK_BITFIELD)
1509 {
1510 if (has_overflow_bitfield<valsize>(value))
1511 return STATUS_OVERFLOW;
1512 }
1513 return STATUS_OK;
1514 }
1515
1516 // Do a simple RELA relocation
1517 template<int valsize>
1518 static inline Status
1519 rela(unsigned char* view, Address value, Overflow_check overflow)
1520 {
1521 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1522 Valtype* wv = reinterpret_cast<Valtype*>(view);
1523 elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1524 return overflowed<valsize>(value, overflow);
1525 }
1526
1527 template<int valsize>
1528 static inline Status
1529 rela(unsigned char* view,
1530 unsigned int right_shift,
1531 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1532 Address value,
1533 Overflow_check overflow)
1534 {
1535 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1536 Valtype* wv = reinterpret_cast<Valtype*>(view);
1537 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1538 Valtype reloc = value >> right_shift;
1539 val &= ~dst_mask;
1540 reloc &= dst_mask;
1541 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1542 return overflowed<valsize>(value >> right_shift, overflow);
1543 }
1544
1545 // Do a simple RELA relocation, unaligned.
1546 template<int valsize>
1547 static inline Status
1548 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1549 {
1550 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1551 return overflowed<valsize>(value, overflow);
1552 }
1553
1554 template<int valsize>
1555 static inline Status
1556 rela_ua(unsigned char* view,
1557 unsigned int right_shift,
1558 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1559 Address value,
1560 Overflow_check overflow)
1561 {
1562 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1563 Valtype;
1564 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1565 Valtype reloc = value >> right_shift;
1566 val &= ~dst_mask;
1567 reloc &= dst_mask;
1568 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1569 return overflowed<valsize>(value >> right_shift, overflow);
1570 }
1571
1572 public:
1573 // R_PPC64_ADDR64: (Symbol + Addend)
1574 static inline void
1575 addr64(unsigned char* view, Address value)
1576 { This::template rela<64>(view, value, CHECK_NONE); }
1577
1578 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1579 static inline void
1580 addr64_u(unsigned char* view, Address value)
1581 { This::template rela_ua<64>(view, value, CHECK_NONE); }
1582
1583 // R_POWERPC_ADDR32: (Symbol + Addend)
1584 static inline Status
1585 addr32(unsigned char* view, Address value, Overflow_check overflow)
1586 { return This::template rela<32>(view, value, overflow); }
1587
1588 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1589 static inline Status
1590 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1591 { return This::template rela_ua<32>(view, value, overflow); }
1592
1593 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1594 static inline Status
1595 addr24(unsigned char* view, Address value, Overflow_check overflow)
1596 {
1597 Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1598 if (overflow != CHECK_NONE && (value & 3) != 0)
1599 stat = STATUS_OVERFLOW;
1600 return stat;
1601 }
1602
1603 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1604 static inline Status
1605 addr16(unsigned char* view, Address value, Overflow_check overflow)
1606 { return This::template rela<16>(view, value, overflow); }
1607
1608 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1609 static inline Status
1610 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1611 { return This::template rela_ua<16>(view, value, overflow); }
1612
1613 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1614 static inline Status
1615 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1616 {
1617 Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1618 if (overflow != CHECK_NONE && (value & 3) != 0)
1619 stat = STATUS_OVERFLOW;
1620 return stat;
1621 }
1622
1623 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1624 static inline void
1625 addr16_hi(unsigned char* view, Address value)
1626 { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1627
1628 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1629 static inline void
1630 addr16_ha(unsigned char* view, Address value)
1631 { This::addr16_hi(view, value + 0x8000); }
1632
1633 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1634 static inline void
1635 addr16_hi2(unsigned char* view, Address value)
1636 { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1637
1638 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1639 static inline void
1640 addr16_ha2(unsigned char* view, Address value)
1641 { This::addr16_hi2(view, value + 0x8000); }
1642
1643 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1644 static inline void
1645 addr16_hi3(unsigned char* view, Address value)
1646 { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1647
1648 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1649 static inline void
1650 addr16_ha3(unsigned char* view, Address value)
1651 { This::addr16_hi3(view, value + 0x8000); }
1652
1653 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1654 static inline Status
1655 addr14(unsigned char* view, Address value, Overflow_check overflow)
1656 {
1657 Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1658 if (overflow != CHECK_NONE && (value & 3) != 0)
1659 stat = STATUS_OVERFLOW;
1660 return stat;
1661 }
1662 };
1663
1664 // Stash away the index of .got2 or .opd in a relocatable object, if
1665 // such a section exists.
1666
1667 template<int size, bool big_endian>
1668 bool
1669 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1670 Read_symbols_data* sd)
1671 {
1672 const unsigned char* const pshdrs = sd->section_headers->data();
1673 const unsigned char* namesu = sd->section_names->data();
1674 const char* names = reinterpret_cast<const char*>(namesu);
1675 section_size_type names_size = sd->section_names_size;
1676 const unsigned char* s;
1677
1678 s = this->template find_shdr<size, big_endian>(pshdrs,
1679 size == 32 ? ".got2" : ".opd",
1680 names, names_size, NULL);
1681 if (s != NULL)
1682 {
1683 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1684 this->special_ = ndx;
1685 }
1686 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1687 }
1688
1689 // Examine .rela.opd to build info about function entry points.
1690
1691 template<int size, bool big_endian>
1692 void
1693 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1694 size_t reloc_count,
1695 const unsigned char* prelocs,
1696 const unsigned char* plocal_syms)
1697 {
1698 if (size == 64)
1699 {
1700 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1701 Reltype;
1702 const int reloc_size
1703 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1704 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1705 Address expected_off = 0;
1706 bool regular = true;
1707 unsigned int opd_ent_size = 0;
1708
1709 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1710 {
1711 Reltype reloc(prelocs);
1712 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1713 = reloc.get_r_info();
1714 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1715 if (r_type == elfcpp::R_PPC64_ADDR64)
1716 {
1717 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1718 typename elfcpp::Elf_types<size>::Elf_Addr value;
1719 bool is_ordinary;
1720 unsigned int shndx;
1721 if (r_sym < this->local_symbol_count())
1722 {
1723 typename elfcpp::Sym<size, big_endian>
1724 lsym(plocal_syms + r_sym * sym_size);
1725 shndx = lsym.get_st_shndx();
1726 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1727 value = lsym.get_st_value();
1728 }
1729 else
1730 shndx = this->symbol_section_and_value(r_sym, &value,
1731 &is_ordinary);
1732 this->set_opd_ent(reloc.get_r_offset(), shndx,
1733 value + reloc.get_r_addend());
1734 if (i == 2)
1735 {
1736 expected_off = reloc.get_r_offset();
1737 opd_ent_size = expected_off;
1738 }
1739 else if (expected_off != reloc.get_r_offset())
1740 regular = false;
1741 expected_off += opd_ent_size;
1742 }
1743 else if (r_type == elfcpp::R_PPC64_TOC)
1744 {
1745 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1746 regular = false;
1747 }
1748 else
1749 {
1750 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1751 this->name().c_str(), r_type);
1752 regular = false;
1753 }
1754 }
1755 if (reloc_count <= 2)
1756 opd_ent_size = this->section_size(this->opd_shndx());
1757 if (opd_ent_size != 24 && opd_ent_size != 16)
1758 regular = false;
1759 if (!regular)
1760 {
1761 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1762 this->name().c_str());
1763 opd_ent_size = 0;
1764 }
1765 }
1766 }
1767
1768 template<int size, bool big_endian>
1769 void
1770 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1771 {
1772 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1773 if (size == 64)
1774 {
1775 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1776 p != rd->relocs.end();
1777 ++p)
1778 {
1779 if (p->data_shndx == this->opd_shndx())
1780 {
1781 uint64_t opd_size = this->section_size(this->opd_shndx());
1782 gold_assert(opd_size == static_cast<size_t>(opd_size));
1783 if (opd_size != 0)
1784 {
1785 this->init_opd(opd_size);
1786 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1787 rd->local_symbols->data());
1788 }
1789 break;
1790 }
1791 }
1792 }
1793 }
1794
1795 // Call Sized_dynobj::do_read_symbols to read the symbols then
1796 // read .opd from a dynamic object, filling in opd_ent_ vector,
1797
1798 template<int size, bool big_endian>
1799 void
1800 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1801 {
1802 Sized_dynobj<size, big_endian>::do_read_symbols(sd);
1803 if (size == 64)
1804 {
1805 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1806 const unsigned char* const pshdrs = sd->section_headers->data();
1807 const unsigned char* namesu = sd->section_names->data();
1808 const char* names = reinterpret_cast<const char*>(namesu);
1809 const unsigned char* s = NULL;
1810 const unsigned char* opd;
1811 section_size_type opd_size;
1812
1813 // Find and read .opd section.
1814 while (1)
1815 {
1816 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1817 sd->section_names_size,
1818 s);
1819 if (s == NULL)
1820 return;
1821
1822 typename elfcpp::Shdr<size, big_endian> shdr(s);
1823 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1824 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1825 {
1826 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1827 this->opd_address_ = shdr.get_sh_addr();
1828 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1829 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1830 true, false);
1831 break;
1832 }
1833 }
1834
1835 // Build set of executable sections.
1836 // Using a set is probably overkill. There is likely to be only
1837 // a few executable sections, typically .init, .text and .fini,
1838 // and they are generally grouped together.
1839 typedef std::set<Sec_info> Exec_sections;
1840 Exec_sections exec_sections;
1841 s = pshdrs;
1842 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1843 {
1844 typename elfcpp::Shdr<size, big_endian> shdr(s);
1845 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1846 && ((shdr.get_sh_flags()
1847 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1848 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1849 && shdr.get_sh_size() != 0)
1850 {
1851 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1852 shdr.get_sh_size(), i));
1853 }
1854 }
1855 if (exec_sections.empty())
1856 return;
1857
1858 // Look over the OPD entries. This is complicated by the fact
1859 // that some binaries will use two-word entries while others
1860 // will use the standard three-word entries. In most cases
1861 // the third word (the environment pointer for languages like
1862 // Pascal) is unused and will be zero. If the third word is
1863 // used it should not be pointing into executable sections,
1864 // I think.
1865 this->init_opd(opd_size);
1866 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1867 {
1868 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1869 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1870 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1871 if (val == 0)
1872 // Chances are that this is the third word of an OPD entry.
1873 continue;
1874 typename Exec_sections::const_iterator e
1875 = exec_sections.upper_bound(Sec_info(val, 0, 0));
1876 if (e != exec_sections.begin())
1877 {
1878 --e;
1879 if (e->start <= val && val < e->start + e->len)
1880 {
1881 // We have an address in an executable section.
1882 // VAL ought to be the function entry, set it up.
1883 this->set_opd_ent(p - opd, e->shndx, val);
1884 // Skip second word of OPD entry, the TOC pointer.
1885 p += 8;
1886 }
1887 }
1888 // If we didn't match any executable sections, we likely
1889 // have a non-zero third word in the OPD entry.
1890 }
1891 }
1892 }
1893
1894 // Set up some symbols.
1895
1896 template<int size, bool big_endian>
1897 void
1898 Target_powerpc<size, big_endian>::do_define_standard_symbols(
1899 Symbol_table* symtab,
1900 Layout* layout)
1901 {
1902 if (size == 32)
1903 {
1904 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1905 // undefined when scanning relocs (and thus requires
1906 // non-relative dynamic relocs). The proper value will be
1907 // updated later.
1908 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1909 if (gotsym != NULL && gotsym->is_undefined())
1910 {
1911 Target_powerpc<size, big_endian>* target =
1912 static_cast<Target_powerpc<size, big_endian>*>(
1913 parameters->sized_target<size, big_endian>());
1914 Output_data_got_powerpc<size, big_endian>* got
1915 = target->got_section(symtab, layout);
1916 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1917 Symbol_table::PREDEFINED,
1918 got, 0, 0,
1919 elfcpp::STT_OBJECT,
1920 elfcpp::STB_LOCAL,
1921 elfcpp::STV_HIDDEN, 0,
1922 false, false);
1923 }
1924
1925 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
1926 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
1927 if (sdasym != NULL && sdasym->is_undefined())
1928 {
1929 Output_data_space* sdata = new Output_data_space(4, "** sdata");
1930 Output_section* os
1931 = layout->add_output_section_data(".sdata", 0,
1932 elfcpp::SHF_ALLOC
1933 | elfcpp::SHF_WRITE,
1934 sdata, ORDER_SMALL_DATA, false);
1935 symtab->define_in_output_data("_SDA_BASE_", NULL,
1936 Symbol_table::PREDEFINED,
1937 os, 32768, 0, elfcpp::STT_OBJECT,
1938 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
1939 0, false, false);
1940 }
1941 }
1942 }
1943
1944 // Set up PowerPC target specific relobj.
1945
1946 template<int size, bool big_endian>
1947 Object*
1948 Target_powerpc<size, big_endian>::do_make_elf_object(
1949 const std::string& name,
1950 Input_file* input_file,
1951 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1952 {
1953 int et = ehdr.get_e_type();
1954 // ET_EXEC files are valid input for --just-symbols/-R,
1955 // and we treat them as relocatable objects.
1956 if (et == elfcpp::ET_REL
1957 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
1958 {
1959 Powerpc_relobj<size, big_endian>* obj =
1960 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1961 obj->setup();
1962 return obj;
1963 }
1964 else if (et == elfcpp::ET_DYN)
1965 {
1966 Powerpc_dynobj<size, big_endian>* obj =
1967 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1968 obj->setup();
1969 return obj;
1970 }
1971 else
1972 {
1973 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1974 return NULL;
1975 }
1976 }
1977
1978 template<int size, bool big_endian>
1979 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1980 {
1981 public:
1982 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1983 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1984
1985 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1986 : Output_data_got<size, big_endian>(),
1987 symtab_(symtab), layout_(layout),
1988 header_ent_cnt_(size == 32 ? 3 : 1),
1989 header_index_(size == 32 ? 0x2000 : 0)
1990 { }
1991
1992 class Got_entry;
1993
1994 // Create a new GOT entry and return its offset.
1995 unsigned int
1996 add_got_entry(Got_entry got_entry)
1997 {
1998 this->reserve_ent();
1999 return Output_data_got<size, big_endian>::add_got_entry(got_entry);
2000 }
2001
2002 // Create a pair of new GOT entries and return the offset of the first.
2003 unsigned int
2004 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
2005 {
2006 this->reserve_ent(2);
2007 return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
2008 got_entry_2);
2009 }
2010
2011 unsigned int
2012 add_constant_pair(Valtype c1, Valtype c2)
2013 {
2014 this->reserve_ent(2);
2015 unsigned int got_offset = this->add_constant(c1);
2016 this->add_constant(c2);
2017 return got_offset;
2018 }
2019
2020 // Offset of _GLOBAL_OFFSET_TABLE_.
2021 unsigned int
2022 g_o_t() const
2023 {
2024 return this->got_offset(this->header_index_);
2025 }
2026
2027 // Offset of base used to access the GOT/TOC.
2028 // The got/toc pointer reg will be set to this value.
2029 Valtype
2030 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2031 {
2032 if (size == 32)
2033 return this->g_o_t();
2034 else
2035 return (this->output_section()->address()
2036 + object->toc_base_offset()
2037 - this->address());
2038 }
2039
2040 // Ensure our GOT has a header.
2041 void
2042 set_final_data_size()
2043 {
2044 if (this->header_ent_cnt_ != 0)
2045 this->make_header();
2046 Output_data_got<size, big_endian>::set_final_data_size();
2047 }
2048
2049 // First word of GOT header needs some values that are not
2050 // handled by Output_data_got so poke them in here.
2051 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2052 void
2053 do_write(Output_file* of)
2054 {
2055 Valtype val = 0;
2056 if (size == 32 && this->layout_->dynamic_data() != NULL)
2057 val = this->layout_->dynamic_section()->address();
2058 if (size == 64)
2059 val = this->output_section()->address() + 0x8000;
2060 this->replace_constant(this->header_index_, val);
2061 Output_data_got<size, big_endian>::do_write(of);
2062 }
2063
2064 private:
2065 void
2066 reserve_ent(unsigned int cnt = 1)
2067 {
2068 if (this->header_ent_cnt_ == 0)
2069 return;
2070 if (this->num_entries() + cnt > this->header_index_)
2071 this->make_header();
2072 }
2073
2074 void
2075 make_header()
2076 {
2077 this->header_ent_cnt_ = 0;
2078 this->header_index_ = this->num_entries();
2079 if (size == 32)
2080 {
2081 Output_data_got<size, big_endian>::add_constant(0);
2082 Output_data_got<size, big_endian>::add_constant(0);
2083 Output_data_got<size, big_endian>::add_constant(0);
2084
2085 // Define _GLOBAL_OFFSET_TABLE_ at the header
2086 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2087 if (gotsym != NULL)
2088 {
2089 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2090 sym->set_value(this->g_o_t());
2091 }
2092 else
2093 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2094 Symbol_table::PREDEFINED,
2095 this, this->g_o_t(), 0,
2096 elfcpp::STT_OBJECT,
2097 elfcpp::STB_LOCAL,
2098 elfcpp::STV_HIDDEN, 0,
2099 false, false);
2100 }
2101 else
2102 Output_data_got<size, big_endian>::add_constant(0);
2103 }
2104
2105 // Stashed pointers.
2106 Symbol_table* symtab_;
2107 Layout* layout_;
2108
2109 // GOT header size.
2110 unsigned int header_ent_cnt_;
2111 // GOT header index.
2112 unsigned int header_index_;
2113 };
2114
2115 // Get the GOT section, creating it if necessary.
2116
2117 template<int size, bool big_endian>
2118 Output_data_got_powerpc<size, big_endian>*
2119 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2120 Layout* layout)
2121 {
2122 if (this->got_ == NULL)
2123 {
2124 gold_assert(symtab != NULL && layout != NULL);
2125
2126 this->got_
2127 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2128
2129 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2130 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2131 this->got_, ORDER_DATA, false);
2132 }
2133
2134 return this->got_;
2135 }
2136
2137 // Get the dynamic reloc section, creating it if necessary.
2138
2139 template<int size, bool big_endian>
2140 typename Target_powerpc<size, big_endian>::Reloc_section*
2141 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2142 {
2143 if (this->rela_dyn_ == NULL)
2144 {
2145 gold_assert(layout != NULL);
2146 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2147 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2148 elfcpp::SHF_ALLOC, this->rela_dyn_,
2149 ORDER_DYNAMIC_RELOCS, false);
2150 }
2151 return this->rela_dyn_;
2152 }
2153
2154 // Similarly, but for ifunc symbols get the one for ifunc.
2155
2156 template<int size, bool big_endian>
2157 typename Target_powerpc<size, big_endian>::Reloc_section*
2158 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2159 Layout* layout,
2160 bool for_ifunc)
2161 {
2162 if (!for_ifunc)
2163 return this->rela_dyn_section(layout);
2164
2165 if (this->iplt_ == NULL)
2166 this->make_iplt_section(symtab, layout);
2167 return this->iplt_->rel_plt();
2168 }
2169
2170 class Stub_control
2171 {
2172 public:
2173 // Determine the stub group size. The group size is the absolute
2174 // value of the parameter --stub-group-size. If --stub-group-size
2175 // is passed a negative value, we restrict stubs to be always before
2176 // the stubbed branches.
2177 Stub_control(int32_t size)
2178 : state_(NO_GROUP), stub_group_size_(abs(size)),
2179 stub14_group_size_(abs(size)),
2180 stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2181 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2182 {
2183 if (stub_group_size_ == 1)
2184 {
2185 // Default values.
2186 if (stubs_always_before_branch_)
2187 {
2188 stub_group_size_ = 0x1e00000;
2189 stub14_group_size_ = 0x7800;
2190 }
2191 else
2192 {
2193 stub_group_size_ = 0x1c00000;
2194 stub14_group_size_ = 0x7000;
2195 }
2196 suppress_size_errors_ = true;
2197 }
2198 }
2199
2200 // Return true iff input section can be handled by current stub
2201 // group.
2202 bool
2203 can_add_to_stub_group(Output_section* o,
2204 const Output_section::Input_section* i,
2205 bool has14);
2206
2207 const Output_section::Input_section*
2208 owner()
2209 { return owner_; }
2210
2211 Output_section*
2212 output_section()
2213 { return output_section_; }
2214
2215 private:
2216 typedef enum
2217 {
2218 NO_GROUP,
2219 FINDING_STUB_SECTION,
2220 HAS_STUB_SECTION
2221 } State;
2222
2223 State state_;
2224 uint32_t stub_group_size_;
2225 uint32_t stub14_group_size_;
2226 bool stubs_always_before_branch_;
2227 bool suppress_size_errors_;
2228 uint64_t group_end_addr_;
2229 const Output_section::Input_section* owner_;
2230 Output_section* output_section_;
2231 };
2232
2233 // Return true iff input section can be handled by current stub
2234 // group.
2235
2236 bool
2237 Stub_control::can_add_to_stub_group(Output_section* o,
2238 const Output_section::Input_section* i,
2239 bool has14)
2240 {
2241 uint32_t group_size
2242 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2243 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2244 uint64_t this_size;
2245 uint64_t start_addr = o->address();
2246
2247 if (whole_sec)
2248 // .init and .fini sections are pasted together to form a single
2249 // function. We can't be adding stubs in the middle of the function.
2250 this_size = o->data_size();
2251 else
2252 {
2253 start_addr += i->relobj()->output_section_offset(i->shndx());
2254 this_size = i->data_size();
2255 }
2256 uint64_t end_addr = start_addr + this_size;
2257 bool toobig = this_size > group_size;
2258
2259 if (toobig && !this->suppress_size_errors_)
2260 gold_warning(_("%s:%s exceeds group size"),
2261 i->relobj()->name().c_str(),
2262 i->relobj()->section_name(i->shndx()).c_str());
2263
2264 if (this->state_ != HAS_STUB_SECTION
2265 && (!whole_sec || this->output_section_ != o)
2266 && (this->state_ == NO_GROUP
2267 || this->group_end_addr_ - end_addr < group_size))
2268 {
2269 this->owner_ = i;
2270 this->output_section_ = o;
2271 }
2272
2273 if (this->state_ == NO_GROUP)
2274 {
2275 this->state_ = FINDING_STUB_SECTION;
2276 this->group_end_addr_ = end_addr;
2277 }
2278 else if (this->group_end_addr_ - start_addr < group_size)
2279 ;
2280 // Adding this section would make the group larger than GROUP_SIZE.
2281 else if (this->state_ == FINDING_STUB_SECTION
2282 && !this->stubs_always_before_branch_
2283 && !toobig)
2284 {
2285 // But wait, there's more! Input sections up to GROUP_SIZE
2286 // bytes before the stub table can be handled by it too.
2287 this->state_ = HAS_STUB_SECTION;
2288 this->group_end_addr_ = end_addr;
2289 }
2290 else
2291 {
2292 this->state_ = NO_GROUP;
2293 return false;
2294 }
2295 return true;
2296 }
2297
2298 // Look over all the input sections, deciding where to place stubs.
2299
2300 template<int size, bool big_endian>
2301 void
2302 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2303 const Task*)
2304 {
2305 Stub_control stub_control(parameters->options().stub_group_size());
2306
2307 // Group input sections and insert stub table
2308 Stub_table<size, big_endian>* stub_table = NULL;
2309 Layout::Section_list section_list;
2310 layout->get_executable_sections(&section_list);
2311 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2312 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2313 o != section_list.rend();
2314 ++o)
2315 {
2316 typedef Output_section::Input_section_list Input_section_list;
2317 for (Input_section_list::const_reverse_iterator i
2318 = (*o)->input_sections().rbegin();
2319 i != (*o)->input_sections().rend();
2320 ++i)
2321 {
2322 if (i->is_input_section())
2323 {
2324 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2325 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2326 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2327 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2328 {
2329 stub_table->init(stub_control.owner(),
2330 stub_control.output_section());
2331 stub_table = NULL;
2332 }
2333 if (stub_table == NULL)
2334 stub_table = this->new_stub_table();
2335 ppcobj->set_stub_table(i->shndx(), stub_table);
2336 }
2337 }
2338 }
2339 if (stub_table != NULL)
2340 {
2341 const Output_section::Input_section* i = stub_control.owner();
2342 if (!i->is_input_section())
2343 {
2344 // Corner case. A new stub group was made for the first
2345 // section (last one looked at here) for some reason, but
2346 // the first section is already being used as the owner for
2347 // a stub table for following sections. Force it into that
2348 // stub group.
2349 gold_assert(this->stub_tables_.size() >= 2);
2350 this->stub_tables_.pop_back();
2351 delete stub_table;
2352 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2353 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2354 ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2355 }
2356 else
2357 stub_table->init(i, stub_control.output_section());
2358 }
2359 }
2360
2361 // If this branch needs a plt call stub, or a long branch stub, make one.
2362
2363 template<int size, bool big_endian>
2364 void
2365 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2366 Stub_table<size, big_endian>* stub_table,
2367 Stub_table<size, big_endian>* ifunc_stub_table,
2368 Symbol_table* symtab) const
2369 {
2370 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2371 if (sym != NULL && sym->is_forwarder())
2372 sym = symtab->resolve_forwards(sym);
2373 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2374 if (gsym != NULL
2375 ? use_plt_offset<size>(gsym, Scan::get_reference_flags(this->r_type_))
2376 : this->object_->local_has_plt_offset(this->r_sym_))
2377 {
2378 if (stub_table == NULL)
2379 stub_table = this->object_->stub_table(this->shndx_);
2380 if (stub_table == NULL)
2381 {
2382 // This is a ref from a data section to an ifunc symbol.
2383 stub_table = ifunc_stub_table;
2384 }
2385 gold_assert(stub_table != NULL);
2386 if (gsym != NULL)
2387 stub_table->add_plt_call_entry(this->object_, gsym,
2388 this->r_type_, this->addend_);
2389 else
2390 stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2391 this->r_type_, this->addend_);
2392 }
2393 else
2394 {
2395 unsigned int max_branch_offset;
2396 if (this->r_type_ == elfcpp::R_POWERPC_REL14
2397 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2398 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2399 max_branch_offset = 1 << 15;
2400 else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2401 || this->r_type_ == elfcpp::R_PPC_PLTREL24
2402 || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2403 max_branch_offset = 1 << 25;
2404 else
2405 return;
2406 Address from = this->object_->get_output_section_offset(this->shndx_);
2407 gold_assert(from != invalid_address);
2408 from += (this->object_->output_section(this->shndx_)->address()
2409 + this->offset_);
2410 Address to;
2411 if (gsym != NULL)
2412 {
2413 switch (gsym->source())
2414 {
2415 case Symbol::FROM_OBJECT:
2416 {
2417 Object* symobj = gsym->object();
2418 if (symobj->is_dynamic()
2419 || symobj->pluginobj() != NULL)
2420 return;
2421 bool is_ordinary;
2422 unsigned int shndx = gsym->shndx(&is_ordinary);
2423 if (shndx == elfcpp::SHN_UNDEF)
2424 return;
2425 }
2426 break;
2427
2428 case Symbol::IS_UNDEFINED:
2429 return;
2430
2431 default:
2432 break;
2433 }
2434 Symbol_table::Compute_final_value_status status;
2435 to = symtab->compute_final_value<size>(gsym, &status);
2436 if (status != Symbol_table::CFVS_OK)
2437 return;
2438 }
2439 else
2440 {
2441 const Symbol_value<size>* psymval
2442 = this->object_->local_symbol(this->r_sym_);
2443 Symbol_value<size> symval;
2444 typedef Sized_relobj_file<size, big_endian> ObjType;
2445 typename ObjType::Compute_final_local_value_status status
2446 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2447 &symval, symtab);
2448 if (status != ObjType::CFLV_OK
2449 || !symval.has_output_value())
2450 return;
2451 to = symval.value(this->object_, 0);
2452 }
2453 to += this->addend_;
2454 if (stub_table == NULL)
2455 stub_table = this->object_->stub_table(this->shndx_);
2456 if (size == 64 && is_branch_reloc(this->r_type_))
2457 {
2458 unsigned int dest_shndx;
2459 Target_powerpc<size, big_endian>* target =
2460 static_cast<Target_powerpc<size, big_endian>*>(
2461 parameters->sized_target<size, big_endian>());
2462 to = target->symval_for_branch(symtab, to, gsym,
2463 this->object_, &dest_shndx);
2464 }
2465 Address delta = to - from;
2466 if (delta + max_branch_offset >= 2 * max_branch_offset)
2467 {
2468 if (stub_table == NULL)
2469 {
2470 gold_warning(_("%s:%s: branch in non-executable section,"
2471 " no long branch stub for you"),
2472 this->object_->name().c_str(),
2473 this->object_->section_name(this->shndx_).c_str());
2474 return;
2475 }
2476 stub_table->add_long_branch_entry(this->object_, to);
2477 }
2478 }
2479 }
2480
2481 // Relaxation hook. This is where we do stub generation.
2482
2483 template<int size, bool big_endian>
2484 bool
2485 Target_powerpc<size, big_endian>::do_relax(int pass,
2486 const Input_objects*,
2487 Symbol_table* symtab,
2488 Layout* layout,
2489 const Task* task)
2490 {
2491 unsigned int prev_brlt_size = 0;
2492 if (pass == 1)
2493 {
2494 bool thread_safe = parameters->options().plt_thread_safe();
2495 if (size == 64 && !parameters->options().user_set_plt_thread_safe())
2496 {
2497 static const char* const thread_starter[] =
2498 {
2499 "pthread_create",
2500 /* libstdc++ */
2501 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2502 /* librt */
2503 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2504 "mq_notify", "create_timer",
2505 /* libanl */
2506 "getaddrinfo_a",
2507 /* libgomp */
2508 "GOMP_parallel_start",
2509 "GOMP_parallel_loop_static_start",
2510 "GOMP_parallel_loop_dynamic_start",
2511 "GOMP_parallel_loop_guided_start",
2512 "GOMP_parallel_loop_runtime_start",
2513 "GOMP_parallel_sections_start",
2514 };
2515
2516 if (parameters->options().shared())
2517 thread_safe = true;
2518 else
2519 {
2520 for (unsigned int i = 0;
2521 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2522 i++)
2523 {
2524 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2525 thread_safe = (sym != NULL
2526 && sym->in_reg()
2527 && sym->in_real_elf());
2528 if (thread_safe)
2529 break;
2530 }
2531 }
2532 }
2533 this->plt_thread_safe_ = thread_safe;
2534 this->group_sections(layout, task);
2535 }
2536
2537 // We need address of stub tables valid for make_stub.
2538 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2539 p != this->stub_tables_.end();
2540 ++p)
2541 {
2542 const Powerpc_relobj<size, big_endian>* object
2543 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2544 Address off = object->get_output_section_offset((*p)->shndx());
2545 gold_assert(off != invalid_address);
2546 Output_section* os = (*p)->output_section();
2547 (*p)->set_address_and_size(os, off);
2548 }
2549
2550 if (pass != 1)
2551 {
2552 // Clear plt call stubs, long branch stubs and branch lookup table.
2553 prev_brlt_size = this->branch_lookup_table_.size();
2554 this->branch_lookup_table_.clear();
2555 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2556 p != this->stub_tables_.end();
2557 ++p)
2558 {
2559 (*p)->clear_stubs();
2560 }
2561 }
2562
2563 // Build all the stubs.
2564 Stub_table<size, big_endian>* ifunc_stub_table
2565 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2566 Stub_table<size, big_endian>* one_stub_table
2567 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2568 for (typename Branches::const_iterator b = this->branch_info_.begin();
2569 b != this->branch_info_.end();
2570 b++)
2571 {
2572 b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2573 }
2574
2575 // Did anything change size?
2576 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2577 bool again = num_huge_branches != prev_brlt_size;
2578 if (size == 64 && num_huge_branches != 0)
2579 this->make_brlt_section(layout);
2580 if (size == 64 && again)
2581 this->brlt_section_->set_current_size(num_huge_branches);
2582
2583 typedef Unordered_set<Output_section*> Output_sections;
2584 Output_sections os_need_update;
2585 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2586 p != this->stub_tables_.end();
2587 ++p)
2588 {
2589 if ((*p)->size_update())
2590 {
2591 again = true;
2592 (*p)->add_eh_frame(layout);
2593 os_need_update.insert((*p)->output_section());
2594 }
2595 }
2596
2597 // Set output section offsets for all input sections in an output
2598 // section that just changed size. Anything past the stubs will
2599 // need updating.
2600 for (typename Output_sections::iterator p = os_need_update.begin();
2601 p != os_need_update.end();
2602 p++)
2603 {
2604 Output_section* os = *p;
2605 Address off = 0;
2606 typedef Output_section::Input_section_list Input_section_list;
2607 for (Input_section_list::const_iterator i = os->input_sections().begin();
2608 i != os->input_sections().end();
2609 ++i)
2610 {
2611 off = align_address(off, i->addralign());
2612 if (i->is_input_section() || i->is_relaxed_input_section())
2613 i->relobj()->set_section_offset(i->shndx(), off);
2614 if (i->is_relaxed_input_section())
2615 {
2616 Stub_table<size, big_endian>* stub_table
2617 = static_cast<Stub_table<size, big_endian>*>(
2618 i->relaxed_input_section());
2619 off += stub_table->set_address_and_size(os, off);
2620 }
2621 else
2622 off += i->data_size();
2623 }
2624 // If .branch_lt is part of this output section, then we have
2625 // just done the offset adjustment.
2626 os->clear_section_offsets_need_adjustment();
2627 }
2628
2629 if (size == 64
2630 && !again
2631 && num_huge_branches != 0
2632 && parameters->options().output_is_position_independent())
2633 {
2634 // Fill in the BRLT relocs.
2635 this->brlt_section_->reset_brlt_sizes();
2636 for (typename Branch_lookup_table::const_iterator p
2637 = this->branch_lookup_table_.begin();
2638 p != this->branch_lookup_table_.end();
2639 ++p)
2640 {
2641 this->brlt_section_->add_reloc(p->first, p->second);
2642 }
2643 this->brlt_section_->finalize_brlt_sizes();
2644 }
2645 return again;
2646 }
2647
2648 template<int size, bool big_endian>
2649 void
2650 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2651 unsigned char* oview,
2652 uint64_t* paddress,
2653 off_t* plen) const
2654 {
2655 uint64_t address = plt->address();
2656 off_t len = plt->data_size();
2657
2658 if (plt == this->glink_)
2659 {
2660 // See Output_data_glink::do_write() for glink contents.
2661 if (size == 64)
2662 {
2663 // There is one word before __glink_PLTresolve
2664 address += 8;
2665 len -= 8;
2666 }
2667 else if (parameters->options().output_is_position_independent())
2668 {
2669 // There are two FDEs for a position independent glink.
2670 // The first covers the branch table, the second
2671 // __glink_PLTresolve at the end of glink.
2672 off_t resolve_size = this->glink_->pltresolve_size;
2673 if (oview[9] == 0)
2674 len -= resolve_size;
2675 else
2676 {
2677 address += len - resolve_size;
2678 len = resolve_size;
2679 }
2680 }
2681 }
2682 else
2683 {
2684 // Must be a stub table.
2685 const Stub_table<size, big_endian>* stub_table
2686 = static_cast<const Stub_table<size, big_endian>*>(plt);
2687 uint64_t stub_address = stub_table->stub_address();
2688 len -= stub_address - address;
2689 address = stub_address;
2690 }
2691
2692 *paddress = address;
2693 *plen = len;
2694 }
2695
2696 // A class to handle the PLT data.
2697
2698 template<int size, bool big_endian>
2699 class Output_data_plt_powerpc : public Output_section_data_build
2700 {
2701 public:
2702 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2703 size, big_endian> Reloc_section;
2704
2705 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2706 Reloc_section* plt_rel,
2707 unsigned int reserved_size,
2708 const char* name)
2709 : Output_section_data_build(size == 32 ? 4 : 8),
2710 rel_(plt_rel),
2711 targ_(targ),
2712 initial_plt_entry_size_(reserved_size),
2713 name_(name)
2714 { }
2715
2716 // Add an entry to the PLT.
2717 void
2718 add_entry(Symbol*);
2719
2720 void
2721 add_ifunc_entry(Symbol*);
2722
2723 void
2724 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2725
2726 // Return the .rela.plt section data.
2727 Reloc_section*
2728 rel_plt() const
2729 {
2730 return this->rel_;
2731 }
2732
2733 // Return the number of PLT entries.
2734 unsigned int
2735 entry_count() const
2736 {
2737 if (this->current_data_size() == 0)
2738 return 0;
2739 return ((this->current_data_size() - this->initial_plt_entry_size_)
2740 / plt_entry_size);
2741 }
2742
2743 // Return the offset of the first non-reserved PLT entry.
2744 unsigned int
2745 first_plt_entry_offset()
2746 { return this->initial_plt_entry_size_; }
2747
2748 // Return the size of a PLT entry.
2749 static unsigned int
2750 get_plt_entry_size()
2751 { return plt_entry_size; }
2752
2753 protected:
2754 void
2755 do_adjust_output_section(Output_section* os)
2756 {
2757 os->set_entsize(0);
2758 }
2759
2760 // Write to a map file.
2761 void
2762 do_print_to_mapfile(Mapfile* mapfile) const
2763 { mapfile->print_output_data(this, this->name_); }
2764
2765 private:
2766 // The size of an entry in the PLT.
2767 static const int plt_entry_size = size == 32 ? 4 : 24;
2768
2769 // Write out the PLT data.
2770 void
2771 do_write(Output_file*);
2772
2773 // The reloc section.
2774 Reloc_section* rel_;
2775 // Allows access to .glink for do_write.
2776 Target_powerpc<size, big_endian>* targ_;
2777 // The size of the first reserved entry.
2778 int initial_plt_entry_size_;
2779 // What to report in map file.
2780 const char *name_;
2781 };
2782
2783 // Add an entry to the PLT.
2784
2785 template<int size, bool big_endian>
2786 void
2787 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
2788 {
2789 if (!gsym->has_plt_offset())
2790 {
2791 section_size_type off = this->current_data_size();
2792 if (off == 0)
2793 off += this->first_plt_entry_offset();
2794 gsym->set_plt_offset(off);
2795 gsym->set_needs_dynsym_entry();
2796 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
2797 this->rel_->add_global(gsym, dynrel, this, off, 0);
2798 off += plt_entry_size;
2799 this->set_current_data_size(off);
2800 }
2801 }
2802
2803 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
2804
2805 template<int size, bool big_endian>
2806 void
2807 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
2808 {
2809 if (!gsym->has_plt_offset())
2810 {
2811 section_size_type off = this->current_data_size();
2812 gsym->set_plt_offset(off);
2813 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2814 if (size == 64)
2815 dynrel = elfcpp::R_PPC64_JMP_IREL;
2816 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
2817 off += plt_entry_size;
2818 this->set_current_data_size(off);
2819 }
2820 }
2821
2822 // Add an entry for a local ifunc symbol to the IPLT.
2823
2824 template<int size, bool big_endian>
2825 void
2826 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
2827 Sized_relobj_file<size, big_endian>* relobj,
2828 unsigned int local_sym_index)
2829 {
2830 if (!relobj->local_has_plt_offset(local_sym_index))
2831 {
2832 section_size_type off = this->current_data_size();
2833 relobj->set_local_plt_offset(local_sym_index, off);
2834 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
2835 if (size == 64)
2836 dynrel = elfcpp::R_PPC64_JMP_IREL;
2837 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
2838 this, off, 0);
2839 off += plt_entry_size;
2840 this->set_current_data_size(off);
2841 }
2842 }
2843
2844 static const uint32_t add_0_11_11 = 0x7c0b5a14;
2845 static const uint32_t add_2_2_11 = 0x7c425a14;
2846 static const uint32_t add_3_3_2 = 0x7c631214;
2847 static const uint32_t add_3_3_13 = 0x7c636a14;
2848 static const uint32_t add_11_0_11 = 0x7d605a14;
2849 static const uint32_t add_12_2_11 = 0x7d825a14;
2850 static const uint32_t add_12_12_11 = 0x7d8c5a14;
2851 static const uint32_t addi_11_11 = 0x396b0000;
2852 static const uint32_t addi_12_12 = 0x398c0000;
2853 static const uint32_t addi_2_2 = 0x38420000;
2854 static const uint32_t addi_3_2 = 0x38620000;
2855 static const uint32_t addi_3_3 = 0x38630000;
2856 static const uint32_t addis_0_2 = 0x3c020000;
2857 static const uint32_t addis_0_13 = 0x3c0d0000;
2858 static const uint32_t addis_11_11 = 0x3d6b0000;
2859 static const uint32_t addis_11_30 = 0x3d7e0000;
2860 static const uint32_t addis_12_12 = 0x3d8c0000;
2861 static const uint32_t addis_12_2 = 0x3d820000;
2862 static const uint32_t addis_3_2 = 0x3c620000;
2863 static const uint32_t addis_3_13 = 0x3c6d0000;
2864 static const uint32_t b = 0x48000000;
2865 static const uint32_t bcl_20_31 = 0x429f0005;
2866 static const uint32_t bctr = 0x4e800420;
2867 static const uint32_t blr = 0x4e800020;
2868 static const uint32_t blrl = 0x4e800021;
2869 static const uint32_t bnectr_p4 = 0x4ce20420;
2870 static const uint32_t cmpldi_2_0 = 0x28220000;
2871 static const uint32_t cror_15_15_15 = 0x4def7b82;
2872 static const uint32_t cror_31_31_31 = 0x4ffffb82;
2873 static const uint32_t ld_0_1 = 0xe8010000;
2874 static const uint32_t ld_0_12 = 0xe80c0000;
2875 static const uint32_t ld_11_12 = 0xe96c0000;
2876 static const uint32_t ld_11_2 = 0xe9620000;
2877 static const uint32_t ld_2_1 = 0xe8410000;
2878 static const uint32_t ld_2_11 = 0xe84b0000;
2879 static const uint32_t ld_2_12 = 0xe84c0000;
2880 static const uint32_t ld_2_2 = 0xe8420000;
2881 static const uint32_t lfd_0_1 = 0xc8010000;
2882 static const uint32_t li_0_0 = 0x38000000;
2883 static const uint32_t li_12_0 = 0x39800000;
2884 static const uint32_t lis_0_0 = 0x3c000000;
2885 static const uint32_t lis_11 = 0x3d600000;
2886 static const uint32_t lis_12 = 0x3d800000;
2887 static const uint32_t lwz_0_12 = 0x800c0000;
2888 static const uint32_t lwz_11_11 = 0x816b0000;
2889 static const uint32_t lwz_11_30 = 0x817e0000;
2890 static const uint32_t lwz_12_12 = 0x818c0000;
2891 static const uint32_t lwzu_0_12 = 0x840c0000;
2892 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
2893 static const uint32_t mflr_0 = 0x7c0802a6;
2894 static const uint32_t mflr_11 = 0x7d6802a6;
2895 static const uint32_t mflr_12 = 0x7d8802a6;
2896 static const uint32_t mtctr_0 = 0x7c0903a6;
2897 static const uint32_t mtctr_11 = 0x7d6903a6;
2898 static const uint32_t mtctr_12 = 0x7d8903a6;
2899 static const uint32_t mtlr_0 = 0x7c0803a6;
2900 static const uint32_t mtlr_12 = 0x7d8803a6;
2901 static const uint32_t nop = 0x60000000;
2902 static const uint32_t ori_0_0_0 = 0x60000000;
2903 static const uint32_t std_0_1 = 0xf8010000;
2904 static const uint32_t std_0_12 = 0xf80c0000;
2905 static const uint32_t std_2_1 = 0xf8410000;
2906 static const uint32_t stfd_0_1 = 0xd8010000;
2907 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
2908 static const uint32_t sub_11_11_12 = 0x7d6c5850;
2909 static const uint32_t xor_11_11_11 = 0x7d6b5a78;
2910
2911 // Write out the PLT.
2912
2913 template<int size, bool big_endian>
2914 void
2915 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
2916 {
2917 if (size == 32 && this->name_[3] != 'I')
2918 {
2919 const section_size_type offset = this->offset();
2920 const section_size_type oview_size
2921 = convert_to_section_size_type(this->data_size());
2922 unsigned char* const oview = of->get_output_view(offset, oview_size);
2923 unsigned char* pov = oview;
2924 unsigned char* endpov = oview + oview_size;
2925
2926 // The address of the .glink branch table
2927 const Output_data_glink<size, big_endian>* glink
2928 = this->targ_->glink_section();
2929 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
2930
2931 while (pov < endpov)
2932 {
2933 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
2934 pov += 4;
2935 branch_tab += 4;
2936 }
2937
2938 of->write_output_view(offset, oview_size, oview);
2939 }
2940 }
2941
2942 // Create the PLT section.
2943
2944 template<int size, bool big_endian>
2945 void
2946 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
2947 Layout* layout)
2948 {
2949 if (this->plt_ == NULL)
2950 {
2951 if (this->got_ == NULL)
2952 this->got_section(symtab, layout);
2953
2954 if (this->glink_ == NULL)
2955 make_glink_section(layout);
2956
2957 // Ensure that .rela.dyn always appears before .rela.plt This is
2958 // necessary due to how, on PowerPC and some other targets, .rela.dyn
2959 // needs to include .rela.plt in its range.
2960 this->rela_dyn_section(layout);
2961
2962 Reloc_section* plt_rel = new Reloc_section(false);
2963 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
2964 elfcpp::SHF_ALLOC, plt_rel,
2965 ORDER_DYNAMIC_PLT_RELOCS, false);
2966 this->plt_
2967 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
2968 size == 32 ? 0 : 24,
2969 "** PLT");
2970 layout->add_output_section_data(".plt",
2971 (size == 32
2972 ? elfcpp::SHT_PROGBITS
2973 : elfcpp::SHT_NOBITS),
2974 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2975 this->plt_,
2976 (size == 32
2977 ? ORDER_SMALL_DATA
2978 : ORDER_SMALL_BSS),
2979 false);
2980 }
2981 }
2982
2983 // Create the IPLT section.
2984
2985 template<int size, bool big_endian>
2986 void
2987 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
2988 Layout* layout)
2989 {
2990 if (this->iplt_ == NULL)
2991 {
2992 this->make_plt_section(symtab, layout);
2993
2994 Reloc_section* iplt_rel = new Reloc_section(false);
2995 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
2996 this->iplt_
2997 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
2998 0, "** IPLT");
2999 this->plt_->output_section()->add_output_section_data(this->iplt_);
3000 }
3001 }
3002
3003 // A section for huge long branch addresses, similar to plt section.
3004
3005 template<int size, bool big_endian>
3006 class Output_data_brlt_powerpc : public Output_section_data_build
3007 {
3008 public:
3009 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3010 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3011 size, big_endian> Reloc_section;
3012
3013 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3014 Reloc_section* brlt_rel)
3015 : Output_section_data_build(size == 32 ? 4 : 8),
3016 rel_(brlt_rel),
3017 targ_(targ)
3018 { }
3019
3020 void
3021 reset_brlt_sizes()
3022 {
3023 this->reset_data_size();
3024 this->rel_->reset_data_size();
3025 }
3026
3027 void
3028 finalize_brlt_sizes()
3029 {
3030 this->finalize_data_size();
3031 this->rel_->finalize_data_size();
3032 }
3033
3034 // Add a reloc for an entry in the BRLT.
3035 void
3036 add_reloc(Address to, unsigned int off)
3037 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3038
3039 // Update section and reloc section size.
3040 void
3041 set_current_size(unsigned int num_branches)
3042 {
3043 this->reset_address_and_file_offset();
3044 this->set_current_data_size(num_branches * 16);
3045 this->finalize_data_size();
3046 Output_section* os = this->output_section();
3047 os->set_section_offsets_need_adjustment();
3048 if (this->rel_ != NULL)
3049 {
3050 unsigned int reloc_size
3051 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3052 this->rel_->reset_address_and_file_offset();
3053 this->rel_->set_current_data_size(num_branches * reloc_size);
3054 this->rel_->finalize_data_size();
3055 Output_section* os = this->rel_->output_section();
3056 os->set_section_offsets_need_adjustment();
3057 }
3058 }
3059
3060 protected:
3061 void
3062 do_adjust_output_section(Output_section* os)
3063 {
3064 os->set_entsize(0);
3065 }
3066
3067 // Write to a map file.
3068 void
3069 do_print_to_mapfile(Mapfile* mapfile) const
3070 { mapfile->print_output_data(this, "** BRLT"); }
3071
3072 private:
3073 // Write out the BRLT data.
3074 void
3075 do_write(Output_file*);
3076
3077 // The reloc section.
3078 Reloc_section* rel_;
3079 Target_powerpc<size, big_endian>* targ_;
3080 };
3081
3082 // Make the branch lookup table section.
3083
3084 template<int size, bool big_endian>
3085 void
3086 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3087 {
3088 if (size == 64 && this->brlt_section_ == NULL)
3089 {
3090 Reloc_section* brlt_rel = NULL;
3091 bool is_pic = parameters->options().output_is_position_independent();
3092 if (is_pic)
3093 {
3094 // When PIC we can't fill in .branch_lt (like .plt it can be
3095 // a bss style section) but must initialise at runtime via
3096 // dynamic relocats.
3097 this->rela_dyn_section(layout);
3098 brlt_rel = new Reloc_section(false);
3099 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3100 }
3101 this->brlt_section_
3102 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3103 if (this->plt_ && is_pic)
3104 this->plt_->output_section()
3105 ->add_output_section_data(this->brlt_section_);
3106 else
3107 layout->add_output_section_data(".branch_lt",
3108 (is_pic ? elfcpp::SHT_NOBITS
3109 : elfcpp::SHT_PROGBITS),
3110 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3111 this->brlt_section_,
3112 (is_pic ? ORDER_SMALL_BSS
3113 : ORDER_SMALL_DATA),
3114 false);
3115 }
3116 }
3117
3118 // Write out .branch_lt when non-PIC.
3119
3120 template<int size, bool big_endian>
3121 void
3122 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3123 {
3124 if (size == 64 && !parameters->options().output_is_position_independent())
3125 {
3126 const section_size_type offset = this->offset();
3127 const section_size_type oview_size
3128 = convert_to_section_size_type(this->data_size());
3129 unsigned char* const oview = of->get_output_view(offset, oview_size);
3130
3131 this->targ_->write_branch_lookup_table(oview);
3132 of->write_output_view(offset, oview_size, oview);
3133 }
3134 }
3135
3136 static inline uint32_t
3137 l(uint32_t a)
3138 {
3139 return a & 0xffff;
3140 }
3141
3142 static inline uint32_t
3143 hi(uint32_t a)
3144 {
3145 return l(a >> 16);
3146 }
3147
3148 static inline uint32_t
3149 ha(uint32_t a)
3150 {
3151 return hi(a + 0x8000);
3152 }
3153
3154 template<int size>
3155 struct Eh_cie
3156 {
3157 static const unsigned char eh_frame_cie[12];
3158 };
3159
3160 template<int size>
3161 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3162 {
3163 1, // CIE version.
3164 'z', 'R', 0, // Augmentation string.
3165 4, // Code alignment.
3166 0x80 - size / 8 , // Data alignment.
3167 65, // RA reg.
3168 1, // Augmentation size.
3169 (elfcpp::DW_EH_PE_pcrel
3170 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3171 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3172 };
3173
3174 // Describe __glink_PLTresolve use of LR, 64-bit version.
3175 static const unsigned char glink_eh_frame_fde_64[] =
3176 {
3177 0, 0, 0, 0, // Replaced with offset to .glink.
3178 0, 0, 0, 0, // Replaced with size of .glink.
3179 0, // Augmentation size.
3180 elfcpp::DW_CFA_advance_loc + 1,
3181 elfcpp::DW_CFA_register, 65, 12,
3182 elfcpp::DW_CFA_advance_loc + 4,
3183 elfcpp::DW_CFA_restore_extended, 65
3184 };
3185
3186 // Describe __glink_PLTresolve use of LR, 32-bit version.
3187 static const unsigned char glink_eh_frame_fde_32[] =
3188 {
3189 0, 0, 0, 0, // Replaced with offset to .glink.
3190 0, 0, 0, 0, // Replaced with size of .glink.
3191 0, // Augmentation size.
3192 elfcpp::DW_CFA_advance_loc + 2,
3193 elfcpp::DW_CFA_register, 65, 0,
3194 elfcpp::DW_CFA_advance_loc + 4,
3195 elfcpp::DW_CFA_restore_extended, 65
3196 };
3197
3198 static const unsigned char default_fde[] =
3199 {
3200 0, 0, 0, 0, // Replaced with offset to stubs.
3201 0, 0, 0, 0, // Replaced with size of stubs.
3202 0, // Augmentation size.
3203 elfcpp::DW_CFA_nop, // Pad.
3204 elfcpp::DW_CFA_nop,
3205 elfcpp::DW_CFA_nop
3206 };
3207
3208 template<bool big_endian>
3209 static inline void
3210 write_insn(unsigned char* p, uint32_t v)
3211 {
3212 elfcpp::Swap<32, big_endian>::writeval(p, v);
3213 }
3214
3215 // Stub_table holds information about plt and long branch stubs.
3216 // Stubs are built in an area following some input section determined
3217 // by group_sections(). This input section is converted to a relaxed
3218 // input section allowing it to be resized to accommodate the stubs
3219
3220 template<int size, bool big_endian>
3221 class Stub_table : public Output_relaxed_input_section
3222 {
3223 public:
3224 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3225 static const Address invalid_address = static_cast<Address>(0) - 1;
3226
3227 Stub_table(Target_powerpc<size, big_endian>* targ)
3228 : Output_relaxed_input_section(NULL, 0, 0),
3229 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3230 orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3231 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3232 { }
3233
3234 // Delayed Output_relaxed_input_section init.
3235 void
3236 init(const Output_section::Input_section*, Output_section*);
3237
3238 // Add a plt call stub.
3239 void
3240 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3241 const Symbol*,
3242 unsigned int,
3243 Address);
3244
3245 void
3246 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3247 unsigned int,
3248 unsigned int,
3249 Address);
3250
3251 // Find a given plt call stub.
3252 Address
3253 find_plt_call_entry(const Symbol*) const;
3254
3255 Address
3256 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3257 unsigned int) const;
3258
3259 Address
3260 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3261 const Symbol*,
3262 unsigned int,
3263 Address) const;
3264
3265 Address
3266 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3267 unsigned int,
3268 unsigned int,
3269 Address) const;
3270
3271 // Add a long branch stub.
3272 void
3273 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3274
3275 Address
3276 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3277 Address) const;
3278
3279 void
3280 clear_stubs()
3281 {
3282 this->plt_call_stubs_.clear();
3283 this->plt_size_ = 0;
3284 this->long_branch_stubs_.clear();
3285 this->branch_size_ = 0;
3286 }
3287
3288 Address
3289 set_address_and_size(const Output_section* os, Address off)
3290 {
3291 Address start_off = off;
3292 off += this->orig_data_size_;
3293 Address my_size = this->plt_size_ + this->branch_size_;
3294 if (my_size != 0)
3295 off = align_address(off, this->stub_align());
3296 // Include original section size and alignment padding in size
3297 my_size += off - start_off;
3298 this->reset_address_and_file_offset();
3299 this->set_current_data_size(my_size);
3300 this->set_address_and_file_offset(os->address() + start_off,
3301 os->offset() + start_off);
3302 return my_size;
3303 }
3304
3305 Address
3306 stub_address() const
3307 {
3308 return align_address(this->address() + this->orig_data_size_,
3309 this->stub_align());
3310 }
3311
3312 Address
3313 stub_offset() const
3314 {
3315 return align_address(this->offset() + this->orig_data_size_,
3316 this->stub_align());
3317 }
3318
3319 section_size_type
3320 plt_size() const
3321 { return this->plt_size_; }
3322
3323 bool
3324 size_update()
3325 {
3326 Output_section* os = this->output_section();
3327 if (os->addralign() < this->stub_align())
3328 {
3329 os->set_addralign(this->stub_align());
3330 // FIXME: get rid of the insane checkpointing.
3331 // We can't increase alignment of the input section to which
3332 // stubs are attached; The input section may be .init which
3333 // is pasted together with other .init sections to form a
3334 // function. Aligning might insert zero padding resulting in
3335 // sigill. However we do need to increase alignment of the
3336 // output section so that the align_address() on offset in
3337 // set_address_and_size() adds the same padding as the
3338 // align_address() on address in stub_address().
3339 // What's more, we need this alignment for the layout done in
3340 // relaxation_loop_body() so that the output section starts at
3341 // a suitably aligned address.
3342 os->checkpoint_set_addralign(this->stub_align());
3343 }
3344 if (this->last_plt_size_ != this->plt_size_
3345 || this->last_branch_size_ != this->branch_size_)
3346 {
3347 this->last_plt_size_ = this->plt_size_;
3348 this->last_branch_size_ = this->branch_size_;
3349 return true;
3350 }
3351 return false;
3352 }
3353
3354 // Add .eh_frame info for this stub section. Unlike other linker
3355 // generated .eh_frame this is added late in the link, because we
3356 // only want the .eh_frame info if this particular stub section is
3357 // non-empty.
3358 void
3359 add_eh_frame(Layout* layout)
3360 {
3361 if (!this->eh_frame_added_)
3362 {
3363 if (!parameters->options().ld_generated_unwind_info())
3364 return;
3365
3366 // Since we add stub .eh_frame info late, it must be placed
3367 // after all other linker generated .eh_frame info so that
3368 // merge mapping need not be updated for input sections.
3369 // There is no provision to use a different CIE to that used
3370 // by .glink.
3371 if (!this->targ_->has_glink())
3372 return;
3373
3374 layout->add_eh_frame_for_plt(this,
3375 Eh_cie<size>::eh_frame_cie,
3376 sizeof (Eh_cie<size>::eh_frame_cie),
3377 default_fde,
3378 sizeof (default_fde));
3379 this->eh_frame_added_ = true;
3380 }
3381 }
3382
3383 Target_powerpc<size, big_endian>*
3384 targ() const
3385 { return targ_; }
3386
3387 private:
3388 class Plt_stub_ent;
3389 class Plt_stub_ent_hash;
3390 typedef Unordered_map<Plt_stub_ent, unsigned int,
3391 Plt_stub_ent_hash> Plt_stub_entries;
3392
3393 // Alignment of stub section.
3394 unsigned int
3395 stub_align() const
3396 {
3397 if (size == 32)
3398 return 16;
3399 unsigned int min_align = 32;
3400 unsigned int user_align = 1 << parameters->options().plt_align();
3401 return std::max(user_align, min_align);
3402 }
3403
3404 // Return the plt offset for the given call stub.
3405 Address
3406 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3407 {
3408 const Symbol* gsym = p->first.sym_;
3409 if (gsym != NULL)
3410 {
3411 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3412 && gsym->can_use_relative_reloc(false));
3413 return gsym->plt_offset();
3414 }
3415 else
3416 {
3417 *is_iplt = true;
3418 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3419 unsigned int local_sym_index = p->first.locsym_;
3420 return relobj->local_plt_offset(local_sym_index);
3421 }
3422 }
3423
3424 // Size of a given plt call stub.
3425 unsigned int
3426 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3427 {
3428 if (size == 32)
3429 return 16;
3430
3431 bool is_iplt;
3432 Address plt_addr = this->plt_off(p, &is_iplt);
3433 if (is_iplt)
3434 plt_addr += this->targ_->iplt_section()->address();
3435 else
3436 plt_addr += this->targ_->plt_section()->address();
3437 Address got_addr = this->targ_->got_section()->output_section()->address();
3438 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3439 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3440 got_addr += ppcobj->toc_base_offset();
3441 Address off = plt_addr - got_addr;
3442 bool static_chain = parameters->options().plt_static_chain();
3443 bool thread_safe = this->targ_->plt_thread_safe();
3444 unsigned int bytes = (4 * 5
3445 + 4 * static_chain
3446 + 8 * thread_safe
3447 + 4 * (ha(off) != 0)
3448 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3449 unsigned int align = 1 << parameters->options().plt_align();
3450 if (align > 1)
3451 bytes = (bytes + align - 1) & -align;
3452 return bytes;
3453 }
3454
3455 // Return long branch stub size.
3456 unsigned int
3457 branch_stub_size(Address to)
3458 {
3459 Address loc
3460 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3461 if (to - loc + (1 << 25) < 2 << 25)
3462 return 4;
3463 if (size == 64 || !parameters->options().output_is_position_independent())
3464 return 16;
3465 return 32;
3466 }
3467
3468 // Write out stubs.
3469 void
3470 do_write(Output_file*);
3471
3472 // Plt call stub keys.
3473 class Plt_stub_ent
3474 {
3475 public:
3476 Plt_stub_ent(const Symbol* sym)
3477 : sym_(sym), object_(0), addend_(0), locsym_(0)
3478 { }
3479
3480 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3481 unsigned int locsym_index)
3482 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3483 { }
3484
3485 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3486 const Symbol* sym,
3487 unsigned int r_type,
3488 Address addend)
3489 : sym_(sym), object_(0), addend_(0), locsym_(0)
3490 {
3491 if (size != 32)
3492 this->addend_ = addend;
3493 else if (parameters->options().output_is_position_independent()
3494 && r_type == elfcpp::R_PPC_PLTREL24)
3495 {
3496 this->addend_ = addend;
3497 if (this->addend_ >= 32768)
3498 this->object_ = object;
3499 }
3500 }
3501
3502 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3503 unsigned int locsym_index,
3504 unsigned int r_type,
3505 Address addend)
3506 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3507 {
3508 if (size != 32)
3509 this->addend_ = addend;
3510 else if (parameters->options().output_is_position_independent()
3511 && r_type == elfcpp::R_PPC_PLTREL24)
3512 this->addend_ = addend;
3513 }
3514
3515 bool operator==(const Plt_stub_ent& that) const
3516 {
3517 return (this->sym_ == that.sym_
3518 && this->object_ == that.object_
3519 && this->addend_ == that.addend_
3520 && this->locsym_ == that.locsym_);
3521 }
3522
3523 const Symbol* sym_;
3524 const Sized_relobj_file<size, big_endian>* object_;
3525 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3526 unsigned int locsym_;
3527 };
3528
3529 class Plt_stub_ent_hash
3530 {
3531 public:
3532 size_t operator()(const Plt_stub_ent& ent) const
3533 {
3534 return (reinterpret_cast<uintptr_t>(ent.sym_)
3535 ^ reinterpret_cast<uintptr_t>(ent.object_)
3536 ^ ent.addend_
3537 ^ ent.locsym_);
3538 }
3539 };
3540
3541 // Long branch stub keys.
3542 class Branch_stub_ent
3543 {
3544 public:
3545 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3546 : dest_(to), toc_base_off_(0)
3547 {
3548 if (size == 64)
3549 toc_base_off_ = obj->toc_base_offset();
3550 }
3551
3552 bool operator==(const Branch_stub_ent& that) const
3553 {
3554 return (this->dest_ == that.dest_
3555 && (size == 32
3556 || this->toc_base_off_ == that.toc_base_off_));
3557 }
3558
3559 Address dest_;
3560 unsigned int toc_base_off_;
3561 };
3562
3563 class Branch_stub_ent_hash
3564 {
3565 public:
3566 size_t operator()(const Branch_stub_ent& ent) const
3567 { return ent.dest_ ^ ent.toc_base_off_; }
3568 };
3569
3570 // In a sane world this would be a global.
3571 Target_powerpc<size, big_endian>* targ_;
3572 // Map sym/object/addend to stub offset.
3573 Plt_stub_entries plt_call_stubs_;
3574 // Map destination address to stub offset.
3575 typedef Unordered_map<Branch_stub_ent, unsigned int,
3576 Branch_stub_ent_hash> Branch_stub_entries;
3577 Branch_stub_entries long_branch_stubs_;
3578 // size of input section
3579 section_size_type orig_data_size_;
3580 // size of stubs
3581 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3582 // Whether .eh_frame info has been created for this stub section.
3583 bool eh_frame_added_;
3584 };
3585
3586 // Make a new stub table, and record.
3587
3588 template<int size, bool big_endian>
3589 Stub_table<size, big_endian>*
3590 Target_powerpc<size, big_endian>::new_stub_table()
3591 {
3592 Stub_table<size, big_endian>* stub_table
3593 = new Stub_table<size, big_endian>(this);
3594 this->stub_tables_.push_back(stub_table);
3595 return stub_table;
3596 }
3597
3598 // Delayed stub table initialisation, because we create the stub table
3599 // before we know to which section it will be attached.
3600
3601 template<int size, bool big_endian>
3602 void
3603 Stub_table<size, big_endian>::init(
3604 const Output_section::Input_section* owner,
3605 Output_section* output_section)
3606 {
3607 this->set_relobj(owner->relobj());
3608 this->set_shndx(owner->shndx());
3609 this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3610 this->set_output_section(output_section);
3611 this->orig_data_size_ = owner->current_data_size();
3612
3613 std::vector<Output_relaxed_input_section*> new_relaxed;
3614 new_relaxed.push_back(this);
3615 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3616 }
3617
3618 // Add a plt call stub, if we do not already have one for this
3619 // sym/object/addend combo.
3620
3621 template<int size, bool big_endian>
3622 void
3623 Stub_table<size, big_endian>::add_plt_call_entry(
3624 const Sized_relobj_file<size, big_endian>* object,
3625 const Symbol* gsym,
3626 unsigned int r_type,
3627 Address addend)
3628 {
3629 Plt_stub_ent ent(object, gsym, r_type, addend);
3630 Address off = this->plt_size_;
3631 std::pair<typename Plt_stub_entries::iterator, bool> p
3632 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3633 if (p.second)
3634 this->plt_size_ = off + this->plt_call_size(p.first);
3635 }
3636
3637 template<int size, bool big_endian>
3638 void
3639 Stub_table<size, big_endian>::add_plt_call_entry(
3640 const Sized_relobj_file<size, big_endian>* object,
3641 unsigned int locsym_index,
3642 unsigned int r_type,
3643 Address addend)
3644 {
3645 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3646 Address off = this->plt_size_;
3647 std::pair<typename Plt_stub_entries::iterator, bool> p
3648 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3649 if (p.second)
3650 this->plt_size_ = off + this->plt_call_size(p.first);
3651 }
3652
3653 // Find a plt call stub.
3654
3655 template<int size, bool big_endian>
3656 typename Stub_table<size, big_endian>::Address
3657 Stub_table<size, big_endian>::find_plt_call_entry(
3658 const Sized_relobj_file<size, big_endian>* object,
3659 const Symbol* gsym,
3660 unsigned int r_type,
3661 Address addend) const
3662 {
3663 Plt_stub_ent ent(object, gsym, r_type, addend);
3664 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3665 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3666 }
3667
3668 template<int size, bool big_endian>
3669 typename Stub_table<size, big_endian>::Address
3670 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3671 {
3672 Plt_stub_ent ent(gsym);
3673 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3674 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3675 }
3676
3677 template<int size, bool big_endian>
3678 typename Stub_table<size, big_endian>::Address
3679 Stub_table<size, big_endian>::find_plt_call_entry(
3680 const Sized_relobj_file<size, big_endian>* object,
3681 unsigned int locsym_index,
3682 unsigned int r_type,
3683 Address addend) const
3684 {
3685 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3686 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3687 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3688 }
3689
3690 template<int size, bool big_endian>
3691 typename Stub_table<size, big_endian>::Address
3692 Stub_table<size, big_endian>::find_plt_call_entry(
3693 const Sized_relobj_file<size, big_endian>* object,
3694 unsigned int locsym_index) const
3695 {
3696 Plt_stub_ent ent(object, locsym_index);
3697 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3698 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3699 }
3700
3701 // Add a long branch stub if we don't already have one to given
3702 // destination.
3703
3704 template<int size, bool big_endian>
3705 void
3706 Stub_table<size, big_endian>::add_long_branch_entry(
3707 const Powerpc_relobj<size, big_endian>* object,
3708 Address to)
3709 {
3710 Branch_stub_ent ent(object, to);
3711 Address off = this->branch_size_;
3712 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3713 {
3714 unsigned int stub_size = this->branch_stub_size(to);
3715 this->branch_size_ = off + stub_size;
3716 if (size == 64 && stub_size != 4)
3717 this->targ_->add_branch_lookup_table(to);
3718 }
3719 }
3720
3721 // Find long branch stub.
3722
3723 template<int size, bool big_endian>
3724 typename Stub_table<size, big_endian>::Address
3725 Stub_table<size, big_endian>::find_long_branch_entry(
3726 const Powerpc_relobj<size, big_endian>* object,
3727 Address to) const
3728 {
3729 Branch_stub_ent ent(object, to);
3730 typename Branch_stub_entries::const_iterator p
3731 = this->long_branch_stubs_.find(ent);
3732 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3733 }
3734
3735 // A class to handle .glink.
3736
3737 template<int size, bool big_endian>
3738 class Output_data_glink : public Output_section_data
3739 {
3740 public:
3741 static const int pltresolve_size = 16*4;
3742
3743 Output_data_glink(Target_powerpc<size, big_endian>* targ)
3744 : Output_section_data(16), targ_(targ)
3745 { }
3746
3747 void
3748 add_eh_frame(Layout* layout)
3749 {
3750 if (!parameters->options().ld_generated_unwind_info())
3751 return;
3752
3753 if (size == 64)
3754 layout->add_eh_frame_for_plt(this,
3755 Eh_cie<64>::eh_frame_cie,
3756 sizeof (Eh_cie<64>::eh_frame_cie),
3757 glink_eh_frame_fde_64,
3758 sizeof (glink_eh_frame_fde_64));
3759 else
3760 {
3761 // 32-bit .glink can use the default since the CIE return
3762 // address reg, LR, is valid.
3763 layout->add_eh_frame_for_plt(this,
3764 Eh_cie<32>::eh_frame_cie,
3765 sizeof (Eh_cie<32>::eh_frame_cie),
3766 default_fde,
3767 sizeof (default_fde));
3768 // Except where LR is used in a PIC __glink_PLTresolve.
3769 if (parameters->options().output_is_position_independent())
3770 layout->add_eh_frame_for_plt(this,
3771 Eh_cie<32>::eh_frame_cie,
3772 sizeof (Eh_cie<32>::eh_frame_cie),
3773 glink_eh_frame_fde_32,
3774 sizeof (glink_eh_frame_fde_32));
3775 }
3776 }
3777
3778 protected:
3779 // Write to a map file.
3780 void
3781 do_print_to_mapfile(Mapfile* mapfile) const
3782 { mapfile->print_output_data(this, _("** glink")); }
3783
3784 private:
3785 void
3786 set_final_data_size();
3787
3788 // Write out .glink
3789 void
3790 do_write(Output_file*);
3791
3792 // Allows access to .got and .plt for do_write.
3793 Target_powerpc<size, big_endian>* targ_;
3794 };
3795
3796 template<int size, bool big_endian>
3797 void
3798 Output_data_glink<size, big_endian>::set_final_data_size()
3799 {
3800 unsigned int count = this->targ_->plt_entry_count();
3801 section_size_type total = 0;
3802
3803 if (count != 0)
3804 {
3805 if (size == 32)
3806 {
3807 // space for branch table
3808 total += 4 * (count - 1);
3809
3810 total += -total & 15;
3811 total += this->pltresolve_size;
3812 }
3813 else
3814 {
3815 total += this->pltresolve_size;
3816
3817 // space for branch table
3818 total += 8 * count;
3819 if (count > 0x8000)
3820 total += 4 * (count - 0x8000);
3821 }
3822 }
3823
3824 this->set_data_size(total);
3825 }
3826
3827 // Write out plt and long branch stub code.
3828
3829 template<int size, bool big_endian>
3830 void
3831 Stub_table<size, big_endian>::do_write(Output_file* of)
3832 {
3833 if (this->plt_call_stubs_.empty()
3834 && this->long_branch_stubs_.empty())
3835 return;
3836
3837 const section_size_type start_off = this->offset();
3838 const section_size_type off = this->stub_offset();
3839 const section_size_type oview_size =
3840 convert_to_section_size_type(this->data_size() - (off - start_off));
3841 unsigned char* const oview = of->get_output_view(off, oview_size);
3842 unsigned char* p;
3843
3844 if (size == 64)
3845 {
3846 const Output_data_got_powerpc<size, big_endian>* got
3847 = this->targ_->got_section();
3848 Address got_os_addr = got->output_section()->address();
3849
3850 if (!this->plt_call_stubs_.empty())
3851 {
3852 // The base address of the .plt section.
3853 Address plt_base = this->targ_->plt_section()->address();
3854 Address iplt_base = invalid_address;
3855
3856 // Write out plt call stubs.
3857 typename Plt_stub_entries::const_iterator cs;
3858 for (cs = this->plt_call_stubs_.begin();
3859 cs != this->plt_call_stubs_.end();
3860 ++cs)
3861 {
3862 bool is_iplt;
3863 Address pltoff = this->plt_off(cs, &is_iplt);
3864 Address plt_addr = pltoff;
3865 if (is_iplt)
3866 {
3867 if (iplt_base == invalid_address)
3868 iplt_base = this->targ_->iplt_section()->address();
3869 plt_addr += iplt_base;
3870 }
3871 else
3872 plt_addr += plt_base;
3873 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3874 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
3875 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
3876 Address off = plt_addr - got_addr;
3877
3878 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
3879 gold_error(_("%s: linkage table error against `%s'"),
3880 cs->first.object_->name().c_str(),
3881 cs->first.sym_->demangled_name().c_str());
3882
3883 bool static_chain = parameters->options().plt_static_chain();
3884 bool thread_safe = this->targ_->plt_thread_safe();
3885 bool use_fake_dep = false;
3886 Address cmp_branch_off = 0;
3887 if (thread_safe)
3888 {
3889 unsigned int pltindex
3890 = ((pltoff - this->targ_->first_plt_entry_offset())
3891 / this->targ_->plt_entry_size());
3892 Address glinkoff
3893 = (this->targ_->glink_section()->pltresolve_size
3894 + pltindex * 8);
3895 if (pltindex > 32768)
3896 glinkoff += (pltindex - 32768) * 4;
3897 Address to
3898 = this->targ_->glink_section()->address() + glinkoff;
3899 Address from
3900 = (this->stub_address() + cs->second + 24
3901 + 4 * (ha(off) != 0)
3902 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
3903 + 4 * static_chain);
3904 cmp_branch_off = to - from;
3905 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
3906 }
3907
3908 p = oview + cs->second;
3909 if (ha(off) != 0)
3910 {
3911 write_insn<big_endian>(p, std_2_1 + 40), p += 4;
3912 write_insn<big_endian>(p, addis_12_2 + ha(off)), p += 4;
3913 write_insn<big_endian>(p, ld_11_12 + l(off)), p += 4;
3914 if (ha(off + 8 + 8 * static_chain) != ha(off))
3915 {
3916 write_insn<big_endian>(p, addi_12_12 + l(off)), p += 4;
3917 off = 0;
3918 }
3919 write_insn<big_endian>(p, mtctr_11), p += 4;
3920 if (use_fake_dep)
3921 {
3922 write_insn<big_endian>(p, xor_11_11_11), p += 4;
3923 write_insn<big_endian>(p, add_12_12_11), p += 4;
3924 }
3925 write_insn<big_endian>(p, ld_2_12 + l(off + 8)), p += 4;
3926 if (static_chain)
3927 write_insn<big_endian>(p, ld_11_12 + l(off + 16)), p += 4;
3928 }
3929 else
3930 {
3931 write_insn<big_endian>(p, std_2_1 + 40), p += 4;
3932 write_insn<big_endian>(p, ld_11_2 + l(off)), p += 4;
3933 if (ha(off + 8 + 8 * static_chain) != ha(off))
3934 {
3935 write_insn<big_endian>(p, addi_2_2 + l(off)), p += 4;
3936 off = 0;
3937 }
3938 write_insn<big_endian>(p, mtctr_11), p += 4;
3939 if (use_fake_dep)
3940 {
3941 write_insn<big_endian>(p, xor_11_11_11), p += 4;
3942 write_insn<big_endian>(p, add_2_2_11), p += 4;
3943 }
3944 if (static_chain)
3945 write_insn<big_endian>(p, ld_11_2 + l(off + 16)), p += 4;
3946 write_insn<big_endian>(p, ld_2_2 + l(off + 8)), p += 4;
3947 }
3948 if (thread_safe && !use_fake_dep)
3949 {
3950 write_insn<big_endian>(p, cmpldi_2_0), p += 4;
3951 write_insn<big_endian>(p, bnectr_p4), p += 4;
3952 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
3953 }
3954 else
3955 write_insn<big_endian>(p, bctr);
3956 }
3957 }
3958
3959 // Write out long branch stubs.
3960 typename Branch_stub_entries::const_iterator bs;
3961 for (bs = this->long_branch_stubs_.begin();
3962 bs != this->long_branch_stubs_.end();
3963 ++bs)
3964 {
3965 p = oview + this->plt_size_ + bs->second;
3966 Address loc = this->stub_address() + this->plt_size_ + bs->second;
3967 Address delta = bs->first.dest_ - loc;
3968 if (delta + (1 << 25) < 2 << 25)
3969 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
3970 else
3971 {
3972 Address brlt_addr
3973 = this->targ_->find_branch_lookup_table(bs->first.dest_);
3974 gold_assert(brlt_addr != invalid_address);
3975 brlt_addr += this->targ_->brlt_section()->address();
3976 Address got_addr = got_os_addr + bs->first.toc_base_off_;
3977 Address brltoff = brlt_addr - got_addr;
3978 if (ha(brltoff) == 0)
3979 {
3980 write_insn<big_endian>(p, ld_11_2 + l(brltoff)), p += 4;
3981 }
3982 else
3983 {
3984 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
3985 write_insn<big_endian>(p, ld_11_12 + l(brltoff)), p += 4;
3986 }
3987 write_insn<big_endian>(p, mtctr_11), p += 4;
3988 write_insn<big_endian>(p, bctr);
3989 }
3990 }
3991 }
3992 else
3993 {
3994 if (!this->plt_call_stubs_.empty())
3995 {
3996 // The base address of the .plt section.
3997 Address plt_base = this->targ_->plt_section()->address();
3998 Address iplt_base = invalid_address;
3999 // The address of _GLOBAL_OFFSET_TABLE_.
4000 Address g_o_t = invalid_address;
4001
4002 // Write out plt call stubs.
4003 typename Plt_stub_entries::const_iterator cs;
4004 for (cs = this->plt_call_stubs_.begin();
4005 cs != this->plt_call_stubs_.end();
4006 ++cs)
4007 {
4008 bool is_iplt;
4009 Address plt_addr = this->plt_off(cs, &is_iplt);
4010 if (is_iplt)
4011 {
4012 if (iplt_base == invalid_address)
4013 iplt_base = this->targ_->iplt_section()->address();
4014 plt_addr += iplt_base;
4015 }
4016 else
4017 plt_addr += plt_base;
4018
4019 p = oview + cs->second;
4020 if (parameters->options().output_is_position_independent())
4021 {
4022 Address got_addr;
4023 const Powerpc_relobj<size, big_endian>* ppcobj
4024 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4025 (cs->first.object_));
4026 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4027 {
4028 unsigned int got2 = ppcobj->got2_shndx();
4029 got_addr = ppcobj->get_output_section_offset(got2);
4030 gold_assert(got_addr != invalid_address);
4031 got_addr += (ppcobj->output_section(got2)->address()
4032 + cs->first.addend_);
4033 }
4034 else
4035 {
4036 if (g_o_t == invalid_address)
4037 {
4038 const Output_data_got_powerpc<size, big_endian>* got
4039 = this->targ_->got_section();
4040 g_o_t = got->address() + got->g_o_t();
4041 }
4042 got_addr = g_o_t;
4043 }
4044
4045 Address off = plt_addr - got_addr;
4046 if (ha(off) == 0)
4047 {
4048 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4049 write_insn<big_endian>(p + 4, mtctr_11);
4050 write_insn<big_endian>(p + 8, bctr);
4051 }
4052 else
4053 {
4054 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4055 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4056 write_insn<big_endian>(p + 8, mtctr_11);
4057 write_insn<big_endian>(p + 12, bctr);
4058 }
4059 }
4060 else
4061 {
4062 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4063 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4064 write_insn<big_endian>(p + 8, mtctr_11);
4065 write_insn<big_endian>(p + 12, bctr);
4066 }
4067 }
4068 }
4069
4070 // Write out long branch stubs.
4071 typename Branch_stub_entries::const_iterator bs;
4072 for (bs = this->long_branch_stubs_.begin();
4073 bs != this->long_branch_stubs_.end();
4074 ++bs)
4075 {
4076 p = oview + this->plt_size_ + bs->second;
4077 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4078 Address delta = bs->first.dest_ - loc;
4079 if (delta + (1 << 25) < 2 << 25)
4080 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4081 else if (!parameters->options().output_is_position_independent())
4082 {
4083 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4084 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4085 write_insn<big_endian>(p + 8, mtctr_12);
4086 write_insn<big_endian>(p + 12, bctr);
4087 }
4088 else
4089 {
4090 delta -= 8;
4091 write_insn<big_endian>(p + 0, mflr_0);
4092 write_insn<big_endian>(p + 4, bcl_20_31);
4093 write_insn<big_endian>(p + 8, mflr_12);
4094 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4095 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4096 write_insn<big_endian>(p + 20, mtlr_0);
4097 write_insn<big_endian>(p + 24, mtctr_12);
4098 write_insn<big_endian>(p + 28, bctr);
4099 }
4100 }
4101 }
4102 }
4103
4104 // Write out .glink.
4105
4106 template<int size, bool big_endian>
4107 void
4108 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4109 {
4110 const section_size_type off = this->offset();
4111 const section_size_type oview_size =
4112 convert_to_section_size_type(this->data_size());
4113 unsigned char* const oview = of->get_output_view(off, oview_size);
4114 unsigned char* p;
4115
4116 // The base address of the .plt section.
4117 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4118 Address plt_base = this->targ_->plt_section()->address();
4119
4120 if (size == 64)
4121 {
4122 // Write pltresolve stub.
4123 p = oview;
4124 Address after_bcl = this->address() + 16;
4125 Address pltoff = plt_base - after_bcl;
4126
4127 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4128
4129 write_insn<big_endian>(p, mflr_12), p += 4;
4130 write_insn<big_endian>(p, bcl_20_31), p += 4;
4131 write_insn<big_endian>(p, mflr_11), p += 4;
4132 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4133 write_insn<big_endian>(p, mtlr_12), p += 4;
4134 write_insn<big_endian>(p, add_12_2_11), p += 4;
4135 write_insn<big_endian>(p, ld_11_12 + 0), p += 4;
4136 write_insn<big_endian>(p, ld_2_12 + 8), p += 4;
4137 write_insn<big_endian>(p, mtctr_11), p += 4;
4138 write_insn<big_endian>(p, ld_11_12 + 16), p += 4;
4139 write_insn<big_endian>(p, bctr), p += 4;
4140 while (p < oview + this->pltresolve_size)
4141 write_insn<big_endian>(p, nop), p += 4;
4142
4143 // Write lazy link call stubs.
4144 uint32_t indx = 0;
4145 while (p < oview + oview_size)
4146 {
4147 if (indx < 0x8000)
4148 {
4149 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4150 }
4151 else
4152 {
4153 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
4154 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4155 }
4156 uint32_t branch_off = 8 - (p - oview);
4157 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4158 indx++;
4159 }
4160 }
4161 else
4162 {
4163 const Output_data_got_powerpc<size, big_endian>* got
4164 = this->targ_->got_section();
4165 // The address of _GLOBAL_OFFSET_TABLE_.
4166 Address g_o_t = got->address() + got->g_o_t();
4167
4168 // Write out pltresolve branch table.
4169 p = oview;
4170 unsigned int the_end = oview_size - this->pltresolve_size;
4171 unsigned char* end_p = oview + the_end;
4172 while (p < end_p - 8 * 4)
4173 write_insn<big_endian>(p, b + end_p - p), p += 4;
4174 while (p < end_p)
4175 write_insn<big_endian>(p, nop), p += 4;
4176
4177 // Write out pltresolve call stub.
4178 if (parameters->options().output_is_position_independent())
4179 {
4180 Address res0_off = 0;
4181 Address after_bcl_off = the_end + 12;
4182 Address bcl_res0 = after_bcl_off - res0_off;
4183
4184 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4185 write_insn<big_endian>(p + 4, mflr_0);
4186 write_insn<big_endian>(p + 8, bcl_20_31);
4187 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4188 write_insn<big_endian>(p + 16, mflr_12);
4189 write_insn<big_endian>(p + 20, mtlr_0);
4190 write_insn<big_endian>(p + 24, sub_11_11_12);
4191
4192 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4193
4194 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4195 if (ha(got_bcl) == ha(got_bcl + 4))
4196 {
4197 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4198 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4199 }
4200 else
4201 {
4202 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4203 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4204 }
4205 write_insn<big_endian>(p + 40, mtctr_0);
4206 write_insn<big_endian>(p + 44, add_0_11_11);
4207 write_insn<big_endian>(p + 48, add_11_0_11);
4208 write_insn<big_endian>(p + 52, bctr);
4209 write_insn<big_endian>(p + 56, nop);
4210 write_insn<big_endian>(p + 60, nop);
4211 }
4212 else
4213 {
4214 Address res0 = this->address();
4215
4216 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4217 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4218 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4219 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4220 else
4221 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4222 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4223 write_insn<big_endian>(p + 16, mtctr_0);
4224 write_insn<big_endian>(p + 20, add_0_11_11);
4225 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4226 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4227 else
4228 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4229 write_insn<big_endian>(p + 28, add_11_0_11);
4230 write_insn<big_endian>(p + 32, bctr);
4231 write_insn<big_endian>(p + 36, nop);
4232 write_insn<big_endian>(p + 40, nop);
4233 write_insn<big_endian>(p + 44, nop);
4234 write_insn<big_endian>(p + 48, nop);
4235 write_insn<big_endian>(p + 52, nop);
4236 write_insn<big_endian>(p + 56, nop);
4237 write_insn<big_endian>(p + 60, nop);
4238 }
4239 p += 64;
4240 }
4241
4242 of->write_output_view(off, oview_size, oview);
4243 }
4244
4245
4246 // A class to handle linker generated save/restore functions.
4247
4248 template<int size, bool big_endian>
4249 class Output_data_save_res : public Output_section_data_build
4250 {
4251 public:
4252 Output_data_save_res(Symbol_table* symtab);
4253
4254 protected:
4255 // Write to a map file.
4256 void
4257 do_print_to_mapfile(Mapfile* mapfile) const
4258 { mapfile->print_output_data(this, _("** save/restore")); }
4259
4260 void
4261 do_write(Output_file*);
4262
4263 private:
4264 // The maximum size of save/restore contents.
4265 static const unsigned int savres_max = 218*4;
4266
4267 void
4268 savres_define(Symbol_table* symtab,
4269 const char *name,
4270 unsigned int lo, unsigned int hi,
4271 unsigned char* write_ent(unsigned char*, int),
4272 unsigned char* write_tail(unsigned char*, int));
4273
4274 unsigned char *contents_;
4275 };
4276
4277 template<bool big_endian>
4278 static unsigned char*
4279 savegpr0(unsigned char* p, int r)
4280 {
4281 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4282 write_insn<big_endian>(p, insn);
4283 return p + 4;
4284 }
4285
4286 template<bool big_endian>
4287 static unsigned char*
4288 savegpr0_tail(unsigned char* p, int r)
4289 {
4290 p = savegpr0<big_endian>(p, r);
4291 uint32_t insn = std_0_1 + 16;
4292 write_insn<big_endian>(p, insn);
4293 p = p + 4;
4294 write_insn<big_endian>(p, blr);
4295 return p + 4;
4296 }
4297
4298 template<bool big_endian>
4299 static unsigned char*
4300 restgpr0(unsigned char* p, int r)
4301 {
4302 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4303 write_insn<big_endian>(p, insn);
4304 return p + 4;
4305 }
4306
4307 template<bool big_endian>
4308 static unsigned char*
4309 restgpr0_tail(unsigned char* p, int r)
4310 {
4311 uint32_t insn = ld_0_1 + 16;
4312 write_insn<big_endian>(p, insn);
4313 p = p + 4;
4314 p = restgpr0<big_endian>(p, r);
4315 write_insn<big_endian>(p, mtlr_0);
4316 p = p + 4;
4317 if (r == 29)
4318 {
4319 p = restgpr0<big_endian>(p, 30);
4320 p = restgpr0<big_endian>(p, 31);
4321 }
4322 write_insn<big_endian>(p, blr);
4323 return p + 4;
4324 }
4325
4326 template<bool big_endian>
4327 static unsigned char*
4328 savegpr1(unsigned char* p, int r)
4329 {
4330 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4331 write_insn<big_endian>(p, insn);
4332 return p + 4;
4333 }
4334
4335 template<bool big_endian>
4336 static unsigned char*
4337 savegpr1_tail(unsigned char* p, int r)
4338 {
4339 p = savegpr1<big_endian>(p, r);
4340 write_insn<big_endian>(p, blr);
4341 return p + 4;
4342 }
4343
4344 template<bool big_endian>
4345 static unsigned char*
4346 restgpr1(unsigned char* p, int r)
4347 {
4348 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4349 write_insn<big_endian>(p, insn);
4350 return p + 4;
4351 }
4352
4353 template<bool big_endian>
4354 static unsigned char*
4355 restgpr1_tail(unsigned char* p, int r)
4356 {
4357 p = restgpr1<big_endian>(p, r);
4358 write_insn<big_endian>(p, blr);
4359 return p + 4;
4360 }
4361
4362 template<bool big_endian>
4363 static unsigned char*
4364 savefpr(unsigned char* p, int r)
4365 {
4366 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4367 write_insn<big_endian>(p, insn);
4368 return p + 4;
4369 }
4370
4371 template<bool big_endian>
4372 static unsigned char*
4373 savefpr0_tail(unsigned char* p, int r)
4374 {
4375 p = savefpr<big_endian>(p, r);
4376 write_insn<big_endian>(p, std_0_1 + 16);
4377 p = p + 4;
4378 write_insn<big_endian>(p, blr);
4379 return p + 4;
4380 }
4381
4382 template<bool big_endian>
4383 static unsigned char*
4384 restfpr(unsigned char* p, int r)
4385 {
4386 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4387 write_insn<big_endian>(p, insn);
4388 return p + 4;
4389 }
4390
4391 template<bool big_endian>
4392 static unsigned char*
4393 restfpr0_tail(unsigned char* p, int r)
4394 {
4395 write_insn<big_endian>(p, ld_0_1 + 16);
4396 p = p + 4;
4397 p = restfpr<big_endian>(p, r);
4398 write_insn<big_endian>(p, mtlr_0);
4399 p = p + 4;
4400 if (r == 29)
4401 {
4402 p = restfpr<big_endian>(p, 30);
4403 p = restfpr<big_endian>(p, 31);
4404 }
4405 write_insn<big_endian>(p, blr);
4406 return p + 4;
4407 }
4408
4409 template<bool big_endian>
4410 static unsigned char*
4411 savefpr1_tail(unsigned char* p, int r)
4412 {
4413 p = savefpr<big_endian>(p, r);
4414 write_insn<big_endian>(p, blr);
4415 return p + 4;
4416 }
4417
4418 template<bool big_endian>
4419 static unsigned char*
4420 restfpr1_tail(unsigned char* p, int r)
4421 {
4422 p = restfpr<big_endian>(p, r);
4423 write_insn<big_endian>(p, blr);
4424 return p + 4;
4425 }
4426
4427 template<bool big_endian>
4428 static unsigned char*
4429 savevr(unsigned char* p, int r)
4430 {
4431 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4432 write_insn<big_endian>(p, insn);
4433 p = p + 4;
4434 insn = stvx_0_12_0 + (r << 21);
4435 write_insn<big_endian>(p, insn);
4436 return p + 4;
4437 }
4438
4439 template<bool big_endian>
4440 static unsigned char*
4441 savevr_tail(unsigned char* p, int r)
4442 {
4443 p = savevr<big_endian>(p, r);
4444 write_insn<big_endian>(p, blr);
4445 return p + 4;
4446 }
4447
4448 template<bool big_endian>
4449 static unsigned char*
4450 restvr(unsigned char* p, int r)
4451 {
4452 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4453 write_insn<big_endian>(p, insn);
4454 p = p + 4;
4455 insn = lvx_0_12_0 + (r << 21);
4456 write_insn<big_endian>(p, insn);
4457 return p + 4;
4458 }
4459
4460 template<bool big_endian>
4461 static unsigned char*
4462 restvr_tail(unsigned char* p, int r)
4463 {
4464 p = restvr<big_endian>(p, r);
4465 write_insn<big_endian>(p, blr);
4466 return p + 4;
4467 }
4468
4469
4470 template<int size, bool big_endian>
4471 Output_data_save_res<size, big_endian>::Output_data_save_res(
4472 Symbol_table* symtab)
4473 : Output_section_data_build(4),
4474 contents_(NULL)
4475 {
4476 this->savres_define(symtab,
4477 "_savegpr0_", 14, 31,
4478 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4479 this->savres_define(symtab,
4480 "_restgpr0_", 14, 29,
4481 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4482 this->savres_define(symtab,
4483 "_restgpr0_", 30, 31,
4484 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4485 this->savres_define(symtab,
4486 "_savegpr1_", 14, 31,
4487 savegpr1<big_endian>, savegpr1_tail<big_endian>);
4488 this->savres_define(symtab,
4489 "_restgpr1_", 14, 31,
4490 restgpr1<big_endian>, restgpr1_tail<big_endian>);
4491 this->savres_define(symtab,
4492 "_savefpr_", 14, 31,
4493 savefpr<big_endian>, savefpr0_tail<big_endian>);
4494 this->savres_define(symtab,
4495 "_restfpr_", 14, 29,
4496 restfpr<big_endian>, restfpr0_tail<big_endian>);
4497 this->savres_define(symtab,
4498 "_restfpr_", 30, 31,
4499 restfpr<big_endian>, restfpr0_tail<big_endian>);
4500 this->savres_define(symtab,
4501 "._savef", 14, 31,
4502 savefpr<big_endian>, savefpr1_tail<big_endian>);
4503 this->savres_define(symtab,
4504 "._restf", 14, 31,
4505 restfpr<big_endian>, restfpr1_tail<big_endian>);
4506 this->savres_define(symtab,
4507 "_savevr_", 20, 31,
4508 savevr<big_endian>, savevr_tail<big_endian>);
4509 this->savres_define(symtab,
4510 "_restvr_", 20, 31,
4511 restvr<big_endian>, restvr_tail<big_endian>);
4512 }
4513
4514 template<int size, bool big_endian>
4515 void
4516 Output_data_save_res<size, big_endian>::savres_define(
4517 Symbol_table* symtab,
4518 const char *name,
4519 unsigned int lo, unsigned int hi,
4520 unsigned char* write_ent(unsigned char*, int),
4521 unsigned char* write_tail(unsigned char*, int))
4522 {
4523 size_t len = strlen(name);
4524 bool writing = false;
4525 char sym[16];
4526
4527 memcpy(sym, name, len);
4528 sym[len + 2] = 0;
4529
4530 for (unsigned int i = lo; i <= hi; i++)
4531 {
4532 sym[len + 0] = i / 10 + '0';
4533 sym[len + 1] = i % 10 + '0';
4534 Symbol* gsym = symtab->lookup(sym);
4535 bool refd = gsym != NULL && gsym->is_undefined();
4536 writing = writing || refd;
4537 if (writing)
4538 {
4539 if (this->contents_ == NULL)
4540 this->contents_ = new unsigned char[this->savres_max];
4541
4542 section_size_type value = this->current_data_size();
4543 unsigned char* p = this->contents_ + value;
4544 if (i != hi)
4545 p = write_ent(p, i);
4546 else
4547 p = write_tail(p, i);
4548 section_size_type cur_size = p - this->contents_;
4549 this->set_current_data_size(cur_size);
4550 if (refd)
4551 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4552 this, value, cur_size - value,
4553 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4554 elfcpp::STV_HIDDEN, 0, false, false);
4555 }
4556 }
4557 }
4558
4559 // Write out save/restore.
4560
4561 template<int size, bool big_endian>
4562 void
4563 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4564 {
4565 const section_size_type off = this->offset();
4566 const section_size_type oview_size =
4567 convert_to_section_size_type(this->data_size());
4568 unsigned char* const oview = of->get_output_view(off, oview_size);
4569 memcpy(oview, this->contents_, oview_size);
4570 of->write_output_view(off, oview_size, oview);
4571 }
4572
4573
4574 // Create the glink section.
4575
4576 template<int size, bool big_endian>
4577 void
4578 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4579 {
4580 if (this->glink_ == NULL)
4581 {
4582 this->glink_ = new Output_data_glink<size, big_endian>(this);
4583 this->glink_->add_eh_frame(layout);
4584 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4585 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4586 this->glink_, ORDER_TEXT, false);
4587 }
4588 }
4589
4590 // Create a PLT entry for a global symbol.
4591
4592 template<int size, bool big_endian>
4593 void
4594 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
4595 Layout* layout,
4596 Symbol* gsym)
4597 {
4598 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4599 && gsym->can_use_relative_reloc(false))
4600 {
4601 if (this->iplt_ == NULL)
4602 this->make_iplt_section(symtab, layout);
4603 this->iplt_->add_ifunc_entry(gsym);
4604 }
4605 else
4606 {
4607 if (this->plt_ == NULL)
4608 this->make_plt_section(symtab, layout);
4609 this->plt_->add_entry(gsym);
4610 }
4611 }
4612
4613 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
4614
4615 template<int size, bool big_endian>
4616 void
4617 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
4618 Symbol_table* symtab,
4619 Layout* layout,
4620 Sized_relobj_file<size, big_endian>* relobj,
4621 unsigned int r_sym)
4622 {
4623 if (this->iplt_ == NULL)
4624 this->make_iplt_section(symtab, layout);
4625 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
4626 }
4627
4628 // Return the number of entries in the PLT.
4629
4630 template<int size, bool big_endian>
4631 unsigned int
4632 Target_powerpc<size, big_endian>::plt_entry_count() const
4633 {
4634 if (this->plt_ == NULL)
4635 return 0;
4636 return this->plt_->entry_count();
4637 }
4638
4639 // Return the offset of the first non-reserved PLT entry.
4640
4641 template<int size, bool big_endian>
4642 unsigned int
4643 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
4644 {
4645 return this->plt_->first_plt_entry_offset();
4646 }
4647
4648 // Return the size of each PLT entry.
4649
4650 template<int size, bool big_endian>
4651 unsigned int
4652 Target_powerpc<size, big_endian>::plt_entry_size() const
4653 {
4654 return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
4655 }
4656
4657 // Create a GOT entry for local dynamic __tls_get_addr calls.
4658
4659 template<int size, bool big_endian>
4660 unsigned int
4661 Target_powerpc<size, big_endian>::tlsld_got_offset(
4662 Symbol_table* symtab,
4663 Layout* layout,
4664 Sized_relobj_file<size, big_endian>* object)
4665 {
4666 if (this->tlsld_got_offset_ == -1U)
4667 {
4668 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4669 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4670 Output_data_got_powerpc<size, big_endian>* got
4671 = this->got_section(symtab, layout);
4672 unsigned int got_offset = got->add_constant_pair(0, 0);
4673 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
4674 got_offset, 0);
4675 this->tlsld_got_offset_ = got_offset;
4676 }
4677 return this->tlsld_got_offset_;
4678 }
4679
4680 // Get the Reference_flags for a particular relocation.
4681
4682 template<int size, bool big_endian>
4683 int
4684 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
4685 {
4686 switch (r_type)
4687 {
4688 case elfcpp::R_POWERPC_NONE:
4689 case elfcpp::R_POWERPC_GNU_VTINHERIT:
4690 case elfcpp::R_POWERPC_GNU_VTENTRY:
4691 case elfcpp::R_PPC64_TOC:
4692 // No symbol reference.
4693 return 0;
4694
4695 case elfcpp::R_PPC64_ADDR64:
4696 case elfcpp::R_PPC64_UADDR64:
4697 case elfcpp::R_POWERPC_ADDR32:
4698 case elfcpp::R_POWERPC_UADDR32:
4699 case elfcpp::R_POWERPC_ADDR16:
4700 case elfcpp::R_POWERPC_UADDR16:
4701 case elfcpp::R_POWERPC_ADDR16_LO:
4702 case elfcpp::R_POWERPC_ADDR16_HI:
4703 case elfcpp::R_POWERPC_ADDR16_HA:
4704 return Symbol::ABSOLUTE_REF;
4705
4706 case elfcpp::R_POWERPC_ADDR24:
4707 case elfcpp::R_POWERPC_ADDR14:
4708 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4709 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4710 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
4711
4712 case elfcpp::R_PPC64_REL64:
4713 case elfcpp::R_POWERPC_REL32:
4714 case elfcpp::R_PPC_LOCAL24PC:
4715 case elfcpp::R_POWERPC_REL16:
4716 case elfcpp::R_POWERPC_REL16_LO:
4717 case elfcpp::R_POWERPC_REL16_HI:
4718 case elfcpp::R_POWERPC_REL16_HA:
4719 return Symbol::RELATIVE_REF;
4720
4721 case elfcpp::R_POWERPC_REL24:
4722 case elfcpp::R_PPC_PLTREL24:
4723 case elfcpp::R_POWERPC_REL14:
4724 case elfcpp::R_POWERPC_REL14_BRTAKEN:
4725 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4726 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
4727
4728 case elfcpp::R_POWERPC_GOT16:
4729 case elfcpp::R_POWERPC_GOT16_LO:
4730 case elfcpp::R_POWERPC_GOT16_HI:
4731 case elfcpp::R_POWERPC_GOT16_HA:
4732 case elfcpp::R_PPC64_GOT16_DS:
4733 case elfcpp::R_PPC64_GOT16_LO_DS:
4734 case elfcpp::R_PPC64_TOC16:
4735 case elfcpp::R_PPC64_TOC16_LO:
4736 case elfcpp::R_PPC64_TOC16_HI:
4737 case elfcpp::R_PPC64_TOC16_HA:
4738 case elfcpp::R_PPC64_TOC16_DS:
4739 case elfcpp::R_PPC64_TOC16_LO_DS:
4740 // Absolute in GOT.
4741 return Symbol::ABSOLUTE_REF;
4742
4743 case elfcpp::R_POWERPC_GOT_TPREL16:
4744 case elfcpp::R_POWERPC_TLS:
4745 return Symbol::TLS_REF;
4746
4747 case elfcpp::R_POWERPC_COPY:
4748 case elfcpp::R_POWERPC_GLOB_DAT:
4749 case elfcpp::R_POWERPC_JMP_SLOT:
4750 case elfcpp::R_POWERPC_RELATIVE:
4751 case elfcpp::R_POWERPC_DTPMOD:
4752 default:
4753 // Not expected. We will give an error later.
4754 return 0;
4755 }
4756 }
4757
4758 // Report an unsupported relocation against a local symbol.
4759
4760 template<int size, bool big_endian>
4761 void
4762 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
4763 Sized_relobj_file<size, big_endian>* object,
4764 unsigned int r_type)
4765 {
4766 gold_error(_("%s: unsupported reloc %u against local symbol"),
4767 object->name().c_str(), r_type);
4768 }
4769
4770 // We are about to emit a dynamic relocation of type R_TYPE. If the
4771 // dynamic linker does not support it, issue an error.
4772
4773 template<int size, bool big_endian>
4774 void
4775 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
4776 unsigned int r_type)
4777 {
4778 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
4779
4780 // These are the relocation types supported by glibc for both 32-bit
4781 // and 64-bit powerpc.
4782 switch (r_type)
4783 {
4784 case elfcpp::R_POWERPC_NONE:
4785 case elfcpp::R_POWERPC_RELATIVE:
4786 case elfcpp::R_POWERPC_GLOB_DAT:
4787 case elfcpp::R_POWERPC_DTPMOD:
4788 case elfcpp::R_POWERPC_DTPREL:
4789 case elfcpp::R_POWERPC_TPREL:
4790 case elfcpp::R_POWERPC_JMP_SLOT:
4791 case elfcpp::R_POWERPC_COPY:
4792 case elfcpp::R_POWERPC_IRELATIVE:
4793 case elfcpp::R_POWERPC_ADDR32:
4794 case elfcpp::R_POWERPC_UADDR32:
4795 case elfcpp::R_POWERPC_ADDR24:
4796 case elfcpp::R_POWERPC_ADDR16:
4797 case elfcpp::R_POWERPC_UADDR16:
4798 case elfcpp::R_POWERPC_ADDR16_LO:
4799 case elfcpp::R_POWERPC_ADDR16_HI:
4800 case elfcpp::R_POWERPC_ADDR16_HA:
4801 case elfcpp::R_POWERPC_ADDR14:
4802 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4803 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4804 case elfcpp::R_POWERPC_REL32:
4805 case elfcpp::R_POWERPC_REL24:
4806 case elfcpp::R_POWERPC_TPREL16:
4807 case elfcpp::R_POWERPC_TPREL16_LO:
4808 case elfcpp::R_POWERPC_TPREL16_HI:
4809 case elfcpp::R_POWERPC_TPREL16_HA:
4810 return;
4811
4812 default:
4813 break;
4814 }
4815
4816 if (size == 64)
4817 {
4818 switch (r_type)
4819 {
4820 // These are the relocation types supported only on 64-bit.
4821 case elfcpp::R_PPC64_ADDR64:
4822 case elfcpp::R_PPC64_UADDR64:
4823 case elfcpp::R_PPC64_JMP_IREL:
4824 case elfcpp::R_PPC64_ADDR16_DS:
4825 case elfcpp::R_PPC64_ADDR16_LO_DS:
4826 case elfcpp::R_PPC64_ADDR16_HIGHER:
4827 case elfcpp::R_PPC64_ADDR16_HIGHEST:
4828 case elfcpp::R_PPC64_ADDR16_HIGHERA:
4829 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
4830 case elfcpp::R_PPC64_REL64:
4831 case elfcpp::R_POWERPC_ADDR30:
4832 case elfcpp::R_PPC64_TPREL16_DS:
4833 case elfcpp::R_PPC64_TPREL16_LO_DS:
4834 case elfcpp::R_PPC64_TPREL16_HIGHER:
4835 case elfcpp::R_PPC64_TPREL16_HIGHEST:
4836 case elfcpp::R_PPC64_TPREL16_HIGHERA:
4837 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4838 return;
4839
4840 default:
4841 break;
4842 }
4843 }
4844 else
4845 {
4846 switch (r_type)
4847 {
4848 // These are the relocation types supported only on 32-bit.
4849 // ??? glibc ld.so doesn't need to support these.
4850 case elfcpp::R_POWERPC_DTPREL16:
4851 case elfcpp::R_POWERPC_DTPREL16_LO:
4852 case elfcpp::R_POWERPC_DTPREL16_HI:
4853 case elfcpp::R_POWERPC_DTPREL16_HA:
4854 return;
4855
4856 default:
4857 break;
4858 }
4859 }
4860
4861 // This prevents us from issuing more than one error per reloc
4862 // section. But we can still wind up issuing more than one
4863 // error per object file.
4864 if (this->issued_non_pic_error_)
4865 return;
4866 gold_assert(parameters->options().output_is_position_independent());
4867 object->error(_("requires unsupported dynamic reloc; "
4868 "recompile with -fPIC"));
4869 this->issued_non_pic_error_ = true;
4870 return;
4871 }
4872
4873 // Return whether we need to make a PLT entry for a relocation of the
4874 // given type against a STT_GNU_IFUNC symbol.
4875
4876 template<int size, bool big_endian>
4877 bool
4878 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
4879 Sized_relobj_file<size, big_endian>* object,
4880 unsigned int r_type,
4881 bool report_err)
4882 {
4883 // In non-pic code any reference will resolve to the plt call stub
4884 // for the ifunc symbol.
4885 if (size == 32 && !parameters->options().output_is_position_independent())
4886 return true;
4887
4888 switch (r_type)
4889 {
4890 // Word size refs from data sections are OK, but don't need a PLT entry.
4891 case elfcpp::R_POWERPC_ADDR32:
4892 case elfcpp::R_POWERPC_UADDR32:
4893 if (size == 32)
4894 return false;
4895 break;
4896
4897 case elfcpp::R_PPC64_ADDR64:
4898 case elfcpp::R_PPC64_UADDR64:
4899 if (size == 64)
4900 return false;
4901 break;
4902
4903 // GOT refs are good, but also don't need a PLT entry.
4904 case elfcpp::R_POWERPC_GOT16:
4905 case elfcpp::R_POWERPC_GOT16_LO:
4906 case elfcpp::R_POWERPC_GOT16_HI:
4907 case elfcpp::R_POWERPC_GOT16_HA:
4908 case elfcpp::R_PPC64_GOT16_DS:
4909 case elfcpp::R_PPC64_GOT16_LO_DS:
4910 return false;
4911
4912 // Function calls are good, and these do need a PLT entry.
4913 case elfcpp::R_POWERPC_ADDR24:
4914 case elfcpp::R_POWERPC_ADDR14:
4915 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4916 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4917 case elfcpp::R_POWERPC_REL24:
4918 case elfcpp::R_PPC_PLTREL24:
4919 case elfcpp::R_POWERPC_REL14:
4920 case elfcpp::R_POWERPC_REL14_BRTAKEN:
4921 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4922 return true;
4923
4924 default:
4925 break;
4926 }
4927
4928 // Anything else is a problem.
4929 // If we are building a static executable, the libc startup function
4930 // responsible for applying indirect function relocations is going
4931 // to complain about the reloc type.
4932 // If we are building a dynamic executable, we will have a text
4933 // relocation. The dynamic loader will set the text segment
4934 // writable and non-executable to apply text relocations. So we'll
4935 // segfault when trying to run the indirection function to resolve
4936 // the reloc.
4937 if (report_err)
4938 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
4939 object->name().c_str(), r_type);
4940 return false;
4941 }
4942
4943 // Scan a relocation for a local symbol.
4944
4945 template<int size, bool big_endian>
4946 inline void
4947 Target_powerpc<size, big_endian>::Scan::local(
4948 Symbol_table* symtab,
4949 Layout* layout,
4950 Target_powerpc<size, big_endian>* target,
4951 Sized_relobj_file<size, big_endian>* object,
4952 unsigned int data_shndx,
4953 Output_section* output_section,
4954 const elfcpp::Rela<size, big_endian>& reloc,
4955 unsigned int r_type,
4956 const elfcpp::Sym<size, big_endian>& lsym,
4957 bool is_discarded)
4958 {
4959 this->maybe_skip_tls_get_addr_call(r_type, NULL);
4960
4961 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4962 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4963 {
4964 this->expect_tls_get_addr_call();
4965 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
4966 if (tls_type != tls::TLSOPT_NONE)
4967 this->skip_next_tls_get_addr_call();
4968 }
4969 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4970 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4971 {
4972 this->expect_tls_get_addr_call();
4973 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4974 if (tls_type != tls::TLSOPT_NONE)
4975 this->skip_next_tls_get_addr_call();
4976 }
4977
4978 Powerpc_relobj<size, big_endian>* ppc_object
4979 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
4980
4981 if (is_discarded)
4982 {
4983 if (size == 64
4984 && data_shndx == ppc_object->opd_shndx()
4985 && r_type == elfcpp::R_PPC64_ADDR64)
4986 ppc_object->set_opd_discard(reloc.get_r_offset());
4987 return;
4988 }
4989
4990 // A local STT_GNU_IFUNC symbol may require a PLT entry.
4991 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
4992 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
4993 {
4994 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
4995 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
4996 r_type, r_sym, reloc.get_r_addend());
4997 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
4998 }
4999
5000 switch (r_type)
5001 {
5002 case elfcpp::R_POWERPC_NONE:
5003 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5004 case elfcpp::R_POWERPC_GNU_VTENTRY:
5005 case elfcpp::R_PPC64_TOCSAVE:
5006 case elfcpp::R_PPC_EMB_MRKREF:
5007 case elfcpp::R_POWERPC_TLS:
5008 break;
5009
5010 case elfcpp::R_PPC64_TOC:
5011 {
5012 Output_data_got_powerpc<size, big_endian>* got
5013 = target->got_section(symtab, layout);
5014 if (parameters->options().output_is_position_independent())
5015 {
5016 Address off = reloc.get_r_offset();
5017 if (size == 64
5018 && data_shndx == ppc_object->opd_shndx()
5019 && ppc_object->get_opd_discard(off - 8))
5020 break;
5021
5022 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5023 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5024 rela_dyn->add_output_section_relative(got->output_section(),
5025 elfcpp::R_POWERPC_RELATIVE,
5026 output_section,
5027 object, data_shndx, off,
5028 symobj->toc_base_offset());
5029 }
5030 }
5031 break;
5032
5033 case elfcpp::R_PPC64_ADDR64:
5034 case elfcpp::R_PPC64_UADDR64:
5035 case elfcpp::R_POWERPC_ADDR32:
5036 case elfcpp::R_POWERPC_UADDR32:
5037 case elfcpp::R_POWERPC_ADDR24:
5038 case elfcpp::R_POWERPC_ADDR16:
5039 case elfcpp::R_POWERPC_ADDR16_LO:
5040 case elfcpp::R_POWERPC_ADDR16_HI:
5041 case elfcpp::R_POWERPC_ADDR16_HA:
5042 case elfcpp::R_POWERPC_UADDR16:
5043 case elfcpp::R_PPC64_ADDR16_HIGHER:
5044 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5045 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5046 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5047 case elfcpp::R_PPC64_ADDR16_DS:
5048 case elfcpp::R_PPC64_ADDR16_LO_DS:
5049 case elfcpp::R_POWERPC_ADDR14:
5050 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5051 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5052 // If building a shared library (or a position-independent
5053 // executable), we need to create a dynamic relocation for
5054 // this location.
5055 if (parameters->options().output_is_position_independent()
5056 || (size == 64 && is_ifunc))
5057 {
5058 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5059 is_ifunc);
5060 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5061 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5062 {
5063 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5064 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5065 : elfcpp::R_POWERPC_RELATIVE);
5066 rela_dyn->add_local_relative(object, r_sym, dynrel,
5067 output_section, data_shndx,
5068 reloc.get_r_offset(),
5069 reloc.get_r_addend(), false);
5070 }
5071 else
5072 {
5073 check_non_pic(object, r_type);
5074 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5075 rela_dyn->add_local(object, r_sym, r_type, output_section,
5076 data_shndx, reloc.get_r_offset(),
5077 reloc.get_r_addend());
5078 }
5079 }
5080 break;
5081
5082 case elfcpp::R_POWERPC_REL24:
5083 case elfcpp::R_PPC_PLTREL24:
5084 case elfcpp::R_PPC_LOCAL24PC:
5085 case elfcpp::R_POWERPC_REL14:
5086 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5087 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5088 if (!is_ifunc)
5089 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5090 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5091 reloc.get_r_addend());
5092 break;
5093
5094 case elfcpp::R_PPC64_REL64:
5095 case elfcpp::R_POWERPC_REL32:
5096 case elfcpp::R_POWERPC_REL16:
5097 case elfcpp::R_POWERPC_REL16_LO:
5098 case elfcpp::R_POWERPC_REL16_HI:
5099 case elfcpp::R_POWERPC_REL16_HA:
5100 case elfcpp::R_POWERPC_SECTOFF:
5101 case elfcpp::R_POWERPC_TPREL16:
5102 case elfcpp::R_POWERPC_DTPREL16:
5103 case elfcpp::R_POWERPC_SECTOFF_LO:
5104 case elfcpp::R_POWERPC_TPREL16_LO:
5105 case elfcpp::R_POWERPC_DTPREL16_LO:
5106 case elfcpp::R_POWERPC_SECTOFF_HI:
5107 case elfcpp::R_POWERPC_TPREL16_HI:
5108 case elfcpp::R_POWERPC_DTPREL16_HI:
5109 case elfcpp::R_POWERPC_SECTOFF_HA:
5110 case elfcpp::R_POWERPC_TPREL16_HA:
5111 case elfcpp::R_POWERPC_DTPREL16_HA:
5112 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5113 case elfcpp::R_PPC64_TPREL16_HIGHER:
5114 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5115 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5116 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5117 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5118 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5119 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5120 case elfcpp::R_PPC64_TPREL16_DS:
5121 case elfcpp::R_PPC64_TPREL16_LO_DS:
5122 case elfcpp::R_PPC64_DTPREL16_DS:
5123 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5124 case elfcpp::R_PPC64_SECTOFF_DS:
5125 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5126 case elfcpp::R_PPC64_TLSGD:
5127 case elfcpp::R_PPC64_TLSLD:
5128 break;
5129
5130 case elfcpp::R_POWERPC_GOT16:
5131 case elfcpp::R_POWERPC_GOT16_LO:
5132 case elfcpp::R_POWERPC_GOT16_HI:
5133 case elfcpp::R_POWERPC_GOT16_HA:
5134 case elfcpp::R_PPC64_GOT16_DS:
5135 case elfcpp::R_PPC64_GOT16_LO_DS:
5136 {
5137 // The symbol requires a GOT entry.
5138 Output_data_got_powerpc<size, big_endian>* got
5139 = target->got_section(symtab, layout);
5140 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5141
5142 if (!parameters->options().output_is_position_independent())
5143 {
5144 if (size == 32 && is_ifunc)
5145 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5146 else
5147 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5148 }
5149 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5150 {
5151 // If we are generating a shared object or a pie, this
5152 // symbol's GOT entry will be set by a dynamic relocation.
5153 unsigned int off;
5154 off = got->add_constant(0);
5155 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5156
5157 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5158 is_ifunc);
5159 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5160 : elfcpp::R_POWERPC_RELATIVE);
5161 rela_dyn->add_local_relative(object, r_sym, dynrel,
5162 got, off, 0, false);
5163 }
5164 }
5165 break;
5166
5167 case elfcpp::R_PPC64_TOC16:
5168 case elfcpp::R_PPC64_TOC16_LO:
5169 case elfcpp::R_PPC64_TOC16_HI:
5170 case elfcpp::R_PPC64_TOC16_HA:
5171 case elfcpp::R_PPC64_TOC16_DS:
5172 case elfcpp::R_PPC64_TOC16_LO_DS:
5173 // We need a GOT section.
5174 target->got_section(symtab, layout);
5175 break;
5176
5177 case elfcpp::R_POWERPC_GOT_TLSGD16:
5178 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5179 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5180 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5181 {
5182 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5183 if (tls_type == tls::TLSOPT_NONE)
5184 {
5185 Output_data_got_powerpc<size, big_endian>* got
5186 = target->got_section(symtab, layout);
5187 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5188 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5189 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5190 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5191 }
5192 else if (tls_type == tls::TLSOPT_TO_LE)
5193 {
5194 // no GOT relocs needed for Local Exec.
5195 }
5196 else
5197 gold_unreachable();
5198 }
5199 break;
5200
5201 case elfcpp::R_POWERPC_GOT_TLSLD16:
5202 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5203 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5204 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5205 {
5206 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5207 if (tls_type == tls::TLSOPT_NONE)
5208 target->tlsld_got_offset(symtab, layout, object);
5209 else if (tls_type == tls::TLSOPT_TO_LE)
5210 {
5211 // no GOT relocs needed for Local Exec.
5212 if (parameters->options().emit_relocs())
5213 {
5214 Output_section* os = layout->tls_segment()->first_section();
5215 gold_assert(os != NULL);
5216 os->set_needs_symtab_index();
5217 }
5218 }
5219 else
5220 gold_unreachable();
5221 }
5222 break;
5223
5224 case elfcpp::R_POWERPC_GOT_DTPREL16:
5225 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5226 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5227 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5228 {
5229 Output_data_got_powerpc<size, big_endian>* got
5230 = target->got_section(symtab, layout);
5231 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5232 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5233 }
5234 break;
5235
5236 case elfcpp::R_POWERPC_GOT_TPREL16:
5237 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5238 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5239 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5240 {
5241 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5242 if (tls_type == tls::TLSOPT_NONE)
5243 {
5244 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5245 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5246 {
5247 Output_data_got_powerpc<size, big_endian>* got
5248 = target->got_section(symtab, layout);
5249 unsigned int off = got->add_constant(0);
5250 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5251
5252 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5253 rela_dyn->add_symbolless_local_addend(object, r_sym,
5254 elfcpp::R_POWERPC_TPREL,
5255 got, off, 0);
5256 }
5257 }
5258 else if (tls_type == tls::TLSOPT_TO_LE)
5259 {
5260 // no GOT relocs needed for Local Exec.
5261 }
5262 else
5263 gold_unreachable();
5264 }
5265 break;
5266
5267 default:
5268 unsupported_reloc_local(object, r_type);
5269 break;
5270 }
5271
5272 switch (r_type)
5273 {
5274 case elfcpp::R_POWERPC_GOT_TLSLD16:
5275 case elfcpp::R_POWERPC_GOT_TLSGD16:
5276 case elfcpp::R_POWERPC_GOT_TPREL16:
5277 case elfcpp::R_POWERPC_GOT_DTPREL16:
5278 case elfcpp::R_POWERPC_GOT16:
5279 case elfcpp::R_PPC64_GOT16_DS:
5280 case elfcpp::R_PPC64_TOC16:
5281 case elfcpp::R_PPC64_TOC16_DS:
5282 ppc_object->set_has_small_toc_reloc();
5283 default:
5284 break;
5285 }
5286 }
5287
5288 // Report an unsupported relocation against a global symbol.
5289
5290 template<int size, bool big_endian>
5291 void
5292 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5293 Sized_relobj_file<size, big_endian>* object,
5294 unsigned int r_type,
5295 Symbol* gsym)
5296 {
5297 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5298 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5299 }
5300
5301 // Scan a relocation for a global symbol.
5302
5303 template<int size, bool big_endian>
5304 inline void
5305 Target_powerpc<size, big_endian>::Scan::global(
5306 Symbol_table* symtab,
5307 Layout* layout,
5308 Target_powerpc<size, big_endian>* target,
5309 Sized_relobj_file<size, big_endian>* object,
5310 unsigned int data_shndx,
5311 Output_section* output_section,
5312 const elfcpp::Rela<size, big_endian>& reloc,
5313 unsigned int r_type,
5314 Symbol* gsym)
5315 {
5316 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5317 return;
5318
5319 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5320 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5321 {
5322 this->expect_tls_get_addr_call();
5323 const bool final = gsym->final_value_is_known();
5324 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5325 if (tls_type != tls::TLSOPT_NONE)
5326 this->skip_next_tls_get_addr_call();
5327 }
5328 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5329 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5330 {
5331 this->expect_tls_get_addr_call();
5332 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5333 if (tls_type != tls::TLSOPT_NONE)
5334 this->skip_next_tls_get_addr_call();
5335 }
5336
5337 Powerpc_relobj<size, big_endian>* ppc_object
5338 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5339
5340 // A STT_GNU_IFUNC symbol may require a PLT entry.
5341 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5342 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type, true))
5343 {
5344 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5345 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5346 reloc.get_r_addend());
5347 target->make_plt_entry(symtab, layout, gsym);
5348 }
5349
5350 switch (r_type)
5351 {
5352 case elfcpp::R_POWERPC_NONE:
5353 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5354 case elfcpp::R_POWERPC_GNU_VTENTRY:
5355 case elfcpp::R_PPC_LOCAL24PC:
5356 case elfcpp::R_PPC_EMB_MRKREF:
5357 case elfcpp::R_POWERPC_TLS:
5358 break;
5359
5360 case elfcpp::R_PPC64_TOC:
5361 {
5362 Output_data_got_powerpc<size, big_endian>* got
5363 = target->got_section(symtab, layout);
5364 if (parameters->options().output_is_position_independent())
5365 {
5366 Address off = reloc.get_r_offset();
5367 if (size == 64
5368 && data_shndx == ppc_object->opd_shndx()
5369 && ppc_object->get_opd_discard(off - 8))
5370 break;
5371
5372 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5373 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5374 if (data_shndx != ppc_object->opd_shndx())
5375 symobj = static_cast
5376 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5377 rela_dyn->add_output_section_relative(got->output_section(),
5378 elfcpp::R_POWERPC_RELATIVE,
5379 output_section,
5380 object, data_shndx, off,
5381 symobj->toc_base_offset());
5382 }
5383 }
5384 break;
5385
5386 case elfcpp::R_PPC64_ADDR64:
5387 if (size == 64
5388 && data_shndx == ppc_object->opd_shndx()
5389 && (gsym->is_defined_in_discarded_section()
5390 || gsym->object() != object))
5391 {
5392 ppc_object->set_opd_discard(reloc.get_r_offset());
5393 break;
5394 }
5395 // Fall thru
5396 case elfcpp::R_PPC64_UADDR64:
5397 case elfcpp::R_POWERPC_ADDR32:
5398 case elfcpp::R_POWERPC_UADDR32:
5399 case elfcpp::R_POWERPC_ADDR24:
5400 case elfcpp::R_POWERPC_ADDR16:
5401 case elfcpp::R_POWERPC_ADDR16_LO:
5402 case elfcpp::R_POWERPC_ADDR16_HI:
5403 case elfcpp::R_POWERPC_ADDR16_HA:
5404 case elfcpp::R_POWERPC_UADDR16:
5405 case elfcpp::R_PPC64_ADDR16_HIGHER:
5406 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5407 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5408 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5409 case elfcpp::R_PPC64_ADDR16_DS:
5410 case elfcpp::R_PPC64_ADDR16_LO_DS:
5411 case elfcpp::R_POWERPC_ADDR14:
5412 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5413 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5414 {
5415 // Make a PLT entry if necessary.
5416 if (gsym->needs_plt_entry())
5417 {
5418 if (!is_ifunc)
5419 {
5420 target->push_branch(ppc_object, data_shndx,
5421 reloc.get_r_offset(), r_type,
5422 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5423 reloc.get_r_addend());
5424 target->make_plt_entry(symtab, layout, gsym);
5425 }
5426 // Since this is not a PC-relative relocation, we may be
5427 // taking the address of a function. In that case we need to
5428 // set the entry in the dynamic symbol table to the address of
5429 // the PLT call stub.
5430 if (size == 32
5431 && gsym->is_from_dynobj()
5432 && !parameters->options().output_is_position_independent())
5433 gsym->set_needs_dynsym_value();
5434 }
5435 // Make a dynamic relocation if necessary.
5436 if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
5437 || (size == 64 && is_ifunc))
5438 {
5439 if (gsym->may_need_copy_reloc())
5440 {
5441 target->copy_reloc(symtab, layout, object,
5442 data_shndx, output_section, gsym, reloc);
5443 }
5444 else if ((size == 32
5445 && r_type == elfcpp::R_POWERPC_ADDR32
5446 && gsym->can_use_relative_reloc(false)
5447 && !(gsym->visibility() == elfcpp::STV_PROTECTED
5448 && parameters->options().shared()))
5449 || (size == 64
5450 && r_type == elfcpp::R_PPC64_ADDR64
5451 && (gsym->can_use_relative_reloc(false)
5452 || data_shndx == ppc_object->opd_shndx())))
5453 {
5454 Reloc_section* rela_dyn
5455 = target->rela_dyn_section(symtab, layout, is_ifunc);
5456 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5457 : elfcpp::R_POWERPC_RELATIVE);
5458 rela_dyn->add_symbolless_global_addend(
5459 gsym, dynrel, output_section, object, data_shndx,
5460 reloc.get_r_offset(), reloc.get_r_addend());
5461 }
5462 else
5463 {
5464 Reloc_section* rela_dyn
5465 = target->rela_dyn_section(symtab, layout, is_ifunc);
5466 check_non_pic(object, r_type);
5467 rela_dyn->add_global(gsym, r_type, output_section,
5468 object, data_shndx,
5469 reloc.get_r_offset(),
5470 reloc.get_r_addend());
5471 }
5472 }
5473 }
5474 break;
5475
5476 case elfcpp::R_PPC_PLTREL24:
5477 case elfcpp::R_POWERPC_REL24:
5478 if (!is_ifunc)
5479 {
5480 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5481 r_type,
5482 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5483 reloc.get_r_addend());
5484 if (gsym->needs_plt_entry()
5485 || (!gsym->final_value_is_known()
5486 && (gsym->is_undefined()
5487 || gsym->is_from_dynobj()
5488 || gsym->is_preemptible())))
5489 target->make_plt_entry(symtab, layout, gsym);
5490 }
5491 // Fall thru
5492
5493 case elfcpp::R_PPC64_REL64:
5494 case elfcpp::R_POWERPC_REL32:
5495 // Make a dynamic relocation if necessary.
5496 if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
5497 {
5498 if (gsym->may_need_copy_reloc())
5499 {
5500 target->copy_reloc(symtab, layout, object,
5501 data_shndx, output_section, gsym,
5502 reloc);
5503 }
5504 else
5505 {
5506 Reloc_section* rela_dyn
5507 = target->rela_dyn_section(symtab, layout, is_ifunc);
5508 check_non_pic(object, r_type);
5509 rela_dyn->add_global(gsym, r_type, output_section, object,
5510 data_shndx, reloc.get_r_offset(),
5511 reloc.get_r_addend());
5512 }
5513 }
5514 break;
5515
5516 case elfcpp::R_POWERPC_REL14:
5517 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5518 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5519 if (!is_ifunc)
5520 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5521 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5522 reloc.get_r_addend());
5523 break;
5524
5525 case elfcpp::R_POWERPC_REL16:
5526 case elfcpp::R_POWERPC_REL16_LO:
5527 case elfcpp::R_POWERPC_REL16_HI:
5528 case elfcpp::R_POWERPC_REL16_HA:
5529 case elfcpp::R_POWERPC_SECTOFF:
5530 case elfcpp::R_POWERPC_TPREL16:
5531 case elfcpp::R_POWERPC_DTPREL16:
5532 case elfcpp::R_POWERPC_SECTOFF_LO:
5533 case elfcpp::R_POWERPC_TPREL16_LO:
5534 case elfcpp::R_POWERPC_DTPREL16_LO:
5535 case elfcpp::R_POWERPC_SECTOFF_HI:
5536 case elfcpp::R_POWERPC_TPREL16_HI:
5537 case elfcpp::R_POWERPC_DTPREL16_HI:
5538 case elfcpp::R_POWERPC_SECTOFF_HA:
5539 case elfcpp::R_POWERPC_TPREL16_HA:
5540 case elfcpp::R_POWERPC_DTPREL16_HA:
5541 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5542 case elfcpp::R_PPC64_TPREL16_HIGHER:
5543 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5544 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5545 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5546 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5547 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5548 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5549 case elfcpp::R_PPC64_TPREL16_DS:
5550 case elfcpp::R_PPC64_TPREL16_LO_DS:
5551 case elfcpp::R_PPC64_DTPREL16_DS:
5552 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5553 case elfcpp::R_PPC64_SECTOFF_DS:
5554 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5555 case elfcpp::R_PPC64_TLSGD:
5556 case elfcpp::R_PPC64_TLSLD:
5557 break;
5558
5559 case elfcpp::R_POWERPC_GOT16:
5560 case elfcpp::R_POWERPC_GOT16_LO:
5561 case elfcpp::R_POWERPC_GOT16_HI:
5562 case elfcpp::R_POWERPC_GOT16_HA:
5563 case elfcpp::R_PPC64_GOT16_DS:
5564 case elfcpp::R_PPC64_GOT16_LO_DS:
5565 {
5566 // The symbol requires a GOT entry.
5567 Output_data_got_powerpc<size, big_endian>* got;
5568
5569 got = target->got_section(symtab, layout);
5570 if (gsym->final_value_is_known())
5571 {
5572 if (size == 32 && is_ifunc)
5573 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5574 else
5575 got->add_global(gsym, GOT_TYPE_STANDARD);
5576 }
5577 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
5578 {
5579 // If we are generating a shared object or a pie, this
5580 // symbol's GOT entry will be set by a dynamic relocation.
5581 unsigned int off = got->add_constant(0);
5582 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
5583
5584 Reloc_section* rela_dyn
5585 = target->rela_dyn_section(symtab, layout, is_ifunc);
5586
5587 if (gsym->can_use_relative_reloc(false)
5588 && !(size == 32
5589 && gsym->visibility() == elfcpp::STV_PROTECTED
5590 && parameters->options().shared()))
5591 {
5592 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5593 : elfcpp::R_POWERPC_RELATIVE);
5594 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
5595 }
5596 else
5597 {
5598 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
5599 rela_dyn->add_global(gsym, dynrel, got, off, 0);
5600 }
5601 }
5602 }
5603 break;
5604
5605 case elfcpp::R_PPC64_TOC16:
5606 case elfcpp::R_PPC64_TOC16_LO:
5607 case elfcpp::R_PPC64_TOC16_HI:
5608 case elfcpp::R_PPC64_TOC16_HA:
5609 case elfcpp::R_PPC64_TOC16_DS:
5610 case elfcpp::R_PPC64_TOC16_LO_DS:
5611 // We need a GOT section.
5612 target->got_section(symtab, layout);
5613 break;
5614
5615 case elfcpp::R_POWERPC_GOT_TLSGD16:
5616 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5617 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5618 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5619 {
5620 const bool final = gsym->final_value_is_known();
5621 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5622 if (tls_type == tls::TLSOPT_NONE)
5623 {
5624 Output_data_got_powerpc<size, big_endian>* got
5625 = target->got_section(symtab, layout);
5626 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5627 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
5628 elfcpp::R_POWERPC_DTPMOD,
5629 elfcpp::R_POWERPC_DTPREL);
5630 }
5631 else if (tls_type == tls::TLSOPT_TO_IE)
5632 {
5633 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5634 {
5635 Output_data_got_powerpc<size, big_endian>* got
5636 = target->got_section(symtab, layout);
5637 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5638 if (gsym->is_undefined()
5639 || gsym->is_from_dynobj())
5640 {
5641 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5642 elfcpp::R_POWERPC_TPREL);
5643 }
5644 else
5645 {
5646 unsigned int off = got->add_constant(0);
5647 gsym->set_got_offset(GOT_TYPE_TPREL, off);
5648 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5649 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5650 got, off, 0);
5651 }
5652 }
5653 }
5654 else if (tls_type == tls::TLSOPT_TO_LE)
5655 {
5656 // no GOT relocs needed for Local Exec.
5657 }
5658 else
5659 gold_unreachable();
5660 }
5661 break;
5662
5663 case elfcpp::R_POWERPC_GOT_TLSLD16:
5664 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5665 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5666 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5667 {
5668 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5669 if (tls_type == tls::TLSOPT_NONE)
5670 target->tlsld_got_offset(symtab, layout, object);
5671 else if (tls_type == tls::TLSOPT_TO_LE)
5672 {
5673 // no GOT relocs needed for Local Exec.
5674 if (parameters->options().emit_relocs())
5675 {
5676 Output_section* os = layout->tls_segment()->first_section();
5677 gold_assert(os != NULL);
5678 os->set_needs_symtab_index();
5679 }
5680 }
5681 else
5682 gold_unreachable();
5683 }
5684 break;
5685
5686 case elfcpp::R_POWERPC_GOT_DTPREL16:
5687 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5688 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5689 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5690 {
5691 Output_data_got_powerpc<size, big_endian>* got
5692 = target->got_section(symtab, layout);
5693 if (!gsym->final_value_is_known()
5694 && (gsym->is_from_dynobj()
5695 || gsym->is_undefined()
5696 || gsym->is_preemptible()))
5697 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
5698 target->rela_dyn_section(layout),
5699 elfcpp::R_POWERPC_DTPREL);
5700 else
5701 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
5702 }
5703 break;
5704
5705 case elfcpp::R_POWERPC_GOT_TPREL16:
5706 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5707 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5708 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5709 {
5710 const bool final = gsym->final_value_is_known();
5711 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
5712 if (tls_type == tls::TLSOPT_NONE)
5713 {
5714 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
5715 {
5716 Output_data_got_powerpc<size, big_endian>* got
5717 = target->got_section(symtab, layout);
5718 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5719 if (gsym->is_undefined()
5720 || gsym->is_from_dynobj())
5721 {
5722 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
5723 elfcpp::R_POWERPC_TPREL);
5724 }
5725 else
5726 {
5727 unsigned int off = got->add_constant(0);
5728 gsym->set_got_offset(GOT_TYPE_TPREL, off);
5729 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
5730 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
5731 got, off, 0);
5732 }
5733 }
5734 }
5735 else if (tls_type == tls::TLSOPT_TO_LE)
5736 {
5737 // no GOT relocs needed for Local Exec.
5738 }
5739 else
5740 gold_unreachable();
5741 }
5742 break;
5743
5744 default:
5745 unsupported_reloc_global(object, r_type, gsym);
5746 break;
5747 }
5748
5749 switch (r_type)
5750 {
5751 case elfcpp::R_POWERPC_GOT_TLSLD16:
5752 case elfcpp::R_POWERPC_GOT_TLSGD16:
5753 case elfcpp::R_POWERPC_GOT_TPREL16:
5754 case elfcpp::R_POWERPC_GOT_DTPREL16:
5755 case elfcpp::R_POWERPC_GOT16:
5756 case elfcpp::R_PPC64_GOT16_DS:
5757 case elfcpp::R_PPC64_TOC16:
5758 case elfcpp::R_PPC64_TOC16_DS:
5759 ppc_object->set_has_small_toc_reloc();
5760 default:
5761 break;
5762 }
5763 }
5764
5765 // Process relocations for gc.
5766
5767 template<int size, bool big_endian>
5768 void
5769 Target_powerpc<size, big_endian>::gc_process_relocs(
5770 Symbol_table* symtab,
5771 Layout* layout,
5772 Sized_relobj_file<size, big_endian>* object,
5773 unsigned int data_shndx,
5774 unsigned int,
5775 const unsigned char* prelocs,
5776 size_t reloc_count,
5777 Output_section* output_section,
5778 bool needs_special_offset_handling,
5779 size_t local_symbol_count,
5780 const unsigned char* plocal_symbols)
5781 {
5782 typedef Target_powerpc<size, big_endian> Powerpc;
5783 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5784 Powerpc_relobj<size, big_endian>* ppc_object
5785 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5786 if (size == 64)
5787 ppc_object->set_opd_valid();
5788 if (size == 64 && data_shndx == ppc_object->opd_shndx())
5789 {
5790 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
5791 for (p = ppc_object->access_from_map()->begin();
5792 p != ppc_object->access_from_map()->end();
5793 ++p)
5794 {
5795 Address dst_off = p->first;
5796 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5797 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
5798 for (s = p->second.begin(); s != p->second.end(); ++s)
5799 {
5800 Object* src_obj = s->first;
5801 unsigned int src_indx = s->second;
5802 symtab->gc()->add_reference(src_obj, src_indx,
5803 ppc_object, dst_indx);
5804 }
5805 p->second.clear();
5806 }
5807 ppc_object->access_from_map()->clear();
5808 ppc_object->process_gc_mark(symtab);
5809 // Don't look at .opd relocs as .opd will reference everything.
5810 return;
5811 }
5812
5813 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
5814 typename Target_powerpc::Relocatable_size_for_reloc>(
5815 symtab,
5816 layout,
5817 this,
5818 object,
5819 data_shndx,
5820 prelocs,
5821 reloc_count,
5822 output_section,
5823 needs_special_offset_handling,
5824 local_symbol_count,
5825 plocal_symbols);
5826 }
5827
5828 // Handle target specific gc actions when adding a gc reference from
5829 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
5830 // and DST_OFF. For powerpc64, this adds a referenc to the code
5831 // section of a function descriptor.
5832
5833 template<int size, bool big_endian>
5834 void
5835 Target_powerpc<size, big_endian>::do_gc_add_reference(
5836 Symbol_table* symtab,
5837 Object* src_obj,
5838 unsigned int src_shndx,
5839 Object* dst_obj,
5840 unsigned int dst_shndx,
5841 Address dst_off) const
5842 {
5843 if (size != 64 || dst_obj->is_dynamic())
5844 return;
5845
5846 Powerpc_relobj<size, big_endian>* ppc_object
5847 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
5848 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
5849 {
5850 if (ppc_object->opd_valid())
5851 {
5852 dst_shndx = ppc_object->get_opd_ent(dst_off);
5853 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
5854 }
5855 else
5856 {
5857 // If we haven't run scan_opd_relocs, we must delay
5858 // processing this function descriptor reference.
5859 ppc_object->add_reference(src_obj, src_shndx, dst_off);
5860 }
5861 }
5862 }
5863
5864 // Add any special sections for this symbol to the gc work list.
5865 // For powerpc64, this adds the code section of a function
5866 // descriptor.
5867
5868 template<int size, bool big_endian>
5869 void
5870 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
5871 Symbol_table* symtab,
5872 Symbol* sym) const
5873 {
5874 if (size == 64)
5875 {
5876 Powerpc_relobj<size, big_endian>* ppc_object
5877 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
5878 bool is_ordinary;
5879 unsigned int shndx = sym->shndx(&is_ordinary);
5880 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
5881 {
5882 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
5883 Address dst_off = gsym->value();
5884 if (ppc_object->opd_valid())
5885 {
5886 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
5887 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
5888 }
5889 else
5890 ppc_object->add_gc_mark(dst_off);
5891 }
5892 }
5893 }
5894
5895 // For a symbol location in .opd, set LOC to the location of the
5896 // function entry.
5897
5898 template<int size, bool big_endian>
5899 void
5900 Target_powerpc<size, big_endian>::do_function_location(
5901 Symbol_location* loc) const
5902 {
5903 if (size == 64 && loc->shndx != 0)
5904 {
5905 if (loc->object->is_dynamic())
5906 {
5907 Powerpc_dynobj<size, big_endian>* ppc_object
5908 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
5909 if (loc->shndx == ppc_object->opd_shndx())
5910 {
5911 Address dest_off;
5912 Address off = loc->offset - ppc_object->opd_address();
5913 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
5914 loc->offset = dest_off;
5915 }
5916 }
5917 else
5918 {
5919 const Powerpc_relobj<size, big_endian>* ppc_object
5920 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
5921 if (loc->shndx == ppc_object->opd_shndx())
5922 {
5923 Address dest_off;
5924 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
5925 loc->offset = dest_off;
5926 }
5927 }
5928 }
5929 }
5930
5931 // Scan relocations for a section.
5932
5933 template<int size, bool big_endian>
5934 void
5935 Target_powerpc<size, big_endian>::scan_relocs(
5936 Symbol_table* symtab,
5937 Layout* layout,
5938 Sized_relobj_file<size, big_endian>* object,
5939 unsigned int data_shndx,
5940 unsigned int sh_type,
5941 const unsigned char* prelocs,
5942 size_t reloc_count,
5943 Output_section* output_section,
5944 bool needs_special_offset_handling,
5945 size_t local_symbol_count,
5946 const unsigned char* plocal_symbols)
5947 {
5948 typedef Target_powerpc<size, big_endian> Powerpc;
5949 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
5950
5951 if (sh_type == elfcpp::SHT_REL)
5952 {
5953 gold_error(_("%s: unsupported REL reloc section"),
5954 object->name().c_str());
5955 return;
5956 }
5957
5958 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
5959 symtab,
5960 layout,
5961 this,
5962 object,
5963 data_shndx,
5964 prelocs,
5965 reloc_count,
5966 output_section,
5967 needs_special_offset_handling,
5968 local_symbol_count,
5969 plocal_symbols);
5970 }
5971
5972 // Functor class for processing the global symbol table.
5973 // Removes symbols defined on discarded opd entries.
5974
5975 template<bool big_endian>
5976 class Global_symbol_visitor_opd
5977 {
5978 public:
5979 Global_symbol_visitor_opd()
5980 { }
5981
5982 void
5983 operator()(Sized_symbol<64>* sym)
5984 {
5985 if (sym->has_symtab_index()
5986 || sym->source() != Symbol::FROM_OBJECT
5987 || !sym->in_real_elf())
5988 return;
5989
5990 if (sym->object()->is_dynamic())
5991 return;
5992
5993 Powerpc_relobj<64, big_endian>* symobj
5994 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
5995 if (symobj->opd_shndx() == 0)
5996 return;
5997
5998 bool is_ordinary;
5999 unsigned int shndx = sym->shndx(&is_ordinary);
6000 if (shndx == symobj->opd_shndx()
6001 && symobj->get_opd_discard(sym->value()))
6002 sym->set_symtab_index(-1U);
6003 }
6004 };
6005
6006 template<int size, bool big_endian>
6007 void
6008 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6009 Layout* layout,
6010 Symbol_table* symtab)
6011 {
6012 if (size == 64)
6013 {
6014 Output_data_save_res<64, big_endian>* savres
6015 = new Output_data_save_res<64, big_endian>(symtab);
6016 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6017 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6018 savres, ORDER_TEXT, false);
6019 }
6020 }
6021
6022 // Sort linker created .got section first (for the header), then input
6023 // sections belonging to files using small model code.
6024
6025 template<bool big_endian>
6026 class Sort_toc_sections
6027 {
6028 public:
6029 bool
6030 operator()(const Output_section::Input_section& is1,
6031 const Output_section::Input_section& is2) const
6032 {
6033 if (!is1.is_input_section() && is2.is_input_section())
6034 return true;
6035 bool small1
6036 = (is1.is_input_section()
6037 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6038 ->has_small_toc_reloc()));
6039 bool small2
6040 = (is2.is_input_section()
6041 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6042 ->has_small_toc_reloc()));
6043 return small1 && !small2;
6044 }
6045 };
6046
6047 // Finalize the sections.
6048
6049 template<int size, bool big_endian>
6050 void
6051 Target_powerpc<size, big_endian>::do_finalize_sections(
6052 Layout* layout,
6053 const Input_objects*,
6054 Symbol_table* symtab)
6055 {
6056 if (parameters->doing_static_link())
6057 {
6058 // At least some versions of glibc elf-init.o have a strong
6059 // reference to __rela_iplt marker syms. A weak ref would be
6060 // better..
6061 if (this->iplt_ != NULL)
6062 {
6063 Reloc_section* rel = this->iplt_->rel_plt();
6064 symtab->define_in_output_data("__rela_iplt_start", NULL,
6065 Symbol_table::PREDEFINED, rel, 0, 0,
6066 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6067 elfcpp::STV_HIDDEN, 0, false, true);
6068 symtab->define_in_output_data("__rela_iplt_end", NULL,
6069 Symbol_table::PREDEFINED, rel, 0, 0,
6070 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6071 elfcpp::STV_HIDDEN, 0, true, true);
6072 }
6073 else
6074 {
6075 symtab->define_as_constant("__rela_iplt_start", NULL,
6076 Symbol_table::PREDEFINED, 0, 0,
6077 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6078 elfcpp::STV_HIDDEN, 0, true, false);
6079 symtab->define_as_constant("__rela_iplt_end", NULL,
6080 Symbol_table::PREDEFINED, 0, 0,
6081 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6082 elfcpp::STV_HIDDEN, 0, true, false);
6083 }
6084 }
6085
6086 if (size == 64)
6087 {
6088 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6089 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6090
6091 if (!parameters->options().relocatable())
6092 {
6093 this->define_save_restore_funcs(layout, symtab);
6094
6095 // Annoyingly, we need to make these sections now whether or
6096 // not we need them. If we delay until do_relax then we
6097 // need to mess with the relaxation machinery checkpointing.
6098 this->got_section(symtab, layout);
6099 this->make_brlt_section(layout);
6100
6101 if (parameters->options().toc_sort())
6102 {
6103 Output_section* os = this->got_->output_section();
6104 if (os != NULL && os->input_sections().size() > 1)
6105 std::stable_sort(os->input_sections().begin(),
6106 os->input_sections().end(),
6107 Sort_toc_sections<big_endian>());
6108 }
6109 }
6110 }
6111
6112 // Fill in some more dynamic tags.
6113 Output_data_dynamic* odyn = layout->dynamic_data();
6114 if (odyn != NULL)
6115 {
6116 const Reloc_section* rel_plt = (this->plt_ == NULL
6117 ? NULL
6118 : this->plt_->rel_plt());
6119 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6120 this->rela_dyn_, true, size == 32);
6121
6122 if (size == 32)
6123 {
6124 if (this->got_ != NULL)
6125 {
6126 this->got_->finalize_data_size();
6127 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6128 this->got_, this->got_->g_o_t());
6129 }
6130 }
6131 else
6132 {
6133 if (this->glink_ != NULL)
6134 {
6135 this->glink_->finalize_data_size();
6136 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6137 this->glink_,
6138 (this->glink_->pltresolve_size
6139 - 32));
6140 }
6141 }
6142 }
6143
6144 // Emit any relocs we saved in an attempt to avoid generating COPY
6145 // relocs.
6146 if (this->copy_relocs_.any_saved_relocs())
6147 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6148 }
6149
6150 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6151 // reloc.
6152
6153 static bool
6154 ok_lo_toc_insn(uint32_t insn)
6155 {
6156 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6157 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6158 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6159 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6160 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6161 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6162 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6163 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6164 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6165 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6166 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6167 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6168 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6169 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6170 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6171 && (insn & 3) != 1)
6172 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6173 && ((insn & 3) == 0 || (insn & 3) == 3))
6174 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6175 }
6176
6177 // Return the value to use for a branch relocation.
6178
6179 template<int size, bool big_endian>
6180 typename Target_powerpc<size, big_endian>::Address
6181 Target_powerpc<size, big_endian>::symval_for_branch(
6182 const Symbol_table* symtab,
6183 Address value,
6184 const Sized_symbol<size>* gsym,
6185 Powerpc_relobj<size, big_endian>* object,
6186 unsigned int *dest_shndx)
6187 {
6188 *dest_shndx = 0;
6189 if (size == 32)
6190 return value;
6191
6192 // If the symbol is defined in an opd section, ie. is a function
6193 // descriptor, use the function descriptor code entry address
6194 Powerpc_relobj<size, big_endian>* symobj = object;
6195 if (gsym != NULL
6196 && gsym->source() != Symbol::FROM_OBJECT)
6197 return value;
6198 if (gsym != NULL)
6199 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6200 unsigned int shndx = symobj->opd_shndx();
6201 if (shndx == 0)
6202 return value;
6203 Address opd_addr = symobj->get_output_section_offset(shndx);
6204 if (opd_addr == invalid_address)
6205 return value;
6206 opd_addr += symobj->output_section_address(shndx);
6207 if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6208 {
6209 Address sec_off;
6210 *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6211 if (symtab->is_section_folded(symobj, *dest_shndx))
6212 {
6213 Section_id folded
6214 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6215 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6216 *dest_shndx = folded.second;
6217 }
6218 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6219 gold_assert(sec_addr != invalid_address);
6220 sec_addr += symobj->output_section(*dest_shndx)->address();
6221 value = sec_addr + sec_off;
6222 }
6223 return value;
6224 }
6225
6226 // Perform a relocation.
6227
6228 template<int size, bool big_endian>
6229 inline bool
6230 Target_powerpc<size, big_endian>::Relocate::relocate(
6231 const Relocate_info<size, big_endian>* relinfo,
6232 Target_powerpc* target,
6233 Output_section* os,
6234 size_t relnum,
6235 const elfcpp::Rela<size, big_endian>& rela,
6236 unsigned int r_type,
6237 const Sized_symbol<size>* gsym,
6238 const Symbol_value<size>* psymval,
6239 unsigned char* view,
6240 Address address,
6241 section_size_type view_size)
6242 {
6243 if (view == NULL)
6244 return true;
6245
6246 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6247 {
6248 case Track_tls::NOT_EXPECTED:
6249 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6250 _("__tls_get_addr call lacks marker reloc"));
6251 break;
6252 case Track_tls::EXPECTED:
6253 // We have already complained.
6254 break;
6255 case Track_tls::SKIP:
6256 return true;
6257 case Track_tls::NORMAL:
6258 break;
6259 }
6260
6261 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6262 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6263 Powerpc_relobj<size, big_endian>* const object
6264 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6265 Address value = 0;
6266 bool has_plt_value = false;
6267 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6268 if ((gsym != NULL
6269 ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
6270 : object->local_has_plt_offset(r_sym))
6271 && (!psymval->is_ifunc_symbol()
6272 || Scan::reloc_needs_plt_for_ifunc(object, r_type, false)))
6273 {
6274 Stub_table<size, big_endian>* stub_table
6275 = object->stub_table(relinfo->data_shndx);
6276 if (stub_table == NULL)
6277 {
6278 // This is a ref from a data section to an ifunc symbol.
6279 if (target->stub_tables().size() != 0)
6280 stub_table = target->stub_tables()[0];
6281 }
6282 gold_assert(stub_table != NULL);
6283 Address off;
6284 if (gsym != NULL)
6285 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6286 rela.get_r_addend());
6287 else
6288 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6289 rela.get_r_addend());
6290 gold_assert(off != invalid_address);
6291 value = stub_table->stub_address() + off;
6292 has_plt_value = true;
6293 }
6294
6295 if (r_type == elfcpp::R_POWERPC_GOT16
6296 || r_type == elfcpp::R_POWERPC_GOT16_LO
6297 || r_type == elfcpp::R_POWERPC_GOT16_HI
6298 || r_type == elfcpp::R_POWERPC_GOT16_HA
6299 || r_type == elfcpp::R_PPC64_GOT16_DS
6300 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6301 {
6302 if (gsym != NULL)
6303 {
6304 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6305 value = gsym->got_offset(GOT_TYPE_STANDARD);
6306 }
6307 else
6308 {
6309 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6310 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6311 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6312 }
6313 value -= target->got_section()->got_base_offset(object);
6314 }
6315 else if (r_type == elfcpp::R_PPC64_TOC)
6316 {
6317 value = (target->got_section()->output_section()->address()
6318 + object->toc_base_offset());
6319 }
6320 else if (gsym != NULL
6321 && (r_type == elfcpp::R_POWERPC_REL24
6322 || r_type == elfcpp::R_PPC_PLTREL24)
6323 && has_plt_value)
6324 {
6325 if (size == 64)
6326 {
6327 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6328 Valtype* wv = reinterpret_cast<Valtype*>(view);
6329 bool can_plt_call = false;
6330 if (rela.get_r_offset() + 8 <= view_size)
6331 {
6332 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6333 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6334 if ((insn & 1) != 0
6335 && (insn2 == nop
6336 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6337 {
6338 elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
6339 can_plt_call = true;
6340 }
6341 }
6342 if (!can_plt_call)
6343 {
6344 // If we don't have a branch and link followed by a nop,
6345 // we can't go via the plt because there is no place to
6346 // put a toc restoring instruction.
6347 // Unless we know we won't be returning.
6348 if (strcmp(gsym->name(), "__libc_start_main") == 0)
6349 can_plt_call = true;
6350 }
6351 if (!can_plt_call)
6352 {
6353 // g++ as of 20130507 emits self-calls without a
6354 // following nop. This is arguably wrong since we have
6355 // conflicting information. On the one hand a global
6356 // symbol and on the other a local call sequence, but
6357 // don't error for this special case.
6358 // It isn't possible to cheaply verify we have exactly
6359 // such a call. Allow all calls to the same section.
6360 bool ok = false;
6361 Address code = value;
6362 if (gsym->source() == Symbol::FROM_OBJECT
6363 && gsym->object() == object)
6364 {
6365 Address addend = rela.get_r_addend();
6366 unsigned int dest_shndx;
6367 Address opdent = psymval->value(object, addend);
6368 code = target->symval_for_branch(relinfo->symtab, opdent,
6369 gsym, object, &dest_shndx);
6370 bool is_ordinary;
6371 if (dest_shndx == 0)
6372 dest_shndx = gsym->shndx(&is_ordinary);
6373 ok = dest_shndx == relinfo->data_shndx;
6374 }
6375 if (!ok)
6376 {
6377 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6378 _("call lacks nop, can't restore toc; "
6379 "recompile with -fPIC"));
6380 value = code;
6381 }
6382 }
6383 }
6384 }
6385 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6386 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6387 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6388 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6389 {
6390 // First instruction of a global dynamic sequence, arg setup insn.
6391 const bool final = gsym == NULL || gsym->final_value_is_known();
6392 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6393 enum Got_type got_type = GOT_TYPE_STANDARD;
6394 if (tls_type == tls::TLSOPT_NONE)
6395 got_type = GOT_TYPE_TLSGD;
6396 else if (tls_type == tls::TLSOPT_TO_IE)
6397 got_type = GOT_TYPE_TPREL;
6398 if (got_type != GOT_TYPE_STANDARD)
6399 {
6400 if (gsym != NULL)
6401 {
6402 gold_assert(gsym->has_got_offset(got_type));
6403 value = gsym->got_offset(got_type);
6404 }
6405 else
6406 {
6407 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6408 gold_assert(object->local_has_got_offset(r_sym, got_type));
6409 value = object->local_got_offset(r_sym, got_type);
6410 }
6411 value -= target->got_section()->got_base_offset(object);
6412 }
6413 if (tls_type == tls::TLSOPT_TO_IE)
6414 {
6415 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6416 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6417 {
6418 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6419 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6420 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6421 if (size == 32)
6422 insn |= 32 << 26; // lwz
6423 else
6424 insn |= 58 << 26; // ld
6425 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6426 }
6427 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6428 - elfcpp::R_POWERPC_GOT_TLSGD16);
6429 }
6430 else if (tls_type == tls::TLSOPT_TO_LE)
6431 {
6432 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6433 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6434 {
6435 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6436 Insn insn = addis_3_13;
6437 if (size == 32)
6438 insn = addis_3_2;
6439 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6440 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6441 value = psymval->value(object, rela.get_r_addend());
6442 }
6443 else
6444 {
6445 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6446 Insn insn = nop;
6447 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6448 r_type = elfcpp::R_POWERPC_NONE;
6449 }
6450 }
6451 }
6452 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6453 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6454 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6455 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6456 {
6457 // First instruction of a local dynamic sequence, arg setup insn.
6458 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6459 if (tls_type == tls::TLSOPT_NONE)
6460 {
6461 value = target->tlsld_got_offset();
6462 value -= target->got_section()->got_base_offset(object);
6463 }
6464 else
6465 {
6466 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6467 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6468 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6469 {
6470 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6471 Insn insn = addis_3_13;
6472 if (size == 32)
6473 insn = addis_3_2;
6474 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6475 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6476 value = dtp_offset;
6477 }
6478 else
6479 {
6480 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6481 Insn insn = nop;
6482 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6483 r_type = elfcpp::R_POWERPC_NONE;
6484 }
6485 }
6486 }
6487 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6488 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6489 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6490 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6491 {
6492 // Accesses relative to a local dynamic sequence address,
6493 // no optimisation here.
6494 if (gsym != NULL)
6495 {
6496 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6497 value = gsym->got_offset(GOT_TYPE_DTPREL);
6498 }
6499 else
6500 {
6501 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6502 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6503 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6504 }
6505 value -= target->got_section()->got_base_offset(object);
6506 }
6507 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6508 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6509 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6510 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6511 {
6512 // First instruction of initial exec sequence.
6513 const bool final = gsym == NULL || gsym->final_value_is_known();
6514 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6515 if (tls_type == tls::TLSOPT_NONE)
6516 {
6517 if (gsym != NULL)
6518 {
6519 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6520 value = gsym->got_offset(GOT_TYPE_TPREL);
6521 }
6522 else
6523 {
6524 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6525 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6526 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6527 }
6528 value -= target->got_section()->got_base_offset(object);
6529 }
6530 else
6531 {
6532 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6533 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6534 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
6535 {
6536 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6537 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6538 insn &= (1 << 26) - (1 << 21); // extract rt from ld
6539 if (size == 32)
6540 insn |= addis_0_2;
6541 else
6542 insn |= addis_0_13;
6543 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6544 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6545 value = psymval->value(object, rela.get_r_addend());
6546 }
6547 else
6548 {
6549 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6550 Insn insn = nop;
6551 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6552 r_type = elfcpp::R_POWERPC_NONE;
6553 }
6554 }
6555 }
6556 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6557 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6558 {
6559 // Second instruction of a global dynamic sequence,
6560 // the __tls_get_addr call
6561 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6562 const bool final = gsym == NULL || gsym->final_value_is_known();
6563 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6564 if (tls_type != tls::TLSOPT_NONE)
6565 {
6566 if (tls_type == tls::TLSOPT_TO_IE)
6567 {
6568 Insn* iview = reinterpret_cast<Insn*>(view);
6569 Insn insn = add_3_3_13;
6570 if (size == 32)
6571 insn = add_3_3_2;
6572 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6573 r_type = elfcpp::R_POWERPC_NONE;
6574 }
6575 else
6576 {
6577 Insn* iview = reinterpret_cast<Insn*>(view);
6578 Insn insn = addi_3_3;
6579 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6580 r_type = elfcpp::R_POWERPC_TPREL16_LO;
6581 view += 2 * big_endian;
6582 value = psymval->value(object, rela.get_r_addend());
6583 }
6584 this->skip_next_tls_get_addr_call();
6585 }
6586 }
6587 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6588 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6589 {
6590 // Second instruction of a local dynamic sequence,
6591 // the __tls_get_addr call
6592 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
6593 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6594 if (tls_type == tls::TLSOPT_TO_LE)
6595 {
6596 Insn* iview = reinterpret_cast<Insn*>(view);
6597 Insn insn = addi_3_3;
6598 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6599 this->skip_next_tls_get_addr_call();
6600 r_type = elfcpp::R_POWERPC_TPREL16_LO;
6601 view += 2 * big_endian;
6602 value = dtp_offset;
6603 }
6604 }
6605 else if (r_type == elfcpp::R_POWERPC_TLS)
6606 {
6607 // Second instruction of an initial exec sequence
6608 const bool final = gsym == NULL || gsym->final_value_is_known();
6609 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6610 if (tls_type == tls::TLSOPT_TO_LE)
6611 {
6612 Insn* iview = reinterpret_cast<Insn*>(view);
6613 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6614 unsigned int reg = size == 32 ? 2 : 13;
6615 insn = at_tls_transform(insn, reg);
6616 gold_assert(insn != 0);
6617 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6618 r_type = elfcpp::R_POWERPC_TPREL16_LO;
6619 view += 2 * big_endian;
6620 value = psymval->value(object, rela.get_r_addend());
6621 }
6622 }
6623 else if (!has_plt_value)
6624 {
6625 Address addend = 0;
6626 unsigned int dest_shndx;
6627 if (r_type != elfcpp::R_PPC_PLTREL24)
6628 addend = rela.get_r_addend();
6629 value = psymval->value(object, addend);
6630 if (size == 64 && is_branch_reloc(r_type))
6631 value = target->symval_for_branch(relinfo->symtab, value,
6632 gsym, object, &dest_shndx);
6633 unsigned int max_branch_offset = 0;
6634 if (r_type == elfcpp::R_POWERPC_REL24
6635 || r_type == elfcpp::R_PPC_PLTREL24
6636 || r_type == elfcpp::R_PPC_LOCAL24PC)
6637 max_branch_offset = 1 << 25;
6638 else if (r_type == elfcpp::R_POWERPC_REL14
6639 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
6640 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
6641 max_branch_offset = 1 << 15;
6642 if (max_branch_offset != 0
6643 && value - address + max_branch_offset >= 2 * max_branch_offset)
6644 {
6645 Stub_table<size, big_endian>* stub_table
6646 = object->stub_table(relinfo->data_shndx);
6647 if (stub_table != NULL)
6648 {
6649 Address off = stub_table->find_long_branch_entry(object, value);
6650 if (off != invalid_address)
6651 value = (stub_table->stub_address() + stub_table->plt_size()
6652 + off);
6653 }
6654 }
6655 }
6656
6657 switch (r_type)
6658 {
6659 case elfcpp::R_PPC64_REL64:
6660 case elfcpp::R_POWERPC_REL32:
6661 case elfcpp::R_POWERPC_REL24:
6662 case elfcpp::R_PPC_PLTREL24:
6663 case elfcpp::R_PPC_LOCAL24PC:
6664 case elfcpp::R_POWERPC_REL16:
6665 case elfcpp::R_POWERPC_REL16_LO:
6666 case elfcpp::R_POWERPC_REL16_HI:
6667 case elfcpp::R_POWERPC_REL16_HA:
6668 case elfcpp::R_POWERPC_REL14:
6669 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6670 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6671 value -= address;
6672 break;
6673
6674 case elfcpp::R_PPC64_TOC16:
6675 case elfcpp::R_PPC64_TOC16_LO:
6676 case elfcpp::R_PPC64_TOC16_HI:
6677 case elfcpp::R_PPC64_TOC16_HA:
6678 case elfcpp::R_PPC64_TOC16_DS:
6679 case elfcpp::R_PPC64_TOC16_LO_DS:
6680 // Subtract the TOC base address.
6681 value -= (target->got_section()->output_section()->address()
6682 + object->toc_base_offset());
6683 break;
6684
6685 case elfcpp::R_POWERPC_SECTOFF:
6686 case elfcpp::R_POWERPC_SECTOFF_LO:
6687 case elfcpp::R_POWERPC_SECTOFF_HI:
6688 case elfcpp::R_POWERPC_SECTOFF_HA:
6689 case elfcpp::R_PPC64_SECTOFF_DS:
6690 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6691 if (os != NULL)
6692 value -= os->address();
6693 break;
6694
6695 case elfcpp::R_PPC64_TPREL16_DS:
6696 case elfcpp::R_PPC64_TPREL16_LO_DS:
6697 if (size != 64)
6698 // R_PPC_TLSGD and R_PPC_TLSLD
6699 break;
6700 case elfcpp::R_POWERPC_TPREL16:
6701 case elfcpp::R_POWERPC_TPREL16_LO:
6702 case elfcpp::R_POWERPC_TPREL16_HI:
6703 case elfcpp::R_POWERPC_TPREL16_HA:
6704 case elfcpp::R_POWERPC_TPREL:
6705 case elfcpp::R_PPC64_TPREL16_HIGHER:
6706 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6707 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6708 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6709 // tls symbol values are relative to tls_segment()->vaddr()
6710 value -= tp_offset;
6711 break;
6712
6713 case elfcpp::R_PPC64_DTPREL16_DS:
6714 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6715 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6716 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6717 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6718 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6719 if (size != 64)
6720 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
6721 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
6722 break;
6723 case elfcpp::R_POWERPC_DTPREL16:
6724 case elfcpp::R_POWERPC_DTPREL16_LO:
6725 case elfcpp::R_POWERPC_DTPREL16_HI:
6726 case elfcpp::R_POWERPC_DTPREL16_HA:
6727 case elfcpp::R_POWERPC_DTPREL:
6728 // tls symbol values are relative to tls_segment()->vaddr()
6729 value -= dtp_offset;
6730 break;
6731
6732 default:
6733 break;
6734 }
6735
6736 Insn branch_bit = 0;
6737 switch (r_type)
6738 {
6739 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6740 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6741 branch_bit = 1 << 21;
6742 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6743 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6744 {
6745 Insn* iview = reinterpret_cast<Insn*>(view);
6746 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6747 insn &= ~(1 << 21);
6748 insn |= branch_bit;
6749 if (this->is_isa_v2)
6750 {
6751 // Set 'a' bit. This is 0b00010 in BO field for branch
6752 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
6753 // for branch on CTR insns (BO == 1a00t or 1a01t).
6754 if ((insn & (0x14 << 21)) == (0x04 << 21))
6755 insn |= 0x02 << 21;
6756 else if ((insn & (0x14 << 21)) == (0x10 << 21))
6757 insn |= 0x08 << 21;
6758 else
6759 break;
6760 }
6761 else
6762 {
6763 // Invert 'y' bit if not the default.
6764 if (static_cast<Signed_address>(value) < 0)
6765 insn ^= 1 << 21;
6766 }
6767 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6768 }
6769 break;
6770
6771 default:
6772 break;
6773 }
6774
6775 if (size == 64)
6776 {
6777 // Multi-instruction sequences that access the TOC can be
6778 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
6779 // to nop; addi rb,r2,x;
6780 switch (r_type)
6781 {
6782 default:
6783 break;
6784
6785 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6786 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6787 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6788 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6789 case elfcpp::R_POWERPC_GOT16_HA:
6790 case elfcpp::R_PPC64_TOC16_HA:
6791 if (parameters->options().toc_optimize())
6792 {
6793 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6794 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6795 if ((insn & ((0x3f << 26) | 0x1f << 16))
6796 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
6797 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6798 _("toc optimization is not supported "
6799 "for %#08x instruction"), insn);
6800 else if (value + 0x8000 < 0x10000)
6801 {
6802 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
6803 return true;
6804 }
6805 }
6806 break;
6807
6808 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6809 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6810 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6811 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6812 case elfcpp::R_POWERPC_GOT16_LO:
6813 case elfcpp::R_PPC64_GOT16_LO_DS:
6814 case elfcpp::R_PPC64_TOC16_LO:
6815 case elfcpp::R_PPC64_TOC16_LO_DS:
6816 if (parameters->options().toc_optimize())
6817 {
6818 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6819 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6820 if (!ok_lo_toc_insn(insn))
6821 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6822 _("toc optimization is not supported "
6823 "for %#08x instruction"), insn);
6824 else if (value + 0x8000 < 0x10000)
6825 {
6826 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
6827 {
6828 // Transform addic to addi when we change reg.
6829 insn &= ~((0x3f << 26) | (0x1f << 16));
6830 insn |= (14u << 26) | (2 << 16);
6831 }
6832 else
6833 {
6834 insn &= ~(0x1f << 16);
6835 insn |= 2 << 16;
6836 }
6837 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6838 }
6839 }
6840 break;
6841 }
6842 }
6843
6844 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
6845 switch (r_type)
6846 {
6847 case elfcpp::R_POWERPC_ADDR32:
6848 case elfcpp::R_POWERPC_UADDR32:
6849 if (size == 64)
6850 overflow = Reloc::CHECK_BITFIELD;
6851 break;
6852
6853 case elfcpp::R_POWERPC_REL32:
6854 if (size == 64)
6855 overflow = Reloc::CHECK_SIGNED;
6856 break;
6857
6858 case elfcpp::R_POWERPC_ADDR24:
6859 case elfcpp::R_POWERPC_ADDR16:
6860 case elfcpp::R_POWERPC_UADDR16:
6861 case elfcpp::R_PPC64_ADDR16_DS:
6862 case elfcpp::R_POWERPC_ADDR14:
6863 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6864 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6865 overflow = Reloc::CHECK_BITFIELD;
6866 break;
6867
6868 case elfcpp::R_POWERPC_REL24:
6869 case elfcpp::R_PPC_PLTREL24:
6870 case elfcpp::R_PPC_LOCAL24PC:
6871 case elfcpp::R_POWERPC_REL16:
6872 case elfcpp::R_PPC64_TOC16:
6873 case elfcpp::R_POWERPC_GOT16:
6874 case elfcpp::R_POWERPC_SECTOFF:
6875 case elfcpp::R_POWERPC_TPREL16:
6876 case elfcpp::R_POWERPC_DTPREL16:
6877 case elfcpp::R_PPC64_TPREL16_DS:
6878 case elfcpp::R_PPC64_DTPREL16_DS:
6879 case elfcpp::R_PPC64_TOC16_DS:
6880 case elfcpp::R_PPC64_GOT16_DS:
6881 case elfcpp::R_PPC64_SECTOFF_DS:
6882 case elfcpp::R_POWERPC_REL14:
6883 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6884 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6885 case elfcpp::R_POWERPC_GOT_TLSGD16:
6886 case elfcpp::R_POWERPC_GOT_TLSLD16:
6887 case elfcpp::R_POWERPC_GOT_TPREL16:
6888 case elfcpp::R_POWERPC_GOT_DTPREL16:
6889 overflow = Reloc::CHECK_SIGNED;
6890 break;
6891 }
6892
6893 typename Powerpc_relocate_functions<size, big_endian>::Status status
6894 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
6895 switch (r_type)
6896 {
6897 case elfcpp::R_POWERPC_NONE:
6898 case elfcpp::R_POWERPC_TLS:
6899 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6900 case elfcpp::R_POWERPC_GNU_VTENTRY:
6901 case elfcpp::R_PPC_EMB_MRKREF:
6902 break;
6903
6904 case elfcpp::R_PPC64_ADDR64:
6905 case elfcpp::R_PPC64_REL64:
6906 case elfcpp::R_PPC64_TOC:
6907 Reloc::addr64(view, value);
6908 break;
6909
6910 case elfcpp::R_POWERPC_TPREL:
6911 case elfcpp::R_POWERPC_DTPREL:
6912 if (size == 64)
6913 Reloc::addr64(view, value);
6914 else
6915 status = Reloc::addr32(view, value, overflow);
6916 break;
6917
6918 case elfcpp::R_PPC64_UADDR64:
6919 Reloc::addr64_u(view, value);
6920 break;
6921
6922 case elfcpp::R_POWERPC_ADDR32:
6923 status = Reloc::addr32(view, value, overflow);
6924 break;
6925
6926 case elfcpp::R_POWERPC_REL32:
6927 case elfcpp::R_POWERPC_UADDR32:
6928 status = Reloc::addr32_u(view, value, overflow);
6929 break;
6930
6931 case elfcpp::R_POWERPC_ADDR24:
6932 case elfcpp::R_POWERPC_REL24:
6933 case elfcpp::R_PPC_PLTREL24:
6934 case elfcpp::R_PPC_LOCAL24PC:
6935 status = Reloc::addr24(view, value, overflow);
6936 break;
6937
6938 case elfcpp::R_POWERPC_GOT_DTPREL16:
6939 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6940 if (size == 64)
6941 {
6942 status = Reloc::addr16_ds(view, value, overflow);
6943 break;
6944 }
6945 case elfcpp::R_POWERPC_ADDR16:
6946 case elfcpp::R_POWERPC_REL16:
6947 case elfcpp::R_PPC64_TOC16:
6948 case elfcpp::R_POWERPC_GOT16:
6949 case elfcpp::R_POWERPC_SECTOFF:
6950 case elfcpp::R_POWERPC_TPREL16:
6951 case elfcpp::R_POWERPC_DTPREL16:
6952 case elfcpp::R_POWERPC_GOT_TLSGD16:
6953 case elfcpp::R_POWERPC_GOT_TLSLD16:
6954 case elfcpp::R_POWERPC_GOT_TPREL16:
6955 case elfcpp::R_POWERPC_ADDR16_LO:
6956 case elfcpp::R_POWERPC_REL16_LO:
6957 case elfcpp::R_PPC64_TOC16_LO:
6958 case elfcpp::R_POWERPC_GOT16_LO:
6959 case elfcpp::R_POWERPC_SECTOFF_LO:
6960 case elfcpp::R_POWERPC_TPREL16_LO:
6961 case elfcpp::R_POWERPC_DTPREL16_LO:
6962 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6963 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6964 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6965 status = Reloc::addr16(view, value, overflow);
6966 break;
6967
6968 case elfcpp::R_POWERPC_UADDR16:
6969 status = Reloc::addr16_u(view, value, overflow);
6970 break;
6971
6972 case elfcpp::R_POWERPC_ADDR16_HI:
6973 case elfcpp::R_POWERPC_REL16_HI:
6974 case elfcpp::R_PPC64_TOC16_HI:
6975 case elfcpp::R_POWERPC_GOT16_HI:
6976 case elfcpp::R_POWERPC_SECTOFF_HI:
6977 case elfcpp::R_POWERPC_TPREL16_HI:
6978 case elfcpp::R_POWERPC_DTPREL16_HI:
6979 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6980 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6981 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6982 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6983 Reloc::addr16_hi(view, value);
6984 break;
6985
6986 case elfcpp::R_POWERPC_ADDR16_HA:
6987 case elfcpp::R_POWERPC_REL16_HA:
6988 case elfcpp::R_PPC64_TOC16_HA:
6989 case elfcpp::R_POWERPC_GOT16_HA:
6990 case elfcpp::R_POWERPC_SECTOFF_HA:
6991 case elfcpp::R_POWERPC_TPREL16_HA:
6992 case elfcpp::R_POWERPC_DTPREL16_HA:
6993 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6994 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6995 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6996 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6997 Reloc::addr16_ha(view, value);
6998 break;
6999
7000 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7001 if (size == 32)
7002 // R_PPC_EMB_NADDR16_LO
7003 goto unsupp;
7004 case elfcpp::R_PPC64_ADDR16_HIGHER:
7005 case elfcpp::R_PPC64_TPREL16_HIGHER:
7006 Reloc::addr16_hi2(view, value);
7007 break;
7008
7009 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7010 if (size == 32)
7011 // R_PPC_EMB_NADDR16_HI
7012 goto unsupp;
7013 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7014 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7015 Reloc::addr16_ha2(view, value);
7016 break;
7017
7018 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7019 if (size == 32)
7020 // R_PPC_EMB_NADDR16_HA
7021 goto unsupp;
7022 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7023 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7024 Reloc::addr16_hi3(view, value);
7025 break;
7026
7027 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7028 if (size == 32)
7029 // R_PPC_EMB_SDAI16
7030 goto unsupp;
7031 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7032 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7033 Reloc::addr16_ha3(view, value);
7034 break;
7035
7036 case elfcpp::R_PPC64_DTPREL16_DS:
7037 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7038 if (size == 32)
7039 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7040 goto unsupp;
7041 case elfcpp::R_PPC64_TPREL16_DS:
7042 case elfcpp::R_PPC64_TPREL16_LO_DS:
7043 if (size == 32)
7044 // R_PPC_TLSGD, R_PPC_TLSLD
7045 break;
7046 case elfcpp::R_PPC64_ADDR16_DS:
7047 case elfcpp::R_PPC64_ADDR16_LO_DS:
7048 case elfcpp::R_PPC64_TOC16_DS:
7049 case elfcpp::R_PPC64_TOC16_LO_DS:
7050 case elfcpp::R_PPC64_GOT16_DS:
7051 case elfcpp::R_PPC64_GOT16_LO_DS:
7052 case elfcpp::R_PPC64_SECTOFF_DS:
7053 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7054 status = Reloc::addr16_ds(view, value, overflow);
7055 break;
7056
7057 case elfcpp::R_POWERPC_ADDR14:
7058 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7059 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7060 case elfcpp::R_POWERPC_REL14:
7061 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7062 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7063 status = Reloc::addr14(view, value, overflow);
7064 break;
7065
7066 case elfcpp::R_POWERPC_COPY:
7067 case elfcpp::R_POWERPC_GLOB_DAT:
7068 case elfcpp::R_POWERPC_JMP_SLOT:
7069 case elfcpp::R_POWERPC_RELATIVE:
7070 case elfcpp::R_POWERPC_DTPMOD:
7071 case elfcpp::R_PPC64_JMP_IREL:
7072 case elfcpp::R_POWERPC_IRELATIVE:
7073 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7074 _("unexpected reloc %u in object file"),
7075 r_type);
7076 break;
7077
7078 case elfcpp::R_PPC_EMB_SDA21:
7079 if (size == 32)
7080 goto unsupp;
7081 else
7082 {
7083 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7084 }
7085 break;
7086
7087 case elfcpp::R_PPC_EMB_SDA2I16:
7088 case elfcpp::R_PPC_EMB_SDA2REL:
7089 if (size == 32)
7090 goto unsupp;
7091 // R_PPC64_TLSGD, R_PPC64_TLSLD
7092 break;
7093
7094 case elfcpp::R_POWERPC_PLT32:
7095 case elfcpp::R_POWERPC_PLTREL32:
7096 case elfcpp::R_POWERPC_PLT16_LO:
7097 case elfcpp::R_POWERPC_PLT16_HI:
7098 case elfcpp::R_POWERPC_PLT16_HA:
7099 case elfcpp::R_PPC_SDAREL16:
7100 case elfcpp::R_POWERPC_ADDR30:
7101 case elfcpp::R_PPC64_PLT64:
7102 case elfcpp::R_PPC64_PLTREL64:
7103 case elfcpp::R_PPC64_PLTGOT16:
7104 case elfcpp::R_PPC64_PLTGOT16_LO:
7105 case elfcpp::R_PPC64_PLTGOT16_HI:
7106 case elfcpp::R_PPC64_PLTGOT16_HA:
7107 case elfcpp::R_PPC64_PLT16_LO_DS:
7108 case elfcpp::R_PPC64_PLTGOT16_DS:
7109 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7110 case elfcpp::R_PPC_EMB_RELSEC16:
7111 case elfcpp::R_PPC_EMB_RELST_LO:
7112 case elfcpp::R_PPC_EMB_RELST_HI:
7113 case elfcpp::R_PPC_EMB_RELST_HA:
7114 case elfcpp::R_PPC_EMB_BIT_FLD:
7115 case elfcpp::R_PPC_EMB_RELSDA:
7116 case elfcpp::R_PPC_TOC16:
7117 default:
7118 unsupp:
7119 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7120 _("unsupported reloc %u"),
7121 r_type);
7122 break;
7123 }
7124 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
7125 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7126 _("relocation overflow"));
7127
7128 return true;
7129 }
7130
7131 // Relocate section data.
7132
7133 template<int size, bool big_endian>
7134 void
7135 Target_powerpc<size, big_endian>::relocate_section(
7136 const Relocate_info<size, big_endian>* relinfo,
7137 unsigned int sh_type,
7138 const unsigned char* prelocs,
7139 size_t reloc_count,
7140 Output_section* output_section,
7141 bool needs_special_offset_handling,
7142 unsigned char* view,
7143 Address address,
7144 section_size_type view_size,
7145 const Reloc_symbol_changes* reloc_symbol_changes)
7146 {
7147 typedef Target_powerpc<size, big_endian> Powerpc;
7148 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7149 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7150 Powerpc_comdat_behavior;
7151
7152 gold_assert(sh_type == elfcpp::SHT_RELA);
7153
7154 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7155 Powerpc_relocate, Powerpc_comdat_behavior>(
7156 relinfo,
7157 this,
7158 prelocs,
7159 reloc_count,
7160 output_section,
7161 needs_special_offset_handling,
7162 view,
7163 address,
7164 view_size,
7165 reloc_symbol_changes);
7166 }
7167
7168 class Powerpc_scan_relocatable_reloc
7169 {
7170 public:
7171 // Return the strategy to use for a local symbol which is not a
7172 // section symbol, given the relocation type.
7173 inline Relocatable_relocs::Reloc_strategy
7174 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7175 {
7176 if (r_type == 0 && r_sym == 0)
7177 return Relocatable_relocs::RELOC_DISCARD;
7178 return Relocatable_relocs::RELOC_COPY;
7179 }
7180
7181 // Return the strategy to use for a local symbol which is a section
7182 // symbol, given the relocation type.
7183 inline Relocatable_relocs::Reloc_strategy
7184 local_section_strategy(unsigned int, Relobj*)
7185 {
7186 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7187 }
7188
7189 // Return the strategy to use for a global symbol, given the
7190 // relocation type, the object, and the symbol index.
7191 inline Relocatable_relocs::Reloc_strategy
7192 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7193 {
7194 if (r_type == elfcpp::R_PPC_PLTREL24)
7195 return Relocatable_relocs::RELOC_SPECIAL;
7196 return Relocatable_relocs::RELOC_COPY;
7197 }
7198 };
7199
7200 // Scan the relocs during a relocatable link.
7201
7202 template<int size, bool big_endian>
7203 void
7204 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7205 Symbol_table* symtab,
7206 Layout* layout,
7207 Sized_relobj_file<size, big_endian>* object,
7208 unsigned int data_shndx,
7209 unsigned int sh_type,
7210 const unsigned char* prelocs,
7211 size_t reloc_count,
7212 Output_section* output_section,
7213 bool needs_special_offset_handling,
7214 size_t local_symbol_count,
7215 const unsigned char* plocal_symbols,
7216 Relocatable_relocs* rr)
7217 {
7218 gold_assert(sh_type == elfcpp::SHT_RELA);
7219
7220 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7221 Powerpc_scan_relocatable_reloc>(
7222 symtab,
7223 layout,
7224 object,
7225 data_shndx,
7226 prelocs,
7227 reloc_count,
7228 output_section,
7229 needs_special_offset_handling,
7230 local_symbol_count,
7231 plocal_symbols,
7232 rr);
7233 }
7234
7235 // Emit relocations for a section.
7236 // This is a modified version of the function by the same name in
7237 // target-reloc.h. Using relocate_special_relocatable for
7238 // R_PPC_PLTREL24 would require duplication of the entire body of the
7239 // loop, so we may as well duplicate the whole thing.
7240
7241 template<int size, bool big_endian>
7242 void
7243 Target_powerpc<size, big_endian>::relocate_relocs(
7244 const Relocate_info<size, big_endian>* relinfo,
7245 unsigned int sh_type,
7246 const unsigned char* prelocs,
7247 size_t reloc_count,
7248 Output_section* output_section,
7249 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7250 const Relocatable_relocs* rr,
7251 unsigned char*,
7252 Address view_address,
7253 section_size_type,
7254 unsigned char* reloc_view,
7255 section_size_type reloc_view_size)
7256 {
7257 gold_assert(sh_type == elfcpp::SHT_RELA);
7258
7259 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7260 Reltype;
7261 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7262 Reltype_write;
7263 const int reloc_size
7264 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7265
7266 Powerpc_relobj<size, big_endian>* const object
7267 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7268 const unsigned int local_count = object->local_symbol_count();
7269 unsigned int got2_shndx = object->got2_shndx();
7270 Address got2_addend = 0;
7271 if (got2_shndx != 0)
7272 {
7273 got2_addend = object->get_output_section_offset(got2_shndx);
7274 gold_assert(got2_addend != invalid_address);
7275 }
7276
7277 unsigned char* pwrite = reloc_view;
7278 bool zap_next = false;
7279 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7280 {
7281 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7282 if (strategy == Relocatable_relocs::RELOC_DISCARD)
7283 continue;
7284
7285 Reltype reloc(prelocs);
7286 Reltype_write reloc_write(pwrite);
7287
7288 Address offset = reloc.get_r_offset();
7289 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7290 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7291 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7292 const unsigned int orig_r_sym = r_sym;
7293 typename elfcpp::Elf_types<size>::Elf_Swxword addend
7294 = reloc.get_r_addend();
7295 const Symbol* gsym = NULL;
7296
7297 if (zap_next)
7298 {
7299 // We could arrange to discard these and other relocs for
7300 // tls optimised sequences in the strategy methods, but for
7301 // now do as BFD ld does.
7302 r_type = elfcpp::R_POWERPC_NONE;
7303 zap_next = false;
7304 }
7305
7306 // Get the new symbol index.
7307 if (r_sym < local_count)
7308 {
7309 switch (strategy)
7310 {
7311 case Relocatable_relocs::RELOC_COPY:
7312 case Relocatable_relocs::RELOC_SPECIAL:
7313 if (r_sym != 0)
7314 {
7315 r_sym = object->symtab_index(r_sym);
7316 gold_assert(r_sym != -1U);
7317 }
7318 break;
7319
7320 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7321 {
7322 // We are adjusting a section symbol. We need to find
7323 // the symbol table index of the section symbol for
7324 // the output section corresponding to input section
7325 // in which this symbol is defined.
7326 gold_assert(r_sym < local_count);
7327 bool is_ordinary;
7328 unsigned int shndx =
7329 object->local_symbol_input_shndx(r_sym, &is_ordinary);
7330 gold_assert(is_ordinary);
7331 Output_section* os = object->output_section(shndx);
7332 gold_assert(os != NULL);
7333 gold_assert(os->needs_symtab_index());
7334 r_sym = os->symtab_index();
7335 }
7336 break;
7337
7338 default:
7339 gold_unreachable();
7340 }
7341 }
7342 else
7343 {
7344 gsym = object->global_symbol(r_sym);
7345 gold_assert(gsym != NULL);
7346 if (gsym->is_forwarder())
7347 gsym = relinfo->symtab->resolve_forwards(gsym);
7348
7349 gold_assert(gsym->has_symtab_index());
7350 r_sym = gsym->symtab_index();
7351 }
7352
7353 // Get the new offset--the location in the output section where
7354 // this relocation should be applied.
7355 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7356 offset += offset_in_output_section;
7357 else
7358 {
7359 section_offset_type sot_offset =
7360 convert_types<section_offset_type, Address>(offset);
7361 section_offset_type new_sot_offset =
7362 output_section->output_offset(object, relinfo->data_shndx,
7363 sot_offset);
7364 gold_assert(new_sot_offset != -1);
7365 offset = new_sot_offset;
7366 }
7367
7368 // In an object file, r_offset is an offset within the section.
7369 // In an executable or dynamic object, generated by
7370 // --emit-relocs, r_offset is an absolute address.
7371 if (!parameters->options().relocatable())
7372 {
7373 offset += view_address;
7374 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7375 offset -= offset_in_output_section;
7376 }
7377
7378 // Handle the reloc addend based on the strategy.
7379 if (strategy == Relocatable_relocs::RELOC_COPY)
7380 ;
7381 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7382 {
7383 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7384 addend = psymval->value(object, addend);
7385 }
7386 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7387 {
7388 if (addend >= 32768)
7389 addend += got2_addend;
7390 }
7391 else
7392 gold_unreachable();
7393
7394 if (!parameters->options().relocatable())
7395 {
7396 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7397 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7398 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7399 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7400 {
7401 // First instruction of a global dynamic sequence,
7402 // arg setup insn.
7403 const bool final = gsym == NULL || gsym->final_value_is_known();
7404 switch (this->optimize_tls_gd(final))
7405 {
7406 case tls::TLSOPT_TO_IE:
7407 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7408 - elfcpp::R_POWERPC_GOT_TLSGD16);
7409 break;
7410 case tls::TLSOPT_TO_LE:
7411 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7412 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7413 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7414 else
7415 {
7416 r_type = elfcpp::R_POWERPC_NONE;
7417 offset -= 2 * big_endian;
7418 }
7419 break;
7420 default:
7421 break;
7422 }
7423 }
7424 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7425 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7426 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7427 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7428 {
7429 // First instruction of a local dynamic sequence,
7430 // arg setup insn.
7431 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7432 {
7433 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7434 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7435 {
7436 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7437 const Output_section* os = relinfo->layout->tls_segment()
7438 ->first_section();
7439 gold_assert(os != NULL);
7440 gold_assert(os->needs_symtab_index());
7441 r_sym = os->symtab_index();
7442 addend = dtp_offset;
7443 }
7444 else
7445 {
7446 r_type = elfcpp::R_POWERPC_NONE;
7447 offset -= 2 * big_endian;
7448 }
7449 }
7450 }
7451 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7452 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7453 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7454 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7455 {
7456 // First instruction of initial exec sequence.
7457 const bool final = gsym == NULL || gsym->final_value_is_known();
7458 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7459 {
7460 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7461 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7462 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7463 else
7464 {
7465 r_type = elfcpp::R_POWERPC_NONE;
7466 offset -= 2 * big_endian;
7467 }
7468 }
7469 }
7470 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7471 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7472 {
7473 // Second instruction of a global dynamic sequence,
7474 // the __tls_get_addr call
7475 const bool final = gsym == NULL || gsym->final_value_is_known();
7476 switch (this->optimize_tls_gd(final))
7477 {
7478 case tls::TLSOPT_TO_IE:
7479 r_type = elfcpp::R_POWERPC_NONE;
7480 zap_next = true;
7481 break;
7482 case tls::TLSOPT_TO_LE:
7483 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7484 offset += 2 * big_endian;
7485 zap_next = true;
7486 break;
7487 default:
7488 break;
7489 }
7490 }
7491 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7492 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7493 {
7494 // Second instruction of a local dynamic sequence,
7495 // the __tls_get_addr call
7496 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7497 {
7498 const Output_section* os = relinfo->layout->tls_segment()
7499 ->first_section();
7500 gold_assert(os != NULL);
7501 gold_assert(os->needs_symtab_index());
7502 r_sym = os->symtab_index();
7503 addend = dtp_offset;
7504 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7505 offset += 2 * big_endian;
7506 zap_next = true;
7507 }
7508 }
7509 else if (r_type == elfcpp::R_POWERPC_TLS)
7510 {
7511 // Second instruction of an initial exec sequence
7512 const bool final = gsym == NULL || gsym->final_value_is_known();
7513 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
7514 {
7515 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7516 offset += 2 * big_endian;
7517 }
7518 }
7519 }
7520
7521 reloc_write.put_r_offset(offset);
7522 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
7523 reloc_write.put_r_addend(addend);
7524
7525 pwrite += reloc_size;
7526 }
7527
7528 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
7529 == reloc_view_size);
7530 }
7531
7532 // Return the value to use for a dynamic symbol which requires special
7533 // treatment. This is how we support equality comparisons of function
7534 // pointers across shared library boundaries, as described in the
7535 // processor specific ABI supplement.
7536
7537 template<int size, bool big_endian>
7538 uint64_t
7539 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7540 {
7541 if (size == 32)
7542 {
7543 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
7544 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7545 p != this->stub_tables_.end();
7546 ++p)
7547 {
7548 Address off = (*p)->find_plt_call_entry(gsym);
7549 if (off != invalid_address)
7550 return (*p)->stub_address() + off;
7551 }
7552 }
7553 gold_unreachable();
7554 }
7555
7556 // Return the PLT address to use for a local symbol.
7557 template<int size, bool big_endian>
7558 uint64_t
7559 Target_powerpc<size, big_endian>::do_plt_address_for_local(
7560 const Relobj* object,
7561 unsigned int symndx) const
7562 {
7563 if (size == 32)
7564 {
7565 const Sized_relobj<size, big_endian>* relobj
7566 = static_cast<const Sized_relobj<size, big_endian>*>(object);
7567 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7568 p != this->stub_tables_.end();
7569 ++p)
7570 {
7571 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
7572 symndx);
7573 if (off != invalid_address)
7574 return (*p)->stub_address() + off;
7575 }
7576 }
7577 gold_unreachable();
7578 }
7579
7580 // Return the PLT address to use for a global symbol.
7581 template<int size, bool big_endian>
7582 uint64_t
7583 Target_powerpc<size, big_endian>::do_plt_address_for_global(
7584 const Symbol* gsym) const
7585 {
7586 if (size == 32)
7587 {
7588 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
7589 p != this->stub_tables_.end();
7590 ++p)
7591 {
7592 Address off = (*p)->find_plt_call_entry(gsym);
7593 if (off != invalid_address)
7594 return (*p)->stub_address() + off;
7595 }
7596 }
7597 gold_unreachable();
7598 }
7599
7600 // Return the offset to use for the GOT_INDX'th got entry which is
7601 // for a local tls symbol specified by OBJECT, SYMNDX.
7602 template<int size, bool big_endian>
7603 int64_t
7604 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
7605 const Relobj* object,
7606 unsigned int symndx,
7607 unsigned int got_indx) const
7608 {
7609 const Powerpc_relobj<size, big_endian>* ppc_object
7610 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
7611 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
7612 {
7613 for (Got_type got_type = GOT_TYPE_TLSGD;
7614 got_type <= GOT_TYPE_TPREL;
7615 got_type = Got_type(got_type + 1))
7616 if (ppc_object->local_has_got_offset(symndx, got_type))
7617 {
7618 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
7619 if (got_type == GOT_TYPE_TLSGD)
7620 off += size / 8;
7621 if (off == got_indx * (size / 8))
7622 {
7623 if (got_type == GOT_TYPE_TPREL)
7624 return -tp_offset;
7625 else
7626 return -dtp_offset;
7627 }
7628 }
7629 }
7630 gold_unreachable();
7631 }
7632
7633 // Return the offset to use for the GOT_INDX'th got entry which is
7634 // for global tls symbol GSYM.
7635 template<int size, bool big_endian>
7636 int64_t
7637 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
7638 Symbol* gsym,
7639 unsigned int got_indx) const
7640 {
7641 if (gsym->type() == elfcpp::STT_TLS)
7642 {
7643 for (Got_type got_type = GOT_TYPE_TLSGD;
7644 got_type <= GOT_TYPE_TPREL;
7645 got_type = Got_type(got_type + 1))
7646 if (gsym->has_got_offset(got_type))
7647 {
7648 unsigned int off = gsym->got_offset(got_type);
7649 if (got_type == GOT_TYPE_TLSGD)
7650 off += size / 8;
7651 if (off == got_indx * (size / 8))
7652 {
7653 if (got_type == GOT_TYPE_TPREL)
7654 return -tp_offset;
7655 else
7656 return -dtp_offset;
7657 }
7658 }
7659 }
7660 gold_unreachable();
7661 }
7662
7663 // The selector for powerpc object files.
7664
7665 template<int size, bool big_endian>
7666 class Target_selector_powerpc : public Target_selector
7667 {
7668 public:
7669 Target_selector_powerpc()
7670 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
7671 size, big_endian,
7672 (size == 64
7673 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
7674 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
7675 (size == 64
7676 ? (big_endian ? "elf64ppc" : "elf64lppc")
7677 : (big_endian ? "elf32ppc" : "elf32lppc")))
7678 { }
7679
7680 virtual Target*
7681 do_instantiate_target()
7682 { return new Target_powerpc<size, big_endian>(); }
7683 };
7684
7685 Target_selector_powerpc<32, true> target_selector_ppc32;
7686 Target_selector_powerpc<32, false> target_selector_ppc32le;
7687 Target_selector_powerpc<64, true> target_selector_ppc64;
7688 Target_selector_powerpc<64, false> target_selector_ppc64le;
7689
7690 // Instantiate these constants for -O0
7691 template<int size, bool big_endian>
7692 const int Output_data_glink<size, big_endian>::pltresolve_size;
7693 template<int size, bool big_endian>
7694 const typename Stub_table<size, big_endian>::Address
7695 Stub_table<size, big_endian>::invalid_address;
7696 template<int size, bool big_endian>
7697 const typename Target_powerpc<size, big_endian>::Address
7698 Target_powerpc<size, big_endian>::invalid_address;
7699
7700 } // End anonymous namespace.
This page took 0.191529 seconds and 4 git commands to generate.