2008-07-11 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol. This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
53 {
54 this->name_ = name;
55 this->version_ = version;
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
58 this->got_offsets_.init();
59 this->plt_offset_ = 0;
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
67 this->has_alias_ = false;
68 this->needs_dynsym_entry_ = false;
69 this->in_reg_ = false;
70 this->in_dyn_ = false;
71 this->has_plt_offset_ = false;
72 this->has_warning_ = false;
73 this->is_copied_from_dynobj_ = false;
74 this->is_forced_local_ = false;
75 this->is_ordinary_shndx_ = false;
76 }
77
78 // Return the demangled version of the symbol's name, but only
79 // if the --demangle flag was set.
80
81 static std::string
82 demangle(const char* name)
83 {
84 if (!parameters->options().do_demangle())
85 return name;
86
87 // cplus_demangle allocates memory for the result it returns,
88 // and returns NULL if the name is already demangled.
89 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
90 if (demangled_name == NULL)
91 return name;
92
93 std::string retval(demangled_name);
94 free(demangled_name);
95 return retval;
96 }
97
98 std::string
99 Symbol::demangled_name() const
100 {
101 return demangle(this->name());
102 }
103
104 // Initialize the fields in the base class Symbol for SYM in OBJECT.
105
106 template<int size, bool big_endian>
107 void
108 Symbol::init_base_object(const char* name, const char* version, Object* object,
109 const elfcpp::Sym<size, big_endian>& sym,
110 unsigned int st_shndx, bool is_ordinary)
111 {
112 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
113 sym.get_st_visibility(), sym.get_st_nonvis());
114 this->u_.from_object.object = object;
115 this->u_.from_object.shndx = st_shndx;
116 this->is_ordinary_shndx_ = is_ordinary;
117 this->source_ = FROM_OBJECT;
118 this->in_reg_ = !object->is_dynamic();
119 this->in_dyn_ = object->is_dynamic();
120 }
121
122 // Initialize the fields in the base class Symbol for a symbol defined
123 // in an Output_data.
124
125 void
126 Symbol::init_base_output_data(const char* name, const char* version,
127 Output_data* od, elfcpp::STT type,
128 elfcpp::STB binding, elfcpp::STV visibility,
129 unsigned char nonvis, bool offset_is_from_end)
130 {
131 this->init_fields(name, version, type, binding, visibility, nonvis);
132 this->u_.in_output_data.output_data = od;
133 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
134 this->source_ = IN_OUTPUT_DATA;
135 this->in_reg_ = true;
136 }
137
138 // Initialize the fields in the base class Symbol for a symbol defined
139 // in an Output_segment.
140
141 void
142 Symbol::init_base_output_segment(const char* name, const char* version,
143 Output_segment* os, elfcpp::STT type,
144 elfcpp::STB binding, elfcpp::STV visibility,
145 unsigned char nonvis,
146 Segment_offset_base offset_base)
147 {
148 this->init_fields(name, version, type, binding, visibility, nonvis);
149 this->u_.in_output_segment.output_segment = os;
150 this->u_.in_output_segment.offset_base = offset_base;
151 this->source_ = IN_OUTPUT_SEGMENT;
152 this->in_reg_ = true;
153 }
154
155 // Initialize the fields in the base class Symbol for a symbol defined
156 // as a constant.
157
158 void
159 Symbol::init_base_constant(const char* name, const char* version,
160 elfcpp::STT type, elfcpp::STB binding,
161 elfcpp::STV visibility, unsigned char nonvis)
162 {
163 this->init_fields(name, version, type, binding, visibility, nonvis);
164 this->source_ = IS_CONSTANT;
165 this->in_reg_ = true;
166 }
167
168 // Initialize the fields in the base class Symbol for an undefined
169 // symbol.
170
171 void
172 Symbol::init_base_undefined(const char* name, const char* version,
173 elfcpp::STT type, elfcpp::STB binding,
174 elfcpp::STV visibility, unsigned char nonvis)
175 {
176 this->init_fields(name, version, type, binding, visibility, nonvis);
177 this->source_ = IS_UNDEFINED;
178 this->in_reg_ = true;
179 }
180
181 // Allocate a common symbol in the base.
182
183 void
184 Symbol::allocate_base_common(Output_data* od)
185 {
186 gold_assert(this->is_common());
187 this->source_ = IN_OUTPUT_DATA;
188 this->u_.in_output_data.output_data = od;
189 this->u_.in_output_data.offset_is_from_end = false;
190 }
191
192 // Initialize the fields in Sized_symbol for SYM in OBJECT.
193
194 template<int size>
195 template<bool big_endian>
196 void
197 Sized_symbol<size>::init_object(const char* name, const char* version,
198 Object* object,
199 const elfcpp::Sym<size, big_endian>& sym,
200 unsigned int st_shndx, bool is_ordinary)
201 {
202 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
203 this->value_ = sym.get_st_value();
204 this->symsize_ = sym.get_st_size();
205 }
206
207 // Initialize the fields in Sized_symbol for a symbol defined in an
208 // Output_data.
209
210 template<int size>
211 void
212 Sized_symbol<size>::init_output_data(const char* name, const char* version,
213 Output_data* od, Value_type value,
214 Size_type symsize, elfcpp::STT type,
215 elfcpp::STB binding,
216 elfcpp::STV visibility,
217 unsigned char nonvis,
218 bool offset_is_from_end)
219 {
220 this->init_base_output_data(name, version, od, type, binding, visibility,
221 nonvis, offset_is_from_end);
222 this->value_ = value;
223 this->symsize_ = symsize;
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_segment.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
232 Output_segment* os, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 Segment_offset_base offset_base)
238 {
239 this->init_base_output_segment(name, version, os, type, binding, visibility,
240 nonvis, offset_base);
241 this->value_ = value;
242 this->symsize_ = symsize;
243 }
244
245 // Initialize the fields in Sized_symbol for a symbol defined as a
246 // constant.
247
248 template<int size>
249 void
250 Sized_symbol<size>::init_constant(const char* name, const char* version,
251 Value_type value, Size_type symsize,
252 elfcpp::STT type, elfcpp::STB binding,
253 elfcpp::STV visibility, unsigned char nonvis)
254 {
255 this->init_base_constant(name, version, type, binding, visibility, nonvis);
256 this->value_ = value;
257 this->symsize_ = symsize;
258 }
259
260 // Initialize the fields in Sized_symbol for an undefined symbol.
261
262 template<int size>
263 void
264 Sized_symbol<size>::init_undefined(const char* name, const char* version,
265 elfcpp::STT type, elfcpp::STB binding,
266 elfcpp::STV visibility, unsigned char nonvis)
267 {
268 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
269 this->value_ = 0;
270 this->symsize_ = 0;
271 }
272
273 // Allocate a common symbol.
274
275 template<int size>
276 void
277 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
278 {
279 this->allocate_base_common(od);
280 this->value_ = value;
281 }
282
283 // Return true if this symbol should be added to the dynamic symbol
284 // table.
285
286 inline bool
287 Symbol::should_add_dynsym_entry() const
288 {
289 // If the symbol is used by a dynamic relocation, we need to add it.
290 if (this->needs_dynsym_entry())
291 return true;
292
293 // If the symbol was forced local in a version script, do not add it.
294 if (this->is_forced_local())
295 return false;
296
297 // If exporting all symbols or building a shared library,
298 // and the symbol is defined in a regular object and is
299 // externally visible, we need to add it.
300 if ((parameters->options().export_dynamic() || parameters->options().shared())
301 && !this->is_from_dynobj()
302 && this->is_externally_visible())
303 return true;
304
305 return false;
306 }
307
308 // Return true if the final value of this symbol is known at link
309 // time.
310
311 bool
312 Symbol::final_value_is_known() const
313 {
314 // If we are not generating an executable, then no final values are
315 // known, since they will change at runtime.
316 if (parameters->options().shared() || parameters->options().relocatable())
317 return false;
318
319 // If the symbol is not from an object file, and is not undefined,
320 // then it is defined, and known.
321 if (this->source_ != FROM_OBJECT)
322 {
323 if (this->source_ != IS_UNDEFINED)
324 return true;
325 }
326 else
327 {
328 // If the symbol is from a dynamic object, then the final value
329 // is not known.
330 if (this->object()->is_dynamic())
331 return false;
332
333 // If the symbol is not undefined (it is defined or common),
334 // then the final value is known.
335 if (!this->is_undefined())
336 return true;
337 }
338
339 // If the symbol is undefined, then whether the final value is known
340 // depends on whether we are doing a static link. If we are doing a
341 // dynamic link, then the final value could be filled in at runtime.
342 // This could reasonably be the case for a weak undefined symbol.
343 return parameters->doing_static_link();
344 }
345
346 // Return the output section where this symbol is defined.
347
348 Output_section*
349 Symbol::output_section() const
350 {
351 switch (this->source_)
352 {
353 case FROM_OBJECT:
354 {
355 unsigned int shndx = this->u_.from_object.shndx;
356 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
357 {
358 gold_assert(!this->u_.from_object.object->is_dynamic());
359 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
360 return relobj->output_section(shndx);
361 }
362 return NULL;
363 }
364
365 case IN_OUTPUT_DATA:
366 return this->u_.in_output_data.output_data->output_section();
367
368 case IN_OUTPUT_SEGMENT:
369 case IS_CONSTANT:
370 case IS_UNDEFINED:
371 return NULL;
372
373 default:
374 gold_unreachable();
375 }
376 }
377
378 // Set the symbol's output section. This is used for symbols defined
379 // in scripts. This should only be called after the symbol table has
380 // been finalized.
381
382 void
383 Symbol::set_output_section(Output_section* os)
384 {
385 switch (this->source_)
386 {
387 case FROM_OBJECT:
388 case IN_OUTPUT_DATA:
389 gold_assert(this->output_section() == os);
390 break;
391 case IS_CONSTANT:
392 this->source_ = IN_OUTPUT_DATA;
393 this->u_.in_output_data.output_data = os;
394 this->u_.in_output_data.offset_is_from_end = false;
395 break;
396 case IN_OUTPUT_SEGMENT:
397 case IS_UNDEFINED:
398 default:
399 gold_unreachable();
400 }
401 }
402
403 // Class Symbol_table.
404
405 Symbol_table::Symbol_table(unsigned int count,
406 const Version_script_info& version_script)
407 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
408 forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
409 version_script_(version_script)
410 {
411 namepool_.reserve(count);
412 }
413
414 Symbol_table::~Symbol_table()
415 {
416 }
417
418 // The hash function. The key values are Stringpool keys.
419
420 inline size_t
421 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
422 {
423 return key.first ^ key.second;
424 }
425
426 // The symbol table key equality function. This is called with
427 // Stringpool keys.
428
429 inline bool
430 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
431 const Symbol_table_key& k2) const
432 {
433 return k1.first == k2.first && k1.second == k2.second;
434 }
435
436 // Make TO a symbol which forwards to FROM.
437
438 void
439 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
440 {
441 gold_assert(from != to);
442 gold_assert(!from->is_forwarder() && !to->is_forwarder());
443 this->forwarders_[from] = to;
444 from->set_forwarder();
445 }
446
447 // Resolve the forwards from FROM, returning the real symbol.
448
449 Symbol*
450 Symbol_table::resolve_forwards(const Symbol* from) const
451 {
452 gold_assert(from->is_forwarder());
453 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
454 this->forwarders_.find(from);
455 gold_assert(p != this->forwarders_.end());
456 return p->second;
457 }
458
459 // Look up a symbol by name.
460
461 Symbol*
462 Symbol_table::lookup(const char* name, const char* version) const
463 {
464 Stringpool::Key name_key;
465 name = this->namepool_.find(name, &name_key);
466 if (name == NULL)
467 return NULL;
468
469 Stringpool::Key version_key = 0;
470 if (version != NULL)
471 {
472 version = this->namepool_.find(version, &version_key);
473 if (version == NULL)
474 return NULL;
475 }
476
477 Symbol_table_key key(name_key, version_key);
478 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
479 if (p == this->table_.end())
480 return NULL;
481 return p->second;
482 }
483
484 // Resolve a Symbol with another Symbol. This is only used in the
485 // unusual case where there are references to both an unversioned
486 // symbol and a symbol with a version, and we then discover that that
487 // version is the default version. Because this is unusual, we do
488 // this the slow way, by converting back to an ELF symbol.
489
490 template<int size, bool big_endian>
491 void
492 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
493 const char* version)
494 {
495 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
496 elfcpp::Sym_write<size, big_endian> esym(buf);
497 // We don't bother to set the st_name or the st_shndx field.
498 esym.put_st_value(from->value());
499 esym.put_st_size(from->symsize());
500 esym.put_st_info(from->binding(), from->type());
501 esym.put_st_other(from->visibility(), from->nonvis());
502 bool is_ordinary;
503 unsigned int shndx = from->shndx(&is_ordinary);
504 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
505 version);
506 if (from->in_reg())
507 to->set_in_reg();
508 if (from->in_dyn())
509 to->set_in_dyn();
510 }
511
512 // Record that a symbol is forced to be local by a version script.
513
514 void
515 Symbol_table::force_local(Symbol* sym)
516 {
517 if (!sym->is_defined() && !sym->is_common())
518 return;
519 if (sym->is_forced_local())
520 {
521 // We already got this one.
522 return;
523 }
524 sym->set_is_forced_local();
525 this->forced_locals_.push_back(sym);
526 }
527
528 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
529 // is only called for undefined symbols, when at least one --wrap
530 // option was used.
531
532 const char*
533 Symbol_table::wrap_symbol(Object* object, const char* name,
534 Stringpool::Key* name_key)
535 {
536 // For some targets, we need to ignore a specific character when
537 // wrapping, and add it back later.
538 char prefix = '\0';
539 if (name[0] == object->target()->wrap_char())
540 {
541 prefix = name[0];
542 ++name;
543 }
544
545 if (parameters->options().is_wrap(name))
546 {
547 // Turn NAME into __wrap_NAME.
548 std::string s;
549 if (prefix != '\0')
550 s += prefix;
551 s += "__wrap_";
552 s += name;
553
554 // This will give us both the old and new name in NAMEPOOL_, but
555 // that is OK. Only the versions we need will wind up in the
556 // real string table in the output file.
557 return this->namepool_.add(s.c_str(), true, name_key);
558 }
559
560 const char* const real_prefix = "__real_";
561 const size_t real_prefix_length = strlen(real_prefix);
562 if (strncmp(name, real_prefix, real_prefix_length) == 0
563 && parameters->options().is_wrap(name + real_prefix_length))
564 {
565 // Turn __real_NAME into NAME.
566 std::string s;
567 if (prefix != '\0')
568 s += prefix;
569 s += name + real_prefix_length;
570 return this->namepool_.add(s.c_str(), true, name_key);
571 }
572
573 return name;
574 }
575
576 // Add one symbol from OBJECT to the symbol table. NAME is symbol
577 // name and VERSION is the version; both are canonicalized. DEF is
578 // whether this is the default version. ST_SHNDX is the symbol's
579 // section index; IS_ORDINARY is whether this is a normal section
580 // rather than a special code.
581
582 // If DEF is true, then this is the definition of a default version of
583 // a symbol. That means that any lookup of NAME/NULL and any lookup
584 // of NAME/VERSION should always return the same symbol. This is
585 // obvious for references, but in particular we want to do this for
586 // definitions: overriding NAME/NULL should also override
587 // NAME/VERSION. If we don't do that, it would be very hard to
588 // override functions in a shared library which uses versioning.
589
590 // We implement this by simply making both entries in the hash table
591 // point to the same Symbol structure. That is easy enough if this is
592 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
593 // that we have seen both already, in which case they will both have
594 // independent entries in the symbol table. We can't simply change
595 // the symbol table entry, because we have pointers to the entries
596 // attached to the object files. So we mark the entry attached to the
597 // object file as a forwarder, and record it in the forwarders_ map.
598 // Note that entries in the hash table will never be marked as
599 // forwarders.
600 //
601 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
602 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
603 // for a special section code. ST_SHNDX may be modified if the symbol
604 // is defined in a section being discarded.
605
606 template<int size, bool big_endian>
607 Sized_symbol<size>*
608 Symbol_table::add_from_object(Object* object,
609 const char *name,
610 Stringpool::Key name_key,
611 const char *version,
612 Stringpool::Key version_key,
613 bool def,
614 const elfcpp::Sym<size, big_endian>& sym,
615 unsigned int st_shndx,
616 bool is_ordinary,
617 unsigned int orig_st_shndx)
618 {
619 // Print a message if this symbol is being traced.
620 if (parameters->options().is_trace_symbol(name))
621 {
622 if (orig_st_shndx == elfcpp::SHN_UNDEF)
623 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
624 else
625 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
626 }
627
628 // For an undefined symbol, we may need to adjust the name using
629 // --wrap.
630 if (orig_st_shndx == elfcpp::SHN_UNDEF
631 && parameters->options().any_wrap())
632 {
633 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
634 if (wrap_name != name)
635 {
636 // If we see a reference to malloc with version GLIBC_2.0,
637 // and we turn it into a reference to __wrap_malloc, then we
638 // discard the version number. Otherwise the user would be
639 // required to specify the correct version for
640 // __wrap_malloc.
641 version = NULL;
642 version_key = 0;
643 name = wrap_name;
644 }
645 }
646
647 Symbol* const snull = NULL;
648 std::pair<typename Symbol_table_type::iterator, bool> ins =
649 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
650 snull));
651
652 std::pair<typename Symbol_table_type::iterator, bool> insdef =
653 std::make_pair(this->table_.end(), false);
654 if (def)
655 {
656 const Stringpool::Key vnull_key = 0;
657 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
658 vnull_key),
659 snull));
660 }
661
662 // ins.first: an iterator, which is a pointer to a pair.
663 // ins.first->first: the key (a pair of name and version).
664 // ins.first->second: the value (Symbol*).
665 // ins.second: true if new entry was inserted, false if not.
666
667 Sized_symbol<size>* ret;
668 bool was_undefined;
669 bool was_common;
670 if (!ins.second)
671 {
672 // We already have an entry for NAME/VERSION.
673 ret = this->get_sized_symbol<size>(ins.first->second);
674 gold_assert(ret != NULL);
675
676 was_undefined = ret->is_undefined();
677 was_common = ret->is_common();
678
679 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
680 version);
681
682 if (def)
683 {
684 if (insdef.second)
685 {
686 // This is the first time we have seen NAME/NULL. Make
687 // NAME/NULL point to NAME/VERSION.
688 insdef.first->second = ret;
689 }
690 else if (insdef.first->second != ret
691 && insdef.first->second->is_undefined())
692 {
693 // This is the unfortunate case where we already have
694 // entries for both NAME/VERSION and NAME/NULL. Note
695 // that we don't want to combine them if the existing
696 // symbol is going to override the new one. FIXME: We
697 // currently just test is_undefined, but this may not do
698 // the right thing if the existing symbol is from a
699 // shared library and the new one is from a regular
700 // object.
701
702 const Sized_symbol<size>* sym2;
703 sym2 = this->get_sized_symbol<size>(insdef.first->second);
704 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
705 this->make_forwarder(insdef.first->second, ret);
706 insdef.first->second = ret;
707 }
708 else
709 def = false;
710 }
711 }
712 else
713 {
714 // This is the first time we have seen NAME/VERSION.
715 gold_assert(ins.first->second == NULL);
716
717 if (def && !insdef.second)
718 {
719 // We already have an entry for NAME/NULL. If we override
720 // it, then change it to NAME/VERSION.
721 ret = this->get_sized_symbol<size>(insdef.first->second);
722
723 was_undefined = ret->is_undefined();
724 was_common = ret->is_common();
725
726 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
727 version);
728 ins.first->second = ret;
729 }
730 else
731 {
732 was_undefined = false;
733 was_common = false;
734
735 Sized_target<size, big_endian>* target =
736 object->sized_target<size, big_endian>();
737 if (!target->has_make_symbol())
738 ret = new Sized_symbol<size>();
739 else
740 {
741 ret = target->make_symbol();
742 if (ret == NULL)
743 {
744 // This means that we don't want a symbol table
745 // entry after all.
746 if (!def)
747 this->table_.erase(ins.first);
748 else
749 {
750 this->table_.erase(insdef.first);
751 // Inserting insdef invalidated ins.
752 this->table_.erase(std::make_pair(name_key,
753 version_key));
754 }
755 return NULL;
756 }
757 }
758
759 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
760
761 ins.first->second = ret;
762 if (def)
763 {
764 // This is the first time we have seen NAME/NULL. Point
765 // it at the new entry for NAME/VERSION.
766 gold_assert(insdef.second);
767 insdef.first->second = ret;
768 }
769 }
770 }
771
772 // Record every time we see a new undefined symbol, to speed up
773 // archive groups.
774 if (!was_undefined && ret->is_undefined())
775 ++this->saw_undefined_;
776
777 // Keep track of common symbols, to speed up common symbol
778 // allocation.
779 if (!was_common && ret->is_common())
780 {
781 if (ret->type() != elfcpp::STT_TLS)
782 this->commons_.push_back(ret);
783 else
784 this->tls_commons_.push_back(ret);
785 }
786
787 if (def)
788 ret->set_is_default();
789 return ret;
790 }
791
792 // Add all the symbols in a relocatable object to the hash table.
793
794 template<int size, bool big_endian>
795 void
796 Symbol_table::add_from_relobj(
797 Sized_relobj<size, big_endian>* relobj,
798 const unsigned char* syms,
799 size_t count,
800 size_t symndx_offset,
801 const char* sym_names,
802 size_t sym_name_size,
803 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
804 {
805 gold_assert(size == relobj->target()->get_size());
806 gold_assert(size == parameters->target().get_size());
807
808 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
809
810 const bool just_symbols = relobj->just_symbols();
811
812 const unsigned char* p = syms;
813 for (size_t i = 0; i < count; ++i, p += sym_size)
814 {
815 elfcpp::Sym<size, big_endian> sym(p);
816
817 unsigned int st_name = sym.get_st_name();
818 if (st_name >= sym_name_size)
819 {
820 relobj->error(_("bad global symbol name offset %u at %zu"),
821 st_name, i);
822 continue;
823 }
824
825 const char* name = sym_names + st_name;
826
827 bool is_ordinary;
828 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
829 sym.get_st_shndx(),
830 &is_ordinary);
831 unsigned int orig_st_shndx = st_shndx;
832 if (!is_ordinary)
833 orig_st_shndx = elfcpp::SHN_UNDEF;
834
835 // A symbol defined in a section which we are not including must
836 // be treated as an undefined symbol.
837 if (st_shndx != elfcpp::SHN_UNDEF
838 && is_ordinary
839 && !relobj->is_section_included(st_shndx))
840 st_shndx = elfcpp::SHN_UNDEF;
841
842 // In an object file, an '@' in the name separates the symbol
843 // name from the version name. If there are two '@' characters,
844 // this is the default version.
845 const char* ver = strchr(name, '@');
846 int namelen = 0;
847 // DEF: is the version default? LOCAL: is the symbol forced local?
848 bool def = false;
849 bool local = false;
850
851 if (ver != NULL)
852 {
853 // The symbol name is of the form foo@VERSION or foo@@VERSION
854 namelen = ver - name;
855 ++ver;
856 if (*ver == '@')
857 {
858 def = true;
859 ++ver;
860 }
861 }
862 // We don't want to assign a version to an undefined symbol,
863 // even if it is listed in the version script. FIXME: What
864 // about a common symbol?
865 else if (!version_script_.empty()
866 && st_shndx != elfcpp::SHN_UNDEF)
867 {
868 // The symbol name did not have a version, but
869 // the version script may assign a version anyway.
870 namelen = strlen(name);
871 def = true;
872 // Check the global: entries from the version script.
873 const std::string& version =
874 version_script_.get_symbol_version(name);
875 if (!version.empty())
876 ver = version.c_str();
877 // Check the local: entries from the version script
878 if (version_script_.symbol_is_local(name))
879 local = true;
880 }
881
882 elfcpp::Sym<size, big_endian>* psym = &sym;
883 unsigned char symbuf[sym_size];
884 elfcpp::Sym<size, big_endian> sym2(symbuf);
885 if (just_symbols)
886 {
887 memcpy(symbuf, p, sym_size);
888 elfcpp::Sym_write<size, big_endian> sw(symbuf);
889 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
890 {
891 // Symbol values in object files are section relative.
892 // This is normally what we want, but since here we are
893 // converting the symbol to absolute we need to add the
894 // section address. The section address in an object
895 // file is normally zero, but people can use a linker
896 // script to change it.
897 sw.put_st_value(sym.get_st_value()
898 + relobj->section_address(orig_st_shndx));
899 }
900 st_shndx = elfcpp::SHN_ABS;
901 is_ordinary = false;
902 psym = &sym2;
903 }
904
905 Sized_symbol<size>* res;
906 if (ver == NULL)
907 {
908 Stringpool::Key name_key;
909 name = this->namepool_.add(name, true, &name_key);
910 res = this->add_from_object(relobj, name, name_key, NULL, 0,
911 false, *psym, st_shndx, is_ordinary,
912 orig_st_shndx);
913 if (local)
914 this->force_local(res);
915 }
916 else
917 {
918 Stringpool::Key name_key;
919 name = this->namepool_.add_with_length(name, namelen, true,
920 &name_key);
921 Stringpool::Key ver_key;
922 ver = this->namepool_.add(ver, true, &ver_key);
923
924 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
925 def, *psym, st_shndx, is_ordinary,
926 orig_st_shndx);
927 }
928
929 (*sympointers)[i] = res;
930 }
931 }
932
933 // Add all the symbols in a dynamic object to the hash table.
934
935 template<int size, bool big_endian>
936 void
937 Symbol_table::add_from_dynobj(
938 Sized_dynobj<size, big_endian>* dynobj,
939 const unsigned char* syms,
940 size_t count,
941 const char* sym_names,
942 size_t sym_name_size,
943 const unsigned char* versym,
944 size_t versym_size,
945 const std::vector<const char*>* version_map)
946 {
947 gold_assert(size == dynobj->target()->get_size());
948 gold_assert(size == parameters->target().get_size());
949
950 if (dynobj->just_symbols())
951 {
952 gold_error(_("--just-symbols does not make sense with a shared object"));
953 return;
954 }
955
956 if (versym != NULL && versym_size / 2 < count)
957 {
958 dynobj->error(_("too few symbol versions"));
959 return;
960 }
961
962 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
963
964 // We keep a list of all STT_OBJECT symbols, so that we can resolve
965 // weak aliases. This is necessary because if the dynamic object
966 // provides the same variable under two names, one of which is a
967 // weak definition, and the regular object refers to the weak
968 // definition, we have to put both the weak definition and the
969 // strong definition into the dynamic symbol table. Given a weak
970 // definition, the only way that we can find the corresponding
971 // strong definition, if any, is to search the symbol table.
972 std::vector<Sized_symbol<size>*> object_symbols;
973
974 const unsigned char* p = syms;
975 const unsigned char* vs = versym;
976 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
977 {
978 elfcpp::Sym<size, big_endian> sym(p);
979
980 // Ignore symbols with local binding or that have
981 // internal or hidden visibility.
982 if (sym.get_st_bind() == elfcpp::STB_LOCAL
983 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
984 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
985 continue;
986
987 // A protected symbol in a shared library must be treated as a
988 // normal symbol when viewed from outside the shared library.
989 // Implement this by overriding the visibility here.
990 elfcpp::Sym<size, big_endian>* psym = &sym;
991 unsigned char symbuf[sym_size];
992 elfcpp::Sym<size, big_endian> sym2(symbuf);
993 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
994 {
995 memcpy(symbuf, p, sym_size);
996 elfcpp::Sym_write<size, big_endian> sw(symbuf);
997 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
998 psym = &sym2;
999 }
1000
1001 unsigned int st_name = psym->get_st_name();
1002 if (st_name >= sym_name_size)
1003 {
1004 dynobj->error(_("bad symbol name offset %u at %zu"),
1005 st_name, i);
1006 continue;
1007 }
1008
1009 const char* name = sym_names + st_name;
1010
1011 bool is_ordinary;
1012 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1013 &is_ordinary);
1014
1015 Sized_symbol<size>* res;
1016
1017 if (versym == NULL)
1018 {
1019 Stringpool::Key name_key;
1020 name = this->namepool_.add(name, true, &name_key);
1021 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1022 false, *psym, st_shndx, is_ordinary,
1023 st_shndx);
1024 }
1025 else
1026 {
1027 // Read the version information.
1028
1029 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1030
1031 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1032 v &= elfcpp::VERSYM_VERSION;
1033
1034 // The Sun documentation says that V can be VER_NDX_LOCAL,
1035 // or VER_NDX_GLOBAL, or a version index. The meaning of
1036 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1037 // The old GNU linker will happily generate VER_NDX_LOCAL
1038 // for an undefined symbol. I don't know what the Sun
1039 // linker will generate.
1040
1041 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1042 && st_shndx != elfcpp::SHN_UNDEF)
1043 {
1044 // This symbol should not be visible outside the object.
1045 continue;
1046 }
1047
1048 // At this point we are definitely going to add this symbol.
1049 Stringpool::Key name_key;
1050 name = this->namepool_.add(name, true, &name_key);
1051
1052 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1053 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1054 {
1055 // This symbol does not have a version.
1056 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1057 false, *psym, st_shndx, is_ordinary,
1058 st_shndx);
1059 }
1060 else
1061 {
1062 if (v >= version_map->size())
1063 {
1064 dynobj->error(_("versym for symbol %zu out of range: %u"),
1065 i, v);
1066 continue;
1067 }
1068
1069 const char* version = (*version_map)[v];
1070 if (version == NULL)
1071 {
1072 dynobj->error(_("versym for symbol %zu has no name: %u"),
1073 i, v);
1074 continue;
1075 }
1076
1077 Stringpool::Key version_key;
1078 version = this->namepool_.add(version, true, &version_key);
1079
1080 // If this is an absolute symbol, and the version name
1081 // and symbol name are the same, then this is the
1082 // version definition symbol. These symbols exist to
1083 // support using -u to pull in particular versions. We
1084 // do not want to record a version for them.
1085 if (st_shndx == elfcpp::SHN_ABS
1086 && !is_ordinary
1087 && name_key == version_key)
1088 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1089 false, *psym, st_shndx, is_ordinary,
1090 st_shndx);
1091 else
1092 {
1093 const bool def = (!hidden
1094 && st_shndx != elfcpp::SHN_UNDEF);
1095 res = this->add_from_object(dynobj, name, name_key, version,
1096 version_key, def, *psym, st_shndx,
1097 is_ordinary, st_shndx);
1098 }
1099 }
1100 }
1101
1102 // Note that it is possible that RES was overridden by an
1103 // earlier object, in which case it can't be aliased here.
1104 if (st_shndx != elfcpp::SHN_UNDEF
1105 && is_ordinary
1106 && psym->get_st_type() == elfcpp::STT_OBJECT
1107 && res->source() == Symbol::FROM_OBJECT
1108 && res->object() == dynobj)
1109 object_symbols.push_back(res);
1110 }
1111
1112 this->record_weak_aliases(&object_symbols);
1113 }
1114
1115 // This is used to sort weak aliases. We sort them first by section
1116 // index, then by offset, then by weak ahead of strong.
1117
1118 template<int size>
1119 class Weak_alias_sorter
1120 {
1121 public:
1122 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1123 };
1124
1125 template<int size>
1126 bool
1127 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1128 const Sized_symbol<size>* s2) const
1129 {
1130 bool is_ordinary;
1131 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1132 gold_assert(is_ordinary);
1133 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1134 gold_assert(is_ordinary);
1135 if (s1_shndx != s2_shndx)
1136 return s1_shndx < s2_shndx;
1137
1138 if (s1->value() != s2->value())
1139 return s1->value() < s2->value();
1140 if (s1->binding() != s2->binding())
1141 {
1142 if (s1->binding() == elfcpp::STB_WEAK)
1143 return true;
1144 if (s2->binding() == elfcpp::STB_WEAK)
1145 return false;
1146 }
1147 return std::string(s1->name()) < std::string(s2->name());
1148 }
1149
1150 // SYMBOLS is a list of object symbols from a dynamic object. Look
1151 // for any weak aliases, and record them so that if we add the weak
1152 // alias to the dynamic symbol table, we also add the corresponding
1153 // strong symbol.
1154
1155 template<int size>
1156 void
1157 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1158 {
1159 // Sort the vector by section index, then by offset, then by weak
1160 // ahead of strong.
1161 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1162
1163 // Walk through the vector. For each weak definition, record
1164 // aliases.
1165 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1166 symbols->begin();
1167 p != symbols->end();
1168 ++p)
1169 {
1170 if ((*p)->binding() != elfcpp::STB_WEAK)
1171 continue;
1172
1173 // Build a circular list of weak aliases. Each symbol points to
1174 // the next one in the circular list.
1175
1176 Sized_symbol<size>* from_sym = *p;
1177 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1178 for (q = p + 1; q != symbols->end(); ++q)
1179 {
1180 bool dummy;
1181 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1182 || (*q)->value() != from_sym->value())
1183 break;
1184
1185 this->weak_aliases_[from_sym] = *q;
1186 from_sym->set_has_alias();
1187 from_sym = *q;
1188 }
1189
1190 if (from_sym != *p)
1191 {
1192 this->weak_aliases_[from_sym] = *p;
1193 from_sym->set_has_alias();
1194 }
1195
1196 p = q - 1;
1197 }
1198 }
1199
1200 // Create and return a specially defined symbol. If ONLY_IF_REF is
1201 // true, then only create the symbol if there is a reference to it.
1202 // If this does not return NULL, it sets *POLDSYM to the existing
1203 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1204
1205 template<int size, bool big_endian>
1206 Sized_symbol<size>*
1207 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1208 bool only_if_ref,
1209 Sized_symbol<size>** poldsym)
1210 {
1211 Symbol* oldsym;
1212 Sized_symbol<size>* sym;
1213 bool add_to_table = false;
1214 typename Symbol_table_type::iterator add_loc = this->table_.end();
1215
1216 // If the caller didn't give us a version, see if we get one from
1217 // the version script.
1218 if (*pversion == NULL)
1219 {
1220 const std::string& v(this->version_script_.get_symbol_version(*pname));
1221 if (!v.empty())
1222 *pversion = v.c_str();
1223 }
1224
1225 if (only_if_ref)
1226 {
1227 oldsym = this->lookup(*pname, *pversion);
1228 if (oldsym == NULL || !oldsym->is_undefined())
1229 return NULL;
1230
1231 *pname = oldsym->name();
1232 *pversion = oldsym->version();
1233 }
1234 else
1235 {
1236 // Canonicalize NAME and VERSION.
1237 Stringpool::Key name_key;
1238 *pname = this->namepool_.add(*pname, true, &name_key);
1239
1240 Stringpool::Key version_key = 0;
1241 if (*pversion != NULL)
1242 *pversion = this->namepool_.add(*pversion, true, &version_key);
1243
1244 Symbol* const snull = NULL;
1245 std::pair<typename Symbol_table_type::iterator, bool> ins =
1246 this->table_.insert(std::make_pair(std::make_pair(name_key,
1247 version_key),
1248 snull));
1249
1250 if (!ins.second)
1251 {
1252 // We already have a symbol table entry for NAME/VERSION.
1253 oldsym = ins.first->second;
1254 gold_assert(oldsym != NULL);
1255 }
1256 else
1257 {
1258 // We haven't seen this symbol before.
1259 gold_assert(ins.first->second == NULL);
1260 add_to_table = true;
1261 add_loc = ins.first;
1262 oldsym = NULL;
1263 }
1264 }
1265
1266 const Target& target = parameters->target();
1267 if (!target.has_make_symbol())
1268 sym = new Sized_symbol<size>();
1269 else
1270 {
1271 gold_assert(target.get_size() == size);
1272 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1273 typedef Sized_target<size, big_endian> My_target;
1274 const My_target* sized_target =
1275 static_cast<const My_target*>(&target);
1276 sym = sized_target->make_symbol();
1277 if (sym == NULL)
1278 return NULL;
1279 }
1280
1281 if (add_to_table)
1282 add_loc->second = sym;
1283 else
1284 gold_assert(oldsym != NULL);
1285
1286 *poldsym = this->get_sized_symbol<size>(oldsym);
1287
1288 return sym;
1289 }
1290
1291 // Define a symbol based on an Output_data.
1292
1293 Symbol*
1294 Symbol_table::define_in_output_data(const char* name,
1295 const char* version,
1296 Output_data* od,
1297 uint64_t value,
1298 uint64_t symsize,
1299 elfcpp::STT type,
1300 elfcpp::STB binding,
1301 elfcpp::STV visibility,
1302 unsigned char nonvis,
1303 bool offset_is_from_end,
1304 bool only_if_ref)
1305 {
1306 if (parameters->target().get_size() == 32)
1307 {
1308 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1309 return this->do_define_in_output_data<32>(name, version, od,
1310 value, symsize, type, binding,
1311 visibility, nonvis,
1312 offset_is_from_end,
1313 only_if_ref);
1314 #else
1315 gold_unreachable();
1316 #endif
1317 }
1318 else if (parameters->target().get_size() == 64)
1319 {
1320 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1321 return this->do_define_in_output_data<64>(name, version, od,
1322 value, symsize, type, binding,
1323 visibility, nonvis,
1324 offset_is_from_end,
1325 only_if_ref);
1326 #else
1327 gold_unreachable();
1328 #endif
1329 }
1330 else
1331 gold_unreachable();
1332 }
1333
1334 // Define a symbol in an Output_data, sized version.
1335
1336 template<int size>
1337 Sized_symbol<size>*
1338 Symbol_table::do_define_in_output_data(
1339 const char* name,
1340 const char* version,
1341 Output_data* od,
1342 typename elfcpp::Elf_types<size>::Elf_Addr value,
1343 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1344 elfcpp::STT type,
1345 elfcpp::STB binding,
1346 elfcpp::STV visibility,
1347 unsigned char nonvis,
1348 bool offset_is_from_end,
1349 bool only_if_ref)
1350 {
1351 Sized_symbol<size>* sym;
1352 Sized_symbol<size>* oldsym;
1353
1354 if (parameters->target().is_big_endian())
1355 {
1356 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1357 sym = this->define_special_symbol<size, true>(&name, &version,
1358 only_if_ref, &oldsym);
1359 #else
1360 gold_unreachable();
1361 #endif
1362 }
1363 else
1364 {
1365 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1366 sym = this->define_special_symbol<size, false>(&name, &version,
1367 only_if_ref, &oldsym);
1368 #else
1369 gold_unreachable();
1370 #endif
1371 }
1372
1373 if (sym == NULL)
1374 return NULL;
1375
1376 sym->init_output_data(name, version, od, value, symsize, type, binding,
1377 visibility, nonvis, offset_is_from_end);
1378
1379 if (oldsym == NULL)
1380 {
1381 if (binding == elfcpp::STB_LOCAL
1382 || this->version_script_.symbol_is_local(name))
1383 this->force_local(sym);
1384 else if (version != NULL)
1385 sym->set_is_default();
1386 return sym;
1387 }
1388
1389 if (Symbol_table::should_override_with_special(oldsym))
1390 this->override_with_special(oldsym, sym);
1391 delete sym;
1392 return oldsym;
1393 }
1394
1395 // Define a symbol based on an Output_segment.
1396
1397 Symbol*
1398 Symbol_table::define_in_output_segment(const char* name,
1399 const char* version, Output_segment* os,
1400 uint64_t value,
1401 uint64_t symsize,
1402 elfcpp::STT type,
1403 elfcpp::STB binding,
1404 elfcpp::STV visibility,
1405 unsigned char nonvis,
1406 Symbol::Segment_offset_base offset_base,
1407 bool only_if_ref)
1408 {
1409 if (parameters->target().get_size() == 32)
1410 {
1411 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1412 return this->do_define_in_output_segment<32>(name, version, os,
1413 value, symsize, type,
1414 binding, visibility, nonvis,
1415 offset_base, only_if_ref);
1416 #else
1417 gold_unreachable();
1418 #endif
1419 }
1420 else if (parameters->target().get_size() == 64)
1421 {
1422 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1423 return this->do_define_in_output_segment<64>(name, version, os,
1424 value, symsize, type,
1425 binding, visibility, nonvis,
1426 offset_base, only_if_ref);
1427 #else
1428 gold_unreachable();
1429 #endif
1430 }
1431 else
1432 gold_unreachable();
1433 }
1434
1435 // Define a symbol in an Output_segment, sized version.
1436
1437 template<int size>
1438 Sized_symbol<size>*
1439 Symbol_table::do_define_in_output_segment(
1440 const char* name,
1441 const char* version,
1442 Output_segment* os,
1443 typename elfcpp::Elf_types<size>::Elf_Addr value,
1444 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1445 elfcpp::STT type,
1446 elfcpp::STB binding,
1447 elfcpp::STV visibility,
1448 unsigned char nonvis,
1449 Symbol::Segment_offset_base offset_base,
1450 bool only_if_ref)
1451 {
1452 Sized_symbol<size>* sym;
1453 Sized_symbol<size>* oldsym;
1454
1455 if (parameters->target().is_big_endian())
1456 {
1457 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1458 sym = this->define_special_symbol<size, true>(&name, &version,
1459 only_if_ref, &oldsym);
1460 #else
1461 gold_unreachable();
1462 #endif
1463 }
1464 else
1465 {
1466 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1467 sym = this->define_special_symbol<size, false>(&name, &version,
1468 only_if_ref, &oldsym);
1469 #else
1470 gold_unreachable();
1471 #endif
1472 }
1473
1474 if (sym == NULL)
1475 return NULL;
1476
1477 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1478 visibility, nonvis, offset_base);
1479
1480 if (oldsym == NULL)
1481 {
1482 if (binding == elfcpp::STB_LOCAL
1483 || this->version_script_.symbol_is_local(name))
1484 this->force_local(sym);
1485 else if (version != NULL)
1486 sym->set_is_default();
1487 return sym;
1488 }
1489
1490 if (Symbol_table::should_override_with_special(oldsym))
1491 this->override_with_special(oldsym, sym);
1492 delete sym;
1493 return oldsym;
1494 }
1495
1496 // Define a special symbol with a constant value. It is a multiple
1497 // definition error if this symbol is already defined.
1498
1499 Symbol*
1500 Symbol_table::define_as_constant(const char* name,
1501 const char* version,
1502 uint64_t value,
1503 uint64_t symsize,
1504 elfcpp::STT type,
1505 elfcpp::STB binding,
1506 elfcpp::STV visibility,
1507 unsigned char nonvis,
1508 bool only_if_ref,
1509 bool force_override)
1510 {
1511 if (parameters->target().get_size() == 32)
1512 {
1513 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1514 return this->do_define_as_constant<32>(name, version, value,
1515 symsize, type, binding,
1516 visibility, nonvis, only_if_ref,
1517 force_override);
1518 #else
1519 gold_unreachable();
1520 #endif
1521 }
1522 else if (parameters->target().get_size() == 64)
1523 {
1524 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1525 return this->do_define_as_constant<64>(name, version, value,
1526 symsize, type, binding,
1527 visibility, nonvis, only_if_ref,
1528 force_override);
1529 #else
1530 gold_unreachable();
1531 #endif
1532 }
1533 else
1534 gold_unreachable();
1535 }
1536
1537 // Define a symbol as a constant, sized version.
1538
1539 template<int size>
1540 Sized_symbol<size>*
1541 Symbol_table::do_define_as_constant(
1542 const char* name,
1543 const char* version,
1544 typename elfcpp::Elf_types<size>::Elf_Addr value,
1545 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1546 elfcpp::STT type,
1547 elfcpp::STB binding,
1548 elfcpp::STV visibility,
1549 unsigned char nonvis,
1550 bool only_if_ref,
1551 bool force_override)
1552 {
1553 Sized_symbol<size>* sym;
1554 Sized_symbol<size>* oldsym;
1555
1556 if (parameters->target().is_big_endian())
1557 {
1558 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1559 sym = this->define_special_symbol<size, true>(&name, &version,
1560 only_if_ref, &oldsym);
1561 #else
1562 gold_unreachable();
1563 #endif
1564 }
1565 else
1566 {
1567 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1568 sym = this->define_special_symbol<size, false>(&name, &version,
1569 only_if_ref, &oldsym);
1570 #else
1571 gold_unreachable();
1572 #endif
1573 }
1574
1575 if (sym == NULL)
1576 return NULL;
1577
1578 sym->init_constant(name, version, value, symsize, type, binding, visibility,
1579 nonvis);
1580
1581 if (oldsym == NULL)
1582 {
1583 // Version symbols are absolute symbols with name == version.
1584 // We don't want to force them to be local.
1585 if ((version == NULL
1586 || name != version
1587 || value != 0)
1588 && (binding == elfcpp::STB_LOCAL
1589 || this->version_script_.symbol_is_local(name)))
1590 this->force_local(sym);
1591 else if (version != NULL
1592 && (name != version || value != 0))
1593 sym->set_is_default();
1594 return sym;
1595 }
1596
1597 if (force_override || Symbol_table::should_override_with_special(oldsym))
1598 this->override_with_special(oldsym, sym);
1599 delete sym;
1600 return oldsym;
1601 }
1602
1603 // Define a set of symbols in output sections.
1604
1605 void
1606 Symbol_table::define_symbols(const Layout* layout, int count,
1607 const Define_symbol_in_section* p,
1608 bool only_if_ref)
1609 {
1610 for (int i = 0; i < count; ++i, ++p)
1611 {
1612 Output_section* os = layout->find_output_section(p->output_section);
1613 if (os != NULL)
1614 this->define_in_output_data(p->name, NULL, os, p->value,
1615 p->size, p->type, p->binding,
1616 p->visibility, p->nonvis,
1617 p->offset_is_from_end,
1618 only_if_ref || p->only_if_ref);
1619 else
1620 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1621 p->binding, p->visibility, p->nonvis,
1622 only_if_ref || p->only_if_ref,
1623 false);
1624 }
1625 }
1626
1627 // Define a set of symbols in output segments.
1628
1629 void
1630 Symbol_table::define_symbols(const Layout* layout, int count,
1631 const Define_symbol_in_segment* p,
1632 bool only_if_ref)
1633 {
1634 for (int i = 0; i < count; ++i, ++p)
1635 {
1636 Output_segment* os = layout->find_output_segment(p->segment_type,
1637 p->segment_flags_set,
1638 p->segment_flags_clear);
1639 if (os != NULL)
1640 this->define_in_output_segment(p->name, NULL, os, p->value,
1641 p->size, p->type, p->binding,
1642 p->visibility, p->nonvis,
1643 p->offset_base,
1644 only_if_ref || p->only_if_ref);
1645 else
1646 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1647 p->binding, p->visibility, p->nonvis,
1648 only_if_ref || p->only_if_ref,
1649 false);
1650 }
1651 }
1652
1653 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1654 // symbol should be defined--typically a .dyn.bss section. VALUE is
1655 // the offset within POSD.
1656
1657 template<int size>
1658 void
1659 Symbol_table::define_with_copy_reloc(
1660 Sized_symbol<size>* csym,
1661 Output_data* posd,
1662 typename elfcpp::Elf_types<size>::Elf_Addr value)
1663 {
1664 gold_assert(csym->is_from_dynobj());
1665 gold_assert(!csym->is_copied_from_dynobj());
1666 Object* object = csym->object();
1667 gold_assert(object->is_dynamic());
1668 Dynobj* dynobj = static_cast<Dynobj*>(object);
1669
1670 // Our copied variable has to override any variable in a shared
1671 // library.
1672 elfcpp::STB binding = csym->binding();
1673 if (binding == elfcpp::STB_WEAK)
1674 binding = elfcpp::STB_GLOBAL;
1675
1676 this->define_in_output_data(csym->name(), csym->version(),
1677 posd, value, csym->symsize(),
1678 csym->type(), binding,
1679 csym->visibility(), csym->nonvis(),
1680 false, false);
1681
1682 csym->set_is_copied_from_dynobj();
1683 csym->set_needs_dynsym_entry();
1684
1685 this->copied_symbol_dynobjs_[csym] = dynobj;
1686
1687 // We have now defined all aliases, but we have not entered them all
1688 // in the copied_symbol_dynobjs_ map.
1689 if (csym->has_alias())
1690 {
1691 Symbol* sym = csym;
1692 while (true)
1693 {
1694 sym = this->weak_aliases_[sym];
1695 if (sym == csym)
1696 break;
1697 gold_assert(sym->output_data() == posd);
1698
1699 sym->set_is_copied_from_dynobj();
1700 this->copied_symbol_dynobjs_[sym] = dynobj;
1701 }
1702 }
1703 }
1704
1705 // SYM is defined using a COPY reloc. Return the dynamic object where
1706 // the original definition was found.
1707
1708 Dynobj*
1709 Symbol_table::get_copy_source(const Symbol* sym) const
1710 {
1711 gold_assert(sym->is_copied_from_dynobj());
1712 Copied_symbol_dynobjs::const_iterator p =
1713 this->copied_symbol_dynobjs_.find(sym);
1714 gold_assert(p != this->copied_symbol_dynobjs_.end());
1715 return p->second;
1716 }
1717
1718 // Add any undefined symbols named on the command line.
1719
1720 void
1721 Symbol_table::add_undefined_symbols_from_command_line()
1722 {
1723 if (parameters->options().any_undefined())
1724 {
1725 if (parameters->target().get_size() == 32)
1726 {
1727 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1728 this->do_add_undefined_symbols_from_command_line<32>();
1729 #else
1730 gold_unreachable();
1731 #endif
1732 }
1733 else if (parameters->target().get_size() == 64)
1734 {
1735 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1736 this->do_add_undefined_symbols_from_command_line<64>();
1737 #else
1738 gold_unreachable();
1739 #endif
1740 }
1741 else
1742 gold_unreachable();
1743 }
1744 }
1745
1746 template<int size>
1747 void
1748 Symbol_table::do_add_undefined_symbols_from_command_line()
1749 {
1750 for (options::String_set::const_iterator p =
1751 parameters->options().undefined_begin();
1752 p != parameters->options().undefined_end();
1753 ++p)
1754 {
1755 const char* name = p->c_str();
1756
1757 if (this->lookup(name) != NULL)
1758 continue;
1759
1760 const char* version = NULL;
1761
1762 Sized_symbol<size>* sym;
1763 Sized_symbol<size>* oldsym;
1764 if (parameters->target().is_big_endian())
1765 {
1766 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1767 sym = this->define_special_symbol<size, true>(&name, &version,
1768 false, &oldsym);
1769 #else
1770 gold_unreachable();
1771 #endif
1772 }
1773 else
1774 {
1775 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1776 sym = this->define_special_symbol<size, false>(&name, &version,
1777 false, &oldsym);
1778 #else
1779 gold_unreachable();
1780 #endif
1781 }
1782
1783 gold_assert(oldsym == NULL);
1784
1785 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1786 elfcpp::STV_DEFAULT, 0);
1787 ++this->saw_undefined_;
1788 }
1789 }
1790
1791 // Set the dynamic symbol indexes. INDEX is the index of the first
1792 // global dynamic symbol. Pointers to the symbols are stored into the
1793 // vector SYMS. The names are added to DYNPOOL. This returns an
1794 // updated dynamic symbol index.
1795
1796 unsigned int
1797 Symbol_table::set_dynsym_indexes(unsigned int index,
1798 std::vector<Symbol*>* syms,
1799 Stringpool* dynpool,
1800 Versions* versions)
1801 {
1802 for (Symbol_table_type::iterator p = this->table_.begin();
1803 p != this->table_.end();
1804 ++p)
1805 {
1806 Symbol* sym = p->second;
1807
1808 // Note that SYM may already have a dynamic symbol index, since
1809 // some symbols appear more than once in the symbol table, with
1810 // and without a version.
1811
1812 if (!sym->should_add_dynsym_entry())
1813 sym->set_dynsym_index(-1U);
1814 else if (!sym->has_dynsym_index())
1815 {
1816 sym->set_dynsym_index(index);
1817 ++index;
1818 syms->push_back(sym);
1819 dynpool->add(sym->name(), false, NULL);
1820
1821 // Record any version information.
1822 if (sym->version() != NULL)
1823 versions->record_version(this, dynpool, sym);
1824 }
1825 }
1826
1827 // Finish up the versions. In some cases this may add new dynamic
1828 // symbols.
1829 index = versions->finalize(this, index, syms);
1830
1831 return index;
1832 }
1833
1834 // Set the final values for all the symbols. The index of the first
1835 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1836 // file offset OFF. Add their names to POOL. Return the new file
1837 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1838
1839 off_t
1840 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1841 size_t dyncount, Stringpool* pool,
1842 unsigned int *plocal_symcount)
1843 {
1844 off_t ret;
1845
1846 gold_assert(*plocal_symcount != 0);
1847 this->first_global_index_ = *plocal_symcount;
1848
1849 this->dynamic_offset_ = dynoff;
1850 this->first_dynamic_global_index_ = dyn_global_index;
1851 this->dynamic_count_ = dyncount;
1852
1853 if (parameters->target().get_size() == 32)
1854 {
1855 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1856 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1857 #else
1858 gold_unreachable();
1859 #endif
1860 }
1861 else if (parameters->target().get_size() == 64)
1862 {
1863 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1864 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1865 #else
1866 gold_unreachable();
1867 #endif
1868 }
1869 else
1870 gold_unreachable();
1871
1872 // Now that we have the final symbol table, we can reliably note
1873 // which symbols should get warnings.
1874 this->warnings_.note_warnings(this);
1875
1876 return ret;
1877 }
1878
1879 // SYM is going into the symbol table at *PINDEX. Add the name to
1880 // POOL, update *PINDEX and *POFF.
1881
1882 template<int size>
1883 void
1884 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1885 unsigned int* pindex, off_t* poff)
1886 {
1887 sym->set_symtab_index(*pindex);
1888 pool->add(sym->name(), false, NULL);
1889 ++*pindex;
1890 *poff += elfcpp::Elf_sizes<size>::sym_size;
1891 }
1892
1893 // Set the final value for all the symbols. This is called after
1894 // Layout::finalize, so all the output sections have their final
1895 // address.
1896
1897 template<int size>
1898 off_t
1899 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1900 unsigned int* plocal_symcount)
1901 {
1902 off = align_address(off, size >> 3);
1903 this->offset_ = off;
1904
1905 unsigned int index = *plocal_symcount;
1906 const unsigned int orig_index = index;
1907
1908 // First do all the symbols which have been forced to be local, as
1909 // they must appear before all global symbols.
1910 for (Forced_locals::iterator p = this->forced_locals_.begin();
1911 p != this->forced_locals_.end();
1912 ++p)
1913 {
1914 Symbol* sym = *p;
1915 gold_assert(sym->is_forced_local());
1916 if (this->sized_finalize_symbol<size>(sym))
1917 {
1918 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1919 ++*plocal_symcount;
1920 }
1921 }
1922
1923 // Now do all the remaining symbols.
1924 for (Symbol_table_type::iterator p = this->table_.begin();
1925 p != this->table_.end();
1926 ++p)
1927 {
1928 Symbol* sym = p->second;
1929 if (this->sized_finalize_symbol<size>(sym))
1930 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1931 }
1932
1933 this->output_count_ = index - orig_index;
1934
1935 return off;
1936 }
1937
1938 // Finalize the symbol SYM. This returns true if the symbol should be
1939 // added to the symbol table, false otherwise.
1940
1941 template<int size>
1942 bool
1943 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1944 {
1945 typedef typename Sized_symbol<size>::Value_type Value_type;
1946
1947 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1948
1949 // The default version of a symbol may appear twice in the symbol
1950 // table. We only need to finalize it once.
1951 if (sym->has_symtab_index())
1952 return false;
1953
1954 if (!sym->in_reg())
1955 {
1956 gold_assert(!sym->has_symtab_index());
1957 sym->set_symtab_index(-1U);
1958 gold_assert(sym->dynsym_index() == -1U);
1959 return false;
1960 }
1961
1962 Value_type value;
1963
1964 switch (sym->source())
1965 {
1966 case Symbol::FROM_OBJECT:
1967 {
1968 bool is_ordinary;
1969 unsigned int shndx = sym->shndx(&is_ordinary);
1970
1971 // FIXME: We need some target specific support here.
1972 if (!is_ordinary
1973 && shndx != elfcpp::SHN_ABS
1974 && shndx != elfcpp::SHN_COMMON)
1975 {
1976 gold_error(_("%s: unsupported symbol section 0x%x"),
1977 sym->demangled_name().c_str(), shndx);
1978 shndx = elfcpp::SHN_UNDEF;
1979 }
1980
1981 Object* symobj = sym->object();
1982 if (symobj->is_dynamic())
1983 {
1984 value = 0;
1985 shndx = elfcpp::SHN_UNDEF;
1986 }
1987 else if (shndx == elfcpp::SHN_UNDEF)
1988 value = 0;
1989 else if (!is_ordinary
1990 && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
1991 value = sym->value();
1992 else
1993 {
1994 Relobj* relobj = static_cast<Relobj*>(symobj);
1995 Output_section* os = relobj->output_section(shndx);
1996
1997 if (os == NULL)
1998 {
1999 sym->set_symtab_index(-1U);
2000 gold_assert(sym->dynsym_index() == -1U);
2001 return false;
2002 }
2003
2004 uint64_t secoff64 = relobj->output_section_offset(shndx);
2005 Value_type secoff = convert_types<Value_type, uint64_t>(secoff64);
2006 if (sym->type() == elfcpp::STT_TLS)
2007 value = sym->value() + os->tls_offset() + secoff;
2008 else
2009 value = sym->value() + os->address() + secoff;
2010 }
2011 }
2012 break;
2013
2014 case Symbol::IN_OUTPUT_DATA:
2015 {
2016 Output_data* od = sym->output_data();
2017 value = sym->value();
2018 if (sym->type() != elfcpp::STT_TLS)
2019 value += od->address();
2020 else
2021 {
2022 Output_section* os = od->output_section();
2023 gold_assert(os != NULL);
2024 value += os->tls_offset() + (od->address() - os->address());
2025 }
2026 if (sym->offset_is_from_end())
2027 value += od->data_size();
2028 }
2029 break;
2030
2031 case Symbol::IN_OUTPUT_SEGMENT:
2032 {
2033 Output_segment* os = sym->output_segment();
2034 value = sym->value();
2035 if (sym->type() != elfcpp::STT_TLS)
2036 value += os->vaddr();
2037 switch (sym->offset_base())
2038 {
2039 case Symbol::SEGMENT_START:
2040 break;
2041 case Symbol::SEGMENT_END:
2042 value += os->memsz();
2043 break;
2044 case Symbol::SEGMENT_BSS:
2045 value += os->filesz();
2046 break;
2047 default:
2048 gold_unreachable();
2049 }
2050 }
2051 break;
2052
2053 case Symbol::IS_CONSTANT:
2054 value = sym->value();
2055 break;
2056
2057 case Symbol::IS_UNDEFINED:
2058 value = 0;
2059 break;
2060
2061 default:
2062 gold_unreachable();
2063 }
2064
2065 sym->set_value(value);
2066
2067 if (parameters->options().strip_all())
2068 {
2069 sym->set_symtab_index(-1U);
2070 return false;
2071 }
2072
2073 return true;
2074 }
2075
2076 // Write out the global symbols.
2077
2078 void
2079 Symbol_table::write_globals(const Input_objects* input_objects,
2080 const Stringpool* sympool,
2081 const Stringpool* dynpool,
2082 Output_symtab_xindex* symtab_xindex,
2083 Output_symtab_xindex* dynsym_xindex,
2084 Output_file* of) const
2085 {
2086 switch (parameters->size_and_endianness())
2087 {
2088 #ifdef HAVE_TARGET_32_LITTLE
2089 case Parameters::TARGET_32_LITTLE:
2090 this->sized_write_globals<32, false>(input_objects, sympool,
2091 dynpool, symtab_xindex,
2092 dynsym_xindex, of);
2093 break;
2094 #endif
2095 #ifdef HAVE_TARGET_32_BIG
2096 case Parameters::TARGET_32_BIG:
2097 this->sized_write_globals<32, true>(input_objects, sympool,
2098 dynpool, symtab_xindex,
2099 dynsym_xindex, of);
2100 break;
2101 #endif
2102 #ifdef HAVE_TARGET_64_LITTLE
2103 case Parameters::TARGET_64_LITTLE:
2104 this->sized_write_globals<64, false>(input_objects, sympool,
2105 dynpool, symtab_xindex,
2106 dynsym_xindex, of);
2107 break;
2108 #endif
2109 #ifdef HAVE_TARGET_64_BIG
2110 case Parameters::TARGET_64_BIG:
2111 this->sized_write_globals<64, true>(input_objects, sympool,
2112 dynpool, symtab_xindex,
2113 dynsym_xindex, of);
2114 break;
2115 #endif
2116 default:
2117 gold_unreachable();
2118 }
2119 }
2120
2121 // Write out the global symbols.
2122
2123 template<int size, bool big_endian>
2124 void
2125 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2126 const Stringpool* sympool,
2127 const Stringpool* dynpool,
2128 Output_symtab_xindex* symtab_xindex,
2129 Output_symtab_xindex* dynsym_xindex,
2130 Output_file* of) const
2131 {
2132 const Target& target = parameters->target();
2133
2134 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2135
2136 const unsigned int output_count = this->output_count_;
2137 const section_size_type oview_size = output_count * sym_size;
2138 const unsigned int first_global_index = this->first_global_index_;
2139 unsigned char* psyms;
2140 if (this->offset_ == 0 || output_count == 0)
2141 psyms = NULL;
2142 else
2143 psyms = of->get_output_view(this->offset_, oview_size);
2144
2145 const unsigned int dynamic_count = this->dynamic_count_;
2146 const section_size_type dynamic_size = dynamic_count * sym_size;
2147 const unsigned int first_dynamic_global_index =
2148 this->first_dynamic_global_index_;
2149 unsigned char* dynamic_view;
2150 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2151 dynamic_view = NULL;
2152 else
2153 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2154
2155 for (Symbol_table_type::const_iterator p = this->table_.begin();
2156 p != this->table_.end();
2157 ++p)
2158 {
2159 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2160
2161 // Possibly warn about unresolved symbols in shared libraries.
2162 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2163
2164 unsigned int sym_index = sym->symtab_index();
2165 unsigned int dynsym_index;
2166 if (dynamic_view == NULL)
2167 dynsym_index = -1U;
2168 else
2169 dynsym_index = sym->dynsym_index();
2170
2171 if (sym_index == -1U && dynsym_index == -1U)
2172 {
2173 // This symbol is not included in the output file.
2174 continue;
2175 }
2176
2177 unsigned int shndx;
2178 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2179 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2180 switch (sym->source())
2181 {
2182 case Symbol::FROM_OBJECT:
2183 {
2184 bool is_ordinary;
2185 unsigned int in_shndx = sym->shndx(&is_ordinary);
2186
2187 // FIXME: We need some target specific support here.
2188 if (!is_ordinary
2189 && in_shndx != elfcpp::SHN_ABS
2190 && in_shndx != elfcpp::SHN_COMMON)
2191 {
2192 gold_error(_("%s: unsupported symbol section 0x%x"),
2193 sym->demangled_name().c_str(), in_shndx);
2194 shndx = in_shndx;
2195 }
2196 else
2197 {
2198 Object* symobj = sym->object();
2199 if (symobj->is_dynamic())
2200 {
2201 if (sym->needs_dynsym_value())
2202 dynsym_value = target.dynsym_value(sym);
2203 shndx = elfcpp::SHN_UNDEF;
2204 }
2205 else if (in_shndx == elfcpp::SHN_UNDEF
2206 || (!is_ordinary
2207 && (in_shndx == elfcpp::SHN_ABS
2208 || in_shndx == elfcpp::SHN_COMMON)))
2209 shndx = in_shndx;
2210 else
2211 {
2212 Relobj* relobj = static_cast<Relobj*>(symobj);
2213 Output_section* os = relobj->output_section(in_shndx);
2214 gold_assert(os != NULL);
2215 shndx = os->out_shndx();
2216
2217 if (shndx >= elfcpp::SHN_LORESERVE)
2218 {
2219 if (sym_index != -1U)
2220 symtab_xindex->add(sym_index, shndx);
2221 if (dynsym_index != -1U)
2222 dynsym_xindex->add(dynsym_index, shndx);
2223 shndx = elfcpp::SHN_XINDEX;
2224 }
2225
2226 // In object files symbol values are section
2227 // relative.
2228 if (parameters->options().relocatable())
2229 sym_value -= os->address();
2230 }
2231 }
2232 }
2233 break;
2234
2235 case Symbol::IN_OUTPUT_DATA:
2236 shndx = sym->output_data()->out_shndx();
2237 if (shndx >= elfcpp::SHN_LORESERVE)
2238 {
2239 if (sym_index != -1U)
2240 symtab_xindex->add(sym_index, shndx);
2241 if (dynsym_index != -1U)
2242 dynsym_xindex->add(dynsym_index, shndx);
2243 shndx = elfcpp::SHN_XINDEX;
2244 }
2245 break;
2246
2247 case Symbol::IN_OUTPUT_SEGMENT:
2248 shndx = elfcpp::SHN_ABS;
2249 break;
2250
2251 case Symbol::IS_CONSTANT:
2252 shndx = elfcpp::SHN_ABS;
2253 break;
2254
2255 case Symbol::IS_UNDEFINED:
2256 shndx = elfcpp::SHN_UNDEF;
2257 break;
2258
2259 default:
2260 gold_unreachable();
2261 }
2262
2263 if (sym_index != -1U)
2264 {
2265 sym_index -= first_global_index;
2266 gold_assert(sym_index < output_count);
2267 unsigned char* ps = psyms + (sym_index * sym_size);
2268 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2269 sympool, ps);
2270 }
2271
2272 if (dynsym_index != -1U)
2273 {
2274 dynsym_index -= first_dynamic_global_index;
2275 gold_assert(dynsym_index < dynamic_count);
2276 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2277 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2278 dynpool, pd);
2279 }
2280 }
2281
2282 of->write_output_view(this->offset_, oview_size, psyms);
2283 if (dynamic_view != NULL)
2284 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2285 }
2286
2287 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2288 // strtab holding the name.
2289
2290 template<int size, bool big_endian>
2291 void
2292 Symbol_table::sized_write_symbol(
2293 Sized_symbol<size>* sym,
2294 typename elfcpp::Elf_types<size>::Elf_Addr value,
2295 unsigned int shndx,
2296 const Stringpool* pool,
2297 unsigned char* p) const
2298 {
2299 elfcpp::Sym_write<size, big_endian> osym(p);
2300 osym.put_st_name(pool->get_offset(sym->name()));
2301 osym.put_st_value(value);
2302 osym.put_st_size(sym->symsize());
2303 // A version script may have overridden the default binding.
2304 if (sym->is_forced_local())
2305 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2306 else
2307 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2308 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2309 osym.put_st_shndx(shndx);
2310 }
2311
2312 // Check for unresolved symbols in shared libraries. This is
2313 // controlled by the --allow-shlib-undefined option.
2314
2315 // We only warn about libraries for which we have seen all the
2316 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2317 // which were not seen in this link. If we didn't see a DT_NEEDED
2318 // entry, we aren't going to be able to reliably report whether the
2319 // symbol is undefined.
2320
2321 // We also don't warn about libraries found in the system library
2322 // directory (the directory were we find libc.so); we assume that
2323 // those libraries are OK. This heuristic avoids problems in
2324 // GNU/Linux, in which -ldl can have undefined references satisfied by
2325 // ld-linux.so.
2326
2327 inline void
2328 Symbol_table::warn_about_undefined_dynobj_symbol(
2329 const Input_objects* input_objects,
2330 Symbol* sym) const
2331 {
2332 bool dummy;
2333 if (sym->source() == Symbol::FROM_OBJECT
2334 && sym->object()->is_dynamic()
2335 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2336 && sym->binding() != elfcpp::STB_WEAK
2337 && !parameters->options().allow_shlib_undefined()
2338 && !parameters->target().is_defined_by_abi(sym)
2339 && !input_objects->found_in_system_library_directory(sym->object()))
2340 {
2341 // A very ugly cast.
2342 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2343 if (!dynobj->has_unknown_needed_entries())
2344 gold_error(_("%s: undefined reference to '%s'"),
2345 sym->object()->name().c_str(),
2346 sym->demangled_name().c_str());
2347 }
2348 }
2349
2350 // Write out a section symbol. Return the update offset.
2351
2352 void
2353 Symbol_table::write_section_symbol(const Output_section *os,
2354 Output_symtab_xindex* symtab_xindex,
2355 Output_file* of,
2356 off_t offset) const
2357 {
2358 switch (parameters->size_and_endianness())
2359 {
2360 #ifdef HAVE_TARGET_32_LITTLE
2361 case Parameters::TARGET_32_LITTLE:
2362 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2363 offset);
2364 break;
2365 #endif
2366 #ifdef HAVE_TARGET_32_BIG
2367 case Parameters::TARGET_32_BIG:
2368 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2369 offset);
2370 break;
2371 #endif
2372 #ifdef HAVE_TARGET_64_LITTLE
2373 case Parameters::TARGET_64_LITTLE:
2374 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2375 offset);
2376 break;
2377 #endif
2378 #ifdef HAVE_TARGET_64_BIG
2379 case Parameters::TARGET_64_BIG:
2380 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2381 offset);
2382 break;
2383 #endif
2384 default:
2385 gold_unreachable();
2386 }
2387 }
2388
2389 // Write out a section symbol, specialized for size and endianness.
2390
2391 template<int size, bool big_endian>
2392 void
2393 Symbol_table::sized_write_section_symbol(const Output_section* os,
2394 Output_symtab_xindex* symtab_xindex,
2395 Output_file* of,
2396 off_t offset) const
2397 {
2398 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2399
2400 unsigned char* pov = of->get_output_view(offset, sym_size);
2401
2402 elfcpp::Sym_write<size, big_endian> osym(pov);
2403 osym.put_st_name(0);
2404 osym.put_st_value(os->address());
2405 osym.put_st_size(0);
2406 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2407 elfcpp::STT_SECTION));
2408 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2409
2410 unsigned int shndx = os->out_shndx();
2411 if (shndx >= elfcpp::SHN_LORESERVE)
2412 {
2413 symtab_xindex->add(os->symtab_index(), shndx);
2414 shndx = elfcpp::SHN_XINDEX;
2415 }
2416 osym.put_st_shndx(shndx);
2417
2418 of->write_output_view(offset, sym_size, pov);
2419 }
2420
2421 // Print statistical information to stderr. This is used for --stats.
2422
2423 void
2424 Symbol_table::print_stats() const
2425 {
2426 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2427 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2428 program_name, this->table_.size(), this->table_.bucket_count());
2429 #else
2430 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2431 program_name, this->table_.size());
2432 #endif
2433 this->namepool_.print_stats("symbol table stringpool");
2434 }
2435
2436 // We check for ODR violations by looking for symbols with the same
2437 // name for which the debugging information reports that they were
2438 // defined in different source locations. When comparing the source
2439 // location, we consider instances with the same base filename and
2440 // line number to be the same. This is because different object
2441 // files/shared libraries can include the same header file using
2442 // different paths, and we don't want to report an ODR violation in
2443 // that case.
2444
2445 // This struct is used to compare line information, as returned by
2446 // Dwarf_line_info::one_addr2line. It implements a < comparison
2447 // operator used with std::set.
2448
2449 struct Odr_violation_compare
2450 {
2451 bool
2452 operator()(const std::string& s1, const std::string& s2) const
2453 {
2454 std::string::size_type pos1 = s1.rfind('/');
2455 std::string::size_type pos2 = s2.rfind('/');
2456 if (pos1 == std::string::npos
2457 || pos2 == std::string::npos)
2458 return s1 < s2;
2459 return s1.compare(pos1, std::string::npos,
2460 s2, pos2, std::string::npos) < 0;
2461 }
2462 };
2463
2464 // Check candidate_odr_violations_ to find symbols with the same name
2465 // but apparently different definitions (different source-file/line-no).
2466
2467 void
2468 Symbol_table::detect_odr_violations(const Task* task,
2469 const char* output_file_name) const
2470 {
2471 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2472 it != candidate_odr_violations_.end();
2473 ++it)
2474 {
2475 const char* symbol_name = it->first;
2476 // We use a sorted set so the output is deterministic.
2477 std::set<std::string, Odr_violation_compare> line_nums;
2478
2479 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2480 locs = it->second.begin();
2481 locs != it->second.end();
2482 ++locs)
2483 {
2484 // We need to lock the object in order to read it. This
2485 // means that we have to run in a singleton Task. If we
2486 // want to run this in a general Task for better
2487 // performance, we will need one Task for object, plus
2488 // appropriate locking to ensure that we don't conflict with
2489 // other uses of the object. Also note, one_addr2line is not
2490 // currently thread-safe.
2491 Task_lock_obj<Object> tl(task, locs->object);
2492 // 16 is the size of the object-cache that one_addr2line should use.
2493 std::string lineno = Dwarf_line_info::one_addr2line(
2494 locs->object, locs->shndx, locs->offset, 16);
2495 if (!lineno.empty())
2496 line_nums.insert(lineno);
2497 }
2498
2499 if (line_nums.size() > 1)
2500 {
2501 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2502 "places (possible ODR violation):"),
2503 output_file_name, demangle(symbol_name).c_str());
2504 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2505 it2 != line_nums.end();
2506 ++it2)
2507 fprintf(stderr, " %s\n", it2->c_str());
2508 }
2509 }
2510 // We only call one_addr2line() in this function, so we can clear its cache.
2511 Dwarf_line_info::clear_addr2line_cache();
2512 }
2513
2514 // Warnings functions.
2515
2516 // Add a new warning.
2517
2518 void
2519 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2520 const std::string& warning)
2521 {
2522 name = symtab->canonicalize_name(name);
2523 this->warnings_[name].set(obj, warning);
2524 }
2525
2526 // Look through the warnings and mark the symbols for which we should
2527 // warn. This is called during Layout::finalize when we know the
2528 // sources for all the symbols.
2529
2530 void
2531 Warnings::note_warnings(Symbol_table* symtab)
2532 {
2533 for (Warning_table::iterator p = this->warnings_.begin();
2534 p != this->warnings_.end();
2535 ++p)
2536 {
2537 Symbol* sym = symtab->lookup(p->first, NULL);
2538 if (sym != NULL
2539 && sym->source() == Symbol::FROM_OBJECT
2540 && sym->object() == p->second.object)
2541 sym->set_has_warning();
2542 }
2543 }
2544
2545 // Issue a warning. This is called when we see a relocation against a
2546 // symbol for which has a warning.
2547
2548 template<int size, bool big_endian>
2549 void
2550 Warnings::issue_warning(const Symbol* sym,
2551 const Relocate_info<size, big_endian>* relinfo,
2552 size_t relnum, off_t reloffset) const
2553 {
2554 gold_assert(sym->has_warning());
2555 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2556 gold_assert(p != this->warnings_.end());
2557 gold_warning_at_location(relinfo, relnum, reloffset,
2558 "%s", p->second.text.c_str());
2559 }
2560
2561 // Instantiate the templates we need. We could use the configure
2562 // script to restrict this to only the ones needed for implemented
2563 // targets.
2564
2565 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2566 template
2567 void
2568 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2569 #endif
2570
2571 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2572 template
2573 void
2574 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2575 #endif
2576
2577 #ifdef HAVE_TARGET_32_LITTLE
2578 template
2579 void
2580 Symbol_table::add_from_relobj<32, false>(
2581 Sized_relobj<32, false>* relobj,
2582 const unsigned char* syms,
2583 size_t count,
2584 size_t symndx_offset,
2585 const char* sym_names,
2586 size_t sym_name_size,
2587 Sized_relobj<32, true>::Symbols* sympointers);
2588 #endif
2589
2590 #ifdef HAVE_TARGET_32_BIG
2591 template
2592 void
2593 Symbol_table::add_from_relobj<32, true>(
2594 Sized_relobj<32, true>* relobj,
2595 const unsigned char* syms,
2596 size_t count,
2597 size_t symndx_offset,
2598 const char* sym_names,
2599 size_t sym_name_size,
2600 Sized_relobj<32, false>::Symbols* sympointers);
2601 #endif
2602
2603 #ifdef HAVE_TARGET_64_LITTLE
2604 template
2605 void
2606 Symbol_table::add_from_relobj<64, false>(
2607 Sized_relobj<64, false>* relobj,
2608 const unsigned char* syms,
2609 size_t count,
2610 size_t symndx_offset,
2611 const char* sym_names,
2612 size_t sym_name_size,
2613 Sized_relobj<64, true>::Symbols* sympointers);
2614 #endif
2615
2616 #ifdef HAVE_TARGET_64_BIG
2617 template
2618 void
2619 Symbol_table::add_from_relobj<64, true>(
2620 Sized_relobj<64, true>* relobj,
2621 const unsigned char* syms,
2622 size_t count,
2623 size_t symndx_offset,
2624 const char* sym_names,
2625 size_t sym_name_size,
2626 Sized_relobj<64, false>::Symbols* sympointers);
2627 #endif
2628
2629 #ifdef HAVE_TARGET_32_LITTLE
2630 template
2631 void
2632 Symbol_table::add_from_dynobj<32, false>(
2633 Sized_dynobj<32, false>* dynobj,
2634 const unsigned char* syms,
2635 size_t count,
2636 const char* sym_names,
2637 size_t sym_name_size,
2638 const unsigned char* versym,
2639 size_t versym_size,
2640 const std::vector<const char*>* version_map);
2641 #endif
2642
2643 #ifdef HAVE_TARGET_32_BIG
2644 template
2645 void
2646 Symbol_table::add_from_dynobj<32, true>(
2647 Sized_dynobj<32, true>* dynobj,
2648 const unsigned char* syms,
2649 size_t count,
2650 const char* sym_names,
2651 size_t sym_name_size,
2652 const unsigned char* versym,
2653 size_t versym_size,
2654 const std::vector<const char*>* version_map);
2655 #endif
2656
2657 #ifdef HAVE_TARGET_64_LITTLE
2658 template
2659 void
2660 Symbol_table::add_from_dynobj<64, false>(
2661 Sized_dynobj<64, false>* dynobj,
2662 const unsigned char* syms,
2663 size_t count,
2664 const char* sym_names,
2665 size_t sym_name_size,
2666 const unsigned char* versym,
2667 size_t versym_size,
2668 const std::vector<const char*>* version_map);
2669 #endif
2670
2671 #ifdef HAVE_TARGET_64_BIG
2672 template
2673 void
2674 Symbol_table::add_from_dynobj<64, true>(
2675 Sized_dynobj<64, true>* dynobj,
2676 const unsigned char* syms,
2677 size_t count,
2678 const char* sym_names,
2679 size_t sym_name_size,
2680 const unsigned char* versym,
2681 size_t versym_size,
2682 const std::vector<const char*>* version_map);
2683 #endif
2684
2685 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2686 template
2687 void
2688 Symbol_table::define_with_copy_reloc<32>(
2689 Sized_symbol<32>* sym,
2690 Output_data* posd,
2691 elfcpp::Elf_types<32>::Elf_Addr value);
2692 #endif
2693
2694 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2695 template
2696 void
2697 Symbol_table::define_with_copy_reloc<64>(
2698 Sized_symbol<64>* sym,
2699 Output_data* posd,
2700 elfcpp::Elf_types<64>::Elf_Addr value);
2701 #endif
2702
2703 #ifdef HAVE_TARGET_32_LITTLE
2704 template
2705 void
2706 Warnings::issue_warning<32, false>(const Symbol* sym,
2707 const Relocate_info<32, false>* relinfo,
2708 size_t relnum, off_t reloffset) const;
2709 #endif
2710
2711 #ifdef HAVE_TARGET_32_BIG
2712 template
2713 void
2714 Warnings::issue_warning<32, true>(const Symbol* sym,
2715 const Relocate_info<32, true>* relinfo,
2716 size_t relnum, off_t reloffset) const;
2717 #endif
2718
2719 #ifdef HAVE_TARGET_64_LITTLE
2720 template
2721 void
2722 Warnings::issue_warning<64, false>(const Symbol* sym,
2723 const Relocate_info<64, false>* relinfo,
2724 size_t relnum, off_t reloffset) const;
2725 #endif
2726
2727 #ifdef HAVE_TARGET_64_BIG
2728 template
2729 void
2730 Warnings::issue_warning<64, true>(const Symbol* sym,
2731 const Relocate_info<64, true>* relinfo,
2732 size_t relnum, off_t reloffset) const;
2733 #endif
2734
2735 } // End namespace gold.
This page took 0.0871 seconds and 4 git commands to generate.