Copyright update for binutils
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
53
54 class Token
55 {
56 public:
57 // Token classification.
58 enum Classification
59 {
60 // Token is invalid.
61 TOKEN_INVALID,
62 // Token indicates end of input.
63 TOKEN_EOF,
64 // Token is a string of characters.
65 TOKEN_STRING,
66 // Token is a quoted string of characters.
67 TOKEN_QUOTED_STRING,
68 // Token is an operator.
69 TOKEN_OPERATOR,
70 // Token is a number (an integer).
71 TOKEN_INTEGER
72 };
73
74 // We need an empty constructor so that we can put this STL objects.
75 Token()
76 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
78 { }
79
80 // A general token with no value.
81 Token(Classification classification, int lineno, int charpos)
82 : classification_(classification), value_(NULL), value_length_(0),
83 opcode_(0), lineno_(lineno), charpos_(charpos)
84 {
85 gold_assert(classification == TOKEN_INVALID
86 || classification == TOKEN_EOF);
87 }
88
89 // A general token with a value.
90 Token(Classification classification, const char* value, size_t length,
91 int lineno, int charpos)
92 : classification_(classification), value_(value), value_length_(length),
93 opcode_(0), lineno_(lineno), charpos_(charpos)
94 {
95 gold_assert(classification != TOKEN_INVALID
96 && classification != TOKEN_EOF);
97 }
98
99 // A token representing an operator.
100 Token(int opcode, int lineno, int charpos)
101 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102 opcode_(opcode), lineno_(lineno), charpos_(charpos)
103 { }
104
105 // Return whether the token is invalid.
106 bool
107 is_invalid() const
108 { return this->classification_ == TOKEN_INVALID; }
109
110 // Return whether this is an EOF token.
111 bool
112 is_eof() const
113 { return this->classification_ == TOKEN_EOF; }
114
115 // Return the token classification.
116 Classification
117 classification() const
118 { return this->classification_; }
119
120 // Return the line number at which the token starts.
121 int
122 lineno() const
123 { return this->lineno_; }
124
125 // Return the character position at this the token starts.
126 int
127 charpos() const
128 { return this->charpos_; }
129
130 // Get the value of a token.
131
132 const char*
133 string_value(size_t* length) const
134 {
135 gold_assert(this->classification_ == TOKEN_STRING
136 || this->classification_ == TOKEN_QUOTED_STRING);
137 *length = this->value_length_;
138 return this->value_;
139 }
140
141 int
142 operator_value() const
143 {
144 gold_assert(this->classification_ == TOKEN_OPERATOR);
145 return this->opcode_;
146 }
147
148 uint64_t
149 integer_value() const;
150
151 private:
152 // The token classification.
153 Classification classification_;
154 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
155 // TOKEN_INTEGER.
156 const char* value_;
157 // The length of the token value.
158 size_t value_length_;
159 // The token value, for TOKEN_OPERATOR.
160 int opcode_;
161 // The line number where this token started (one based).
162 int lineno_;
163 // The character position within the line where this token started
164 // (one based).
165 int charpos_;
166 };
167
168 // Return the value of a TOKEN_INTEGER.
169
170 uint64_t
171 Token::integer_value() const
172 {
173 gold_assert(this->classification_ == TOKEN_INTEGER);
174
175 size_t len = this->value_length_;
176
177 uint64_t multiplier = 1;
178 char last = this->value_[len - 1];
179 if (last == 'm' || last == 'M')
180 {
181 multiplier = 1024 * 1024;
182 --len;
183 }
184 else if (last == 'k' || last == 'K')
185 {
186 multiplier = 1024;
187 --len;
188 }
189
190 char *end;
191 uint64_t ret = strtoull(this->value_, &end, 0);
192 gold_assert(static_cast<size_t>(end - this->value_) == len);
193
194 return ret * multiplier;
195 }
196
197 // This class handles lexing a file into a sequence of tokens.
198
199 class Lex
200 {
201 public:
202 // We unfortunately have to support different lexing modes, because
203 // when reading different parts of a linker script we need to parse
204 // things differently.
205 enum Mode
206 {
207 // Reading an ordinary linker script.
208 LINKER_SCRIPT,
209 // Reading an expression in a linker script.
210 EXPRESSION,
211 // Reading a version script.
212 VERSION_SCRIPT,
213 // Reading a --dynamic-list file.
214 DYNAMIC_LIST
215 };
216
217 Lex(const char* input_string, size_t input_length, int parsing_token)
218 : input_string_(input_string), input_length_(input_length),
219 current_(input_string), mode_(LINKER_SCRIPT),
220 first_token_(parsing_token), token_(),
221 lineno_(1), linestart_(input_string)
222 { }
223
224 // Read a file into a string.
225 static void
226 read_file(Input_file*, std::string*);
227
228 // Return the next token.
229 const Token*
230 next_token();
231
232 // Return the current lexing mode.
233 Lex::Mode
234 mode() const
235 { return this->mode_; }
236
237 // Set the lexing mode.
238 void
239 set_mode(Mode mode)
240 { this->mode_ = mode; }
241
242 private:
243 Lex(const Lex&);
244 Lex& operator=(const Lex&);
245
246 // Make a general token with no value at the current location.
247 Token
248 make_token(Token::Classification c, const char* start) const
249 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
250
251 // Make a general token with a value at the current location.
252 Token
253 make_token(Token::Classification c, const char* v, size_t len,
254 const char* start)
255 const
256 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
257
258 // Make an operator token at the current location.
259 Token
260 make_token(int opcode, const char* start) const
261 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
262
263 // Make an invalid token at the current location.
264 Token
265 make_invalid_token(const char* start)
266 { return this->make_token(Token::TOKEN_INVALID, start); }
267
268 // Make an EOF token at the current location.
269 Token
270 make_eof_token(const char* start)
271 { return this->make_token(Token::TOKEN_EOF, start); }
272
273 // Return whether C can be the first character in a name. C2 is the
274 // next character, since we sometimes need that.
275 inline bool
276 can_start_name(char c, char c2);
277
278 // If C can appear in a name which has already started, return a
279 // pointer to a character later in the token or just past
280 // it. Otherwise, return NULL.
281 inline const char*
282 can_continue_name(const char* c);
283
284 // Return whether C, C2, C3 can start a hex number.
285 inline bool
286 can_start_hex(char c, char c2, char c3);
287
288 // If C can appear in a hex number which has already started, return
289 // a pointer to a character later in the token or just past
290 // it. Otherwise, return NULL.
291 inline const char*
292 can_continue_hex(const char* c);
293
294 // Return whether C can start a non-hex number.
295 static inline bool
296 can_start_number(char c);
297
298 // If C can appear in a decimal number which has already started,
299 // return a pointer to a character later in the token or just past
300 // it. Otherwise, return NULL.
301 inline const char*
302 can_continue_number(const char* c)
303 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
304
305 // If C1 C2 C3 form a valid three character operator, return the
306 // opcode. Otherwise return 0.
307 static inline int
308 three_char_operator(char c1, char c2, char c3);
309
310 // If C1 C2 form a valid two character operator, return the opcode.
311 // Otherwise return 0.
312 static inline int
313 two_char_operator(char c1, char c2);
314
315 // If C1 is a valid one character operator, return the opcode.
316 // Otherwise return 0.
317 static inline int
318 one_char_operator(char c1);
319
320 // Read the next token.
321 Token
322 get_token(const char**);
323
324 // Skip a C style /* */ comment. Return false if the comment did
325 // not end.
326 bool
327 skip_c_comment(const char**);
328
329 // Skip a line # comment. Return false if there was no newline.
330 bool
331 skip_line_comment(const char**);
332
333 // Build a token CLASSIFICATION from all characters that match
334 // CAN_CONTINUE_FN. The token starts at START. Start matching from
335 // MATCH. Set *PP to the character following the token.
336 inline Token
337 gather_token(Token::Classification,
338 const char* (Lex::*can_continue_fn)(const char*),
339 const char* start, const char* match, const char** pp);
340
341 // Build a token from a quoted string.
342 Token
343 gather_quoted_string(const char** pp);
344
345 // The string we are tokenizing.
346 const char* input_string_;
347 // The length of the string.
348 size_t input_length_;
349 // The current offset into the string.
350 const char* current_;
351 // The current lexing mode.
352 Mode mode_;
353 // The code to use for the first token. This is set to 0 after it
354 // is used.
355 int first_token_;
356 // The current token.
357 Token token_;
358 // The current line number.
359 int lineno_;
360 // The start of the current line in the string.
361 const char* linestart_;
362 };
363
364 // Read the whole file into memory. We don't expect linker scripts to
365 // be large, so we just use a std::string as a buffer. We ignore the
366 // data we've already read, so that we read aligned buffers.
367
368 void
369 Lex::read_file(Input_file* input_file, std::string* contents)
370 {
371 off_t filesize = input_file->file().filesize();
372 contents->clear();
373 contents->reserve(filesize);
374
375 off_t off = 0;
376 unsigned char buf[BUFSIZ];
377 while (off < filesize)
378 {
379 off_t get = BUFSIZ;
380 if (get > filesize - off)
381 get = filesize - off;
382 input_file->file().read(off, get, buf);
383 contents->append(reinterpret_cast<char*>(&buf[0]), get);
384 off += get;
385 }
386 }
387
388 // Return whether C can be the start of a name, if the next character
389 // is C2. A name can being with a letter, underscore, period, or
390 // dollar sign. Because a name can be a file name, we also permit
391 // forward slash, backslash, and tilde. Tilde is the tricky case
392 // here; GNU ld also uses it as a bitwise not operator. It is only
393 // recognized as the operator if it is not immediately followed by
394 // some character which can appear in a symbol. That is, when we
395 // don't know that we are looking at an expression, "~0" is a file
396 // name, and "~ 0" is an expression using bitwise not. We are
397 // compatible.
398
399 inline bool
400 Lex::can_start_name(char c, char c2)
401 {
402 switch (c)
403 {
404 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
405 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
406 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
407 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
408 case 'Y': case 'Z':
409 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
410 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
411 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
412 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
413 case 'y': case 'z':
414 case '_': case '.': case '$':
415 return true;
416
417 case '/': case '\\':
418 return this->mode_ == LINKER_SCRIPT;
419
420 case '~':
421 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
422
423 case '*': case '[':
424 return (this->mode_ == VERSION_SCRIPT
425 || this->mode_ == DYNAMIC_LIST
426 || (this->mode_ == LINKER_SCRIPT
427 && can_continue_name(&c2)));
428
429 default:
430 return false;
431 }
432 }
433
434 // Return whether C can continue a name which has already started.
435 // Subsequent characters in a name are the same as the leading
436 // characters, plus digits and "=+-:[],?*". So in general the linker
437 // script language requires spaces around operators, unless we know
438 // that we are parsing an expression.
439
440 inline const char*
441 Lex::can_continue_name(const char* c)
442 {
443 switch (*c)
444 {
445 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
446 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
447 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
448 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
449 case 'Y': case 'Z':
450 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
451 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
452 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
453 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
454 case 'y': case 'z':
455 case '_': case '.': case '$':
456 case '0': case '1': case '2': case '3': case '4':
457 case '5': case '6': case '7': case '8': case '9':
458 return c + 1;
459
460 // TODO(csilvers): why not allow ~ in names for version-scripts?
461 case '/': case '\\': case '~':
462 case '=': case '+':
463 case ',':
464 if (this->mode_ == LINKER_SCRIPT)
465 return c + 1;
466 return NULL;
467
468 case '[': case ']': case '*': case '?': case '-':
469 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
470 || this->mode_ == DYNAMIC_LIST)
471 return c + 1;
472 return NULL;
473
474 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
475 case '^':
476 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
477 return c + 1;
478 return NULL;
479
480 case ':':
481 if (this->mode_ == LINKER_SCRIPT)
482 return c + 1;
483 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
484 && (c[1] == ':'))
485 {
486 // A name can have '::' in it, as that's a c++ namespace
487 // separator. But a single colon is not part of a name.
488 return c + 2;
489 }
490 return NULL;
491
492 default:
493 return NULL;
494 }
495 }
496
497 // For a number we accept 0x followed by hex digits, or any sequence
498 // of digits. The old linker accepts leading '$' for hex, and
499 // trailing HXBOD. Those are for MRI compatibility and we don't
500 // accept them.
501
502 // Return whether C1 C2 C3 can start a hex number.
503
504 inline bool
505 Lex::can_start_hex(char c1, char c2, char c3)
506 {
507 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
508 return this->can_continue_hex(&c3);
509 return false;
510 }
511
512 // Return whether C can appear in a hex number.
513
514 inline const char*
515 Lex::can_continue_hex(const char* c)
516 {
517 switch (*c)
518 {
519 case '0': case '1': case '2': case '3': case '4':
520 case '5': case '6': case '7': case '8': case '9':
521 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
522 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
523 return c + 1;
524
525 default:
526 return NULL;
527 }
528 }
529
530 // Return whether C can start a non-hex number.
531
532 inline bool
533 Lex::can_start_number(char c)
534 {
535 switch (c)
536 {
537 case '0': case '1': case '2': case '3': case '4':
538 case '5': case '6': case '7': case '8': case '9':
539 return true;
540
541 default:
542 return false;
543 }
544 }
545
546 // If C1 C2 C3 form a valid three character operator, return the
547 // opcode (defined in the yyscript.h file generated from yyscript.y).
548 // Otherwise return 0.
549
550 inline int
551 Lex::three_char_operator(char c1, char c2, char c3)
552 {
553 switch (c1)
554 {
555 case '<':
556 if (c2 == '<' && c3 == '=')
557 return LSHIFTEQ;
558 break;
559 case '>':
560 if (c2 == '>' && c3 == '=')
561 return RSHIFTEQ;
562 break;
563 default:
564 break;
565 }
566 return 0;
567 }
568
569 // If C1 C2 form a valid two character operator, return the opcode
570 // (defined in the yyscript.h file generated from yyscript.y).
571 // Otherwise return 0.
572
573 inline int
574 Lex::two_char_operator(char c1, char c2)
575 {
576 switch (c1)
577 {
578 case '=':
579 if (c2 == '=')
580 return EQ;
581 break;
582 case '!':
583 if (c2 == '=')
584 return NE;
585 break;
586 case '+':
587 if (c2 == '=')
588 return PLUSEQ;
589 break;
590 case '-':
591 if (c2 == '=')
592 return MINUSEQ;
593 break;
594 case '*':
595 if (c2 == '=')
596 return MULTEQ;
597 break;
598 case '/':
599 if (c2 == '=')
600 return DIVEQ;
601 break;
602 case '|':
603 if (c2 == '=')
604 return OREQ;
605 if (c2 == '|')
606 return OROR;
607 break;
608 case '&':
609 if (c2 == '=')
610 return ANDEQ;
611 if (c2 == '&')
612 return ANDAND;
613 break;
614 case '>':
615 if (c2 == '=')
616 return GE;
617 if (c2 == '>')
618 return RSHIFT;
619 break;
620 case '<':
621 if (c2 == '=')
622 return LE;
623 if (c2 == '<')
624 return LSHIFT;
625 break;
626 default:
627 break;
628 }
629 return 0;
630 }
631
632 // If C1 is a valid operator, return the opcode. Otherwise return 0.
633
634 inline int
635 Lex::one_char_operator(char c1)
636 {
637 switch (c1)
638 {
639 case '+':
640 case '-':
641 case '*':
642 case '/':
643 case '%':
644 case '!':
645 case '&':
646 case '|':
647 case '^':
648 case '~':
649 case '<':
650 case '>':
651 case '=':
652 case '?':
653 case ',':
654 case '(':
655 case ')':
656 case '{':
657 case '}':
658 case '[':
659 case ']':
660 case ':':
661 case ';':
662 return c1;
663 default:
664 return 0;
665 }
666 }
667
668 // Skip a C style comment. *PP points to just after the "/*". Return
669 // false if the comment did not end.
670
671 bool
672 Lex::skip_c_comment(const char** pp)
673 {
674 const char* p = *pp;
675 while (p[0] != '*' || p[1] != '/')
676 {
677 if (*p == '\0')
678 {
679 *pp = p;
680 return false;
681 }
682
683 if (*p == '\n')
684 {
685 ++this->lineno_;
686 this->linestart_ = p + 1;
687 }
688 ++p;
689 }
690
691 *pp = p + 2;
692 return true;
693 }
694
695 // Skip a line # comment. Return false if there was no newline.
696
697 bool
698 Lex::skip_line_comment(const char** pp)
699 {
700 const char* p = *pp;
701 size_t skip = strcspn(p, "\n");
702 if (p[skip] == '\0')
703 {
704 *pp = p + skip;
705 return false;
706 }
707
708 p += skip + 1;
709 ++this->lineno_;
710 this->linestart_ = p;
711 *pp = p;
712
713 return true;
714 }
715
716 // Build a token CLASSIFICATION from all characters that match
717 // CAN_CONTINUE_FN. Update *PP.
718
719 inline Token
720 Lex::gather_token(Token::Classification classification,
721 const char* (Lex::*can_continue_fn)(const char*),
722 const char* start,
723 const char* match,
724 const char** pp)
725 {
726 const char* new_match = NULL;
727 while ((new_match = (this->*can_continue_fn)(match)) != NULL)
728 match = new_match;
729
730 // A special case: integers may be followed by a single M or K,
731 // case-insensitive.
732 if (classification == Token::TOKEN_INTEGER
733 && (*match == 'm' || *match == 'M' || *match == 'k' || *match == 'K'))
734 ++match;
735
736 *pp = match;
737 return this->make_token(classification, start, match - start, start);
738 }
739
740 // Build a token from a quoted string.
741
742 Token
743 Lex::gather_quoted_string(const char** pp)
744 {
745 const char* start = *pp;
746 const char* p = start;
747 ++p;
748 size_t skip = strcspn(p, "\"\n");
749 if (p[skip] != '"')
750 return this->make_invalid_token(start);
751 *pp = p + skip + 1;
752 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
753 }
754
755 // Return the next token at *PP. Update *PP. General guideline: we
756 // require linker scripts to be simple ASCII. No unicode linker
757 // scripts. In particular we can assume that any '\0' is the end of
758 // the input.
759
760 Token
761 Lex::get_token(const char** pp)
762 {
763 const char* p = *pp;
764
765 while (true)
766 {
767 if (*p == '\0')
768 {
769 *pp = p;
770 return this->make_eof_token(p);
771 }
772
773 // Skip whitespace quickly.
774 while (*p == ' ' || *p == '\t' || *p == '\r')
775 ++p;
776
777 if (*p == '\n')
778 {
779 ++p;
780 ++this->lineno_;
781 this->linestart_ = p;
782 continue;
783 }
784
785 // Skip C style comments.
786 if (p[0] == '/' && p[1] == '*')
787 {
788 int lineno = this->lineno_;
789 int charpos = p - this->linestart_ + 1;
790
791 *pp = p + 2;
792 if (!this->skip_c_comment(pp))
793 return Token(Token::TOKEN_INVALID, lineno, charpos);
794 p = *pp;
795
796 continue;
797 }
798
799 // Skip line comments.
800 if (*p == '#')
801 {
802 *pp = p + 1;
803 if (!this->skip_line_comment(pp))
804 return this->make_eof_token(p);
805 p = *pp;
806 continue;
807 }
808
809 // Check for a name.
810 if (this->can_start_name(p[0], p[1]))
811 return this->gather_token(Token::TOKEN_STRING,
812 &Lex::can_continue_name,
813 p, p + 1, pp);
814
815 // We accept any arbitrary name in double quotes, as long as it
816 // does not cross a line boundary.
817 if (*p == '"')
818 {
819 *pp = p;
820 return this->gather_quoted_string(pp);
821 }
822
823 // Check for a number.
824
825 if (this->can_start_hex(p[0], p[1], p[2]))
826 return this->gather_token(Token::TOKEN_INTEGER,
827 &Lex::can_continue_hex,
828 p, p + 3, pp);
829
830 if (Lex::can_start_number(p[0]))
831 return this->gather_token(Token::TOKEN_INTEGER,
832 &Lex::can_continue_number,
833 p, p + 1, pp);
834
835 // Check for operators.
836
837 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
838 if (opcode != 0)
839 {
840 *pp = p + 3;
841 return this->make_token(opcode, p);
842 }
843
844 opcode = Lex::two_char_operator(p[0], p[1]);
845 if (opcode != 0)
846 {
847 *pp = p + 2;
848 return this->make_token(opcode, p);
849 }
850
851 opcode = Lex::one_char_operator(p[0]);
852 if (opcode != 0)
853 {
854 *pp = p + 1;
855 return this->make_token(opcode, p);
856 }
857
858 return this->make_token(Token::TOKEN_INVALID, p);
859 }
860 }
861
862 // Return the next token.
863
864 const Token*
865 Lex::next_token()
866 {
867 // The first token is special.
868 if (this->first_token_ != 0)
869 {
870 this->token_ = Token(this->first_token_, 0, 0);
871 this->first_token_ = 0;
872 return &this->token_;
873 }
874
875 this->token_ = this->get_token(&this->current_);
876
877 // Don't let an early null byte fool us into thinking that we've
878 // reached the end of the file.
879 if (this->token_.is_eof()
880 && (static_cast<size_t>(this->current_ - this->input_string_)
881 < this->input_length_))
882 this->token_ = this->make_invalid_token(this->current_);
883
884 return &this->token_;
885 }
886
887 // class Symbol_assignment.
888
889 // Add the symbol to the symbol table. This makes sure the symbol is
890 // there and defined. The actual value is stored later. We can't
891 // determine the actual value at this point, because we can't
892 // necessarily evaluate the expression until all ordinary symbols have
893 // been finalized.
894
895 // The GNU linker lets symbol assignments in the linker script
896 // silently override defined symbols in object files. We are
897 // compatible. FIXME: Should we issue a warning?
898
899 void
900 Symbol_assignment::add_to_table(Symbol_table* symtab)
901 {
902 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
903 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
904 NULL, // version
905 (this->is_defsym_
906 ? Symbol_table::DEFSYM
907 : Symbol_table::SCRIPT),
908 0, // value
909 0, // size
910 elfcpp::STT_NOTYPE,
911 elfcpp::STB_GLOBAL,
912 vis,
913 0, // nonvis
914 this->provide_,
915 true); // force_override
916 }
917
918 // Finalize a symbol value.
919
920 void
921 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
922 {
923 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
924 }
925
926 // Finalize a symbol value which can refer to the dot symbol.
927
928 void
929 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
930 const Layout* layout,
931 uint64_t dot_value,
932 Output_section* dot_section)
933 {
934 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
935 }
936
937 // Finalize a symbol value, internal version.
938
939 void
940 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
941 const Layout* layout,
942 bool is_dot_available,
943 uint64_t dot_value,
944 Output_section* dot_section)
945 {
946 // If we were only supposed to provide this symbol, the sym_ field
947 // will be NULL if the symbol was not referenced.
948 if (this->sym_ == NULL)
949 {
950 gold_assert(this->provide_);
951 return;
952 }
953
954 if (parameters->target().get_size() == 32)
955 {
956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
957 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
958 dot_section);
959 #else
960 gold_unreachable();
961 #endif
962 }
963 else if (parameters->target().get_size() == 64)
964 {
965 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
966 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
967 dot_section);
968 #else
969 gold_unreachable();
970 #endif
971 }
972 else
973 gold_unreachable();
974 }
975
976 template<int size>
977 void
978 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
979 bool is_dot_available, uint64_t dot_value,
980 Output_section* dot_section)
981 {
982 Output_section* section;
983 elfcpp::STT type = elfcpp::STT_NOTYPE;
984 elfcpp::STV vis = elfcpp::STV_DEFAULT;
985 unsigned char nonvis = 0;
986 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
987 is_dot_available,
988 dot_value, dot_section,
989 &section, NULL, &type,
990 &vis, &nonvis, false, NULL);
991 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
992 ssym->set_value(final_val);
993 ssym->set_type(type);
994 ssym->set_visibility(vis);
995 ssym->set_nonvis(nonvis);
996 if (section != NULL)
997 ssym->set_output_section(section);
998 }
999
1000 // Set the symbol value if the expression yields an absolute value or
1001 // a value relative to DOT_SECTION.
1002
1003 void
1004 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
1005 bool is_dot_available, uint64_t dot_value,
1006 Output_section* dot_section)
1007 {
1008 if (this->sym_ == NULL)
1009 return;
1010
1011 Output_section* val_section;
1012 bool is_valid;
1013 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1014 is_dot_available, dot_value,
1015 dot_section, &val_section, NULL,
1016 NULL, NULL, NULL, false, &is_valid);
1017 if (!is_valid || (val_section != NULL && val_section != dot_section))
1018 return;
1019
1020 if (parameters->target().get_size() == 32)
1021 {
1022 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1023 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1024 ssym->set_value(val);
1025 #else
1026 gold_unreachable();
1027 #endif
1028 }
1029 else if (parameters->target().get_size() == 64)
1030 {
1031 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1032 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1033 ssym->set_value(val);
1034 #else
1035 gold_unreachable();
1036 #endif
1037 }
1038 else
1039 gold_unreachable();
1040 if (val_section != NULL)
1041 this->sym_->set_output_section(val_section);
1042 }
1043
1044 // Print for debugging.
1045
1046 void
1047 Symbol_assignment::print(FILE* f) const
1048 {
1049 if (this->provide_ && this->hidden_)
1050 fprintf(f, "PROVIDE_HIDDEN(");
1051 else if (this->provide_)
1052 fprintf(f, "PROVIDE(");
1053 else if (this->hidden_)
1054 gold_unreachable();
1055
1056 fprintf(f, "%s = ", this->name_.c_str());
1057 this->val_->print(f);
1058
1059 if (this->provide_ || this->hidden_)
1060 fprintf(f, ")");
1061
1062 fprintf(f, "\n");
1063 }
1064
1065 // Class Script_assertion.
1066
1067 // Check the assertion.
1068
1069 void
1070 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1071 {
1072 if (!this->check_->eval(symtab, layout, true))
1073 gold_error("%s", this->message_.c_str());
1074 }
1075
1076 // Print for debugging.
1077
1078 void
1079 Script_assertion::print(FILE* f) const
1080 {
1081 fprintf(f, "ASSERT(");
1082 this->check_->print(f);
1083 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1084 }
1085
1086 // Class Script_options.
1087
1088 Script_options::Script_options()
1089 : entry_(), symbol_assignments_(), symbol_definitions_(),
1090 symbol_references_(), version_script_info_(), script_sections_()
1091 {
1092 }
1093
1094 // Returns true if NAME is on the list of symbol assignments waiting
1095 // to be processed.
1096
1097 bool
1098 Script_options::is_pending_assignment(const char* name)
1099 {
1100 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1101 p != this->symbol_assignments_.end();
1102 ++p)
1103 if ((*p)->name() == name)
1104 return true;
1105 return false;
1106 }
1107
1108 // Add a symbol to be defined.
1109
1110 void
1111 Script_options::add_symbol_assignment(const char* name, size_t length,
1112 bool is_defsym, Expression* value,
1113 bool provide, bool hidden)
1114 {
1115 if (length != 1 || name[0] != '.')
1116 {
1117 if (this->script_sections_.in_sections_clause())
1118 {
1119 gold_assert(!is_defsym);
1120 this->script_sections_.add_symbol_assignment(name, length, value,
1121 provide, hidden);
1122 }
1123 else
1124 {
1125 Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1126 value, provide, hidden);
1127 this->symbol_assignments_.push_back(p);
1128 }
1129
1130 if (!provide)
1131 {
1132 std::string n(name, length);
1133 this->symbol_definitions_.insert(n);
1134 this->symbol_references_.erase(n);
1135 }
1136 }
1137 else
1138 {
1139 if (provide || hidden)
1140 gold_error(_("invalid use of PROVIDE for dot symbol"));
1141
1142 // The GNU linker permits assignments to dot outside of SECTIONS
1143 // clauses and treats them as occurring inside, so we don't
1144 // check in_sections_clause here.
1145 this->script_sections_.add_dot_assignment(value);
1146 }
1147 }
1148
1149 // Add a reference to a symbol.
1150
1151 void
1152 Script_options::add_symbol_reference(const char* name, size_t length)
1153 {
1154 if (length != 1 || name[0] != '.')
1155 {
1156 std::string n(name, length);
1157 if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1158 this->symbol_references_.insert(n);
1159 }
1160 }
1161
1162 // Add an assertion.
1163
1164 void
1165 Script_options::add_assertion(Expression* check, const char* message,
1166 size_t messagelen)
1167 {
1168 if (this->script_sections_.in_sections_clause())
1169 this->script_sections_.add_assertion(check, message, messagelen);
1170 else
1171 {
1172 Script_assertion* p = new Script_assertion(check, message, messagelen);
1173 this->assertions_.push_back(p);
1174 }
1175 }
1176
1177 // Create sections required by any linker scripts.
1178
1179 void
1180 Script_options::create_script_sections(Layout* layout)
1181 {
1182 if (this->saw_sections_clause())
1183 this->script_sections_.create_sections(layout);
1184 }
1185
1186 // Add any symbols we are defining to the symbol table.
1187
1188 void
1189 Script_options::add_symbols_to_table(Symbol_table* symtab)
1190 {
1191 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1192 p != this->symbol_assignments_.end();
1193 ++p)
1194 (*p)->add_to_table(symtab);
1195 this->script_sections_.add_symbols_to_table(symtab);
1196 }
1197
1198 // Finalize symbol values. Also check assertions.
1199
1200 void
1201 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1202 {
1203 // We finalize the symbols defined in SECTIONS first, because they
1204 // are the ones which may have changed. This way if symbol outside
1205 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1206 // will get the right value.
1207 this->script_sections_.finalize_symbols(symtab, layout);
1208
1209 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1210 p != this->symbol_assignments_.end();
1211 ++p)
1212 (*p)->finalize(symtab, layout);
1213
1214 for (Assertions::iterator p = this->assertions_.begin();
1215 p != this->assertions_.end();
1216 ++p)
1217 (*p)->check(symtab, layout);
1218 }
1219
1220 // Set section addresses. We set all the symbols which have absolute
1221 // values. Then we let the SECTIONS clause do its thing. This
1222 // returns the segment which holds the file header and segment
1223 // headers, if any.
1224
1225 Output_segment*
1226 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1227 {
1228 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1229 p != this->symbol_assignments_.end();
1230 ++p)
1231 (*p)->set_if_absolute(symtab, layout, false, 0, NULL);
1232
1233 return this->script_sections_.set_section_addresses(symtab, layout);
1234 }
1235
1236 // This class holds data passed through the parser to the lexer and to
1237 // the parser support functions. This avoids global variables. We
1238 // can't use global variables because we need not be called by a
1239 // singleton thread.
1240
1241 class Parser_closure
1242 {
1243 public:
1244 Parser_closure(const char* filename,
1245 const Position_dependent_options& posdep_options,
1246 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1247 Command_line* command_line,
1248 Script_options* script_options,
1249 Lex* lex,
1250 bool skip_on_incompatible_target,
1251 Script_info* script_info)
1252 : filename_(filename), posdep_options_(posdep_options),
1253 parsing_defsym_(parsing_defsym), in_group_(in_group),
1254 is_in_sysroot_(is_in_sysroot),
1255 skip_on_incompatible_target_(skip_on_incompatible_target),
1256 found_incompatible_target_(false),
1257 command_line_(command_line), script_options_(script_options),
1258 version_script_info_(script_options->version_script_info()),
1259 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1260 script_info_(script_info)
1261 {
1262 // We start out processing C symbols in the default lex mode.
1263 this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1264 this->lex_mode_stack_.push_back(lex->mode());
1265 }
1266
1267 // Return the file name.
1268 const char*
1269 filename() const
1270 { return this->filename_; }
1271
1272 // Return the position dependent options. The caller may modify
1273 // this.
1274 Position_dependent_options&
1275 position_dependent_options()
1276 { return this->posdep_options_; }
1277
1278 // Whether we are parsing a --defsym.
1279 bool
1280 parsing_defsym() const
1281 { return this->parsing_defsym_; }
1282
1283 // Return whether this script is being run in a group.
1284 bool
1285 in_group() const
1286 { return this->in_group_; }
1287
1288 // Return whether this script was found using a directory in the
1289 // sysroot.
1290 bool
1291 is_in_sysroot() const
1292 { return this->is_in_sysroot_; }
1293
1294 // Whether to skip to the next file with the same name if we find an
1295 // incompatible target in an OUTPUT_FORMAT statement.
1296 bool
1297 skip_on_incompatible_target() const
1298 { return this->skip_on_incompatible_target_; }
1299
1300 // Stop skipping to the next file on an incompatible target. This
1301 // is called when we make some unrevocable change to the data
1302 // structures.
1303 void
1304 clear_skip_on_incompatible_target()
1305 { this->skip_on_incompatible_target_ = false; }
1306
1307 // Whether we found an incompatible target in an OUTPUT_FORMAT
1308 // statement.
1309 bool
1310 found_incompatible_target() const
1311 { return this->found_incompatible_target_; }
1312
1313 // Note that we found an incompatible target.
1314 void
1315 set_found_incompatible_target()
1316 { this->found_incompatible_target_ = true; }
1317
1318 // Returns the Command_line structure passed in at constructor time.
1319 // This value may be NULL. The caller may modify this, which modifies
1320 // the passed-in Command_line object (not a copy).
1321 Command_line*
1322 command_line()
1323 { return this->command_line_; }
1324
1325 // Return the options which may be set by a script.
1326 Script_options*
1327 script_options()
1328 { return this->script_options_; }
1329
1330 // Return the object in which version script information should be stored.
1331 Version_script_info*
1332 version_script()
1333 { return this->version_script_info_; }
1334
1335 // Return the next token, and advance.
1336 const Token*
1337 next_token()
1338 {
1339 const Token* token = this->lex_->next_token();
1340 this->lineno_ = token->lineno();
1341 this->charpos_ = token->charpos();
1342 return token;
1343 }
1344
1345 // Set a new lexer mode, pushing the current one.
1346 void
1347 push_lex_mode(Lex::Mode mode)
1348 {
1349 this->lex_mode_stack_.push_back(this->lex_->mode());
1350 this->lex_->set_mode(mode);
1351 }
1352
1353 // Pop the lexer mode.
1354 void
1355 pop_lex_mode()
1356 {
1357 gold_assert(!this->lex_mode_stack_.empty());
1358 this->lex_->set_mode(this->lex_mode_stack_.back());
1359 this->lex_mode_stack_.pop_back();
1360 }
1361
1362 // Return the current lexer mode.
1363 Lex::Mode
1364 lex_mode() const
1365 { return this->lex_mode_stack_.back(); }
1366
1367 // Return the line number of the last token.
1368 int
1369 lineno() const
1370 { return this->lineno_; }
1371
1372 // Return the character position in the line of the last token.
1373 int
1374 charpos() const
1375 { return this->charpos_; }
1376
1377 // Return the list of input files, creating it if necessary. This
1378 // is a space leak--we never free the INPUTS_ pointer.
1379 Input_arguments*
1380 inputs()
1381 {
1382 if (this->inputs_ == NULL)
1383 this->inputs_ = new Input_arguments();
1384 return this->inputs_;
1385 }
1386
1387 // Return whether we saw any input files.
1388 bool
1389 saw_inputs() const
1390 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1391
1392 // Return the current language being processed in a version script
1393 // (eg, "C++"). The empty string represents unmangled C names.
1394 Version_script_info::Language
1395 get_current_language() const
1396 { return this->language_stack_.back(); }
1397
1398 // Push a language onto the stack when entering an extern block.
1399 void
1400 push_language(Version_script_info::Language lang)
1401 { this->language_stack_.push_back(lang); }
1402
1403 // Pop a language off of the stack when exiting an extern block.
1404 void
1405 pop_language()
1406 {
1407 gold_assert(!this->language_stack_.empty());
1408 this->language_stack_.pop_back();
1409 }
1410
1411 // Return a pointer to the incremental info.
1412 Script_info*
1413 script_info()
1414 { return this->script_info_; }
1415
1416 private:
1417 // The name of the file we are reading.
1418 const char* filename_;
1419 // The position dependent options.
1420 Position_dependent_options posdep_options_;
1421 // True if we are parsing a --defsym.
1422 bool parsing_defsym_;
1423 // Whether we are currently in a --start-group/--end-group.
1424 bool in_group_;
1425 // Whether the script was found in a sysrooted directory.
1426 bool is_in_sysroot_;
1427 // If this is true, then if we find an OUTPUT_FORMAT with an
1428 // incompatible target, then we tell the parser to abort so that we
1429 // can search for the next file with the same name.
1430 bool skip_on_incompatible_target_;
1431 // True if we found an OUTPUT_FORMAT with an incompatible target.
1432 bool found_incompatible_target_;
1433 // May be NULL if the user chooses not to pass one in.
1434 Command_line* command_line_;
1435 // Options which may be set from any linker script.
1436 Script_options* script_options_;
1437 // Information parsed from a version script.
1438 Version_script_info* version_script_info_;
1439 // The lexer.
1440 Lex* lex_;
1441 // The line number of the last token returned by next_token.
1442 int lineno_;
1443 // The column number of the last token returned by next_token.
1444 int charpos_;
1445 // A stack of lexer modes.
1446 std::vector<Lex::Mode> lex_mode_stack_;
1447 // A stack of which extern/language block we're inside. Can be C++,
1448 // java, or empty for C.
1449 std::vector<Version_script_info::Language> language_stack_;
1450 // New input files found to add to the link.
1451 Input_arguments* inputs_;
1452 // Pointer to incremental linking info.
1453 Script_info* script_info_;
1454 };
1455
1456 // FILE was found as an argument on the command line. Try to read it
1457 // as a script. Return true if the file was handled.
1458
1459 bool
1460 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1461 Dirsearch* dirsearch, int dirindex,
1462 Input_objects* input_objects, Mapfile* mapfile,
1463 Input_group* input_group,
1464 const Input_argument* input_argument,
1465 Input_file* input_file, Task_token* next_blocker,
1466 bool* used_next_blocker)
1467 {
1468 *used_next_blocker = false;
1469
1470 std::string input_string;
1471 Lex::read_file(input_file, &input_string);
1472
1473 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1474
1475 Script_info* script_info = NULL;
1476 if (layout->incremental_inputs() != NULL)
1477 {
1478 const std::string& filename = input_file->filename();
1479 Timespec mtime = input_file->file().get_mtime();
1480 unsigned int arg_serial = input_argument->file().arg_serial();
1481 script_info = new Script_info(filename);
1482 layout->incremental_inputs()->report_script(script_info, arg_serial,
1483 mtime);
1484 }
1485
1486 Parser_closure closure(input_file->filename().c_str(),
1487 input_argument->file().options(),
1488 false,
1489 input_group != NULL,
1490 input_file->is_in_sysroot(),
1491 NULL,
1492 layout->script_options(),
1493 &lex,
1494 input_file->will_search_for(),
1495 script_info);
1496
1497 bool old_saw_sections_clause =
1498 layout->script_options()->saw_sections_clause();
1499
1500 if (yyparse(&closure) != 0)
1501 {
1502 if (closure.found_incompatible_target())
1503 {
1504 Read_symbols::incompatible_warning(input_argument, input_file);
1505 Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1506 dirsearch, dirindex, mapfile, input_argument,
1507 input_group, next_blocker);
1508 return true;
1509 }
1510 return false;
1511 }
1512
1513 if (!old_saw_sections_clause
1514 && layout->script_options()->saw_sections_clause()
1515 && layout->have_added_input_section())
1516 gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1517 input_file->filename().c_str());
1518
1519 if (!closure.saw_inputs())
1520 return true;
1521
1522 Task_token* this_blocker = NULL;
1523 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1524 p != closure.inputs()->end();
1525 ++p)
1526 {
1527 Task_token* nb;
1528 if (p + 1 == closure.inputs()->end())
1529 nb = next_blocker;
1530 else
1531 {
1532 nb = new Task_token(true);
1533 nb->add_blocker();
1534 }
1535 workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1536 layout, dirsearch, 0, mapfile, &*p,
1537 input_group, NULL, this_blocker, nb));
1538 this_blocker = nb;
1539 }
1540
1541 *used_next_blocker = true;
1542
1543 return true;
1544 }
1545
1546 // Helper function for read_version_script(), read_commandline_script() and
1547 // script_include_directive(). Processes the given file in the mode indicated
1548 // by first_token and lex_mode.
1549
1550 static bool
1551 read_script_file(const char* filename, Command_line* cmdline,
1552 Script_options* script_options,
1553 int first_token, Lex::Mode lex_mode)
1554 {
1555 Dirsearch dirsearch;
1556 std::string name = filename;
1557
1558 // If filename is a relative filename, search for it manually using "." +
1559 // cmdline->options()->library_path() -- not dirsearch.
1560 if (!IS_ABSOLUTE_PATH(filename))
1561 {
1562 const General_options::Dir_list& search_path =
1563 cmdline->options().library_path();
1564 name = Dirsearch::find_file_in_dir_list(name, search_path, ".");
1565 }
1566
1567 // The file locking code wants to record a Task, but we haven't
1568 // started the workqueue yet. This is only for debugging purposes,
1569 // so we invent a fake value.
1570 const Task* task = reinterpret_cast<const Task*>(-1);
1571
1572 // We don't want this file to be opened in binary mode.
1573 Position_dependent_options posdep = cmdline->position_dependent_options();
1574 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1575 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1576 Input_file_argument input_argument(name.c_str(),
1577 Input_file_argument::INPUT_FILE_TYPE_FILE,
1578 "", false, posdep);
1579 Input_file input_file(&input_argument);
1580 int dummy = 0;
1581 if (!input_file.open(dirsearch, task, &dummy))
1582 return false;
1583
1584 std::string input_string;
1585 Lex::read_file(&input_file, &input_string);
1586
1587 Lex lex(input_string.c_str(), input_string.length(), first_token);
1588 lex.set_mode(lex_mode);
1589
1590 Parser_closure closure(filename,
1591 cmdline->position_dependent_options(),
1592 first_token == Lex::DYNAMIC_LIST,
1593 false,
1594 input_file.is_in_sysroot(),
1595 cmdline,
1596 script_options,
1597 &lex,
1598 false,
1599 NULL);
1600 if (yyparse(&closure) != 0)
1601 {
1602 input_file.file().unlock(task);
1603 return false;
1604 }
1605
1606 input_file.file().unlock(task);
1607
1608 gold_assert(!closure.saw_inputs());
1609
1610 return true;
1611 }
1612
1613 // FILENAME was found as an argument to --script (-T).
1614 // Read it as a script, and execute its contents immediately.
1615
1616 bool
1617 read_commandline_script(const char* filename, Command_line* cmdline)
1618 {
1619 return read_script_file(filename, cmdline, &cmdline->script_options(),
1620 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1621 }
1622
1623 // FILENAME was found as an argument to --version-script. Read it as
1624 // a version script, and store its contents in
1625 // cmdline->script_options()->version_script_info().
1626
1627 bool
1628 read_version_script(const char* filename, Command_line* cmdline)
1629 {
1630 return read_script_file(filename, cmdline, &cmdline->script_options(),
1631 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1632 }
1633
1634 // FILENAME was found as an argument to --dynamic-list. Read it as a
1635 // list of symbols, and store its contents in DYNAMIC_LIST.
1636
1637 bool
1638 read_dynamic_list(const char* filename, Command_line* cmdline,
1639 Script_options* dynamic_list)
1640 {
1641 return read_script_file(filename, cmdline, dynamic_list,
1642 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1643 }
1644
1645 // Implement the --defsym option on the command line. Return true if
1646 // all is well.
1647
1648 bool
1649 Script_options::define_symbol(const char* definition)
1650 {
1651 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1652 lex.set_mode(Lex::EXPRESSION);
1653
1654 // Dummy value.
1655 Position_dependent_options posdep_options;
1656
1657 Parser_closure closure("command line", posdep_options, true,
1658 false, false, NULL, this, &lex, false, NULL);
1659
1660 if (yyparse(&closure) != 0)
1661 return false;
1662
1663 gold_assert(!closure.saw_inputs());
1664
1665 return true;
1666 }
1667
1668 // Print the script to F for debugging.
1669
1670 void
1671 Script_options::print(FILE* f) const
1672 {
1673 fprintf(f, "%s: Dumping linker script\n", program_name);
1674
1675 if (!this->entry_.empty())
1676 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1677
1678 for (Symbol_assignments::const_iterator p =
1679 this->symbol_assignments_.begin();
1680 p != this->symbol_assignments_.end();
1681 ++p)
1682 (*p)->print(f);
1683
1684 for (Assertions::const_iterator p = this->assertions_.begin();
1685 p != this->assertions_.end();
1686 ++p)
1687 (*p)->print(f);
1688
1689 this->script_sections_.print(f);
1690
1691 this->version_script_info_.print(f);
1692 }
1693
1694 // Manage mapping from keywords to the codes expected by the bison
1695 // parser. We construct one global object for each lex mode with
1696 // keywords.
1697
1698 class Keyword_to_parsecode
1699 {
1700 public:
1701 // The structure which maps keywords to parsecodes.
1702 struct Keyword_parsecode
1703 {
1704 // Keyword.
1705 const char* keyword;
1706 // Corresponding parsecode.
1707 int parsecode;
1708 };
1709
1710 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1711 int keyword_count)
1712 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1713 { }
1714
1715 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1716 // keyword.
1717 int
1718 keyword_to_parsecode(const char* keyword, size_t len) const;
1719
1720 private:
1721 const Keyword_parsecode* keyword_parsecodes_;
1722 const int keyword_count_;
1723 };
1724
1725 // Mapping from keyword string to keyword parsecode. This array must
1726 // be kept in sorted order. Parsecodes are looked up using bsearch.
1727 // This array must correspond to the list of parsecodes in yyscript.y.
1728
1729 static const Keyword_to_parsecode::Keyword_parsecode
1730 script_keyword_parsecodes[] =
1731 {
1732 { "ABSOLUTE", ABSOLUTE },
1733 { "ADDR", ADDR },
1734 { "ALIGN", ALIGN_K },
1735 { "ALIGNOF", ALIGNOF },
1736 { "ASSERT", ASSERT_K },
1737 { "AS_NEEDED", AS_NEEDED },
1738 { "AT", AT },
1739 { "BIND", BIND },
1740 { "BLOCK", BLOCK },
1741 { "BYTE", BYTE },
1742 { "CONSTANT", CONSTANT },
1743 { "CONSTRUCTORS", CONSTRUCTORS },
1744 { "COPY", COPY },
1745 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1746 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1747 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1748 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1749 { "DEFINED", DEFINED },
1750 { "DSECT", DSECT },
1751 { "ENTRY", ENTRY },
1752 { "EXCLUDE_FILE", EXCLUDE_FILE },
1753 { "EXTERN", EXTERN },
1754 { "FILL", FILL },
1755 { "FLOAT", FLOAT },
1756 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1757 { "GROUP", GROUP },
1758 { "HLL", HLL },
1759 { "INCLUDE", INCLUDE },
1760 { "INFO", INFO },
1761 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1762 { "INPUT", INPUT },
1763 { "KEEP", KEEP },
1764 { "LENGTH", LENGTH },
1765 { "LOADADDR", LOADADDR },
1766 { "LONG", LONG },
1767 { "MAP", MAP },
1768 { "MAX", MAX_K },
1769 { "MEMORY", MEMORY },
1770 { "MIN", MIN_K },
1771 { "NEXT", NEXT },
1772 { "NOCROSSREFS", NOCROSSREFS },
1773 { "NOFLOAT", NOFLOAT },
1774 { "NOLOAD", NOLOAD },
1775 { "ONLY_IF_RO", ONLY_IF_RO },
1776 { "ONLY_IF_RW", ONLY_IF_RW },
1777 { "OPTION", OPTION },
1778 { "ORIGIN", ORIGIN },
1779 { "OUTPUT", OUTPUT },
1780 { "OUTPUT_ARCH", OUTPUT_ARCH },
1781 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1782 { "OVERLAY", OVERLAY },
1783 { "PHDRS", PHDRS },
1784 { "PROVIDE", PROVIDE },
1785 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1786 { "QUAD", QUAD },
1787 { "SEARCH_DIR", SEARCH_DIR },
1788 { "SECTIONS", SECTIONS },
1789 { "SEGMENT_START", SEGMENT_START },
1790 { "SHORT", SHORT },
1791 { "SIZEOF", SIZEOF },
1792 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1793 { "SORT", SORT_BY_NAME },
1794 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1795 { "SORT_BY_NAME", SORT_BY_NAME },
1796 { "SPECIAL", SPECIAL },
1797 { "SQUAD", SQUAD },
1798 { "STARTUP", STARTUP },
1799 { "SUBALIGN", SUBALIGN },
1800 { "SYSLIB", SYSLIB },
1801 { "TARGET", TARGET_K },
1802 { "TRUNCATE", TRUNCATE },
1803 { "VERSION", VERSIONK },
1804 { "global", GLOBAL },
1805 { "l", LENGTH },
1806 { "len", LENGTH },
1807 { "local", LOCAL },
1808 { "o", ORIGIN },
1809 { "org", ORIGIN },
1810 { "sizeof_headers", SIZEOF_HEADERS },
1811 };
1812
1813 static const Keyword_to_parsecode
1814 script_keywords(&script_keyword_parsecodes[0],
1815 (sizeof(script_keyword_parsecodes)
1816 / sizeof(script_keyword_parsecodes[0])));
1817
1818 static const Keyword_to_parsecode::Keyword_parsecode
1819 version_script_keyword_parsecodes[] =
1820 {
1821 { "extern", EXTERN },
1822 { "global", GLOBAL },
1823 { "local", LOCAL },
1824 };
1825
1826 static const Keyword_to_parsecode
1827 version_script_keywords(&version_script_keyword_parsecodes[0],
1828 (sizeof(version_script_keyword_parsecodes)
1829 / sizeof(version_script_keyword_parsecodes[0])));
1830
1831 static const Keyword_to_parsecode::Keyword_parsecode
1832 dynamic_list_keyword_parsecodes[] =
1833 {
1834 { "extern", EXTERN },
1835 };
1836
1837 static const Keyword_to_parsecode
1838 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1839 (sizeof(dynamic_list_keyword_parsecodes)
1840 / sizeof(dynamic_list_keyword_parsecodes[0])));
1841
1842
1843
1844 // Comparison function passed to bsearch.
1845
1846 extern "C"
1847 {
1848
1849 struct Ktt_key
1850 {
1851 const char* str;
1852 size_t len;
1853 };
1854
1855 static int
1856 ktt_compare(const void* keyv, const void* kttv)
1857 {
1858 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1859 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1860 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1861 int i = strncmp(key->str, ktt->keyword, key->len);
1862 if (i != 0)
1863 return i;
1864 if (ktt->keyword[key->len] != '\0')
1865 return -1;
1866 return 0;
1867 }
1868
1869 } // End extern "C".
1870
1871 int
1872 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1873 size_t len) const
1874 {
1875 Ktt_key key;
1876 key.str = keyword;
1877 key.len = len;
1878 void* kttv = bsearch(&key,
1879 this->keyword_parsecodes_,
1880 this->keyword_count_,
1881 sizeof(this->keyword_parsecodes_[0]),
1882 ktt_compare);
1883 if (kttv == NULL)
1884 return 0;
1885 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1886 return ktt->parsecode;
1887 }
1888
1889 // The following structs are used within the VersionInfo class as well
1890 // as in the bison helper functions. They store the information
1891 // parsed from the version script.
1892
1893 // A single version expression.
1894 // For example, pattern="std::map*" and language="C++".
1895 struct Version_expression
1896 {
1897 Version_expression(const std::string& a_pattern,
1898 Version_script_info::Language a_language,
1899 bool a_exact_match)
1900 : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1901 was_matched_by_symbol(false)
1902 { }
1903
1904 std::string pattern;
1905 Version_script_info::Language language;
1906 // If false, we use glob() to match pattern. If true, we use strcmp().
1907 bool exact_match;
1908 // True if --no-undefined-version is in effect and we found this
1909 // version in get_symbol_version. We use mutable because this
1910 // struct is generally not modifiable after it has been created.
1911 mutable bool was_matched_by_symbol;
1912 };
1913
1914 // A list of expressions.
1915 struct Version_expression_list
1916 {
1917 std::vector<struct Version_expression> expressions;
1918 };
1919
1920 // A list of which versions upon which another version depends.
1921 // Strings should be from the Stringpool.
1922 struct Version_dependency_list
1923 {
1924 std::vector<std::string> dependencies;
1925 };
1926
1927 // The total definition of a version. It includes the tag for the
1928 // version, its global and local expressions, and any dependencies.
1929 struct Version_tree
1930 {
1931 Version_tree()
1932 : tag(), global(NULL), local(NULL), dependencies(NULL)
1933 { }
1934
1935 std::string tag;
1936 const struct Version_expression_list* global;
1937 const struct Version_expression_list* local;
1938 const struct Version_dependency_list* dependencies;
1939 };
1940
1941 // Helper class that calls cplus_demangle when needed and takes care of freeing
1942 // the result.
1943
1944 class Lazy_demangler
1945 {
1946 public:
1947 Lazy_demangler(const char* symbol, int options)
1948 : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1949 { }
1950
1951 ~Lazy_demangler()
1952 { free(this->demangled_); }
1953
1954 // Return the demangled name. The actual demangling happens on the first call,
1955 // and the result is later cached.
1956 inline char*
1957 get();
1958
1959 private:
1960 // The symbol to demangle.
1961 const char* symbol_;
1962 // Option flags to pass to cplus_demagle.
1963 const int options_;
1964 // The cached demangled value, or NULL if demangling didn't happen yet or
1965 // failed.
1966 char* demangled_;
1967 // Whether we already called cplus_demangle
1968 bool did_demangle_;
1969 };
1970
1971 // Return the demangled name. The actual demangling happens on the first call,
1972 // and the result is later cached. Returns NULL if the symbol cannot be
1973 // demangled.
1974
1975 inline char*
1976 Lazy_demangler::get()
1977 {
1978 if (!this->did_demangle_)
1979 {
1980 this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1981 this->did_demangle_ = true;
1982 }
1983 return this->demangled_;
1984 }
1985
1986 // Class Version_script_info.
1987
1988 Version_script_info::Version_script_info()
1989 : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1990 default_version_(NULL), default_is_global_(false), is_finalized_(false)
1991 {
1992 for (int i = 0; i < LANGUAGE_COUNT; ++i)
1993 this->exact_[i] = NULL;
1994 }
1995
1996 Version_script_info::~Version_script_info()
1997 {
1998 }
1999
2000 // Forget all the known version script information.
2001
2002 void
2003 Version_script_info::clear()
2004 {
2005 for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
2006 delete this->dependency_lists_[k];
2007 this->dependency_lists_.clear();
2008 for (size_t k = 0; k < this->version_trees_.size(); ++k)
2009 delete this->version_trees_[k];
2010 this->version_trees_.clear();
2011 for (size_t k = 0; k < this->expression_lists_.size(); ++k)
2012 delete this->expression_lists_[k];
2013 this->expression_lists_.clear();
2014 }
2015
2016 // Finalize the version script information.
2017
2018 void
2019 Version_script_info::finalize()
2020 {
2021 if (!this->is_finalized_)
2022 {
2023 this->build_lookup_tables();
2024 this->is_finalized_ = true;
2025 }
2026 }
2027
2028 // Return all the versions.
2029
2030 std::vector<std::string>
2031 Version_script_info::get_versions() const
2032 {
2033 std::vector<std::string> ret;
2034 for (size_t j = 0; j < this->version_trees_.size(); ++j)
2035 if (!this->version_trees_[j]->tag.empty())
2036 ret.push_back(this->version_trees_[j]->tag);
2037 return ret;
2038 }
2039
2040 // Return the dependencies of VERSION.
2041
2042 std::vector<std::string>
2043 Version_script_info::get_dependencies(const char* version) const
2044 {
2045 std::vector<std::string> ret;
2046 for (size_t j = 0; j < this->version_trees_.size(); ++j)
2047 if (this->version_trees_[j]->tag == version)
2048 {
2049 const struct Version_dependency_list* deps =
2050 this->version_trees_[j]->dependencies;
2051 if (deps != NULL)
2052 for (size_t k = 0; k < deps->dependencies.size(); ++k)
2053 ret.push_back(deps->dependencies[k]);
2054 return ret;
2055 }
2056 return ret;
2057 }
2058
2059 // A version script essentially maps a symbol name to a version tag
2060 // and an indication of whether symbol is global or local within that
2061 // version tag. Each symbol maps to at most one version tag.
2062 // Unfortunately, in practice, version scripts are ambiguous, and list
2063 // symbols multiple times. Thus, we have to document the matching
2064 // process.
2065
2066 // This is a description of what the GNU linker does as of 2010-01-11.
2067 // It walks through the version tags in the order in which they appear
2068 // in the version script. For each tag, it first walks through the
2069 // global patterns for that tag, then the local patterns. When
2070 // looking at a single pattern, it first applies any language specific
2071 // demangling as specified for the pattern, and then matches the
2072 // resulting symbol name to the pattern. If it finds an exact match
2073 // for a literal pattern (a pattern enclosed in quotes or with no
2074 // wildcard characters), then that is the match that it uses. If
2075 // finds a match with a wildcard pattern, then it saves it and
2076 // continues searching. Wildcard patterns that are exactly "*" are
2077 // saved separately.
2078
2079 // If no exact match with a literal pattern is ever found, then if a
2080 // wildcard match with a global pattern was found it is used,
2081 // otherwise if a wildcard match with a local pattern was found it is
2082 // used.
2083
2084 // This is the result:
2085 // * If there is an exact match, then we use the first tag in the
2086 // version script where it matches.
2087 // + If the exact match in that tag is global, it is used.
2088 // + Otherwise the exact match in that tag is local, and is used.
2089 // * Otherwise, if there is any match with a global wildcard pattern:
2090 // + If there is any match with a wildcard pattern which is not
2091 // "*", then we use the tag in which the *last* such pattern
2092 // appears.
2093 // + Otherwise, we matched "*". If there is no match with a local
2094 // wildcard pattern which is not "*", then we use the *last*
2095 // match with a global "*". Otherwise, continue.
2096 // * Otherwise, if there is any match with a local wildcard pattern:
2097 // + If there is any match with a wildcard pattern which is not
2098 // "*", then we use the tag in which the *last* such pattern
2099 // appears.
2100 // + Otherwise, we matched "*", and we use the tag in which the
2101 // *last* such match occurred.
2102
2103 // There is an additional wrinkle. When the GNU linker finds a symbol
2104 // with a version defined in an object file due to a .symver
2105 // directive, it looks up that symbol name in that version tag. If it
2106 // finds it, it matches the symbol name against the patterns for that
2107 // version. If there is no match with a global pattern, but there is
2108 // a match with a local pattern, then the GNU linker marks the symbol
2109 // as local.
2110
2111 // We want gold to be generally compatible, but we also want gold to
2112 // be fast. These are the rules that gold implements:
2113 // * If there is an exact match for the mangled name, we use it.
2114 // + If there is more than one exact match, we give a warning, and
2115 // we use the first tag in the script which matches.
2116 // + If a symbol has an exact match as both global and local for
2117 // the same version tag, we give an error.
2118 // * Otherwise, we look for an extern C++ or an extern Java exact
2119 // match. If we find an exact match, we use it.
2120 // + If there is more than one exact match, we give a warning, and
2121 // we use the first tag in the script which matches.
2122 // + If a symbol has an exact match as both global and local for
2123 // the same version tag, we give an error.
2124 // * Otherwise, we look through the wildcard patterns, ignoring "*"
2125 // patterns. We look through the version tags in reverse order.
2126 // For each version tag, we look through the global patterns and
2127 // then the local patterns. We use the first match we find (i.e.,
2128 // the last matching version tag in the file).
2129 // * Otherwise, we use the "*" pattern if there is one. We give an
2130 // error if there are multiple "*" patterns.
2131
2132 // At least for now, gold does not look up the version tag for a
2133 // symbol version found in an object file to see if it should be
2134 // forced local. There are other ways to force a symbol to be local,
2135 // and I don't understand why this one is useful.
2136
2137 // Build a set of fast lookup tables for a version script.
2138
2139 void
2140 Version_script_info::build_lookup_tables()
2141 {
2142 size_t size = this->version_trees_.size();
2143 for (size_t j = 0; j < size; ++j)
2144 {
2145 const Version_tree* v = this->version_trees_[j];
2146 this->build_expression_list_lookup(v->local, v, false);
2147 this->build_expression_list_lookup(v->global, v, true);
2148 }
2149 }
2150
2151 // If a pattern has backlashes but no unquoted wildcard characters,
2152 // then we apply backslash unquoting and look for an exact match.
2153 // Otherwise we treat it as a wildcard pattern. This function returns
2154 // true for a wildcard pattern. Otherwise, it does backslash
2155 // unquoting on *PATTERN and returns false. If this returns true,
2156 // *PATTERN may have been partially unquoted.
2157
2158 bool
2159 Version_script_info::unquote(std::string* pattern) const
2160 {
2161 bool saw_backslash = false;
2162 size_t len = pattern->length();
2163 size_t j = 0;
2164 for (size_t i = 0; i < len; ++i)
2165 {
2166 if (saw_backslash)
2167 saw_backslash = false;
2168 else
2169 {
2170 switch ((*pattern)[i])
2171 {
2172 case '?': case '[': case '*':
2173 return true;
2174 case '\\':
2175 saw_backslash = true;
2176 continue;
2177 default:
2178 break;
2179 }
2180 }
2181
2182 if (i != j)
2183 (*pattern)[j] = (*pattern)[i];
2184 ++j;
2185 }
2186 return false;
2187 }
2188
2189 // Add an exact match for MATCH to *PE. The result of the match is
2190 // V/IS_GLOBAL.
2191
2192 void
2193 Version_script_info::add_exact_match(const std::string& match,
2194 const Version_tree* v, bool is_global,
2195 const Version_expression* ve,
2196 Exact* pe)
2197 {
2198 std::pair<Exact::iterator, bool> ins =
2199 pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2200 if (ins.second)
2201 {
2202 // This is the first time we have seen this match.
2203 return;
2204 }
2205
2206 Version_tree_match& vtm(ins.first->second);
2207 if (vtm.real->tag != v->tag)
2208 {
2209 // This is an ambiguous match. We still return the
2210 // first version that we found in the script, but we
2211 // record the new version to issue a warning if we
2212 // wind up looking up this symbol.
2213 if (vtm.ambiguous == NULL)
2214 vtm.ambiguous = v;
2215 }
2216 else if (is_global != vtm.is_global)
2217 {
2218 // We have a match for both the global and local entries for a
2219 // version tag. That's got to be wrong.
2220 gold_error(_("'%s' appears as both a global and a local symbol "
2221 "for version '%s' in script"),
2222 match.c_str(), v->tag.c_str());
2223 }
2224 }
2225
2226 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2227 // All matches go to V, and IS_GLOBAL is true if they are global
2228 // matches.
2229
2230 void
2231 Version_script_info::build_expression_list_lookup(
2232 const Version_expression_list* explist,
2233 const Version_tree* v,
2234 bool is_global)
2235 {
2236 if (explist == NULL)
2237 return;
2238 size_t size = explist->expressions.size();
2239 for (size_t i = 0; i < size; ++i)
2240 {
2241 const Version_expression& exp(explist->expressions[i]);
2242
2243 if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2244 {
2245 if (this->default_version_ != NULL
2246 && this->default_version_->tag != v->tag)
2247 gold_warning(_("wildcard match appears in both version '%s' "
2248 "and '%s' in script"),
2249 this->default_version_->tag.c_str(), v->tag.c_str());
2250 else if (this->default_version_ != NULL
2251 && this->default_is_global_ != is_global)
2252 gold_error(_("wildcard match appears as both global and local "
2253 "in version '%s' in script"),
2254 v->tag.c_str());
2255 this->default_version_ = v;
2256 this->default_is_global_ = is_global;
2257 continue;
2258 }
2259
2260 std::string pattern = exp.pattern;
2261 if (!exp.exact_match)
2262 {
2263 if (this->unquote(&pattern))
2264 {
2265 this->globs_.push_back(Glob(&exp, v, is_global));
2266 continue;
2267 }
2268 }
2269
2270 if (this->exact_[exp.language] == NULL)
2271 this->exact_[exp.language] = new Exact();
2272 this->add_exact_match(pattern, v, is_global, &exp,
2273 this->exact_[exp.language]);
2274 }
2275 }
2276
2277 // Return the name to match given a name, a language code, and two
2278 // lazy demanglers.
2279
2280 const char*
2281 Version_script_info::get_name_to_match(const char* name,
2282 int language,
2283 Lazy_demangler* cpp_demangler,
2284 Lazy_demangler* java_demangler) const
2285 {
2286 switch (language)
2287 {
2288 case LANGUAGE_C:
2289 return name;
2290 case LANGUAGE_CXX:
2291 return cpp_demangler->get();
2292 case LANGUAGE_JAVA:
2293 return java_demangler->get();
2294 default:
2295 gold_unreachable();
2296 }
2297 }
2298
2299 // Look up SYMBOL_NAME in the list of versions. Return true if the
2300 // symbol is found, false if not. If the symbol is found, then if
2301 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2302 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2303 // symbol is global or not.
2304
2305 bool
2306 Version_script_info::get_symbol_version(const char* symbol_name,
2307 std::string* pversion,
2308 bool* p_is_global) const
2309 {
2310 Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2311 Lazy_demangler java_demangled_name(symbol_name,
2312 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2313
2314 gold_assert(this->is_finalized_);
2315 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2316 {
2317 Exact* exact = this->exact_[i];
2318 if (exact == NULL)
2319 continue;
2320
2321 const char* name_to_match = this->get_name_to_match(symbol_name, i,
2322 &cpp_demangled_name,
2323 &java_demangled_name);
2324 if (name_to_match == NULL)
2325 {
2326 // If the name can not be demangled, the GNU linker goes
2327 // ahead and tries to match it anyhow. That does not
2328 // make sense to me and I have not implemented it.
2329 continue;
2330 }
2331
2332 Exact::const_iterator pe = exact->find(name_to_match);
2333 if (pe != exact->end())
2334 {
2335 const Version_tree_match& vtm(pe->second);
2336 if (vtm.ambiguous != NULL)
2337 gold_warning(_("using '%s' as version for '%s' which is also "
2338 "named in version '%s' in script"),
2339 vtm.real->tag.c_str(), name_to_match,
2340 vtm.ambiguous->tag.c_str());
2341
2342 if (pversion != NULL)
2343 *pversion = vtm.real->tag;
2344 if (p_is_global != NULL)
2345 *p_is_global = vtm.is_global;
2346
2347 // If we are using --no-undefined-version, and this is a
2348 // global symbol, we have to record that we have found this
2349 // symbol, so that we don't warn about it. We have to do
2350 // this now, because otherwise we have no way to get from a
2351 // non-C language back to the demangled name that we
2352 // matched.
2353 if (p_is_global != NULL && vtm.is_global)
2354 vtm.expression->was_matched_by_symbol = true;
2355
2356 return true;
2357 }
2358 }
2359
2360 // Look through the glob patterns in reverse order.
2361
2362 for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2363 p != this->globs_.rend();
2364 ++p)
2365 {
2366 int language = p->expression->language;
2367 const char* name_to_match = this->get_name_to_match(symbol_name,
2368 language,
2369 &cpp_demangled_name,
2370 &java_demangled_name);
2371 if (name_to_match == NULL)
2372 continue;
2373
2374 if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2375 FNM_NOESCAPE) == 0)
2376 {
2377 if (pversion != NULL)
2378 *pversion = p->version->tag;
2379 if (p_is_global != NULL)
2380 *p_is_global = p->is_global;
2381 return true;
2382 }
2383 }
2384
2385 // Finally, there may be a wildcard.
2386 if (this->default_version_ != NULL)
2387 {
2388 if (pversion != NULL)
2389 *pversion = this->default_version_->tag;
2390 if (p_is_global != NULL)
2391 *p_is_global = this->default_is_global_;
2392 return true;
2393 }
2394
2395 return false;
2396 }
2397
2398 // Give an error if any exact symbol names (not wildcards) appear in a
2399 // version script, but there is no such symbol.
2400
2401 void
2402 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2403 {
2404 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2405 {
2406 const Version_tree* vt = this->version_trees_[i];
2407 if (vt->global == NULL)
2408 continue;
2409 for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2410 {
2411 const Version_expression& expression(vt->global->expressions[j]);
2412
2413 // Ignore cases where we used the version because we saw a
2414 // symbol that we looked up. Note that
2415 // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2416 // not a definition. That's OK as in that case we most
2417 // likely gave an undefined symbol error anyhow.
2418 if (expression.was_matched_by_symbol)
2419 continue;
2420
2421 // Just ignore names which are in languages other than C.
2422 // We have no way to look them up in the symbol table.
2423 if (expression.language != LANGUAGE_C)
2424 continue;
2425
2426 // Remove backslash quoting, and ignore wildcard patterns.
2427 std::string pattern = expression.pattern;
2428 if (!expression.exact_match)
2429 {
2430 if (this->unquote(&pattern))
2431 continue;
2432 }
2433
2434 if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2435 gold_error(_("version script assignment of %s to symbol %s "
2436 "failed: symbol not defined"),
2437 vt->tag.c_str(), pattern.c_str());
2438 }
2439 }
2440 }
2441
2442 struct Version_dependency_list*
2443 Version_script_info::allocate_dependency_list()
2444 {
2445 dependency_lists_.push_back(new Version_dependency_list);
2446 return dependency_lists_.back();
2447 }
2448
2449 struct Version_expression_list*
2450 Version_script_info::allocate_expression_list()
2451 {
2452 expression_lists_.push_back(new Version_expression_list);
2453 return expression_lists_.back();
2454 }
2455
2456 struct Version_tree*
2457 Version_script_info::allocate_version_tree()
2458 {
2459 version_trees_.push_back(new Version_tree);
2460 return version_trees_.back();
2461 }
2462
2463 // Print for debugging.
2464
2465 void
2466 Version_script_info::print(FILE* f) const
2467 {
2468 if (this->empty())
2469 return;
2470
2471 fprintf(f, "VERSION {");
2472
2473 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2474 {
2475 const Version_tree* vt = this->version_trees_[i];
2476
2477 if (vt->tag.empty())
2478 fprintf(f, " {\n");
2479 else
2480 fprintf(f, " %s {\n", vt->tag.c_str());
2481
2482 if (vt->global != NULL)
2483 {
2484 fprintf(f, " global :\n");
2485 this->print_expression_list(f, vt->global);
2486 }
2487
2488 if (vt->local != NULL)
2489 {
2490 fprintf(f, " local :\n");
2491 this->print_expression_list(f, vt->local);
2492 }
2493
2494 fprintf(f, " }");
2495 if (vt->dependencies != NULL)
2496 {
2497 const Version_dependency_list* deps = vt->dependencies;
2498 for (size_t j = 0; j < deps->dependencies.size(); ++j)
2499 {
2500 if (j < deps->dependencies.size() - 1)
2501 fprintf(f, "\n");
2502 fprintf(f, " %s", deps->dependencies[j].c_str());
2503 }
2504 }
2505 fprintf(f, ";\n");
2506 }
2507
2508 fprintf(f, "}\n");
2509 }
2510
2511 void
2512 Version_script_info::print_expression_list(
2513 FILE* f,
2514 const Version_expression_list* vel) const
2515 {
2516 Version_script_info::Language current_language = LANGUAGE_C;
2517 for (size_t i = 0; i < vel->expressions.size(); ++i)
2518 {
2519 const Version_expression& ve(vel->expressions[i]);
2520
2521 if (ve.language != current_language)
2522 {
2523 if (current_language != LANGUAGE_C)
2524 fprintf(f, " }\n");
2525 switch (ve.language)
2526 {
2527 case LANGUAGE_C:
2528 break;
2529 case LANGUAGE_CXX:
2530 fprintf(f, " extern \"C++\" {\n");
2531 break;
2532 case LANGUAGE_JAVA:
2533 fprintf(f, " extern \"Java\" {\n");
2534 break;
2535 default:
2536 gold_unreachable();
2537 }
2538 current_language = ve.language;
2539 }
2540
2541 fprintf(f, " ");
2542 if (current_language != LANGUAGE_C)
2543 fprintf(f, " ");
2544
2545 if (ve.exact_match)
2546 fprintf(f, "\"");
2547 fprintf(f, "%s", ve.pattern.c_str());
2548 if (ve.exact_match)
2549 fprintf(f, "\"");
2550
2551 fprintf(f, "\n");
2552 }
2553
2554 if (current_language != LANGUAGE_C)
2555 fprintf(f, " }\n");
2556 }
2557
2558 } // End namespace gold.
2559
2560 // The remaining functions are extern "C", so it's clearer to not put
2561 // them in namespace gold.
2562
2563 using namespace gold;
2564
2565 // This function is called by the bison parser to return the next
2566 // token.
2567
2568 extern "C" int
2569 yylex(YYSTYPE* lvalp, void* closurev)
2570 {
2571 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2572 const Token* token = closure->next_token();
2573 switch (token->classification())
2574 {
2575 default:
2576 gold_unreachable();
2577
2578 case Token::TOKEN_INVALID:
2579 yyerror(closurev, "invalid character");
2580 return 0;
2581
2582 case Token::TOKEN_EOF:
2583 return 0;
2584
2585 case Token::TOKEN_STRING:
2586 {
2587 // This is either a keyword or a STRING.
2588 size_t len;
2589 const char* str = token->string_value(&len);
2590 int parsecode = 0;
2591 switch (closure->lex_mode())
2592 {
2593 case Lex::LINKER_SCRIPT:
2594 parsecode = script_keywords.keyword_to_parsecode(str, len);
2595 break;
2596 case Lex::VERSION_SCRIPT:
2597 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2598 break;
2599 case Lex::DYNAMIC_LIST:
2600 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2601 break;
2602 default:
2603 break;
2604 }
2605 if (parsecode != 0)
2606 return parsecode;
2607 lvalp->string.value = str;
2608 lvalp->string.length = len;
2609 return STRING;
2610 }
2611
2612 case Token::TOKEN_QUOTED_STRING:
2613 lvalp->string.value = token->string_value(&lvalp->string.length);
2614 return QUOTED_STRING;
2615
2616 case Token::TOKEN_OPERATOR:
2617 return token->operator_value();
2618
2619 case Token::TOKEN_INTEGER:
2620 lvalp->integer = token->integer_value();
2621 return INTEGER;
2622 }
2623 }
2624
2625 // This function is called by the bison parser to report an error.
2626
2627 extern "C" void
2628 yyerror(void* closurev, const char* message)
2629 {
2630 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2631 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2632 closure->charpos(), message);
2633 }
2634
2635 // Called by the bison parser to add an external symbol to the link.
2636
2637 extern "C" void
2638 script_add_extern(void* closurev, const char* name, size_t length)
2639 {
2640 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2641 closure->script_options()->add_symbol_reference(name, length);
2642 }
2643
2644 // Called by the bison parser to add a file to the link.
2645
2646 extern "C" void
2647 script_add_file(void* closurev, const char* name, size_t length)
2648 {
2649 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2650
2651 // If this is an absolute path, and we found the script in the
2652 // sysroot, then we want to prepend the sysroot to the file name.
2653 // For example, this is how we handle a cross link to the x86_64
2654 // libc.so, which refers to /lib/libc.so.6.
2655 std::string name_string(name, length);
2656 const char* extra_search_path = ".";
2657 std::string script_directory;
2658 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2659 {
2660 if (closure->is_in_sysroot())
2661 {
2662 const std::string& sysroot(parameters->options().sysroot());
2663 gold_assert(!sysroot.empty());
2664 name_string = sysroot + name_string;
2665 }
2666 }
2667 else
2668 {
2669 // In addition to checking the normal library search path, we
2670 // also want to check in the script-directory.
2671 const char* slash = strrchr(closure->filename(), '/');
2672 if (slash != NULL)
2673 {
2674 script_directory.assign(closure->filename(),
2675 slash - closure->filename() + 1);
2676 extra_search_path = script_directory.c_str();
2677 }
2678 }
2679
2680 Input_file_argument file(name_string.c_str(),
2681 Input_file_argument::INPUT_FILE_TYPE_FILE,
2682 extra_search_path, false,
2683 closure->position_dependent_options());
2684 Input_argument& arg = closure->inputs()->add_file(file);
2685 arg.set_script_info(closure->script_info());
2686 }
2687
2688 // Called by the bison parser to add a library to the link.
2689
2690 extern "C" void
2691 script_add_library(void* closurev, const char* name, size_t length)
2692 {
2693 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2694 std::string name_string(name, length);
2695
2696 if (name_string[0] != 'l')
2697 gold_error(_("library name must be prefixed with -l"));
2698
2699 Input_file_argument file(name_string.c_str() + 1,
2700 Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2701 "", false,
2702 closure->position_dependent_options());
2703 Input_argument& arg = closure->inputs()->add_file(file);
2704 arg.set_script_info(closure->script_info());
2705 }
2706
2707 // Called by the bison parser to start a group. If we are already in
2708 // a group, that means that this script was invoked within a
2709 // --start-group --end-group sequence on the command line, or that
2710 // this script was found in a GROUP of another script. In that case,
2711 // we simply continue the existing group, rather than starting a new
2712 // one. It is possible to construct a case in which this will do
2713 // something other than what would happen if we did a recursive group,
2714 // but it's hard to imagine why the different behaviour would be
2715 // useful for a real program. Avoiding recursive groups is simpler
2716 // and more efficient.
2717
2718 extern "C" void
2719 script_start_group(void* closurev)
2720 {
2721 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2722 if (!closure->in_group())
2723 closure->inputs()->start_group();
2724 }
2725
2726 // Called by the bison parser at the end of a group.
2727
2728 extern "C" void
2729 script_end_group(void* closurev)
2730 {
2731 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2732 if (!closure->in_group())
2733 closure->inputs()->end_group();
2734 }
2735
2736 // Called by the bison parser to start an AS_NEEDED list.
2737
2738 extern "C" void
2739 script_start_as_needed(void* closurev)
2740 {
2741 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2742 closure->position_dependent_options().set_as_needed(true);
2743 }
2744
2745 // Called by the bison parser at the end of an AS_NEEDED list.
2746
2747 extern "C" void
2748 script_end_as_needed(void* closurev)
2749 {
2750 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2751 closure->position_dependent_options().set_as_needed(false);
2752 }
2753
2754 // Called by the bison parser to set the entry symbol.
2755
2756 extern "C" void
2757 script_set_entry(void* closurev, const char* entry, size_t length)
2758 {
2759 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2760 // TODO(csilvers): FIXME -- call set_entry directly.
2761 std::string arg("--entry=");
2762 arg.append(entry, length);
2763 script_parse_option(closurev, arg.c_str(), arg.size());
2764 }
2765
2766 // Called by the bison parser to set whether to define common symbols.
2767
2768 extern "C" void
2769 script_set_common_allocation(void* closurev, int set)
2770 {
2771 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2772 script_parse_option(closurev, arg, strlen(arg));
2773 }
2774
2775 // Called by the bison parser to refer to a symbol.
2776
2777 extern "C" Expression*
2778 script_symbol(void* closurev, const char* name, size_t length)
2779 {
2780 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2781 if (length != 1 || name[0] != '.')
2782 closure->script_options()->add_symbol_reference(name, length);
2783 return script_exp_string(name, length);
2784 }
2785
2786 // Called by the bison parser to define a symbol.
2787
2788 extern "C" void
2789 script_set_symbol(void* closurev, const char* name, size_t length,
2790 Expression* value, int providei, int hiddeni)
2791 {
2792 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2793 const bool provide = providei != 0;
2794 const bool hidden = hiddeni != 0;
2795 closure->script_options()->add_symbol_assignment(name, length,
2796 closure->parsing_defsym(),
2797 value, provide, hidden);
2798 closure->clear_skip_on_incompatible_target();
2799 }
2800
2801 // Called by the bison parser to add an assertion.
2802
2803 extern "C" void
2804 script_add_assertion(void* closurev, Expression* check, const char* message,
2805 size_t messagelen)
2806 {
2807 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2808 closure->script_options()->add_assertion(check, message, messagelen);
2809 closure->clear_skip_on_incompatible_target();
2810 }
2811
2812 // Called by the bison parser to parse an OPTION.
2813
2814 extern "C" void
2815 script_parse_option(void* closurev, const char* option, size_t length)
2816 {
2817 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2818 // We treat the option as a single command-line option, even if
2819 // it has internal whitespace.
2820 if (closure->command_line() == NULL)
2821 {
2822 // There are some options that we could handle here--e.g.,
2823 // -lLIBRARY. Should we bother?
2824 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2825 " for scripts specified via -T/--script"),
2826 closure->filename(), closure->lineno(), closure->charpos());
2827 }
2828 else
2829 {
2830 bool past_a_double_dash_option = false;
2831 const char* mutable_option = strndup(option, length);
2832 gold_assert(mutable_option != NULL);
2833 closure->command_line()->process_one_option(1, &mutable_option, 0,
2834 &past_a_double_dash_option);
2835 // The General_options class will quite possibly store a pointer
2836 // into mutable_option, so we can't free it. In cases the class
2837 // does not store such a pointer, this is a memory leak. Alas. :(
2838 }
2839 closure->clear_skip_on_incompatible_target();
2840 }
2841
2842 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2843 // takes either one or three arguments. In the three argument case,
2844 // the format depends on the endianness option, which we don't
2845 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2846 // wrong format, then we want to search for a new file. Returning 0
2847 // here will cause the parser to immediately abort.
2848
2849 extern "C" int
2850 script_check_output_format(void* closurev,
2851 const char* default_name, size_t default_length,
2852 const char*, size_t, const char*, size_t)
2853 {
2854 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2855 std::string name(default_name, default_length);
2856 Target* target = select_target_by_bfd_name(name.c_str());
2857 if (target == NULL || !parameters->is_compatible_target(target))
2858 {
2859 if (closure->skip_on_incompatible_target())
2860 {
2861 closure->set_found_incompatible_target();
2862 return 0;
2863 }
2864 // FIXME: Should we warn about the unknown target?
2865 }
2866 return 1;
2867 }
2868
2869 // Called by the bison parser to handle TARGET.
2870
2871 extern "C" void
2872 script_set_target(void* closurev, const char* target, size_t len)
2873 {
2874 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2875 std::string s(target, len);
2876 General_options::Object_format format_enum;
2877 format_enum = General_options::string_to_object_format(s.c_str());
2878 closure->position_dependent_options().set_format_enum(format_enum);
2879 }
2880
2881 // Called by the bison parser to handle SEARCH_DIR. This is handled
2882 // exactly like a -L option.
2883
2884 extern "C" void
2885 script_add_search_dir(void* closurev, const char* option, size_t length)
2886 {
2887 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2888 if (closure->command_line() == NULL)
2889 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2890 " for scripts specified via -T/--script"),
2891 closure->filename(), closure->lineno(), closure->charpos());
2892 else if (!closure->command_line()->options().nostdlib())
2893 {
2894 std::string s = "-L" + std::string(option, length);
2895 script_parse_option(closurev, s.c_str(), s.size());
2896 }
2897 }
2898
2899 /* Called by the bison parser to push the lexer into expression
2900 mode. */
2901
2902 extern "C" void
2903 script_push_lex_into_expression_mode(void* closurev)
2904 {
2905 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2906 closure->push_lex_mode(Lex::EXPRESSION);
2907 }
2908
2909 /* Called by the bison parser to push the lexer into version
2910 mode. */
2911
2912 extern "C" void
2913 script_push_lex_into_version_mode(void* closurev)
2914 {
2915 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2916 if (closure->version_script()->is_finalized())
2917 gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2918 closure->filename(), closure->lineno(), closure->charpos());
2919 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2920 }
2921
2922 /* Called by the bison parser to pop the lexer mode. */
2923
2924 extern "C" void
2925 script_pop_lex_mode(void* closurev)
2926 {
2927 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2928 closure->pop_lex_mode();
2929 }
2930
2931 // Register an entire version node. For example:
2932 //
2933 // GLIBC_2.1 {
2934 // global: foo;
2935 // } GLIBC_2.0;
2936 //
2937 // - tag is "GLIBC_2.1"
2938 // - tree contains the information "global: foo"
2939 // - deps contains "GLIBC_2.0"
2940
2941 extern "C" void
2942 script_register_vers_node(void*,
2943 const char* tag,
2944 int taglen,
2945 struct Version_tree* tree,
2946 struct Version_dependency_list* deps)
2947 {
2948 gold_assert(tree != NULL);
2949 tree->dependencies = deps;
2950 if (tag != NULL)
2951 tree->tag = std::string(tag, taglen);
2952 }
2953
2954 // Add a dependencies to the list of existing dependencies, if any,
2955 // and return the expanded list.
2956
2957 extern "C" struct Version_dependency_list*
2958 script_add_vers_depend(void* closurev,
2959 struct Version_dependency_list* all_deps,
2960 const char* depend_to_add, int deplen)
2961 {
2962 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2963 if (all_deps == NULL)
2964 all_deps = closure->version_script()->allocate_dependency_list();
2965 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2966 return all_deps;
2967 }
2968
2969 // Add a pattern expression to an existing list of expressions, if any.
2970
2971 extern "C" struct Version_expression_list*
2972 script_new_vers_pattern(void* closurev,
2973 struct Version_expression_list* expressions,
2974 const char* pattern, int patlen, int exact_match)
2975 {
2976 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2977 if (expressions == NULL)
2978 expressions = closure->version_script()->allocate_expression_list();
2979 expressions->expressions.push_back(
2980 Version_expression(std::string(pattern, patlen),
2981 closure->get_current_language(),
2982 static_cast<bool>(exact_match)));
2983 return expressions;
2984 }
2985
2986 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2987
2988 extern "C" struct Version_expression_list*
2989 script_merge_expressions(struct Version_expression_list* a,
2990 struct Version_expression_list* b)
2991 {
2992 a->expressions.insert(a->expressions.end(),
2993 b->expressions.begin(), b->expressions.end());
2994 // We could delete b and remove it from expressions_lists_, but
2995 // that's a lot of work. This works just as well.
2996 b->expressions.clear();
2997 return a;
2998 }
2999
3000 // Combine the global and local expressions into a a Version_tree.
3001
3002 extern "C" struct Version_tree*
3003 script_new_vers_node(void* closurev,
3004 struct Version_expression_list* global,
3005 struct Version_expression_list* local)
3006 {
3007 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3008 Version_tree* tree = closure->version_script()->allocate_version_tree();
3009 tree->global = global;
3010 tree->local = local;
3011 return tree;
3012 }
3013
3014 // Handle a transition in language, such as at the
3015 // start or end of 'extern "C++"'
3016
3017 extern "C" void
3018 version_script_push_lang(void* closurev, const char* lang, int langlen)
3019 {
3020 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3021 std::string language(lang, langlen);
3022 Version_script_info::Language code;
3023 if (language.empty() || language == "C")
3024 code = Version_script_info::LANGUAGE_C;
3025 else if (language == "C++")
3026 code = Version_script_info::LANGUAGE_CXX;
3027 else if (language == "Java")
3028 code = Version_script_info::LANGUAGE_JAVA;
3029 else
3030 {
3031 char* buf = new char[langlen + 100];
3032 snprintf(buf, langlen + 100,
3033 _("unrecognized version script language '%s'"),
3034 language.c_str());
3035 yyerror(closurev, buf);
3036 delete[] buf;
3037 code = Version_script_info::LANGUAGE_C;
3038 }
3039 closure->push_language(code);
3040 }
3041
3042 extern "C" void
3043 version_script_pop_lang(void* closurev)
3044 {
3045 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3046 closure->pop_language();
3047 }
3048
3049 // Called by the bison parser to start a SECTIONS clause.
3050
3051 extern "C" void
3052 script_start_sections(void* closurev)
3053 {
3054 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3055 closure->script_options()->script_sections()->start_sections();
3056 closure->clear_skip_on_incompatible_target();
3057 }
3058
3059 // Called by the bison parser to finish a SECTIONS clause.
3060
3061 extern "C" void
3062 script_finish_sections(void* closurev)
3063 {
3064 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3065 closure->script_options()->script_sections()->finish_sections();
3066 }
3067
3068 // Start processing entries for an output section.
3069
3070 extern "C" void
3071 script_start_output_section(void* closurev, const char* name, size_t namelen,
3072 const struct Parser_output_section_header* header)
3073 {
3074 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3075 closure->script_options()->script_sections()->start_output_section(name,
3076 namelen,
3077 header);
3078 }
3079
3080 // Finish processing entries for an output section.
3081
3082 extern "C" void
3083 script_finish_output_section(void* closurev,
3084 const struct Parser_output_section_trailer* trail)
3085 {
3086 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3087 closure->script_options()->script_sections()->finish_output_section(trail);
3088 }
3089
3090 // Add a data item (e.g., "WORD (0)") to the current output section.
3091
3092 extern "C" void
3093 script_add_data(void* closurev, int data_token, Expression* val)
3094 {
3095 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3096 int size;
3097 bool is_signed = true;
3098 switch (data_token)
3099 {
3100 case QUAD:
3101 size = 8;
3102 is_signed = false;
3103 break;
3104 case SQUAD:
3105 size = 8;
3106 break;
3107 case LONG:
3108 size = 4;
3109 break;
3110 case SHORT:
3111 size = 2;
3112 break;
3113 case BYTE:
3114 size = 1;
3115 break;
3116 default:
3117 gold_unreachable();
3118 }
3119 closure->script_options()->script_sections()->add_data(size, is_signed, val);
3120 }
3121
3122 // Add a clause setting the fill value to the current output section.
3123
3124 extern "C" void
3125 script_add_fill(void* closurev, Expression* val)
3126 {
3127 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3128 closure->script_options()->script_sections()->add_fill(val);
3129 }
3130
3131 // Add a new input section specification to the current output
3132 // section.
3133
3134 extern "C" void
3135 script_add_input_section(void* closurev,
3136 const struct Input_section_spec* spec,
3137 int keepi)
3138 {
3139 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3140 bool keep = keepi != 0;
3141 closure->script_options()->script_sections()->add_input_section(spec, keep);
3142 }
3143
3144 // When we see DATA_SEGMENT_ALIGN we record that following output
3145 // sections may be relro.
3146
3147 extern "C" void
3148 script_data_segment_align(void* closurev)
3149 {
3150 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3151 if (!closure->script_options()->saw_sections_clause())
3152 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3153 closure->filename(), closure->lineno(), closure->charpos());
3154 else
3155 closure->script_options()->script_sections()->data_segment_align();
3156 }
3157
3158 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3159 // since DATA_SEGMENT_ALIGN should be relro.
3160
3161 extern "C" void
3162 script_data_segment_relro_end(void* closurev)
3163 {
3164 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3165 if (!closure->script_options()->saw_sections_clause())
3166 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3167 closure->filename(), closure->lineno(), closure->charpos());
3168 else
3169 closure->script_options()->script_sections()->data_segment_relro_end();
3170 }
3171
3172 // Create a new list of string/sort pairs.
3173
3174 extern "C" String_sort_list_ptr
3175 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3176 {
3177 return new String_sort_list(1, *string_sort);
3178 }
3179
3180 // Add an entry to a list of string/sort pairs. The way the parser
3181 // works permits us to simply modify the first parameter, rather than
3182 // copy the vector.
3183
3184 extern "C" String_sort_list_ptr
3185 script_string_sort_list_add(String_sort_list_ptr pv,
3186 const struct Wildcard_section* string_sort)
3187 {
3188 if (pv == NULL)
3189 return script_new_string_sort_list(string_sort);
3190 else
3191 {
3192 pv->push_back(*string_sort);
3193 return pv;
3194 }
3195 }
3196
3197 // Create a new list of strings.
3198
3199 extern "C" String_list_ptr
3200 script_new_string_list(const char* str, size_t len)
3201 {
3202 return new String_list(1, std::string(str, len));
3203 }
3204
3205 // Add an element to a list of strings. The way the parser works
3206 // permits us to simply modify the first parameter, rather than copy
3207 // the vector.
3208
3209 extern "C" String_list_ptr
3210 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3211 {
3212 if (pv == NULL)
3213 return script_new_string_list(str, len);
3214 else
3215 {
3216 pv->push_back(std::string(str, len));
3217 return pv;
3218 }
3219 }
3220
3221 // Concatenate two string lists. Either or both may be NULL. The way
3222 // the parser works permits us to modify the parameters, rather than
3223 // copy the vector.
3224
3225 extern "C" String_list_ptr
3226 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3227 {
3228 if (pv1 == NULL)
3229 return pv2;
3230 if (pv2 == NULL)
3231 return pv1;
3232 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3233 return pv1;
3234 }
3235
3236 // Add a new program header.
3237
3238 extern "C" void
3239 script_add_phdr(void* closurev, const char* name, size_t namelen,
3240 unsigned int type, const Phdr_info* info)
3241 {
3242 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3243 bool includes_filehdr = info->includes_filehdr != 0;
3244 bool includes_phdrs = info->includes_phdrs != 0;
3245 bool is_flags_valid = info->is_flags_valid != 0;
3246 Script_sections* ss = closure->script_options()->script_sections();
3247 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3248 is_flags_valid, info->flags, info->load_address);
3249 closure->clear_skip_on_incompatible_target();
3250 }
3251
3252 // Convert a program header string to a type.
3253
3254 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3255
3256 static struct
3257 {
3258 const char* name;
3259 size_t namelen;
3260 unsigned int val;
3261 } phdr_type_names[] =
3262 {
3263 PHDR_TYPE(PT_NULL),
3264 PHDR_TYPE(PT_LOAD),
3265 PHDR_TYPE(PT_DYNAMIC),
3266 PHDR_TYPE(PT_INTERP),
3267 PHDR_TYPE(PT_NOTE),
3268 PHDR_TYPE(PT_SHLIB),
3269 PHDR_TYPE(PT_PHDR),
3270 PHDR_TYPE(PT_TLS),
3271 PHDR_TYPE(PT_GNU_EH_FRAME),
3272 PHDR_TYPE(PT_GNU_STACK),
3273 PHDR_TYPE(PT_GNU_RELRO)
3274 };
3275
3276 extern "C" unsigned int
3277 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3278 {
3279 for (unsigned int i = 0;
3280 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3281 ++i)
3282 if (namelen == phdr_type_names[i].namelen
3283 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
3284 return phdr_type_names[i].val;
3285 yyerror(closurev, _("unknown PHDR type (try integer)"));
3286 return elfcpp::PT_NULL;
3287 }
3288
3289 extern "C" void
3290 script_saw_segment_start_expression(void* closurev)
3291 {
3292 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3293 Script_sections* ss = closure->script_options()->script_sections();
3294 ss->set_saw_segment_start_expression(true);
3295 }
3296
3297 extern "C" void
3298 script_set_section_region(void* closurev, const char* name, size_t namelen,
3299 int set_vma)
3300 {
3301 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3302 if (!closure->script_options()->saw_sections_clause())
3303 {
3304 gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3305 "SECTIONS clause"),
3306 closure->filename(), closure->lineno(), closure->charpos(),
3307 static_cast<int>(namelen), name);
3308 return;
3309 }
3310
3311 Script_sections* ss = closure->script_options()->script_sections();
3312 Memory_region* mr = ss->find_memory_region(name, namelen);
3313 if (mr == NULL)
3314 {
3315 gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3316 closure->filename(), closure->lineno(), closure->charpos(),
3317 static_cast<int>(namelen), name);
3318 return;
3319 }
3320
3321 ss->set_memory_region(mr, set_vma);
3322 }
3323
3324 extern "C" void
3325 script_add_memory(void* closurev, const char* name, size_t namelen,
3326 unsigned int attrs, Expression* origin, Expression* length)
3327 {
3328 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3329 Script_sections* ss = closure->script_options()->script_sections();
3330 ss->add_memory_region(name, namelen, attrs, origin, length);
3331 }
3332
3333 extern "C" unsigned int
3334 script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3335 int invert)
3336 {
3337 int attributes = 0;
3338
3339 while (attrlen--)
3340 switch (*attrs++)
3341 {
3342 case 'R':
3343 case 'r':
3344 attributes |= MEM_READABLE; break;
3345 case 'W':
3346 case 'w':
3347 attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3348 case 'X':
3349 case 'x':
3350 attributes |= MEM_EXECUTABLE; break;
3351 case 'A':
3352 case 'a':
3353 attributes |= MEM_ALLOCATABLE; break;
3354 case 'I':
3355 case 'i':
3356 case 'L':
3357 case 'l':
3358 attributes |= MEM_INITIALIZED; break;
3359 default:
3360 yyerror(closurev, _("unknown MEMORY attribute"));
3361 }
3362
3363 if (invert)
3364 attributes = (~ attributes) & MEM_ATTR_MASK;
3365
3366 return attributes;
3367 }
3368
3369 extern "C" void
3370 script_include_directive(int first_token, void* closurev,
3371 const char* filename, size_t length)
3372 {
3373 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3374 std::string name(filename, length);
3375 Command_line* cmdline = closure->command_line();
3376 read_script_file(name.c_str(), cmdline, &cmdline->script_options(),
3377 first_token, Lex::LINKER_SCRIPT);
3378 }
3379
3380 // Functions for memory regions.
3381
3382 extern "C" Expression*
3383 script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3384 {
3385 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3386 Script_sections* ss = closure->script_options()->script_sections();
3387 Expression* origin = ss->find_memory_region_origin(name, namelen);
3388
3389 if (origin == NULL)
3390 {
3391 gold_error(_("undefined memory region '%s' referenced "
3392 "in ORIGIN expression"),
3393 name);
3394 // Create a dummy expression to prevent crashes later on.
3395 origin = script_exp_integer(0);
3396 }
3397
3398 return origin;
3399 }
3400
3401 extern "C" Expression*
3402 script_exp_function_length(void* closurev, const char* name, size_t namelen)
3403 {
3404 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3405 Script_sections* ss = closure->script_options()->script_sections();
3406 Expression* length = ss->find_memory_region_length(name, namelen);
3407
3408 if (length == NULL)
3409 {
3410 gold_error(_("undefined memory region '%s' referenced "
3411 "in LENGTH expression"),
3412 name);
3413 // Create a dummy expression to prevent crashes later on.
3414 length = script_exp_integer(0);
3415 }
3416
3417 return length;
3418 }
This page took 0.123228 seconds and 5 git commands to generate.