* ar.c (usage): Mention -t command line switch.
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // An element in a SECTIONS clause.
47
48 class Sections_element
49 {
50 public:
51 Sections_element()
52 { }
53
54 virtual ~Sections_element()
55 { }
56
57 // Add any symbol being defined to the symbol table.
58 virtual void
59 add_symbols_to_table(Symbol_table*)
60 { }
61
62 // Finalize symbols and check assertions.
63 virtual void
64 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
65 { }
66
67 // Return the output section name to use for an input file name and
68 // section name. This only real implementation is in
69 // Output_section_definition.
70 virtual const char*
71 output_section_name(const char*, const char*, Output_section***)
72 { return NULL; }
73
74 // Return whether to place an orphan output section after this
75 // element.
76 virtual bool
77 place_orphan_here(const Output_section *, bool*) const
78 { return false; }
79
80 // Set section addresses. This includes applying assignments if the
81 // the expression is an absolute value.
82 virtual void
83 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
84 { }
85
86 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
87 // this section is constrained, and the input sections do not match,
88 // return the constraint, and set *POSD.
89 virtual Section_constraint
90 check_constraint(Output_section_definition**)
91 { return CONSTRAINT_NONE; }
92
93 // See if this is the alternate output section for a constrained
94 // output section. If it is, transfer the Output_section and return
95 // true. Otherwise return false.
96 virtual bool
97 alternate_constraint(Output_section_definition*, Section_constraint)
98 { return false; }
99
100 // Get the list of segments to use for an allocated section when
101 // using a PHDRS clause. If this is an allocated section, return
102 // the Output_section, and set *PHDRS_LIST to the list of PHDRS to
103 // which it should be attached. If the PHDRS were not specified,
104 // don't change *PHDRS_LIST.
105 virtual Output_section*
106 allocate_to_segment(String_list**)
107 { return NULL; }
108
109 // Print the element for debugging purposes.
110 virtual void
111 print(FILE* f) const = 0;
112 };
113
114 // An assignment in a SECTIONS clause outside of an output section.
115
116 class Sections_element_assignment : public Sections_element
117 {
118 public:
119 Sections_element_assignment(const char* name, size_t namelen,
120 Expression* val, bool provide, bool hidden)
121 : assignment_(name, namelen, val, provide, hidden)
122 { }
123
124 // Add the symbol to the symbol table.
125 void
126 add_symbols_to_table(Symbol_table* symtab)
127 { this->assignment_.add_to_table(symtab); }
128
129 // Finalize the symbol.
130 void
131 finalize_symbols(Symbol_table* symtab, const Layout* layout,
132 uint64_t* dot_value)
133 {
134 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
135 }
136
137 // Set the section address. There is no section here, but if the
138 // value is absolute, we set the symbol. This permits us to use
139 // absolute symbols when setting dot.
140 void
141 set_section_addresses(Symbol_table* symtab, Layout* layout,
142 uint64_t* dot_value, uint64_t*)
143 {
144 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
145 }
146
147 // Print for debugging.
148 void
149 print(FILE* f) const
150 {
151 fprintf(f, " ");
152 this->assignment_.print(f);
153 }
154
155 private:
156 Symbol_assignment assignment_;
157 };
158
159 // An assignment to the dot symbol in a SECTIONS clause outside of an
160 // output section.
161
162 class Sections_element_dot_assignment : public Sections_element
163 {
164 public:
165 Sections_element_dot_assignment(Expression* val)
166 : val_(val)
167 { }
168
169 // Finalize the symbol.
170 void
171 finalize_symbols(Symbol_table* symtab, const Layout* layout,
172 uint64_t* dot_value)
173 {
174 // We ignore the section of the result because outside of an
175 // output section definition the dot symbol is always considered
176 // to be absolute.
177 Output_section* dummy;
178 *dot_value = this->val_->eval_with_dot(symtab, layout, *dot_value,
179 NULL, &dummy);
180 }
181
182 // Update the dot symbol while setting section addresses.
183 void
184 set_section_addresses(Symbol_table* symtab, Layout* layout,
185 uint64_t* dot_value, uint64_t* load_address)
186 {
187 Output_section* dummy;
188 *dot_value = this->val_->eval_with_dot(symtab, layout, *dot_value,
189 NULL, &dummy);
190 *load_address = *dot_value;
191 }
192
193 // Print for debugging.
194 void
195 print(FILE* f) const
196 {
197 fprintf(f, " . = ");
198 this->val_->print(f);
199 fprintf(f, "\n");
200 }
201
202 private:
203 Expression* val_;
204 };
205
206 // An assertion in a SECTIONS clause outside of an output section.
207
208 class Sections_element_assertion : public Sections_element
209 {
210 public:
211 Sections_element_assertion(Expression* check, const char* message,
212 size_t messagelen)
213 : assertion_(check, message, messagelen)
214 { }
215
216 // Check the assertion.
217 void
218 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
219 { this->assertion_.check(symtab, layout); }
220
221 // Print for debugging.
222 void
223 print(FILE* f) const
224 {
225 fprintf(f, " ");
226 this->assertion_.print(f);
227 }
228
229 private:
230 Script_assertion assertion_;
231 };
232
233 // An element in an output section in a SECTIONS clause.
234
235 class Output_section_element
236 {
237 public:
238 // A list of input sections.
239 typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
240
241 Output_section_element()
242 { }
243
244 virtual ~Output_section_element()
245 { }
246
247 // Add any symbol being defined to the symbol table.
248 virtual void
249 add_symbols_to_table(Symbol_table*)
250 { }
251
252 // Finalize symbols and check assertions.
253 virtual void
254 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
255 { }
256
257 // Return whether this element matches FILE_NAME and SECTION_NAME.
258 // The only real implementation is in Output_section_element_input.
259 virtual bool
260 match_name(const char*, const char*) const
261 { return false; }
262
263 // Set section addresses. This includes applying assignments if the
264 // the expression is an absolute value.
265 virtual void
266 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
267 uint64_t*, Output_section**, std::string*,
268 Input_section_list*)
269 { }
270
271 // Print the element for debugging purposes.
272 virtual void
273 print(FILE* f) const = 0;
274
275 protected:
276 // Return a fill string that is LENGTH bytes long, filling it with
277 // FILL.
278 std::string
279 get_fill_string(const std::string* fill, section_size_type length) const;
280 };
281
282 std::string
283 Output_section_element::get_fill_string(const std::string* fill,
284 section_size_type length) const
285 {
286 std::string this_fill;
287 this_fill.reserve(length);
288 while (this_fill.length() + fill->length() <= length)
289 this_fill += *fill;
290 if (this_fill.length() < length)
291 this_fill.append(*fill, 0, length - this_fill.length());
292 return this_fill;
293 }
294
295 // A symbol assignment in an output section.
296
297 class Output_section_element_assignment : public Output_section_element
298 {
299 public:
300 Output_section_element_assignment(const char* name, size_t namelen,
301 Expression* val, bool provide,
302 bool hidden)
303 : assignment_(name, namelen, val, provide, hidden)
304 { }
305
306 // Add the symbol to the symbol table.
307 void
308 add_symbols_to_table(Symbol_table* symtab)
309 { this->assignment_.add_to_table(symtab); }
310
311 // Finalize the symbol.
312 void
313 finalize_symbols(Symbol_table* symtab, const Layout* layout,
314 uint64_t* dot_value, Output_section** dot_section)
315 {
316 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
317 *dot_section);
318 }
319
320 // Set the section address. There is no section here, but if the
321 // value is absolute, we set the symbol. This permits us to use
322 // absolute symbols when setting dot.
323 void
324 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
325 uint64_t, uint64_t* dot_value, Output_section**,
326 std::string*, Input_section_list*)
327 {
328 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
329 }
330
331 // Print for debugging.
332 void
333 print(FILE* f) const
334 {
335 fprintf(f, " ");
336 this->assignment_.print(f);
337 }
338
339 private:
340 Symbol_assignment assignment_;
341 };
342
343 // An assignment to the dot symbol in an output section.
344
345 class Output_section_element_dot_assignment : public Output_section_element
346 {
347 public:
348 Output_section_element_dot_assignment(Expression* val)
349 : val_(val)
350 { }
351
352 // Finalize the symbol.
353 void
354 finalize_symbols(Symbol_table* symtab, const Layout* layout,
355 uint64_t* dot_value, Output_section** dot_section)
356 {
357 *dot_value = this->val_->eval_with_dot(symtab, layout, *dot_value,
358 *dot_section, dot_section);
359 }
360
361 // Update the dot symbol while setting section addresses.
362 void
363 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
364 uint64_t, uint64_t* dot_value, Output_section**,
365 std::string*, Input_section_list*);
366
367 // Print for debugging.
368 void
369 print(FILE* f) const
370 {
371 fprintf(f, " . = ");
372 this->val_->print(f);
373 fprintf(f, "\n");
374 }
375
376 private:
377 Expression* val_;
378 };
379
380 // Update the dot symbol while setting section addresses.
381
382 void
383 Output_section_element_dot_assignment::set_section_addresses(
384 Symbol_table* symtab,
385 Layout* layout,
386 Output_section* output_section,
387 uint64_t,
388 uint64_t* dot_value,
389 Output_section** dot_section,
390 std::string* fill,
391 Input_section_list*)
392 {
393 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, *dot_value,
394 *dot_section, dot_section);
395 if (next_dot < *dot_value)
396 gold_error(_("dot may not move backward"));
397 if (next_dot > *dot_value && output_section != NULL)
398 {
399 section_size_type length = convert_to_section_size_type(next_dot
400 - *dot_value);
401 Output_section_data* posd;
402 if (fill->empty())
403 posd = new Output_data_fixed_space(length, 0);
404 else
405 {
406 std::string this_fill = this->get_fill_string(fill, length);
407 posd = new Output_data_const(this_fill, 0);
408 }
409 output_section->add_output_section_data(posd);
410 }
411 *dot_value = next_dot;
412 }
413
414 // An assertion in an output section.
415
416 class Output_section_element_assertion : public Output_section_element
417 {
418 public:
419 Output_section_element_assertion(Expression* check, const char* message,
420 size_t messagelen)
421 : assertion_(check, message, messagelen)
422 { }
423
424 void
425 print(FILE* f) const
426 {
427 fprintf(f, " ");
428 this->assertion_.print(f);
429 }
430
431 private:
432 Script_assertion assertion_;
433 };
434
435 // We use a special instance of Output_section_data to handle BYTE,
436 // SHORT, etc. This permits forward references to symbols in the
437 // expressions.
438
439 class Output_data_expression : public Output_section_data
440 {
441 public:
442 Output_data_expression(int size, bool is_signed, Expression* val,
443 const Symbol_table* symtab, const Layout* layout,
444 uint64_t dot_value, Output_section* dot_section)
445 : Output_section_data(size, 0),
446 is_signed_(is_signed), val_(val), symtab_(symtab),
447 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
448 { }
449
450 protected:
451 // Write the data to the output file.
452 void
453 do_write(Output_file*);
454
455 // Write the data to a buffer.
456 void
457 do_write_to_buffer(unsigned char*);
458
459 private:
460 template<bool big_endian>
461 void
462 endian_write_to_buffer(uint64_t, unsigned char*);
463
464 bool is_signed_;
465 Expression* val_;
466 const Symbol_table* symtab_;
467 const Layout* layout_;
468 uint64_t dot_value_;
469 Output_section* dot_section_;
470 };
471
472 // Write the data element to the output file.
473
474 void
475 Output_data_expression::do_write(Output_file* of)
476 {
477 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
478 this->write_to_buffer(view);
479 of->write_output_view(this->offset(), this->data_size(), view);
480 }
481
482 // Write the data element to a buffer.
483
484 void
485 Output_data_expression::do_write_to_buffer(unsigned char* buf)
486 {
487 Output_section* dummy;
488 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
489 this->dot_value_,
490 this->dot_section_, &dummy);
491
492 if (parameters->is_big_endian())
493 this->endian_write_to_buffer<true>(val, buf);
494 else
495 this->endian_write_to_buffer<false>(val, buf);
496 }
497
498 template<bool big_endian>
499 void
500 Output_data_expression::endian_write_to_buffer(uint64_t val,
501 unsigned char* buf)
502 {
503 switch (this->data_size())
504 {
505 case 1:
506 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
507 break;
508 case 2:
509 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
510 break;
511 case 4:
512 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
513 break;
514 case 8:
515 if (parameters->get_size() == 32)
516 {
517 val &= 0xffffffff;
518 if (this->is_signed_ && (val & 0x80000000) != 0)
519 val |= 0xffffffff00000000LL;
520 }
521 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
522 break;
523 default:
524 gold_unreachable();
525 }
526 }
527
528 // A data item in an output section.
529
530 class Output_section_element_data : public Output_section_element
531 {
532 public:
533 Output_section_element_data(int size, bool is_signed, Expression* val)
534 : size_(size), is_signed_(is_signed), val_(val)
535 { }
536
537 // Finalize symbols--we just need to update dot.
538 void
539 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
540 Output_section**)
541 { *dot_value += this->size_; }
542
543 // Store the value in the section.
544 void
545 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
546 uint64_t* dot_value, Output_section**, std::string*,
547 Input_section_list*);
548
549 // Print for debugging.
550 void
551 print(FILE*) const;
552
553 private:
554 // The size in bytes.
555 int size_;
556 // Whether the value is signed.
557 bool is_signed_;
558 // The value.
559 Expression* val_;
560 };
561
562 // Store the value in the section.
563
564 void
565 Output_section_element_data::set_section_addresses(
566 Symbol_table* symtab,
567 Layout* layout,
568 Output_section* os,
569 uint64_t,
570 uint64_t* dot_value,
571 Output_section** dot_section,
572 std::string*,
573 Input_section_list*)
574 {
575 gold_assert(os != NULL);
576 os->add_output_section_data(new Output_data_expression(this->size_,
577 this->is_signed_,
578 this->val_,
579 symtab,
580 layout,
581 *dot_value,
582 *dot_section));
583 *dot_value += this->size_;
584 }
585
586 // Print for debugging.
587
588 void
589 Output_section_element_data::print(FILE* f) const
590 {
591 const char* s;
592 switch (this->size_)
593 {
594 case 1:
595 s = "BYTE";
596 break;
597 case 2:
598 s = "SHORT";
599 break;
600 case 4:
601 s = "LONG";
602 break;
603 case 8:
604 if (this->is_signed_)
605 s = "SQUAD";
606 else
607 s = "QUAD";
608 break;
609 default:
610 gold_unreachable();
611 }
612 fprintf(f, " %s(", s);
613 this->val_->print(f);
614 fprintf(f, ")\n");
615 }
616
617 // A fill value setting in an output section.
618
619 class Output_section_element_fill : public Output_section_element
620 {
621 public:
622 Output_section_element_fill(Expression* val)
623 : val_(val)
624 { }
625
626 // Update the fill value while setting section addresses.
627 void
628 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
629 uint64_t, uint64_t* dot_value,
630 Output_section** dot_section,
631 std::string* fill, Input_section_list*)
632 {
633 Output_section* fill_section;
634 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout,
635 *dot_value, *dot_section,
636 &fill_section);
637 if (fill_section != NULL)
638 gold_warning(_("fill value is not absolute"));
639 // FIXME: The GNU linker supports fill values of arbitrary length.
640 unsigned char fill_buff[4];
641 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
642 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
643 }
644
645 // Print for debugging.
646 void
647 print(FILE* f) const
648 {
649 fprintf(f, " FILL(");
650 this->val_->print(f);
651 fprintf(f, ")\n");
652 }
653
654 private:
655 // The new fill value.
656 Expression* val_;
657 };
658
659 // Return whether STRING contains a wildcard character. This is used
660 // to speed up matching.
661
662 static inline bool
663 is_wildcard_string(const std::string& s)
664 {
665 return strpbrk(s.c_str(), "?*[") != NULL;
666 }
667
668 // An input section specification in an output section
669
670 class Output_section_element_input : public Output_section_element
671 {
672 public:
673 Output_section_element_input(const Input_section_spec* spec, bool keep);
674
675 // Finalize symbols--just update the value of the dot symbol.
676 void
677 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
678 Output_section** dot_section)
679 {
680 *dot_value = this->final_dot_value_;
681 *dot_section = this->final_dot_section_;
682 }
683
684 // See whether we match FILE_NAME and SECTION_NAME as an input
685 // section.
686 bool
687 match_name(const char* file_name, const char* section_name) const;
688
689 // Set the section address.
690 void
691 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
692 uint64_t subalign, uint64_t* dot_value,
693 Output_section**, std::string* fill,
694 Input_section_list*);
695
696 // Print for debugging.
697 void
698 print(FILE* f) const;
699
700 private:
701 // An input section pattern.
702 struct Input_section_pattern
703 {
704 std::string pattern;
705 bool pattern_is_wildcard;
706 Sort_wildcard sort;
707
708 Input_section_pattern(const char* patterna, size_t patternlena,
709 Sort_wildcard sorta)
710 : pattern(patterna, patternlena),
711 pattern_is_wildcard(is_wildcard_string(this->pattern)),
712 sort(sorta)
713 { }
714 };
715
716 typedef std::vector<Input_section_pattern> Input_section_patterns;
717
718 // Filename_exclusions is a pair of filename pattern and a bool
719 // indicating whether the filename is a wildcard.
720 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
721
722 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
723 // indicates whether this is a wildcard pattern.
724 static inline bool
725 match(const char* string, const char* pattern, bool is_wildcard_pattern)
726 {
727 return (is_wildcard_pattern
728 ? fnmatch(pattern, string, 0) == 0
729 : strcmp(string, pattern) == 0);
730 }
731
732 // See if we match a file name.
733 bool
734 match_file_name(const char* file_name) const;
735
736 // The file name pattern. If this is the empty string, we match all
737 // files.
738 std::string filename_pattern_;
739 // Whether the file name pattern is a wildcard.
740 bool filename_is_wildcard_;
741 // How the file names should be sorted. This may only be
742 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
743 Sort_wildcard filename_sort_;
744 // The list of file names to exclude.
745 Filename_exclusions filename_exclusions_;
746 // The list of input section patterns.
747 Input_section_patterns input_section_patterns_;
748 // Whether to keep this section when garbage collecting.
749 bool keep_;
750 // The value of dot after including all matching sections.
751 uint64_t final_dot_value_;
752 // The section where dot is defined after including all matching
753 // sections.
754 Output_section* final_dot_section_;
755 };
756
757 // Construct Output_section_element_input. The parser records strings
758 // as pointers into a copy of the script file, which will go away when
759 // parsing is complete. We make sure they are in std::string objects.
760
761 Output_section_element_input::Output_section_element_input(
762 const Input_section_spec* spec,
763 bool keep)
764 : filename_pattern_(),
765 filename_is_wildcard_(false),
766 filename_sort_(spec->file.sort),
767 filename_exclusions_(),
768 input_section_patterns_(),
769 keep_(keep),
770 final_dot_value_(0),
771 final_dot_section_(NULL)
772 {
773 // The filename pattern "*" is common, and matches all files. Turn
774 // it into the empty string.
775 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
776 this->filename_pattern_.assign(spec->file.name.value,
777 spec->file.name.length);
778 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
779
780 if (spec->input_sections.exclude != NULL)
781 {
782 for (String_list::const_iterator p =
783 spec->input_sections.exclude->begin();
784 p != spec->input_sections.exclude->end();
785 ++p)
786 {
787 bool is_wildcard = is_wildcard_string(*p);
788 this->filename_exclusions_.push_back(std::make_pair(*p,
789 is_wildcard));
790 }
791 }
792
793 if (spec->input_sections.sections != NULL)
794 {
795 Input_section_patterns& isp(this->input_section_patterns_);
796 for (String_sort_list::const_iterator p =
797 spec->input_sections.sections->begin();
798 p != spec->input_sections.sections->end();
799 ++p)
800 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
801 p->sort));
802 }
803 }
804
805 // See whether we match FILE_NAME.
806
807 bool
808 Output_section_element_input::match_file_name(const char* file_name) const
809 {
810 if (!this->filename_pattern_.empty())
811 {
812 // If we were called with no filename, we refuse to match a
813 // pattern which requires a file name.
814 if (file_name == NULL)
815 return false;
816
817 if (!match(file_name, this->filename_pattern_.c_str(),
818 this->filename_is_wildcard_))
819 return false;
820 }
821
822 if (file_name != NULL)
823 {
824 // Now we have to see whether FILE_NAME matches one of the
825 // exclusion patterns, if any.
826 for (Filename_exclusions::const_iterator p =
827 this->filename_exclusions_.begin();
828 p != this->filename_exclusions_.end();
829 ++p)
830 {
831 if (match(file_name, p->first.c_str(), p->second))
832 return false;
833 }
834 }
835
836 return true;
837 }
838
839 // See whether we match FILE_NAME and SECTION_NAME.
840
841 bool
842 Output_section_element_input::match_name(const char* file_name,
843 const char* section_name) const
844 {
845 if (!this->match_file_name(file_name))
846 return false;
847
848 // If there are no section name patterns, then we match.
849 if (this->input_section_patterns_.empty())
850 return true;
851
852 // See whether we match the section name patterns.
853 for (Input_section_patterns::const_iterator p =
854 this->input_section_patterns_.begin();
855 p != this->input_section_patterns_.end();
856 ++p)
857 {
858 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
859 return true;
860 }
861
862 // We didn't match any section names, so we didn't match.
863 return false;
864 }
865
866 // Information we use to sort the input sections.
867
868 struct Input_section_info
869 {
870 Relobj* relobj;
871 unsigned int shndx;
872 std::string section_name;
873 uint64_t size;
874 uint64_t addralign;
875 };
876
877 // A class to sort the input sections.
878
879 class Input_section_sorter
880 {
881 public:
882 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
883 : filename_sort_(filename_sort), section_sort_(section_sort)
884 { }
885
886 bool
887 operator()(const Input_section_info&, const Input_section_info&) const;
888
889 private:
890 Sort_wildcard filename_sort_;
891 Sort_wildcard section_sort_;
892 };
893
894 bool
895 Input_section_sorter::operator()(const Input_section_info& isi1,
896 const Input_section_info& isi2) const
897 {
898 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
899 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
900 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
901 && isi1.addralign == isi2.addralign))
902 {
903 if (isi1.section_name != isi2.section_name)
904 return isi1.section_name < isi2.section_name;
905 }
906 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
907 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
908 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
909 {
910 if (isi1.addralign != isi2.addralign)
911 return isi1.addralign < isi2.addralign;
912 }
913 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
914 {
915 if (isi1.relobj->name() != isi2.relobj->name())
916 return isi1.relobj->name() < isi2.relobj->name();
917 }
918
919 // Otherwise we leave them in the same order.
920 return false;
921 }
922
923 // Set the section address. Look in INPUT_SECTIONS for sections which
924 // match this spec, sort them as specified, and add them to the output
925 // section.
926
927 void
928 Output_section_element_input::set_section_addresses(
929 Symbol_table*,
930 Layout*,
931 Output_section* output_section,
932 uint64_t subalign,
933 uint64_t* dot_value,
934 Output_section** dot_section,
935 std::string* fill,
936 Input_section_list* input_sections)
937 {
938 // We build a list of sections which match each
939 // Input_section_pattern.
940
941 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
942 size_t input_pattern_count = this->input_section_patterns_.size();
943 if (input_pattern_count == 0)
944 input_pattern_count = 1;
945 Matching_sections matching_sections(input_pattern_count);
946
947 // Look through the list of sections for this output section. Add
948 // each one which matches to one of the elements of
949 // MATCHING_SECTIONS.
950
951 Input_section_list::iterator p = input_sections->begin();
952 while (p != input_sections->end())
953 {
954 // Calling section_name and section_addralign is not very
955 // efficient.
956 Input_section_info isi;
957 isi.relobj = p->first;
958 isi.shndx = p->second;
959
960 // Lock the object so that we can get information about the
961 // section. This is OK since we know we are single-threaded
962 // here.
963 {
964 const Task* task = reinterpret_cast<const Task*>(-1);
965 Task_lock_obj<Object> tl(task, p->first);
966
967 isi.section_name = p->first->section_name(p->second);
968 isi.size = p->first->section_size(p->second);
969 isi.addralign = p->first->section_addralign(p->second);
970 }
971
972 if (!this->match_file_name(isi.relobj->name().c_str()))
973 ++p;
974 else if (this->input_section_patterns_.empty())
975 {
976 matching_sections[0].push_back(isi);
977 p = input_sections->erase(p);
978 }
979 else
980 {
981 size_t i;
982 for (i = 0; i < input_pattern_count; ++i)
983 {
984 const Input_section_pattern&
985 isp(this->input_section_patterns_[i]);
986 if (match(isi.section_name.c_str(), isp.pattern.c_str(),
987 isp.pattern_is_wildcard))
988 break;
989 }
990
991 if (i >= this->input_section_patterns_.size())
992 ++p;
993 else
994 {
995 matching_sections[i].push_back(isi);
996 p = input_sections->erase(p);
997 }
998 }
999 }
1000
1001 // Look through MATCHING_SECTIONS. Sort each one as specified,
1002 // using a stable sort so that we get the default order when
1003 // sections are otherwise equal. Add each input section to the
1004 // output section.
1005
1006 for (size_t i = 0; i < input_pattern_count; ++i)
1007 {
1008 if (matching_sections[i].empty())
1009 continue;
1010
1011 gold_assert(output_section != NULL);
1012
1013 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1014 if (isp.sort != SORT_WILDCARD_NONE
1015 || this->filename_sort_ != SORT_WILDCARD_NONE)
1016 std::stable_sort(matching_sections[i].begin(),
1017 matching_sections[i].end(),
1018 Input_section_sorter(this->filename_sort_,
1019 isp.sort));
1020
1021 for (std::vector<Input_section_info>::const_iterator p =
1022 matching_sections[i].begin();
1023 p != matching_sections[i].end();
1024 ++p)
1025 {
1026 uint64_t this_subalign = p->addralign;
1027 if (this_subalign < subalign)
1028 this_subalign = subalign;
1029
1030 uint64_t address = align_address(*dot_value, this_subalign);
1031
1032 if (address > *dot_value && !fill->empty())
1033 {
1034 section_size_type length =
1035 convert_to_section_size_type(address - *dot_value);
1036 std::string this_fill = this->get_fill_string(fill, length);
1037 Output_section_data* posd = new Output_data_const(this_fill, 0);
1038 output_section->add_output_section_data(posd);
1039 }
1040
1041 output_section->add_input_section_for_script(p->relobj,
1042 p->shndx,
1043 p->size,
1044 this_subalign);
1045
1046 *dot_value = address + p->size;
1047 }
1048 }
1049
1050 this->final_dot_value_ = *dot_value;
1051 this->final_dot_section_ = *dot_section;
1052 }
1053
1054 // Print for debugging.
1055
1056 void
1057 Output_section_element_input::print(FILE* f) const
1058 {
1059 fprintf(f, " ");
1060
1061 if (this->keep_)
1062 fprintf(f, "KEEP(");
1063
1064 if (!this->filename_pattern_.empty())
1065 {
1066 bool need_close_paren = false;
1067 switch (this->filename_sort_)
1068 {
1069 case SORT_WILDCARD_NONE:
1070 break;
1071 case SORT_WILDCARD_BY_NAME:
1072 fprintf(f, "SORT_BY_NAME(");
1073 need_close_paren = true;
1074 break;
1075 default:
1076 gold_unreachable();
1077 }
1078
1079 fprintf(f, "%s", this->filename_pattern_.c_str());
1080
1081 if (need_close_paren)
1082 fprintf(f, ")");
1083 }
1084
1085 if (!this->input_section_patterns_.empty()
1086 || !this->filename_exclusions_.empty())
1087 {
1088 fprintf(f, "(");
1089
1090 bool need_space = false;
1091 if (!this->filename_exclusions_.empty())
1092 {
1093 fprintf(f, "EXCLUDE_FILE(");
1094 bool need_comma = false;
1095 for (Filename_exclusions::const_iterator p =
1096 this->filename_exclusions_.begin();
1097 p != this->filename_exclusions_.end();
1098 ++p)
1099 {
1100 if (need_comma)
1101 fprintf(f, ", ");
1102 fprintf(f, "%s", p->first.c_str());
1103 need_comma = true;
1104 }
1105 fprintf(f, ")");
1106 need_space = true;
1107 }
1108
1109 for (Input_section_patterns::const_iterator p =
1110 this->input_section_patterns_.begin();
1111 p != this->input_section_patterns_.end();
1112 ++p)
1113 {
1114 if (need_space)
1115 fprintf(f, " ");
1116
1117 int close_parens = 0;
1118 switch (p->sort)
1119 {
1120 case SORT_WILDCARD_NONE:
1121 break;
1122 case SORT_WILDCARD_BY_NAME:
1123 fprintf(f, "SORT_BY_NAME(");
1124 close_parens = 1;
1125 break;
1126 case SORT_WILDCARD_BY_ALIGNMENT:
1127 fprintf(f, "SORT_BY_ALIGNMENT(");
1128 close_parens = 1;
1129 break;
1130 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1131 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1132 close_parens = 2;
1133 break;
1134 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1135 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1136 close_parens = 2;
1137 break;
1138 default:
1139 gold_unreachable();
1140 }
1141
1142 fprintf(f, "%s", p->pattern.c_str());
1143
1144 for (int i = 0; i < close_parens; ++i)
1145 fprintf(f, ")");
1146
1147 need_space = true;
1148 }
1149
1150 fprintf(f, ")");
1151 }
1152
1153 if (this->keep_)
1154 fprintf(f, ")");
1155
1156 fprintf(f, "\n");
1157 }
1158
1159 // An output section.
1160
1161 class Output_section_definition : public Sections_element
1162 {
1163 public:
1164 typedef Output_section_element::Input_section_list Input_section_list;
1165
1166 Output_section_definition(const char* name, size_t namelen,
1167 const Parser_output_section_header* header);
1168
1169 // Finish the output section with the information in the trailer.
1170 void
1171 finish(const Parser_output_section_trailer* trailer);
1172
1173 // Add a symbol to be defined.
1174 void
1175 add_symbol_assignment(const char* name, size_t length, Expression* value,
1176 bool provide, bool hidden);
1177
1178 // Add an assignment to the special dot symbol.
1179 void
1180 add_dot_assignment(Expression* value);
1181
1182 // Add an assertion.
1183 void
1184 add_assertion(Expression* check, const char* message, size_t messagelen);
1185
1186 // Add a data item to the current output section.
1187 void
1188 add_data(int size, bool is_signed, Expression* val);
1189
1190 // Add a setting for the fill value.
1191 void
1192 add_fill(Expression* val);
1193
1194 // Add an input section specification.
1195 void
1196 add_input_section(const Input_section_spec* spec, bool keep);
1197
1198 // Add any symbols being defined to the symbol table.
1199 void
1200 add_symbols_to_table(Symbol_table* symtab);
1201
1202 // Finalize symbols and check assertions.
1203 void
1204 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1205
1206 // Return the output section name to use for an input file name and
1207 // section name.
1208 const char*
1209 output_section_name(const char* file_name, const char* section_name,
1210 Output_section***);
1211
1212 // Return whether to place an orphan section after this one.
1213 bool
1214 place_orphan_here(const Output_section *os, bool* exact) const;
1215
1216 // Set the section address.
1217 void
1218 set_section_addresses(Symbol_table* symtab, Layout* layout,
1219 uint64_t* dot_value, uint64_t* load_address);
1220
1221 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1222 // this section is constrained, and the input sections do not match,
1223 // return the constraint, and set *POSD.
1224 Section_constraint
1225 check_constraint(Output_section_definition** posd);
1226
1227 // See if this is the alternate output section for a constrained
1228 // output section. If it is, transfer the Output_section and return
1229 // true. Otherwise return false.
1230 bool
1231 alternate_constraint(Output_section_definition*, Section_constraint);
1232
1233 // Get the list of segments to use for an allocated section when
1234 // using a PHDRS clause. If this is an allocated section, return
1235 // the Output_section, and set *PHDRS_LIST to the list of PHDRS to
1236 // which it should be attached. If the PHDRS were not specified,
1237 // don't change *PHDRS_LIST.
1238 Output_section*
1239 allocate_to_segment(String_list** phdrs_list);
1240
1241 // Print the contents to the FILE. This is for debugging.
1242 void
1243 print(FILE*) const;
1244
1245 private:
1246 typedef std::vector<Output_section_element*> Output_section_elements;
1247
1248 // The output section name.
1249 std::string name_;
1250 // The address. This may be NULL.
1251 Expression* address_;
1252 // The load address. This may be NULL.
1253 Expression* load_address_;
1254 // The alignment. This may be NULL.
1255 Expression* align_;
1256 // The input section alignment. This may be NULL.
1257 Expression* subalign_;
1258 // The constraint, if any.
1259 Section_constraint constraint_;
1260 // The fill value. This may be NULL.
1261 Expression* fill_;
1262 // The list of segments this section should go into. This may be
1263 // NULL.
1264 String_list* phdrs_;
1265 // The list of elements defining the section.
1266 Output_section_elements elements_;
1267 // The Output_section created for this definition. This will be
1268 // NULL if none was created.
1269 Output_section* output_section_;
1270 };
1271
1272 // Constructor.
1273
1274 Output_section_definition::Output_section_definition(
1275 const char* name,
1276 size_t namelen,
1277 const Parser_output_section_header* header)
1278 : name_(name, namelen),
1279 address_(header->address),
1280 load_address_(header->load_address),
1281 align_(header->align),
1282 subalign_(header->subalign),
1283 constraint_(header->constraint),
1284 fill_(NULL),
1285 phdrs_(NULL),
1286 elements_(),
1287 output_section_(NULL)
1288 {
1289 }
1290
1291 // Finish an output section.
1292
1293 void
1294 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1295 {
1296 this->fill_ = trailer->fill;
1297 this->phdrs_ = trailer->phdrs;
1298 }
1299
1300 // Add a symbol to be defined.
1301
1302 void
1303 Output_section_definition::add_symbol_assignment(const char* name,
1304 size_t length,
1305 Expression* value,
1306 bool provide,
1307 bool hidden)
1308 {
1309 Output_section_element* p = new Output_section_element_assignment(name,
1310 length,
1311 value,
1312 provide,
1313 hidden);
1314 this->elements_.push_back(p);
1315 }
1316
1317 // Add an assignment to the special dot symbol.
1318
1319 void
1320 Output_section_definition::add_dot_assignment(Expression* value)
1321 {
1322 Output_section_element* p = new Output_section_element_dot_assignment(value);
1323 this->elements_.push_back(p);
1324 }
1325
1326 // Add an assertion.
1327
1328 void
1329 Output_section_definition::add_assertion(Expression* check,
1330 const char* message,
1331 size_t messagelen)
1332 {
1333 Output_section_element* p = new Output_section_element_assertion(check,
1334 message,
1335 messagelen);
1336 this->elements_.push_back(p);
1337 }
1338
1339 // Add a data item to the current output section.
1340
1341 void
1342 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1343 {
1344 Output_section_element* p = new Output_section_element_data(size, is_signed,
1345 val);
1346 this->elements_.push_back(p);
1347 }
1348
1349 // Add a setting for the fill value.
1350
1351 void
1352 Output_section_definition::add_fill(Expression* val)
1353 {
1354 Output_section_element* p = new Output_section_element_fill(val);
1355 this->elements_.push_back(p);
1356 }
1357
1358 // Add an input section specification.
1359
1360 void
1361 Output_section_definition::add_input_section(const Input_section_spec* spec,
1362 bool keep)
1363 {
1364 Output_section_element* p = new Output_section_element_input(spec, keep);
1365 this->elements_.push_back(p);
1366 }
1367
1368 // Add any symbols being defined to the symbol table.
1369
1370 void
1371 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1372 {
1373 for (Output_section_elements::iterator p = this->elements_.begin();
1374 p != this->elements_.end();
1375 ++p)
1376 (*p)->add_symbols_to_table(symtab);
1377 }
1378
1379 // Finalize symbols and check assertions.
1380
1381 void
1382 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1383 const Layout* layout,
1384 uint64_t* dot_value)
1385 {
1386 if (this->output_section_ != NULL)
1387 *dot_value = this->output_section_->address();
1388 else
1389 {
1390 uint64_t address = *dot_value;
1391 if (this->address_ != NULL)
1392 {
1393 Output_section* dummy;
1394 address = this->address_->eval_with_dot(symtab, layout,
1395 *dot_value, NULL,
1396 &dummy);
1397 }
1398 if (this->align_ != NULL)
1399 {
1400 Output_section* dummy;
1401 uint64_t align = this->align_->eval_with_dot(symtab, layout,
1402 *dot_value,
1403 NULL,
1404 &dummy);
1405 address = align_address(address, align);
1406 }
1407 *dot_value = address;
1408 }
1409
1410 Output_section* dot_section = this->output_section_;
1411 for (Output_section_elements::iterator p = this->elements_.begin();
1412 p != this->elements_.end();
1413 ++p)
1414 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1415 }
1416
1417 // Return the output section name to use for an input section name.
1418
1419 const char*
1420 Output_section_definition::output_section_name(const char* file_name,
1421 const char* section_name,
1422 Output_section*** slot)
1423 {
1424 // Ask each element whether it matches NAME.
1425 for (Output_section_elements::const_iterator p = this->elements_.begin();
1426 p != this->elements_.end();
1427 ++p)
1428 {
1429 if ((*p)->match_name(file_name, section_name))
1430 {
1431 // We found a match for NAME, which means that it should go
1432 // into this output section.
1433 *slot = &this->output_section_;
1434 return this->name_.c_str();
1435 }
1436 }
1437
1438 // We don't know about this section name.
1439 return NULL;
1440 }
1441
1442 // Return whether to place an orphan output section after this
1443 // section.
1444
1445 bool
1446 Output_section_definition::place_orphan_here(const Output_section *os,
1447 bool* exact) const
1448 {
1449 // Check for the simple case first.
1450 if (this->output_section_ != NULL
1451 && this->output_section_->type() == os->type()
1452 && this->output_section_->flags() == os->flags())
1453 {
1454 *exact = true;
1455 return true;
1456 }
1457
1458 // Otherwise use some heuristics.
1459
1460 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1461 return false;
1462
1463 if (os->type() == elfcpp::SHT_NOBITS)
1464 {
1465 if (this->name_ == ".bss")
1466 {
1467 *exact = true;
1468 return true;
1469 }
1470 if (this->output_section_ != NULL
1471 && this->output_section_->type() == elfcpp::SHT_NOBITS)
1472 return true;
1473 }
1474 else if (os->type() == elfcpp::SHT_NOTE)
1475 {
1476 if (this->output_section_ != NULL
1477 && this->output_section_->type() == elfcpp::SHT_NOTE)
1478 {
1479 *exact = true;
1480 return true;
1481 }
1482 if (this->name_.compare(0, 5, ".note") == 0)
1483 {
1484 *exact = true;
1485 return true;
1486 }
1487 if (this->name_ == ".interp")
1488 return true;
1489 if (this->output_section_ != NULL
1490 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1491 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1492 return true;
1493 }
1494 else if (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
1495 {
1496 if (this->name_.compare(0, 4, ".rel") == 0)
1497 {
1498 *exact = true;
1499 return true;
1500 }
1501 if (this->output_section_ != NULL
1502 && (this->output_section_->type() == elfcpp::SHT_REL
1503 || this->output_section_->type() == elfcpp::SHT_RELA))
1504 {
1505 *exact = true;
1506 return true;
1507 }
1508 if (this->output_section_ != NULL
1509 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1510 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1511 return true;
1512 }
1513 else if (os->type() == elfcpp::SHT_PROGBITS
1514 && (os->flags() & elfcpp::SHF_WRITE) != 0)
1515 {
1516 if (this->name_ == ".data")
1517 {
1518 *exact = true;
1519 return true;
1520 }
1521 if (this->output_section_ != NULL
1522 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1523 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1524 return true;
1525 }
1526 else if (os->type() == elfcpp::SHT_PROGBITS
1527 && (os->flags() & elfcpp::SHF_EXECINSTR) != 0)
1528 {
1529 if (this->name_ == ".text")
1530 {
1531 *exact = true;
1532 return true;
1533 }
1534 if (this->output_section_ != NULL
1535 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1536 && (this->output_section_->flags() & elfcpp::SHF_EXECINSTR) != 0)
1537 return true;
1538 }
1539 else if (os->type() == elfcpp::SHT_PROGBITS
1540 || (os->type() != elfcpp::SHT_PROGBITS
1541 && (os->flags() & elfcpp::SHF_WRITE) == 0))
1542 {
1543 if (this->name_ == ".rodata")
1544 {
1545 *exact = true;
1546 return true;
1547 }
1548 if (this->output_section_ != NULL
1549 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1550 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1551 return true;
1552 }
1553
1554 return false;
1555 }
1556
1557 // Set the section address. Note that the OUTPUT_SECTION_ field will
1558 // be NULL if no input sections were mapped to this output section.
1559 // We still have to adjust dot and process symbol assignments.
1560
1561 void
1562 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1563 Layout* layout,
1564 uint64_t* dot_value,
1565 uint64_t* load_address)
1566 {
1567 uint64_t address;
1568 if (this->address_ == NULL)
1569 address = *dot_value;
1570 else
1571 {
1572 Output_section* dummy;
1573 address = this->address_->eval_with_dot(symtab, layout, *dot_value,
1574 NULL, &dummy);
1575 }
1576
1577 uint64_t align;
1578 if (this->align_ == NULL)
1579 {
1580 if (this->output_section_ == NULL)
1581 align = 0;
1582 else
1583 align = this->output_section_->addralign();
1584 }
1585 else
1586 {
1587 Output_section* align_section;
1588 align = this->align_->eval_with_dot(symtab, layout, *dot_value,
1589 NULL, &align_section);
1590 if (align_section != NULL)
1591 gold_warning(_("alignment of section %s is not absolute"),
1592 this->name_.c_str());
1593 if (this->output_section_ != NULL)
1594 this->output_section_->set_addralign(align);
1595 }
1596
1597 address = align_address(address, align);
1598
1599 uint64_t start_address = address;
1600
1601 *dot_value = address;
1602
1603 // The address of non-SHF_ALLOC sections is forced to zero,
1604 // regardless of what the linker script wants.
1605 if (this->output_section_ != NULL
1606 && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1607 this->output_section_->set_address(address);
1608
1609 if (this->load_address_ != NULL && this->output_section_ != NULL)
1610 {
1611 Output_section* dummy;
1612 uint64_t load_address =
1613 this->load_address_->eval_with_dot(symtab, layout, *dot_value,
1614 this->output_section_, &dummy);
1615 this->output_section_->set_load_address(load_address);
1616 }
1617
1618 uint64_t subalign;
1619 if (this->subalign_ == NULL)
1620 subalign = 0;
1621 else
1622 {
1623 Output_section* subalign_section;
1624 subalign = this->subalign_->eval_with_dot(symtab, layout, *dot_value,
1625 NULL, &subalign_section);
1626 if (subalign_section != NULL)
1627 gold_warning(_("subalign of section %s is not absolute"),
1628 this->name_.c_str());
1629 }
1630
1631 std::string fill;
1632 if (this->fill_ != NULL)
1633 {
1634 // FIXME: The GNU linker supports fill values of arbitrary
1635 // length.
1636 Output_section* fill_section;
1637 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout,
1638 *dot_value,
1639 NULL,
1640 &fill_section);
1641 if (fill_section != NULL)
1642 gold_warning(_("fill of section %s is not absolute"),
1643 this->name_.c_str());
1644 unsigned char fill_buff[4];
1645 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1646 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1647 }
1648
1649 Input_section_list input_sections;
1650 if (this->output_section_ != NULL)
1651 {
1652 // Get the list of input sections attached to this output
1653 // section. This will leave the output section with only
1654 // Output_section_data entries.
1655 address += this->output_section_->get_input_sections(address,
1656 fill,
1657 &input_sections);
1658 *dot_value = address;
1659 }
1660
1661 Output_section* dot_section = this->output_section_;
1662 for (Output_section_elements::iterator p = this->elements_.begin();
1663 p != this->elements_.end();
1664 ++p)
1665 (*p)->set_section_addresses(symtab, layout, this->output_section_,
1666 subalign, dot_value, &dot_section, &fill,
1667 &input_sections);
1668
1669 gold_assert(input_sections.empty());
1670
1671 if (this->load_address_ == NULL || this->output_section_ == NULL)
1672 *load_address = *dot_value;
1673 else
1674 *load_address = (this->output_section_->load_address()
1675 + (*dot_value - start_address));
1676 }
1677
1678 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1679 // this section is constrained, and the input sections do not match,
1680 // return the constraint, and set *POSD.
1681
1682 Section_constraint
1683 Output_section_definition::check_constraint(Output_section_definition** posd)
1684 {
1685 switch (this->constraint_)
1686 {
1687 case CONSTRAINT_NONE:
1688 return CONSTRAINT_NONE;
1689
1690 case CONSTRAINT_ONLY_IF_RO:
1691 if (this->output_section_ != NULL
1692 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1693 {
1694 *posd = this;
1695 return CONSTRAINT_ONLY_IF_RO;
1696 }
1697 return CONSTRAINT_NONE;
1698
1699 case CONSTRAINT_ONLY_IF_RW:
1700 if (this->output_section_ != NULL
1701 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1702 {
1703 *posd = this;
1704 return CONSTRAINT_ONLY_IF_RW;
1705 }
1706 return CONSTRAINT_NONE;
1707
1708 case CONSTRAINT_SPECIAL:
1709 if (this->output_section_ != NULL)
1710 gold_error(_("SPECIAL constraints are not implemented"));
1711 return CONSTRAINT_NONE;
1712
1713 default:
1714 gold_unreachable();
1715 }
1716 }
1717
1718 // See if this is the alternate output section for a constrained
1719 // output section. If it is, transfer the Output_section and return
1720 // true. Otherwise return false.
1721
1722 bool
1723 Output_section_definition::alternate_constraint(
1724 Output_section_definition* posd,
1725 Section_constraint constraint)
1726 {
1727 if (this->name_ != posd->name_)
1728 return false;
1729
1730 switch (constraint)
1731 {
1732 case CONSTRAINT_ONLY_IF_RO:
1733 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
1734 return false;
1735 break;
1736
1737 case CONSTRAINT_ONLY_IF_RW:
1738 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
1739 return false;
1740 break;
1741
1742 default:
1743 gold_unreachable();
1744 }
1745
1746 // We have found the alternate constraint. We just need to move
1747 // over the Output_section. When constraints are used properly,
1748 // THIS should not have an output_section pointer, as all the input
1749 // sections should have matched the other definition.
1750
1751 if (this->output_section_ != NULL)
1752 gold_error(_("mismatched definition for constrained sections"));
1753
1754 this->output_section_ = posd->output_section_;
1755 posd->output_section_ = NULL;
1756
1757 return true;
1758 }
1759
1760 // Get the list of segments to use for an allocated section when using
1761 // a PHDRS clause. If this is an allocated section, return the
1762 // Output_section, and set *PHDRS_LIST to the list of PHDRS to which
1763 // it should be attached. If the PHDRS were not specified, don't
1764 // change *PHDRS_LIST.
1765
1766 Output_section*
1767 Output_section_definition::allocate_to_segment(String_list** phdrs_list)
1768 {
1769 if (this->output_section_ == NULL)
1770 return NULL;
1771 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
1772 return NULL;
1773 if (this->phdrs_ != NULL)
1774 *phdrs_list = this->phdrs_;
1775 return this->output_section_;
1776 }
1777
1778 // Print for debugging.
1779
1780 void
1781 Output_section_definition::print(FILE* f) const
1782 {
1783 fprintf(f, " %s ", this->name_.c_str());
1784
1785 if (this->address_ != NULL)
1786 {
1787 this->address_->print(f);
1788 fprintf(f, " ");
1789 }
1790
1791 fprintf(f, ": ");
1792
1793 if (this->load_address_ != NULL)
1794 {
1795 fprintf(f, "AT(");
1796 this->load_address_->print(f);
1797 fprintf(f, ") ");
1798 }
1799
1800 if (this->align_ != NULL)
1801 {
1802 fprintf(f, "ALIGN(");
1803 this->align_->print(f);
1804 fprintf(f, ") ");
1805 }
1806
1807 if (this->subalign_ != NULL)
1808 {
1809 fprintf(f, "SUBALIGN(");
1810 this->subalign_->print(f);
1811 fprintf(f, ") ");
1812 }
1813
1814 fprintf(f, "{\n");
1815
1816 for (Output_section_elements::const_iterator p = this->elements_.begin();
1817 p != this->elements_.end();
1818 ++p)
1819 (*p)->print(f);
1820
1821 fprintf(f, " }");
1822
1823 if (this->fill_ != NULL)
1824 {
1825 fprintf(f, " = ");
1826 this->fill_->print(f);
1827 }
1828
1829 if (this->phdrs_ != NULL)
1830 {
1831 for (String_list::const_iterator p = this->phdrs_->begin();
1832 p != this->phdrs_->end();
1833 ++p)
1834 fprintf(f, " :%s", p->c_str());
1835 }
1836
1837 fprintf(f, "\n");
1838 }
1839
1840 // An output section created to hold orphaned input sections. These
1841 // do not actually appear in linker scripts. However, for convenience
1842 // when setting the output section addresses, we put a marker to these
1843 // sections in the appropriate place in the list of SECTIONS elements.
1844
1845 class Orphan_output_section : public Sections_element
1846 {
1847 public:
1848 Orphan_output_section(Output_section* os)
1849 : os_(os)
1850 { }
1851
1852 // Return whether to place an orphan section after this one.
1853 bool
1854 place_orphan_here(const Output_section *os, bool* exact) const;
1855
1856 // Set section addresses.
1857 void
1858 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
1859
1860 // Get the list of segments to use for an allocated section when
1861 // using a PHDRS clause. If this is an allocated section, return
1862 // the Output_section.
1863 Output_section*
1864 allocate_to_segment(String_list**);
1865
1866 // Print for debugging.
1867 void
1868 print(FILE* f) const
1869 {
1870 fprintf(f, " marker for orphaned output section %s\n",
1871 this->os_->name());
1872 }
1873
1874 private:
1875 Output_section* os_;
1876 };
1877
1878 // Whether to place another orphan section after this one.
1879
1880 bool
1881 Orphan_output_section::place_orphan_here(const Output_section* os,
1882 bool* exact) const
1883 {
1884 if (this->os_->type() == os->type()
1885 && this->os_->flags() == os->flags())
1886 {
1887 *exact = true;
1888 return true;
1889 }
1890 return false;
1891 }
1892
1893 // Set section addresses.
1894
1895 void
1896 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
1897 uint64_t* dot_value,
1898 uint64_t* load_address)
1899 {
1900 typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
1901
1902 bool have_load_address = *load_address != *dot_value;
1903
1904 uint64_t address = *dot_value;
1905 address = align_address(address, this->os_->addralign());
1906
1907 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
1908 {
1909 this->os_->set_address(address);
1910 if (have_load_address)
1911 this->os_->set_load_address(align_address(*load_address,
1912 this->os_->addralign()));
1913 }
1914
1915 Input_section_list input_sections;
1916 address += this->os_->get_input_sections(address, "", &input_sections);
1917
1918 for (Input_section_list::iterator p = input_sections.begin();
1919 p != input_sections.end();
1920 ++p)
1921 {
1922 uint64_t addralign;
1923 uint64_t size;
1924
1925 // We know what are single-threaded, so it is OK to lock the
1926 // object.
1927 {
1928 const Task* task = reinterpret_cast<const Task*>(-1);
1929 Task_lock_obj<Object> tl(task, p->first);
1930 addralign = p->first->section_addralign(p->second);
1931 size = p->first->section_size(p->second);
1932 }
1933
1934 address = align_address(address, addralign);
1935 this->os_->add_input_section_for_script(p->first, p->second, size,
1936 addralign);
1937 address += size;
1938 }
1939
1940 if (!have_load_address)
1941 *load_address = address;
1942 else
1943 *load_address += address - *dot_value;
1944
1945 *dot_value = address;
1946 }
1947
1948 // Get the list of segments to use for an allocated section when using
1949 // a PHDRS clause. If this is an allocated section, return the
1950 // Output_section. We don't change the list of segments.
1951
1952 Output_section*
1953 Orphan_output_section::allocate_to_segment(String_list**)
1954 {
1955 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
1956 return NULL;
1957 return this->os_;
1958 }
1959
1960 // Class Phdrs_element. A program header from a PHDRS clause.
1961
1962 class Phdrs_element
1963 {
1964 public:
1965 Phdrs_element(const char* name, size_t namelen, unsigned int type,
1966 bool includes_filehdr, bool includes_phdrs,
1967 bool is_flags_valid, unsigned int flags,
1968 Expression* load_address)
1969 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
1970 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
1971 flags_(flags), load_address_(load_address), load_address_value_(0),
1972 segment_(NULL)
1973 { }
1974
1975 // Return the name of this segment.
1976 const std::string&
1977 name() const
1978 { return this->name_; }
1979
1980 // Return the type of the segment.
1981 unsigned int
1982 type() const
1983 { return this->type_; }
1984
1985 // Whether to include the file header.
1986 bool
1987 includes_filehdr() const
1988 { return this->includes_filehdr_; }
1989
1990 // Whether to include the program headers.
1991 bool
1992 includes_phdrs() const
1993 { return this->includes_phdrs_; }
1994
1995 // Return whether there is a load address.
1996 bool
1997 has_load_address() const
1998 { return this->load_address_ != NULL; }
1999
2000 // Evaluate the load address expression if there is one.
2001 void
2002 eval_load_address(Symbol_table* symtab, Layout* layout)
2003 {
2004 if (this->load_address_ != NULL)
2005 this->load_address_value_ = this->load_address_->eval(symtab, layout);
2006 }
2007
2008 // Return the load address.
2009 uint64_t
2010 load_address() const
2011 {
2012 gold_assert(this->load_address_ != NULL);
2013 return this->load_address_value_;
2014 }
2015
2016 // Create the segment.
2017 Output_segment*
2018 create_segment(Layout* layout)
2019 {
2020 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2021 return this->segment_;
2022 }
2023
2024 // Return the segment.
2025 Output_segment*
2026 segment()
2027 { return this->segment_; }
2028
2029 // Set the segment flags if appropriate.
2030 void
2031 set_flags_if_valid()
2032 {
2033 if (this->is_flags_valid_)
2034 this->segment_->set_flags(this->flags_);
2035 }
2036
2037 // Print for debugging.
2038 void
2039 print(FILE*) const;
2040
2041 private:
2042 // The name used in the script.
2043 std::string name_;
2044 // The type of the segment (PT_LOAD, etc.).
2045 unsigned int type_;
2046 // Whether this segment includes the file header.
2047 bool includes_filehdr_;
2048 // Whether this segment includes the section headers.
2049 bool includes_phdrs_;
2050 // Whether the flags were explicitly specified.
2051 bool is_flags_valid_;
2052 // The flags for this segment (PF_R, etc.) if specified.
2053 unsigned int flags_;
2054 // The expression for the load address for this segment. This may
2055 // be NULL.
2056 Expression* load_address_;
2057 // The actual load address from evaluating the expression.
2058 uint64_t load_address_value_;
2059 // The segment itself.
2060 Output_segment* segment_;
2061 };
2062
2063 // Print for debugging.
2064
2065 void
2066 Phdrs_element::print(FILE* f) const
2067 {
2068 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
2069 if (this->includes_filehdr_)
2070 fprintf(f, " FILEHDR");
2071 if (this->includes_phdrs_)
2072 fprintf(f, " PHDRS");
2073 if (this->is_flags_valid_)
2074 fprintf(f, " FLAGS(%u)", this->flags_);
2075 if (this->load_address_ != NULL)
2076 {
2077 fprintf(f, " AT(");
2078 this->load_address_->print(f);
2079 fprintf(f, ")");
2080 }
2081 fprintf(f, ";\n");
2082 }
2083
2084 // Class Script_sections.
2085
2086 Script_sections::Script_sections()
2087 : saw_sections_clause_(false),
2088 in_sections_clause_(false),
2089 sections_elements_(NULL),
2090 output_section_(NULL),
2091 phdrs_elements_(NULL)
2092 {
2093 }
2094
2095 // Start a SECTIONS clause.
2096
2097 void
2098 Script_sections::start_sections()
2099 {
2100 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2101 this->saw_sections_clause_ = true;
2102 this->in_sections_clause_ = true;
2103 if (this->sections_elements_ == NULL)
2104 this->sections_elements_ = new Sections_elements;
2105 }
2106
2107 // Finish a SECTIONS clause.
2108
2109 void
2110 Script_sections::finish_sections()
2111 {
2112 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2113 this->in_sections_clause_ = false;
2114 }
2115
2116 // Add a symbol to be defined.
2117
2118 void
2119 Script_sections::add_symbol_assignment(const char* name, size_t length,
2120 Expression* val, bool provide,
2121 bool hidden)
2122 {
2123 if (this->output_section_ != NULL)
2124 this->output_section_->add_symbol_assignment(name, length, val,
2125 provide, hidden);
2126 else
2127 {
2128 Sections_element* p = new Sections_element_assignment(name, length,
2129 val, provide,
2130 hidden);
2131 this->sections_elements_->push_back(p);
2132 }
2133 }
2134
2135 // Add an assignment to the special dot symbol.
2136
2137 void
2138 Script_sections::add_dot_assignment(Expression* val)
2139 {
2140 if (this->output_section_ != NULL)
2141 this->output_section_->add_dot_assignment(val);
2142 else
2143 {
2144 Sections_element* p = new Sections_element_dot_assignment(val);
2145 this->sections_elements_->push_back(p);
2146 }
2147 }
2148
2149 // Add an assertion.
2150
2151 void
2152 Script_sections::add_assertion(Expression* check, const char* message,
2153 size_t messagelen)
2154 {
2155 if (this->output_section_ != NULL)
2156 this->output_section_->add_assertion(check, message, messagelen);
2157 else
2158 {
2159 Sections_element* p = new Sections_element_assertion(check, message,
2160 messagelen);
2161 this->sections_elements_->push_back(p);
2162 }
2163 }
2164
2165 // Start processing entries for an output section.
2166
2167 void
2168 Script_sections::start_output_section(
2169 const char* name,
2170 size_t namelen,
2171 const Parser_output_section_header *header)
2172 {
2173 Output_section_definition* posd = new Output_section_definition(name,
2174 namelen,
2175 header);
2176 this->sections_elements_->push_back(posd);
2177 gold_assert(this->output_section_ == NULL);
2178 this->output_section_ = posd;
2179 }
2180
2181 // Stop processing entries for an output section.
2182
2183 void
2184 Script_sections::finish_output_section(
2185 const Parser_output_section_trailer* trailer)
2186 {
2187 gold_assert(this->output_section_ != NULL);
2188 this->output_section_->finish(trailer);
2189 this->output_section_ = NULL;
2190 }
2191
2192 // Add a data item to the current output section.
2193
2194 void
2195 Script_sections::add_data(int size, bool is_signed, Expression* val)
2196 {
2197 gold_assert(this->output_section_ != NULL);
2198 this->output_section_->add_data(size, is_signed, val);
2199 }
2200
2201 // Add a fill value setting to the current output section.
2202
2203 void
2204 Script_sections::add_fill(Expression* val)
2205 {
2206 gold_assert(this->output_section_ != NULL);
2207 this->output_section_->add_fill(val);
2208 }
2209
2210 // Add an input section specification to the current output section.
2211
2212 void
2213 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2214 {
2215 gold_assert(this->output_section_ != NULL);
2216 this->output_section_->add_input_section(spec, keep);
2217 }
2218
2219 // Add any symbols we are defining to the symbol table.
2220
2221 void
2222 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2223 {
2224 if (!this->saw_sections_clause_)
2225 return;
2226 for (Sections_elements::iterator p = this->sections_elements_->begin();
2227 p != this->sections_elements_->end();
2228 ++p)
2229 (*p)->add_symbols_to_table(symtab);
2230 }
2231
2232 // Finalize symbols and check assertions.
2233
2234 void
2235 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2236 {
2237 if (!this->saw_sections_clause_)
2238 return;
2239 uint64_t dot_value = 0;
2240 for (Sections_elements::iterator p = this->sections_elements_->begin();
2241 p != this->sections_elements_->end();
2242 ++p)
2243 (*p)->finalize_symbols(symtab, layout, &dot_value);
2244 }
2245
2246 // Return the name of the output section to use for an input file name
2247 // and section name.
2248
2249 const char*
2250 Script_sections::output_section_name(const char* file_name,
2251 const char* section_name,
2252 Output_section*** output_section_slot)
2253 {
2254 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2255 p != this->sections_elements_->end();
2256 ++p)
2257 {
2258 const char* ret = (*p)->output_section_name(file_name, section_name,
2259 output_section_slot);
2260
2261 if (ret != NULL)
2262 {
2263 // The special name /DISCARD/ means that the input section
2264 // should be discarded.
2265 if (strcmp(ret, "/DISCARD/") == 0)
2266 {
2267 *output_section_slot = NULL;
2268 return NULL;
2269 }
2270 return ret;
2271 }
2272 }
2273
2274 // If we couldn't find a mapping for the name, the output section
2275 // gets the name of the input section.
2276
2277 *output_section_slot = NULL;
2278
2279 return section_name;
2280 }
2281
2282 // Place a marker for an orphan output section into the SECTIONS
2283 // clause.
2284
2285 void
2286 Script_sections::place_orphan(Output_section* os)
2287 {
2288 // Look for an output section definition which matches the output
2289 // section. Put a marker after that section.
2290 Sections_elements::iterator place = this->sections_elements_->end();
2291 for (Sections_elements::iterator p = this->sections_elements_->begin();
2292 p != this->sections_elements_->end();
2293 ++p)
2294 {
2295 bool exact;
2296 if ((*p)->place_orphan_here(os, &exact))
2297 {
2298 place = p;
2299 if (exact)
2300 break;
2301 }
2302 }
2303
2304 // The insert function puts the new element before the iterator.
2305 if (place != this->sections_elements_->end())
2306 ++place;
2307
2308 this->sections_elements_->insert(place, new Orphan_output_section(os));
2309 }
2310
2311 // Set the addresses of all the output sections. Walk through all the
2312 // elements, tracking the dot symbol. Apply assignments which set
2313 // absolute symbol values, in case they are used when setting dot.
2314 // Fill in data statement values. As we find output sections, set the
2315 // address, set the address of all associated input sections, and
2316 // update dot. Return the segment which should hold the file header
2317 // and segment headers, if any.
2318
2319 Output_segment*
2320 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2321 {
2322 gold_assert(this->saw_sections_clause_);
2323
2324 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
2325 // for our representation.
2326 for (Sections_elements::iterator p = this->sections_elements_->begin();
2327 p != this->sections_elements_->end();
2328 ++p)
2329 {
2330 Output_section_definition* posd;
2331 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2332 if (failed_constraint != CONSTRAINT_NONE)
2333 {
2334 Sections_elements::iterator q;
2335 for (q = this->sections_elements_->begin();
2336 q != this->sections_elements_->end();
2337 ++q)
2338 {
2339 if (q != p)
2340 {
2341 if ((*q)->alternate_constraint(posd, failed_constraint))
2342 break;
2343 }
2344 }
2345
2346 if (q == this->sections_elements_->end())
2347 gold_error(_("no matching section constraint"));
2348 }
2349 }
2350
2351 // For a relocatable link, we implicitly set dot to zero.
2352 uint64_t dot_value = 0;
2353 uint64_t load_address = 0;
2354 for (Sections_elements::iterator p = this->sections_elements_->begin();
2355 p != this->sections_elements_->end();
2356 ++p)
2357 (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2358
2359 if (this->phdrs_elements_ != NULL)
2360 {
2361 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2362 p != this->phdrs_elements_->end();
2363 ++p)
2364 (*p)->eval_load_address(symtab, layout);
2365 }
2366
2367 return this->create_segments(layout);
2368 }
2369
2370 // Sort the sections in order to put them into segments.
2371
2372 class Sort_output_sections
2373 {
2374 public:
2375 bool
2376 operator()(const Output_section* os1, const Output_section* os2) const;
2377 };
2378
2379 bool
2380 Sort_output_sections::operator()(const Output_section* os1,
2381 const Output_section* os2) const
2382 {
2383 // Sort first by the load address.
2384 uint64_t lma1 = (os1->has_load_address()
2385 ? os1->load_address()
2386 : os1->address());
2387 uint64_t lma2 = (os2->has_load_address()
2388 ? os2->load_address()
2389 : os2->address());
2390 if (lma1 != lma2)
2391 return lma1 < lma2;
2392
2393 // Then sort by the virtual address.
2394 if (os1->address() != os2->address())
2395 return os1->address() < os2->address();
2396
2397 // Sort TLS sections to the end.
2398 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2399 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2400 if (tls1 != tls2)
2401 return tls2;
2402
2403 // Sort PROGBITS before NOBITS.
2404 if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2405 return true;
2406 if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2407 return false;
2408
2409 // Otherwise we don't care.
2410 return false;
2411 }
2412
2413 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
2414 // We treat a section with the SHF_TLS flag set as taking up space
2415 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2416 // space for them in the file.
2417
2418 bool
2419 Script_sections::is_bss_section(const Output_section* os)
2420 {
2421 return (os->type() == elfcpp::SHT_NOBITS
2422 && (os->flags() & elfcpp::SHF_TLS) == 0);
2423 }
2424
2425 // Return the size taken by the file header and the program headers.
2426
2427 size_t
2428 Script_sections::total_header_size(Layout* layout) const
2429 {
2430 size_t segment_count = layout->segment_count();
2431 size_t file_header_size;
2432 size_t segment_headers_size;
2433 if (parameters->get_size() == 32)
2434 {
2435 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2436 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2437 }
2438 else if (parameters->get_size() == 64)
2439 {
2440 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2441 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2442 }
2443 else
2444 gold_unreachable();
2445
2446 return file_header_size + segment_headers_size;
2447 }
2448
2449 // Return the amount we have to subtract from the LMA to accomodate
2450 // headers of the given size. The complication is that the file
2451 // header have to be at the start of a page, as otherwise it will not
2452 // be at the start of the file.
2453
2454 uint64_t
2455 Script_sections::header_size_adjustment(uint64_t lma,
2456 size_t sizeof_headers) const
2457 {
2458 const uint64_t abi_pagesize = parameters->target()->abi_pagesize();
2459 uint64_t hdr_lma = lma - sizeof_headers;
2460 hdr_lma &= ~(abi_pagesize - 1);
2461 return lma - hdr_lma;
2462 }
2463
2464 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
2465 // the segment which should hold the file header and segment headers,
2466 // if any.
2467
2468 Output_segment*
2469 Script_sections::create_segments(Layout* layout)
2470 {
2471 gold_assert(this->saw_sections_clause_);
2472
2473 if (parameters->output_is_object())
2474 return NULL;
2475
2476 if (this->saw_phdrs_clause())
2477 return create_segments_from_phdrs_clause(layout);
2478
2479 Layout::Section_list sections;
2480 layout->get_allocated_sections(&sections);
2481
2482 // Sort the sections by address.
2483 std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2484
2485 this->create_note_and_tls_segments(layout, &sections);
2486
2487 // Walk through the sections adding them to PT_LOAD segments.
2488 const uint64_t abi_pagesize = parameters->target()->abi_pagesize();
2489 Output_segment* first_seg = NULL;
2490 Output_segment* current_seg = NULL;
2491 bool is_current_seg_readonly = true;
2492 Layout::Section_list::iterator plast = sections.end();
2493 uint64_t last_vma = 0;
2494 uint64_t last_lma = 0;
2495 uint64_t last_size = 0;
2496 for (Layout::Section_list::iterator p = sections.begin();
2497 p != sections.end();
2498 ++p)
2499 {
2500 const uint64_t vma = (*p)->address();
2501 const uint64_t lma = ((*p)->has_load_address()
2502 ? (*p)->load_address()
2503 : vma);
2504 const uint64_t size = (*p)->current_data_size();
2505
2506 bool need_new_segment;
2507 if (current_seg == NULL)
2508 need_new_segment = true;
2509 else if (lma - vma != last_lma - last_vma)
2510 {
2511 // This section has a different LMA relationship than the
2512 // last one; we need a new segment.
2513 need_new_segment = true;
2514 }
2515 else if (align_address(last_lma + last_size, abi_pagesize)
2516 < align_address(lma, abi_pagesize))
2517 {
2518 // Putting this section in the segment would require
2519 // skipping a page.
2520 need_new_segment = true;
2521 }
2522 else if (is_bss_section(*plast) && !is_bss_section(*p))
2523 {
2524 // A non-BSS section can not follow a BSS section in the
2525 // same segment.
2526 need_new_segment = true;
2527 }
2528 else if (is_current_seg_readonly
2529 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2530 {
2531 // Don't put a writable section in the same segment as a
2532 // non-writable section.
2533 need_new_segment = true;
2534 }
2535 else
2536 {
2537 // Otherwise, reuse the existing segment.
2538 need_new_segment = false;
2539 }
2540
2541 elfcpp::Elf_Word seg_flags =
2542 Layout::section_flags_to_segment((*p)->flags());
2543
2544 if (need_new_segment)
2545 {
2546 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2547 seg_flags);
2548 current_seg->set_addresses(vma, lma);
2549 if (first_seg == NULL)
2550 first_seg = current_seg;
2551 is_current_seg_readonly = true;
2552 }
2553
2554 current_seg->add_output_section(*p, seg_flags);
2555
2556 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2557 is_current_seg_readonly = false;
2558
2559 plast = p;
2560 last_vma = vma;
2561 last_lma = lma;
2562 last_size = size;
2563 }
2564
2565 // An ELF program should work even if the program headers are not in
2566 // a PT_LOAD segment. However, it appears that the Linux kernel
2567 // does not set the AT_PHDR auxiliary entry in that case. It sets
2568 // the load address to p_vaddr - p_offset of the first PT_LOAD
2569 // segment. It then sets AT_PHDR to the load address plus the
2570 // offset to the program headers, e_phoff in the file header. This
2571 // fails when the program headers appear in the file before the
2572 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
2573 // segment to hold the file header and the program headers. This is
2574 // effectively what the GNU linker does, and it is slightly more
2575 // efficient in any case. We try to use the first PT_LOAD segment
2576 // if we can, otherwise we make a new one.
2577
2578 size_t sizeof_headers = this->total_header_size(layout);
2579
2580 if (first_seg != NULL
2581 && (first_seg->paddr() & (abi_pagesize - 1)) >= sizeof_headers)
2582 {
2583 first_seg->set_addresses(first_seg->vaddr() - sizeof_headers,
2584 first_seg->paddr() - sizeof_headers);
2585 return first_seg;
2586 }
2587
2588 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2589 elfcpp::PF_R);
2590 if (first_seg == NULL)
2591 load_seg->set_addresses(0, 0);
2592 else
2593 {
2594 uint64_t vma = first_seg->vaddr();
2595 uint64_t lma = first_seg->paddr();
2596
2597 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
2598 if (lma >= subtract && vma >= subtract)
2599 load_seg->set_addresses(vma - subtract, lma - subtract);
2600 else
2601 {
2602 // We could handle this case by create the file header
2603 // outside of any PT_LOAD segment, and creating a new
2604 // PT_LOAD segment after the others to hold the segment
2605 // headers.
2606 gold_error(_("sections loaded on first page without room for "
2607 "file and program headers are not supported"));
2608 }
2609 }
2610
2611 return load_seg;
2612 }
2613
2614 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
2615 // segment if there are any SHT_TLS sections.
2616
2617 void
2618 Script_sections::create_note_and_tls_segments(
2619 Layout* layout,
2620 const Layout::Section_list* sections)
2621 {
2622 gold_assert(!this->saw_phdrs_clause());
2623
2624 bool saw_tls = false;
2625 for (Layout::Section_list::const_iterator p = sections->begin();
2626 p != sections->end();
2627 ++p)
2628 {
2629 if ((*p)->type() == elfcpp::SHT_NOTE)
2630 {
2631 elfcpp::Elf_Word seg_flags =
2632 Layout::section_flags_to_segment((*p)->flags());
2633 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
2634 seg_flags);
2635 oseg->add_output_section(*p, seg_flags);
2636
2637 // Incorporate any subsequent SHT_NOTE sections, in the
2638 // hopes that the script is sensible.
2639 Layout::Section_list::const_iterator pnext = p + 1;
2640 while (pnext != sections->end()
2641 && (*pnext)->type() == elfcpp::SHT_NOTE)
2642 {
2643 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2644 oseg->add_output_section(*pnext, seg_flags);
2645 p = pnext;
2646 ++pnext;
2647 }
2648 }
2649
2650 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2651 {
2652 if (saw_tls)
2653 gold_error(_("TLS sections are not adjacent"));
2654
2655 elfcpp::Elf_Word seg_flags =
2656 Layout::section_flags_to_segment((*p)->flags());
2657 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
2658 seg_flags);
2659 oseg->add_output_section(*p, seg_flags);
2660
2661 Layout::Section_list::const_iterator pnext = p + 1;
2662 while (pnext != sections->end()
2663 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
2664 {
2665 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2666 oseg->add_output_section(*pnext, seg_flags);
2667 p = pnext;
2668 ++pnext;
2669 }
2670
2671 saw_tls = true;
2672 }
2673 }
2674 }
2675
2676 // Add a program header. The PHDRS clause is syntactically distinct
2677 // from the SECTIONS clause, but we implement it with the SECTIONS
2678 // support becauase PHDRS is useless if there is no SECTIONS clause.
2679
2680 void
2681 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
2682 bool includes_filehdr, bool includes_phdrs,
2683 bool is_flags_valid, unsigned int flags,
2684 Expression* load_address)
2685 {
2686 if (this->phdrs_elements_ == NULL)
2687 this->phdrs_elements_ = new Phdrs_elements();
2688 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
2689 includes_filehdr,
2690 includes_phdrs,
2691 is_flags_valid, flags,
2692 load_address));
2693 }
2694
2695 // Return the number of segments we expect to create based on the
2696 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
2697
2698 size_t
2699 Script_sections::expected_segment_count(const Layout* layout) const
2700 {
2701 if (this->saw_phdrs_clause())
2702 return this->phdrs_elements_->size();
2703
2704 Layout::Section_list sections;
2705 layout->get_allocated_sections(&sections);
2706
2707 // We assume that we will need two PT_LOAD segments.
2708 size_t ret = 2;
2709
2710 bool saw_note = false;
2711 bool saw_tls = false;
2712 for (Layout::Section_list::const_iterator p = sections.begin();
2713 p != sections.end();
2714 ++p)
2715 {
2716 if ((*p)->type() == elfcpp::SHT_NOTE)
2717 {
2718 // Assume that all note sections will fit into a single
2719 // PT_NOTE segment.
2720 if (!saw_note)
2721 {
2722 ++ret;
2723 saw_note = true;
2724 }
2725 }
2726 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2727 {
2728 // There can only be one PT_TLS segment.
2729 if (!saw_tls)
2730 {
2731 ++ret;
2732 saw_tls = true;
2733 }
2734 }
2735 }
2736
2737 return ret;
2738 }
2739
2740 // Create the segments from a PHDRS clause. Return the segment which
2741 // should hold the file header and program headers, if any.
2742
2743 Output_segment*
2744 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
2745 {
2746 this->attach_sections_using_phdrs_clause(layout);
2747 return this->set_phdrs_clause_addresses(layout);
2748 }
2749
2750 // Create the segments from the PHDRS clause, and put the output
2751 // sections in them.
2752
2753 void
2754 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
2755 {
2756 typedef std::map<std::string, Output_segment*> Name_to_segment;
2757 Name_to_segment name_to_segment;
2758 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2759 p != this->phdrs_elements_->end();
2760 ++p)
2761 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
2762
2763 // Walk through the output sections and attach them to segments.
2764 // Output sections in the script which do not list segments are
2765 // attached to the same set of segments as the immediately preceding
2766 // output section.
2767 String_list* phdr_names = NULL;
2768 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2769 p != this->sections_elements_->end();
2770 ++p)
2771 {
2772 Output_section* os = (*p)->allocate_to_segment(&phdr_names);
2773 if (os == NULL)
2774 continue;
2775
2776 if (phdr_names == NULL)
2777 {
2778 gold_error(_("allocated section not in any segment"));
2779 continue;
2780 }
2781
2782 bool in_load_segment = false;
2783 for (String_list::const_iterator q = phdr_names->begin();
2784 q != phdr_names->end();
2785 ++q)
2786 {
2787 Name_to_segment::const_iterator r = name_to_segment.find(*q);
2788 if (r == name_to_segment.end())
2789 gold_error(_("no segment %s"), q->c_str());
2790 else
2791 {
2792 elfcpp::Elf_Word seg_flags =
2793 Layout::section_flags_to_segment(os->flags());
2794 r->second->add_output_section(os, seg_flags);
2795
2796 if (r->second->type() == elfcpp::PT_LOAD)
2797 {
2798 if (in_load_segment)
2799 gold_error(_("section in two PT_LOAD segments"));
2800 in_load_segment = true;
2801 }
2802 }
2803 }
2804
2805 if (!in_load_segment)
2806 gold_error(_("allocated section not in any PT_LOAD segment"));
2807 }
2808 }
2809
2810 // Set the addresses for segments created from a PHDRS clause. Return
2811 // the segment which should hold the file header and program headers,
2812 // if any.
2813
2814 Output_segment*
2815 Script_sections::set_phdrs_clause_addresses(Layout* layout)
2816 {
2817 Output_segment* load_seg = NULL;
2818 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2819 p != this->phdrs_elements_->end();
2820 ++p)
2821 {
2822 // Note that we have to set the flags after adding the output
2823 // sections to the segment, as adding an output segment can
2824 // change the flags.
2825 (*p)->set_flags_if_valid();
2826
2827 Output_segment* oseg = (*p)->segment();
2828
2829 if (oseg->type() != elfcpp::PT_LOAD)
2830 {
2831 // The addresses of non-PT_LOAD segments are set from the
2832 // PT_LOAD segments.
2833 if ((*p)->has_load_address())
2834 gold_error(_("may only specify load address for PT_LOAD segment"));
2835 continue;
2836 }
2837
2838 // The output sections should have addresses from the SECTIONS
2839 // clause. The addresses don't have to be in order, so find the
2840 // one with the lowest load address. Use that to set the
2841 // address of the segment.
2842
2843 Output_section* osec = oseg->section_with_lowest_load_address();
2844 if (osec == NULL)
2845 {
2846 oseg->set_addresses(0, 0);
2847 continue;
2848 }
2849
2850 uint64_t vma = osec->address();
2851 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
2852
2853 // Override the load address of the section with the load
2854 // address specified for the segment.
2855 if ((*p)->has_load_address())
2856 {
2857 if (osec->has_load_address())
2858 gold_warning(_("PHDRS load address overrides "
2859 "section %s load address"),
2860 osec->name());
2861
2862 lma = (*p)->load_address();
2863 }
2864
2865 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
2866 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
2867 {
2868 // We could support this if we wanted to.
2869 gold_error(_("using only one of FILEHDR and PHDRS is "
2870 "not currently supported"));
2871 }
2872 if (headers)
2873 {
2874 size_t sizeof_headers = this->total_header_size(layout);
2875 uint64_t subtract = this->header_size_adjustment(lma,
2876 sizeof_headers);
2877 if (lma >= subtract && vma >= subtract)
2878 {
2879 lma -= subtract;
2880 vma -= subtract;
2881 }
2882 else
2883 {
2884 gold_error(_("sections loaded on first page without room "
2885 "for file and program headers "
2886 "are not supported"));
2887 }
2888
2889 if (load_seg != NULL)
2890 gold_error(_("using FILEHDR and PHDRS on more than one "
2891 "PT_LOAD segment is not currently supported"));
2892 load_seg = oseg;
2893 }
2894
2895 oseg->set_addresses(vma, lma);
2896 }
2897
2898 return load_seg;
2899 }
2900
2901 // Add the file header and segment headers to non-load segments
2902 // specified in the PHDRS clause.
2903
2904 void
2905 Script_sections::put_headers_in_phdrs(Output_data* file_header,
2906 Output_data* segment_headers)
2907 {
2908 gold_assert(this->saw_phdrs_clause());
2909 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2910 p != this->phdrs_elements_->end();
2911 ++p)
2912 {
2913 if ((*p)->type() != elfcpp::PT_LOAD)
2914 {
2915 if ((*p)->includes_phdrs())
2916 (*p)->segment()->add_initial_output_data(segment_headers);
2917 if ((*p)->includes_filehdr())
2918 (*p)->segment()->add_initial_output_data(file_header);
2919 }
2920 }
2921 }
2922
2923 // Print the SECTIONS clause to F for debugging.
2924
2925 void
2926 Script_sections::print(FILE* f) const
2927 {
2928 if (!this->saw_sections_clause_)
2929 return;
2930
2931 fprintf(f, "SECTIONS {\n");
2932
2933 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2934 p != this->sections_elements_->end();
2935 ++p)
2936 (*p)->print(f);
2937
2938 fprintf(f, "}\n");
2939
2940 if (this->phdrs_elements_ != NULL)
2941 {
2942 fprintf(f, "PHDRS {\n");
2943 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2944 p != this->phdrs_elements_->end();
2945 ++p)
2946 (*p)->print(f);
2947 fprintf(f, "}\n");
2948 }
2949 }
2950
2951 } // End namespace gold.
This page took 0.098372 seconds and 4 git commands to generate.