Remove unnecessary target dependencies on relocation format.
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Output_section* output_section;
74 const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86 typedef Unordered_map<Address, Section_refs> Access_from;
87
88 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93 e_flags_(ehdr.get_e_flags()), st_other_()
94 {
95 this->set_abiversion(0);
96 }
97
98 ~Powerpc_relobj()
99 { }
100
101 // Read the symbols then set up st_other vector.
102 void
103 do_read_symbols(Read_symbols_data*);
104
105 // The .got2 section shndx.
106 unsigned int
107 got2_shndx() const
108 {
109 if (size == 32)
110 return this->special_;
111 else
112 return 0;
113 }
114
115 // The .opd section shndx.
116 unsigned int
117 opd_shndx() const
118 {
119 if (size == 32)
120 return 0;
121 else
122 return this->special_;
123 }
124
125 // Init OPD entry arrays.
126 void
127 init_opd(size_t opd_size)
128 {
129 size_t count = this->opd_ent_ndx(opd_size);
130 this->opd_ent_.resize(count);
131 }
132
133 // Return section and offset of function entry for .opd + R_OFF.
134 unsigned int
135 get_opd_ent(Address r_off, Address* value = NULL) const
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 gold_assert(this->opd_ent_[ndx].shndx != 0);
140 if (value != NULL)
141 *value = this->opd_ent_[ndx].off;
142 return this->opd_ent_[ndx].shndx;
143 }
144
145 // Set section and offset of function entry for .opd + R_OFF.
146 void
147 set_opd_ent(Address r_off, unsigned int shndx, Address value)
148 {
149 size_t ndx = this->opd_ent_ndx(r_off);
150 gold_assert(ndx < this->opd_ent_.size());
151 this->opd_ent_[ndx].shndx = shndx;
152 this->opd_ent_[ndx].off = value;
153 }
154
155 // Return discard flag for .opd + R_OFF.
156 bool
157 get_opd_discard(Address r_off) const
158 {
159 size_t ndx = this->opd_ent_ndx(r_off);
160 gold_assert(ndx < this->opd_ent_.size());
161 return this->opd_ent_[ndx].discard;
162 }
163
164 // Set discard flag for .opd + R_OFF.
165 void
166 set_opd_discard(Address r_off)
167 {
168 size_t ndx = this->opd_ent_ndx(r_off);
169 gold_assert(ndx < this->opd_ent_.size());
170 this->opd_ent_[ndx].discard = true;
171 }
172
173 bool
174 opd_valid() const
175 { return this->opd_valid_; }
176
177 void
178 set_opd_valid()
179 { this->opd_valid_ = true; }
180
181 // Examine .rela.opd to build info about function entry points.
182 void
183 scan_opd_relocs(size_t reloc_count,
184 const unsigned char* prelocs,
185 const unsigned char* plocal_syms);
186
187 // Perform the Sized_relobj_file method, then set up opd info from
188 // .opd relocs.
189 void
190 do_read_relocs(Read_relocs_data*);
191
192 bool
193 do_find_special_sections(Read_symbols_data* sd);
194
195 // Adjust this local symbol value. Return false if the symbol
196 // should be discarded from the output file.
197 bool
198 do_adjust_local_symbol(Symbol_value<size>* lv) const
199 {
200 if (size == 64 && this->opd_shndx() != 0)
201 {
202 bool is_ordinary;
203 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204 return true;
205 if (this->get_opd_discard(lv->input_value()))
206 return false;
207 }
208 return true;
209 }
210
211 Access_from*
212 access_from_map()
213 { return &this->access_from_map_; }
214
215 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216 // section at DST_OFF.
217 void
218 add_reference(Relobj* src_obj,
219 unsigned int src_indx,
220 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221 {
222 Section_id src_id(src_obj, src_indx);
223 this->access_from_map_[dst_off].insert(src_id);
224 }
225
226 // Add a reference to the code section specified by the .opd entry
227 // at DST_OFF
228 void
229 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230 {
231 size_t ndx = this->opd_ent_ndx(dst_off);
232 if (ndx >= this->opd_ent_.size())
233 this->opd_ent_.resize(ndx + 1);
234 this->opd_ent_[ndx].gc_mark = true;
235 }
236
237 void
238 process_gc_mark(Symbol_table* symtab)
239 {
240 for (size_t i = 0; i < this->opd_ent_.size(); i++)
241 if (this->opd_ent_[i].gc_mark)
242 {
243 unsigned int shndx = this->opd_ent_[i].shndx;
244 symtab->gc()->worklist().push_back(Section_id(this, shndx));
245 }
246 }
247
248 // Return offset in output GOT section that this object will use
249 // as a TOC pointer. Won't be just a constant with multi-toc support.
250 Address
251 toc_base_offset() const
252 { return 0x8000; }
253
254 void
255 set_has_small_toc_reloc()
256 { has_small_toc_reloc_ = true; }
257
258 bool
259 has_small_toc_reloc() const
260 { return has_small_toc_reloc_; }
261
262 void
263 set_has_14bit_branch(unsigned int shndx)
264 {
265 if (shndx >= this->has14_.size())
266 this->has14_.resize(shndx + 1);
267 this->has14_[shndx] = true;
268 }
269
270 bool
271 has_14bit_branch(unsigned int shndx) const
272 { return shndx < this->has14_.size() && this->has14_[shndx]; }
273
274 void
275 set_stub_table(unsigned int shndx, unsigned int stub_index)
276 {
277 if (shndx >= this->stub_table_index_.size())
278 this->stub_table_index_.resize(shndx + 1);
279 this->stub_table_index_[shndx] = stub_index;
280 }
281
282 Stub_table<size, big_endian>*
283 stub_table(unsigned int shndx)
284 {
285 if (shndx < this->stub_table_index_.size())
286 {
287 Target_powerpc<size, big_endian>* target
288 = static_cast<Target_powerpc<size, big_endian>*>(
289 parameters->sized_target<size, big_endian>());
290 unsigned int indx = this->stub_table_index_[shndx];
291 gold_assert(indx < target->stub_tables().size());
292 return target->stub_tables()[indx];
293 }
294 return NULL;
295 }
296
297 void
298 clear_stub_table()
299 {
300 this->stub_table_index_.clear();
301 }
302
303 int
304 abiversion() const
305 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307 // Set ABI version for input and output
308 void
309 set_abiversion(int ver);
310
311 unsigned int
312 ppc64_local_entry_offset(const Symbol* sym) const
313 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315 unsigned int
316 ppc64_local_entry_offset(unsigned int symndx) const
317 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320 struct Opd_ent
321 {
322 unsigned int shndx;
323 bool discard : 1;
324 bool gc_mark : 1;
325 Address off;
326 };
327
328 // Return index into opd_ent_ array for .opd entry at OFF.
329 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330 // apart when the language doesn't use the last 8-byte word, the
331 // environment pointer. Thus dividing the entry section offset by
332 // 16 will give an index into opd_ent_ that works for either layout
333 // of .opd. (It leaves some elements of the vector unused when .opd
334 // entries are spaced 24 bytes apart, but we don't know the spacing
335 // until relocations are processed, and in any case it is possible
336 // for an object to have some entries spaced 16 bytes apart and
337 // others 24 bytes apart.)
338 size_t
339 opd_ent_ndx(size_t off) const
340 { return off >> 4;}
341
342 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343 unsigned int special_;
344
345 // For 64-bit, whether this object uses small model relocs to access
346 // the toc.
347 bool has_small_toc_reloc_;
348
349 // Set at the start of gc_process_relocs, when we know opd_ent_
350 // vector is valid. The flag could be made atomic and set in
351 // do_read_relocs with memory_order_release and then tested with
352 // memory_order_acquire, potentially resulting in fewer entries in
353 // access_from_map_.
354 bool opd_valid_;
355
356 // The first 8-byte word of an OPD entry gives the address of the
357 // entry point of the function. Relocatable object files have a
358 // relocation on this word. The following vector records the
359 // section and offset specified by these relocations.
360 std::vector<Opd_ent> opd_ent_;
361
362 // References made to this object's .opd section when running
363 // gc_process_relocs for another object, before the opd_ent_ vector
364 // is valid for this object.
365 Access_from access_from_map_;
366
367 // Whether input section has a 14-bit branch reloc.
368 std::vector<bool> has14_;
369
370 // The stub table to use for a given input section.
371 std::vector<unsigned int> stub_table_index_;
372
373 // Header e_flags
374 elfcpp::Elf_Word e_flags_;
375
376 // ELF st_other field for local symbols.
377 std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390 {
391 this->set_abiversion(0);
392 }
393
394 ~Powerpc_dynobj()
395 { }
396
397 // Call Sized_dynobj::do_read_symbols to read the symbols then
398 // read .opd from a dynamic object, filling in opd_ent_ vector,
399 void
400 do_read_symbols(Read_symbols_data*);
401
402 // The .opd section shndx.
403 unsigned int
404 opd_shndx() const
405 {
406 return this->opd_shndx_;
407 }
408
409 // The .opd section address.
410 Address
411 opd_address() const
412 {
413 return this->opd_address_;
414 }
415
416 // Init OPD entry arrays.
417 void
418 init_opd(size_t opd_size)
419 {
420 size_t count = this->opd_ent_ndx(opd_size);
421 this->opd_ent_.resize(count);
422 }
423
424 // Return section and offset of function entry for .opd + R_OFF.
425 unsigned int
426 get_opd_ent(Address r_off, Address* value = NULL) const
427 {
428 size_t ndx = this->opd_ent_ndx(r_off);
429 gold_assert(ndx < this->opd_ent_.size());
430 gold_assert(this->opd_ent_[ndx].shndx != 0);
431 if (value != NULL)
432 *value = this->opd_ent_[ndx].off;
433 return this->opd_ent_[ndx].shndx;
434 }
435
436 // Set section and offset of function entry for .opd + R_OFF.
437 void
438 set_opd_ent(Address r_off, unsigned int shndx, Address value)
439 {
440 size_t ndx = this->opd_ent_ndx(r_off);
441 gold_assert(ndx < this->opd_ent_.size());
442 this->opd_ent_[ndx].shndx = shndx;
443 this->opd_ent_[ndx].off = value;
444 }
445
446 int
447 abiversion() const
448 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450 // Set ABI version for input and output.
451 void
452 set_abiversion(int ver);
453
454 private:
455 // Used to specify extent of executable sections.
456 struct Sec_info
457 {
458 Sec_info(Address start_, Address len_, unsigned int shndx_)
459 : start(start_), len(len_), shndx(shndx_)
460 { }
461
462 bool
463 operator<(const Sec_info& that) const
464 { return this->start < that.start; }
465
466 Address start;
467 Address len;
468 unsigned int shndx;
469 };
470
471 struct Opd_ent
472 {
473 unsigned int shndx;
474 Address off;
475 };
476
477 // Return index into opd_ent_ array for .opd entry at OFF.
478 size_t
479 opd_ent_ndx(size_t off) const
480 { return off >> 4;}
481
482 // For 64-bit the .opd section shndx and address.
483 unsigned int opd_shndx_;
484 Address opd_address_;
485
486 // The first 8-byte word of an OPD entry gives the address of the
487 // entry point of the function. Records the section and offset
488 // corresponding to the address. Note that in dynamic objects,
489 // offset is *not* relative to the section.
490 std::vector<Opd_ent> opd_ent_;
491
492 // Header e_flags
493 elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499 public:
500 typedef
501 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504 static const Address invalid_address = static_cast<Address>(0) - 1;
505 // Offset of tp and dtp pointers from start of TLS block.
506 static const Address tp_offset = 0x7000;
507 static const Address dtp_offset = 0x8000;
508
509 Target_powerpc()
510 : Sized_target<size, big_endian>(&powerpc_info),
511 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513 tlsld_got_offset_(-1U),
514 stub_tables_(), branch_lookup_table_(), branch_info_(),
515 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516 stub_group_size_(0), savres_section_(0)
517 {
518 }
519
520 // Process the relocations to determine unreferenced sections for
521 // garbage collection.
522 void
523 gc_process_relocs(Symbol_table* symtab,
524 Layout* layout,
525 Sized_relobj_file<size, big_endian>* object,
526 unsigned int data_shndx,
527 unsigned int sh_type,
528 const unsigned char* prelocs,
529 size_t reloc_count,
530 Output_section* output_section,
531 bool needs_special_offset_handling,
532 size_t local_symbol_count,
533 const unsigned char* plocal_symbols);
534
535 // Scan the relocations to look for symbol adjustments.
536 void
537 scan_relocs(Symbol_table* symtab,
538 Layout* layout,
539 Sized_relobj_file<size, big_endian>* object,
540 unsigned int data_shndx,
541 unsigned int sh_type,
542 const unsigned char* prelocs,
543 size_t reloc_count,
544 Output_section* output_section,
545 bool needs_special_offset_handling,
546 size_t local_symbol_count,
547 const unsigned char* plocal_symbols);
548
549 // Map input .toc section to output .got section.
550 const char*
551 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552 {
553 if (size == 64 && strcmp(name, ".toc") == 0)
554 {
555 *plen = 4;
556 return ".got";
557 }
558 return NULL;
559 }
560
561 // Provide linker defined save/restore functions.
562 void
563 define_save_restore_funcs(Layout*, Symbol_table*);
564
565 // No stubs unless a final link.
566 bool
567 do_may_relax() const
568 { return !parameters->options().relocatable(); }
569
570 bool
571 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573 void
574 do_plt_fde_location(const Output_data*, unsigned char*,
575 uint64_t*, off_t*) const;
576
577 // Stash info about branches, for stub generation.
578 void
579 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580 unsigned int data_shndx, Address r_offset,
581 unsigned int r_type, unsigned int r_sym, Address addend)
582 {
583 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584 this->branch_info_.push_back(info);
585 if (r_type == elfcpp::R_POWERPC_REL14
586 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588 ppc_object->set_has_14bit_branch(data_shndx);
589 }
590
591 void
592 do_define_standard_symbols(Symbol_table*, Layout*);
593
594 // Finalize the sections.
595 void
596 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598 // Return the value to use for a dynamic which requires special
599 // treatment.
600 uint64_t
601 do_dynsym_value(const Symbol*) const;
602
603 // Return the PLT address to use for a local symbol.
604 uint64_t
605 do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607 // Return the PLT address to use for a global symbol.
608 uint64_t
609 do_plt_address_for_global(const Symbol*) const;
610
611 // Return the offset to use for the GOT_INDX'th got entry which is
612 // for a local tls symbol specified by OBJECT, SYMNDX.
613 int64_t
614 do_tls_offset_for_local(const Relobj* object,
615 unsigned int symndx,
616 unsigned int got_indx) const;
617
618 // Return the offset to use for the GOT_INDX'th got entry which is
619 // for global tls symbol GSYM.
620 int64_t
621 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623 void
624 do_function_location(Symbol_location*) const;
625
626 bool
627 do_can_check_for_function_pointers() const
628 { return true; }
629
630 // Adjust -fsplit-stack code which calls non-split-stack code.
631 void
632 do_calls_non_split(Relobj* object, unsigned int shndx,
633 section_offset_type fnoffset, section_size_type fnsize,
634 unsigned char* view, section_size_type view_size,
635 std::string* from, std::string* to) const;
636
637 // Relocate a section.
638 void
639 relocate_section(const Relocate_info<size, big_endian>*,
640 unsigned int sh_type,
641 const unsigned char* prelocs,
642 size_t reloc_count,
643 Output_section* output_section,
644 bool needs_special_offset_handling,
645 unsigned char* view,
646 Address view_address,
647 section_size_type view_size,
648 const Reloc_symbol_changes*);
649
650 // Scan the relocs during a relocatable link.
651 void
652 scan_relocatable_relocs(Symbol_table* symtab,
653 Layout* layout,
654 Sized_relobj_file<size, big_endian>* object,
655 unsigned int data_shndx,
656 unsigned int sh_type,
657 const unsigned char* prelocs,
658 size_t reloc_count,
659 Output_section* output_section,
660 bool needs_special_offset_handling,
661 size_t local_symbol_count,
662 const unsigned char* plocal_symbols,
663 Relocatable_relocs*);
664
665 // Emit relocations for a section.
666 void
667 relocate_relocs(const Relocate_info<size, big_endian>*,
668 unsigned int sh_type,
669 const unsigned char* prelocs,
670 size_t reloc_count,
671 Output_section* output_section,
672 typename elfcpp::Elf_types<size>::Elf_Off
673 offset_in_output_section,
674 const Relocatable_relocs*,
675 unsigned char*,
676 Address view_address,
677 section_size_type,
678 unsigned char* reloc_view,
679 section_size_type reloc_view_size);
680
681 // Return whether SYM is defined by the ABI.
682 bool
683 do_is_defined_by_abi(const Symbol* sym) const
684 {
685 return strcmp(sym->name(), "__tls_get_addr") == 0;
686 }
687
688 // Return the size of the GOT section.
689 section_size_type
690 got_size() const
691 {
692 gold_assert(this->got_ != NULL);
693 return this->got_->data_size();
694 }
695
696 // Get the PLT section.
697 const Output_data_plt_powerpc<size, big_endian>*
698 plt_section() const
699 {
700 gold_assert(this->plt_ != NULL);
701 return this->plt_;
702 }
703
704 // Get the IPLT section.
705 const Output_data_plt_powerpc<size, big_endian>*
706 iplt_section() const
707 {
708 gold_assert(this->iplt_ != NULL);
709 return this->iplt_;
710 }
711
712 // Get the .glink section.
713 const Output_data_glink<size, big_endian>*
714 glink_section() const
715 {
716 gold_assert(this->glink_ != NULL);
717 return this->glink_;
718 }
719
720 Output_data_glink<size, big_endian>*
721 glink_section()
722 {
723 gold_assert(this->glink_ != NULL);
724 return this->glink_;
725 }
726
727 bool has_glink() const
728 { return this->glink_ != NULL; }
729
730 // Get the GOT section.
731 const Output_data_got_powerpc<size, big_endian>*
732 got_section() const
733 {
734 gold_assert(this->got_ != NULL);
735 return this->got_;
736 }
737
738 // Get the GOT section, creating it if necessary.
739 Output_data_got_powerpc<size, big_endian>*
740 got_section(Symbol_table*, Layout*);
741
742 Object*
743 do_make_elf_object(const std::string&, Input_file*, off_t,
744 const elfcpp::Ehdr<size, big_endian>&);
745
746 // Return the number of entries in the GOT.
747 unsigned int
748 got_entry_count() const
749 {
750 if (this->got_ == NULL)
751 return 0;
752 return this->got_size() / (size / 8);
753 }
754
755 // Return the number of entries in the PLT.
756 unsigned int
757 plt_entry_count() const;
758
759 // Return the offset of the first non-reserved PLT entry.
760 unsigned int
761 first_plt_entry_offset() const
762 {
763 if (size == 32)
764 return 0;
765 if (this->abiversion() >= 2)
766 return 16;
767 return 24;
768 }
769
770 // Return the size of each PLT entry.
771 unsigned int
772 plt_entry_size() const
773 {
774 if (size == 32)
775 return 4;
776 if (this->abiversion() >= 2)
777 return 8;
778 return 24;
779 }
780
781 Output_data_save_res<size, big_endian>*
782 savres_section() const
783 {
784 return this->savres_section_;
785 }
786
787 // Add any special sections for this symbol to the gc work list.
788 // For powerpc64, this adds the code section of a function
789 // descriptor.
790 void
791 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
792
793 // Handle target specific gc actions when adding a gc reference from
794 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
795 // and DST_OFF. For powerpc64, this adds a referenc to the code
796 // section of a function descriptor.
797 void
798 do_gc_add_reference(Symbol_table* symtab,
799 Relobj* src_obj,
800 unsigned int src_shndx,
801 Relobj* dst_obj,
802 unsigned int dst_shndx,
803 Address dst_off) const;
804
805 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
806 const Stub_tables&
807 stub_tables() const
808 { return this->stub_tables_; }
809
810 const Output_data_brlt_powerpc<size, big_endian>*
811 brlt_section() const
812 { return this->brlt_section_; }
813
814 void
815 add_branch_lookup_table(Address to)
816 {
817 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
818 this->branch_lookup_table_.insert(std::make_pair(to, off));
819 }
820
821 Address
822 find_branch_lookup_table(Address to)
823 {
824 typename Branch_lookup_table::const_iterator p
825 = this->branch_lookup_table_.find(to);
826 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
827 }
828
829 void
830 write_branch_lookup_table(unsigned char *oview)
831 {
832 for (typename Branch_lookup_table::const_iterator p
833 = this->branch_lookup_table_.begin();
834 p != this->branch_lookup_table_.end();
835 ++p)
836 {
837 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
838 }
839 }
840
841 bool
842 plt_thread_safe() const
843 { return this->plt_thread_safe_; }
844
845 int
846 abiversion () const
847 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
848
849 void
850 set_abiversion (int ver)
851 {
852 elfcpp::Elf_Word flags = this->processor_specific_flags();
853 flags &= ~elfcpp::EF_PPC64_ABI;
854 flags |= ver & elfcpp::EF_PPC64_ABI;
855 this->set_processor_specific_flags(flags);
856 }
857
858 // Offset to to save stack slot
859 int
860 stk_toc () const
861 { return this->abiversion() < 2 ? 40 : 24; }
862
863 private:
864
865 class Track_tls
866 {
867 public:
868 enum Tls_get_addr
869 {
870 NOT_EXPECTED = 0,
871 EXPECTED = 1,
872 SKIP = 2,
873 NORMAL = 3
874 };
875
876 Track_tls()
877 : tls_get_addr_(NOT_EXPECTED),
878 relinfo_(NULL), relnum_(0), r_offset_(0)
879 { }
880
881 ~Track_tls()
882 {
883 if (this->tls_get_addr_ != NOT_EXPECTED)
884 this->missing();
885 }
886
887 void
888 missing(void)
889 {
890 if (this->relinfo_ != NULL)
891 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
892 _("missing expected __tls_get_addr call"));
893 }
894
895 void
896 expect_tls_get_addr_call(
897 const Relocate_info<size, big_endian>* relinfo,
898 size_t relnum,
899 Address r_offset)
900 {
901 this->tls_get_addr_ = EXPECTED;
902 this->relinfo_ = relinfo;
903 this->relnum_ = relnum;
904 this->r_offset_ = r_offset;
905 }
906
907 void
908 expect_tls_get_addr_call()
909 { this->tls_get_addr_ = EXPECTED; }
910
911 void
912 skip_next_tls_get_addr_call()
913 {this->tls_get_addr_ = SKIP; }
914
915 Tls_get_addr
916 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
917 {
918 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
919 || r_type == elfcpp::R_PPC_PLTREL24)
920 && gsym != NULL
921 && strcmp(gsym->name(), "__tls_get_addr") == 0);
922 Tls_get_addr last_tls = this->tls_get_addr_;
923 this->tls_get_addr_ = NOT_EXPECTED;
924 if (is_tls_call && last_tls != EXPECTED)
925 return last_tls;
926 else if (!is_tls_call && last_tls != NOT_EXPECTED)
927 {
928 this->missing();
929 return EXPECTED;
930 }
931 return NORMAL;
932 }
933
934 private:
935 // What we're up to regarding calls to __tls_get_addr.
936 // On powerpc, the branch and link insn making a call to
937 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
938 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
939 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
940 // The marker relocation always comes first, and has the same
941 // symbol as the reloc on the insn setting up the __tls_get_addr
942 // argument. This ties the arg setup insn with the call insn,
943 // allowing ld to safely optimize away the call. We check that
944 // every call to __tls_get_addr has a marker relocation, and that
945 // every marker relocation is on a call to __tls_get_addr.
946 Tls_get_addr tls_get_addr_;
947 // Info about the last reloc for error message.
948 const Relocate_info<size, big_endian>* relinfo_;
949 size_t relnum_;
950 Address r_offset_;
951 };
952
953 // The class which scans relocations.
954 class Scan : protected Track_tls
955 {
956 public:
957 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
958
959 Scan()
960 : Track_tls(), issued_non_pic_error_(false)
961 { }
962
963 static inline int
964 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
965
966 inline void
967 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
968 Sized_relobj_file<size, big_endian>* object,
969 unsigned int data_shndx,
970 Output_section* output_section,
971 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
972 const elfcpp::Sym<size, big_endian>& lsym,
973 bool is_discarded);
974
975 inline void
976 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
977 Sized_relobj_file<size, big_endian>* object,
978 unsigned int data_shndx,
979 Output_section* output_section,
980 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
981 Symbol* gsym);
982
983 inline bool
984 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
985 Target_powerpc* ,
986 Sized_relobj_file<size, big_endian>* relobj,
987 unsigned int ,
988 Output_section* ,
989 const elfcpp::Rela<size, big_endian>& ,
990 unsigned int r_type,
991 const elfcpp::Sym<size, big_endian>&)
992 {
993 // PowerPC64 .opd is not folded, so any identical function text
994 // may be folded and we'll still keep function addresses distinct.
995 // That means no reloc is of concern here.
996 if (size == 64)
997 {
998 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
999 <Powerpc_relobj<size, big_endian>*>(relobj);
1000 if (ppcobj->abiversion() == 1)
1001 return false;
1002 }
1003 // For 32-bit and ELFv2, conservatively assume anything but calls to
1004 // function code might be taking the address of the function.
1005 return !is_branch_reloc(r_type);
1006 }
1007
1008 inline bool
1009 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1010 Target_powerpc* ,
1011 Sized_relobj_file<size, big_endian>* relobj,
1012 unsigned int ,
1013 Output_section* ,
1014 const elfcpp::Rela<size, big_endian>& ,
1015 unsigned int r_type,
1016 Symbol*)
1017 {
1018 // As above.
1019 if (size == 64)
1020 {
1021 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1022 <Powerpc_relobj<size, big_endian>*>(relobj);
1023 if (ppcobj->abiversion() == 1)
1024 return false;
1025 }
1026 return !is_branch_reloc(r_type);
1027 }
1028
1029 static bool
1030 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1031 Sized_relobj_file<size, big_endian>* object,
1032 unsigned int r_type, bool report_err);
1033
1034 private:
1035 static void
1036 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1037 unsigned int r_type);
1038
1039 static void
1040 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1041 unsigned int r_type, Symbol*);
1042
1043 static void
1044 generate_tls_call(Symbol_table* symtab, Layout* layout,
1045 Target_powerpc* target);
1046
1047 void
1048 check_non_pic(Relobj*, unsigned int r_type);
1049
1050 // Whether we have issued an error about a non-PIC compilation.
1051 bool issued_non_pic_error_;
1052 };
1053
1054 bool
1055 symval_for_branch(const Symbol_table* symtab,
1056 const Sized_symbol<size>* gsym,
1057 Powerpc_relobj<size, big_endian>* object,
1058 Address *value, unsigned int *dest_shndx);
1059
1060 // The class which implements relocation.
1061 class Relocate : protected Track_tls
1062 {
1063 public:
1064 // Use 'at' branch hints when true, 'y' when false.
1065 // FIXME maybe: set this with an option.
1066 static const bool is_isa_v2 = true;
1067
1068 Relocate()
1069 : Track_tls()
1070 { }
1071
1072 // Do a relocation. Return false if the caller should not issue
1073 // any warnings about this relocation.
1074 inline bool
1075 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1076 Output_section*, size_t relnum,
1077 const elfcpp::Rela<size, big_endian>&,
1078 unsigned int r_type, const Sized_symbol<size>*,
1079 const Symbol_value<size>*,
1080 unsigned char*,
1081 typename elfcpp::Elf_types<size>::Elf_Addr,
1082 section_size_type);
1083 };
1084
1085 class Relocate_comdat_behavior
1086 {
1087 public:
1088 // Decide what the linker should do for relocations that refer to
1089 // discarded comdat sections.
1090 inline Comdat_behavior
1091 get(const char* name)
1092 {
1093 gold::Default_comdat_behavior default_behavior;
1094 Comdat_behavior ret = default_behavior.get(name);
1095 if (ret == CB_WARNING)
1096 {
1097 if (size == 32
1098 && (strcmp(name, ".fixup") == 0
1099 || strcmp(name, ".got2") == 0))
1100 ret = CB_IGNORE;
1101 if (size == 64
1102 && (strcmp(name, ".opd") == 0
1103 || strcmp(name, ".toc") == 0
1104 || strcmp(name, ".toc1") == 0))
1105 ret = CB_IGNORE;
1106 }
1107 return ret;
1108 }
1109 };
1110
1111 // A class which returns the size required for a relocation type,
1112 // used while scanning relocs during a relocatable link.
1113 class Relocatable_size_for_reloc
1114 {
1115 public:
1116 unsigned int
1117 get_size_for_reloc(unsigned int, Relobj*)
1118 {
1119 gold_unreachable();
1120 return 0;
1121 }
1122 };
1123
1124 // Optimize the TLS relocation type based on what we know about the
1125 // symbol. IS_FINAL is true if the final address of this symbol is
1126 // known at link time.
1127
1128 tls::Tls_optimization
1129 optimize_tls_gd(bool is_final)
1130 {
1131 // If we are generating a shared library, then we can't do anything
1132 // in the linker.
1133 if (parameters->options().shared())
1134 return tls::TLSOPT_NONE;
1135
1136 if (!is_final)
1137 return tls::TLSOPT_TO_IE;
1138 return tls::TLSOPT_TO_LE;
1139 }
1140
1141 tls::Tls_optimization
1142 optimize_tls_ld()
1143 {
1144 if (parameters->options().shared())
1145 return tls::TLSOPT_NONE;
1146
1147 return tls::TLSOPT_TO_LE;
1148 }
1149
1150 tls::Tls_optimization
1151 optimize_tls_ie(bool is_final)
1152 {
1153 if (!is_final || parameters->options().shared())
1154 return tls::TLSOPT_NONE;
1155
1156 return tls::TLSOPT_TO_LE;
1157 }
1158
1159 // Create glink.
1160 void
1161 make_glink_section(Layout*);
1162
1163 // Create the PLT section.
1164 void
1165 make_plt_section(Symbol_table*, Layout*);
1166
1167 void
1168 make_iplt_section(Symbol_table*, Layout*);
1169
1170 void
1171 make_brlt_section(Layout*);
1172
1173 // Create a PLT entry for a global symbol.
1174 void
1175 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1176
1177 // Create a PLT entry for a local IFUNC symbol.
1178 void
1179 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1180 Sized_relobj_file<size, big_endian>*,
1181 unsigned int);
1182
1183
1184 // Create a GOT entry for local dynamic __tls_get_addr.
1185 unsigned int
1186 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1187 Sized_relobj_file<size, big_endian>* object);
1188
1189 unsigned int
1190 tlsld_got_offset() const
1191 {
1192 return this->tlsld_got_offset_;
1193 }
1194
1195 // Get the dynamic reloc section, creating it if necessary.
1196 Reloc_section*
1197 rela_dyn_section(Layout*);
1198
1199 // Similarly, but for ifunc symbols get the one for ifunc.
1200 Reloc_section*
1201 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1202
1203 // Copy a relocation against a global symbol.
1204 void
1205 copy_reloc(Symbol_table* symtab, Layout* layout,
1206 Sized_relobj_file<size, big_endian>* object,
1207 unsigned int shndx, Output_section* output_section,
1208 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1209 {
1210 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1211 this->copy_relocs_.copy_reloc(symtab, layout,
1212 symtab->get_sized_symbol<size>(sym),
1213 object, shndx, output_section,
1214 r_type, reloc.get_r_offset(),
1215 reloc.get_r_addend(),
1216 this->rela_dyn_section(layout));
1217 }
1218
1219 // Look over all the input sections, deciding where to place stubs.
1220 void
1221 group_sections(Layout*, const Task*, bool);
1222
1223 // Sort output sections by address.
1224 struct Sort_sections
1225 {
1226 bool
1227 operator()(const Output_section* sec1, const Output_section* sec2)
1228 { return sec1->address() < sec2->address(); }
1229 };
1230
1231 class Branch_info
1232 {
1233 public:
1234 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1235 unsigned int data_shndx,
1236 Address r_offset,
1237 unsigned int r_type,
1238 unsigned int r_sym,
1239 Address addend)
1240 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1241 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1242 { }
1243
1244 ~Branch_info()
1245 { }
1246
1247 // If this branch needs a plt call stub, or a long branch stub, make one.
1248 bool
1249 make_stub(Stub_table<size, big_endian>*,
1250 Stub_table<size, big_endian>*,
1251 Symbol_table*) const;
1252
1253 private:
1254 // The branch location..
1255 Powerpc_relobj<size, big_endian>* object_;
1256 unsigned int shndx_;
1257 Address offset_;
1258 // ..and the branch type and destination.
1259 unsigned int r_type_;
1260 unsigned int r_sym_;
1261 Address addend_;
1262 };
1263
1264 // Information about this specific target which we pass to the
1265 // general Target structure.
1266 static Target::Target_info powerpc_info;
1267
1268 // The types of GOT entries needed for this platform.
1269 // These values are exposed to the ABI in an incremental link.
1270 // Do not renumber existing values without changing the version
1271 // number of the .gnu_incremental_inputs section.
1272 enum Got_type
1273 {
1274 GOT_TYPE_STANDARD,
1275 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1276 GOT_TYPE_DTPREL, // entry for @got@dtprel
1277 GOT_TYPE_TPREL // entry for @got@tprel
1278 };
1279
1280 // The GOT section.
1281 Output_data_got_powerpc<size, big_endian>* got_;
1282 // The PLT section. This is a container for a table of addresses,
1283 // and their relocations. Each address in the PLT has a dynamic
1284 // relocation (R_*_JMP_SLOT) and each address will have a
1285 // corresponding entry in .glink for lazy resolution of the PLT.
1286 // ppc32 initialises the PLT to point at the .glink entry, while
1287 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1288 // linker adds a stub that loads the PLT entry into ctr then
1289 // branches to ctr. There may be more than one stub for each PLT
1290 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1291 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1292 Output_data_plt_powerpc<size, big_endian>* plt_;
1293 // The IPLT section. Like plt_, this is a container for a table of
1294 // addresses and their relocations, specifically for STT_GNU_IFUNC
1295 // functions that resolve locally (STT_GNU_IFUNC functions that
1296 // don't resolve locally go in PLT). Unlike plt_, these have no
1297 // entry in .glink for lazy resolution, and the relocation section
1298 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1299 // the relocation section may contain relocations against
1300 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1301 // relocation section will appear at the end of other dynamic
1302 // relocations, so that ld.so applies these relocations after other
1303 // dynamic relocations. In a static executable, the relocation
1304 // section is emitted and marked with __rela_iplt_start and
1305 // __rela_iplt_end symbols.
1306 Output_data_plt_powerpc<size, big_endian>* iplt_;
1307 // Section holding long branch destinations.
1308 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1309 // The .glink section.
1310 Output_data_glink<size, big_endian>* glink_;
1311 // The dynamic reloc section.
1312 Reloc_section* rela_dyn_;
1313 // Relocs saved to avoid a COPY reloc.
1314 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1315 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1316 unsigned int tlsld_got_offset_;
1317
1318 Stub_tables stub_tables_;
1319 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1320 Branch_lookup_table branch_lookup_table_;
1321
1322 typedef std::vector<Branch_info> Branches;
1323 Branches branch_info_;
1324
1325 bool plt_thread_safe_;
1326
1327 bool relax_failed_;
1328 int relax_fail_count_;
1329 int32_t stub_group_size_;
1330
1331 Output_data_save_res<size, big_endian> *savres_section_;
1332 };
1333
1334 template<>
1335 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1336 {
1337 32, // size
1338 true, // is_big_endian
1339 elfcpp::EM_PPC, // machine_code
1340 false, // has_make_symbol
1341 false, // has_resolve
1342 false, // has_code_fill
1343 true, // is_default_stack_executable
1344 false, // can_icf_inline_merge_sections
1345 '\0', // wrap_char
1346 "/usr/lib/ld.so.1", // dynamic_linker
1347 0x10000000, // default_text_segment_address
1348 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1349 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1350 false, // isolate_execinstr
1351 0, // rosegment_gap
1352 elfcpp::SHN_UNDEF, // small_common_shndx
1353 elfcpp::SHN_UNDEF, // large_common_shndx
1354 0, // small_common_section_flags
1355 0, // large_common_section_flags
1356 NULL, // attributes_section
1357 NULL, // attributes_vendor
1358 "_start", // entry_symbol_name
1359 32, // hash_entry_size
1360 };
1361
1362 template<>
1363 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1364 {
1365 32, // size
1366 false, // is_big_endian
1367 elfcpp::EM_PPC, // machine_code
1368 false, // has_make_symbol
1369 false, // has_resolve
1370 false, // has_code_fill
1371 true, // is_default_stack_executable
1372 false, // can_icf_inline_merge_sections
1373 '\0', // wrap_char
1374 "/usr/lib/ld.so.1", // dynamic_linker
1375 0x10000000, // default_text_segment_address
1376 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1377 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1378 false, // isolate_execinstr
1379 0, // rosegment_gap
1380 elfcpp::SHN_UNDEF, // small_common_shndx
1381 elfcpp::SHN_UNDEF, // large_common_shndx
1382 0, // small_common_section_flags
1383 0, // large_common_section_flags
1384 NULL, // attributes_section
1385 NULL, // attributes_vendor
1386 "_start", // entry_symbol_name
1387 32, // hash_entry_size
1388 };
1389
1390 template<>
1391 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1392 {
1393 64, // size
1394 true, // is_big_endian
1395 elfcpp::EM_PPC64, // machine_code
1396 false, // has_make_symbol
1397 false, // has_resolve
1398 false, // has_code_fill
1399 true, // is_default_stack_executable
1400 false, // can_icf_inline_merge_sections
1401 '\0', // wrap_char
1402 "/usr/lib/ld.so.1", // dynamic_linker
1403 0x10000000, // default_text_segment_address
1404 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1405 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1406 false, // isolate_execinstr
1407 0, // rosegment_gap
1408 elfcpp::SHN_UNDEF, // small_common_shndx
1409 elfcpp::SHN_UNDEF, // large_common_shndx
1410 0, // small_common_section_flags
1411 0, // large_common_section_flags
1412 NULL, // attributes_section
1413 NULL, // attributes_vendor
1414 "_start", // entry_symbol_name
1415 32, // hash_entry_size
1416 };
1417
1418 template<>
1419 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1420 {
1421 64, // size
1422 false, // is_big_endian
1423 elfcpp::EM_PPC64, // machine_code
1424 false, // has_make_symbol
1425 false, // has_resolve
1426 false, // has_code_fill
1427 true, // is_default_stack_executable
1428 false, // can_icf_inline_merge_sections
1429 '\0', // wrap_char
1430 "/usr/lib/ld.so.1", // dynamic_linker
1431 0x10000000, // default_text_segment_address
1432 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1433 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1434 false, // isolate_execinstr
1435 0, // rosegment_gap
1436 elfcpp::SHN_UNDEF, // small_common_shndx
1437 elfcpp::SHN_UNDEF, // large_common_shndx
1438 0, // small_common_section_flags
1439 0, // large_common_section_flags
1440 NULL, // attributes_section
1441 NULL, // attributes_vendor
1442 "_start", // entry_symbol_name
1443 32, // hash_entry_size
1444 };
1445
1446 inline bool
1447 is_branch_reloc(unsigned int r_type)
1448 {
1449 return (r_type == elfcpp::R_POWERPC_REL24
1450 || r_type == elfcpp::R_PPC_PLTREL24
1451 || r_type == elfcpp::R_PPC_LOCAL24PC
1452 || r_type == elfcpp::R_POWERPC_REL14
1453 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1454 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1455 || r_type == elfcpp::R_POWERPC_ADDR24
1456 || r_type == elfcpp::R_POWERPC_ADDR14
1457 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1458 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1459 }
1460
1461 // If INSN is an opcode that may be used with an @tls operand, return
1462 // the transformed insn for TLS optimisation, otherwise return 0. If
1463 // REG is non-zero only match an insn with RB or RA equal to REG.
1464 uint32_t
1465 at_tls_transform(uint32_t insn, unsigned int reg)
1466 {
1467 if ((insn & (0x3f << 26)) != 31 << 26)
1468 return 0;
1469
1470 unsigned int rtra;
1471 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1472 rtra = insn & ((1 << 26) - (1 << 16));
1473 else if (((insn >> 16) & 0x1f) == reg)
1474 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1475 else
1476 return 0;
1477
1478 if ((insn & (0x3ff << 1)) == 266 << 1)
1479 // add -> addi
1480 insn = 14 << 26;
1481 else if ((insn & (0x1f << 1)) == 23 << 1
1482 && ((insn & (0x1f << 6)) < 14 << 6
1483 || ((insn & (0x1f << 6)) >= 16 << 6
1484 && (insn & (0x1f << 6)) < 24 << 6)))
1485 // load and store indexed -> dform
1486 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1487 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1488 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1489 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1490 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1491 // lwax -> lwa
1492 insn = (58 << 26) | 2;
1493 else
1494 return 0;
1495 insn |= rtra;
1496 return insn;
1497 }
1498
1499
1500 template<int size, bool big_endian>
1501 class Powerpc_relocate_functions
1502 {
1503 public:
1504 enum Overflow_check
1505 {
1506 CHECK_NONE,
1507 CHECK_SIGNED,
1508 CHECK_UNSIGNED,
1509 CHECK_BITFIELD,
1510 CHECK_LOW_INSN,
1511 CHECK_HIGH_INSN
1512 };
1513
1514 enum Status
1515 {
1516 STATUS_OK,
1517 STATUS_OVERFLOW
1518 };
1519
1520 private:
1521 typedef Powerpc_relocate_functions<size, big_endian> This;
1522 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1523
1524 template<int valsize>
1525 static inline bool
1526 has_overflow_signed(Address value)
1527 {
1528 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1529 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1530 limit <<= ((valsize - 1) >> 1);
1531 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1532 return value + limit > (limit << 1) - 1;
1533 }
1534
1535 template<int valsize>
1536 static inline bool
1537 has_overflow_unsigned(Address value)
1538 {
1539 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1540 limit <<= ((valsize - 1) >> 1);
1541 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1542 return value > (limit << 1) - 1;
1543 }
1544
1545 template<int valsize>
1546 static inline bool
1547 has_overflow_bitfield(Address value)
1548 {
1549 return (has_overflow_unsigned<valsize>(value)
1550 && has_overflow_signed<valsize>(value));
1551 }
1552
1553 template<int valsize>
1554 static inline Status
1555 overflowed(Address value, Overflow_check overflow)
1556 {
1557 if (overflow == CHECK_SIGNED)
1558 {
1559 if (has_overflow_signed<valsize>(value))
1560 return STATUS_OVERFLOW;
1561 }
1562 else if (overflow == CHECK_UNSIGNED)
1563 {
1564 if (has_overflow_unsigned<valsize>(value))
1565 return STATUS_OVERFLOW;
1566 }
1567 else if (overflow == CHECK_BITFIELD)
1568 {
1569 if (has_overflow_bitfield<valsize>(value))
1570 return STATUS_OVERFLOW;
1571 }
1572 return STATUS_OK;
1573 }
1574
1575 // Do a simple RELA relocation
1576 template<int fieldsize, int valsize>
1577 static inline Status
1578 rela(unsigned char* view, Address value, Overflow_check overflow)
1579 {
1580 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1581 Valtype* wv = reinterpret_cast<Valtype*>(view);
1582 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1583 return overflowed<valsize>(value, overflow);
1584 }
1585
1586 template<int fieldsize, int valsize>
1587 static inline Status
1588 rela(unsigned char* view,
1589 unsigned int right_shift,
1590 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1591 Address value,
1592 Overflow_check overflow)
1593 {
1594 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1595 Valtype* wv = reinterpret_cast<Valtype*>(view);
1596 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1597 Valtype reloc = value >> right_shift;
1598 val &= ~dst_mask;
1599 reloc &= dst_mask;
1600 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1601 return overflowed<valsize>(value >> right_shift, overflow);
1602 }
1603
1604 // Do a simple RELA relocation, unaligned.
1605 template<int fieldsize, int valsize>
1606 static inline Status
1607 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1608 {
1609 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1610 return overflowed<valsize>(value, overflow);
1611 }
1612
1613 template<int fieldsize, int valsize>
1614 static inline Status
1615 rela_ua(unsigned char* view,
1616 unsigned int right_shift,
1617 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1618 Address value,
1619 Overflow_check overflow)
1620 {
1621 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1622 Valtype;
1623 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1624 Valtype reloc = value >> right_shift;
1625 val &= ~dst_mask;
1626 reloc &= dst_mask;
1627 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1628 return overflowed<valsize>(value >> right_shift, overflow);
1629 }
1630
1631 public:
1632 // R_PPC64_ADDR64: (Symbol + Addend)
1633 static inline void
1634 addr64(unsigned char* view, Address value)
1635 { This::template rela<64,64>(view, value, CHECK_NONE); }
1636
1637 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1638 static inline void
1639 addr64_u(unsigned char* view, Address value)
1640 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1641
1642 // R_POWERPC_ADDR32: (Symbol + Addend)
1643 static inline Status
1644 addr32(unsigned char* view, Address value, Overflow_check overflow)
1645 { return This::template rela<32,32>(view, value, overflow); }
1646
1647 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1648 static inline Status
1649 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1650 { return This::template rela_ua<32,32>(view, value, overflow); }
1651
1652 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1653 static inline Status
1654 addr24(unsigned char* view, Address value, Overflow_check overflow)
1655 {
1656 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1657 value, overflow);
1658 if (overflow != CHECK_NONE && (value & 3) != 0)
1659 stat = STATUS_OVERFLOW;
1660 return stat;
1661 }
1662
1663 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1664 static inline Status
1665 addr16(unsigned char* view, Address value, Overflow_check overflow)
1666 { return This::template rela<16,16>(view, value, overflow); }
1667
1668 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1669 static inline Status
1670 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1671 { return This::template rela_ua<16,16>(view, value, overflow); }
1672
1673 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1674 static inline Status
1675 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1676 {
1677 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1678 if ((value & 3) != 0)
1679 stat = STATUS_OVERFLOW;
1680 return stat;
1681 }
1682
1683 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1684 static inline void
1685 addr16_hi(unsigned char* view, Address value)
1686 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1687
1688 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1689 static inline void
1690 addr16_ha(unsigned char* view, Address value)
1691 { This::addr16_hi(view, value + 0x8000); }
1692
1693 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1694 static inline void
1695 addr16_hi2(unsigned char* view, Address value)
1696 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1697
1698 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1699 static inline void
1700 addr16_ha2(unsigned char* view, Address value)
1701 { This::addr16_hi2(view, value + 0x8000); }
1702
1703 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1704 static inline void
1705 addr16_hi3(unsigned char* view, Address value)
1706 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1707
1708 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1709 static inline void
1710 addr16_ha3(unsigned char* view, Address value)
1711 { This::addr16_hi3(view, value + 0x8000); }
1712
1713 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1714 static inline Status
1715 addr14(unsigned char* view, Address value, Overflow_check overflow)
1716 {
1717 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1718 if (overflow != CHECK_NONE && (value & 3) != 0)
1719 stat = STATUS_OVERFLOW;
1720 return stat;
1721 }
1722 };
1723
1724 // Set ABI version for input and output.
1725
1726 template<int size, bool big_endian>
1727 void
1728 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1729 {
1730 this->e_flags_ |= ver;
1731 if (this->abiversion() != 0)
1732 {
1733 Target_powerpc<size, big_endian>* target =
1734 static_cast<Target_powerpc<size, big_endian>*>(
1735 parameters->sized_target<size, big_endian>());
1736 if (target->abiversion() == 0)
1737 target->set_abiversion(this->abiversion());
1738 else if (target->abiversion() != this->abiversion())
1739 gold_error(_("%s: ABI version %d is not compatible "
1740 "with ABI version %d output"),
1741 this->name().c_str(),
1742 this->abiversion(), target->abiversion());
1743
1744 }
1745 }
1746
1747 // Stash away the index of .got2 or .opd in a relocatable object, if
1748 // such a section exists.
1749
1750 template<int size, bool big_endian>
1751 bool
1752 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1753 Read_symbols_data* sd)
1754 {
1755 const unsigned char* const pshdrs = sd->section_headers->data();
1756 const unsigned char* namesu = sd->section_names->data();
1757 const char* names = reinterpret_cast<const char*>(namesu);
1758 section_size_type names_size = sd->section_names_size;
1759 const unsigned char* s;
1760
1761 s = this->template find_shdr<size, big_endian>(pshdrs,
1762 size == 32 ? ".got2" : ".opd",
1763 names, names_size, NULL);
1764 if (s != NULL)
1765 {
1766 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1767 this->special_ = ndx;
1768 if (size == 64)
1769 {
1770 if (this->abiversion() == 0)
1771 this->set_abiversion(1);
1772 else if (this->abiversion() > 1)
1773 gold_error(_("%s: .opd invalid in abiv%d"),
1774 this->name().c_str(), this->abiversion());
1775 }
1776 }
1777 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1778 }
1779
1780 // Examine .rela.opd to build info about function entry points.
1781
1782 template<int size, bool big_endian>
1783 void
1784 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1785 size_t reloc_count,
1786 const unsigned char* prelocs,
1787 const unsigned char* plocal_syms)
1788 {
1789 if (size == 64)
1790 {
1791 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1792 Reltype;
1793 const int reloc_size
1794 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1795 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1796 Address expected_off = 0;
1797 bool regular = true;
1798 unsigned int opd_ent_size = 0;
1799
1800 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1801 {
1802 Reltype reloc(prelocs);
1803 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1804 = reloc.get_r_info();
1805 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1806 if (r_type == elfcpp::R_PPC64_ADDR64)
1807 {
1808 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1809 typename elfcpp::Elf_types<size>::Elf_Addr value;
1810 bool is_ordinary;
1811 unsigned int shndx;
1812 if (r_sym < this->local_symbol_count())
1813 {
1814 typename elfcpp::Sym<size, big_endian>
1815 lsym(plocal_syms + r_sym * sym_size);
1816 shndx = lsym.get_st_shndx();
1817 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1818 value = lsym.get_st_value();
1819 }
1820 else
1821 shndx = this->symbol_section_and_value(r_sym, &value,
1822 &is_ordinary);
1823 this->set_opd_ent(reloc.get_r_offset(), shndx,
1824 value + reloc.get_r_addend());
1825 if (i == 2)
1826 {
1827 expected_off = reloc.get_r_offset();
1828 opd_ent_size = expected_off;
1829 }
1830 else if (expected_off != reloc.get_r_offset())
1831 regular = false;
1832 expected_off += opd_ent_size;
1833 }
1834 else if (r_type == elfcpp::R_PPC64_TOC)
1835 {
1836 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1837 regular = false;
1838 }
1839 else
1840 {
1841 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1842 this->name().c_str(), r_type);
1843 regular = false;
1844 }
1845 }
1846 if (reloc_count <= 2)
1847 opd_ent_size = this->section_size(this->opd_shndx());
1848 if (opd_ent_size != 24 && opd_ent_size != 16)
1849 regular = false;
1850 if (!regular)
1851 {
1852 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1853 this->name().c_str());
1854 opd_ent_size = 0;
1855 }
1856 }
1857 }
1858
1859 template<int size, bool big_endian>
1860 void
1861 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1862 {
1863 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1864 if (size == 64)
1865 {
1866 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1867 p != rd->relocs.end();
1868 ++p)
1869 {
1870 if (p->data_shndx == this->opd_shndx())
1871 {
1872 uint64_t opd_size = this->section_size(this->opd_shndx());
1873 gold_assert(opd_size == static_cast<size_t>(opd_size));
1874 if (opd_size != 0)
1875 {
1876 this->init_opd(opd_size);
1877 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1878 rd->local_symbols->data());
1879 }
1880 break;
1881 }
1882 }
1883 }
1884 }
1885
1886 // Read the symbols then set up st_other vector.
1887
1888 template<int size, bool big_endian>
1889 void
1890 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1891 {
1892 this->base_read_symbols(sd);
1893 if (size == 64)
1894 {
1895 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1896 const unsigned char* const pshdrs = sd->section_headers->data();
1897 const unsigned int loccount = this->do_local_symbol_count();
1898 if (loccount != 0)
1899 {
1900 this->st_other_.resize(loccount);
1901 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1902 off_t locsize = loccount * sym_size;
1903 const unsigned int symtab_shndx = this->symtab_shndx();
1904 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1905 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1906 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1907 locsize, true, false);
1908 psyms += sym_size;
1909 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1910 {
1911 elfcpp::Sym<size, big_endian> sym(psyms);
1912 unsigned char st_other = sym.get_st_other();
1913 this->st_other_[i] = st_other;
1914 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1915 {
1916 if (this->abiversion() == 0)
1917 this->set_abiversion(2);
1918 else if (this->abiversion() < 2)
1919 gold_error(_("%s: local symbol %d has invalid st_other"
1920 " for ABI version 1"),
1921 this->name().c_str(), i);
1922 }
1923 }
1924 }
1925 }
1926 }
1927
1928 template<int size, bool big_endian>
1929 void
1930 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1931 {
1932 this->e_flags_ |= ver;
1933 if (this->abiversion() != 0)
1934 {
1935 Target_powerpc<size, big_endian>* target =
1936 static_cast<Target_powerpc<size, big_endian>*>(
1937 parameters->sized_target<size, big_endian>());
1938 if (target->abiversion() == 0)
1939 target->set_abiversion(this->abiversion());
1940 else if (target->abiversion() != this->abiversion())
1941 gold_error(_("%s: ABI version %d is not compatible "
1942 "with ABI version %d output"),
1943 this->name().c_str(),
1944 this->abiversion(), target->abiversion());
1945
1946 }
1947 }
1948
1949 // Call Sized_dynobj::base_read_symbols to read the symbols then
1950 // read .opd from a dynamic object, filling in opd_ent_ vector,
1951
1952 template<int size, bool big_endian>
1953 void
1954 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1955 {
1956 this->base_read_symbols(sd);
1957 if (size == 64)
1958 {
1959 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1960 const unsigned char* const pshdrs = sd->section_headers->data();
1961 const unsigned char* namesu = sd->section_names->data();
1962 const char* names = reinterpret_cast<const char*>(namesu);
1963 const unsigned char* s = NULL;
1964 const unsigned char* opd;
1965 section_size_type opd_size;
1966
1967 // Find and read .opd section.
1968 while (1)
1969 {
1970 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1971 sd->section_names_size,
1972 s);
1973 if (s == NULL)
1974 return;
1975
1976 typename elfcpp::Shdr<size, big_endian> shdr(s);
1977 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1978 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1979 {
1980 if (this->abiversion() == 0)
1981 this->set_abiversion(1);
1982 else if (this->abiversion() > 1)
1983 gold_error(_("%s: .opd invalid in abiv%d"),
1984 this->name().c_str(), this->abiversion());
1985
1986 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1987 this->opd_address_ = shdr.get_sh_addr();
1988 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1989 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1990 true, false);
1991 break;
1992 }
1993 }
1994
1995 // Build set of executable sections.
1996 // Using a set is probably overkill. There is likely to be only
1997 // a few executable sections, typically .init, .text and .fini,
1998 // and they are generally grouped together.
1999 typedef std::set<Sec_info> Exec_sections;
2000 Exec_sections exec_sections;
2001 s = pshdrs;
2002 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2003 {
2004 typename elfcpp::Shdr<size, big_endian> shdr(s);
2005 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2006 && ((shdr.get_sh_flags()
2007 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2008 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2009 && shdr.get_sh_size() != 0)
2010 {
2011 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2012 shdr.get_sh_size(), i));
2013 }
2014 }
2015 if (exec_sections.empty())
2016 return;
2017
2018 // Look over the OPD entries. This is complicated by the fact
2019 // that some binaries will use two-word entries while others
2020 // will use the standard three-word entries. In most cases
2021 // the third word (the environment pointer for languages like
2022 // Pascal) is unused and will be zero. If the third word is
2023 // used it should not be pointing into executable sections,
2024 // I think.
2025 this->init_opd(opd_size);
2026 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2027 {
2028 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2029 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2030 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2031 if (val == 0)
2032 // Chances are that this is the third word of an OPD entry.
2033 continue;
2034 typename Exec_sections::const_iterator e
2035 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2036 if (e != exec_sections.begin())
2037 {
2038 --e;
2039 if (e->start <= val && val < e->start + e->len)
2040 {
2041 // We have an address in an executable section.
2042 // VAL ought to be the function entry, set it up.
2043 this->set_opd_ent(p - opd, e->shndx, val);
2044 // Skip second word of OPD entry, the TOC pointer.
2045 p += 8;
2046 }
2047 }
2048 // If we didn't match any executable sections, we likely
2049 // have a non-zero third word in the OPD entry.
2050 }
2051 }
2052 }
2053
2054 // Set up some symbols.
2055
2056 template<int size, bool big_endian>
2057 void
2058 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2059 Symbol_table* symtab,
2060 Layout* layout)
2061 {
2062 if (size == 32)
2063 {
2064 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2065 // undefined when scanning relocs (and thus requires
2066 // non-relative dynamic relocs). The proper value will be
2067 // updated later.
2068 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2069 if (gotsym != NULL && gotsym->is_undefined())
2070 {
2071 Target_powerpc<size, big_endian>* target =
2072 static_cast<Target_powerpc<size, big_endian>*>(
2073 parameters->sized_target<size, big_endian>());
2074 Output_data_got_powerpc<size, big_endian>* got
2075 = target->got_section(symtab, layout);
2076 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2077 Symbol_table::PREDEFINED,
2078 got, 0, 0,
2079 elfcpp::STT_OBJECT,
2080 elfcpp::STB_LOCAL,
2081 elfcpp::STV_HIDDEN, 0,
2082 false, false);
2083 }
2084
2085 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2086 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2087 if (sdasym != NULL && sdasym->is_undefined())
2088 {
2089 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2090 Output_section* os
2091 = layout->add_output_section_data(".sdata", 0,
2092 elfcpp::SHF_ALLOC
2093 | elfcpp::SHF_WRITE,
2094 sdata, ORDER_SMALL_DATA, false);
2095 symtab->define_in_output_data("_SDA_BASE_", NULL,
2096 Symbol_table::PREDEFINED,
2097 os, 32768, 0, elfcpp::STT_OBJECT,
2098 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2099 0, false, false);
2100 }
2101 }
2102 else
2103 {
2104 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2105 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2106 if (gotsym != NULL && gotsym->is_undefined())
2107 {
2108 Target_powerpc<size, big_endian>* target =
2109 static_cast<Target_powerpc<size, big_endian>*>(
2110 parameters->sized_target<size, big_endian>());
2111 Output_data_got_powerpc<size, big_endian>* got
2112 = target->got_section(symtab, layout);
2113 symtab->define_in_output_data(".TOC.", NULL,
2114 Symbol_table::PREDEFINED,
2115 got, 0x8000, 0,
2116 elfcpp::STT_OBJECT,
2117 elfcpp::STB_LOCAL,
2118 elfcpp::STV_HIDDEN, 0,
2119 false, false);
2120 }
2121 }
2122 }
2123
2124 // Set up PowerPC target specific relobj.
2125
2126 template<int size, bool big_endian>
2127 Object*
2128 Target_powerpc<size, big_endian>::do_make_elf_object(
2129 const std::string& name,
2130 Input_file* input_file,
2131 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2132 {
2133 int et = ehdr.get_e_type();
2134 // ET_EXEC files are valid input for --just-symbols/-R,
2135 // and we treat them as relocatable objects.
2136 if (et == elfcpp::ET_REL
2137 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2138 {
2139 Powerpc_relobj<size, big_endian>* obj =
2140 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2141 obj->setup();
2142 return obj;
2143 }
2144 else if (et == elfcpp::ET_DYN)
2145 {
2146 Powerpc_dynobj<size, big_endian>* obj =
2147 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2148 obj->setup();
2149 return obj;
2150 }
2151 else
2152 {
2153 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2154 return NULL;
2155 }
2156 }
2157
2158 template<int size, bool big_endian>
2159 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2160 {
2161 public:
2162 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2163 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2164
2165 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2166 : Output_data_got<size, big_endian>(),
2167 symtab_(symtab), layout_(layout),
2168 header_ent_cnt_(size == 32 ? 3 : 1),
2169 header_index_(size == 32 ? 0x2000 : 0)
2170 { }
2171
2172 // Override all the Output_data_got methods we use so as to first call
2173 // reserve_ent().
2174 bool
2175 add_global(Symbol* gsym, unsigned int got_type)
2176 {
2177 this->reserve_ent();
2178 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2179 }
2180
2181 bool
2182 add_global_plt(Symbol* gsym, unsigned int got_type)
2183 {
2184 this->reserve_ent();
2185 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2186 }
2187
2188 bool
2189 add_global_tls(Symbol* gsym, unsigned int got_type)
2190 { return this->add_global_plt(gsym, got_type); }
2191
2192 void
2193 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2194 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2195 {
2196 this->reserve_ent();
2197 Output_data_got<size, big_endian>::
2198 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2199 }
2200
2201 void
2202 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2203 Output_data_reloc_generic* rel_dyn,
2204 unsigned int r_type_1, unsigned int r_type_2)
2205 {
2206 this->reserve_ent(2);
2207 Output_data_got<size, big_endian>::
2208 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2209 }
2210
2211 bool
2212 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2213 {
2214 this->reserve_ent();
2215 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2216 got_type);
2217 }
2218
2219 bool
2220 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2221 {
2222 this->reserve_ent();
2223 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2224 got_type);
2225 }
2226
2227 bool
2228 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2229 { return this->add_local_plt(object, sym_index, got_type); }
2230
2231 void
2232 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2233 unsigned int got_type,
2234 Output_data_reloc_generic* rel_dyn,
2235 unsigned int r_type)
2236 {
2237 this->reserve_ent(2);
2238 Output_data_got<size, big_endian>::
2239 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2240 }
2241
2242 unsigned int
2243 add_constant(Valtype constant)
2244 {
2245 this->reserve_ent();
2246 return Output_data_got<size, big_endian>::add_constant(constant);
2247 }
2248
2249 unsigned int
2250 add_constant_pair(Valtype c1, Valtype c2)
2251 {
2252 this->reserve_ent(2);
2253 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2254 }
2255
2256 // Offset of _GLOBAL_OFFSET_TABLE_.
2257 unsigned int
2258 g_o_t() const
2259 {
2260 return this->got_offset(this->header_index_);
2261 }
2262
2263 // Offset of base used to access the GOT/TOC.
2264 // The got/toc pointer reg will be set to this value.
2265 Valtype
2266 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2267 {
2268 if (size == 32)
2269 return this->g_o_t();
2270 else
2271 return (this->output_section()->address()
2272 + object->toc_base_offset()
2273 - this->address());
2274 }
2275
2276 // Ensure our GOT has a header.
2277 void
2278 set_final_data_size()
2279 {
2280 if (this->header_ent_cnt_ != 0)
2281 this->make_header();
2282 Output_data_got<size, big_endian>::set_final_data_size();
2283 }
2284
2285 // First word of GOT header needs some values that are not
2286 // handled by Output_data_got so poke them in here.
2287 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2288 void
2289 do_write(Output_file* of)
2290 {
2291 Valtype val = 0;
2292 if (size == 32 && this->layout_->dynamic_data() != NULL)
2293 val = this->layout_->dynamic_section()->address();
2294 if (size == 64)
2295 val = this->output_section()->address() + 0x8000;
2296 this->replace_constant(this->header_index_, val);
2297 Output_data_got<size, big_endian>::do_write(of);
2298 }
2299
2300 private:
2301 void
2302 reserve_ent(unsigned int cnt = 1)
2303 {
2304 if (this->header_ent_cnt_ == 0)
2305 return;
2306 if (this->num_entries() + cnt > this->header_index_)
2307 this->make_header();
2308 }
2309
2310 void
2311 make_header()
2312 {
2313 this->header_ent_cnt_ = 0;
2314 this->header_index_ = this->num_entries();
2315 if (size == 32)
2316 {
2317 Output_data_got<size, big_endian>::add_constant(0);
2318 Output_data_got<size, big_endian>::add_constant(0);
2319 Output_data_got<size, big_endian>::add_constant(0);
2320
2321 // Define _GLOBAL_OFFSET_TABLE_ at the header
2322 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2323 if (gotsym != NULL)
2324 {
2325 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2326 sym->set_value(this->g_o_t());
2327 }
2328 else
2329 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2330 Symbol_table::PREDEFINED,
2331 this, this->g_o_t(), 0,
2332 elfcpp::STT_OBJECT,
2333 elfcpp::STB_LOCAL,
2334 elfcpp::STV_HIDDEN, 0,
2335 false, false);
2336 }
2337 else
2338 Output_data_got<size, big_endian>::add_constant(0);
2339 }
2340
2341 // Stashed pointers.
2342 Symbol_table* symtab_;
2343 Layout* layout_;
2344
2345 // GOT header size.
2346 unsigned int header_ent_cnt_;
2347 // GOT header index.
2348 unsigned int header_index_;
2349 };
2350
2351 // Get the GOT section, creating it if necessary.
2352
2353 template<int size, bool big_endian>
2354 Output_data_got_powerpc<size, big_endian>*
2355 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2356 Layout* layout)
2357 {
2358 if (this->got_ == NULL)
2359 {
2360 gold_assert(symtab != NULL && layout != NULL);
2361
2362 this->got_
2363 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2364
2365 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2366 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2367 this->got_, ORDER_DATA, false);
2368 }
2369
2370 return this->got_;
2371 }
2372
2373 // Get the dynamic reloc section, creating it if necessary.
2374
2375 template<int size, bool big_endian>
2376 typename Target_powerpc<size, big_endian>::Reloc_section*
2377 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2378 {
2379 if (this->rela_dyn_ == NULL)
2380 {
2381 gold_assert(layout != NULL);
2382 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2383 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2384 elfcpp::SHF_ALLOC, this->rela_dyn_,
2385 ORDER_DYNAMIC_RELOCS, false);
2386 }
2387 return this->rela_dyn_;
2388 }
2389
2390 // Similarly, but for ifunc symbols get the one for ifunc.
2391
2392 template<int size, bool big_endian>
2393 typename Target_powerpc<size, big_endian>::Reloc_section*
2394 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2395 Layout* layout,
2396 bool for_ifunc)
2397 {
2398 if (!for_ifunc)
2399 return this->rela_dyn_section(layout);
2400
2401 if (this->iplt_ == NULL)
2402 this->make_iplt_section(symtab, layout);
2403 return this->iplt_->rel_plt();
2404 }
2405
2406 class Stub_control
2407 {
2408 public:
2409 // Determine the stub group size. The group size is the absolute
2410 // value of the parameter --stub-group-size. If --stub-group-size
2411 // is passed a negative value, we restrict stubs to be always before
2412 // the stubbed branches.
2413 Stub_control(int32_t size, bool no_size_errors)
2414 : state_(NO_GROUP), stub_group_size_(abs(size)),
2415 stub14_group_size_(abs(size) >> 10),
2416 stubs_always_before_branch_(size < 0),
2417 suppress_size_errors_(no_size_errors),
2418 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2419 {
2420 }
2421
2422 // Return true iff input section can be handled by current stub
2423 // group.
2424 bool
2425 can_add_to_stub_group(Output_section* o,
2426 const Output_section::Input_section* i,
2427 bool has14);
2428
2429 const Output_section::Input_section*
2430 owner()
2431 { return owner_; }
2432
2433 Output_section*
2434 output_section()
2435 { return output_section_; }
2436
2437 void
2438 set_output_and_owner(Output_section* o,
2439 const Output_section::Input_section* i)
2440 {
2441 this->output_section_ = o;
2442 this->owner_ = i;
2443 }
2444
2445 private:
2446 typedef enum
2447 {
2448 NO_GROUP,
2449 FINDING_STUB_SECTION,
2450 HAS_STUB_SECTION
2451 } State;
2452
2453 State state_;
2454 uint32_t stub_group_size_;
2455 uint32_t stub14_group_size_;
2456 bool stubs_always_before_branch_;
2457 bool suppress_size_errors_;
2458 uint64_t group_end_addr_;
2459 const Output_section::Input_section* owner_;
2460 Output_section* output_section_;
2461 };
2462
2463 // Return true iff input section can be handled by current stub
2464 // group.
2465
2466 bool
2467 Stub_control::can_add_to_stub_group(Output_section* o,
2468 const Output_section::Input_section* i,
2469 bool has14)
2470 {
2471 uint32_t group_size
2472 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2473 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2474 uint64_t this_size;
2475 uint64_t start_addr = o->address();
2476
2477 if (whole_sec)
2478 // .init and .fini sections are pasted together to form a single
2479 // function. We can't be adding stubs in the middle of the function.
2480 this_size = o->data_size();
2481 else
2482 {
2483 start_addr += i->relobj()->output_section_offset(i->shndx());
2484 this_size = i->data_size();
2485 }
2486 uint64_t end_addr = start_addr + this_size;
2487 bool toobig = this_size > group_size;
2488
2489 if (toobig && !this->suppress_size_errors_)
2490 gold_warning(_("%s:%s exceeds group size"),
2491 i->relobj()->name().c_str(),
2492 i->relobj()->section_name(i->shndx()).c_str());
2493
2494 if (this->state_ != HAS_STUB_SECTION
2495 && (!whole_sec || this->output_section_ != o)
2496 && (this->state_ == NO_GROUP
2497 || this->group_end_addr_ - end_addr < group_size))
2498 {
2499 this->owner_ = i;
2500 this->output_section_ = o;
2501 }
2502
2503 if (this->state_ == NO_GROUP)
2504 {
2505 this->state_ = FINDING_STUB_SECTION;
2506 this->group_end_addr_ = end_addr;
2507 }
2508 else if (this->group_end_addr_ - start_addr < group_size)
2509 ;
2510 // Adding this section would make the group larger than GROUP_SIZE.
2511 else if (this->state_ == FINDING_STUB_SECTION
2512 && !this->stubs_always_before_branch_
2513 && !toobig)
2514 {
2515 // But wait, there's more! Input sections up to GROUP_SIZE
2516 // bytes before the stub table can be handled by it too.
2517 this->state_ = HAS_STUB_SECTION;
2518 this->group_end_addr_ = end_addr;
2519 }
2520 else
2521 {
2522 this->state_ = NO_GROUP;
2523 return false;
2524 }
2525 return true;
2526 }
2527
2528 // Look over all the input sections, deciding where to place stubs.
2529
2530 template<int size, bool big_endian>
2531 void
2532 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2533 const Task*,
2534 bool no_size_errors)
2535 {
2536 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2537
2538 // Group input sections and insert stub table
2539 Stub_table_owner* table_owner = NULL;
2540 std::vector<Stub_table_owner*> tables;
2541 Layout::Section_list section_list;
2542 layout->get_executable_sections(&section_list);
2543 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2544 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2545 o != section_list.rend();
2546 ++o)
2547 {
2548 typedef Output_section::Input_section_list Input_section_list;
2549 for (Input_section_list::const_reverse_iterator i
2550 = (*o)->input_sections().rbegin();
2551 i != (*o)->input_sections().rend();
2552 ++i)
2553 {
2554 if (i->is_input_section()
2555 || i->is_relaxed_input_section())
2556 {
2557 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2558 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2559 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2560 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2561 {
2562 table_owner->output_section = stub_control.output_section();
2563 table_owner->owner = stub_control.owner();
2564 stub_control.set_output_and_owner(*o, &*i);
2565 table_owner = NULL;
2566 }
2567 if (table_owner == NULL)
2568 {
2569 table_owner = new Stub_table_owner;
2570 tables.push_back(table_owner);
2571 }
2572 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2573 }
2574 }
2575 }
2576 if (table_owner != NULL)
2577 {
2578 const Output_section::Input_section* i = stub_control.owner();
2579
2580 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2581 {
2582 // Corner case. A new stub group was made for the first
2583 // section (last one looked at here) for some reason, but
2584 // the first section is already being used as the owner for
2585 // a stub table for following sections. Force it into that
2586 // stub group.
2587 tables.pop_back();
2588 delete table_owner;
2589 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2590 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2591 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2592 }
2593 else
2594 {
2595 table_owner->output_section = stub_control.output_section();
2596 table_owner->owner = i;
2597 }
2598 }
2599 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2600 t != tables.end();
2601 ++t)
2602 {
2603 Stub_table<size, big_endian>* stub_table;
2604
2605 if ((*t)->owner->is_input_section())
2606 stub_table = new Stub_table<size, big_endian>(this,
2607 (*t)->output_section,
2608 (*t)->owner);
2609 else if ((*t)->owner->is_relaxed_input_section())
2610 stub_table = static_cast<Stub_table<size, big_endian>*>(
2611 (*t)->owner->relaxed_input_section());
2612 else
2613 gold_unreachable();
2614 this->stub_tables_.push_back(stub_table);
2615 delete *t;
2616 }
2617 }
2618
2619 static unsigned long
2620 max_branch_delta (unsigned int r_type)
2621 {
2622 if (r_type == elfcpp::R_POWERPC_REL14
2623 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2624 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2625 return 1L << 15;
2626 if (r_type == elfcpp::R_POWERPC_REL24
2627 || r_type == elfcpp::R_PPC_PLTREL24
2628 || r_type == elfcpp::R_PPC_LOCAL24PC)
2629 return 1L << 25;
2630 return 0;
2631 }
2632
2633 // If this branch needs a plt call stub, or a long branch stub, make one.
2634
2635 template<int size, bool big_endian>
2636 bool
2637 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2638 Stub_table<size, big_endian>* stub_table,
2639 Stub_table<size, big_endian>* ifunc_stub_table,
2640 Symbol_table* symtab) const
2641 {
2642 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2643 if (sym != NULL && sym->is_forwarder())
2644 sym = symtab->resolve_forwards(sym);
2645 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2646 Target_powerpc<size, big_endian>* target =
2647 static_cast<Target_powerpc<size, big_endian>*>(
2648 parameters->sized_target<size, big_endian>());
2649 if (gsym != NULL
2650 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2651 : this->object_->local_has_plt_offset(this->r_sym_))
2652 {
2653 if (size == 64
2654 && gsym != NULL
2655 && target->abiversion() >= 2
2656 && !parameters->options().output_is_position_independent()
2657 && !is_branch_reloc(this->r_type_))
2658 target->glink_section()->add_global_entry(gsym);
2659 else
2660 {
2661 if (stub_table == NULL)
2662 stub_table = this->object_->stub_table(this->shndx_);
2663 if (stub_table == NULL)
2664 {
2665 // This is a ref from a data section to an ifunc symbol.
2666 stub_table = ifunc_stub_table;
2667 }
2668 gold_assert(stub_table != NULL);
2669 Address from = this->object_->get_output_section_offset(this->shndx_);
2670 if (from != invalid_address)
2671 from += (this->object_->output_section(this->shndx_)->address()
2672 + this->offset_);
2673 if (gsym != NULL)
2674 return stub_table->add_plt_call_entry(from,
2675 this->object_, gsym,
2676 this->r_type_, this->addend_);
2677 else
2678 return stub_table->add_plt_call_entry(from,
2679 this->object_, this->r_sym_,
2680 this->r_type_, this->addend_);
2681 }
2682 }
2683 else
2684 {
2685 Address max_branch_offset = max_branch_delta(this->r_type_);
2686 if (max_branch_offset == 0)
2687 return true;
2688 Address from = this->object_->get_output_section_offset(this->shndx_);
2689 gold_assert(from != invalid_address);
2690 from += (this->object_->output_section(this->shndx_)->address()
2691 + this->offset_);
2692 Address to;
2693 if (gsym != NULL)
2694 {
2695 switch (gsym->source())
2696 {
2697 case Symbol::FROM_OBJECT:
2698 {
2699 Object* symobj = gsym->object();
2700 if (symobj->is_dynamic()
2701 || symobj->pluginobj() != NULL)
2702 return true;
2703 bool is_ordinary;
2704 unsigned int shndx = gsym->shndx(&is_ordinary);
2705 if (shndx == elfcpp::SHN_UNDEF)
2706 return true;
2707 }
2708 break;
2709
2710 case Symbol::IS_UNDEFINED:
2711 return true;
2712
2713 default:
2714 break;
2715 }
2716 Symbol_table::Compute_final_value_status status;
2717 to = symtab->compute_final_value<size>(gsym, &status);
2718 if (status != Symbol_table::CFVS_OK)
2719 return true;
2720 if (size == 64)
2721 to += this->object_->ppc64_local_entry_offset(gsym);
2722 }
2723 else
2724 {
2725 const Symbol_value<size>* psymval
2726 = this->object_->local_symbol(this->r_sym_);
2727 Symbol_value<size> symval;
2728 typedef Sized_relobj_file<size, big_endian> ObjType;
2729 typename ObjType::Compute_final_local_value_status status
2730 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2731 &symval, symtab);
2732 if (status != ObjType::CFLV_OK
2733 || !symval.has_output_value())
2734 return true;
2735 to = symval.value(this->object_, 0);
2736 if (size == 64)
2737 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2738 }
2739 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2740 to += this->addend_;
2741 if (stub_table == NULL)
2742 stub_table = this->object_->stub_table(this->shndx_);
2743 if (size == 64 && target->abiversion() < 2)
2744 {
2745 unsigned int dest_shndx;
2746 if (!target->symval_for_branch(symtab, gsym, this->object_,
2747 &to, &dest_shndx))
2748 return true;
2749 }
2750 Address delta = to - from;
2751 if (delta + max_branch_offset >= 2 * max_branch_offset)
2752 {
2753 if (stub_table == NULL)
2754 {
2755 gold_warning(_("%s:%s: branch in non-executable section,"
2756 " no long branch stub for you"),
2757 this->object_->name().c_str(),
2758 this->object_->section_name(this->shndx_).c_str());
2759 return true;
2760 }
2761 bool save_res = (size == 64
2762 && gsym != NULL
2763 && gsym->source() == Symbol::IN_OUTPUT_DATA
2764 && gsym->output_data() == target->savres_section());
2765 return stub_table->add_long_branch_entry(this->object_,
2766 this->r_type_,
2767 from, to, save_res);
2768 }
2769 }
2770 return true;
2771 }
2772
2773 // Relaxation hook. This is where we do stub generation.
2774
2775 template<int size, bool big_endian>
2776 bool
2777 Target_powerpc<size, big_endian>::do_relax(int pass,
2778 const Input_objects*,
2779 Symbol_table* symtab,
2780 Layout* layout,
2781 const Task* task)
2782 {
2783 unsigned int prev_brlt_size = 0;
2784 if (pass == 1)
2785 {
2786 bool thread_safe
2787 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2788 if (size == 64
2789 && this->abiversion() < 2
2790 && !thread_safe
2791 && !parameters->options().user_set_plt_thread_safe())
2792 {
2793 static const char* const thread_starter[] =
2794 {
2795 "pthread_create",
2796 /* libstdc++ */
2797 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2798 /* librt */
2799 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2800 "mq_notify", "create_timer",
2801 /* libanl */
2802 "getaddrinfo_a",
2803 /* libgomp */
2804 "GOMP_parallel",
2805 "GOMP_parallel_start",
2806 "GOMP_parallel_loop_static",
2807 "GOMP_parallel_loop_static_start",
2808 "GOMP_parallel_loop_dynamic",
2809 "GOMP_parallel_loop_dynamic_start",
2810 "GOMP_parallel_loop_guided",
2811 "GOMP_parallel_loop_guided_start",
2812 "GOMP_parallel_loop_runtime",
2813 "GOMP_parallel_loop_runtime_start",
2814 "GOMP_parallel_sections",
2815 "GOMP_parallel_sections_start",
2816 /* libgo */
2817 "__go_go",
2818 };
2819
2820 if (parameters->options().shared())
2821 thread_safe = true;
2822 else
2823 {
2824 for (unsigned int i = 0;
2825 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2826 i++)
2827 {
2828 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2829 thread_safe = (sym != NULL
2830 && sym->in_reg()
2831 && sym->in_real_elf());
2832 if (thread_safe)
2833 break;
2834 }
2835 }
2836 }
2837 this->plt_thread_safe_ = thread_safe;
2838 }
2839
2840 if (pass == 1)
2841 {
2842 this->stub_group_size_ = parameters->options().stub_group_size();
2843 bool no_size_errors = true;
2844 if (this->stub_group_size_ == 1)
2845 this->stub_group_size_ = 0x1c00000;
2846 else if (this->stub_group_size_ == -1)
2847 this->stub_group_size_ = -0x1e00000;
2848 else
2849 no_size_errors = false;
2850 this->group_sections(layout, task, no_size_errors);
2851 }
2852 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2853 {
2854 this->branch_lookup_table_.clear();
2855 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2856 p != this->stub_tables_.end();
2857 ++p)
2858 {
2859 (*p)->clear_stubs(true);
2860 }
2861 this->stub_tables_.clear();
2862 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2863 gold_info(_("%s: stub group size is too large; retrying with %d"),
2864 program_name, this->stub_group_size_);
2865 this->group_sections(layout, task, true);
2866 }
2867
2868 // We need address of stub tables valid for make_stub.
2869 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2870 p != this->stub_tables_.end();
2871 ++p)
2872 {
2873 const Powerpc_relobj<size, big_endian>* object
2874 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2875 Address off = object->get_output_section_offset((*p)->shndx());
2876 gold_assert(off != invalid_address);
2877 Output_section* os = (*p)->output_section();
2878 (*p)->set_address_and_size(os, off);
2879 }
2880
2881 if (pass != 1)
2882 {
2883 // Clear plt call stubs, long branch stubs and branch lookup table.
2884 prev_brlt_size = this->branch_lookup_table_.size();
2885 this->branch_lookup_table_.clear();
2886 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2887 p != this->stub_tables_.end();
2888 ++p)
2889 {
2890 (*p)->clear_stubs(false);
2891 }
2892 }
2893
2894 // Build all the stubs.
2895 this->relax_failed_ = false;
2896 Stub_table<size, big_endian>* ifunc_stub_table
2897 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2898 Stub_table<size, big_endian>* one_stub_table
2899 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2900 for (typename Branches::const_iterator b = this->branch_info_.begin();
2901 b != this->branch_info_.end();
2902 b++)
2903 {
2904 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2905 && !this->relax_failed_)
2906 {
2907 this->relax_failed_ = true;
2908 this->relax_fail_count_++;
2909 if (this->relax_fail_count_ < 3)
2910 return true;
2911 }
2912 }
2913
2914 // Did anything change size?
2915 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2916 bool again = num_huge_branches != prev_brlt_size;
2917 if (size == 64 && num_huge_branches != 0)
2918 this->make_brlt_section(layout);
2919 if (size == 64 && again)
2920 this->brlt_section_->set_current_size(num_huge_branches);
2921
2922 typedef Unordered_set<Output_section*> Output_sections;
2923 Output_sections os_need_update;
2924 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2925 p != this->stub_tables_.end();
2926 ++p)
2927 {
2928 if ((*p)->size_update())
2929 {
2930 again = true;
2931 (*p)->add_eh_frame(layout);
2932 os_need_update.insert((*p)->output_section());
2933 }
2934 }
2935
2936 // Set output section offsets for all input sections in an output
2937 // section that just changed size. Anything past the stubs will
2938 // need updating.
2939 for (typename Output_sections::iterator p = os_need_update.begin();
2940 p != os_need_update.end();
2941 p++)
2942 {
2943 Output_section* os = *p;
2944 Address off = 0;
2945 typedef Output_section::Input_section_list Input_section_list;
2946 for (Input_section_list::const_iterator i = os->input_sections().begin();
2947 i != os->input_sections().end();
2948 ++i)
2949 {
2950 off = align_address(off, i->addralign());
2951 if (i->is_input_section() || i->is_relaxed_input_section())
2952 i->relobj()->set_section_offset(i->shndx(), off);
2953 if (i->is_relaxed_input_section())
2954 {
2955 Stub_table<size, big_endian>* stub_table
2956 = static_cast<Stub_table<size, big_endian>*>(
2957 i->relaxed_input_section());
2958 off += stub_table->set_address_and_size(os, off);
2959 }
2960 else
2961 off += i->data_size();
2962 }
2963 // If .branch_lt is part of this output section, then we have
2964 // just done the offset adjustment.
2965 os->clear_section_offsets_need_adjustment();
2966 }
2967
2968 if (size == 64
2969 && !again
2970 && num_huge_branches != 0
2971 && parameters->options().output_is_position_independent())
2972 {
2973 // Fill in the BRLT relocs.
2974 this->brlt_section_->reset_brlt_sizes();
2975 for (typename Branch_lookup_table::const_iterator p
2976 = this->branch_lookup_table_.begin();
2977 p != this->branch_lookup_table_.end();
2978 ++p)
2979 {
2980 this->brlt_section_->add_reloc(p->first, p->second);
2981 }
2982 this->brlt_section_->finalize_brlt_sizes();
2983 }
2984 return again;
2985 }
2986
2987 template<int size, bool big_endian>
2988 void
2989 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2990 unsigned char* oview,
2991 uint64_t* paddress,
2992 off_t* plen) const
2993 {
2994 uint64_t address = plt->address();
2995 off_t len = plt->data_size();
2996
2997 if (plt == this->glink_)
2998 {
2999 // See Output_data_glink::do_write() for glink contents.
3000 if (len == 0)
3001 {
3002 gold_assert(parameters->doing_static_link());
3003 // Static linking may need stubs, to support ifunc and long
3004 // branches. We need to create an output section for
3005 // .eh_frame early in the link process, to have a place to
3006 // attach stub .eh_frame info. We also need to have
3007 // registered a CIE that matches the stub CIE. Both of
3008 // these requirements are satisfied by creating an FDE and
3009 // CIE for .glink, even though static linking will leave
3010 // .glink zero length.
3011 // ??? Hopefully generating an FDE with a zero address range
3012 // won't confuse anything that consumes .eh_frame info.
3013 }
3014 else if (size == 64)
3015 {
3016 // There is one word before __glink_PLTresolve
3017 address += 8;
3018 len -= 8;
3019 }
3020 else if (parameters->options().output_is_position_independent())
3021 {
3022 // There are two FDEs for a position independent glink.
3023 // The first covers the branch table, the second
3024 // __glink_PLTresolve at the end of glink.
3025 off_t resolve_size = this->glink_->pltresolve_size;
3026 if (oview[9] == elfcpp::DW_CFA_nop)
3027 len -= resolve_size;
3028 else
3029 {
3030 address += len - resolve_size;
3031 len = resolve_size;
3032 }
3033 }
3034 }
3035 else
3036 {
3037 // Must be a stub table.
3038 const Stub_table<size, big_endian>* stub_table
3039 = static_cast<const Stub_table<size, big_endian>*>(plt);
3040 uint64_t stub_address = stub_table->stub_address();
3041 len -= stub_address - address;
3042 address = stub_address;
3043 }
3044
3045 *paddress = address;
3046 *plen = len;
3047 }
3048
3049 // A class to handle the PLT data.
3050
3051 template<int size, bool big_endian>
3052 class Output_data_plt_powerpc : public Output_section_data_build
3053 {
3054 public:
3055 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3056 size, big_endian> Reloc_section;
3057
3058 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3059 Reloc_section* plt_rel,
3060 const char* name)
3061 : Output_section_data_build(size == 32 ? 4 : 8),
3062 rel_(plt_rel),
3063 targ_(targ),
3064 name_(name)
3065 { }
3066
3067 // Add an entry to the PLT.
3068 void
3069 add_entry(Symbol*);
3070
3071 void
3072 add_ifunc_entry(Symbol*);
3073
3074 void
3075 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3076
3077 // Return the .rela.plt section data.
3078 Reloc_section*
3079 rel_plt() const
3080 {
3081 return this->rel_;
3082 }
3083
3084 // Return the number of PLT entries.
3085 unsigned int
3086 entry_count() const
3087 {
3088 if (this->current_data_size() == 0)
3089 return 0;
3090 return ((this->current_data_size() - this->first_plt_entry_offset())
3091 / this->plt_entry_size());
3092 }
3093
3094 protected:
3095 void
3096 do_adjust_output_section(Output_section* os)
3097 {
3098 os->set_entsize(0);
3099 }
3100
3101 // Write to a map file.
3102 void
3103 do_print_to_mapfile(Mapfile* mapfile) const
3104 { mapfile->print_output_data(this, this->name_); }
3105
3106 private:
3107 // Return the offset of the first non-reserved PLT entry.
3108 unsigned int
3109 first_plt_entry_offset() const
3110 {
3111 // IPLT has no reserved entry.
3112 if (this->name_[3] == 'I')
3113 return 0;
3114 return this->targ_->first_plt_entry_offset();
3115 }
3116
3117 // Return the size of each PLT entry.
3118 unsigned int
3119 plt_entry_size() const
3120 {
3121 return this->targ_->plt_entry_size();
3122 }
3123
3124 // Write out the PLT data.
3125 void
3126 do_write(Output_file*);
3127
3128 // The reloc section.
3129 Reloc_section* rel_;
3130 // Allows access to .glink for do_write.
3131 Target_powerpc<size, big_endian>* targ_;
3132 // What to report in map file.
3133 const char *name_;
3134 };
3135
3136 // Add an entry to the PLT.
3137
3138 template<int size, bool big_endian>
3139 void
3140 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3141 {
3142 if (!gsym->has_plt_offset())
3143 {
3144 section_size_type off = this->current_data_size();
3145 if (off == 0)
3146 off += this->first_plt_entry_offset();
3147 gsym->set_plt_offset(off);
3148 gsym->set_needs_dynsym_entry();
3149 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3150 this->rel_->add_global(gsym, dynrel, this, off, 0);
3151 off += this->plt_entry_size();
3152 this->set_current_data_size(off);
3153 }
3154 }
3155
3156 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3157
3158 template<int size, bool big_endian>
3159 void
3160 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3161 {
3162 if (!gsym->has_plt_offset())
3163 {
3164 section_size_type off = this->current_data_size();
3165 gsym->set_plt_offset(off);
3166 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3167 if (size == 64 && this->targ_->abiversion() < 2)
3168 dynrel = elfcpp::R_PPC64_JMP_IREL;
3169 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3170 off += this->plt_entry_size();
3171 this->set_current_data_size(off);
3172 }
3173 }
3174
3175 // Add an entry for a local ifunc symbol to the IPLT.
3176
3177 template<int size, bool big_endian>
3178 void
3179 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3180 Sized_relobj_file<size, big_endian>* relobj,
3181 unsigned int local_sym_index)
3182 {
3183 if (!relobj->local_has_plt_offset(local_sym_index))
3184 {
3185 section_size_type off = this->current_data_size();
3186 relobj->set_local_plt_offset(local_sym_index, off);
3187 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3188 if (size == 64 && this->targ_->abiversion() < 2)
3189 dynrel = elfcpp::R_PPC64_JMP_IREL;
3190 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3191 this, off, 0);
3192 off += this->plt_entry_size();
3193 this->set_current_data_size(off);
3194 }
3195 }
3196
3197 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3198 static const uint32_t add_2_2_11 = 0x7c425a14;
3199 static const uint32_t add_3_3_2 = 0x7c631214;
3200 static const uint32_t add_3_3_13 = 0x7c636a14;
3201 static const uint32_t add_11_0_11 = 0x7d605a14;
3202 static const uint32_t add_11_2_11 = 0x7d625a14;
3203 static const uint32_t add_11_11_2 = 0x7d6b1214;
3204 static const uint32_t addi_0_12 = 0x380c0000;
3205 static const uint32_t addi_2_2 = 0x38420000;
3206 static const uint32_t addi_3_3 = 0x38630000;
3207 static const uint32_t addi_11_11 = 0x396b0000;
3208 static const uint32_t addi_12_1 = 0x39810000;
3209 static const uint32_t addi_12_12 = 0x398c0000;
3210 static const uint32_t addis_0_2 = 0x3c020000;
3211 static const uint32_t addis_0_13 = 0x3c0d0000;
3212 static const uint32_t addis_2_12 = 0x3c4c0000;
3213 static const uint32_t addis_11_2 = 0x3d620000;
3214 static const uint32_t addis_11_11 = 0x3d6b0000;
3215 static const uint32_t addis_11_30 = 0x3d7e0000;
3216 static const uint32_t addis_12_1 = 0x3d810000;
3217 static const uint32_t addis_12_2 = 0x3d820000;
3218 static const uint32_t addis_12_12 = 0x3d8c0000;
3219 static const uint32_t b = 0x48000000;
3220 static const uint32_t bcl_20_31 = 0x429f0005;
3221 static const uint32_t bctr = 0x4e800420;
3222 static const uint32_t blr = 0x4e800020;
3223 static const uint32_t bnectr_p4 = 0x4ce20420;
3224 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3225 static const uint32_t cmpldi_2_0 = 0x28220000;
3226 static const uint32_t cror_15_15_15 = 0x4def7b82;
3227 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3228 static const uint32_t ld_0_1 = 0xe8010000;
3229 static const uint32_t ld_0_12 = 0xe80c0000;
3230 static const uint32_t ld_2_1 = 0xe8410000;
3231 static const uint32_t ld_2_2 = 0xe8420000;
3232 static const uint32_t ld_2_11 = 0xe84b0000;
3233 static const uint32_t ld_11_2 = 0xe9620000;
3234 static const uint32_t ld_11_11 = 0xe96b0000;
3235 static const uint32_t ld_12_2 = 0xe9820000;
3236 static const uint32_t ld_12_11 = 0xe98b0000;
3237 static const uint32_t ld_12_12 = 0xe98c0000;
3238 static const uint32_t lfd_0_1 = 0xc8010000;
3239 static const uint32_t li_0_0 = 0x38000000;
3240 static const uint32_t li_12_0 = 0x39800000;
3241 static const uint32_t lis_0 = 0x3c000000;
3242 static const uint32_t lis_11 = 0x3d600000;
3243 static const uint32_t lis_12 = 0x3d800000;
3244 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3245 static const uint32_t lwz_0_12 = 0x800c0000;
3246 static const uint32_t lwz_11_11 = 0x816b0000;
3247 static const uint32_t lwz_11_30 = 0x817e0000;
3248 static const uint32_t lwz_12_12 = 0x818c0000;
3249 static const uint32_t lwzu_0_12 = 0x840c0000;
3250 static const uint32_t mflr_0 = 0x7c0802a6;
3251 static const uint32_t mflr_11 = 0x7d6802a6;
3252 static const uint32_t mflr_12 = 0x7d8802a6;
3253 static const uint32_t mtctr_0 = 0x7c0903a6;
3254 static const uint32_t mtctr_11 = 0x7d6903a6;
3255 static const uint32_t mtctr_12 = 0x7d8903a6;
3256 static const uint32_t mtlr_0 = 0x7c0803a6;
3257 static const uint32_t mtlr_12 = 0x7d8803a6;
3258 static const uint32_t nop = 0x60000000;
3259 static const uint32_t ori_0_0_0 = 0x60000000;
3260 static const uint32_t srdi_0_0_2 = 0x7800f082;
3261 static const uint32_t std_0_1 = 0xf8010000;
3262 static const uint32_t std_0_12 = 0xf80c0000;
3263 static const uint32_t std_2_1 = 0xf8410000;
3264 static const uint32_t stfd_0_1 = 0xd8010000;
3265 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3266 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3267 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3268 static const uint32_t xor_2_12_12 = 0x7d826278;
3269 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3270
3271 // Write out the PLT.
3272
3273 template<int size, bool big_endian>
3274 void
3275 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3276 {
3277 if (size == 32 && this->name_[3] != 'I')
3278 {
3279 const section_size_type offset = this->offset();
3280 const section_size_type oview_size
3281 = convert_to_section_size_type(this->data_size());
3282 unsigned char* const oview = of->get_output_view(offset, oview_size);
3283 unsigned char* pov = oview;
3284 unsigned char* endpov = oview + oview_size;
3285
3286 // The address of the .glink branch table
3287 const Output_data_glink<size, big_endian>* glink
3288 = this->targ_->glink_section();
3289 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3290
3291 while (pov < endpov)
3292 {
3293 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3294 pov += 4;
3295 branch_tab += 4;
3296 }
3297
3298 of->write_output_view(offset, oview_size, oview);
3299 }
3300 }
3301
3302 // Create the PLT section.
3303
3304 template<int size, bool big_endian>
3305 void
3306 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3307 Layout* layout)
3308 {
3309 if (this->plt_ == NULL)
3310 {
3311 if (this->got_ == NULL)
3312 this->got_section(symtab, layout);
3313
3314 if (this->glink_ == NULL)
3315 make_glink_section(layout);
3316
3317 // Ensure that .rela.dyn always appears before .rela.plt This is
3318 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3319 // needs to include .rela.plt in its range.
3320 this->rela_dyn_section(layout);
3321
3322 Reloc_section* plt_rel = new Reloc_section(false);
3323 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3324 elfcpp::SHF_ALLOC, plt_rel,
3325 ORDER_DYNAMIC_PLT_RELOCS, false);
3326 this->plt_
3327 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3328 "** PLT");
3329 layout->add_output_section_data(".plt",
3330 (size == 32
3331 ? elfcpp::SHT_PROGBITS
3332 : elfcpp::SHT_NOBITS),
3333 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3334 this->plt_,
3335 (size == 32
3336 ? ORDER_SMALL_DATA
3337 : ORDER_SMALL_BSS),
3338 false);
3339 }
3340 }
3341
3342 // Create the IPLT section.
3343
3344 template<int size, bool big_endian>
3345 void
3346 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3347 Layout* layout)
3348 {
3349 if (this->iplt_ == NULL)
3350 {
3351 this->make_plt_section(symtab, layout);
3352
3353 Reloc_section* iplt_rel = new Reloc_section(false);
3354 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3355 this->iplt_
3356 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3357 "** IPLT");
3358 this->plt_->output_section()->add_output_section_data(this->iplt_);
3359 }
3360 }
3361
3362 // A section for huge long branch addresses, similar to plt section.
3363
3364 template<int size, bool big_endian>
3365 class Output_data_brlt_powerpc : public Output_section_data_build
3366 {
3367 public:
3368 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3369 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3370 size, big_endian> Reloc_section;
3371
3372 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3373 Reloc_section* brlt_rel)
3374 : Output_section_data_build(size == 32 ? 4 : 8),
3375 rel_(brlt_rel),
3376 targ_(targ)
3377 { }
3378
3379 void
3380 reset_brlt_sizes()
3381 {
3382 this->reset_data_size();
3383 this->rel_->reset_data_size();
3384 }
3385
3386 void
3387 finalize_brlt_sizes()
3388 {
3389 this->finalize_data_size();
3390 this->rel_->finalize_data_size();
3391 }
3392
3393 // Add a reloc for an entry in the BRLT.
3394 void
3395 add_reloc(Address to, unsigned int off)
3396 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3397
3398 // Update section and reloc section size.
3399 void
3400 set_current_size(unsigned int num_branches)
3401 {
3402 this->reset_address_and_file_offset();
3403 this->set_current_data_size(num_branches * 16);
3404 this->finalize_data_size();
3405 Output_section* os = this->output_section();
3406 os->set_section_offsets_need_adjustment();
3407 if (this->rel_ != NULL)
3408 {
3409 unsigned int reloc_size
3410 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3411 this->rel_->reset_address_and_file_offset();
3412 this->rel_->set_current_data_size(num_branches * reloc_size);
3413 this->rel_->finalize_data_size();
3414 Output_section* os = this->rel_->output_section();
3415 os->set_section_offsets_need_adjustment();
3416 }
3417 }
3418
3419 protected:
3420 void
3421 do_adjust_output_section(Output_section* os)
3422 {
3423 os->set_entsize(0);
3424 }
3425
3426 // Write to a map file.
3427 void
3428 do_print_to_mapfile(Mapfile* mapfile) const
3429 { mapfile->print_output_data(this, "** BRLT"); }
3430
3431 private:
3432 // Write out the BRLT data.
3433 void
3434 do_write(Output_file*);
3435
3436 // The reloc section.
3437 Reloc_section* rel_;
3438 Target_powerpc<size, big_endian>* targ_;
3439 };
3440
3441 // Make the branch lookup table section.
3442
3443 template<int size, bool big_endian>
3444 void
3445 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3446 {
3447 if (size == 64 && this->brlt_section_ == NULL)
3448 {
3449 Reloc_section* brlt_rel = NULL;
3450 bool is_pic = parameters->options().output_is_position_independent();
3451 if (is_pic)
3452 {
3453 // When PIC we can't fill in .branch_lt (like .plt it can be
3454 // a bss style section) but must initialise at runtime via
3455 // dynamic relocats.
3456 this->rela_dyn_section(layout);
3457 brlt_rel = new Reloc_section(false);
3458 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3459 }
3460 this->brlt_section_
3461 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3462 if (this->plt_ && is_pic)
3463 this->plt_->output_section()
3464 ->add_output_section_data(this->brlt_section_);
3465 else
3466 layout->add_output_section_data(".branch_lt",
3467 (is_pic ? elfcpp::SHT_NOBITS
3468 : elfcpp::SHT_PROGBITS),
3469 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3470 this->brlt_section_,
3471 (is_pic ? ORDER_SMALL_BSS
3472 : ORDER_SMALL_DATA),
3473 false);
3474 }
3475 }
3476
3477 // Write out .branch_lt when non-PIC.
3478
3479 template<int size, bool big_endian>
3480 void
3481 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3482 {
3483 if (size == 64 && !parameters->options().output_is_position_independent())
3484 {
3485 const section_size_type offset = this->offset();
3486 const section_size_type oview_size
3487 = convert_to_section_size_type(this->data_size());
3488 unsigned char* const oview = of->get_output_view(offset, oview_size);
3489
3490 this->targ_->write_branch_lookup_table(oview);
3491 of->write_output_view(offset, oview_size, oview);
3492 }
3493 }
3494
3495 static inline uint32_t
3496 l(uint32_t a)
3497 {
3498 return a & 0xffff;
3499 }
3500
3501 static inline uint32_t
3502 hi(uint32_t a)
3503 {
3504 return l(a >> 16);
3505 }
3506
3507 static inline uint32_t
3508 ha(uint32_t a)
3509 {
3510 return hi(a + 0x8000);
3511 }
3512
3513 template<int size>
3514 struct Eh_cie
3515 {
3516 static const unsigned char eh_frame_cie[12];
3517 };
3518
3519 template<int size>
3520 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3521 {
3522 1, // CIE version.
3523 'z', 'R', 0, // Augmentation string.
3524 4, // Code alignment.
3525 0x80 - size / 8 , // Data alignment.
3526 65, // RA reg.
3527 1, // Augmentation size.
3528 (elfcpp::DW_EH_PE_pcrel
3529 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3530 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3531 };
3532
3533 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3534 static const unsigned char glink_eh_frame_fde_64v1[] =
3535 {
3536 0, 0, 0, 0, // Replaced with offset to .glink.
3537 0, 0, 0, 0, // Replaced with size of .glink.
3538 0, // Augmentation size.
3539 elfcpp::DW_CFA_advance_loc + 1,
3540 elfcpp::DW_CFA_register, 65, 12,
3541 elfcpp::DW_CFA_advance_loc + 4,
3542 elfcpp::DW_CFA_restore_extended, 65
3543 };
3544
3545 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3546 static const unsigned char glink_eh_frame_fde_64v2[] =
3547 {
3548 0, 0, 0, 0, // Replaced with offset to .glink.
3549 0, 0, 0, 0, // Replaced with size of .glink.
3550 0, // Augmentation size.
3551 elfcpp::DW_CFA_advance_loc + 1,
3552 elfcpp::DW_CFA_register, 65, 0,
3553 elfcpp::DW_CFA_advance_loc + 4,
3554 elfcpp::DW_CFA_restore_extended, 65
3555 };
3556
3557 // Describe __glink_PLTresolve use of LR, 32-bit version.
3558 static const unsigned char glink_eh_frame_fde_32[] =
3559 {
3560 0, 0, 0, 0, // Replaced with offset to .glink.
3561 0, 0, 0, 0, // Replaced with size of .glink.
3562 0, // Augmentation size.
3563 elfcpp::DW_CFA_advance_loc + 2,
3564 elfcpp::DW_CFA_register, 65, 0,
3565 elfcpp::DW_CFA_advance_loc + 4,
3566 elfcpp::DW_CFA_restore_extended, 65
3567 };
3568
3569 static const unsigned char default_fde[] =
3570 {
3571 0, 0, 0, 0, // Replaced with offset to stubs.
3572 0, 0, 0, 0, // Replaced with size of stubs.
3573 0, // Augmentation size.
3574 elfcpp::DW_CFA_nop, // Pad.
3575 elfcpp::DW_CFA_nop,
3576 elfcpp::DW_CFA_nop
3577 };
3578
3579 template<bool big_endian>
3580 static inline void
3581 write_insn(unsigned char* p, uint32_t v)
3582 {
3583 elfcpp::Swap<32, big_endian>::writeval(p, v);
3584 }
3585
3586 // Stub_table holds information about plt and long branch stubs.
3587 // Stubs are built in an area following some input section determined
3588 // by group_sections(). This input section is converted to a relaxed
3589 // input section allowing it to be resized to accommodate the stubs
3590
3591 template<int size, bool big_endian>
3592 class Stub_table : public Output_relaxed_input_section
3593 {
3594 public:
3595 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3596 static const Address invalid_address = static_cast<Address>(0) - 1;
3597
3598 Stub_table(Target_powerpc<size, big_endian>* targ,
3599 Output_section* output_section,
3600 const Output_section::Input_section* owner)
3601 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3602 owner->relobj()
3603 ->section_addralign(owner->shndx())),
3604 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3605 orig_data_size_(owner->current_data_size()),
3606 plt_size_(0), last_plt_size_(0),
3607 branch_size_(0), last_branch_size_(0), eh_frame_added_(false),
3608 need_save_res_(false)
3609 {
3610 this->set_output_section(output_section);
3611
3612 std::vector<Output_relaxed_input_section*> new_relaxed;
3613 new_relaxed.push_back(this);
3614 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3615 }
3616
3617 // Add a plt call stub.
3618 bool
3619 add_plt_call_entry(Address,
3620 const Sized_relobj_file<size, big_endian>*,
3621 const Symbol*,
3622 unsigned int,
3623 Address);
3624
3625 bool
3626 add_plt_call_entry(Address,
3627 const Sized_relobj_file<size, big_endian>*,
3628 unsigned int,
3629 unsigned int,
3630 Address);
3631
3632 // Find a given plt call stub.
3633 Address
3634 find_plt_call_entry(const Symbol*) const;
3635
3636 Address
3637 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3638 unsigned int) const;
3639
3640 Address
3641 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3642 const Symbol*,
3643 unsigned int,
3644 Address) const;
3645
3646 Address
3647 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3648 unsigned int,
3649 unsigned int,
3650 Address) const;
3651
3652 // Add a long branch stub.
3653 bool
3654 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3655 unsigned int, Address, Address, bool);
3656
3657 Address
3658 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3659 Address) const;
3660
3661 bool
3662 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3663 {
3664 Address max_branch_offset = max_branch_delta(r_type);
3665 if (max_branch_offset == 0)
3666 return true;
3667 gold_assert(from != invalid_address);
3668 Address loc = off + this->stub_address();
3669 return loc - from + max_branch_offset < 2 * max_branch_offset;
3670 }
3671
3672 void
3673 clear_stubs(bool all)
3674 {
3675 this->plt_call_stubs_.clear();
3676 this->plt_size_ = 0;
3677 this->long_branch_stubs_.clear();
3678 this->branch_size_ = 0;
3679 this->need_save_res_ = false;
3680 if (all)
3681 {
3682 this->last_plt_size_ = 0;
3683 this->last_branch_size_ = 0;
3684 }
3685 }
3686
3687 Address
3688 set_address_and_size(const Output_section* os, Address off)
3689 {
3690 Address start_off = off;
3691 off += this->orig_data_size_;
3692 Address my_size = this->plt_size_ + this->branch_size_;
3693 if (this->need_save_res_)
3694 my_size += this->targ_->savres_section()->data_size();
3695 if (my_size != 0)
3696 off = align_address(off, this->stub_align());
3697 // Include original section size and alignment padding in size
3698 my_size += off - start_off;
3699 this->reset_address_and_file_offset();
3700 this->set_current_data_size(my_size);
3701 this->set_address_and_file_offset(os->address() + start_off,
3702 os->offset() + start_off);
3703 return my_size;
3704 }
3705
3706 Address
3707 stub_address() const
3708 {
3709 return align_address(this->address() + this->orig_data_size_,
3710 this->stub_align());
3711 }
3712
3713 Address
3714 stub_offset() const
3715 {
3716 return align_address(this->offset() + this->orig_data_size_,
3717 this->stub_align());
3718 }
3719
3720 section_size_type
3721 plt_size() const
3722 { return this->plt_size_; }
3723
3724 bool
3725 size_update()
3726 {
3727 Output_section* os = this->output_section();
3728 if (os->addralign() < this->stub_align())
3729 {
3730 os->set_addralign(this->stub_align());
3731 // FIXME: get rid of the insane checkpointing.
3732 // We can't increase alignment of the input section to which
3733 // stubs are attached; The input section may be .init which
3734 // is pasted together with other .init sections to form a
3735 // function. Aligning might insert zero padding resulting in
3736 // sigill. However we do need to increase alignment of the
3737 // output section so that the align_address() on offset in
3738 // set_address_and_size() adds the same padding as the
3739 // align_address() on address in stub_address().
3740 // What's more, we need this alignment for the layout done in
3741 // relaxation_loop_body() so that the output section starts at
3742 // a suitably aligned address.
3743 os->checkpoint_set_addralign(this->stub_align());
3744 }
3745 if (this->last_plt_size_ != this->plt_size_
3746 || this->last_branch_size_ != this->branch_size_)
3747 {
3748 this->last_plt_size_ = this->plt_size_;
3749 this->last_branch_size_ = this->branch_size_;
3750 return true;
3751 }
3752 return false;
3753 }
3754
3755 // Add .eh_frame info for this stub section. Unlike other linker
3756 // generated .eh_frame this is added late in the link, because we
3757 // only want the .eh_frame info if this particular stub section is
3758 // non-empty.
3759 void
3760 add_eh_frame(Layout* layout)
3761 {
3762 if (!this->eh_frame_added_)
3763 {
3764 if (!parameters->options().ld_generated_unwind_info())
3765 return;
3766
3767 // Since we add stub .eh_frame info late, it must be placed
3768 // after all other linker generated .eh_frame info so that
3769 // merge mapping need not be updated for input sections.
3770 // There is no provision to use a different CIE to that used
3771 // by .glink.
3772 if (!this->targ_->has_glink())
3773 return;
3774
3775 layout->add_eh_frame_for_plt(this,
3776 Eh_cie<size>::eh_frame_cie,
3777 sizeof (Eh_cie<size>::eh_frame_cie),
3778 default_fde,
3779 sizeof (default_fde));
3780 this->eh_frame_added_ = true;
3781 }
3782 }
3783
3784 Target_powerpc<size, big_endian>*
3785 targ() const
3786 { return targ_; }
3787
3788 private:
3789 class Plt_stub_ent;
3790 class Plt_stub_ent_hash;
3791 typedef Unordered_map<Plt_stub_ent, unsigned int,
3792 Plt_stub_ent_hash> Plt_stub_entries;
3793
3794 // Alignment of stub section.
3795 unsigned int
3796 stub_align() const
3797 {
3798 if (size == 32)
3799 return 16;
3800 unsigned int min_align = 32;
3801 unsigned int user_align = 1 << parameters->options().plt_align();
3802 return std::max(user_align, min_align);
3803 }
3804
3805 // Return the plt offset for the given call stub.
3806 Address
3807 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3808 {
3809 const Symbol* gsym = p->first.sym_;
3810 if (gsym != NULL)
3811 {
3812 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3813 && gsym->can_use_relative_reloc(false));
3814 return gsym->plt_offset();
3815 }
3816 else
3817 {
3818 *is_iplt = true;
3819 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3820 unsigned int local_sym_index = p->first.locsym_;
3821 return relobj->local_plt_offset(local_sym_index);
3822 }
3823 }
3824
3825 // Size of a given plt call stub.
3826 unsigned int
3827 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3828 {
3829 if (size == 32)
3830 return 16;
3831
3832 bool is_iplt;
3833 Address plt_addr = this->plt_off(p, &is_iplt);
3834 if (is_iplt)
3835 plt_addr += this->targ_->iplt_section()->address();
3836 else
3837 plt_addr += this->targ_->plt_section()->address();
3838 Address got_addr = this->targ_->got_section()->output_section()->address();
3839 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3840 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3841 got_addr += ppcobj->toc_base_offset();
3842 Address off = plt_addr - got_addr;
3843 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3844 if (this->targ_->abiversion() < 2)
3845 {
3846 bool static_chain = parameters->options().plt_static_chain();
3847 bool thread_safe = this->targ_->plt_thread_safe();
3848 bytes += (4
3849 + 4 * static_chain
3850 + 8 * thread_safe
3851 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3852 }
3853 unsigned int align = 1 << parameters->options().plt_align();
3854 if (align > 1)
3855 bytes = (bytes + align - 1) & -align;
3856 return bytes;
3857 }
3858
3859 // Return long branch stub size.
3860 unsigned int
3861 branch_stub_size(Address to)
3862 {
3863 Address loc
3864 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3865 if (to - loc + (1 << 25) < 2 << 25)
3866 return 4;
3867 if (size == 64 || !parameters->options().output_is_position_independent())
3868 return 16;
3869 return 32;
3870 }
3871
3872 // Write out stubs.
3873 void
3874 do_write(Output_file*);
3875
3876 // Plt call stub keys.
3877 class Plt_stub_ent
3878 {
3879 public:
3880 Plt_stub_ent(const Symbol* sym)
3881 : sym_(sym), object_(0), addend_(0), locsym_(0)
3882 { }
3883
3884 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3885 unsigned int locsym_index)
3886 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3887 { }
3888
3889 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3890 const Symbol* sym,
3891 unsigned int r_type,
3892 Address addend)
3893 : sym_(sym), object_(0), addend_(0), locsym_(0)
3894 {
3895 if (size != 32)
3896 this->addend_ = addend;
3897 else if (parameters->options().output_is_position_independent()
3898 && r_type == elfcpp::R_PPC_PLTREL24)
3899 {
3900 this->addend_ = addend;
3901 if (this->addend_ >= 32768)
3902 this->object_ = object;
3903 }
3904 }
3905
3906 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3907 unsigned int locsym_index,
3908 unsigned int r_type,
3909 Address addend)
3910 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3911 {
3912 if (size != 32)
3913 this->addend_ = addend;
3914 else if (parameters->options().output_is_position_independent()
3915 && r_type == elfcpp::R_PPC_PLTREL24)
3916 this->addend_ = addend;
3917 }
3918
3919 bool operator==(const Plt_stub_ent& that) const
3920 {
3921 return (this->sym_ == that.sym_
3922 && this->object_ == that.object_
3923 && this->addend_ == that.addend_
3924 && this->locsym_ == that.locsym_);
3925 }
3926
3927 const Symbol* sym_;
3928 const Sized_relobj_file<size, big_endian>* object_;
3929 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3930 unsigned int locsym_;
3931 };
3932
3933 class Plt_stub_ent_hash
3934 {
3935 public:
3936 size_t operator()(const Plt_stub_ent& ent) const
3937 {
3938 return (reinterpret_cast<uintptr_t>(ent.sym_)
3939 ^ reinterpret_cast<uintptr_t>(ent.object_)
3940 ^ ent.addend_
3941 ^ ent.locsym_);
3942 }
3943 };
3944
3945 // Long branch stub keys.
3946 class Branch_stub_ent
3947 {
3948 public:
3949 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
3950 Address to, bool save_res)
3951 : dest_(to), toc_base_off_(0), save_res_(save_res)
3952 {
3953 if (size == 64)
3954 toc_base_off_ = obj->toc_base_offset();
3955 }
3956
3957 bool operator==(const Branch_stub_ent& that) const
3958 {
3959 return (this->dest_ == that.dest_
3960 && (size == 32
3961 || this->toc_base_off_ == that.toc_base_off_));
3962 }
3963
3964 Address dest_;
3965 unsigned int toc_base_off_;
3966 bool save_res_;
3967 };
3968
3969 class Branch_stub_ent_hash
3970 {
3971 public:
3972 size_t operator()(const Branch_stub_ent& ent) const
3973 { return ent.dest_ ^ ent.toc_base_off_; }
3974 };
3975
3976 // In a sane world this would be a global.
3977 Target_powerpc<size, big_endian>* targ_;
3978 // Map sym/object/addend to stub offset.
3979 Plt_stub_entries plt_call_stubs_;
3980 // Map destination address to stub offset.
3981 typedef Unordered_map<Branch_stub_ent, unsigned int,
3982 Branch_stub_ent_hash> Branch_stub_entries;
3983 Branch_stub_entries long_branch_stubs_;
3984 // size of input section
3985 section_size_type orig_data_size_;
3986 // size of stubs
3987 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3988 // Whether .eh_frame info has been created for this stub section.
3989 bool eh_frame_added_;
3990 // Set if this stub group needs a copy of out-of-line register
3991 // save/restore functions.
3992 bool need_save_res_;
3993 };
3994
3995 // Add a plt call stub, if we do not already have one for this
3996 // sym/object/addend combo.
3997
3998 template<int size, bool big_endian>
3999 bool
4000 Stub_table<size, big_endian>::add_plt_call_entry(
4001 Address from,
4002 const Sized_relobj_file<size, big_endian>* object,
4003 const Symbol* gsym,
4004 unsigned int r_type,
4005 Address addend)
4006 {
4007 Plt_stub_ent ent(object, gsym, r_type, addend);
4008 unsigned int off = this->plt_size_;
4009 std::pair<typename Plt_stub_entries::iterator, bool> p
4010 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4011 if (p.second)
4012 this->plt_size_ = off + this->plt_call_size(p.first);
4013 return this->can_reach_stub(from, off, r_type);
4014 }
4015
4016 template<int size, bool big_endian>
4017 bool
4018 Stub_table<size, big_endian>::add_plt_call_entry(
4019 Address from,
4020 const Sized_relobj_file<size, big_endian>* object,
4021 unsigned int locsym_index,
4022 unsigned int r_type,
4023 Address addend)
4024 {
4025 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4026 unsigned int off = this->plt_size_;
4027 std::pair<typename Plt_stub_entries::iterator, bool> p
4028 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4029 if (p.second)
4030 this->plt_size_ = off + this->plt_call_size(p.first);
4031 return this->can_reach_stub(from, off, r_type);
4032 }
4033
4034 // Find a plt call stub.
4035
4036 template<int size, bool big_endian>
4037 typename Stub_table<size, big_endian>::Address
4038 Stub_table<size, big_endian>::find_plt_call_entry(
4039 const Sized_relobj_file<size, big_endian>* object,
4040 const Symbol* gsym,
4041 unsigned int r_type,
4042 Address addend) const
4043 {
4044 Plt_stub_ent ent(object, gsym, r_type, addend);
4045 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4046 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4047 }
4048
4049 template<int size, bool big_endian>
4050 typename Stub_table<size, big_endian>::Address
4051 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4052 {
4053 Plt_stub_ent ent(gsym);
4054 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4055 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4056 }
4057
4058 template<int size, bool big_endian>
4059 typename Stub_table<size, big_endian>::Address
4060 Stub_table<size, big_endian>::find_plt_call_entry(
4061 const Sized_relobj_file<size, big_endian>* object,
4062 unsigned int locsym_index,
4063 unsigned int r_type,
4064 Address addend) const
4065 {
4066 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4067 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4068 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4069 }
4070
4071 template<int size, bool big_endian>
4072 typename Stub_table<size, big_endian>::Address
4073 Stub_table<size, big_endian>::find_plt_call_entry(
4074 const Sized_relobj_file<size, big_endian>* object,
4075 unsigned int locsym_index) const
4076 {
4077 Plt_stub_ent ent(object, locsym_index);
4078 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4079 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4080 }
4081
4082 // Add a long branch stub if we don't already have one to given
4083 // destination.
4084
4085 template<int size, bool big_endian>
4086 bool
4087 Stub_table<size, big_endian>::add_long_branch_entry(
4088 const Powerpc_relobj<size, big_endian>* object,
4089 unsigned int r_type,
4090 Address from,
4091 Address to,
4092 bool save_res)
4093 {
4094 Branch_stub_ent ent(object, to, save_res);
4095 Address off = this->branch_size_;
4096 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4097 {
4098 if (save_res)
4099 this->need_save_res_ = true;
4100 else
4101 {
4102 unsigned int stub_size = this->branch_stub_size(to);
4103 this->branch_size_ = off + stub_size;
4104 if (size == 64 && stub_size != 4)
4105 this->targ_->add_branch_lookup_table(to);
4106 }
4107 }
4108 return this->can_reach_stub(from, off, r_type);
4109 }
4110
4111 // Find long branch stub offset.
4112
4113 template<int size, bool big_endian>
4114 typename Stub_table<size, big_endian>::Address
4115 Stub_table<size, big_endian>::find_long_branch_entry(
4116 const Powerpc_relobj<size, big_endian>* object,
4117 Address to) const
4118 {
4119 Branch_stub_ent ent(object, to, false);
4120 typename Branch_stub_entries::const_iterator p
4121 = this->long_branch_stubs_.find(ent);
4122 if (p == this->long_branch_stubs_.end())
4123 return invalid_address;
4124 if (p->first.save_res_)
4125 return to - this->targ_->savres_section()->address() + this->branch_size_;
4126 return p->second;
4127 }
4128
4129 // A class to handle .glink.
4130
4131 template<int size, bool big_endian>
4132 class Output_data_glink : public Output_section_data
4133 {
4134 public:
4135 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4136 static const Address invalid_address = static_cast<Address>(0) - 1;
4137 static const int pltresolve_size = 16*4;
4138
4139 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4140 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4141 end_branch_table_(), ge_size_(0)
4142 { }
4143
4144 void
4145 add_eh_frame(Layout* layout);
4146
4147 void
4148 add_global_entry(const Symbol*);
4149
4150 Address
4151 find_global_entry(const Symbol*) const;
4152
4153 Address
4154 global_entry_address() const
4155 {
4156 gold_assert(this->is_data_size_valid());
4157 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4158 return this->address() + global_entry_off;
4159 }
4160
4161 protected:
4162 // Write to a map file.
4163 void
4164 do_print_to_mapfile(Mapfile* mapfile) const
4165 { mapfile->print_output_data(this, _("** glink")); }
4166
4167 private:
4168 void
4169 set_final_data_size();
4170
4171 // Write out .glink
4172 void
4173 do_write(Output_file*);
4174
4175 // Allows access to .got and .plt for do_write.
4176 Target_powerpc<size, big_endian>* targ_;
4177
4178 // Map sym to stub offset.
4179 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4180 Global_entry_stub_entries global_entry_stubs_;
4181
4182 unsigned int end_branch_table_, ge_size_;
4183 };
4184
4185 template<int size, bool big_endian>
4186 void
4187 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4188 {
4189 if (!parameters->options().ld_generated_unwind_info())
4190 return;
4191
4192 if (size == 64)
4193 {
4194 if (this->targ_->abiversion() < 2)
4195 layout->add_eh_frame_for_plt(this,
4196 Eh_cie<64>::eh_frame_cie,
4197 sizeof (Eh_cie<64>::eh_frame_cie),
4198 glink_eh_frame_fde_64v1,
4199 sizeof (glink_eh_frame_fde_64v1));
4200 else
4201 layout->add_eh_frame_for_plt(this,
4202 Eh_cie<64>::eh_frame_cie,
4203 sizeof (Eh_cie<64>::eh_frame_cie),
4204 glink_eh_frame_fde_64v2,
4205 sizeof (glink_eh_frame_fde_64v2));
4206 }
4207 else
4208 {
4209 // 32-bit .glink can use the default since the CIE return
4210 // address reg, LR, is valid.
4211 layout->add_eh_frame_for_plt(this,
4212 Eh_cie<32>::eh_frame_cie,
4213 sizeof (Eh_cie<32>::eh_frame_cie),
4214 default_fde,
4215 sizeof (default_fde));
4216 // Except where LR is used in a PIC __glink_PLTresolve.
4217 if (parameters->options().output_is_position_independent())
4218 layout->add_eh_frame_for_plt(this,
4219 Eh_cie<32>::eh_frame_cie,
4220 sizeof (Eh_cie<32>::eh_frame_cie),
4221 glink_eh_frame_fde_32,
4222 sizeof (glink_eh_frame_fde_32));
4223 }
4224 }
4225
4226 template<int size, bool big_endian>
4227 void
4228 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4229 {
4230 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4231 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4232 if (p.second)
4233 this->ge_size_ += 16;
4234 }
4235
4236 template<int size, bool big_endian>
4237 typename Output_data_glink<size, big_endian>::Address
4238 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4239 {
4240 typename Global_entry_stub_entries::const_iterator p
4241 = this->global_entry_stubs_.find(gsym);
4242 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4243 }
4244
4245 template<int size, bool big_endian>
4246 void
4247 Output_data_glink<size, big_endian>::set_final_data_size()
4248 {
4249 unsigned int count = this->targ_->plt_entry_count();
4250 section_size_type total = 0;
4251
4252 if (count != 0)
4253 {
4254 if (size == 32)
4255 {
4256 // space for branch table
4257 total += 4 * (count - 1);
4258
4259 total += -total & 15;
4260 total += this->pltresolve_size;
4261 }
4262 else
4263 {
4264 total += this->pltresolve_size;
4265
4266 // space for branch table
4267 total += 4 * count;
4268 if (this->targ_->abiversion() < 2)
4269 {
4270 total += 4 * count;
4271 if (count > 0x8000)
4272 total += 4 * (count - 0x8000);
4273 }
4274 }
4275 }
4276 this->end_branch_table_ = total;
4277 total = (total + 15) & -16;
4278 total += this->ge_size_;
4279
4280 this->set_data_size(total);
4281 }
4282
4283 // Write out plt and long branch stub code.
4284
4285 template<int size, bool big_endian>
4286 void
4287 Stub_table<size, big_endian>::do_write(Output_file* of)
4288 {
4289 if (this->plt_call_stubs_.empty()
4290 && this->long_branch_stubs_.empty())
4291 return;
4292
4293 const section_size_type start_off = this->offset();
4294 const section_size_type off = this->stub_offset();
4295 const section_size_type oview_size =
4296 convert_to_section_size_type(this->data_size() - (off - start_off));
4297 unsigned char* const oview = of->get_output_view(off, oview_size);
4298 unsigned char* p;
4299
4300 if (size == 64)
4301 {
4302 const Output_data_got_powerpc<size, big_endian>* got
4303 = this->targ_->got_section();
4304 Address got_os_addr = got->output_section()->address();
4305
4306 if (!this->plt_call_stubs_.empty())
4307 {
4308 // The base address of the .plt section.
4309 Address plt_base = this->targ_->plt_section()->address();
4310 Address iplt_base = invalid_address;
4311
4312 // Write out plt call stubs.
4313 typename Plt_stub_entries::const_iterator cs;
4314 for (cs = this->plt_call_stubs_.begin();
4315 cs != this->plt_call_stubs_.end();
4316 ++cs)
4317 {
4318 bool is_iplt;
4319 Address pltoff = this->plt_off(cs, &is_iplt);
4320 Address plt_addr = pltoff;
4321 if (is_iplt)
4322 {
4323 if (iplt_base == invalid_address)
4324 iplt_base = this->targ_->iplt_section()->address();
4325 plt_addr += iplt_base;
4326 }
4327 else
4328 plt_addr += plt_base;
4329 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4330 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4331 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4332 Address off = plt_addr - got_addr;
4333
4334 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4335 gold_error(_("%s: linkage table error against `%s'"),
4336 cs->first.object_->name().c_str(),
4337 cs->first.sym_->demangled_name().c_str());
4338
4339 bool plt_load_toc = this->targ_->abiversion() < 2;
4340 bool static_chain
4341 = plt_load_toc && parameters->options().plt_static_chain();
4342 bool thread_safe
4343 = plt_load_toc && this->targ_->plt_thread_safe();
4344 bool use_fake_dep = false;
4345 Address cmp_branch_off = 0;
4346 if (thread_safe)
4347 {
4348 unsigned int pltindex
4349 = ((pltoff - this->targ_->first_plt_entry_offset())
4350 / this->targ_->plt_entry_size());
4351 Address glinkoff
4352 = (this->targ_->glink_section()->pltresolve_size
4353 + pltindex * 8);
4354 if (pltindex > 32768)
4355 glinkoff += (pltindex - 32768) * 4;
4356 Address to
4357 = this->targ_->glink_section()->address() + glinkoff;
4358 Address from
4359 = (this->stub_address() + cs->second + 24
4360 + 4 * (ha(off) != 0)
4361 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4362 + 4 * static_chain);
4363 cmp_branch_off = to - from;
4364 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4365 }
4366
4367 p = oview + cs->second;
4368 if (ha(off) != 0)
4369 {
4370 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4371 p += 4;
4372 if (plt_load_toc)
4373 {
4374 write_insn<big_endian>(p, addis_11_2 + ha(off));
4375 p += 4;
4376 write_insn<big_endian>(p, ld_12_11 + l(off));
4377 p += 4;
4378 }
4379 else
4380 {
4381 write_insn<big_endian>(p, addis_12_2 + ha(off));
4382 p += 4;
4383 write_insn<big_endian>(p, ld_12_12 + l(off));
4384 p += 4;
4385 }
4386 if (plt_load_toc
4387 && ha(off + 8 + 8 * static_chain) != ha(off))
4388 {
4389 write_insn<big_endian>(p, addi_11_11 + l(off));
4390 p += 4;
4391 off = 0;
4392 }
4393 write_insn<big_endian>(p, mtctr_12);
4394 p += 4;
4395 if (plt_load_toc)
4396 {
4397 if (use_fake_dep)
4398 {
4399 write_insn<big_endian>(p, xor_2_12_12);
4400 p += 4;
4401 write_insn<big_endian>(p, add_11_11_2);
4402 p += 4;
4403 }
4404 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4405 p += 4;
4406 if (static_chain)
4407 {
4408 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4409 p += 4;
4410 }
4411 }
4412 }
4413 else
4414 {
4415 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4416 p += 4;
4417 write_insn<big_endian>(p, ld_12_2 + l(off));
4418 p += 4;
4419 if (plt_load_toc
4420 && ha(off + 8 + 8 * static_chain) != ha(off))
4421 {
4422 write_insn<big_endian>(p, addi_2_2 + l(off));
4423 p += 4;
4424 off = 0;
4425 }
4426 write_insn<big_endian>(p, mtctr_12);
4427 p += 4;
4428 if (plt_load_toc)
4429 {
4430 if (use_fake_dep)
4431 {
4432 write_insn<big_endian>(p, xor_11_12_12);
4433 p += 4;
4434 write_insn<big_endian>(p, add_2_2_11);
4435 p += 4;
4436 }
4437 if (static_chain)
4438 {
4439 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4440 p += 4;
4441 }
4442 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4443 p += 4;
4444 }
4445 }
4446 if (thread_safe && !use_fake_dep)
4447 {
4448 write_insn<big_endian>(p, cmpldi_2_0);
4449 p += 4;
4450 write_insn<big_endian>(p, bnectr_p4);
4451 p += 4;
4452 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4453 }
4454 else
4455 write_insn<big_endian>(p, bctr);
4456 }
4457 }
4458
4459 // Write out long branch stubs.
4460 typename Branch_stub_entries::const_iterator bs;
4461 for (bs = this->long_branch_stubs_.begin();
4462 bs != this->long_branch_stubs_.end();
4463 ++bs)
4464 {
4465 if (bs->first.save_res_)
4466 continue;
4467 p = oview + this->plt_size_ + bs->second;
4468 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4469 Address delta = bs->first.dest_ - loc;
4470 if (delta + (1 << 25) < 2 << 25)
4471 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4472 else
4473 {
4474 Address brlt_addr
4475 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4476 gold_assert(brlt_addr != invalid_address);
4477 brlt_addr += this->targ_->brlt_section()->address();
4478 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4479 Address brltoff = brlt_addr - got_addr;
4480 if (ha(brltoff) == 0)
4481 {
4482 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4483 }
4484 else
4485 {
4486 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4487 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4488 }
4489 write_insn<big_endian>(p, mtctr_12), p += 4;
4490 write_insn<big_endian>(p, bctr);
4491 }
4492 }
4493 }
4494 else
4495 {
4496 if (!this->plt_call_stubs_.empty())
4497 {
4498 // The base address of the .plt section.
4499 Address plt_base = this->targ_->plt_section()->address();
4500 Address iplt_base = invalid_address;
4501 // The address of _GLOBAL_OFFSET_TABLE_.
4502 Address g_o_t = invalid_address;
4503
4504 // Write out plt call stubs.
4505 typename Plt_stub_entries::const_iterator cs;
4506 for (cs = this->plt_call_stubs_.begin();
4507 cs != this->plt_call_stubs_.end();
4508 ++cs)
4509 {
4510 bool is_iplt;
4511 Address plt_addr = this->plt_off(cs, &is_iplt);
4512 if (is_iplt)
4513 {
4514 if (iplt_base == invalid_address)
4515 iplt_base = this->targ_->iplt_section()->address();
4516 plt_addr += iplt_base;
4517 }
4518 else
4519 plt_addr += plt_base;
4520
4521 p = oview + cs->second;
4522 if (parameters->options().output_is_position_independent())
4523 {
4524 Address got_addr;
4525 const Powerpc_relobj<size, big_endian>* ppcobj
4526 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4527 (cs->first.object_));
4528 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4529 {
4530 unsigned int got2 = ppcobj->got2_shndx();
4531 got_addr = ppcobj->get_output_section_offset(got2);
4532 gold_assert(got_addr != invalid_address);
4533 got_addr += (ppcobj->output_section(got2)->address()
4534 + cs->first.addend_);
4535 }
4536 else
4537 {
4538 if (g_o_t == invalid_address)
4539 {
4540 const Output_data_got_powerpc<size, big_endian>* got
4541 = this->targ_->got_section();
4542 g_o_t = got->address() + got->g_o_t();
4543 }
4544 got_addr = g_o_t;
4545 }
4546
4547 Address off = plt_addr - got_addr;
4548 if (ha(off) == 0)
4549 {
4550 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4551 write_insn<big_endian>(p + 4, mtctr_11);
4552 write_insn<big_endian>(p + 8, bctr);
4553 }
4554 else
4555 {
4556 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4557 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4558 write_insn<big_endian>(p + 8, mtctr_11);
4559 write_insn<big_endian>(p + 12, bctr);
4560 }
4561 }
4562 else
4563 {
4564 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4565 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4566 write_insn<big_endian>(p + 8, mtctr_11);
4567 write_insn<big_endian>(p + 12, bctr);
4568 }
4569 }
4570 }
4571
4572 // Write out long branch stubs.
4573 typename Branch_stub_entries::const_iterator bs;
4574 for (bs = this->long_branch_stubs_.begin();
4575 bs != this->long_branch_stubs_.end();
4576 ++bs)
4577 {
4578 if (bs->first.save_res_)
4579 continue;
4580 p = oview + this->plt_size_ + bs->second;
4581 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4582 Address delta = bs->first.dest_ - loc;
4583 if (delta + (1 << 25) < 2 << 25)
4584 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4585 else if (!parameters->options().output_is_position_independent())
4586 {
4587 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4588 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4589 write_insn<big_endian>(p + 8, mtctr_12);
4590 write_insn<big_endian>(p + 12, bctr);
4591 }
4592 else
4593 {
4594 delta -= 8;
4595 write_insn<big_endian>(p + 0, mflr_0);
4596 write_insn<big_endian>(p + 4, bcl_20_31);
4597 write_insn<big_endian>(p + 8, mflr_12);
4598 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4599 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4600 write_insn<big_endian>(p + 20, mtlr_0);
4601 write_insn<big_endian>(p + 24, mtctr_12);
4602 write_insn<big_endian>(p + 28, bctr);
4603 }
4604 }
4605 }
4606 if (this->need_save_res_)
4607 {
4608 p = oview + this->plt_size_ + this->branch_size_;
4609 memcpy (p, this->targ_->savres_section()->contents(),
4610 this->targ_->savres_section()->data_size());
4611 }
4612 }
4613
4614 // Write out .glink.
4615
4616 template<int size, bool big_endian>
4617 void
4618 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4619 {
4620 const section_size_type off = this->offset();
4621 const section_size_type oview_size =
4622 convert_to_section_size_type(this->data_size());
4623 unsigned char* const oview = of->get_output_view(off, oview_size);
4624 unsigned char* p;
4625
4626 // The base address of the .plt section.
4627 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4628 Address plt_base = this->targ_->plt_section()->address();
4629
4630 if (size == 64)
4631 {
4632 if (this->end_branch_table_ != 0)
4633 {
4634 // Write pltresolve stub.
4635 p = oview;
4636 Address after_bcl = this->address() + 16;
4637 Address pltoff = plt_base - after_bcl;
4638
4639 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4640
4641 if (this->targ_->abiversion() < 2)
4642 {
4643 write_insn<big_endian>(p, mflr_12), p += 4;
4644 write_insn<big_endian>(p, bcl_20_31), p += 4;
4645 write_insn<big_endian>(p, mflr_11), p += 4;
4646 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4647 write_insn<big_endian>(p, mtlr_12), p += 4;
4648 write_insn<big_endian>(p, add_11_2_11), p += 4;
4649 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4650 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4651 write_insn<big_endian>(p, mtctr_12), p += 4;
4652 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4653 }
4654 else
4655 {
4656 write_insn<big_endian>(p, mflr_0), p += 4;
4657 write_insn<big_endian>(p, bcl_20_31), p += 4;
4658 write_insn<big_endian>(p, mflr_11), p += 4;
4659 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4660 write_insn<big_endian>(p, mtlr_0), p += 4;
4661 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4662 write_insn<big_endian>(p, add_11_2_11), p += 4;
4663 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4664 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4665 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4666 write_insn<big_endian>(p, mtctr_12), p += 4;
4667 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4668 }
4669 write_insn<big_endian>(p, bctr), p += 4;
4670 while (p < oview + this->pltresolve_size)
4671 write_insn<big_endian>(p, nop), p += 4;
4672
4673 // Write lazy link call stubs.
4674 uint32_t indx = 0;
4675 while (p < oview + this->end_branch_table_)
4676 {
4677 if (this->targ_->abiversion() < 2)
4678 {
4679 if (indx < 0x8000)
4680 {
4681 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4682 }
4683 else
4684 {
4685 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4686 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4687 }
4688 }
4689 uint32_t branch_off = 8 - (p - oview);
4690 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4691 indx++;
4692 }
4693 }
4694
4695 Address plt_base = this->targ_->plt_section()->address();
4696 Address iplt_base = invalid_address;
4697 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4698 Address global_entry_base = this->address() + global_entry_off;
4699 typename Global_entry_stub_entries::const_iterator ge;
4700 for (ge = this->global_entry_stubs_.begin();
4701 ge != this->global_entry_stubs_.end();
4702 ++ge)
4703 {
4704 p = oview + global_entry_off + ge->second;
4705 Address plt_addr = ge->first->plt_offset();
4706 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4707 && ge->first->can_use_relative_reloc(false))
4708 {
4709 if (iplt_base == invalid_address)
4710 iplt_base = this->targ_->iplt_section()->address();
4711 plt_addr += iplt_base;
4712 }
4713 else
4714 plt_addr += plt_base;
4715 Address my_addr = global_entry_base + ge->second;
4716 Address off = plt_addr - my_addr;
4717
4718 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4719 gold_error(_("%s: linkage table error against `%s'"),
4720 ge->first->object()->name().c_str(),
4721 ge->first->demangled_name().c_str());
4722
4723 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4724 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4725 write_insn<big_endian>(p, mtctr_12), p += 4;
4726 write_insn<big_endian>(p, bctr);
4727 }
4728 }
4729 else
4730 {
4731 const Output_data_got_powerpc<size, big_endian>* got
4732 = this->targ_->got_section();
4733 // The address of _GLOBAL_OFFSET_TABLE_.
4734 Address g_o_t = got->address() + got->g_o_t();
4735
4736 // Write out pltresolve branch table.
4737 p = oview;
4738 unsigned int the_end = oview_size - this->pltresolve_size;
4739 unsigned char* end_p = oview + the_end;
4740 while (p < end_p - 8 * 4)
4741 write_insn<big_endian>(p, b + end_p - p), p += 4;
4742 while (p < end_p)
4743 write_insn<big_endian>(p, nop), p += 4;
4744
4745 // Write out pltresolve call stub.
4746 if (parameters->options().output_is_position_independent())
4747 {
4748 Address res0_off = 0;
4749 Address after_bcl_off = the_end + 12;
4750 Address bcl_res0 = after_bcl_off - res0_off;
4751
4752 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4753 write_insn<big_endian>(p + 4, mflr_0);
4754 write_insn<big_endian>(p + 8, bcl_20_31);
4755 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4756 write_insn<big_endian>(p + 16, mflr_12);
4757 write_insn<big_endian>(p + 20, mtlr_0);
4758 write_insn<big_endian>(p + 24, sub_11_11_12);
4759
4760 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4761
4762 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4763 if (ha(got_bcl) == ha(got_bcl + 4))
4764 {
4765 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4766 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4767 }
4768 else
4769 {
4770 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4771 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4772 }
4773 write_insn<big_endian>(p + 40, mtctr_0);
4774 write_insn<big_endian>(p + 44, add_0_11_11);
4775 write_insn<big_endian>(p + 48, add_11_0_11);
4776 write_insn<big_endian>(p + 52, bctr);
4777 write_insn<big_endian>(p + 56, nop);
4778 write_insn<big_endian>(p + 60, nop);
4779 }
4780 else
4781 {
4782 Address res0 = this->address();
4783
4784 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4785 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4786 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4787 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4788 else
4789 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4790 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4791 write_insn<big_endian>(p + 16, mtctr_0);
4792 write_insn<big_endian>(p + 20, add_0_11_11);
4793 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4794 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4795 else
4796 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4797 write_insn<big_endian>(p + 28, add_11_0_11);
4798 write_insn<big_endian>(p + 32, bctr);
4799 write_insn<big_endian>(p + 36, nop);
4800 write_insn<big_endian>(p + 40, nop);
4801 write_insn<big_endian>(p + 44, nop);
4802 write_insn<big_endian>(p + 48, nop);
4803 write_insn<big_endian>(p + 52, nop);
4804 write_insn<big_endian>(p + 56, nop);
4805 write_insn<big_endian>(p + 60, nop);
4806 }
4807 p += 64;
4808 }
4809
4810 of->write_output_view(off, oview_size, oview);
4811 }
4812
4813
4814 // A class to handle linker generated save/restore functions.
4815
4816 template<int size, bool big_endian>
4817 class Output_data_save_res : public Output_section_data_build
4818 {
4819 public:
4820 Output_data_save_res(Symbol_table* symtab);
4821
4822 const unsigned char*
4823 contents() const
4824 {
4825 return contents_;
4826 }
4827
4828 protected:
4829 // Write to a map file.
4830 void
4831 do_print_to_mapfile(Mapfile* mapfile) const
4832 { mapfile->print_output_data(this, _("** save/restore")); }
4833
4834 void
4835 do_write(Output_file*);
4836
4837 private:
4838 // The maximum size of save/restore contents.
4839 static const unsigned int savres_max = 218*4;
4840
4841 void
4842 savres_define(Symbol_table* symtab,
4843 const char *name,
4844 unsigned int lo, unsigned int hi,
4845 unsigned char* write_ent(unsigned char*, int),
4846 unsigned char* write_tail(unsigned char*, int));
4847
4848 unsigned char *contents_;
4849 };
4850
4851 template<bool big_endian>
4852 static unsigned char*
4853 savegpr0(unsigned char* p, int r)
4854 {
4855 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4856 write_insn<big_endian>(p, insn);
4857 return p + 4;
4858 }
4859
4860 template<bool big_endian>
4861 static unsigned char*
4862 savegpr0_tail(unsigned char* p, int r)
4863 {
4864 p = savegpr0<big_endian>(p, r);
4865 uint32_t insn = std_0_1 + 16;
4866 write_insn<big_endian>(p, insn);
4867 p = p + 4;
4868 write_insn<big_endian>(p, blr);
4869 return p + 4;
4870 }
4871
4872 template<bool big_endian>
4873 static unsigned char*
4874 restgpr0(unsigned char* p, int r)
4875 {
4876 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4877 write_insn<big_endian>(p, insn);
4878 return p + 4;
4879 }
4880
4881 template<bool big_endian>
4882 static unsigned char*
4883 restgpr0_tail(unsigned char* p, int r)
4884 {
4885 uint32_t insn = ld_0_1 + 16;
4886 write_insn<big_endian>(p, insn);
4887 p = p + 4;
4888 p = restgpr0<big_endian>(p, r);
4889 write_insn<big_endian>(p, mtlr_0);
4890 p = p + 4;
4891 if (r == 29)
4892 {
4893 p = restgpr0<big_endian>(p, 30);
4894 p = restgpr0<big_endian>(p, 31);
4895 }
4896 write_insn<big_endian>(p, blr);
4897 return p + 4;
4898 }
4899
4900 template<bool big_endian>
4901 static unsigned char*
4902 savegpr1(unsigned char* p, int r)
4903 {
4904 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4905 write_insn<big_endian>(p, insn);
4906 return p + 4;
4907 }
4908
4909 template<bool big_endian>
4910 static unsigned char*
4911 savegpr1_tail(unsigned char* p, int r)
4912 {
4913 p = savegpr1<big_endian>(p, r);
4914 write_insn<big_endian>(p, blr);
4915 return p + 4;
4916 }
4917
4918 template<bool big_endian>
4919 static unsigned char*
4920 restgpr1(unsigned char* p, int r)
4921 {
4922 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4923 write_insn<big_endian>(p, insn);
4924 return p + 4;
4925 }
4926
4927 template<bool big_endian>
4928 static unsigned char*
4929 restgpr1_tail(unsigned char* p, int r)
4930 {
4931 p = restgpr1<big_endian>(p, r);
4932 write_insn<big_endian>(p, blr);
4933 return p + 4;
4934 }
4935
4936 template<bool big_endian>
4937 static unsigned char*
4938 savefpr(unsigned char* p, int r)
4939 {
4940 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4941 write_insn<big_endian>(p, insn);
4942 return p + 4;
4943 }
4944
4945 template<bool big_endian>
4946 static unsigned char*
4947 savefpr0_tail(unsigned char* p, int r)
4948 {
4949 p = savefpr<big_endian>(p, r);
4950 write_insn<big_endian>(p, std_0_1 + 16);
4951 p = p + 4;
4952 write_insn<big_endian>(p, blr);
4953 return p + 4;
4954 }
4955
4956 template<bool big_endian>
4957 static unsigned char*
4958 restfpr(unsigned char* p, int r)
4959 {
4960 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4961 write_insn<big_endian>(p, insn);
4962 return p + 4;
4963 }
4964
4965 template<bool big_endian>
4966 static unsigned char*
4967 restfpr0_tail(unsigned char* p, int r)
4968 {
4969 write_insn<big_endian>(p, ld_0_1 + 16);
4970 p = p + 4;
4971 p = restfpr<big_endian>(p, r);
4972 write_insn<big_endian>(p, mtlr_0);
4973 p = p + 4;
4974 if (r == 29)
4975 {
4976 p = restfpr<big_endian>(p, 30);
4977 p = restfpr<big_endian>(p, 31);
4978 }
4979 write_insn<big_endian>(p, blr);
4980 return p + 4;
4981 }
4982
4983 template<bool big_endian>
4984 static unsigned char*
4985 savefpr1_tail(unsigned char* p, int r)
4986 {
4987 p = savefpr<big_endian>(p, r);
4988 write_insn<big_endian>(p, blr);
4989 return p + 4;
4990 }
4991
4992 template<bool big_endian>
4993 static unsigned char*
4994 restfpr1_tail(unsigned char* p, int r)
4995 {
4996 p = restfpr<big_endian>(p, r);
4997 write_insn<big_endian>(p, blr);
4998 return p + 4;
4999 }
5000
5001 template<bool big_endian>
5002 static unsigned char*
5003 savevr(unsigned char* p, int r)
5004 {
5005 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5006 write_insn<big_endian>(p, insn);
5007 p = p + 4;
5008 insn = stvx_0_12_0 + (r << 21);
5009 write_insn<big_endian>(p, insn);
5010 return p + 4;
5011 }
5012
5013 template<bool big_endian>
5014 static unsigned char*
5015 savevr_tail(unsigned char* p, int r)
5016 {
5017 p = savevr<big_endian>(p, r);
5018 write_insn<big_endian>(p, blr);
5019 return p + 4;
5020 }
5021
5022 template<bool big_endian>
5023 static unsigned char*
5024 restvr(unsigned char* p, int r)
5025 {
5026 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5027 write_insn<big_endian>(p, insn);
5028 p = p + 4;
5029 insn = lvx_0_12_0 + (r << 21);
5030 write_insn<big_endian>(p, insn);
5031 return p + 4;
5032 }
5033
5034 template<bool big_endian>
5035 static unsigned char*
5036 restvr_tail(unsigned char* p, int r)
5037 {
5038 p = restvr<big_endian>(p, r);
5039 write_insn<big_endian>(p, blr);
5040 return p + 4;
5041 }
5042
5043
5044 template<int size, bool big_endian>
5045 Output_data_save_res<size, big_endian>::Output_data_save_res(
5046 Symbol_table* symtab)
5047 : Output_section_data_build(4),
5048 contents_(NULL)
5049 {
5050 this->savres_define(symtab,
5051 "_savegpr0_", 14, 31,
5052 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5053 this->savres_define(symtab,
5054 "_restgpr0_", 14, 29,
5055 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5056 this->savres_define(symtab,
5057 "_restgpr0_", 30, 31,
5058 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5059 this->savres_define(symtab,
5060 "_savegpr1_", 14, 31,
5061 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5062 this->savres_define(symtab,
5063 "_restgpr1_", 14, 31,
5064 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5065 this->savres_define(symtab,
5066 "_savefpr_", 14, 31,
5067 savefpr<big_endian>, savefpr0_tail<big_endian>);
5068 this->savres_define(symtab,
5069 "_restfpr_", 14, 29,
5070 restfpr<big_endian>, restfpr0_tail<big_endian>);
5071 this->savres_define(symtab,
5072 "_restfpr_", 30, 31,
5073 restfpr<big_endian>, restfpr0_tail<big_endian>);
5074 this->savres_define(symtab,
5075 "._savef", 14, 31,
5076 savefpr<big_endian>, savefpr1_tail<big_endian>);
5077 this->savres_define(symtab,
5078 "._restf", 14, 31,
5079 restfpr<big_endian>, restfpr1_tail<big_endian>);
5080 this->savres_define(symtab,
5081 "_savevr_", 20, 31,
5082 savevr<big_endian>, savevr_tail<big_endian>);
5083 this->savres_define(symtab,
5084 "_restvr_", 20, 31,
5085 restvr<big_endian>, restvr_tail<big_endian>);
5086 }
5087
5088 template<int size, bool big_endian>
5089 void
5090 Output_data_save_res<size, big_endian>::savres_define(
5091 Symbol_table* symtab,
5092 const char *name,
5093 unsigned int lo, unsigned int hi,
5094 unsigned char* write_ent(unsigned char*, int),
5095 unsigned char* write_tail(unsigned char*, int))
5096 {
5097 size_t len = strlen(name);
5098 bool writing = false;
5099 char sym[16];
5100
5101 memcpy(sym, name, len);
5102 sym[len + 2] = 0;
5103
5104 for (unsigned int i = lo; i <= hi; i++)
5105 {
5106 sym[len + 0] = i / 10 + '0';
5107 sym[len + 1] = i % 10 + '0';
5108 Symbol* gsym = symtab->lookup(sym);
5109 bool refd = gsym != NULL && gsym->is_undefined();
5110 writing = writing || refd;
5111 if (writing)
5112 {
5113 if (this->contents_ == NULL)
5114 this->contents_ = new unsigned char[this->savres_max];
5115
5116 section_size_type value = this->current_data_size();
5117 unsigned char* p = this->contents_ + value;
5118 if (i != hi)
5119 p = write_ent(p, i);
5120 else
5121 p = write_tail(p, i);
5122 section_size_type cur_size = p - this->contents_;
5123 this->set_current_data_size(cur_size);
5124 if (refd)
5125 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5126 this, value, cur_size - value,
5127 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5128 elfcpp::STV_HIDDEN, 0, false, false);
5129 }
5130 }
5131 }
5132
5133 // Write out save/restore.
5134
5135 template<int size, bool big_endian>
5136 void
5137 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5138 {
5139 const section_size_type off = this->offset();
5140 const section_size_type oview_size =
5141 convert_to_section_size_type(this->data_size());
5142 unsigned char* const oview = of->get_output_view(off, oview_size);
5143 memcpy(oview, this->contents_, oview_size);
5144 of->write_output_view(off, oview_size, oview);
5145 }
5146
5147
5148 // Create the glink section.
5149
5150 template<int size, bool big_endian>
5151 void
5152 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5153 {
5154 if (this->glink_ == NULL)
5155 {
5156 this->glink_ = new Output_data_glink<size, big_endian>(this);
5157 this->glink_->add_eh_frame(layout);
5158 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5159 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5160 this->glink_, ORDER_TEXT, false);
5161 }
5162 }
5163
5164 // Create a PLT entry for a global symbol.
5165
5166 template<int size, bool big_endian>
5167 void
5168 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5169 Layout* layout,
5170 Symbol* gsym)
5171 {
5172 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5173 && gsym->can_use_relative_reloc(false))
5174 {
5175 if (this->iplt_ == NULL)
5176 this->make_iplt_section(symtab, layout);
5177 this->iplt_->add_ifunc_entry(gsym);
5178 }
5179 else
5180 {
5181 if (this->plt_ == NULL)
5182 this->make_plt_section(symtab, layout);
5183 this->plt_->add_entry(gsym);
5184 }
5185 }
5186
5187 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5188
5189 template<int size, bool big_endian>
5190 void
5191 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5192 Symbol_table* symtab,
5193 Layout* layout,
5194 Sized_relobj_file<size, big_endian>* relobj,
5195 unsigned int r_sym)
5196 {
5197 if (this->iplt_ == NULL)
5198 this->make_iplt_section(symtab, layout);
5199 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5200 }
5201
5202 // Return the number of entries in the PLT.
5203
5204 template<int size, bool big_endian>
5205 unsigned int
5206 Target_powerpc<size, big_endian>::plt_entry_count() const
5207 {
5208 if (this->plt_ == NULL)
5209 return 0;
5210 return this->plt_->entry_count();
5211 }
5212
5213 // Create a GOT entry for local dynamic __tls_get_addr calls.
5214
5215 template<int size, bool big_endian>
5216 unsigned int
5217 Target_powerpc<size, big_endian>::tlsld_got_offset(
5218 Symbol_table* symtab,
5219 Layout* layout,
5220 Sized_relobj_file<size, big_endian>* object)
5221 {
5222 if (this->tlsld_got_offset_ == -1U)
5223 {
5224 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5225 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5226 Output_data_got_powerpc<size, big_endian>* got
5227 = this->got_section(symtab, layout);
5228 unsigned int got_offset = got->add_constant_pair(0, 0);
5229 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5230 got_offset, 0);
5231 this->tlsld_got_offset_ = got_offset;
5232 }
5233 return this->tlsld_got_offset_;
5234 }
5235
5236 // Get the Reference_flags for a particular relocation.
5237
5238 template<int size, bool big_endian>
5239 int
5240 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5241 unsigned int r_type,
5242 const Target_powerpc* target)
5243 {
5244 int ref = 0;
5245
5246 switch (r_type)
5247 {
5248 case elfcpp::R_POWERPC_NONE:
5249 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5250 case elfcpp::R_POWERPC_GNU_VTENTRY:
5251 case elfcpp::R_PPC64_TOC:
5252 // No symbol reference.
5253 break;
5254
5255 case elfcpp::R_PPC64_ADDR64:
5256 case elfcpp::R_PPC64_UADDR64:
5257 case elfcpp::R_POWERPC_ADDR32:
5258 case elfcpp::R_POWERPC_UADDR32:
5259 case elfcpp::R_POWERPC_ADDR16:
5260 case elfcpp::R_POWERPC_UADDR16:
5261 case elfcpp::R_POWERPC_ADDR16_LO:
5262 case elfcpp::R_POWERPC_ADDR16_HI:
5263 case elfcpp::R_POWERPC_ADDR16_HA:
5264 ref = Symbol::ABSOLUTE_REF;
5265 break;
5266
5267 case elfcpp::R_POWERPC_ADDR24:
5268 case elfcpp::R_POWERPC_ADDR14:
5269 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5270 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5271 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5272 break;
5273
5274 case elfcpp::R_PPC64_REL64:
5275 case elfcpp::R_POWERPC_REL32:
5276 case elfcpp::R_PPC_LOCAL24PC:
5277 case elfcpp::R_POWERPC_REL16:
5278 case elfcpp::R_POWERPC_REL16_LO:
5279 case elfcpp::R_POWERPC_REL16_HI:
5280 case elfcpp::R_POWERPC_REL16_HA:
5281 ref = Symbol::RELATIVE_REF;
5282 break;
5283
5284 case elfcpp::R_POWERPC_REL24:
5285 case elfcpp::R_PPC_PLTREL24:
5286 case elfcpp::R_POWERPC_REL14:
5287 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5288 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5289 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5290 break;
5291
5292 case elfcpp::R_POWERPC_GOT16:
5293 case elfcpp::R_POWERPC_GOT16_LO:
5294 case elfcpp::R_POWERPC_GOT16_HI:
5295 case elfcpp::R_POWERPC_GOT16_HA:
5296 case elfcpp::R_PPC64_GOT16_DS:
5297 case elfcpp::R_PPC64_GOT16_LO_DS:
5298 case elfcpp::R_PPC64_TOC16:
5299 case elfcpp::R_PPC64_TOC16_LO:
5300 case elfcpp::R_PPC64_TOC16_HI:
5301 case elfcpp::R_PPC64_TOC16_HA:
5302 case elfcpp::R_PPC64_TOC16_DS:
5303 case elfcpp::R_PPC64_TOC16_LO_DS:
5304 // Absolute in GOT.
5305 ref = Symbol::ABSOLUTE_REF;
5306 break;
5307
5308 case elfcpp::R_POWERPC_GOT_TPREL16:
5309 case elfcpp::R_POWERPC_TLS:
5310 ref = Symbol::TLS_REF;
5311 break;
5312
5313 case elfcpp::R_POWERPC_COPY:
5314 case elfcpp::R_POWERPC_GLOB_DAT:
5315 case elfcpp::R_POWERPC_JMP_SLOT:
5316 case elfcpp::R_POWERPC_RELATIVE:
5317 case elfcpp::R_POWERPC_DTPMOD:
5318 default:
5319 // Not expected. We will give an error later.
5320 break;
5321 }
5322
5323 if (size == 64 && target->abiversion() < 2)
5324 ref |= Symbol::FUNC_DESC_ABI;
5325 return ref;
5326 }
5327
5328 // Report an unsupported relocation against a local symbol.
5329
5330 template<int size, bool big_endian>
5331 void
5332 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5333 Sized_relobj_file<size, big_endian>* object,
5334 unsigned int r_type)
5335 {
5336 gold_error(_("%s: unsupported reloc %u against local symbol"),
5337 object->name().c_str(), r_type);
5338 }
5339
5340 // We are about to emit a dynamic relocation of type R_TYPE. If the
5341 // dynamic linker does not support it, issue an error.
5342
5343 template<int size, bool big_endian>
5344 void
5345 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5346 unsigned int r_type)
5347 {
5348 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5349
5350 // These are the relocation types supported by glibc for both 32-bit
5351 // and 64-bit powerpc.
5352 switch (r_type)
5353 {
5354 case elfcpp::R_POWERPC_NONE:
5355 case elfcpp::R_POWERPC_RELATIVE:
5356 case elfcpp::R_POWERPC_GLOB_DAT:
5357 case elfcpp::R_POWERPC_DTPMOD:
5358 case elfcpp::R_POWERPC_DTPREL:
5359 case elfcpp::R_POWERPC_TPREL:
5360 case elfcpp::R_POWERPC_JMP_SLOT:
5361 case elfcpp::R_POWERPC_COPY:
5362 case elfcpp::R_POWERPC_IRELATIVE:
5363 case elfcpp::R_POWERPC_ADDR32:
5364 case elfcpp::R_POWERPC_UADDR32:
5365 case elfcpp::R_POWERPC_ADDR24:
5366 case elfcpp::R_POWERPC_ADDR16:
5367 case elfcpp::R_POWERPC_UADDR16:
5368 case elfcpp::R_POWERPC_ADDR16_LO:
5369 case elfcpp::R_POWERPC_ADDR16_HI:
5370 case elfcpp::R_POWERPC_ADDR16_HA:
5371 case elfcpp::R_POWERPC_ADDR14:
5372 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5373 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5374 case elfcpp::R_POWERPC_REL32:
5375 case elfcpp::R_POWERPC_REL24:
5376 case elfcpp::R_POWERPC_TPREL16:
5377 case elfcpp::R_POWERPC_TPREL16_LO:
5378 case elfcpp::R_POWERPC_TPREL16_HI:
5379 case elfcpp::R_POWERPC_TPREL16_HA:
5380 return;
5381
5382 default:
5383 break;
5384 }
5385
5386 if (size == 64)
5387 {
5388 switch (r_type)
5389 {
5390 // These are the relocation types supported only on 64-bit.
5391 case elfcpp::R_PPC64_ADDR64:
5392 case elfcpp::R_PPC64_UADDR64:
5393 case elfcpp::R_PPC64_JMP_IREL:
5394 case elfcpp::R_PPC64_ADDR16_DS:
5395 case elfcpp::R_PPC64_ADDR16_LO_DS:
5396 case elfcpp::R_PPC64_ADDR16_HIGH:
5397 case elfcpp::R_PPC64_ADDR16_HIGHA:
5398 case elfcpp::R_PPC64_ADDR16_HIGHER:
5399 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5400 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5401 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5402 case elfcpp::R_PPC64_REL64:
5403 case elfcpp::R_POWERPC_ADDR30:
5404 case elfcpp::R_PPC64_TPREL16_DS:
5405 case elfcpp::R_PPC64_TPREL16_LO_DS:
5406 case elfcpp::R_PPC64_TPREL16_HIGH:
5407 case elfcpp::R_PPC64_TPREL16_HIGHA:
5408 case elfcpp::R_PPC64_TPREL16_HIGHER:
5409 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5410 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5411 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5412 return;
5413
5414 default:
5415 break;
5416 }
5417 }
5418 else
5419 {
5420 switch (r_type)
5421 {
5422 // These are the relocation types supported only on 32-bit.
5423 // ??? glibc ld.so doesn't need to support these.
5424 case elfcpp::R_POWERPC_DTPREL16:
5425 case elfcpp::R_POWERPC_DTPREL16_LO:
5426 case elfcpp::R_POWERPC_DTPREL16_HI:
5427 case elfcpp::R_POWERPC_DTPREL16_HA:
5428 return;
5429
5430 default:
5431 break;
5432 }
5433 }
5434
5435 // This prevents us from issuing more than one error per reloc
5436 // section. But we can still wind up issuing more than one
5437 // error per object file.
5438 if (this->issued_non_pic_error_)
5439 return;
5440 gold_assert(parameters->options().output_is_position_independent());
5441 object->error(_("requires unsupported dynamic reloc; "
5442 "recompile with -fPIC"));
5443 this->issued_non_pic_error_ = true;
5444 return;
5445 }
5446
5447 // Return whether we need to make a PLT entry for a relocation of the
5448 // given type against a STT_GNU_IFUNC symbol.
5449
5450 template<int size, bool big_endian>
5451 bool
5452 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5453 Target_powerpc<size, big_endian>* target,
5454 Sized_relobj_file<size, big_endian>* object,
5455 unsigned int r_type,
5456 bool report_err)
5457 {
5458 // In non-pic code any reference will resolve to the plt call stub
5459 // for the ifunc symbol.
5460 if ((size == 32 || target->abiversion() >= 2)
5461 && !parameters->options().output_is_position_independent())
5462 return true;
5463
5464 switch (r_type)
5465 {
5466 // Word size refs from data sections are OK, but don't need a PLT entry.
5467 case elfcpp::R_POWERPC_ADDR32:
5468 case elfcpp::R_POWERPC_UADDR32:
5469 if (size == 32)
5470 return false;
5471 break;
5472
5473 case elfcpp::R_PPC64_ADDR64:
5474 case elfcpp::R_PPC64_UADDR64:
5475 if (size == 64)
5476 return false;
5477 break;
5478
5479 // GOT refs are good, but also don't need a PLT entry.
5480 case elfcpp::R_POWERPC_GOT16:
5481 case elfcpp::R_POWERPC_GOT16_LO:
5482 case elfcpp::R_POWERPC_GOT16_HI:
5483 case elfcpp::R_POWERPC_GOT16_HA:
5484 case elfcpp::R_PPC64_GOT16_DS:
5485 case elfcpp::R_PPC64_GOT16_LO_DS:
5486 return false;
5487
5488 // Function calls are good, and these do need a PLT entry.
5489 case elfcpp::R_POWERPC_ADDR24:
5490 case elfcpp::R_POWERPC_ADDR14:
5491 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5492 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5493 case elfcpp::R_POWERPC_REL24:
5494 case elfcpp::R_PPC_PLTREL24:
5495 case elfcpp::R_POWERPC_REL14:
5496 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5497 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5498 return true;
5499
5500 default:
5501 break;
5502 }
5503
5504 // Anything else is a problem.
5505 // If we are building a static executable, the libc startup function
5506 // responsible for applying indirect function relocations is going
5507 // to complain about the reloc type.
5508 // If we are building a dynamic executable, we will have a text
5509 // relocation. The dynamic loader will set the text segment
5510 // writable and non-executable to apply text relocations. So we'll
5511 // segfault when trying to run the indirection function to resolve
5512 // the reloc.
5513 if (report_err)
5514 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5515 object->name().c_str(), r_type);
5516 return false;
5517 }
5518
5519 // Scan a relocation for a local symbol.
5520
5521 template<int size, bool big_endian>
5522 inline void
5523 Target_powerpc<size, big_endian>::Scan::local(
5524 Symbol_table* symtab,
5525 Layout* layout,
5526 Target_powerpc<size, big_endian>* target,
5527 Sized_relobj_file<size, big_endian>* object,
5528 unsigned int data_shndx,
5529 Output_section* output_section,
5530 const elfcpp::Rela<size, big_endian>& reloc,
5531 unsigned int r_type,
5532 const elfcpp::Sym<size, big_endian>& lsym,
5533 bool is_discarded)
5534 {
5535 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5536
5537 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5538 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5539 {
5540 this->expect_tls_get_addr_call();
5541 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5542 if (tls_type != tls::TLSOPT_NONE)
5543 this->skip_next_tls_get_addr_call();
5544 }
5545 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5546 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5547 {
5548 this->expect_tls_get_addr_call();
5549 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5550 if (tls_type != tls::TLSOPT_NONE)
5551 this->skip_next_tls_get_addr_call();
5552 }
5553
5554 Powerpc_relobj<size, big_endian>* ppc_object
5555 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5556
5557 if (is_discarded)
5558 {
5559 if (size == 64
5560 && data_shndx == ppc_object->opd_shndx()
5561 && r_type == elfcpp::R_PPC64_ADDR64)
5562 ppc_object->set_opd_discard(reloc.get_r_offset());
5563 return;
5564 }
5565
5566 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5567 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5568 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5569 {
5570 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5571 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5572 r_type, r_sym, reloc.get_r_addend());
5573 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5574 }
5575
5576 switch (r_type)
5577 {
5578 case elfcpp::R_POWERPC_NONE:
5579 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5580 case elfcpp::R_POWERPC_GNU_VTENTRY:
5581 case elfcpp::R_PPC64_TOCSAVE:
5582 case elfcpp::R_POWERPC_TLS:
5583 break;
5584
5585 case elfcpp::R_PPC64_TOC:
5586 {
5587 Output_data_got_powerpc<size, big_endian>* got
5588 = target->got_section(symtab, layout);
5589 if (parameters->options().output_is_position_independent())
5590 {
5591 Address off = reloc.get_r_offset();
5592 if (size == 64
5593 && target->abiversion() < 2
5594 && data_shndx == ppc_object->opd_shndx()
5595 && ppc_object->get_opd_discard(off - 8))
5596 break;
5597
5598 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5599 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5600 rela_dyn->add_output_section_relative(got->output_section(),
5601 elfcpp::R_POWERPC_RELATIVE,
5602 output_section,
5603 object, data_shndx, off,
5604 symobj->toc_base_offset());
5605 }
5606 }
5607 break;
5608
5609 case elfcpp::R_PPC64_ADDR64:
5610 case elfcpp::R_PPC64_UADDR64:
5611 case elfcpp::R_POWERPC_ADDR32:
5612 case elfcpp::R_POWERPC_UADDR32:
5613 case elfcpp::R_POWERPC_ADDR24:
5614 case elfcpp::R_POWERPC_ADDR16:
5615 case elfcpp::R_POWERPC_ADDR16_LO:
5616 case elfcpp::R_POWERPC_ADDR16_HI:
5617 case elfcpp::R_POWERPC_ADDR16_HA:
5618 case elfcpp::R_POWERPC_UADDR16:
5619 case elfcpp::R_PPC64_ADDR16_HIGH:
5620 case elfcpp::R_PPC64_ADDR16_HIGHA:
5621 case elfcpp::R_PPC64_ADDR16_HIGHER:
5622 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5623 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5624 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5625 case elfcpp::R_PPC64_ADDR16_DS:
5626 case elfcpp::R_PPC64_ADDR16_LO_DS:
5627 case elfcpp::R_POWERPC_ADDR14:
5628 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5629 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5630 // If building a shared library (or a position-independent
5631 // executable), we need to create a dynamic relocation for
5632 // this location.
5633 if (parameters->options().output_is_position_independent()
5634 || (size == 64 && is_ifunc && target->abiversion() < 2))
5635 {
5636 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5637 is_ifunc);
5638 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5639 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5640 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5641 {
5642 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5643 : elfcpp::R_POWERPC_RELATIVE);
5644 rela_dyn->add_local_relative(object, r_sym, dynrel,
5645 output_section, data_shndx,
5646 reloc.get_r_offset(),
5647 reloc.get_r_addend(), false);
5648 }
5649 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5650 {
5651 check_non_pic(object, r_type);
5652 rela_dyn->add_local(object, r_sym, r_type, output_section,
5653 data_shndx, reloc.get_r_offset(),
5654 reloc.get_r_addend());
5655 }
5656 else
5657 {
5658 gold_assert(lsym.get_st_value() == 0);
5659 unsigned int shndx = lsym.get_st_shndx();
5660 bool is_ordinary;
5661 shndx = object->adjust_sym_shndx(r_sym, shndx,
5662 &is_ordinary);
5663 if (!is_ordinary)
5664 object->error(_("section symbol %u has bad shndx %u"),
5665 r_sym, shndx);
5666 else
5667 rela_dyn->add_local_section(object, shndx, r_type,
5668 output_section, data_shndx,
5669 reloc.get_r_offset());
5670 }
5671 }
5672 break;
5673
5674 case elfcpp::R_POWERPC_REL24:
5675 case elfcpp::R_PPC_PLTREL24:
5676 case elfcpp::R_PPC_LOCAL24PC:
5677 case elfcpp::R_POWERPC_REL14:
5678 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5679 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5680 if (!is_ifunc)
5681 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5682 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5683 reloc.get_r_addend());
5684 break;
5685
5686 case elfcpp::R_PPC64_REL64:
5687 case elfcpp::R_POWERPC_REL32:
5688 case elfcpp::R_POWERPC_REL16:
5689 case elfcpp::R_POWERPC_REL16_LO:
5690 case elfcpp::R_POWERPC_REL16_HI:
5691 case elfcpp::R_POWERPC_REL16_HA:
5692 case elfcpp::R_POWERPC_SECTOFF:
5693 case elfcpp::R_POWERPC_SECTOFF_LO:
5694 case elfcpp::R_POWERPC_SECTOFF_HI:
5695 case elfcpp::R_POWERPC_SECTOFF_HA:
5696 case elfcpp::R_PPC64_SECTOFF_DS:
5697 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5698 case elfcpp::R_POWERPC_TPREL16:
5699 case elfcpp::R_POWERPC_TPREL16_LO:
5700 case elfcpp::R_POWERPC_TPREL16_HI:
5701 case elfcpp::R_POWERPC_TPREL16_HA:
5702 case elfcpp::R_PPC64_TPREL16_DS:
5703 case elfcpp::R_PPC64_TPREL16_LO_DS:
5704 case elfcpp::R_PPC64_TPREL16_HIGH:
5705 case elfcpp::R_PPC64_TPREL16_HIGHA:
5706 case elfcpp::R_PPC64_TPREL16_HIGHER:
5707 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5708 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5709 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5710 case elfcpp::R_POWERPC_DTPREL16:
5711 case elfcpp::R_POWERPC_DTPREL16_LO:
5712 case elfcpp::R_POWERPC_DTPREL16_HI:
5713 case elfcpp::R_POWERPC_DTPREL16_HA:
5714 case elfcpp::R_PPC64_DTPREL16_DS:
5715 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5716 case elfcpp::R_PPC64_DTPREL16_HIGH:
5717 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5718 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5719 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5720 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5721 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5722 case elfcpp::R_PPC64_TLSGD:
5723 case elfcpp::R_PPC64_TLSLD:
5724 case elfcpp::R_PPC64_ADDR64_LOCAL:
5725 break;
5726
5727 case elfcpp::R_POWERPC_GOT16:
5728 case elfcpp::R_POWERPC_GOT16_LO:
5729 case elfcpp::R_POWERPC_GOT16_HI:
5730 case elfcpp::R_POWERPC_GOT16_HA:
5731 case elfcpp::R_PPC64_GOT16_DS:
5732 case elfcpp::R_PPC64_GOT16_LO_DS:
5733 {
5734 // The symbol requires a GOT entry.
5735 Output_data_got_powerpc<size, big_endian>* got
5736 = target->got_section(symtab, layout);
5737 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5738
5739 if (!parameters->options().output_is_position_independent())
5740 {
5741 if (is_ifunc
5742 && (size == 32 || target->abiversion() >= 2))
5743 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5744 else
5745 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5746 }
5747 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5748 {
5749 // If we are generating a shared object or a pie, this
5750 // symbol's GOT entry will be set by a dynamic relocation.
5751 unsigned int off;
5752 off = got->add_constant(0);
5753 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5754
5755 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5756 is_ifunc);
5757 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5758 : elfcpp::R_POWERPC_RELATIVE);
5759 rela_dyn->add_local_relative(object, r_sym, dynrel,
5760 got, off, 0, false);
5761 }
5762 }
5763 break;
5764
5765 case elfcpp::R_PPC64_TOC16:
5766 case elfcpp::R_PPC64_TOC16_LO:
5767 case elfcpp::R_PPC64_TOC16_HI:
5768 case elfcpp::R_PPC64_TOC16_HA:
5769 case elfcpp::R_PPC64_TOC16_DS:
5770 case elfcpp::R_PPC64_TOC16_LO_DS:
5771 // We need a GOT section.
5772 target->got_section(symtab, layout);
5773 break;
5774
5775 case elfcpp::R_POWERPC_GOT_TLSGD16:
5776 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5777 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5778 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5779 {
5780 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5781 if (tls_type == tls::TLSOPT_NONE)
5782 {
5783 Output_data_got_powerpc<size, big_endian>* got
5784 = target->got_section(symtab, layout);
5785 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5786 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5787 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5788 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5789 }
5790 else if (tls_type == tls::TLSOPT_TO_LE)
5791 {
5792 // no GOT relocs needed for Local Exec.
5793 }
5794 else
5795 gold_unreachable();
5796 }
5797 break;
5798
5799 case elfcpp::R_POWERPC_GOT_TLSLD16:
5800 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5801 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5802 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5803 {
5804 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5805 if (tls_type == tls::TLSOPT_NONE)
5806 target->tlsld_got_offset(symtab, layout, object);
5807 else if (tls_type == tls::TLSOPT_TO_LE)
5808 {
5809 // no GOT relocs needed for Local Exec.
5810 if (parameters->options().emit_relocs())
5811 {
5812 Output_section* os = layout->tls_segment()->first_section();
5813 gold_assert(os != NULL);
5814 os->set_needs_symtab_index();
5815 }
5816 }
5817 else
5818 gold_unreachable();
5819 }
5820 break;
5821
5822 case elfcpp::R_POWERPC_GOT_DTPREL16:
5823 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5824 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5825 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5826 {
5827 Output_data_got_powerpc<size, big_endian>* got
5828 = target->got_section(symtab, layout);
5829 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5830 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5831 }
5832 break;
5833
5834 case elfcpp::R_POWERPC_GOT_TPREL16:
5835 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5836 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5837 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5838 {
5839 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5840 if (tls_type == tls::TLSOPT_NONE)
5841 {
5842 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5843 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5844 {
5845 Output_data_got_powerpc<size, big_endian>* got
5846 = target->got_section(symtab, layout);
5847 unsigned int off = got->add_constant(0);
5848 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5849
5850 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5851 rela_dyn->add_symbolless_local_addend(object, r_sym,
5852 elfcpp::R_POWERPC_TPREL,
5853 got, off, 0);
5854 }
5855 }
5856 else if (tls_type == tls::TLSOPT_TO_LE)
5857 {
5858 // no GOT relocs needed for Local Exec.
5859 }
5860 else
5861 gold_unreachable();
5862 }
5863 break;
5864
5865 default:
5866 unsupported_reloc_local(object, r_type);
5867 break;
5868 }
5869
5870 switch (r_type)
5871 {
5872 case elfcpp::R_POWERPC_GOT_TLSLD16:
5873 case elfcpp::R_POWERPC_GOT_TLSGD16:
5874 case elfcpp::R_POWERPC_GOT_TPREL16:
5875 case elfcpp::R_POWERPC_GOT_DTPREL16:
5876 case elfcpp::R_POWERPC_GOT16:
5877 case elfcpp::R_PPC64_GOT16_DS:
5878 case elfcpp::R_PPC64_TOC16:
5879 case elfcpp::R_PPC64_TOC16_DS:
5880 ppc_object->set_has_small_toc_reloc();
5881 default:
5882 break;
5883 }
5884 }
5885
5886 // Report an unsupported relocation against a global symbol.
5887
5888 template<int size, bool big_endian>
5889 void
5890 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5891 Sized_relobj_file<size, big_endian>* object,
5892 unsigned int r_type,
5893 Symbol* gsym)
5894 {
5895 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5896 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5897 }
5898
5899 // Scan a relocation for a global symbol.
5900
5901 template<int size, bool big_endian>
5902 inline void
5903 Target_powerpc<size, big_endian>::Scan::global(
5904 Symbol_table* symtab,
5905 Layout* layout,
5906 Target_powerpc<size, big_endian>* target,
5907 Sized_relobj_file<size, big_endian>* object,
5908 unsigned int data_shndx,
5909 Output_section* output_section,
5910 const elfcpp::Rela<size, big_endian>& reloc,
5911 unsigned int r_type,
5912 Symbol* gsym)
5913 {
5914 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5915 return;
5916
5917 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5918 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5919 {
5920 this->expect_tls_get_addr_call();
5921 const bool final = gsym->final_value_is_known();
5922 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5923 if (tls_type != tls::TLSOPT_NONE)
5924 this->skip_next_tls_get_addr_call();
5925 }
5926 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5927 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5928 {
5929 this->expect_tls_get_addr_call();
5930 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5931 if (tls_type != tls::TLSOPT_NONE)
5932 this->skip_next_tls_get_addr_call();
5933 }
5934
5935 Powerpc_relobj<size, big_endian>* ppc_object
5936 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5937
5938 // A STT_GNU_IFUNC symbol may require a PLT entry.
5939 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5940 bool pushed_ifunc = false;
5941 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5942 {
5943 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5944 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5945 reloc.get_r_addend());
5946 target->make_plt_entry(symtab, layout, gsym);
5947 pushed_ifunc = true;
5948 }
5949
5950 switch (r_type)
5951 {
5952 case elfcpp::R_POWERPC_NONE:
5953 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5954 case elfcpp::R_POWERPC_GNU_VTENTRY:
5955 case elfcpp::R_PPC_LOCAL24PC:
5956 case elfcpp::R_POWERPC_TLS:
5957 break;
5958
5959 case elfcpp::R_PPC64_TOC:
5960 {
5961 Output_data_got_powerpc<size, big_endian>* got
5962 = target->got_section(symtab, layout);
5963 if (parameters->options().output_is_position_independent())
5964 {
5965 Address off = reloc.get_r_offset();
5966 if (size == 64
5967 && data_shndx == ppc_object->opd_shndx()
5968 && ppc_object->get_opd_discard(off - 8))
5969 break;
5970
5971 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5972 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5973 if (data_shndx != ppc_object->opd_shndx())
5974 symobj = static_cast
5975 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5976 rela_dyn->add_output_section_relative(got->output_section(),
5977 elfcpp::R_POWERPC_RELATIVE,
5978 output_section,
5979 object, data_shndx, off,
5980 symobj->toc_base_offset());
5981 }
5982 }
5983 break;
5984
5985 case elfcpp::R_PPC64_ADDR64:
5986 if (size == 64
5987 && target->abiversion() < 2
5988 && data_shndx == ppc_object->opd_shndx()
5989 && (gsym->is_defined_in_discarded_section()
5990 || gsym->object() != object))
5991 {
5992 ppc_object->set_opd_discard(reloc.get_r_offset());
5993 break;
5994 }
5995 // Fall thru
5996 case elfcpp::R_PPC64_UADDR64:
5997 case elfcpp::R_POWERPC_ADDR32:
5998 case elfcpp::R_POWERPC_UADDR32:
5999 case elfcpp::R_POWERPC_ADDR24:
6000 case elfcpp::R_POWERPC_ADDR16:
6001 case elfcpp::R_POWERPC_ADDR16_LO:
6002 case elfcpp::R_POWERPC_ADDR16_HI:
6003 case elfcpp::R_POWERPC_ADDR16_HA:
6004 case elfcpp::R_POWERPC_UADDR16:
6005 case elfcpp::R_PPC64_ADDR16_HIGH:
6006 case elfcpp::R_PPC64_ADDR16_HIGHA:
6007 case elfcpp::R_PPC64_ADDR16_HIGHER:
6008 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6009 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6010 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6011 case elfcpp::R_PPC64_ADDR16_DS:
6012 case elfcpp::R_PPC64_ADDR16_LO_DS:
6013 case elfcpp::R_POWERPC_ADDR14:
6014 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6015 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6016 {
6017 // Make a PLT entry if necessary.
6018 if (gsym->needs_plt_entry())
6019 {
6020 // Since this is not a PC-relative relocation, we may be
6021 // taking the address of a function. In that case we need to
6022 // set the entry in the dynamic symbol table to the address of
6023 // the PLT call stub.
6024 bool need_ifunc_plt = false;
6025 if ((size == 32 || target->abiversion() >= 2)
6026 && gsym->is_from_dynobj()
6027 && !parameters->options().output_is_position_independent())
6028 {
6029 gsym->set_needs_dynsym_value();
6030 need_ifunc_plt = true;
6031 }
6032 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6033 {
6034 target->push_branch(ppc_object, data_shndx,
6035 reloc.get_r_offset(), r_type,
6036 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6037 reloc.get_r_addend());
6038 target->make_plt_entry(symtab, layout, gsym);
6039 }
6040 }
6041 // Make a dynamic relocation if necessary.
6042 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6043 || (size == 64 && is_ifunc && target->abiversion() < 2))
6044 {
6045 if (!parameters->options().output_is_position_independent()
6046 && gsym->may_need_copy_reloc())
6047 {
6048 target->copy_reloc(symtab, layout, object,
6049 data_shndx, output_section, gsym, reloc);
6050 }
6051 else if ((((size == 32
6052 && r_type == elfcpp::R_POWERPC_ADDR32)
6053 || (size == 64
6054 && r_type == elfcpp::R_PPC64_ADDR64
6055 && target->abiversion() >= 2))
6056 && gsym->can_use_relative_reloc(false)
6057 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6058 && parameters->options().shared()))
6059 || (size == 64
6060 && r_type == elfcpp::R_PPC64_ADDR64
6061 && target->abiversion() < 2
6062 && (gsym->can_use_relative_reloc(false)
6063 || data_shndx == ppc_object->opd_shndx())))
6064 {
6065 Reloc_section* rela_dyn
6066 = target->rela_dyn_section(symtab, layout, is_ifunc);
6067 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6068 : elfcpp::R_POWERPC_RELATIVE);
6069 rela_dyn->add_symbolless_global_addend(
6070 gsym, dynrel, output_section, object, data_shndx,
6071 reloc.get_r_offset(), reloc.get_r_addend());
6072 }
6073 else
6074 {
6075 Reloc_section* rela_dyn
6076 = target->rela_dyn_section(symtab, layout, is_ifunc);
6077 check_non_pic(object, r_type);
6078 rela_dyn->add_global(gsym, r_type, output_section,
6079 object, data_shndx,
6080 reloc.get_r_offset(),
6081 reloc.get_r_addend());
6082 }
6083 }
6084 }
6085 break;
6086
6087 case elfcpp::R_PPC_PLTREL24:
6088 case elfcpp::R_POWERPC_REL24:
6089 if (!is_ifunc)
6090 {
6091 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6092 r_type,
6093 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6094 reloc.get_r_addend());
6095 if (gsym->needs_plt_entry()
6096 || (!gsym->final_value_is_known()
6097 && (gsym->is_undefined()
6098 || gsym->is_from_dynobj()
6099 || gsym->is_preemptible())))
6100 target->make_plt_entry(symtab, layout, gsym);
6101 }
6102 // Fall thru
6103
6104 case elfcpp::R_PPC64_REL64:
6105 case elfcpp::R_POWERPC_REL32:
6106 // Make a dynamic relocation if necessary.
6107 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6108 {
6109 if (!parameters->options().output_is_position_independent()
6110 && gsym->may_need_copy_reloc())
6111 {
6112 target->copy_reloc(symtab, layout, object,
6113 data_shndx, output_section, gsym,
6114 reloc);
6115 }
6116 else
6117 {
6118 Reloc_section* rela_dyn
6119 = target->rela_dyn_section(symtab, layout, is_ifunc);
6120 check_non_pic(object, r_type);
6121 rela_dyn->add_global(gsym, r_type, output_section, object,
6122 data_shndx, reloc.get_r_offset(),
6123 reloc.get_r_addend());
6124 }
6125 }
6126 break;
6127
6128 case elfcpp::R_POWERPC_REL14:
6129 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6130 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6131 if (!is_ifunc)
6132 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6133 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6134 reloc.get_r_addend());
6135 break;
6136
6137 case elfcpp::R_POWERPC_REL16:
6138 case elfcpp::R_POWERPC_REL16_LO:
6139 case elfcpp::R_POWERPC_REL16_HI:
6140 case elfcpp::R_POWERPC_REL16_HA:
6141 case elfcpp::R_POWERPC_SECTOFF:
6142 case elfcpp::R_POWERPC_SECTOFF_LO:
6143 case elfcpp::R_POWERPC_SECTOFF_HI:
6144 case elfcpp::R_POWERPC_SECTOFF_HA:
6145 case elfcpp::R_PPC64_SECTOFF_DS:
6146 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6147 case elfcpp::R_POWERPC_TPREL16:
6148 case elfcpp::R_POWERPC_TPREL16_LO:
6149 case elfcpp::R_POWERPC_TPREL16_HI:
6150 case elfcpp::R_POWERPC_TPREL16_HA:
6151 case elfcpp::R_PPC64_TPREL16_DS:
6152 case elfcpp::R_PPC64_TPREL16_LO_DS:
6153 case elfcpp::R_PPC64_TPREL16_HIGH:
6154 case elfcpp::R_PPC64_TPREL16_HIGHA:
6155 case elfcpp::R_PPC64_TPREL16_HIGHER:
6156 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6157 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6158 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6159 case elfcpp::R_POWERPC_DTPREL16:
6160 case elfcpp::R_POWERPC_DTPREL16_LO:
6161 case elfcpp::R_POWERPC_DTPREL16_HI:
6162 case elfcpp::R_POWERPC_DTPREL16_HA:
6163 case elfcpp::R_PPC64_DTPREL16_DS:
6164 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6165 case elfcpp::R_PPC64_DTPREL16_HIGH:
6166 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6167 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6168 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6169 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6170 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6171 case elfcpp::R_PPC64_TLSGD:
6172 case elfcpp::R_PPC64_TLSLD:
6173 case elfcpp::R_PPC64_ADDR64_LOCAL:
6174 break;
6175
6176 case elfcpp::R_POWERPC_GOT16:
6177 case elfcpp::R_POWERPC_GOT16_LO:
6178 case elfcpp::R_POWERPC_GOT16_HI:
6179 case elfcpp::R_POWERPC_GOT16_HA:
6180 case elfcpp::R_PPC64_GOT16_DS:
6181 case elfcpp::R_PPC64_GOT16_LO_DS:
6182 {
6183 // The symbol requires a GOT entry.
6184 Output_data_got_powerpc<size, big_endian>* got;
6185
6186 got = target->got_section(symtab, layout);
6187 if (gsym->final_value_is_known())
6188 {
6189 if (is_ifunc
6190 && (size == 32 || target->abiversion() >= 2))
6191 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6192 else
6193 got->add_global(gsym, GOT_TYPE_STANDARD);
6194 }
6195 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6196 {
6197 // If we are generating a shared object or a pie, this
6198 // symbol's GOT entry will be set by a dynamic relocation.
6199 unsigned int off = got->add_constant(0);
6200 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6201
6202 Reloc_section* rela_dyn
6203 = target->rela_dyn_section(symtab, layout, is_ifunc);
6204
6205 if (gsym->can_use_relative_reloc(false)
6206 && !((size == 32
6207 || target->abiversion() >= 2)
6208 && gsym->visibility() == elfcpp::STV_PROTECTED
6209 && parameters->options().shared()))
6210 {
6211 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6212 : elfcpp::R_POWERPC_RELATIVE);
6213 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6214 }
6215 else
6216 {
6217 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6218 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6219 }
6220 }
6221 }
6222 break;
6223
6224 case elfcpp::R_PPC64_TOC16:
6225 case elfcpp::R_PPC64_TOC16_LO:
6226 case elfcpp::R_PPC64_TOC16_HI:
6227 case elfcpp::R_PPC64_TOC16_HA:
6228 case elfcpp::R_PPC64_TOC16_DS:
6229 case elfcpp::R_PPC64_TOC16_LO_DS:
6230 // We need a GOT section.
6231 target->got_section(symtab, layout);
6232 break;
6233
6234 case elfcpp::R_POWERPC_GOT_TLSGD16:
6235 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6236 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6237 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6238 {
6239 const bool final = gsym->final_value_is_known();
6240 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6241 if (tls_type == tls::TLSOPT_NONE)
6242 {
6243 Output_data_got_powerpc<size, big_endian>* got
6244 = target->got_section(symtab, layout);
6245 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6246 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6247 elfcpp::R_POWERPC_DTPMOD,
6248 elfcpp::R_POWERPC_DTPREL);
6249 }
6250 else if (tls_type == tls::TLSOPT_TO_IE)
6251 {
6252 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6253 {
6254 Output_data_got_powerpc<size, big_endian>* got
6255 = target->got_section(symtab, layout);
6256 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6257 if (gsym->is_undefined()
6258 || gsym->is_from_dynobj())
6259 {
6260 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6261 elfcpp::R_POWERPC_TPREL);
6262 }
6263 else
6264 {
6265 unsigned int off = got->add_constant(0);
6266 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6267 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6268 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6269 got, off, 0);
6270 }
6271 }
6272 }
6273 else if (tls_type == tls::TLSOPT_TO_LE)
6274 {
6275 // no GOT relocs needed for Local Exec.
6276 }
6277 else
6278 gold_unreachable();
6279 }
6280 break;
6281
6282 case elfcpp::R_POWERPC_GOT_TLSLD16:
6283 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6284 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6285 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6286 {
6287 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6288 if (tls_type == tls::TLSOPT_NONE)
6289 target->tlsld_got_offset(symtab, layout, object);
6290 else if (tls_type == tls::TLSOPT_TO_LE)
6291 {
6292 // no GOT relocs needed for Local Exec.
6293 if (parameters->options().emit_relocs())
6294 {
6295 Output_section* os = layout->tls_segment()->first_section();
6296 gold_assert(os != NULL);
6297 os->set_needs_symtab_index();
6298 }
6299 }
6300 else
6301 gold_unreachable();
6302 }
6303 break;
6304
6305 case elfcpp::R_POWERPC_GOT_DTPREL16:
6306 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6307 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6308 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6309 {
6310 Output_data_got_powerpc<size, big_endian>* got
6311 = target->got_section(symtab, layout);
6312 if (!gsym->final_value_is_known()
6313 && (gsym->is_from_dynobj()
6314 || gsym->is_undefined()
6315 || gsym->is_preemptible()))
6316 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6317 target->rela_dyn_section(layout),
6318 elfcpp::R_POWERPC_DTPREL);
6319 else
6320 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6321 }
6322 break;
6323
6324 case elfcpp::R_POWERPC_GOT_TPREL16:
6325 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6326 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6327 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6328 {
6329 const bool final = gsym->final_value_is_known();
6330 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6331 if (tls_type == tls::TLSOPT_NONE)
6332 {
6333 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6334 {
6335 Output_data_got_powerpc<size, big_endian>* got
6336 = target->got_section(symtab, layout);
6337 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6338 if (gsym->is_undefined()
6339 || gsym->is_from_dynobj())
6340 {
6341 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6342 elfcpp::R_POWERPC_TPREL);
6343 }
6344 else
6345 {
6346 unsigned int off = got->add_constant(0);
6347 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6348 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6349 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6350 got, off, 0);
6351 }
6352 }
6353 }
6354 else if (tls_type == tls::TLSOPT_TO_LE)
6355 {
6356 // no GOT relocs needed for Local Exec.
6357 }
6358 else
6359 gold_unreachable();
6360 }
6361 break;
6362
6363 default:
6364 unsupported_reloc_global(object, r_type, gsym);
6365 break;
6366 }
6367
6368 switch (r_type)
6369 {
6370 case elfcpp::R_POWERPC_GOT_TLSLD16:
6371 case elfcpp::R_POWERPC_GOT_TLSGD16:
6372 case elfcpp::R_POWERPC_GOT_TPREL16:
6373 case elfcpp::R_POWERPC_GOT_DTPREL16:
6374 case elfcpp::R_POWERPC_GOT16:
6375 case elfcpp::R_PPC64_GOT16_DS:
6376 case elfcpp::R_PPC64_TOC16:
6377 case elfcpp::R_PPC64_TOC16_DS:
6378 ppc_object->set_has_small_toc_reloc();
6379 default:
6380 break;
6381 }
6382 }
6383
6384 // Process relocations for gc.
6385
6386 template<int size, bool big_endian>
6387 void
6388 Target_powerpc<size, big_endian>::gc_process_relocs(
6389 Symbol_table* symtab,
6390 Layout* layout,
6391 Sized_relobj_file<size, big_endian>* object,
6392 unsigned int data_shndx,
6393 unsigned int,
6394 const unsigned char* prelocs,
6395 size_t reloc_count,
6396 Output_section* output_section,
6397 bool needs_special_offset_handling,
6398 size_t local_symbol_count,
6399 const unsigned char* plocal_symbols)
6400 {
6401 typedef Target_powerpc<size, big_endian> Powerpc;
6402 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6403 Powerpc_relobj<size, big_endian>* ppc_object
6404 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6405 if (size == 64)
6406 ppc_object->set_opd_valid();
6407 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6408 {
6409 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6410 for (p = ppc_object->access_from_map()->begin();
6411 p != ppc_object->access_from_map()->end();
6412 ++p)
6413 {
6414 Address dst_off = p->first;
6415 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6416 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6417 for (s = p->second.begin(); s != p->second.end(); ++s)
6418 {
6419 Relobj* src_obj = s->first;
6420 unsigned int src_indx = s->second;
6421 symtab->gc()->add_reference(src_obj, src_indx,
6422 ppc_object, dst_indx);
6423 }
6424 p->second.clear();
6425 }
6426 ppc_object->access_from_map()->clear();
6427 ppc_object->process_gc_mark(symtab);
6428 // Don't look at .opd relocs as .opd will reference everything.
6429 return;
6430 }
6431
6432 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6433 typename Target_powerpc::Relocatable_size_for_reloc>(
6434 symtab,
6435 layout,
6436 this,
6437 object,
6438 data_shndx,
6439 prelocs,
6440 reloc_count,
6441 output_section,
6442 needs_special_offset_handling,
6443 local_symbol_count,
6444 plocal_symbols);
6445 }
6446
6447 // Handle target specific gc actions when adding a gc reference from
6448 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6449 // and DST_OFF. For powerpc64, this adds a referenc to the code
6450 // section of a function descriptor.
6451
6452 template<int size, bool big_endian>
6453 void
6454 Target_powerpc<size, big_endian>::do_gc_add_reference(
6455 Symbol_table* symtab,
6456 Relobj* src_obj,
6457 unsigned int src_shndx,
6458 Relobj* dst_obj,
6459 unsigned int dst_shndx,
6460 Address dst_off) const
6461 {
6462 if (size != 64 || dst_obj->is_dynamic())
6463 return;
6464
6465 Powerpc_relobj<size, big_endian>* ppc_object
6466 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6467 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6468 {
6469 if (ppc_object->opd_valid())
6470 {
6471 dst_shndx = ppc_object->get_opd_ent(dst_off);
6472 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6473 }
6474 else
6475 {
6476 // If we haven't run scan_opd_relocs, we must delay
6477 // processing this function descriptor reference.
6478 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6479 }
6480 }
6481 }
6482
6483 // Add any special sections for this symbol to the gc work list.
6484 // For powerpc64, this adds the code section of a function
6485 // descriptor.
6486
6487 template<int size, bool big_endian>
6488 void
6489 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6490 Symbol_table* symtab,
6491 Symbol* sym) const
6492 {
6493 if (size == 64)
6494 {
6495 Powerpc_relobj<size, big_endian>* ppc_object
6496 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6497 bool is_ordinary;
6498 unsigned int shndx = sym->shndx(&is_ordinary);
6499 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6500 {
6501 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6502 Address dst_off = gsym->value();
6503 if (ppc_object->opd_valid())
6504 {
6505 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6506 symtab->gc()->worklist().push_back(Section_id(ppc_object,
6507 dst_indx));
6508 }
6509 else
6510 ppc_object->add_gc_mark(dst_off);
6511 }
6512 }
6513 }
6514
6515 // For a symbol location in .opd, set LOC to the location of the
6516 // function entry.
6517
6518 template<int size, bool big_endian>
6519 void
6520 Target_powerpc<size, big_endian>::do_function_location(
6521 Symbol_location* loc) const
6522 {
6523 if (size == 64 && loc->shndx != 0)
6524 {
6525 if (loc->object->is_dynamic())
6526 {
6527 Powerpc_dynobj<size, big_endian>* ppc_object
6528 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6529 if (loc->shndx == ppc_object->opd_shndx())
6530 {
6531 Address dest_off;
6532 Address off = loc->offset - ppc_object->opd_address();
6533 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6534 loc->offset = dest_off;
6535 }
6536 }
6537 else
6538 {
6539 const Powerpc_relobj<size, big_endian>* ppc_object
6540 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6541 if (loc->shndx == ppc_object->opd_shndx())
6542 {
6543 Address dest_off;
6544 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6545 loc->offset = dest_off;
6546 }
6547 }
6548 }
6549 }
6550
6551 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6552 // compiled with -fsplit-stack. The function calls non-split-stack
6553 // code. Change the function to ensure it has enough stack space to
6554 // call some random function.
6555
6556 template<int size, bool big_endian>
6557 void
6558 Target_powerpc<size, big_endian>::do_calls_non_split(
6559 Relobj* object,
6560 unsigned int shndx,
6561 section_offset_type fnoffset,
6562 section_size_type fnsize,
6563 unsigned char* view,
6564 section_size_type view_size,
6565 std::string* from,
6566 std::string* to) const
6567 {
6568 // 32-bit not supported.
6569 if (size == 32)
6570 {
6571 // warn
6572 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6573 view, view_size, from, to);
6574 return;
6575 }
6576
6577 // The function always starts with
6578 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
6579 // addis %r12,%r1,-allocate@ha
6580 // addi %r12,%r12,-allocate@l
6581 // cmpld %r12,%r0
6582 // but note that the addis or addi may be replaced with a nop
6583
6584 unsigned char *entry = view + fnoffset;
6585 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6586
6587 if ((insn & 0xffff0000) == addis_2_12)
6588 {
6589 /* Skip ELFv2 global entry code. */
6590 entry += 8;
6591 insn = elfcpp::Swap<32, big_endian>::readval(entry);
6592 }
6593
6594 unsigned char *pinsn = entry;
6595 bool ok = false;
6596 const uint32_t ld_private_ss = 0xe80d8fc0;
6597 if (insn == ld_private_ss)
6598 {
6599 int32_t allocate = 0;
6600 while (1)
6601 {
6602 pinsn += 4;
6603 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6604 if ((insn & 0xffff0000) == addis_12_1)
6605 allocate += (insn & 0xffff) << 16;
6606 else if ((insn & 0xffff0000) == addi_12_1
6607 || (insn & 0xffff0000) == addi_12_12)
6608 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6609 else if (insn != nop)
6610 break;
6611 }
6612 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6613 {
6614 int extra = parameters->options().split_stack_adjust_size();
6615 allocate -= extra;
6616 if (allocate >= 0 || extra < 0)
6617 {
6618 object->error(_("split-stack stack size overflow at "
6619 "section %u offset %0zx"),
6620 shndx, static_cast<size_t>(fnoffset));
6621 return;
6622 }
6623 pinsn = entry + 4;
6624 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6625 if (insn != addis_12_1)
6626 {
6627 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6628 pinsn += 4;
6629 insn = addi_12_12 | (allocate & 0xffff);
6630 if (insn != addi_12_12)
6631 {
6632 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6633 pinsn += 4;
6634 }
6635 }
6636 else
6637 {
6638 insn = addi_12_1 | (allocate & 0xffff);
6639 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6640 pinsn += 4;
6641 }
6642 if (pinsn != entry + 12)
6643 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6644
6645 ok = true;
6646 }
6647 }
6648
6649 if (!ok)
6650 {
6651 if (!object->has_no_split_stack())
6652 object->error(_("failed to match split-stack sequence at "
6653 "section %u offset %0zx"),
6654 shndx, static_cast<size_t>(fnoffset));
6655 }
6656 }
6657
6658 // Scan relocations for a section.
6659
6660 template<int size, bool big_endian>
6661 void
6662 Target_powerpc<size, big_endian>::scan_relocs(
6663 Symbol_table* symtab,
6664 Layout* layout,
6665 Sized_relobj_file<size, big_endian>* object,
6666 unsigned int data_shndx,
6667 unsigned int sh_type,
6668 const unsigned char* prelocs,
6669 size_t reloc_count,
6670 Output_section* output_section,
6671 bool needs_special_offset_handling,
6672 size_t local_symbol_count,
6673 const unsigned char* plocal_symbols)
6674 {
6675 typedef Target_powerpc<size, big_endian> Powerpc;
6676 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6677
6678 if (sh_type == elfcpp::SHT_REL)
6679 {
6680 gold_error(_("%s: unsupported REL reloc section"),
6681 object->name().c_str());
6682 return;
6683 }
6684
6685 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6686 symtab,
6687 layout,
6688 this,
6689 object,
6690 data_shndx,
6691 prelocs,
6692 reloc_count,
6693 output_section,
6694 needs_special_offset_handling,
6695 local_symbol_count,
6696 plocal_symbols);
6697 }
6698
6699 // Functor class for processing the global symbol table.
6700 // Removes symbols defined on discarded opd entries.
6701
6702 template<bool big_endian>
6703 class Global_symbol_visitor_opd
6704 {
6705 public:
6706 Global_symbol_visitor_opd()
6707 { }
6708
6709 void
6710 operator()(Sized_symbol<64>* sym)
6711 {
6712 if (sym->has_symtab_index()
6713 || sym->source() != Symbol::FROM_OBJECT
6714 || !sym->in_real_elf())
6715 return;
6716
6717 if (sym->object()->is_dynamic())
6718 return;
6719
6720 Powerpc_relobj<64, big_endian>* symobj
6721 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6722 if (symobj->opd_shndx() == 0)
6723 return;
6724
6725 bool is_ordinary;
6726 unsigned int shndx = sym->shndx(&is_ordinary);
6727 if (shndx == symobj->opd_shndx()
6728 && symobj->get_opd_discard(sym->value()))
6729 {
6730 sym->set_undefined();
6731 sym->set_visibility(elfcpp::STV_DEFAULT);
6732 sym->set_is_defined_in_discarded_section();
6733 sym->set_symtab_index(-1U);
6734 }
6735 }
6736 };
6737
6738 template<int size, bool big_endian>
6739 void
6740 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6741 Layout* layout,
6742 Symbol_table* symtab)
6743 {
6744 if (size == 64)
6745 {
6746 Output_data_save_res<size, big_endian>* savres
6747 = new Output_data_save_res<size, big_endian>(symtab);
6748 this->savres_section_ = savres;
6749 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6750 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6751 savres, ORDER_TEXT, false);
6752 }
6753 }
6754
6755 // Sort linker created .got section first (for the header), then input
6756 // sections belonging to files using small model code.
6757
6758 template<bool big_endian>
6759 class Sort_toc_sections
6760 {
6761 public:
6762 bool
6763 operator()(const Output_section::Input_section& is1,
6764 const Output_section::Input_section& is2) const
6765 {
6766 if (!is1.is_input_section() && is2.is_input_section())
6767 return true;
6768 bool small1
6769 = (is1.is_input_section()
6770 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6771 ->has_small_toc_reloc()));
6772 bool small2
6773 = (is2.is_input_section()
6774 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6775 ->has_small_toc_reloc()));
6776 return small1 && !small2;
6777 }
6778 };
6779
6780 // Finalize the sections.
6781
6782 template<int size, bool big_endian>
6783 void
6784 Target_powerpc<size, big_endian>::do_finalize_sections(
6785 Layout* layout,
6786 const Input_objects*,
6787 Symbol_table* symtab)
6788 {
6789 if (parameters->doing_static_link())
6790 {
6791 // At least some versions of glibc elf-init.o have a strong
6792 // reference to __rela_iplt marker syms. A weak ref would be
6793 // better..
6794 if (this->iplt_ != NULL)
6795 {
6796 Reloc_section* rel = this->iplt_->rel_plt();
6797 symtab->define_in_output_data("__rela_iplt_start", NULL,
6798 Symbol_table::PREDEFINED, rel, 0, 0,
6799 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6800 elfcpp::STV_HIDDEN, 0, false, true);
6801 symtab->define_in_output_data("__rela_iplt_end", NULL,
6802 Symbol_table::PREDEFINED, rel, 0, 0,
6803 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6804 elfcpp::STV_HIDDEN, 0, true, true);
6805 }
6806 else
6807 {
6808 symtab->define_as_constant("__rela_iplt_start", NULL,
6809 Symbol_table::PREDEFINED, 0, 0,
6810 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6811 elfcpp::STV_HIDDEN, 0, true, false);
6812 symtab->define_as_constant("__rela_iplt_end", NULL,
6813 Symbol_table::PREDEFINED, 0, 0,
6814 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6815 elfcpp::STV_HIDDEN, 0, true, false);
6816 }
6817 }
6818
6819 if (size == 64)
6820 {
6821 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6822 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6823
6824 if (!parameters->options().relocatable())
6825 {
6826 this->define_save_restore_funcs(layout, symtab);
6827
6828 // Annoyingly, we need to make these sections now whether or
6829 // not we need them. If we delay until do_relax then we
6830 // need to mess with the relaxation machinery checkpointing.
6831 this->got_section(symtab, layout);
6832 this->make_brlt_section(layout);
6833
6834 if (parameters->options().toc_sort())
6835 {
6836 Output_section* os = this->got_->output_section();
6837 if (os != NULL && os->input_sections().size() > 1)
6838 std::stable_sort(os->input_sections().begin(),
6839 os->input_sections().end(),
6840 Sort_toc_sections<big_endian>());
6841 }
6842 }
6843 }
6844
6845 // Fill in some more dynamic tags.
6846 Output_data_dynamic* odyn = layout->dynamic_data();
6847 if (odyn != NULL)
6848 {
6849 const Reloc_section* rel_plt = (this->plt_ == NULL
6850 ? NULL
6851 : this->plt_->rel_plt());
6852 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6853 this->rela_dyn_, true, size == 32);
6854
6855 if (size == 32)
6856 {
6857 if (this->got_ != NULL)
6858 {
6859 this->got_->finalize_data_size();
6860 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6861 this->got_, this->got_->g_o_t());
6862 }
6863 }
6864 else
6865 {
6866 if (this->glink_ != NULL)
6867 {
6868 this->glink_->finalize_data_size();
6869 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6870 this->glink_,
6871 (this->glink_->pltresolve_size
6872 - 32));
6873 }
6874 }
6875 }
6876
6877 // Emit any relocs we saved in an attempt to avoid generating COPY
6878 // relocs.
6879 if (this->copy_relocs_.any_saved_relocs())
6880 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6881 }
6882
6883 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6884 // reloc.
6885
6886 static bool
6887 ok_lo_toc_insn(uint32_t insn)
6888 {
6889 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6890 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6891 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6892 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6893 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6894 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6895 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6896 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6897 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6898 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6899 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6900 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6901 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6902 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6903 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6904 && (insn & 3) != 1)
6905 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6906 && ((insn & 3) == 0 || (insn & 3) == 3))
6907 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6908 }
6909
6910 // Return the value to use for a branch relocation.
6911
6912 template<int size, bool big_endian>
6913 bool
6914 Target_powerpc<size, big_endian>::symval_for_branch(
6915 const Symbol_table* symtab,
6916 const Sized_symbol<size>* gsym,
6917 Powerpc_relobj<size, big_endian>* object,
6918 Address *value,
6919 unsigned int *dest_shndx)
6920 {
6921 if (size == 32 || this->abiversion() >= 2)
6922 gold_unreachable();
6923 *dest_shndx = 0;
6924
6925 // If the symbol is defined in an opd section, ie. is a function
6926 // descriptor, use the function descriptor code entry address
6927 Powerpc_relobj<size, big_endian>* symobj = object;
6928 if (gsym != NULL
6929 && gsym->source() != Symbol::FROM_OBJECT)
6930 return true;
6931 if (gsym != NULL)
6932 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6933 unsigned int shndx = symobj->opd_shndx();
6934 if (shndx == 0)
6935 return true;
6936 Address opd_addr = symobj->get_output_section_offset(shndx);
6937 if (opd_addr == invalid_address)
6938 return true;
6939 opd_addr += symobj->output_section_address(shndx);
6940 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6941 {
6942 Address sec_off;
6943 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6944 if (symtab->is_section_folded(symobj, *dest_shndx))
6945 {
6946 Section_id folded
6947 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6948 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6949 *dest_shndx = folded.second;
6950 }
6951 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6952 if (sec_addr == invalid_address)
6953 return false;
6954
6955 sec_addr += symobj->output_section(*dest_shndx)->address();
6956 *value = sec_addr + sec_off;
6957 }
6958 return true;
6959 }
6960
6961 // Perform a relocation.
6962
6963 template<int size, bool big_endian>
6964 inline bool
6965 Target_powerpc<size, big_endian>::Relocate::relocate(
6966 const Relocate_info<size, big_endian>* relinfo,
6967 Target_powerpc* target,
6968 Output_section* os,
6969 size_t relnum,
6970 const elfcpp::Rela<size, big_endian>& rela,
6971 unsigned int r_type,
6972 const Sized_symbol<size>* gsym,
6973 const Symbol_value<size>* psymval,
6974 unsigned char* view,
6975 Address address,
6976 section_size_type view_size)
6977 {
6978 if (view == NULL)
6979 return true;
6980
6981 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6982 {
6983 case Track_tls::NOT_EXPECTED:
6984 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6985 _("__tls_get_addr call lacks marker reloc"));
6986 break;
6987 case Track_tls::EXPECTED:
6988 // We have already complained.
6989 break;
6990 case Track_tls::SKIP:
6991 return true;
6992 case Track_tls::NORMAL:
6993 break;
6994 }
6995
6996 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6997 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6998 Powerpc_relobj<size, big_endian>* const object
6999 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7000 Address value = 0;
7001 bool has_stub_value = false;
7002 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7003 if ((gsym != NULL
7004 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7005 : object->local_has_plt_offset(r_sym))
7006 && (!psymval->is_ifunc_symbol()
7007 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7008 {
7009 if (size == 64
7010 && gsym != NULL
7011 && target->abiversion() >= 2
7012 && !parameters->options().output_is_position_independent()
7013 && !is_branch_reloc(r_type))
7014 {
7015 Address off = target->glink_section()->find_global_entry(gsym);
7016 if (off != invalid_address)
7017 {
7018 value = target->glink_section()->global_entry_address() + off;
7019 has_stub_value = true;
7020 }
7021 }
7022 else
7023 {
7024 Stub_table<size, big_endian>* stub_table
7025 = object->stub_table(relinfo->data_shndx);
7026 if (stub_table == NULL)
7027 {
7028 // This is a ref from a data section to an ifunc symbol.
7029 if (target->stub_tables().size() != 0)
7030 stub_table = target->stub_tables()[0];
7031 }
7032 if (stub_table != NULL)
7033 {
7034 Address off;
7035 if (gsym != NULL)
7036 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7037 rela.get_r_addend());
7038 else
7039 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7040 rela.get_r_addend());
7041 if (off != invalid_address)
7042 {
7043 value = stub_table->stub_address() + off;
7044 has_stub_value = true;
7045 }
7046 }
7047 }
7048 // We don't care too much about bogus debug references to
7049 // non-local functions, but otherwise there had better be a plt
7050 // call stub or global entry stub as appropriate.
7051 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7052 }
7053
7054 if (r_type == elfcpp::R_POWERPC_GOT16
7055 || r_type == elfcpp::R_POWERPC_GOT16_LO
7056 || r_type == elfcpp::R_POWERPC_GOT16_HI
7057 || r_type == elfcpp::R_POWERPC_GOT16_HA
7058 || r_type == elfcpp::R_PPC64_GOT16_DS
7059 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7060 {
7061 if (gsym != NULL)
7062 {
7063 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7064 value = gsym->got_offset(GOT_TYPE_STANDARD);
7065 }
7066 else
7067 {
7068 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7069 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7070 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7071 }
7072 value -= target->got_section()->got_base_offset(object);
7073 }
7074 else if (r_type == elfcpp::R_PPC64_TOC)
7075 {
7076 value = (target->got_section()->output_section()->address()
7077 + object->toc_base_offset());
7078 }
7079 else if (gsym != NULL
7080 && (r_type == elfcpp::R_POWERPC_REL24
7081 || r_type == elfcpp::R_PPC_PLTREL24)
7082 && has_stub_value)
7083 {
7084 if (size == 64)
7085 {
7086 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7087 Valtype* wv = reinterpret_cast<Valtype*>(view);
7088 bool can_plt_call = false;
7089 if (rela.get_r_offset() + 8 <= view_size)
7090 {
7091 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7092 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7093 if ((insn & 1) != 0
7094 && (insn2 == nop
7095 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7096 {
7097 elfcpp::Swap<32, big_endian>::
7098 writeval(wv + 1, ld_2_1 + target->stk_toc());
7099 can_plt_call = true;
7100 }
7101 }
7102 if (!can_plt_call)
7103 {
7104 // If we don't have a branch and link followed by a nop,
7105 // we can't go via the plt because there is no place to
7106 // put a toc restoring instruction.
7107 // Unless we know we won't be returning.
7108 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7109 can_plt_call = true;
7110 }
7111 if (!can_plt_call)
7112 {
7113 // g++ as of 20130507 emits self-calls without a
7114 // following nop. This is arguably wrong since we have
7115 // conflicting information. On the one hand a global
7116 // symbol and on the other a local call sequence, but
7117 // don't error for this special case.
7118 // It isn't possible to cheaply verify we have exactly
7119 // such a call. Allow all calls to the same section.
7120 bool ok = false;
7121 Address code = value;
7122 if (gsym->source() == Symbol::FROM_OBJECT
7123 && gsym->object() == object)
7124 {
7125 unsigned int dest_shndx = 0;
7126 if (target->abiversion() < 2)
7127 {
7128 Address addend = rela.get_r_addend();
7129 code = psymval->value(object, addend);
7130 target->symval_for_branch(relinfo->symtab, gsym, object,
7131 &code, &dest_shndx);
7132 }
7133 bool is_ordinary;
7134 if (dest_shndx == 0)
7135 dest_shndx = gsym->shndx(&is_ordinary);
7136 ok = dest_shndx == relinfo->data_shndx;
7137 }
7138 if (!ok)
7139 {
7140 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7141 _("call lacks nop, can't restore toc; "
7142 "recompile with -fPIC"));
7143 value = code;
7144 }
7145 }
7146 }
7147 }
7148 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7149 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7150 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7151 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7152 {
7153 // First instruction of a global dynamic sequence, arg setup insn.
7154 const bool final = gsym == NULL || gsym->final_value_is_known();
7155 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7156 enum Got_type got_type = GOT_TYPE_STANDARD;
7157 if (tls_type == tls::TLSOPT_NONE)
7158 got_type = GOT_TYPE_TLSGD;
7159 else if (tls_type == tls::TLSOPT_TO_IE)
7160 got_type = GOT_TYPE_TPREL;
7161 if (got_type != GOT_TYPE_STANDARD)
7162 {
7163 if (gsym != NULL)
7164 {
7165 gold_assert(gsym->has_got_offset(got_type));
7166 value = gsym->got_offset(got_type);
7167 }
7168 else
7169 {
7170 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7171 gold_assert(object->local_has_got_offset(r_sym, got_type));
7172 value = object->local_got_offset(r_sym, got_type);
7173 }
7174 value -= target->got_section()->got_base_offset(object);
7175 }
7176 if (tls_type == tls::TLSOPT_TO_IE)
7177 {
7178 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7179 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7180 {
7181 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7182 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7183 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7184 if (size == 32)
7185 insn |= 32 << 26; // lwz
7186 else
7187 insn |= 58 << 26; // ld
7188 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7189 }
7190 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7191 - elfcpp::R_POWERPC_GOT_TLSGD16);
7192 }
7193 else if (tls_type == tls::TLSOPT_TO_LE)
7194 {
7195 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7196 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7197 {
7198 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7199 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7200 insn &= (1 << 26) - (1 << 21); // extract rt
7201 if (size == 32)
7202 insn |= addis_0_2;
7203 else
7204 insn |= addis_0_13;
7205 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7206 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7207 value = psymval->value(object, rela.get_r_addend());
7208 }
7209 else
7210 {
7211 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7212 Insn insn = nop;
7213 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7214 r_type = elfcpp::R_POWERPC_NONE;
7215 }
7216 }
7217 }
7218 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7219 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7220 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7221 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7222 {
7223 // First instruction of a local dynamic sequence, arg setup insn.
7224 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7225 if (tls_type == tls::TLSOPT_NONE)
7226 {
7227 value = target->tlsld_got_offset();
7228 value -= target->got_section()->got_base_offset(object);
7229 }
7230 else
7231 {
7232 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7233 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7234 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7235 {
7236 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7237 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7238 insn &= (1 << 26) - (1 << 21); // extract rt
7239 if (size == 32)
7240 insn |= addis_0_2;
7241 else
7242 insn |= addis_0_13;
7243 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7244 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7245 value = dtp_offset;
7246 }
7247 else
7248 {
7249 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7250 Insn insn = nop;
7251 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7252 r_type = elfcpp::R_POWERPC_NONE;
7253 }
7254 }
7255 }
7256 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7257 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7258 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7259 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7260 {
7261 // Accesses relative to a local dynamic sequence address,
7262 // no optimisation here.
7263 if (gsym != NULL)
7264 {
7265 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7266 value = gsym->got_offset(GOT_TYPE_DTPREL);
7267 }
7268 else
7269 {
7270 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7271 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7272 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7273 }
7274 value -= target->got_section()->got_base_offset(object);
7275 }
7276 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7277 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7278 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7279 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7280 {
7281 // First instruction of initial exec sequence.
7282 const bool final = gsym == NULL || gsym->final_value_is_known();
7283 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7284 if (tls_type == tls::TLSOPT_NONE)
7285 {
7286 if (gsym != NULL)
7287 {
7288 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7289 value = gsym->got_offset(GOT_TYPE_TPREL);
7290 }
7291 else
7292 {
7293 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7294 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7295 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7296 }
7297 value -= target->got_section()->got_base_offset(object);
7298 }
7299 else
7300 {
7301 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7302 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7303 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7304 {
7305 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7306 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7307 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7308 if (size == 32)
7309 insn |= addis_0_2;
7310 else
7311 insn |= addis_0_13;
7312 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7313 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7314 value = psymval->value(object, rela.get_r_addend());
7315 }
7316 else
7317 {
7318 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7319 Insn insn = nop;
7320 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7321 r_type = elfcpp::R_POWERPC_NONE;
7322 }
7323 }
7324 }
7325 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7326 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7327 {
7328 // Second instruction of a global dynamic sequence,
7329 // the __tls_get_addr call
7330 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7331 const bool final = gsym == NULL || gsym->final_value_is_known();
7332 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7333 if (tls_type != tls::TLSOPT_NONE)
7334 {
7335 if (tls_type == tls::TLSOPT_TO_IE)
7336 {
7337 Insn* iview = reinterpret_cast<Insn*>(view);
7338 Insn insn = add_3_3_13;
7339 if (size == 32)
7340 insn = add_3_3_2;
7341 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7342 r_type = elfcpp::R_POWERPC_NONE;
7343 }
7344 else
7345 {
7346 Insn* iview = reinterpret_cast<Insn*>(view);
7347 Insn insn = addi_3_3;
7348 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7349 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7350 view += 2 * big_endian;
7351 value = psymval->value(object, rela.get_r_addend());
7352 }
7353 this->skip_next_tls_get_addr_call();
7354 }
7355 }
7356 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7357 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7358 {
7359 // Second instruction of a local dynamic sequence,
7360 // the __tls_get_addr call
7361 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7362 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7363 if (tls_type == tls::TLSOPT_TO_LE)
7364 {
7365 Insn* iview = reinterpret_cast<Insn*>(view);
7366 Insn insn = addi_3_3;
7367 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7368 this->skip_next_tls_get_addr_call();
7369 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7370 view += 2 * big_endian;
7371 value = dtp_offset;
7372 }
7373 }
7374 else if (r_type == elfcpp::R_POWERPC_TLS)
7375 {
7376 // Second instruction of an initial exec sequence
7377 const bool final = gsym == NULL || gsym->final_value_is_known();
7378 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7379 if (tls_type == tls::TLSOPT_TO_LE)
7380 {
7381 Insn* iview = reinterpret_cast<Insn*>(view);
7382 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7383 unsigned int reg = size == 32 ? 2 : 13;
7384 insn = at_tls_transform(insn, reg);
7385 gold_assert(insn != 0);
7386 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7387 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7388 view += 2 * big_endian;
7389 value = psymval->value(object, rela.get_r_addend());
7390 }
7391 }
7392 else if (!has_stub_value)
7393 {
7394 Address addend = 0;
7395 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7396 addend = rela.get_r_addend();
7397 value = psymval->value(object, addend);
7398 if (size == 64 && is_branch_reloc(r_type))
7399 {
7400 if (target->abiversion() >= 2)
7401 {
7402 if (gsym != NULL)
7403 value += object->ppc64_local_entry_offset(gsym);
7404 else
7405 value += object->ppc64_local_entry_offset(r_sym);
7406 }
7407 else
7408 {
7409 unsigned int dest_shndx;
7410 target->symval_for_branch(relinfo->symtab, gsym, object,
7411 &value, &dest_shndx);
7412 }
7413 }
7414 Address max_branch_offset = max_branch_delta(r_type);
7415 if (max_branch_offset != 0
7416 && value - address + max_branch_offset >= 2 * max_branch_offset)
7417 {
7418 Stub_table<size, big_endian>* stub_table
7419 = object->stub_table(relinfo->data_shndx);
7420 if (stub_table != NULL)
7421 {
7422 Address off = stub_table->find_long_branch_entry(object, value);
7423 if (off != invalid_address)
7424 {
7425 value = (stub_table->stub_address() + stub_table->plt_size()
7426 + off);
7427 has_stub_value = true;
7428 }
7429 }
7430 }
7431 }
7432
7433 switch (r_type)
7434 {
7435 case elfcpp::R_PPC64_REL64:
7436 case elfcpp::R_POWERPC_REL32:
7437 case elfcpp::R_POWERPC_REL24:
7438 case elfcpp::R_PPC_PLTREL24:
7439 case elfcpp::R_PPC_LOCAL24PC:
7440 case elfcpp::R_POWERPC_REL16:
7441 case elfcpp::R_POWERPC_REL16_LO:
7442 case elfcpp::R_POWERPC_REL16_HI:
7443 case elfcpp::R_POWERPC_REL16_HA:
7444 case elfcpp::R_POWERPC_REL14:
7445 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7446 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7447 value -= address;
7448 break;
7449
7450 case elfcpp::R_PPC64_TOC16:
7451 case elfcpp::R_PPC64_TOC16_LO:
7452 case elfcpp::R_PPC64_TOC16_HI:
7453 case elfcpp::R_PPC64_TOC16_HA:
7454 case elfcpp::R_PPC64_TOC16_DS:
7455 case elfcpp::R_PPC64_TOC16_LO_DS:
7456 // Subtract the TOC base address.
7457 value -= (target->got_section()->output_section()->address()
7458 + object->toc_base_offset());
7459 break;
7460
7461 case elfcpp::R_POWERPC_SECTOFF:
7462 case elfcpp::R_POWERPC_SECTOFF_LO:
7463 case elfcpp::R_POWERPC_SECTOFF_HI:
7464 case elfcpp::R_POWERPC_SECTOFF_HA:
7465 case elfcpp::R_PPC64_SECTOFF_DS:
7466 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7467 if (os != NULL)
7468 value -= os->address();
7469 break;
7470
7471 case elfcpp::R_PPC64_TPREL16_DS:
7472 case elfcpp::R_PPC64_TPREL16_LO_DS:
7473 case elfcpp::R_PPC64_TPREL16_HIGH:
7474 case elfcpp::R_PPC64_TPREL16_HIGHA:
7475 if (size != 64)
7476 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7477 break;
7478 case elfcpp::R_POWERPC_TPREL16:
7479 case elfcpp::R_POWERPC_TPREL16_LO:
7480 case elfcpp::R_POWERPC_TPREL16_HI:
7481 case elfcpp::R_POWERPC_TPREL16_HA:
7482 case elfcpp::R_POWERPC_TPREL:
7483 case elfcpp::R_PPC64_TPREL16_HIGHER:
7484 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7485 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7486 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7487 // tls symbol values are relative to tls_segment()->vaddr()
7488 value -= tp_offset;
7489 break;
7490
7491 case elfcpp::R_PPC64_DTPREL16_DS:
7492 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7493 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7494 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7495 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7496 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7497 if (size != 64)
7498 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7499 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7500 break;
7501 case elfcpp::R_POWERPC_DTPREL16:
7502 case elfcpp::R_POWERPC_DTPREL16_LO:
7503 case elfcpp::R_POWERPC_DTPREL16_HI:
7504 case elfcpp::R_POWERPC_DTPREL16_HA:
7505 case elfcpp::R_POWERPC_DTPREL:
7506 case elfcpp::R_PPC64_DTPREL16_HIGH:
7507 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7508 // tls symbol values are relative to tls_segment()->vaddr()
7509 value -= dtp_offset;
7510 break;
7511
7512 case elfcpp::R_PPC64_ADDR64_LOCAL:
7513 if (gsym != NULL)
7514 value += object->ppc64_local_entry_offset(gsym);
7515 else
7516 value += object->ppc64_local_entry_offset(r_sym);
7517 break;
7518
7519 default:
7520 break;
7521 }
7522
7523 Insn branch_bit = 0;
7524 switch (r_type)
7525 {
7526 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7527 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7528 branch_bit = 1 << 21;
7529 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7530 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7531 {
7532 Insn* iview = reinterpret_cast<Insn*>(view);
7533 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7534 insn &= ~(1 << 21);
7535 insn |= branch_bit;
7536 if (this->is_isa_v2)
7537 {
7538 // Set 'a' bit. This is 0b00010 in BO field for branch
7539 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7540 // for branch on CTR insns (BO == 1a00t or 1a01t).
7541 if ((insn & (0x14 << 21)) == (0x04 << 21))
7542 insn |= 0x02 << 21;
7543 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7544 insn |= 0x08 << 21;
7545 else
7546 break;
7547 }
7548 else
7549 {
7550 // Invert 'y' bit if not the default.
7551 if (static_cast<Signed_address>(value) < 0)
7552 insn ^= 1 << 21;
7553 }
7554 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7555 }
7556 break;
7557
7558 default:
7559 break;
7560 }
7561
7562 if (size == 64)
7563 {
7564 // Multi-instruction sequences that access the TOC can be
7565 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7566 // to nop; addi rb,r2,x;
7567 switch (r_type)
7568 {
7569 default:
7570 break;
7571
7572 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7573 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7574 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7575 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7576 case elfcpp::R_POWERPC_GOT16_HA:
7577 case elfcpp::R_PPC64_TOC16_HA:
7578 if (parameters->options().toc_optimize())
7579 {
7580 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7581 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7582 if ((insn & ((0x3f << 26) | 0x1f << 16))
7583 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7584 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7585 _("toc optimization is not supported "
7586 "for %#08x instruction"), insn);
7587 else if (value + 0x8000 < 0x10000)
7588 {
7589 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7590 return true;
7591 }
7592 }
7593 break;
7594
7595 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7596 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7597 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7598 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7599 case elfcpp::R_POWERPC_GOT16_LO:
7600 case elfcpp::R_PPC64_GOT16_LO_DS:
7601 case elfcpp::R_PPC64_TOC16_LO:
7602 case elfcpp::R_PPC64_TOC16_LO_DS:
7603 if (parameters->options().toc_optimize())
7604 {
7605 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7606 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7607 if (!ok_lo_toc_insn(insn))
7608 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7609 _("toc optimization is not supported "
7610 "for %#08x instruction"), insn);
7611 else if (value + 0x8000 < 0x10000)
7612 {
7613 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7614 {
7615 // Transform addic to addi when we change reg.
7616 insn &= ~((0x3f << 26) | (0x1f << 16));
7617 insn |= (14u << 26) | (2 << 16);
7618 }
7619 else
7620 {
7621 insn &= ~(0x1f << 16);
7622 insn |= 2 << 16;
7623 }
7624 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7625 }
7626 }
7627 break;
7628 }
7629 }
7630
7631 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7632 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7633 switch (r_type)
7634 {
7635 case elfcpp::R_POWERPC_ADDR32:
7636 case elfcpp::R_POWERPC_UADDR32:
7637 if (size == 64)
7638 overflow = Reloc::CHECK_BITFIELD;
7639 break;
7640
7641 case elfcpp::R_POWERPC_REL32:
7642 if (size == 64)
7643 overflow = Reloc::CHECK_SIGNED;
7644 break;
7645
7646 case elfcpp::R_POWERPC_UADDR16:
7647 overflow = Reloc::CHECK_BITFIELD;
7648 break;
7649
7650 case elfcpp::R_POWERPC_ADDR16:
7651 // We really should have three separate relocations,
7652 // one for 16-bit data, one for insns with 16-bit signed fields,
7653 // and one for insns with 16-bit unsigned fields.
7654 overflow = Reloc::CHECK_BITFIELD;
7655 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7656 overflow = Reloc::CHECK_LOW_INSN;
7657 break;
7658
7659 case elfcpp::R_POWERPC_ADDR16_HI:
7660 case elfcpp::R_POWERPC_ADDR16_HA:
7661 case elfcpp::R_POWERPC_GOT16_HI:
7662 case elfcpp::R_POWERPC_GOT16_HA:
7663 case elfcpp::R_POWERPC_PLT16_HI:
7664 case elfcpp::R_POWERPC_PLT16_HA:
7665 case elfcpp::R_POWERPC_SECTOFF_HI:
7666 case elfcpp::R_POWERPC_SECTOFF_HA:
7667 case elfcpp::R_PPC64_TOC16_HI:
7668 case elfcpp::R_PPC64_TOC16_HA:
7669 case elfcpp::R_PPC64_PLTGOT16_HI:
7670 case elfcpp::R_PPC64_PLTGOT16_HA:
7671 case elfcpp::R_POWERPC_TPREL16_HI:
7672 case elfcpp::R_POWERPC_TPREL16_HA:
7673 case elfcpp::R_POWERPC_DTPREL16_HI:
7674 case elfcpp::R_POWERPC_DTPREL16_HA:
7675 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7676 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7677 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7678 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7679 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7680 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7681 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7682 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7683 case elfcpp::R_POWERPC_REL16_HI:
7684 case elfcpp::R_POWERPC_REL16_HA:
7685 if (size != 32)
7686 overflow = Reloc::CHECK_HIGH_INSN;
7687 break;
7688
7689 case elfcpp::R_POWERPC_REL16:
7690 case elfcpp::R_PPC64_TOC16:
7691 case elfcpp::R_POWERPC_GOT16:
7692 case elfcpp::R_POWERPC_SECTOFF:
7693 case elfcpp::R_POWERPC_TPREL16:
7694 case elfcpp::R_POWERPC_DTPREL16:
7695 case elfcpp::R_POWERPC_GOT_TLSGD16:
7696 case elfcpp::R_POWERPC_GOT_TLSLD16:
7697 case elfcpp::R_POWERPC_GOT_TPREL16:
7698 case elfcpp::R_POWERPC_GOT_DTPREL16:
7699 overflow = Reloc::CHECK_LOW_INSN;
7700 break;
7701
7702 case elfcpp::R_POWERPC_ADDR24:
7703 case elfcpp::R_POWERPC_ADDR14:
7704 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7705 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7706 case elfcpp::R_PPC64_ADDR16_DS:
7707 case elfcpp::R_POWERPC_REL24:
7708 case elfcpp::R_PPC_PLTREL24:
7709 case elfcpp::R_PPC_LOCAL24PC:
7710 case elfcpp::R_PPC64_TPREL16_DS:
7711 case elfcpp::R_PPC64_DTPREL16_DS:
7712 case elfcpp::R_PPC64_TOC16_DS:
7713 case elfcpp::R_PPC64_GOT16_DS:
7714 case elfcpp::R_PPC64_SECTOFF_DS:
7715 case elfcpp::R_POWERPC_REL14:
7716 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7717 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7718 overflow = Reloc::CHECK_SIGNED;
7719 break;
7720 }
7721
7722 if (overflow == Reloc::CHECK_LOW_INSN
7723 || overflow == Reloc::CHECK_HIGH_INSN)
7724 {
7725 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7726 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7727
7728 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7729 overflow = Reloc::CHECK_BITFIELD;
7730 else if (overflow == Reloc::CHECK_LOW_INSN
7731 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7732 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7733 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7734 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7735 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7736 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7737 overflow = Reloc::CHECK_UNSIGNED;
7738 else
7739 overflow = Reloc::CHECK_SIGNED;
7740 }
7741
7742 typename Powerpc_relocate_functions<size, big_endian>::Status status
7743 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7744 switch (r_type)
7745 {
7746 case elfcpp::R_POWERPC_NONE:
7747 case elfcpp::R_POWERPC_TLS:
7748 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7749 case elfcpp::R_POWERPC_GNU_VTENTRY:
7750 break;
7751
7752 case elfcpp::R_PPC64_ADDR64:
7753 case elfcpp::R_PPC64_REL64:
7754 case elfcpp::R_PPC64_TOC:
7755 case elfcpp::R_PPC64_ADDR64_LOCAL:
7756 Reloc::addr64(view, value);
7757 break;
7758
7759 case elfcpp::R_POWERPC_TPREL:
7760 case elfcpp::R_POWERPC_DTPREL:
7761 if (size == 64)
7762 Reloc::addr64(view, value);
7763 else
7764 status = Reloc::addr32(view, value, overflow);
7765 break;
7766
7767 case elfcpp::R_PPC64_UADDR64:
7768 Reloc::addr64_u(view, value);
7769 break;
7770
7771 case elfcpp::R_POWERPC_ADDR32:
7772 status = Reloc::addr32(view, value, overflow);
7773 break;
7774
7775 case elfcpp::R_POWERPC_REL32:
7776 case elfcpp::R_POWERPC_UADDR32:
7777 status = Reloc::addr32_u(view, value, overflow);
7778 break;
7779
7780 case elfcpp::R_POWERPC_ADDR24:
7781 case elfcpp::R_POWERPC_REL24:
7782 case elfcpp::R_PPC_PLTREL24:
7783 case elfcpp::R_PPC_LOCAL24PC:
7784 status = Reloc::addr24(view, value, overflow);
7785 break;
7786
7787 case elfcpp::R_POWERPC_GOT_DTPREL16:
7788 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7789 case elfcpp::R_POWERPC_GOT_TPREL16:
7790 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7791 if (size == 64)
7792 {
7793 // On ppc64 these are all ds form
7794 status = Reloc::addr16_ds(view, value, overflow);
7795 break;
7796 }
7797 case elfcpp::R_POWERPC_ADDR16:
7798 case elfcpp::R_POWERPC_REL16:
7799 case elfcpp::R_PPC64_TOC16:
7800 case elfcpp::R_POWERPC_GOT16:
7801 case elfcpp::R_POWERPC_SECTOFF:
7802 case elfcpp::R_POWERPC_TPREL16:
7803 case elfcpp::R_POWERPC_DTPREL16:
7804 case elfcpp::R_POWERPC_GOT_TLSGD16:
7805 case elfcpp::R_POWERPC_GOT_TLSLD16:
7806 case elfcpp::R_POWERPC_ADDR16_LO:
7807 case elfcpp::R_POWERPC_REL16_LO:
7808 case elfcpp::R_PPC64_TOC16_LO:
7809 case elfcpp::R_POWERPC_GOT16_LO:
7810 case elfcpp::R_POWERPC_SECTOFF_LO:
7811 case elfcpp::R_POWERPC_TPREL16_LO:
7812 case elfcpp::R_POWERPC_DTPREL16_LO:
7813 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7814 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7815 status = Reloc::addr16(view, value, overflow);
7816 break;
7817
7818 case elfcpp::R_POWERPC_UADDR16:
7819 status = Reloc::addr16_u(view, value, overflow);
7820 break;
7821
7822 case elfcpp::R_PPC64_ADDR16_HIGH:
7823 case elfcpp::R_PPC64_TPREL16_HIGH:
7824 case elfcpp::R_PPC64_DTPREL16_HIGH:
7825 if (size == 32)
7826 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7827 goto unsupp;
7828 case elfcpp::R_POWERPC_ADDR16_HI:
7829 case elfcpp::R_POWERPC_REL16_HI:
7830 case elfcpp::R_PPC64_TOC16_HI:
7831 case elfcpp::R_POWERPC_GOT16_HI:
7832 case elfcpp::R_POWERPC_SECTOFF_HI:
7833 case elfcpp::R_POWERPC_TPREL16_HI:
7834 case elfcpp::R_POWERPC_DTPREL16_HI:
7835 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7836 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7837 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7838 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7839 Reloc::addr16_hi(view, value);
7840 break;
7841
7842 case elfcpp::R_PPC64_ADDR16_HIGHA:
7843 case elfcpp::R_PPC64_TPREL16_HIGHA:
7844 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7845 if (size == 32)
7846 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7847 goto unsupp;
7848 case elfcpp::R_POWERPC_ADDR16_HA:
7849 case elfcpp::R_POWERPC_REL16_HA:
7850 case elfcpp::R_PPC64_TOC16_HA:
7851 case elfcpp::R_POWERPC_GOT16_HA:
7852 case elfcpp::R_POWERPC_SECTOFF_HA:
7853 case elfcpp::R_POWERPC_TPREL16_HA:
7854 case elfcpp::R_POWERPC_DTPREL16_HA:
7855 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7856 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7857 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7858 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7859 Reloc::addr16_ha(view, value);
7860 break;
7861
7862 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7863 if (size == 32)
7864 // R_PPC_EMB_NADDR16_LO
7865 goto unsupp;
7866 case elfcpp::R_PPC64_ADDR16_HIGHER:
7867 case elfcpp::R_PPC64_TPREL16_HIGHER:
7868 Reloc::addr16_hi2(view, value);
7869 break;
7870
7871 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7872 if (size == 32)
7873 // R_PPC_EMB_NADDR16_HI
7874 goto unsupp;
7875 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7876 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7877 Reloc::addr16_ha2(view, value);
7878 break;
7879
7880 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7881 if (size == 32)
7882 // R_PPC_EMB_NADDR16_HA
7883 goto unsupp;
7884 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7885 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7886 Reloc::addr16_hi3(view, value);
7887 break;
7888
7889 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7890 if (size == 32)
7891 // R_PPC_EMB_SDAI16
7892 goto unsupp;
7893 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7894 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7895 Reloc::addr16_ha3(view, value);
7896 break;
7897
7898 case elfcpp::R_PPC64_DTPREL16_DS:
7899 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7900 if (size == 32)
7901 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7902 goto unsupp;
7903 case elfcpp::R_PPC64_TPREL16_DS:
7904 case elfcpp::R_PPC64_TPREL16_LO_DS:
7905 if (size == 32)
7906 // R_PPC_TLSGD, R_PPC_TLSLD
7907 break;
7908 case elfcpp::R_PPC64_ADDR16_DS:
7909 case elfcpp::R_PPC64_ADDR16_LO_DS:
7910 case elfcpp::R_PPC64_TOC16_DS:
7911 case elfcpp::R_PPC64_TOC16_LO_DS:
7912 case elfcpp::R_PPC64_GOT16_DS:
7913 case elfcpp::R_PPC64_GOT16_LO_DS:
7914 case elfcpp::R_PPC64_SECTOFF_DS:
7915 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7916 status = Reloc::addr16_ds(view, value, overflow);
7917 break;
7918
7919 case elfcpp::R_POWERPC_ADDR14:
7920 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7921 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7922 case elfcpp::R_POWERPC_REL14:
7923 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7924 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7925 status = Reloc::addr14(view, value, overflow);
7926 break;
7927
7928 case elfcpp::R_POWERPC_COPY:
7929 case elfcpp::R_POWERPC_GLOB_DAT:
7930 case elfcpp::R_POWERPC_JMP_SLOT:
7931 case elfcpp::R_POWERPC_RELATIVE:
7932 case elfcpp::R_POWERPC_DTPMOD:
7933 case elfcpp::R_PPC64_JMP_IREL:
7934 case elfcpp::R_POWERPC_IRELATIVE:
7935 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7936 _("unexpected reloc %u in object file"),
7937 r_type);
7938 break;
7939
7940 case elfcpp::R_PPC_EMB_SDA21:
7941 if (size == 32)
7942 goto unsupp;
7943 else
7944 {
7945 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7946 }
7947 break;
7948
7949 case elfcpp::R_PPC_EMB_SDA2I16:
7950 case elfcpp::R_PPC_EMB_SDA2REL:
7951 if (size == 32)
7952 goto unsupp;
7953 // R_PPC64_TLSGD, R_PPC64_TLSLD
7954 break;
7955
7956 case elfcpp::R_POWERPC_PLT32:
7957 case elfcpp::R_POWERPC_PLTREL32:
7958 case elfcpp::R_POWERPC_PLT16_LO:
7959 case elfcpp::R_POWERPC_PLT16_HI:
7960 case elfcpp::R_POWERPC_PLT16_HA:
7961 case elfcpp::R_PPC_SDAREL16:
7962 case elfcpp::R_POWERPC_ADDR30:
7963 case elfcpp::R_PPC64_PLT64:
7964 case elfcpp::R_PPC64_PLTREL64:
7965 case elfcpp::R_PPC64_PLTGOT16:
7966 case elfcpp::R_PPC64_PLTGOT16_LO:
7967 case elfcpp::R_PPC64_PLTGOT16_HI:
7968 case elfcpp::R_PPC64_PLTGOT16_HA:
7969 case elfcpp::R_PPC64_PLT16_LO_DS:
7970 case elfcpp::R_PPC64_PLTGOT16_DS:
7971 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7972 case elfcpp::R_PPC_EMB_RELSDA:
7973 case elfcpp::R_PPC_TOC16:
7974 default:
7975 unsupp:
7976 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7977 _("unsupported reloc %u"),
7978 r_type);
7979 break;
7980 }
7981 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7982 && (has_stub_value
7983 || !(gsym != NULL
7984 && gsym->is_undefined()
7985 && is_branch_reloc(r_type))))
7986 {
7987 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7988 _("relocation overflow"));
7989 if (has_stub_value)
7990 gold_info(_("try relinking with a smaller --stub-group-size"));
7991 }
7992
7993 return true;
7994 }
7995
7996 // Relocate section data.
7997
7998 template<int size, bool big_endian>
7999 void
8000 Target_powerpc<size, big_endian>::relocate_section(
8001 const Relocate_info<size, big_endian>* relinfo,
8002 unsigned int sh_type,
8003 const unsigned char* prelocs,
8004 size_t reloc_count,
8005 Output_section* output_section,
8006 bool needs_special_offset_handling,
8007 unsigned char* view,
8008 Address address,
8009 section_size_type view_size,
8010 const Reloc_symbol_changes* reloc_symbol_changes)
8011 {
8012 typedef Target_powerpc<size, big_endian> Powerpc;
8013 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8014 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8015 Powerpc_comdat_behavior;
8016
8017 gold_assert(sh_type == elfcpp::SHT_RELA);
8018
8019 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
8020 Powerpc_relocate, Powerpc_comdat_behavior>(
8021 relinfo,
8022 this,
8023 prelocs,
8024 reloc_count,
8025 output_section,
8026 needs_special_offset_handling,
8027 view,
8028 address,
8029 view_size,
8030 reloc_symbol_changes);
8031 }
8032
8033 class Powerpc_scan_relocatable_reloc
8034 {
8035 public:
8036 // Return the strategy to use for a local symbol which is not a
8037 // section symbol, given the relocation type.
8038 inline Relocatable_relocs::Reloc_strategy
8039 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8040 {
8041 if (r_type == 0 && r_sym == 0)
8042 return Relocatable_relocs::RELOC_DISCARD;
8043 return Relocatable_relocs::RELOC_COPY;
8044 }
8045
8046 // Return the strategy to use for a local symbol which is a section
8047 // symbol, given the relocation type.
8048 inline Relocatable_relocs::Reloc_strategy
8049 local_section_strategy(unsigned int, Relobj*)
8050 {
8051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8052 }
8053
8054 // Return the strategy to use for a global symbol, given the
8055 // relocation type, the object, and the symbol index.
8056 inline Relocatable_relocs::Reloc_strategy
8057 global_strategy(unsigned int r_type, Relobj*, unsigned int)
8058 {
8059 if (r_type == elfcpp::R_PPC_PLTREL24)
8060 return Relocatable_relocs::RELOC_SPECIAL;
8061 return Relocatable_relocs::RELOC_COPY;
8062 }
8063 };
8064
8065 // Scan the relocs during a relocatable link.
8066
8067 template<int size, bool big_endian>
8068 void
8069 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8070 Symbol_table* symtab,
8071 Layout* layout,
8072 Sized_relobj_file<size, big_endian>* object,
8073 unsigned int data_shndx,
8074 unsigned int sh_type,
8075 const unsigned char* prelocs,
8076 size_t reloc_count,
8077 Output_section* output_section,
8078 bool needs_special_offset_handling,
8079 size_t local_symbol_count,
8080 const unsigned char* plocal_symbols,
8081 Relocatable_relocs* rr)
8082 {
8083 gold_assert(sh_type == elfcpp::SHT_RELA);
8084
8085 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
8086 Powerpc_scan_relocatable_reloc>(
8087 symtab,
8088 layout,
8089 object,
8090 data_shndx,
8091 prelocs,
8092 reloc_count,
8093 output_section,
8094 needs_special_offset_handling,
8095 local_symbol_count,
8096 plocal_symbols,
8097 rr);
8098 }
8099
8100 // Emit relocations for a section.
8101 // This is a modified version of the function by the same name in
8102 // target-reloc.h. Using relocate_special_relocatable for
8103 // R_PPC_PLTREL24 would require duplication of the entire body of the
8104 // loop, so we may as well duplicate the whole thing.
8105
8106 template<int size, bool big_endian>
8107 void
8108 Target_powerpc<size, big_endian>::relocate_relocs(
8109 const Relocate_info<size, big_endian>* relinfo,
8110 unsigned int sh_type,
8111 const unsigned char* prelocs,
8112 size_t reloc_count,
8113 Output_section* output_section,
8114 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8115 const Relocatable_relocs* rr,
8116 unsigned char*,
8117 Address view_address,
8118 section_size_type,
8119 unsigned char* reloc_view,
8120 section_size_type reloc_view_size)
8121 {
8122 gold_assert(sh_type == elfcpp::SHT_RELA);
8123
8124 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8125 Reltype;
8126 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8127 Reltype_write;
8128 const int reloc_size
8129 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8130
8131 Powerpc_relobj<size, big_endian>* const object
8132 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8133 const unsigned int local_count = object->local_symbol_count();
8134 unsigned int got2_shndx = object->got2_shndx();
8135 Address got2_addend = 0;
8136 if (got2_shndx != 0)
8137 {
8138 got2_addend = object->get_output_section_offset(got2_shndx);
8139 gold_assert(got2_addend != invalid_address);
8140 }
8141
8142 unsigned char* pwrite = reloc_view;
8143 bool zap_next = false;
8144 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8145 {
8146 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
8147 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8148 continue;
8149
8150 Reltype reloc(prelocs);
8151 Reltype_write reloc_write(pwrite);
8152
8153 Address offset = reloc.get_r_offset();
8154 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8155 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8156 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8157 const unsigned int orig_r_sym = r_sym;
8158 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8159 = reloc.get_r_addend();
8160 const Symbol* gsym = NULL;
8161
8162 if (zap_next)
8163 {
8164 // We could arrange to discard these and other relocs for
8165 // tls optimised sequences in the strategy methods, but for
8166 // now do as BFD ld does.
8167 r_type = elfcpp::R_POWERPC_NONE;
8168 zap_next = false;
8169 }
8170
8171 // Get the new symbol index.
8172 Output_section* os = NULL;
8173 if (r_sym < local_count)
8174 {
8175 switch (strategy)
8176 {
8177 case Relocatable_relocs::RELOC_COPY:
8178 case Relocatable_relocs::RELOC_SPECIAL:
8179 if (r_sym != 0)
8180 {
8181 r_sym = object->symtab_index(r_sym);
8182 gold_assert(r_sym != -1U);
8183 }
8184 break;
8185
8186 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8187 {
8188 // We are adjusting a section symbol. We need to find
8189 // the symbol table index of the section symbol for
8190 // the output section corresponding to input section
8191 // in which this symbol is defined.
8192 gold_assert(r_sym < local_count);
8193 bool is_ordinary;
8194 unsigned int shndx =
8195 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8196 gold_assert(is_ordinary);
8197 os = object->output_section(shndx);
8198 gold_assert(os != NULL);
8199 gold_assert(os->needs_symtab_index());
8200 r_sym = os->symtab_index();
8201 }
8202 break;
8203
8204 default:
8205 gold_unreachable();
8206 }
8207 }
8208 else
8209 {
8210 gsym = object->global_symbol(r_sym);
8211 gold_assert(gsym != NULL);
8212 if (gsym->is_forwarder())
8213 gsym = relinfo->symtab->resolve_forwards(gsym);
8214
8215 gold_assert(gsym->has_symtab_index());
8216 r_sym = gsym->symtab_index();
8217 }
8218
8219 // Get the new offset--the location in the output section where
8220 // this relocation should be applied.
8221 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8222 offset += offset_in_output_section;
8223 else
8224 {
8225 section_offset_type sot_offset =
8226 convert_types<section_offset_type, Address>(offset);
8227 section_offset_type new_sot_offset =
8228 output_section->output_offset(object, relinfo->data_shndx,
8229 sot_offset);
8230 gold_assert(new_sot_offset != -1);
8231 offset = new_sot_offset;
8232 }
8233
8234 // In an object file, r_offset is an offset within the section.
8235 // In an executable or dynamic object, generated by
8236 // --emit-relocs, r_offset is an absolute address.
8237 if (!parameters->options().relocatable())
8238 {
8239 offset += view_address;
8240 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8241 offset -= offset_in_output_section;
8242 }
8243
8244 // Handle the reloc addend based on the strategy.
8245 if (strategy == Relocatable_relocs::RELOC_COPY)
8246 ;
8247 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8248 {
8249 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8250 gold_assert(os != NULL);
8251 addend = psymval->value(object, addend) - os->address();
8252 }
8253 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8254 {
8255 if (addend >= 32768)
8256 addend += got2_addend;
8257 }
8258 else
8259 gold_unreachable();
8260
8261 if (!parameters->options().relocatable())
8262 {
8263 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8264 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8265 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8266 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8267 {
8268 // First instruction of a global dynamic sequence,
8269 // arg setup insn.
8270 const bool final = gsym == NULL || gsym->final_value_is_known();
8271 switch (this->optimize_tls_gd(final))
8272 {
8273 case tls::TLSOPT_TO_IE:
8274 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8275 - elfcpp::R_POWERPC_GOT_TLSGD16);
8276 break;
8277 case tls::TLSOPT_TO_LE:
8278 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8279 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8280 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8281 else
8282 {
8283 r_type = elfcpp::R_POWERPC_NONE;
8284 offset -= 2 * big_endian;
8285 }
8286 break;
8287 default:
8288 break;
8289 }
8290 }
8291 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8292 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8293 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8294 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8295 {
8296 // First instruction of a local dynamic sequence,
8297 // arg setup insn.
8298 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8299 {
8300 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8301 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8302 {
8303 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8304 const Output_section* os = relinfo->layout->tls_segment()
8305 ->first_section();
8306 gold_assert(os != NULL);
8307 gold_assert(os->needs_symtab_index());
8308 r_sym = os->symtab_index();
8309 addend = dtp_offset;
8310 }
8311 else
8312 {
8313 r_type = elfcpp::R_POWERPC_NONE;
8314 offset -= 2 * big_endian;
8315 }
8316 }
8317 }
8318 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8319 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8320 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8321 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8322 {
8323 // First instruction of initial exec sequence.
8324 const bool final = gsym == NULL || gsym->final_value_is_known();
8325 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8326 {
8327 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8328 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8329 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8330 else
8331 {
8332 r_type = elfcpp::R_POWERPC_NONE;
8333 offset -= 2 * big_endian;
8334 }
8335 }
8336 }
8337 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8338 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8339 {
8340 // Second instruction of a global dynamic sequence,
8341 // the __tls_get_addr call
8342 const bool final = gsym == NULL || gsym->final_value_is_known();
8343 switch (this->optimize_tls_gd(final))
8344 {
8345 case tls::TLSOPT_TO_IE:
8346 r_type = elfcpp::R_POWERPC_NONE;
8347 zap_next = true;
8348 break;
8349 case tls::TLSOPT_TO_LE:
8350 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8351 offset += 2 * big_endian;
8352 zap_next = true;
8353 break;
8354 default:
8355 break;
8356 }
8357 }
8358 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8359 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8360 {
8361 // Second instruction of a local dynamic sequence,
8362 // the __tls_get_addr call
8363 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8364 {
8365 const Output_section* os = relinfo->layout->tls_segment()
8366 ->first_section();
8367 gold_assert(os != NULL);
8368 gold_assert(os->needs_symtab_index());
8369 r_sym = os->symtab_index();
8370 addend = dtp_offset;
8371 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8372 offset += 2 * big_endian;
8373 zap_next = true;
8374 }
8375 }
8376 else if (r_type == elfcpp::R_POWERPC_TLS)
8377 {
8378 // Second instruction of an initial exec sequence
8379 const bool final = gsym == NULL || gsym->final_value_is_known();
8380 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8381 {
8382 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8383 offset += 2 * big_endian;
8384 }
8385 }
8386 }
8387
8388 reloc_write.put_r_offset(offset);
8389 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8390 reloc_write.put_r_addend(addend);
8391
8392 pwrite += reloc_size;
8393 }
8394
8395 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8396 == reloc_view_size);
8397 }
8398
8399 // Return the value to use for a dynamic symbol which requires special
8400 // treatment. This is how we support equality comparisons of function
8401 // pointers across shared library boundaries, as described in the
8402 // processor specific ABI supplement.
8403
8404 template<int size, bool big_endian>
8405 uint64_t
8406 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8407 {
8408 if (size == 32)
8409 {
8410 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8411 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8412 p != this->stub_tables_.end();
8413 ++p)
8414 {
8415 Address off = (*p)->find_plt_call_entry(gsym);
8416 if (off != invalid_address)
8417 return (*p)->stub_address() + off;
8418 }
8419 }
8420 else if (this->abiversion() >= 2)
8421 {
8422 Address off = this->glink_section()->find_global_entry(gsym);
8423 if (off != invalid_address)
8424 return this->glink_section()->global_entry_address() + off;
8425 }
8426 gold_unreachable();
8427 }
8428
8429 // Return the PLT address to use for a local symbol.
8430 template<int size, bool big_endian>
8431 uint64_t
8432 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8433 const Relobj* object,
8434 unsigned int symndx) const
8435 {
8436 if (size == 32)
8437 {
8438 const Sized_relobj<size, big_endian>* relobj
8439 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8440 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8441 p != this->stub_tables_.end();
8442 ++p)
8443 {
8444 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8445 symndx);
8446 if (off != invalid_address)
8447 return (*p)->stub_address() + off;
8448 }
8449 }
8450 gold_unreachable();
8451 }
8452
8453 // Return the PLT address to use for a global symbol.
8454 template<int size, bool big_endian>
8455 uint64_t
8456 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8457 const Symbol* gsym) const
8458 {
8459 if (size == 32)
8460 {
8461 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8462 p != this->stub_tables_.end();
8463 ++p)
8464 {
8465 Address off = (*p)->find_plt_call_entry(gsym);
8466 if (off != invalid_address)
8467 return (*p)->stub_address() + off;
8468 }
8469 }
8470 else if (this->abiversion() >= 2)
8471 {
8472 Address off = this->glink_section()->find_global_entry(gsym);
8473 if (off != invalid_address)
8474 return this->glink_section()->global_entry_address() + off;
8475 }
8476 gold_unreachable();
8477 }
8478
8479 // Return the offset to use for the GOT_INDX'th got entry which is
8480 // for a local tls symbol specified by OBJECT, SYMNDX.
8481 template<int size, bool big_endian>
8482 int64_t
8483 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8484 const Relobj* object,
8485 unsigned int symndx,
8486 unsigned int got_indx) const
8487 {
8488 const Powerpc_relobj<size, big_endian>* ppc_object
8489 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8490 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8491 {
8492 for (Got_type got_type = GOT_TYPE_TLSGD;
8493 got_type <= GOT_TYPE_TPREL;
8494 got_type = Got_type(got_type + 1))
8495 if (ppc_object->local_has_got_offset(symndx, got_type))
8496 {
8497 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8498 if (got_type == GOT_TYPE_TLSGD)
8499 off += size / 8;
8500 if (off == got_indx * (size / 8))
8501 {
8502 if (got_type == GOT_TYPE_TPREL)
8503 return -tp_offset;
8504 else
8505 return -dtp_offset;
8506 }
8507 }
8508 }
8509 gold_unreachable();
8510 }
8511
8512 // Return the offset to use for the GOT_INDX'th got entry which is
8513 // for global tls symbol GSYM.
8514 template<int size, bool big_endian>
8515 int64_t
8516 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8517 Symbol* gsym,
8518 unsigned int got_indx) const
8519 {
8520 if (gsym->type() == elfcpp::STT_TLS)
8521 {
8522 for (Got_type got_type = GOT_TYPE_TLSGD;
8523 got_type <= GOT_TYPE_TPREL;
8524 got_type = Got_type(got_type + 1))
8525 if (gsym->has_got_offset(got_type))
8526 {
8527 unsigned int off = gsym->got_offset(got_type);
8528 if (got_type == GOT_TYPE_TLSGD)
8529 off += size / 8;
8530 if (off == got_indx * (size / 8))
8531 {
8532 if (got_type == GOT_TYPE_TPREL)
8533 return -tp_offset;
8534 else
8535 return -dtp_offset;
8536 }
8537 }
8538 }
8539 gold_unreachable();
8540 }
8541
8542 // The selector for powerpc object files.
8543
8544 template<int size, bool big_endian>
8545 class Target_selector_powerpc : public Target_selector
8546 {
8547 public:
8548 Target_selector_powerpc()
8549 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8550 size, big_endian,
8551 (size == 64
8552 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8553 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8554 (size == 64
8555 ? (big_endian ? "elf64ppc" : "elf64lppc")
8556 : (big_endian ? "elf32ppc" : "elf32lppc")))
8557 { }
8558
8559 virtual Target*
8560 do_instantiate_target()
8561 { return new Target_powerpc<size, big_endian>(); }
8562 };
8563
8564 Target_selector_powerpc<32, true> target_selector_ppc32;
8565 Target_selector_powerpc<32, false> target_selector_ppc32le;
8566 Target_selector_powerpc<64, true> target_selector_ppc64;
8567 Target_selector_powerpc<64, false> target_selector_ppc64le;
8568
8569 // Instantiate these constants for -O0
8570 template<int size, bool big_endian>
8571 const int Output_data_glink<size, big_endian>::pltresolve_size;
8572 template<int size, bool big_endian>
8573 const typename Output_data_glink<size, big_endian>::Address
8574 Output_data_glink<size, big_endian>::invalid_address;
8575 template<int size, bool big_endian>
8576 const typename Stub_table<size, big_endian>::Address
8577 Stub_table<size, big_endian>::invalid_address;
8578 template<int size, bool big_endian>
8579 const typename Target_powerpc<size, big_endian>::Address
8580 Target_powerpc<size, big_endian>::invalid_address;
8581
8582 } // End anonymous namespace.
This page took 0.229117 seconds and 4 git commands to generate.