85761fd2425d33256aae015bc655b105b13133b8
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol. This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49 elfcpp::STT type, elfcpp::STB binding,
50 elfcpp::STV visibility, unsigned char nonvis)
51 {
52 this->name_ = name;
53 this->version_ = version;
54 this->symtab_index_ = 0;
55 this->dynsym_index_ = 0;
56 this->got_offset_ = 0;
57 this->plt_offset_ = 0;
58 this->type_ = type;
59 this->binding_ = binding;
60 this->visibility_ = visibility;
61 this->nonvis_ = nonvis;
62 this->is_target_special_ = false;
63 this->is_def_ = false;
64 this->is_forwarder_ = false;
65 this->has_alias_ = false;
66 this->needs_dynsym_entry_ = false;
67 this->in_reg_ = false;
68 this->in_dyn_ = false;
69 this->has_got_offset_ = false;
70 this->has_plt_offset_ = false;
71 this->has_warning_ = false;
72 this->is_copied_from_dynobj_ = false;
73 this->is_forced_local_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82 if (!parameters->demangle())
83 return name;
84
85 // cplus_demangle allocates memory for the result it returns,
86 // and returns NULL if the name is already demangled.
87 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88 if (demangled_name == NULL)
89 return name;
90
91 std::string retval(demangled_name);
92 free(demangled_name);
93 return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99 return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107 const elfcpp::Sym<size, big_endian>& sym)
108 {
109 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110 sym.get_st_visibility(), sym.get_st_nonvis());
111 this->u_.from_object.object = object;
112 // FIXME: Handle SHN_XINDEX.
113 this->u_.from_object.shndx = sym.get_st_shndx();
114 this->source_ = FROM_OBJECT;
115 this->in_reg_ = !object->is_dynamic();
116 this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124 elfcpp::STB binding, elfcpp::STV visibility,
125 unsigned char nonvis, bool offset_is_from_end)
126 {
127 this->init_fields(name, NULL, type, binding, visibility, nonvis);
128 this->u_.in_output_data.output_data = od;
129 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130 this->source_ = IN_OUTPUT_DATA;
131 this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139 elfcpp::STB binding, elfcpp::STV visibility,
140 unsigned char nonvis, Segment_offset_base offset_base)
141 {
142 this->init_fields(name, NULL, type, binding, visibility, nonvis);
143 this->u_.in_output_segment.output_segment = os;
144 this->u_.in_output_segment.offset_base = offset_base;
145 this->source_ = IN_OUTPUT_SEGMENT;
146 this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154 elfcpp::STB binding, elfcpp::STV visibility,
155 unsigned char nonvis)
156 {
157 this->init_fields(name, NULL, type, binding, visibility, nonvis);
158 this->source_ = CONSTANT;
159 this->in_reg_ = true;
160 }
161
162 // Allocate a common symbol in the base.
163
164 void
165 Symbol::allocate_base_common(Output_data* od)
166 {
167 gold_assert(this->is_common());
168 this->source_ = IN_OUTPUT_DATA;
169 this->u_.in_output_data.output_data = od;
170 this->u_.in_output_data.offset_is_from_end = false;
171 }
172
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
174
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179 const elfcpp::Sym<size, big_endian>& sym)
180 {
181 this->init_base(name, version, object, sym);
182 this->value_ = sym.get_st_value();
183 this->symsize_ = sym.get_st_size();
184 }
185
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
188
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192 Value_type value, Size_type symsize,
193 elfcpp::STT type, elfcpp::STB binding,
194 elfcpp::STV visibility, unsigned char nonvis,
195 bool offset_is_from_end)
196 {
197 this->init_base(name, od, type, binding, visibility, nonvis,
198 offset_is_from_end);
199 this->value_ = value;
200 this->symsize_ = symsize;
201 }
202
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
205
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209 Value_type value, Size_type symsize,
210 elfcpp::STT type, elfcpp::STB binding,
211 elfcpp::STV visibility, unsigned char nonvis,
212 Segment_offset_base offset_base)
213 {
214 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215 this->value_ = value;
216 this->symsize_ = symsize;
217 }
218
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
221
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225 elfcpp::STT type, elfcpp::STB binding,
226 elfcpp::STV visibility, unsigned char nonvis)
227 {
228 this->init_base(name, type, binding, visibility, nonvis);
229 this->value_ = value;
230 this->symsize_ = symsize;
231 }
232
233 // Allocate a common symbol.
234
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 {
239 this->allocate_base_common(od);
240 this->value_ = value;
241 }
242
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
245
246 inline bool
247 Symbol::should_add_dynsym_entry() const
248 {
249 // If the symbol is used by a dynamic relocation, we need to add it.
250 if (this->needs_dynsym_entry())
251 return true;
252
253 // If the symbol was forced local in a version script, do not add it.
254 if (this->is_forced_local())
255 return false;
256
257 // If exporting all symbols or building a shared library,
258 // and the symbol is defined in a regular object and is
259 // externally visible, we need to add it.
260 if ((parameters->export_dynamic() || parameters->output_is_shared())
261 && !this->is_from_dynobj()
262 && this->is_externally_visible())
263 return true;
264
265 return false;
266 }
267
268 // Return true if the final value of this symbol is known at link
269 // time.
270
271 bool
272 Symbol::final_value_is_known() const
273 {
274 // If we are not generating an executable, then no final values are
275 // known, since they will change at runtime.
276 if (!parameters->output_is_executable())
277 return false;
278
279 // If the symbol is not from an object file, then it is defined, and
280 // known.
281 if (this->source_ != FROM_OBJECT)
282 return true;
283
284 // If the symbol is from a dynamic object, then the final value is
285 // not known.
286 if (this->object()->is_dynamic())
287 return false;
288
289 // If the symbol is not undefined (it is defined or common), then
290 // the final value is known.
291 if (!this->is_undefined())
292 return true;
293
294 // If the symbol is undefined, then whether the final value is known
295 // depends on whether we are doing a static link. If we are doing a
296 // dynamic link, then the final value could be filled in at runtime.
297 // This could reasonably be the case for a weak undefined symbol.
298 return parameters->doing_static_link();
299 }
300
301 // Return whether the symbol has an absolute value.
302
303 bool
304 Symbol::value_is_absolute() const
305 {
306 switch (this->source_)
307 {
308 case FROM_OBJECT:
309 return this->u_.from_object.shndx == elfcpp::SHN_ABS;
310 case IN_OUTPUT_DATA:
311 case IN_OUTPUT_SEGMENT:
312 return false;
313 case CONSTANT:
314 return true;
315 default:
316 gold_unreachable();
317 }
318 }
319
320 // Class Symbol_table.
321
322 Symbol_table::Symbol_table(unsigned int count,
323 const Version_script_info& version_script)
324 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
325 forwarders_(), commons_(), forced_locals_(), warnings_(),
326 version_script_(version_script)
327 {
328 namepool_.reserve(count);
329 }
330
331 Symbol_table::~Symbol_table()
332 {
333 }
334
335 // The hash function. The key values are Stringpool keys.
336
337 inline size_t
338 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
339 {
340 return key.first ^ key.second;
341 }
342
343 // The symbol table key equality function. This is called with
344 // Stringpool keys.
345
346 inline bool
347 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
348 const Symbol_table_key& k2) const
349 {
350 return k1.first == k2.first && k1.second == k2.second;
351 }
352
353 // Make TO a symbol which forwards to FROM.
354
355 void
356 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
357 {
358 gold_assert(from != to);
359 gold_assert(!from->is_forwarder() && !to->is_forwarder());
360 this->forwarders_[from] = to;
361 from->set_forwarder();
362 }
363
364 // Resolve the forwards from FROM, returning the real symbol.
365
366 Symbol*
367 Symbol_table::resolve_forwards(const Symbol* from) const
368 {
369 gold_assert(from->is_forwarder());
370 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
371 this->forwarders_.find(from);
372 gold_assert(p != this->forwarders_.end());
373 return p->second;
374 }
375
376 // Look up a symbol by name.
377
378 Symbol*
379 Symbol_table::lookup(const char* name, const char* version) const
380 {
381 Stringpool::Key name_key;
382 name = this->namepool_.find(name, &name_key);
383 if (name == NULL)
384 return NULL;
385
386 Stringpool::Key version_key = 0;
387 if (version != NULL)
388 {
389 version = this->namepool_.find(version, &version_key);
390 if (version == NULL)
391 return NULL;
392 }
393
394 Symbol_table_key key(name_key, version_key);
395 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
396 if (p == this->table_.end())
397 return NULL;
398 return p->second;
399 }
400
401 // Resolve a Symbol with another Symbol. This is only used in the
402 // unusual case where there are references to both an unversioned
403 // symbol and a symbol with a version, and we then discover that that
404 // version is the default version. Because this is unusual, we do
405 // this the slow way, by converting back to an ELF symbol.
406
407 template<int size, bool big_endian>
408 void
409 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
410 const char* version ACCEPT_SIZE_ENDIAN)
411 {
412 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
413 elfcpp::Sym_write<size, big_endian> esym(buf);
414 // We don't bother to set the st_name field.
415 esym.put_st_value(from->value());
416 esym.put_st_size(from->symsize());
417 esym.put_st_info(from->binding(), from->type());
418 esym.put_st_other(from->visibility(), from->nonvis());
419 esym.put_st_shndx(from->shndx());
420 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
421 if (from->in_reg())
422 to->set_in_reg();
423 if (from->in_dyn())
424 to->set_in_dyn();
425 }
426
427 // Record that a symbol is forced to be local by a version script.
428
429 void
430 Symbol_table::force_local(Symbol* sym)
431 {
432 if (!sym->is_defined() && !sym->is_common())
433 return;
434 if (sym->is_forced_local())
435 {
436 // We already got this one.
437 return;
438 }
439 sym->set_is_forced_local();
440 this->forced_locals_.push_back(sym);
441 }
442
443 // Add one symbol from OBJECT to the symbol table. NAME is symbol
444 // name and VERSION is the version; both are canonicalized. DEF is
445 // whether this is the default version.
446
447 // If DEF is true, then this is the definition of a default version of
448 // a symbol. That means that any lookup of NAME/NULL and any lookup
449 // of NAME/VERSION should always return the same symbol. This is
450 // obvious for references, but in particular we want to do this for
451 // definitions: overriding NAME/NULL should also override
452 // NAME/VERSION. If we don't do that, it would be very hard to
453 // override functions in a shared library which uses versioning.
454
455 // We implement this by simply making both entries in the hash table
456 // point to the same Symbol structure. That is easy enough if this is
457 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
458 // that we have seen both already, in which case they will both have
459 // independent entries in the symbol table. We can't simply change
460 // the symbol table entry, because we have pointers to the entries
461 // attached to the object files. So we mark the entry attached to the
462 // object file as a forwarder, and record it in the forwarders_ map.
463 // Note that entries in the hash table will never be marked as
464 // forwarders.
465 //
466 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
467 // symbol exactly as it existed in the input file. SYM is usually
468 // that as well, but can be modified, for instance if we determine
469 // it's in a to-be-discarded section.
470
471 template<int size, bool big_endian>
472 Sized_symbol<size>*
473 Symbol_table::add_from_object(Object* object,
474 const char *name,
475 Stringpool::Key name_key,
476 const char *version,
477 Stringpool::Key version_key,
478 bool def,
479 const elfcpp::Sym<size, big_endian>& sym,
480 const elfcpp::Sym<size, big_endian>& orig_sym)
481 {
482 Symbol* const snull = NULL;
483 std::pair<typename Symbol_table_type::iterator, bool> ins =
484 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
485 snull));
486
487 std::pair<typename Symbol_table_type::iterator, bool> insdef =
488 std::make_pair(this->table_.end(), false);
489 if (def)
490 {
491 const Stringpool::Key vnull_key = 0;
492 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
493 vnull_key),
494 snull));
495 }
496
497 // ins.first: an iterator, which is a pointer to a pair.
498 // ins.first->first: the key (a pair of name and version).
499 // ins.first->second: the value (Symbol*).
500 // ins.second: true if new entry was inserted, false if not.
501
502 Sized_symbol<size>* ret;
503 bool was_undefined;
504 bool was_common;
505 if (!ins.second)
506 {
507 // We already have an entry for NAME/VERSION.
508 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
509 SELECT_SIZE(size));
510 gold_assert(ret != NULL);
511
512 was_undefined = ret->is_undefined();
513 was_common = ret->is_common();
514
515 this->resolve(ret, sym, orig_sym, object, version);
516
517 if (def)
518 {
519 if (insdef.second)
520 {
521 // This is the first time we have seen NAME/NULL. Make
522 // NAME/NULL point to NAME/VERSION.
523 insdef.first->second = ret;
524 }
525 else if (insdef.first->second != ret
526 && insdef.first->second->is_undefined())
527 {
528 // This is the unfortunate case where we already have
529 // entries for both NAME/VERSION and NAME/NULL. Note
530 // that we don't want to combine them if the existing
531 // symbol is going to override the new one. FIXME: We
532 // currently just test is_undefined, but this may not do
533 // the right thing if the existing symbol is from a
534 // shared library and the new one is from a regular
535 // object.
536
537 const Sized_symbol<size>* sym2;
538 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
539 insdef.first->second
540 SELECT_SIZE(size));
541 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
542 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
543 this->make_forwarder(insdef.first->second, ret);
544 insdef.first->second = ret;
545 }
546 }
547 }
548 else
549 {
550 // This is the first time we have seen NAME/VERSION.
551 gold_assert(ins.first->second == NULL);
552
553 was_undefined = false;
554 was_common = false;
555
556 if (def && !insdef.second)
557 {
558 // We already have an entry for NAME/NULL. If we override
559 // it, then change it to NAME/VERSION.
560 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
561 insdef.first->second
562 SELECT_SIZE(size));
563 this->resolve(ret, sym, orig_sym, object, version);
564 ins.first->second = ret;
565 }
566 else
567 {
568 Sized_target<size, big_endian>* target =
569 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
570 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
571 if (!target->has_make_symbol())
572 ret = new Sized_symbol<size>();
573 else
574 {
575 ret = target->make_symbol();
576 if (ret == NULL)
577 {
578 // This means that we don't want a symbol table
579 // entry after all.
580 if (!def)
581 this->table_.erase(ins.first);
582 else
583 {
584 this->table_.erase(insdef.first);
585 // Inserting insdef invalidated ins.
586 this->table_.erase(std::make_pair(name_key,
587 version_key));
588 }
589 return NULL;
590 }
591 }
592
593 ret->init(name, version, object, sym);
594
595 ins.first->second = ret;
596 if (def)
597 {
598 // This is the first time we have seen NAME/NULL. Point
599 // it at the new entry for NAME/VERSION.
600 gold_assert(insdef.second);
601 insdef.first->second = ret;
602 }
603 }
604 }
605
606 // Record every time we see a new undefined symbol, to speed up
607 // archive groups.
608 if (!was_undefined && ret->is_undefined())
609 ++this->saw_undefined_;
610
611 // Keep track of common symbols, to speed up common symbol
612 // allocation.
613 if (!was_common && ret->is_common())
614 this->commons_.push_back(ret);
615
616 ret->set_is_default(def);
617 return ret;
618 }
619
620 // Add all the symbols in a relocatable object to the hash table.
621
622 template<int size, bool big_endian>
623 void
624 Symbol_table::add_from_relobj(
625 Sized_relobj<size, big_endian>* relobj,
626 const unsigned char* syms,
627 size_t count,
628 const char* sym_names,
629 size_t sym_name_size,
630 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
631 {
632 gold_assert(size == relobj->target()->get_size());
633 gold_assert(size == parameters->get_size());
634
635 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
636
637 const bool just_symbols = relobj->just_symbols();
638
639 const unsigned char* p = syms;
640 for (size_t i = 0; i < count; ++i, p += sym_size)
641 {
642 elfcpp::Sym<size, big_endian> sym(p);
643 elfcpp::Sym<size, big_endian>* psym = &sym;
644
645 unsigned int st_name = psym->get_st_name();
646 if (st_name >= sym_name_size)
647 {
648 relobj->error(_("bad global symbol name offset %u at %zu"),
649 st_name, i);
650 continue;
651 }
652
653 const char* name = sym_names + st_name;
654
655 // A symbol defined in a section which we are not including must
656 // be treated as an undefined symbol.
657 unsigned char symbuf[sym_size];
658 elfcpp::Sym<size, big_endian> sym2(symbuf);
659 unsigned int st_shndx = psym->get_st_shndx();
660 if (st_shndx != elfcpp::SHN_UNDEF
661 && st_shndx < elfcpp::SHN_LORESERVE
662 && !relobj->is_section_included(st_shndx))
663 {
664 memcpy(symbuf, p, sym_size);
665 elfcpp::Sym_write<size, big_endian> sw(symbuf);
666 sw.put_st_shndx(elfcpp::SHN_UNDEF);
667 psym = &sym2;
668 }
669
670 // In an object file, an '@' in the name separates the symbol
671 // name from the version name. If there are two '@' characters,
672 // this is the default version.
673 const char* ver = strchr(name, '@');
674 int namelen = 0;
675 // DEF: is the version default? LOCAL: is the symbol forced local?
676 bool def = false;
677 bool local = false;
678
679 if (ver != NULL)
680 {
681 // The symbol name is of the form foo@VERSION or foo@@VERSION
682 namelen = ver - name;
683 ++ver;
684 if (*ver == '@')
685 {
686 def = true;
687 ++ver;
688 }
689 }
690 else if (!version_script_.empty())
691 {
692 // The symbol name did not have a version, but
693 // the version script may assign a version anyway.
694 namelen = strlen(name);
695 def = true;
696 // Check the global: entries from the version script.
697 const std::string& version =
698 version_script_.get_symbol_version(name);
699 if (!version.empty())
700 ver = version.c_str();
701 // Check the local: entries from the version script
702 if (version_script_.symbol_is_local(name))
703 local = true;
704 }
705
706 if (just_symbols)
707 {
708 if (psym != &sym2)
709 memcpy(symbuf, p, sym_size);
710 elfcpp::Sym_write<size, big_endian> sw(symbuf);
711 sw.put_st_shndx(elfcpp::SHN_ABS);
712 if (st_shndx != elfcpp::SHN_UNDEF
713 && st_shndx < elfcpp::SHN_LORESERVE)
714 {
715 // Symbol values in object files are section relative.
716 // This is normally what we want, but since here we are
717 // converting the symbol to absolute we need to add the
718 // section address. The section address in an object
719 // file is normally zero, but people can use a linker
720 // script to change it.
721 sw.put_st_value(sym2.get_st_value()
722 + relobj->section_address(st_shndx));
723 }
724 psym = &sym2;
725 }
726
727 Sized_symbol<size>* res;
728 if (ver == NULL)
729 {
730 Stringpool::Key name_key;
731 name = this->namepool_.add(name, true, &name_key);
732 res = this->add_from_object(relobj, name, name_key, NULL, 0,
733 false, *psym, sym);
734 if (local)
735 this->force_local(res);
736 }
737 else
738 {
739 Stringpool::Key name_key;
740 name = this->namepool_.add_with_length(name, namelen, true,
741 &name_key);
742 Stringpool::Key ver_key;
743 ver = this->namepool_.add(ver, true, &ver_key);
744
745 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
746 def, *psym, sym);
747 }
748
749 (*sympointers)[i] = res;
750 }
751 }
752
753 // Add all the symbols in a dynamic object to the hash table.
754
755 template<int size, bool big_endian>
756 void
757 Symbol_table::add_from_dynobj(
758 Sized_dynobj<size, big_endian>* dynobj,
759 const unsigned char* syms,
760 size_t count,
761 const char* sym_names,
762 size_t sym_name_size,
763 const unsigned char* versym,
764 size_t versym_size,
765 const std::vector<const char*>* version_map)
766 {
767 gold_assert(size == dynobj->target()->get_size());
768 gold_assert(size == parameters->get_size());
769
770 if (dynobj->just_symbols())
771 {
772 gold_error(_("--just-symbols does not make sense with a shared object"));
773 return;
774 }
775
776 if (versym != NULL && versym_size / 2 < count)
777 {
778 dynobj->error(_("too few symbol versions"));
779 return;
780 }
781
782 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
783
784 // We keep a list of all STT_OBJECT symbols, so that we can resolve
785 // weak aliases. This is necessary because if the dynamic object
786 // provides the same variable under two names, one of which is a
787 // weak definition, and the regular object refers to the weak
788 // definition, we have to put both the weak definition and the
789 // strong definition into the dynamic symbol table. Given a weak
790 // definition, the only way that we can find the corresponding
791 // strong definition, if any, is to search the symbol table.
792 std::vector<Sized_symbol<size>*> object_symbols;
793
794 const unsigned char* p = syms;
795 const unsigned char* vs = versym;
796 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
797 {
798 elfcpp::Sym<size, big_endian> sym(p);
799
800 // Ignore symbols with local binding or that have
801 // internal or hidden visibility.
802 if (sym.get_st_bind() == elfcpp::STB_LOCAL
803 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
804 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
805 continue;
806
807 unsigned int st_name = sym.get_st_name();
808 if (st_name >= sym_name_size)
809 {
810 dynobj->error(_("bad symbol name offset %u at %zu"),
811 st_name, i);
812 continue;
813 }
814
815 const char* name = sym_names + st_name;
816
817 Sized_symbol<size>* res;
818
819 if (versym == NULL)
820 {
821 Stringpool::Key name_key;
822 name = this->namepool_.add(name, true, &name_key);
823 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
824 false, sym, sym);
825 }
826 else
827 {
828 // Read the version information.
829
830 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
831
832 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
833 v &= elfcpp::VERSYM_VERSION;
834
835 // The Sun documentation says that V can be VER_NDX_LOCAL,
836 // or VER_NDX_GLOBAL, or a version index. The meaning of
837 // VER_NDX_LOCAL is defined as "Symbol has local scope."
838 // The old GNU linker will happily generate VER_NDX_LOCAL
839 // for an undefined symbol. I don't know what the Sun
840 // linker will generate.
841
842 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
843 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
844 {
845 // This symbol should not be visible outside the object.
846 continue;
847 }
848
849 // At this point we are definitely going to add this symbol.
850 Stringpool::Key name_key;
851 name = this->namepool_.add(name, true, &name_key);
852
853 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
854 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
855 {
856 // This symbol does not have a version.
857 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
858 false, sym, sym);
859 }
860 else
861 {
862 if (v >= version_map->size())
863 {
864 dynobj->error(_("versym for symbol %zu out of range: %u"),
865 i, v);
866 continue;
867 }
868
869 const char* version = (*version_map)[v];
870 if (version == NULL)
871 {
872 dynobj->error(_("versym for symbol %zu has no name: %u"),
873 i, v);
874 continue;
875 }
876
877 Stringpool::Key version_key;
878 version = this->namepool_.add(version, true, &version_key);
879
880 // If this is an absolute symbol, and the version name
881 // and symbol name are the same, then this is the
882 // version definition symbol. These symbols exist to
883 // support using -u to pull in particular versions. We
884 // do not want to record a version for them.
885 if (sym.get_st_shndx() == elfcpp::SHN_ABS
886 && name_key == version_key)
887 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
888 false, sym, sym);
889 else
890 {
891 const bool def = (!hidden
892 && (sym.get_st_shndx()
893 != elfcpp::SHN_UNDEF));
894 res = this->add_from_object(dynobj, name, name_key, version,
895 version_key, def, sym, sym);
896 }
897 }
898 }
899
900 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
901 && sym.get_st_type() == elfcpp::STT_OBJECT)
902 object_symbols.push_back(res);
903 }
904
905 this->record_weak_aliases(&object_symbols);
906 }
907
908 // This is used to sort weak aliases. We sort them first by section
909 // index, then by offset, then by weak ahead of strong.
910
911 template<int size>
912 class Weak_alias_sorter
913 {
914 public:
915 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
916 };
917
918 template<int size>
919 bool
920 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
921 const Sized_symbol<size>* s2) const
922 {
923 if (s1->shndx() != s2->shndx())
924 return s1->shndx() < s2->shndx();
925 if (s1->value() != s2->value())
926 return s1->value() < s2->value();
927 if (s1->binding() != s2->binding())
928 {
929 if (s1->binding() == elfcpp::STB_WEAK)
930 return true;
931 if (s2->binding() == elfcpp::STB_WEAK)
932 return false;
933 }
934 return std::string(s1->name()) < std::string(s2->name());
935 }
936
937 // SYMBOLS is a list of object symbols from a dynamic object. Look
938 // for any weak aliases, and record them so that if we add the weak
939 // alias to the dynamic symbol table, we also add the corresponding
940 // strong symbol.
941
942 template<int size>
943 void
944 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
945 {
946 // Sort the vector by section index, then by offset, then by weak
947 // ahead of strong.
948 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
949
950 // Walk through the vector. For each weak definition, record
951 // aliases.
952 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
953 symbols->begin();
954 p != symbols->end();
955 ++p)
956 {
957 if ((*p)->binding() != elfcpp::STB_WEAK)
958 continue;
959
960 // Build a circular list of weak aliases. Each symbol points to
961 // the next one in the circular list.
962
963 Sized_symbol<size>* from_sym = *p;
964 typename std::vector<Sized_symbol<size>*>::const_iterator q;
965 for (q = p + 1; q != symbols->end(); ++q)
966 {
967 if ((*q)->shndx() != from_sym->shndx()
968 || (*q)->value() != from_sym->value())
969 break;
970
971 this->weak_aliases_[from_sym] = *q;
972 from_sym->set_has_alias();
973 from_sym = *q;
974 }
975
976 if (from_sym != *p)
977 {
978 this->weak_aliases_[from_sym] = *p;
979 from_sym->set_has_alias();
980 }
981
982 p = q - 1;
983 }
984 }
985
986 // Create and return a specially defined symbol. If ONLY_IF_REF is
987 // true, then only create the symbol if there is a reference to it.
988 // If this does not return NULL, it sets *POLDSYM to the existing
989 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
990
991 template<int size, bool big_endian>
992 Sized_symbol<size>*
993 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
994 bool only_if_ref,
995 Sized_symbol<size>** poldsym
996 ACCEPT_SIZE_ENDIAN)
997 {
998 Symbol* oldsym;
999 Sized_symbol<size>* sym;
1000 bool add_to_table = false;
1001 typename Symbol_table_type::iterator add_loc = this->table_.end();
1002
1003 // If the caller didn't give us a version, see if we get one from
1004 // the version script.
1005 if (*pversion == NULL)
1006 {
1007 const std::string& v(this->version_script_.get_symbol_version(*pname));
1008 if (!v.empty())
1009 *pversion = v.c_str();
1010 }
1011
1012 if (only_if_ref)
1013 {
1014 oldsym = this->lookup(*pname, *pversion);
1015 if (oldsym == NULL || !oldsym->is_undefined())
1016 return NULL;
1017
1018 *pname = oldsym->name();
1019 *pversion = oldsym->version();
1020 }
1021 else
1022 {
1023 // Canonicalize NAME and VERSION.
1024 Stringpool::Key name_key;
1025 *pname = this->namepool_.add(*pname, true, &name_key);
1026
1027 Stringpool::Key version_key = 0;
1028 if (*pversion != NULL)
1029 *pversion = this->namepool_.add(*pversion, true, &version_key);
1030
1031 Symbol* const snull = NULL;
1032 std::pair<typename Symbol_table_type::iterator, bool> ins =
1033 this->table_.insert(std::make_pair(std::make_pair(name_key,
1034 version_key),
1035 snull));
1036
1037 if (!ins.second)
1038 {
1039 // We already have a symbol table entry for NAME/VERSION.
1040 oldsym = ins.first->second;
1041 gold_assert(oldsym != NULL);
1042 }
1043 else
1044 {
1045 // We haven't seen this symbol before.
1046 gold_assert(ins.first->second == NULL);
1047 add_to_table = true;
1048 add_loc = ins.first;
1049 oldsym = NULL;
1050 }
1051 }
1052
1053 const Target* target = parameters->target();
1054 if (!target->has_make_symbol())
1055 sym = new Sized_symbol<size>();
1056 else
1057 {
1058 gold_assert(target->get_size() == size);
1059 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
1060 typedef Sized_target<size, big_endian> My_target;
1061 const My_target* sized_target =
1062 static_cast<const My_target*>(target);
1063 sym = sized_target->make_symbol();
1064 if (sym == NULL)
1065 return NULL;
1066 }
1067
1068 if (add_to_table)
1069 add_loc->second = sym;
1070 else
1071 gold_assert(oldsym != NULL);
1072
1073 *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
1074 SELECT_SIZE(size));
1075
1076 return sym;
1077 }
1078
1079 // Define a symbol based on an Output_data.
1080
1081 Symbol*
1082 Symbol_table::define_in_output_data(const char* name,
1083 const char* version,
1084 Output_data* od,
1085 uint64_t value,
1086 uint64_t symsize,
1087 elfcpp::STT type,
1088 elfcpp::STB binding,
1089 elfcpp::STV visibility,
1090 unsigned char nonvis,
1091 bool offset_is_from_end,
1092 bool only_if_ref)
1093 {
1094 if (parameters->get_size() == 32)
1095 {
1096 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1097 return this->do_define_in_output_data<32>(name, version, od,
1098 value, symsize, type, binding,
1099 visibility, nonvis,
1100 offset_is_from_end,
1101 only_if_ref);
1102 #else
1103 gold_unreachable();
1104 #endif
1105 }
1106 else if (parameters->get_size() == 64)
1107 {
1108 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1109 return this->do_define_in_output_data<64>(name, version, od,
1110 value, symsize, type, binding,
1111 visibility, nonvis,
1112 offset_is_from_end,
1113 only_if_ref);
1114 #else
1115 gold_unreachable();
1116 #endif
1117 }
1118 else
1119 gold_unreachable();
1120 }
1121
1122 // Define a symbol in an Output_data, sized version.
1123
1124 template<int size>
1125 Sized_symbol<size>*
1126 Symbol_table::do_define_in_output_data(
1127 const char* name,
1128 const char* version,
1129 Output_data* od,
1130 typename elfcpp::Elf_types<size>::Elf_Addr value,
1131 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1132 elfcpp::STT type,
1133 elfcpp::STB binding,
1134 elfcpp::STV visibility,
1135 unsigned char nonvis,
1136 bool offset_is_from_end,
1137 bool only_if_ref)
1138 {
1139 Sized_symbol<size>* sym;
1140 Sized_symbol<size>* oldsym;
1141
1142 if (parameters->is_big_endian())
1143 {
1144 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1145 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1146 &name, &version, only_if_ref, &oldsym
1147 SELECT_SIZE_ENDIAN(size, true));
1148 #else
1149 gold_unreachable();
1150 #endif
1151 }
1152 else
1153 {
1154 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1155 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1156 &name, &version, only_if_ref, &oldsym
1157 SELECT_SIZE_ENDIAN(size, false));
1158 #else
1159 gold_unreachable();
1160 #endif
1161 }
1162
1163 if (sym == NULL)
1164 return NULL;
1165
1166 gold_assert(version == NULL || oldsym != NULL);
1167 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1168 offset_is_from_end);
1169
1170 if (oldsym == NULL)
1171 {
1172 if (binding == elfcpp::STB_LOCAL
1173 || this->version_script_.symbol_is_local(name))
1174 this->force_local(sym);
1175 return sym;
1176 }
1177
1178 if (Symbol_table::should_override_with_special(oldsym))
1179 this->override_with_special(oldsym, sym);
1180 delete sym;
1181 return oldsym;
1182 }
1183
1184 // Define a symbol based on an Output_segment.
1185
1186 Symbol*
1187 Symbol_table::define_in_output_segment(const char* name,
1188 const char* version, Output_segment* os,
1189 uint64_t value,
1190 uint64_t symsize,
1191 elfcpp::STT type,
1192 elfcpp::STB binding,
1193 elfcpp::STV visibility,
1194 unsigned char nonvis,
1195 Symbol::Segment_offset_base offset_base,
1196 bool only_if_ref)
1197 {
1198 if (parameters->get_size() == 32)
1199 {
1200 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1201 return this->do_define_in_output_segment<32>(name, version, os,
1202 value, symsize, type,
1203 binding, visibility, nonvis,
1204 offset_base, only_if_ref);
1205 #else
1206 gold_unreachable();
1207 #endif
1208 }
1209 else if (parameters->get_size() == 64)
1210 {
1211 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1212 return this->do_define_in_output_segment<64>(name, version, os,
1213 value, symsize, type,
1214 binding, visibility, nonvis,
1215 offset_base, only_if_ref);
1216 #else
1217 gold_unreachable();
1218 #endif
1219 }
1220 else
1221 gold_unreachable();
1222 }
1223
1224 // Define a symbol in an Output_segment, sized version.
1225
1226 template<int size>
1227 Sized_symbol<size>*
1228 Symbol_table::do_define_in_output_segment(
1229 const char* name,
1230 const char* version,
1231 Output_segment* os,
1232 typename elfcpp::Elf_types<size>::Elf_Addr value,
1233 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1234 elfcpp::STT type,
1235 elfcpp::STB binding,
1236 elfcpp::STV visibility,
1237 unsigned char nonvis,
1238 Symbol::Segment_offset_base offset_base,
1239 bool only_if_ref)
1240 {
1241 Sized_symbol<size>* sym;
1242 Sized_symbol<size>* oldsym;
1243
1244 if (parameters->is_big_endian())
1245 {
1246 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1247 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1248 &name, &version, only_if_ref, &oldsym
1249 SELECT_SIZE_ENDIAN(size, true));
1250 #else
1251 gold_unreachable();
1252 #endif
1253 }
1254 else
1255 {
1256 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1257 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1258 &name, &version, only_if_ref, &oldsym
1259 SELECT_SIZE_ENDIAN(size, false));
1260 #else
1261 gold_unreachable();
1262 #endif
1263 }
1264
1265 if (sym == NULL)
1266 return NULL;
1267
1268 gold_assert(version == NULL || oldsym != NULL);
1269 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1270 offset_base);
1271
1272 if (oldsym == NULL)
1273 {
1274 if (binding == elfcpp::STB_LOCAL
1275 || this->version_script_.symbol_is_local(name))
1276 this->force_local(sym);
1277 return sym;
1278 }
1279
1280 if (Symbol_table::should_override_with_special(oldsym))
1281 this->override_with_special(oldsym, sym);
1282 delete sym;
1283 return oldsym;
1284 }
1285
1286 // Define a special symbol with a constant value. It is a multiple
1287 // definition error if this symbol is already defined.
1288
1289 Symbol*
1290 Symbol_table::define_as_constant(const char* name,
1291 const char* version,
1292 uint64_t value,
1293 uint64_t symsize,
1294 elfcpp::STT type,
1295 elfcpp::STB binding,
1296 elfcpp::STV visibility,
1297 unsigned char nonvis,
1298 bool only_if_ref)
1299 {
1300 if (parameters->get_size() == 32)
1301 {
1302 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1303 return this->do_define_as_constant<32>(name, version, value,
1304 symsize, type, binding,
1305 visibility, nonvis, only_if_ref);
1306 #else
1307 gold_unreachable();
1308 #endif
1309 }
1310 else if (parameters->get_size() == 64)
1311 {
1312 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1313 return this->do_define_as_constant<64>(name, version, value,
1314 symsize, type, binding,
1315 visibility, nonvis, only_if_ref);
1316 #else
1317 gold_unreachable();
1318 #endif
1319 }
1320 else
1321 gold_unreachable();
1322 }
1323
1324 // Define a symbol as a constant, sized version.
1325
1326 template<int size>
1327 Sized_symbol<size>*
1328 Symbol_table::do_define_as_constant(
1329 const char* name,
1330 const char* version,
1331 typename elfcpp::Elf_types<size>::Elf_Addr value,
1332 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1333 elfcpp::STT type,
1334 elfcpp::STB binding,
1335 elfcpp::STV visibility,
1336 unsigned char nonvis,
1337 bool only_if_ref)
1338 {
1339 Sized_symbol<size>* sym;
1340 Sized_symbol<size>* oldsym;
1341
1342 if (parameters->is_big_endian())
1343 {
1344 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1345 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1346 &name, &version, only_if_ref, &oldsym
1347 SELECT_SIZE_ENDIAN(size, true));
1348 #else
1349 gold_unreachable();
1350 #endif
1351 }
1352 else
1353 {
1354 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1355 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1356 &name, &version, only_if_ref, &oldsym
1357 SELECT_SIZE_ENDIAN(size, false));
1358 #else
1359 gold_unreachable();
1360 #endif
1361 }
1362
1363 if (sym == NULL)
1364 return NULL;
1365
1366 gold_assert(version == NULL || version == name || oldsym != NULL);
1367 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1368
1369 if (oldsym == NULL)
1370 {
1371 if (binding == elfcpp::STB_LOCAL
1372 || this->version_script_.symbol_is_local(name))
1373 this->force_local(sym);
1374 return sym;
1375 }
1376
1377 if (Symbol_table::should_override_with_special(oldsym))
1378 this->override_with_special(oldsym, sym);
1379 delete sym;
1380 return oldsym;
1381 }
1382
1383 // Define a set of symbols in output sections.
1384
1385 void
1386 Symbol_table::define_symbols(const Layout* layout, int count,
1387 const Define_symbol_in_section* p,
1388 bool only_if_ref)
1389 {
1390 for (int i = 0; i < count; ++i, ++p)
1391 {
1392 Output_section* os = layout->find_output_section(p->output_section);
1393 if (os != NULL)
1394 this->define_in_output_data(p->name, NULL, os, p->value,
1395 p->size, p->type, p->binding,
1396 p->visibility, p->nonvis,
1397 p->offset_is_from_end,
1398 only_if_ref || p->only_if_ref);
1399 else
1400 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1401 p->binding, p->visibility, p->nonvis,
1402 only_if_ref || p->only_if_ref);
1403 }
1404 }
1405
1406 // Define a set of symbols in output segments.
1407
1408 void
1409 Symbol_table::define_symbols(const Layout* layout, int count,
1410 const Define_symbol_in_segment* p,
1411 bool only_if_ref)
1412 {
1413 for (int i = 0; i < count; ++i, ++p)
1414 {
1415 Output_segment* os = layout->find_output_segment(p->segment_type,
1416 p->segment_flags_set,
1417 p->segment_flags_clear);
1418 if (os != NULL)
1419 this->define_in_output_segment(p->name, NULL, os, p->value,
1420 p->size, p->type, p->binding,
1421 p->visibility, p->nonvis,
1422 p->offset_base,
1423 only_if_ref || p->only_if_ref);
1424 else
1425 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1426 p->binding, p->visibility, p->nonvis,
1427 only_if_ref || p->only_if_ref);
1428 }
1429 }
1430
1431 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1432 // symbol should be defined--typically a .dyn.bss section. VALUE is
1433 // the offset within POSD.
1434
1435 template<int size>
1436 void
1437 Symbol_table::define_with_copy_reloc(
1438 Sized_symbol<size>* csym,
1439 Output_data* posd,
1440 typename elfcpp::Elf_types<size>::Elf_Addr value)
1441 {
1442 gold_assert(csym->is_from_dynobj());
1443 gold_assert(!csym->is_copied_from_dynobj());
1444 Object* object = csym->object();
1445 gold_assert(object->is_dynamic());
1446 Dynobj* dynobj = static_cast<Dynobj*>(object);
1447
1448 // Our copied variable has to override any variable in a shared
1449 // library.
1450 elfcpp::STB binding = csym->binding();
1451 if (binding == elfcpp::STB_WEAK)
1452 binding = elfcpp::STB_GLOBAL;
1453
1454 this->define_in_output_data(csym->name(), csym->version(),
1455 posd, value, csym->symsize(),
1456 csym->type(), binding,
1457 csym->visibility(), csym->nonvis(),
1458 false, false);
1459
1460 csym->set_is_copied_from_dynobj();
1461 csym->set_needs_dynsym_entry();
1462
1463 this->copied_symbol_dynobjs_[csym] = dynobj;
1464
1465 // We have now defined all aliases, but we have not entered them all
1466 // in the copied_symbol_dynobjs_ map.
1467 if (csym->has_alias())
1468 {
1469 Symbol* sym = csym;
1470 while (true)
1471 {
1472 sym = this->weak_aliases_[sym];
1473 if (sym == csym)
1474 break;
1475 gold_assert(sym->output_data() == posd);
1476
1477 sym->set_is_copied_from_dynobj();
1478 this->copied_symbol_dynobjs_[sym] = dynobj;
1479 }
1480 }
1481 }
1482
1483 // SYM is defined using a COPY reloc. Return the dynamic object where
1484 // the original definition was found.
1485
1486 Dynobj*
1487 Symbol_table::get_copy_source(const Symbol* sym) const
1488 {
1489 gold_assert(sym->is_copied_from_dynobj());
1490 Copied_symbol_dynobjs::const_iterator p =
1491 this->copied_symbol_dynobjs_.find(sym);
1492 gold_assert(p != this->copied_symbol_dynobjs_.end());
1493 return p->second;
1494 }
1495
1496 // Set the dynamic symbol indexes. INDEX is the index of the first
1497 // global dynamic symbol. Pointers to the symbols are stored into the
1498 // vector SYMS. The names are added to DYNPOOL. This returns an
1499 // updated dynamic symbol index.
1500
1501 unsigned int
1502 Symbol_table::set_dynsym_indexes(unsigned int index,
1503 std::vector<Symbol*>* syms,
1504 Stringpool* dynpool,
1505 Versions* versions)
1506 {
1507 for (Symbol_table_type::iterator p = this->table_.begin();
1508 p != this->table_.end();
1509 ++p)
1510 {
1511 Symbol* sym = p->second;
1512
1513 // Note that SYM may already have a dynamic symbol index, since
1514 // some symbols appear more than once in the symbol table, with
1515 // and without a version.
1516
1517 if (!sym->should_add_dynsym_entry())
1518 sym->set_dynsym_index(-1U);
1519 else if (!sym->has_dynsym_index())
1520 {
1521 sym->set_dynsym_index(index);
1522 ++index;
1523 syms->push_back(sym);
1524 dynpool->add(sym->name(), false, NULL);
1525
1526 // Record any version information.
1527 if (sym->version() != NULL)
1528 versions->record_version(this, dynpool, sym);
1529 }
1530 }
1531
1532 // Finish up the versions. In some cases this may add new dynamic
1533 // symbols.
1534 index = versions->finalize(this, index, syms);
1535
1536 return index;
1537 }
1538
1539 // Set the final values for all the symbols. The index of the first
1540 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1541 // file offset OFF. Add their names to POOL. Return the new file
1542 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1543
1544 off_t
1545 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1546 size_t dyncount, Stringpool* pool,
1547 unsigned int *plocal_symcount)
1548 {
1549 off_t ret;
1550
1551 gold_assert(*plocal_symcount != 0);
1552 this->first_global_index_ = *plocal_symcount;
1553
1554 this->dynamic_offset_ = dynoff;
1555 this->first_dynamic_global_index_ = dyn_global_index;
1556 this->dynamic_count_ = dyncount;
1557
1558 if (parameters->get_size() == 32)
1559 {
1560 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1561 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1562 #else
1563 gold_unreachable();
1564 #endif
1565 }
1566 else if (parameters->get_size() == 64)
1567 {
1568 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1569 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1570 #else
1571 gold_unreachable();
1572 #endif
1573 }
1574 else
1575 gold_unreachable();
1576
1577 // Now that we have the final symbol table, we can reliably note
1578 // which symbols should get warnings.
1579 this->warnings_.note_warnings(this);
1580
1581 return ret;
1582 }
1583
1584 // SYM is going into the symbol table at *PINDEX. Add the name to
1585 // POOL, update *PINDEX and *POFF.
1586
1587 template<int size>
1588 void
1589 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1590 unsigned int* pindex, off_t* poff)
1591 {
1592 sym->set_symtab_index(*pindex);
1593 pool->add(sym->name(), false, NULL);
1594 ++*pindex;
1595 *poff += elfcpp::Elf_sizes<size>::sym_size;
1596 }
1597
1598 // Set the final value for all the symbols. This is called after
1599 // Layout::finalize, so all the output sections have their final
1600 // address.
1601
1602 template<int size>
1603 off_t
1604 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1605 unsigned int* plocal_symcount)
1606 {
1607 off = align_address(off, size >> 3);
1608 this->offset_ = off;
1609
1610 unsigned int index = *plocal_symcount;
1611 const unsigned int orig_index = index;
1612
1613 // First do all the symbols which have been forced to be local, as
1614 // they must appear before all global symbols.
1615 for (Forced_locals::iterator p = this->forced_locals_.begin();
1616 p != this->forced_locals_.end();
1617 ++p)
1618 {
1619 Symbol* sym = *p;
1620 gold_assert(sym->is_forced_local());
1621 if (this->sized_finalize_symbol<size>(sym))
1622 {
1623 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1624 ++*plocal_symcount;
1625 }
1626 }
1627
1628 // Now do all the remaining symbols.
1629 for (Symbol_table_type::iterator p = this->table_.begin();
1630 p != this->table_.end();
1631 ++p)
1632 {
1633 Symbol* sym = p->second;
1634 if (this->sized_finalize_symbol<size>(sym))
1635 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1636 }
1637
1638 this->output_count_ = index - orig_index;
1639
1640 return off;
1641 }
1642
1643 // Finalize the symbol SYM. This returns true if the symbol should be
1644 // added to the symbol table, false otherwise.
1645
1646 template<int size>
1647 bool
1648 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1649 {
1650 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1651
1652 // The default version of a symbol may appear twice in the symbol
1653 // table. We only need to finalize it once.
1654 if (sym->has_symtab_index())
1655 return false;
1656
1657 if (!sym->in_reg())
1658 {
1659 gold_assert(!sym->has_symtab_index());
1660 sym->set_symtab_index(-1U);
1661 gold_assert(sym->dynsym_index() == -1U);
1662 return false;
1663 }
1664
1665 typename Sized_symbol<size>::Value_type value;
1666
1667 switch (sym->source())
1668 {
1669 case Symbol::FROM_OBJECT:
1670 {
1671 unsigned int shndx = sym->shndx();
1672
1673 // FIXME: We need some target specific support here.
1674 if (shndx >= elfcpp::SHN_LORESERVE
1675 && shndx != elfcpp::SHN_ABS)
1676 {
1677 gold_error(_("%s: unsupported symbol section 0x%x"),
1678 sym->demangled_name().c_str(), shndx);
1679 shndx = elfcpp::SHN_UNDEF;
1680 }
1681
1682 Object* symobj = sym->object();
1683 if (symobj->is_dynamic())
1684 {
1685 value = 0;
1686 shndx = elfcpp::SHN_UNDEF;
1687 }
1688 else if (shndx == elfcpp::SHN_UNDEF)
1689 value = 0;
1690 else if (shndx == elfcpp::SHN_ABS)
1691 value = sym->value();
1692 else
1693 {
1694 Relobj* relobj = static_cast<Relobj*>(symobj);
1695 section_offset_type secoff;
1696 Output_section* os = relobj->output_section(shndx, &secoff);
1697
1698 if (os == NULL)
1699 {
1700 sym->set_symtab_index(-1U);
1701 gold_assert(sym->dynsym_index() == -1U);
1702 return false;
1703 }
1704
1705 if (sym->type() == elfcpp::STT_TLS)
1706 value = sym->value() + os->tls_offset() + secoff;
1707 else
1708 value = sym->value() + os->address() + secoff;
1709 }
1710 }
1711 break;
1712
1713 case Symbol::IN_OUTPUT_DATA:
1714 {
1715 Output_data* od = sym->output_data();
1716 value = sym->value() + od->address();
1717 if (sym->offset_is_from_end())
1718 value += od->data_size();
1719 }
1720 break;
1721
1722 case Symbol::IN_OUTPUT_SEGMENT:
1723 {
1724 Output_segment* os = sym->output_segment();
1725 value = sym->value() + os->vaddr();
1726 switch (sym->offset_base())
1727 {
1728 case Symbol::SEGMENT_START:
1729 break;
1730 case Symbol::SEGMENT_END:
1731 value += os->memsz();
1732 break;
1733 case Symbol::SEGMENT_BSS:
1734 value += os->filesz();
1735 break;
1736 default:
1737 gold_unreachable();
1738 }
1739 }
1740 break;
1741
1742 case Symbol::CONSTANT:
1743 value = sym->value();
1744 break;
1745
1746 default:
1747 gold_unreachable();
1748 }
1749
1750 sym->set_value(value);
1751
1752 if (parameters->strip_all())
1753 {
1754 sym->set_symtab_index(-1U);
1755 return false;
1756 }
1757
1758 return true;
1759 }
1760
1761 // Write out the global symbols.
1762
1763 void
1764 Symbol_table::write_globals(const Input_objects* input_objects,
1765 const Stringpool* sympool,
1766 const Stringpool* dynpool, Output_file* of) const
1767 {
1768 if (parameters->get_size() == 32)
1769 {
1770 if (parameters->is_big_endian())
1771 {
1772 #ifdef HAVE_TARGET_32_BIG
1773 this->sized_write_globals<32, true>(input_objects, sympool,
1774 dynpool, of);
1775 #else
1776 gold_unreachable();
1777 #endif
1778 }
1779 else
1780 {
1781 #ifdef HAVE_TARGET_32_LITTLE
1782 this->sized_write_globals<32, false>(input_objects, sympool,
1783 dynpool, of);
1784 #else
1785 gold_unreachable();
1786 #endif
1787 }
1788 }
1789 else if (parameters->get_size() == 64)
1790 {
1791 if (parameters->is_big_endian())
1792 {
1793 #ifdef HAVE_TARGET_64_BIG
1794 this->sized_write_globals<64, true>(input_objects, sympool,
1795 dynpool, of);
1796 #else
1797 gold_unreachable();
1798 #endif
1799 }
1800 else
1801 {
1802 #ifdef HAVE_TARGET_64_LITTLE
1803 this->sized_write_globals<64, false>(input_objects, sympool,
1804 dynpool, of);
1805 #else
1806 gold_unreachable();
1807 #endif
1808 }
1809 }
1810 else
1811 gold_unreachable();
1812 }
1813
1814 // Write out the global symbols.
1815
1816 template<int size, bool big_endian>
1817 void
1818 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1819 const Stringpool* sympool,
1820 const Stringpool* dynpool,
1821 Output_file* of) const
1822 {
1823 const Target* const target = parameters->target();
1824
1825 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1826
1827 const unsigned int output_count = this->output_count_;
1828 const section_size_type oview_size = output_count * sym_size;
1829 const unsigned int first_global_index = this->first_global_index_;
1830 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1831
1832 const unsigned int dynamic_count = this->dynamic_count_;
1833 const section_size_type dynamic_size = dynamic_count * sym_size;
1834 const unsigned int first_dynamic_global_index =
1835 this->first_dynamic_global_index_;
1836 unsigned char* dynamic_view;
1837 if (this->dynamic_offset_ == 0)
1838 dynamic_view = NULL;
1839 else
1840 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1841
1842 for (Symbol_table_type::const_iterator p = this->table_.begin();
1843 p != this->table_.end();
1844 ++p)
1845 {
1846 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1847
1848 // Possibly warn about unresolved symbols in shared libraries.
1849 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1850
1851 unsigned int sym_index = sym->symtab_index();
1852 unsigned int dynsym_index;
1853 if (dynamic_view == NULL)
1854 dynsym_index = -1U;
1855 else
1856 dynsym_index = sym->dynsym_index();
1857
1858 if (sym_index == -1U && dynsym_index == -1U)
1859 {
1860 // This symbol is not included in the output file.
1861 continue;
1862 }
1863
1864 unsigned int shndx;
1865 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1866 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1867 switch (sym->source())
1868 {
1869 case Symbol::FROM_OBJECT:
1870 {
1871 unsigned int in_shndx = sym->shndx();
1872
1873 // FIXME: We need some target specific support here.
1874 if (in_shndx >= elfcpp::SHN_LORESERVE
1875 && in_shndx != elfcpp::SHN_ABS)
1876 {
1877 gold_error(_("%s: unsupported symbol section 0x%x"),
1878 sym->demangled_name().c_str(), in_shndx);
1879 shndx = in_shndx;
1880 }
1881 else
1882 {
1883 Object* symobj = sym->object();
1884 if (symobj->is_dynamic())
1885 {
1886 if (sym->needs_dynsym_value())
1887 dynsym_value = target->dynsym_value(sym);
1888 shndx = elfcpp::SHN_UNDEF;
1889 }
1890 else if (in_shndx == elfcpp::SHN_UNDEF
1891 || in_shndx == elfcpp::SHN_ABS)
1892 shndx = in_shndx;
1893 else
1894 {
1895 Relobj* relobj = static_cast<Relobj*>(symobj);
1896 section_offset_type secoff;
1897 Output_section* os = relobj->output_section(in_shndx,
1898 &secoff);
1899 gold_assert(os != NULL);
1900 shndx = os->out_shndx();
1901
1902 // In object files symbol values are section
1903 // relative.
1904 if (parameters->output_is_object())
1905 sym_value -= os->address();
1906 }
1907 }
1908 }
1909 break;
1910
1911 case Symbol::IN_OUTPUT_DATA:
1912 shndx = sym->output_data()->out_shndx();
1913 break;
1914
1915 case Symbol::IN_OUTPUT_SEGMENT:
1916 shndx = elfcpp::SHN_ABS;
1917 break;
1918
1919 case Symbol::CONSTANT:
1920 shndx = elfcpp::SHN_ABS;
1921 break;
1922
1923 default:
1924 gold_unreachable();
1925 }
1926
1927 if (sym_index != -1U)
1928 {
1929 sym_index -= first_global_index;
1930 gold_assert(sym_index < output_count);
1931 unsigned char* ps = psyms + (sym_index * sym_size);
1932 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1933 sym, sym_value, shndx, sympool, ps
1934 SELECT_SIZE_ENDIAN(size, big_endian));
1935 }
1936
1937 if (dynsym_index != -1U)
1938 {
1939 dynsym_index -= first_dynamic_global_index;
1940 gold_assert(dynsym_index < dynamic_count);
1941 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1942 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1943 sym, dynsym_value, shndx, dynpool, pd
1944 SELECT_SIZE_ENDIAN(size, big_endian));
1945 }
1946 }
1947
1948 of->write_output_view(this->offset_, oview_size, psyms);
1949 if (dynamic_view != NULL)
1950 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1951 }
1952
1953 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1954 // strtab holding the name.
1955
1956 template<int size, bool big_endian>
1957 void
1958 Symbol_table::sized_write_symbol(
1959 Sized_symbol<size>* sym,
1960 typename elfcpp::Elf_types<size>::Elf_Addr value,
1961 unsigned int shndx,
1962 const Stringpool* pool,
1963 unsigned char* p
1964 ACCEPT_SIZE_ENDIAN) const
1965 {
1966 elfcpp::Sym_write<size, big_endian> osym(p);
1967 osym.put_st_name(pool->get_offset(sym->name()));
1968 osym.put_st_value(value);
1969 osym.put_st_size(sym->symsize());
1970 // A version script may have overridden the default binding.
1971 if (sym->is_forced_local())
1972 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1973 else
1974 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1975 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1976 osym.put_st_shndx(shndx);
1977 }
1978
1979 // Check for unresolved symbols in shared libraries. This is
1980 // controlled by the --allow-shlib-undefined option.
1981
1982 // We only warn about libraries for which we have seen all the
1983 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
1984 // which were not seen in this link. If we didn't see a DT_NEEDED
1985 // entry, we aren't going to be able to reliably report whether the
1986 // symbol is undefined.
1987
1988 // We also don't warn about libraries found in the system library
1989 // directory (the directory were we find libc.so); we assume that
1990 // those libraries are OK. This heuristic avoids problems in
1991 // GNU/Linux, in which -ldl can have undefined references satisfied by
1992 // ld-linux.so.
1993
1994 inline void
1995 Symbol_table::warn_about_undefined_dynobj_symbol(
1996 const Input_objects* input_objects,
1997 Symbol* sym) const
1998 {
1999 if (sym->source() == Symbol::FROM_OBJECT
2000 && sym->object()->is_dynamic()
2001 && sym->shndx() == elfcpp::SHN_UNDEF
2002 && sym->binding() != elfcpp::STB_WEAK
2003 && !parameters->allow_shlib_undefined()
2004 && !parameters->target()->is_defined_by_abi(sym)
2005 && !input_objects->found_in_system_library_directory(sym->object()))
2006 {
2007 // A very ugly cast.
2008 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2009 if (!dynobj->has_unknown_needed_entries())
2010 gold_error(_("%s: undefined reference to '%s'"),
2011 sym->object()->name().c_str(),
2012 sym->demangled_name().c_str());
2013 }
2014 }
2015
2016 // Write out a section symbol. Return the update offset.
2017
2018 void
2019 Symbol_table::write_section_symbol(const Output_section *os,
2020 Output_file* of,
2021 off_t offset) const
2022 {
2023 if (parameters->get_size() == 32)
2024 {
2025 if (parameters->is_big_endian())
2026 {
2027 #ifdef HAVE_TARGET_32_BIG
2028 this->sized_write_section_symbol<32, true>(os, of, offset);
2029 #else
2030 gold_unreachable();
2031 #endif
2032 }
2033 else
2034 {
2035 #ifdef HAVE_TARGET_32_LITTLE
2036 this->sized_write_section_symbol<32, false>(os, of, offset);
2037 #else
2038 gold_unreachable();
2039 #endif
2040 }
2041 }
2042 else if (parameters->get_size() == 64)
2043 {
2044 if (parameters->is_big_endian())
2045 {
2046 #ifdef HAVE_TARGET_64_BIG
2047 this->sized_write_section_symbol<64, true>(os, of, offset);
2048 #else
2049 gold_unreachable();
2050 #endif
2051 }
2052 else
2053 {
2054 #ifdef HAVE_TARGET_64_LITTLE
2055 this->sized_write_section_symbol<64, false>(os, of, offset);
2056 #else
2057 gold_unreachable();
2058 #endif
2059 }
2060 }
2061 else
2062 gold_unreachable();
2063 }
2064
2065 // Write out a section symbol, specialized for size and endianness.
2066
2067 template<int size, bool big_endian>
2068 void
2069 Symbol_table::sized_write_section_symbol(const Output_section* os,
2070 Output_file* of,
2071 off_t offset) const
2072 {
2073 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2074
2075 unsigned char* pov = of->get_output_view(offset, sym_size);
2076
2077 elfcpp::Sym_write<size, big_endian> osym(pov);
2078 osym.put_st_name(0);
2079 osym.put_st_value(os->address());
2080 osym.put_st_size(0);
2081 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2082 elfcpp::STT_SECTION));
2083 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2084 osym.put_st_shndx(os->out_shndx());
2085
2086 of->write_output_view(offset, sym_size, pov);
2087 }
2088
2089 // Print statistical information to stderr. This is used for --stats.
2090
2091 void
2092 Symbol_table::print_stats() const
2093 {
2094 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2095 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2096 program_name, this->table_.size(), this->table_.bucket_count());
2097 #else
2098 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2099 program_name, this->table_.size());
2100 #endif
2101 this->namepool_.print_stats("symbol table stringpool");
2102 }
2103
2104 // We check for ODR violations by looking for symbols with the same
2105 // name for which the debugging information reports that they were
2106 // defined in different source locations. When comparing the source
2107 // location, we consider instances with the same base filename and
2108 // line number to be the same. This is because different object
2109 // files/shared libraries can include the same header file using
2110 // different paths, and we don't want to report an ODR violation in
2111 // that case.
2112
2113 // This struct is used to compare line information, as returned by
2114 // Dwarf_line_info::one_addr2line. It implements a < comparison
2115 // operator used with std::set.
2116
2117 struct Odr_violation_compare
2118 {
2119 bool
2120 operator()(const std::string& s1, const std::string& s2) const
2121 {
2122 std::string::size_type pos1 = s1.rfind('/');
2123 std::string::size_type pos2 = s2.rfind('/');
2124 if (pos1 == std::string::npos
2125 || pos2 == std::string::npos)
2126 return s1 < s2;
2127 return s1.compare(pos1, std::string::npos,
2128 s2, pos2, std::string::npos) < 0;
2129 }
2130 };
2131
2132 // Check candidate_odr_violations_ to find symbols with the same name
2133 // but apparently different definitions (different source-file/line-no).
2134
2135 void
2136 Symbol_table::detect_odr_violations(const Task* task,
2137 const char* output_file_name) const
2138 {
2139 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2140 it != candidate_odr_violations_.end();
2141 ++it)
2142 {
2143 const char* symbol_name = it->first;
2144 // We use a sorted set so the output is deterministic.
2145 std::set<std::string, Odr_violation_compare> line_nums;
2146
2147 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2148 locs = it->second.begin();
2149 locs != it->second.end();
2150 ++locs)
2151 {
2152 // We need to lock the object in order to read it. This
2153 // means that we have to run in a singleton Task. If we
2154 // want to run this in a general Task for better
2155 // performance, we will need one Task for object, plus
2156 // appropriate locking to ensure that we don't conflict with
2157 // other uses of the object.
2158 Task_lock_obj<Object> tl(task, locs->object);
2159 std::string lineno = Dwarf_line_info::one_addr2line(
2160 locs->object, locs->shndx, locs->offset);
2161 if (!lineno.empty())
2162 line_nums.insert(lineno);
2163 }
2164
2165 if (line_nums.size() > 1)
2166 {
2167 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2168 "places (possible ODR violation):"),
2169 output_file_name, demangle(symbol_name).c_str());
2170 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2171 it2 != line_nums.end();
2172 ++it2)
2173 fprintf(stderr, " %s\n", it2->c_str());
2174 }
2175 }
2176 }
2177
2178 // Warnings functions.
2179
2180 // Add a new warning.
2181
2182 void
2183 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2184 const std::string& warning)
2185 {
2186 name = symtab->canonicalize_name(name);
2187 this->warnings_[name].set(obj, warning);
2188 }
2189
2190 // Look through the warnings and mark the symbols for which we should
2191 // warn. This is called during Layout::finalize when we know the
2192 // sources for all the symbols.
2193
2194 void
2195 Warnings::note_warnings(Symbol_table* symtab)
2196 {
2197 for (Warning_table::iterator p = this->warnings_.begin();
2198 p != this->warnings_.end();
2199 ++p)
2200 {
2201 Symbol* sym = symtab->lookup(p->first, NULL);
2202 if (sym != NULL
2203 && sym->source() == Symbol::FROM_OBJECT
2204 && sym->object() == p->second.object)
2205 sym->set_has_warning();
2206 }
2207 }
2208
2209 // Issue a warning. This is called when we see a relocation against a
2210 // symbol for which has a warning.
2211
2212 template<int size, bool big_endian>
2213 void
2214 Warnings::issue_warning(const Symbol* sym,
2215 const Relocate_info<size, big_endian>* relinfo,
2216 size_t relnum, off_t reloffset) const
2217 {
2218 gold_assert(sym->has_warning());
2219 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2220 gold_assert(p != this->warnings_.end());
2221 gold_warning_at_location(relinfo, relnum, reloffset,
2222 "%s", p->second.text.c_str());
2223 }
2224
2225 // Instantiate the templates we need. We could use the configure
2226 // script to restrict this to only the ones needed for implemented
2227 // targets.
2228
2229 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2230 template
2231 void
2232 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2233 #endif
2234
2235 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2236 template
2237 void
2238 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2239 #endif
2240
2241 #ifdef HAVE_TARGET_32_LITTLE
2242 template
2243 void
2244 Symbol_table::add_from_relobj<32, false>(
2245 Sized_relobj<32, false>* relobj,
2246 const unsigned char* syms,
2247 size_t count,
2248 const char* sym_names,
2249 size_t sym_name_size,
2250 Sized_relobj<32, true>::Symbols* sympointers);
2251 #endif
2252
2253 #ifdef HAVE_TARGET_32_BIG
2254 template
2255 void
2256 Symbol_table::add_from_relobj<32, true>(
2257 Sized_relobj<32, true>* relobj,
2258 const unsigned char* syms,
2259 size_t count,
2260 const char* sym_names,
2261 size_t sym_name_size,
2262 Sized_relobj<32, false>::Symbols* sympointers);
2263 #endif
2264
2265 #ifdef HAVE_TARGET_64_LITTLE
2266 template
2267 void
2268 Symbol_table::add_from_relobj<64, false>(
2269 Sized_relobj<64, false>* relobj,
2270 const unsigned char* syms,
2271 size_t count,
2272 const char* sym_names,
2273 size_t sym_name_size,
2274 Sized_relobj<64, true>::Symbols* sympointers);
2275 #endif
2276
2277 #ifdef HAVE_TARGET_64_BIG
2278 template
2279 void
2280 Symbol_table::add_from_relobj<64, true>(
2281 Sized_relobj<64, true>* relobj,
2282 const unsigned char* syms,
2283 size_t count,
2284 const char* sym_names,
2285 size_t sym_name_size,
2286 Sized_relobj<64, false>::Symbols* sympointers);
2287 #endif
2288
2289 #ifdef HAVE_TARGET_32_LITTLE
2290 template
2291 void
2292 Symbol_table::add_from_dynobj<32, false>(
2293 Sized_dynobj<32, false>* dynobj,
2294 const unsigned char* syms,
2295 size_t count,
2296 const char* sym_names,
2297 size_t sym_name_size,
2298 const unsigned char* versym,
2299 size_t versym_size,
2300 const std::vector<const char*>* version_map);
2301 #endif
2302
2303 #ifdef HAVE_TARGET_32_BIG
2304 template
2305 void
2306 Symbol_table::add_from_dynobj<32, true>(
2307 Sized_dynobj<32, true>* dynobj,
2308 const unsigned char* syms,
2309 size_t count,
2310 const char* sym_names,
2311 size_t sym_name_size,
2312 const unsigned char* versym,
2313 size_t versym_size,
2314 const std::vector<const char*>* version_map);
2315 #endif
2316
2317 #ifdef HAVE_TARGET_64_LITTLE
2318 template
2319 void
2320 Symbol_table::add_from_dynobj<64, false>(
2321 Sized_dynobj<64, false>* dynobj,
2322 const unsigned char* syms,
2323 size_t count,
2324 const char* sym_names,
2325 size_t sym_name_size,
2326 const unsigned char* versym,
2327 size_t versym_size,
2328 const std::vector<const char*>* version_map);
2329 #endif
2330
2331 #ifdef HAVE_TARGET_64_BIG
2332 template
2333 void
2334 Symbol_table::add_from_dynobj<64, true>(
2335 Sized_dynobj<64, true>* dynobj,
2336 const unsigned char* syms,
2337 size_t count,
2338 const char* sym_names,
2339 size_t sym_name_size,
2340 const unsigned char* versym,
2341 size_t versym_size,
2342 const std::vector<const char*>* version_map);
2343 #endif
2344
2345 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2346 template
2347 void
2348 Symbol_table::define_with_copy_reloc<32>(
2349 Sized_symbol<32>* sym,
2350 Output_data* posd,
2351 elfcpp::Elf_types<32>::Elf_Addr value);
2352 #endif
2353
2354 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2355 template
2356 void
2357 Symbol_table::define_with_copy_reloc<64>(
2358 Sized_symbol<64>* sym,
2359 Output_data* posd,
2360 elfcpp::Elf_types<64>::Elf_Addr value);
2361 #endif
2362
2363 #ifdef HAVE_TARGET_32_LITTLE
2364 template
2365 void
2366 Warnings::issue_warning<32, false>(const Symbol* sym,
2367 const Relocate_info<32, false>* relinfo,
2368 size_t relnum, off_t reloffset) const;
2369 #endif
2370
2371 #ifdef HAVE_TARGET_32_BIG
2372 template
2373 void
2374 Warnings::issue_warning<32, true>(const Symbol* sym,
2375 const Relocate_info<32, true>* relinfo,
2376 size_t relnum, off_t reloffset) const;
2377 #endif
2378
2379 #ifdef HAVE_TARGET_64_LITTLE
2380 template
2381 void
2382 Warnings::issue_warning<64, false>(const Symbol* sym,
2383 const Relocate_info<64, false>* relinfo,
2384 size_t relnum, off_t reloffset) const;
2385 #endif
2386
2387 #ifdef HAVE_TARGET_64_BIG
2388 template
2389 void
2390 Warnings::issue_warning<64, true>(const Symbol* sym,
2391 const Relocate_info<64, true>* relinfo,
2392 size_t relnum, off_t reloffset) const;
2393 #endif
2394
2395 } // End namespace gold.
This page took 0.085777 seconds and 4 git commands to generate.