b2901ab9faa617eb8b231b10e4485d0fd05ebdf8
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol. This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49 elfcpp::STT type, elfcpp::STB binding,
50 elfcpp::STV visibility, unsigned char nonvis)
51 {
52 this->name_ = name;
53 this->version_ = version;
54 this->symtab_index_ = 0;
55 this->dynsym_index_ = 0;
56 this->got_offset_ = 0;
57 this->plt_offset_ = 0;
58 this->type_ = type;
59 this->binding_ = binding;
60 this->visibility_ = visibility;
61 this->nonvis_ = nonvis;
62 this->is_target_special_ = false;
63 this->is_def_ = false;
64 this->is_forwarder_ = false;
65 this->has_alias_ = false;
66 this->needs_dynsym_entry_ = false;
67 this->in_reg_ = false;
68 this->in_dyn_ = false;
69 this->has_got_offset_ = false;
70 this->has_plt_offset_ = false;
71 this->has_warning_ = false;
72 this->is_copied_from_dynobj_ = false;
73 this->needs_value_in_got_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82 if (!parameters->demangle())
83 return name;
84
85 // cplus_demangle allocates memory for the result it returns,
86 // and returns NULL if the name is already demangled.
87 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88 if (demangled_name == NULL)
89 return name;
90
91 std::string retval(demangled_name);
92 free(demangled_name);
93 return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99 return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107 const elfcpp::Sym<size, big_endian>& sym)
108 {
109 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110 sym.get_st_visibility(), sym.get_st_nonvis());
111 this->u_.from_object.object = object;
112 // FIXME: Handle SHN_XINDEX.
113 this->u_.from_object.shndx = sym.get_st_shndx();
114 this->source_ = FROM_OBJECT;
115 this->in_reg_ = !object->is_dynamic();
116 this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124 elfcpp::STB binding, elfcpp::STV visibility,
125 unsigned char nonvis, bool offset_is_from_end)
126 {
127 this->init_fields(name, NULL, type, binding, visibility, nonvis);
128 this->u_.in_output_data.output_data = od;
129 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130 this->source_ = IN_OUTPUT_DATA;
131 this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139 elfcpp::STB binding, elfcpp::STV visibility,
140 unsigned char nonvis, Segment_offset_base offset_base)
141 {
142 this->init_fields(name, NULL, type, binding, visibility, nonvis);
143 this->u_.in_output_segment.output_segment = os;
144 this->u_.in_output_segment.offset_base = offset_base;
145 this->source_ = IN_OUTPUT_SEGMENT;
146 this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154 elfcpp::STB binding, elfcpp::STV visibility,
155 unsigned char nonvis)
156 {
157 this->init_fields(name, NULL, type, binding, visibility, nonvis);
158 this->source_ = CONSTANT;
159 this->in_reg_ = true;
160 }
161
162 // Allocate a common symbol in the base.
163
164 void
165 Symbol::allocate_base_common(Output_data* od)
166 {
167 gold_assert(this->is_common());
168 this->source_ = IN_OUTPUT_DATA;
169 this->u_.in_output_data.output_data = od;
170 this->u_.in_output_data.offset_is_from_end = false;
171 }
172
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
174
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179 const elfcpp::Sym<size, big_endian>& sym)
180 {
181 this->init_base(name, version, object, sym);
182 this->value_ = sym.get_st_value();
183 this->symsize_ = sym.get_st_size();
184 }
185
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
188
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192 Value_type value, Size_type symsize,
193 elfcpp::STT type, elfcpp::STB binding,
194 elfcpp::STV visibility, unsigned char nonvis,
195 bool offset_is_from_end)
196 {
197 this->init_base(name, od, type, binding, visibility, nonvis,
198 offset_is_from_end);
199 this->value_ = value;
200 this->symsize_ = symsize;
201 }
202
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
205
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209 Value_type value, Size_type symsize,
210 elfcpp::STT type, elfcpp::STB binding,
211 elfcpp::STV visibility, unsigned char nonvis,
212 Segment_offset_base offset_base)
213 {
214 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215 this->value_ = value;
216 this->symsize_ = symsize;
217 }
218
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
221
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225 elfcpp::STT type, elfcpp::STB binding,
226 elfcpp::STV visibility, unsigned char nonvis)
227 {
228 this->init_base(name, type, binding, visibility, nonvis);
229 this->value_ = value;
230 this->symsize_ = symsize;
231 }
232
233 // Allocate a common symbol.
234
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 {
239 this->allocate_base_common(od);
240 this->value_ = value;
241 }
242
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
245
246 inline bool
247 Symbol::should_add_dynsym_entry() const
248 {
249 // If the symbol is used by a dynamic relocation, we need to add it.
250 if (this->needs_dynsym_entry())
251 return true;
252
253 // If exporting all symbols or building a shared library,
254 // and the symbol is defined in a regular object and is
255 // externally visible, we need to add it.
256 if ((parameters->export_dynamic() || parameters->output_is_shared())
257 && !this->is_from_dynobj()
258 && this->is_externally_visible())
259 return true;
260
261 return false;
262 }
263
264 // Return true if the final value of this symbol is known at link
265 // time.
266
267 bool
268 Symbol::final_value_is_known() const
269 {
270 // If we are not generating an executable, then no final values are
271 // known, since they will change at runtime.
272 if (!parameters->output_is_executable())
273 return false;
274
275 // If the symbol is not from an object file, then it is defined, and
276 // known.
277 if (this->source_ != FROM_OBJECT)
278 return true;
279
280 // If the symbol is from a dynamic object, then the final value is
281 // not known.
282 if (this->object()->is_dynamic())
283 return false;
284
285 // If the symbol is not undefined (it is defined or common), then
286 // the final value is known.
287 if (!this->is_undefined())
288 return true;
289
290 // If the symbol is undefined, then whether the final value is known
291 // depends on whether we are doing a static link. If we are doing a
292 // dynamic link, then the final value could be filled in at runtime.
293 // This could reasonably be the case for a weak undefined symbol.
294 return parameters->doing_static_link();
295 }
296
297 // Class Symbol_table.
298
299 Symbol_table::Symbol_table()
300 : saw_undefined_(0), offset_(0), table_(), namepool_(),
301 forwarders_(), commons_(), warnings_()
302 {
303 }
304
305 Symbol_table::~Symbol_table()
306 {
307 }
308
309 // The hash function. The key is always canonicalized, so we use a
310 // simple combination of the pointers.
311
312 size_t
313 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
314 {
315 return key.first ^ key.second;
316 }
317
318 // The symbol table key equality function. This is only called with
319 // canonicalized name and version strings, so we can use pointer
320 // comparison.
321
322 bool
323 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
324 const Symbol_table_key& k2) const
325 {
326 return k1.first == k2.first && k1.second == k2.second;
327 }
328
329 // Make TO a symbol which forwards to FROM.
330
331 void
332 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
333 {
334 gold_assert(from != to);
335 gold_assert(!from->is_forwarder() && !to->is_forwarder());
336 this->forwarders_[from] = to;
337 from->set_forwarder();
338 }
339
340 // Resolve the forwards from FROM, returning the real symbol.
341
342 Symbol*
343 Symbol_table::resolve_forwards(const Symbol* from) const
344 {
345 gold_assert(from->is_forwarder());
346 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
347 this->forwarders_.find(from);
348 gold_assert(p != this->forwarders_.end());
349 return p->second;
350 }
351
352 // Look up a symbol by name.
353
354 Symbol*
355 Symbol_table::lookup(const char* name, const char* version) const
356 {
357 Stringpool::Key name_key;
358 name = this->namepool_.find(name, &name_key);
359 if (name == NULL)
360 return NULL;
361
362 Stringpool::Key version_key = 0;
363 if (version != NULL)
364 {
365 version = this->namepool_.find(version, &version_key);
366 if (version == NULL)
367 return NULL;
368 }
369
370 Symbol_table_key key(name_key, version_key);
371 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
372 if (p == this->table_.end())
373 return NULL;
374 return p->second;
375 }
376
377 // Resolve a Symbol with another Symbol. This is only used in the
378 // unusual case where there are references to both an unversioned
379 // symbol and a symbol with a version, and we then discover that that
380 // version is the default version. Because this is unusual, we do
381 // this the slow way, by converting back to an ELF symbol.
382
383 template<int size, bool big_endian>
384 void
385 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
386 const char* version ACCEPT_SIZE_ENDIAN)
387 {
388 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
389 elfcpp::Sym_write<size, big_endian> esym(buf);
390 // We don't bother to set the st_name field.
391 esym.put_st_value(from->value());
392 esym.put_st_size(from->symsize());
393 esym.put_st_info(from->binding(), from->type());
394 esym.put_st_other(from->visibility(), from->nonvis());
395 esym.put_st_shndx(from->shndx());
396 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
397 if (from->in_reg())
398 to->set_in_reg();
399 if (from->in_dyn())
400 to->set_in_dyn();
401 }
402
403 // Add one symbol from OBJECT to the symbol table. NAME is symbol
404 // name and VERSION is the version; both are canonicalized. DEF is
405 // whether this is the default version.
406
407 // If DEF is true, then this is the definition of a default version of
408 // a symbol. That means that any lookup of NAME/NULL and any lookup
409 // of NAME/VERSION should always return the same symbol. This is
410 // obvious for references, but in particular we want to do this for
411 // definitions: overriding NAME/NULL should also override
412 // NAME/VERSION. If we don't do that, it would be very hard to
413 // override functions in a shared library which uses versioning.
414
415 // We implement this by simply making both entries in the hash table
416 // point to the same Symbol structure. That is easy enough if this is
417 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
418 // that we have seen both already, in which case they will both have
419 // independent entries in the symbol table. We can't simply change
420 // the symbol table entry, because we have pointers to the entries
421 // attached to the object files. So we mark the entry attached to the
422 // object file as a forwarder, and record it in the forwarders_ map.
423 // Note that entries in the hash table will never be marked as
424 // forwarders.
425 //
426 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
427 // symbol exactly as it existed in the input file. SYM is usually
428 // that as well, but can be modified, for instance if we determine
429 // it's in a to-be-discarded section.
430
431 template<int size, bool big_endian>
432 Sized_symbol<size>*
433 Symbol_table::add_from_object(Object* object,
434 const char *name,
435 Stringpool::Key name_key,
436 const char *version,
437 Stringpool::Key version_key,
438 bool def,
439 const elfcpp::Sym<size, big_endian>& sym,
440 const elfcpp::Sym<size, big_endian>& orig_sym)
441 {
442 Symbol* const snull = NULL;
443 std::pair<typename Symbol_table_type::iterator, bool> ins =
444 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
445 snull));
446
447 std::pair<typename Symbol_table_type::iterator, bool> insdef =
448 std::make_pair(this->table_.end(), false);
449 if (def)
450 {
451 const Stringpool::Key vnull_key = 0;
452 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
453 vnull_key),
454 snull));
455 }
456
457 // ins.first: an iterator, which is a pointer to a pair.
458 // ins.first->first: the key (a pair of name and version).
459 // ins.first->second: the value (Symbol*).
460 // ins.second: true if new entry was inserted, false if not.
461
462 Sized_symbol<size>* ret;
463 bool was_undefined;
464 bool was_common;
465 if (!ins.second)
466 {
467 // We already have an entry for NAME/VERSION.
468 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
469 SELECT_SIZE(size));
470 gold_assert(ret != NULL);
471
472 was_undefined = ret->is_undefined();
473 was_common = ret->is_common();
474
475 this->resolve(ret, sym, orig_sym, object, version);
476
477 if (def)
478 {
479 if (insdef.second)
480 {
481 // This is the first time we have seen NAME/NULL. Make
482 // NAME/NULL point to NAME/VERSION.
483 insdef.first->second = ret;
484 }
485 else if (insdef.first->second != ret)
486 {
487 // This is the unfortunate case where we already have
488 // entries for both NAME/VERSION and NAME/NULL.
489 const Sized_symbol<size>* sym2;
490 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
491 insdef.first->second
492 SELECT_SIZE(size));
493 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
494 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
495 this->make_forwarder(insdef.first->second, ret);
496 insdef.first->second = ret;
497 }
498 }
499 }
500 else
501 {
502 // This is the first time we have seen NAME/VERSION.
503 gold_assert(ins.first->second == NULL);
504
505 was_undefined = false;
506 was_common = false;
507
508 if (def && !insdef.second)
509 {
510 // We already have an entry for NAME/NULL. If we override
511 // it, then change it to NAME/VERSION.
512 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
513 insdef.first->second
514 SELECT_SIZE(size));
515 this->resolve(ret, sym, orig_sym, object, version);
516 ins.first->second = ret;
517 }
518 else
519 {
520 Sized_target<size, big_endian>* target =
521 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
522 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
523 if (!target->has_make_symbol())
524 ret = new Sized_symbol<size>();
525 else
526 {
527 ret = target->make_symbol();
528 if (ret == NULL)
529 {
530 // This means that we don't want a symbol table
531 // entry after all.
532 if (!def)
533 this->table_.erase(ins.first);
534 else
535 {
536 this->table_.erase(insdef.first);
537 // Inserting insdef invalidated ins.
538 this->table_.erase(std::make_pair(name_key,
539 version_key));
540 }
541 return NULL;
542 }
543 }
544
545 ret->init(name, version, object, sym);
546
547 ins.first->second = ret;
548 if (def)
549 {
550 // This is the first time we have seen NAME/NULL. Point
551 // it at the new entry for NAME/VERSION.
552 gold_assert(insdef.second);
553 insdef.first->second = ret;
554 }
555 }
556 }
557
558 // Record every time we see a new undefined symbol, to speed up
559 // archive groups.
560 if (!was_undefined && ret->is_undefined())
561 ++this->saw_undefined_;
562
563 // Keep track of common symbols, to speed up common symbol
564 // allocation.
565 if (!was_common && ret->is_common())
566 this->commons_.push_back(ret);
567
568 return ret;
569 }
570
571 // Add all the symbols in a relocatable object to the hash table.
572
573 template<int size, bool big_endian>
574 void
575 Symbol_table::add_from_relobj(
576 Sized_relobj<size, big_endian>* relobj,
577 const unsigned char* syms,
578 size_t count,
579 const char* sym_names,
580 size_t sym_name_size,
581 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
582 {
583 gold_assert(size == relobj->target()->get_size());
584 gold_assert(size == parameters->get_size());
585
586 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
587
588 const unsigned char* p = syms;
589 for (size_t i = 0; i < count; ++i, p += sym_size)
590 {
591 elfcpp::Sym<size, big_endian> sym(p);
592 elfcpp::Sym<size, big_endian>* psym = &sym;
593
594 unsigned int st_name = psym->get_st_name();
595 if (st_name >= sym_name_size)
596 {
597 relobj->error(_("bad global symbol name offset %u at %zu"),
598 st_name, i);
599 continue;
600 }
601
602 const char* name = sym_names + st_name;
603
604 // A symbol defined in a section which we are not including must
605 // be treated as an undefined symbol.
606 unsigned char symbuf[sym_size];
607 elfcpp::Sym<size, big_endian> sym2(symbuf);
608 unsigned int st_shndx = psym->get_st_shndx();
609 if (st_shndx != elfcpp::SHN_UNDEF
610 && st_shndx < elfcpp::SHN_LORESERVE
611 && !relobj->is_section_included(st_shndx))
612 {
613 memcpy(symbuf, p, sym_size);
614 elfcpp::Sym_write<size, big_endian> sw(symbuf);
615 sw.put_st_shndx(elfcpp::SHN_UNDEF);
616 psym = &sym2;
617 }
618
619 // In an object file, an '@' in the name separates the symbol
620 // name from the version name. If there are two '@' characters,
621 // this is the default version.
622 const char* ver = strchr(name, '@');
623
624 Sized_symbol<size>* res;
625 if (ver == NULL)
626 {
627 Stringpool::Key name_key;
628 name = this->namepool_.add(name, true, &name_key);
629 res = this->add_from_object(relobj, name, name_key, NULL, 0,
630 false, *psym, sym);
631 }
632 else
633 {
634 Stringpool::Key name_key;
635 name = this->namepool_.add_prefix(name, ver - name, &name_key);
636
637 bool def = false;
638 ++ver;
639 if (*ver == '@')
640 {
641 def = true;
642 ++ver;
643 }
644
645 Stringpool::Key ver_key;
646 ver = this->namepool_.add(ver, true, &ver_key);
647
648 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
649 def, *psym, sym);
650 }
651
652 (*sympointers)[i] = res;
653 }
654 }
655
656 // Add all the symbols in a dynamic object to the hash table.
657
658 template<int size, bool big_endian>
659 void
660 Symbol_table::add_from_dynobj(
661 Sized_dynobj<size, big_endian>* dynobj,
662 const unsigned char* syms,
663 size_t count,
664 const char* sym_names,
665 size_t sym_name_size,
666 const unsigned char* versym,
667 size_t versym_size,
668 const std::vector<const char*>* version_map)
669 {
670 gold_assert(size == dynobj->target()->get_size());
671 gold_assert(size == parameters->get_size());
672
673 if (versym != NULL && versym_size / 2 < count)
674 {
675 dynobj->error(_("too few symbol versions"));
676 return;
677 }
678
679 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
680
681 // We keep a list of all STT_OBJECT symbols, so that we can resolve
682 // weak aliases. This is necessary because if the dynamic object
683 // provides the same variable under two names, one of which is a
684 // weak definition, and the regular object refers to the weak
685 // definition, we have to put both the weak definition and the
686 // strong definition into the dynamic symbol table. Given a weak
687 // definition, the only way that we can find the corresponding
688 // strong definition, if any, is to search the symbol table.
689 std::vector<Sized_symbol<size>*> object_symbols;
690
691 const unsigned char* p = syms;
692 const unsigned char* vs = versym;
693 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
694 {
695 elfcpp::Sym<size, big_endian> sym(p);
696
697 // Ignore symbols with local binding.
698 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
699 continue;
700
701 unsigned int st_name = sym.get_st_name();
702 if (st_name >= sym_name_size)
703 {
704 dynobj->error(_("bad symbol name offset %u at %zu"),
705 st_name, i);
706 continue;
707 }
708
709 const char* name = sym_names + st_name;
710
711 Sized_symbol<size>* res;
712
713 if (versym == NULL)
714 {
715 Stringpool::Key name_key;
716 name = this->namepool_.add(name, true, &name_key);
717 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
718 false, sym, sym);
719 }
720 else
721 {
722 // Read the version information.
723
724 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
725
726 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
727 v &= elfcpp::VERSYM_VERSION;
728
729 // The Sun documentation says that V can be VER_NDX_LOCAL,
730 // or VER_NDX_GLOBAL, or a version index. The meaning of
731 // VER_NDX_LOCAL is defined as "Symbol has local scope."
732 // The old GNU linker will happily generate VER_NDX_LOCAL
733 // for an undefined symbol. I don't know what the Sun
734 // linker will generate.
735
736 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
737 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
738 {
739 // This symbol should not be visible outside the object.
740 continue;
741 }
742
743 // At this point we are definitely going to add this symbol.
744 Stringpool::Key name_key;
745 name = this->namepool_.add(name, true, &name_key);
746
747 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
748 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
749 {
750 // This symbol does not have a version.
751 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
752 false, sym, sym);
753 }
754 else
755 {
756 if (v >= version_map->size())
757 {
758 dynobj->error(_("versym for symbol %zu out of range: %u"),
759 i, v);
760 continue;
761 }
762
763 const char* version = (*version_map)[v];
764 if (version == NULL)
765 {
766 dynobj->error(_("versym for symbol %zu has no name: %u"),
767 i, v);
768 continue;
769 }
770
771 Stringpool::Key version_key;
772 version = this->namepool_.add(version, true, &version_key);
773
774 // If this is an absolute symbol, and the version name
775 // and symbol name are the same, then this is the
776 // version definition symbol. These symbols exist to
777 // support using -u to pull in particular versions. We
778 // do not want to record a version for them.
779 if (sym.get_st_shndx() == elfcpp::SHN_ABS
780 && name_key == version_key)
781 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
782 false, sym, sym);
783 else
784 {
785 const bool def = (!hidden
786 && (sym.get_st_shndx()
787 != elfcpp::SHN_UNDEF));
788 res = this->add_from_object(dynobj, name, name_key, version,
789 version_key, def, sym, sym);
790 }
791 }
792 }
793
794 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
795 && sym.get_st_type() == elfcpp::STT_OBJECT)
796 object_symbols.push_back(res);
797 }
798
799 this->record_weak_aliases(&object_symbols);
800 }
801
802 // This is used to sort weak aliases. We sort them first by section
803 // index, then by offset, then by weak ahead of strong.
804
805 template<int size>
806 class Weak_alias_sorter
807 {
808 public:
809 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
810 };
811
812 template<int size>
813 bool
814 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
815 const Sized_symbol<size>* s2) const
816 {
817 if (s1->shndx() != s2->shndx())
818 return s1->shndx() < s2->shndx();
819 if (s1->value() != s2->value())
820 return s1->value() < s2->value();
821 if (s1->binding() != s2->binding())
822 {
823 if (s1->binding() == elfcpp::STB_WEAK)
824 return true;
825 if (s2->binding() == elfcpp::STB_WEAK)
826 return false;
827 }
828 return std::string(s1->name()) < std::string(s2->name());
829 }
830
831 // SYMBOLS is a list of object symbols from a dynamic object. Look
832 // for any weak aliases, and record them so that if we add the weak
833 // alias to the dynamic symbol table, we also add the corresponding
834 // strong symbol.
835
836 template<int size>
837 void
838 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
839 {
840 // Sort the vector by section index, then by offset, then by weak
841 // ahead of strong.
842 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
843
844 // Walk through the vector. For each weak definition, record
845 // aliases.
846 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
847 symbols->begin();
848 p != symbols->end();
849 ++p)
850 {
851 if ((*p)->binding() != elfcpp::STB_WEAK)
852 continue;
853
854 // Build a circular list of weak aliases. Each symbol points to
855 // the next one in the circular list.
856
857 Sized_symbol<size>* from_sym = *p;
858 typename std::vector<Sized_symbol<size>*>::const_iterator q;
859 for (q = p + 1; q != symbols->end(); ++q)
860 {
861 if ((*q)->shndx() != from_sym->shndx()
862 || (*q)->value() != from_sym->value())
863 break;
864
865 this->weak_aliases_[from_sym] = *q;
866 from_sym->set_has_alias();
867 from_sym = *q;
868 }
869
870 if (from_sym != *p)
871 {
872 this->weak_aliases_[from_sym] = *p;
873 from_sym->set_has_alias();
874 }
875
876 p = q - 1;
877 }
878 }
879
880 // Create and return a specially defined symbol. If ONLY_IF_REF is
881 // true, then only create the symbol if there is a reference to it.
882 // If this does not return NULL, it sets *POLDSYM to the existing
883 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
884
885 template<int size, bool big_endian>
886 Sized_symbol<size>*
887 Symbol_table::define_special_symbol(const Target* target, const char** pname,
888 const char** pversion, bool only_if_ref,
889 Sized_symbol<size>** poldsym
890 ACCEPT_SIZE_ENDIAN)
891 {
892 Symbol* oldsym;
893 Sized_symbol<size>* sym;
894 bool add_to_table = false;
895 typename Symbol_table_type::iterator add_loc = this->table_.end();
896
897 if (only_if_ref)
898 {
899 oldsym = this->lookup(*pname, *pversion);
900 if (oldsym == NULL || !oldsym->is_undefined())
901 return NULL;
902
903 *pname = oldsym->name();
904 *pversion = oldsym->version();
905 }
906 else
907 {
908 // Canonicalize NAME and VERSION.
909 Stringpool::Key name_key;
910 *pname = this->namepool_.add(*pname, true, &name_key);
911
912 Stringpool::Key version_key = 0;
913 if (*pversion != NULL)
914 *pversion = this->namepool_.add(*pversion, true, &version_key);
915
916 Symbol* const snull = NULL;
917 std::pair<typename Symbol_table_type::iterator, bool> ins =
918 this->table_.insert(std::make_pair(std::make_pair(name_key,
919 version_key),
920 snull));
921
922 if (!ins.second)
923 {
924 // We already have a symbol table entry for NAME/VERSION.
925 oldsym = ins.first->second;
926 gold_assert(oldsym != NULL);
927 }
928 else
929 {
930 // We haven't seen this symbol before.
931 gold_assert(ins.first->second == NULL);
932 add_to_table = true;
933 add_loc = ins.first;
934 oldsym = NULL;
935 }
936 }
937
938 if (!target->has_make_symbol())
939 sym = new Sized_symbol<size>();
940 else
941 {
942 gold_assert(target->get_size() == size);
943 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
944 typedef Sized_target<size, big_endian> My_target;
945 const My_target* sized_target =
946 static_cast<const My_target*>(target);
947 sym = sized_target->make_symbol();
948 if (sym == NULL)
949 return NULL;
950 }
951
952 if (add_to_table)
953 add_loc->second = sym;
954 else
955 gold_assert(oldsym != NULL);
956
957 *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
958 SELECT_SIZE(size));
959
960 return sym;
961 }
962
963 // Define a symbol based on an Output_data.
964
965 Symbol*
966 Symbol_table::define_in_output_data(const Target* target, const char* name,
967 const char* version, Output_data* od,
968 uint64_t value, uint64_t symsize,
969 elfcpp::STT type, elfcpp::STB binding,
970 elfcpp::STV visibility,
971 unsigned char nonvis,
972 bool offset_is_from_end,
973 bool only_if_ref)
974 {
975 if (parameters->get_size() == 32)
976 {
977 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
978 return this->do_define_in_output_data<32>(target, name, version, od,
979 value, symsize, type, binding,
980 visibility, nonvis,
981 offset_is_from_end,
982 only_if_ref);
983 #else
984 gold_unreachable();
985 #endif
986 }
987 else if (parameters->get_size() == 64)
988 {
989 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
990 return this->do_define_in_output_data<64>(target, name, version, od,
991 value, symsize, type, binding,
992 visibility, nonvis,
993 offset_is_from_end,
994 only_if_ref);
995 #else
996 gold_unreachable();
997 #endif
998 }
999 else
1000 gold_unreachable();
1001 }
1002
1003 // Define a symbol in an Output_data, sized version.
1004
1005 template<int size>
1006 Sized_symbol<size>*
1007 Symbol_table::do_define_in_output_data(
1008 const Target* target,
1009 const char* name,
1010 const char* version,
1011 Output_data* od,
1012 typename elfcpp::Elf_types<size>::Elf_Addr value,
1013 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1014 elfcpp::STT type,
1015 elfcpp::STB binding,
1016 elfcpp::STV visibility,
1017 unsigned char nonvis,
1018 bool offset_is_from_end,
1019 bool only_if_ref)
1020 {
1021 Sized_symbol<size>* sym;
1022 Sized_symbol<size>* oldsym;
1023
1024 if (parameters->is_big_endian())
1025 {
1026 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1027 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1028 target, &name, &version, only_if_ref, &oldsym
1029 SELECT_SIZE_ENDIAN(size, true));
1030 #else
1031 gold_unreachable();
1032 #endif
1033 }
1034 else
1035 {
1036 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1037 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1038 target, &name, &version, only_if_ref, &oldsym
1039 SELECT_SIZE_ENDIAN(size, false));
1040 #else
1041 gold_unreachable();
1042 #endif
1043 }
1044
1045 if (sym == NULL)
1046 return NULL;
1047
1048 gold_assert(version == NULL || oldsym != NULL);
1049 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1050 offset_is_from_end);
1051
1052 if (oldsym != NULL
1053 && Symbol_table::should_override_with_special(oldsym))
1054 this->override_with_special(oldsym, sym);
1055
1056 return sym;
1057 }
1058
1059 // Define a symbol based on an Output_segment.
1060
1061 Symbol*
1062 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1063 const char* version, Output_segment* os,
1064 uint64_t value, uint64_t symsize,
1065 elfcpp::STT type, elfcpp::STB binding,
1066 elfcpp::STV visibility,
1067 unsigned char nonvis,
1068 Symbol::Segment_offset_base offset_base,
1069 bool only_if_ref)
1070 {
1071 if (parameters->get_size() == 32)
1072 {
1073 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1074 return this->do_define_in_output_segment<32>(target, name, version, os,
1075 value, symsize, type,
1076 binding, visibility, nonvis,
1077 offset_base, only_if_ref);
1078 #else
1079 gold_unreachable();
1080 #endif
1081 }
1082 else if (parameters->get_size() == 64)
1083 {
1084 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1085 return this->do_define_in_output_segment<64>(target, name, version, os,
1086 value, symsize, type,
1087 binding, visibility, nonvis,
1088 offset_base, only_if_ref);
1089 #else
1090 gold_unreachable();
1091 #endif
1092 }
1093 else
1094 gold_unreachable();
1095 }
1096
1097 // Define a symbol in an Output_segment, sized version.
1098
1099 template<int size>
1100 Sized_symbol<size>*
1101 Symbol_table::do_define_in_output_segment(
1102 const Target* target,
1103 const char* name,
1104 const char* version,
1105 Output_segment* os,
1106 typename elfcpp::Elf_types<size>::Elf_Addr value,
1107 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1108 elfcpp::STT type,
1109 elfcpp::STB binding,
1110 elfcpp::STV visibility,
1111 unsigned char nonvis,
1112 Symbol::Segment_offset_base offset_base,
1113 bool only_if_ref)
1114 {
1115 Sized_symbol<size>* sym;
1116 Sized_symbol<size>* oldsym;
1117
1118 if (parameters->is_big_endian())
1119 {
1120 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1121 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1122 target, &name, &version, only_if_ref, &oldsym
1123 SELECT_SIZE_ENDIAN(size, true));
1124 #else
1125 gold_unreachable();
1126 #endif
1127 }
1128 else
1129 {
1130 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1131 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1132 target, &name, &version, only_if_ref, &oldsym
1133 SELECT_SIZE_ENDIAN(size, false));
1134 #else
1135 gold_unreachable();
1136 #endif
1137 }
1138
1139 if (sym == NULL)
1140 return NULL;
1141
1142 gold_assert(version == NULL || oldsym != NULL);
1143 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1144 offset_base);
1145
1146 if (oldsym != NULL
1147 && Symbol_table::should_override_with_special(oldsym))
1148 this->override_with_special(oldsym, sym);
1149
1150 return sym;
1151 }
1152
1153 // Define a special symbol with a constant value. It is a multiple
1154 // definition error if this symbol is already defined.
1155
1156 Symbol*
1157 Symbol_table::define_as_constant(const Target* target, const char* name,
1158 const char* version, uint64_t value,
1159 uint64_t symsize, elfcpp::STT type,
1160 elfcpp::STB binding, elfcpp::STV visibility,
1161 unsigned char nonvis, bool only_if_ref)
1162 {
1163 if (parameters->get_size() == 32)
1164 {
1165 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1166 return this->do_define_as_constant<32>(target, name, version, value,
1167 symsize, type, binding,
1168 visibility, nonvis, only_if_ref);
1169 #else
1170 gold_unreachable();
1171 #endif
1172 }
1173 else if (parameters->get_size() == 64)
1174 {
1175 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1176 return this->do_define_as_constant<64>(target, name, version, value,
1177 symsize, type, binding,
1178 visibility, nonvis, only_if_ref);
1179 #else
1180 gold_unreachable();
1181 #endif
1182 }
1183 else
1184 gold_unreachable();
1185 }
1186
1187 // Define a symbol as a constant, sized version.
1188
1189 template<int size>
1190 Sized_symbol<size>*
1191 Symbol_table::do_define_as_constant(
1192 const Target* target,
1193 const char* name,
1194 const char* version,
1195 typename elfcpp::Elf_types<size>::Elf_Addr value,
1196 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1197 elfcpp::STT type,
1198 elfcpp::STB binding,
1199 elfcpp::STV visibility,
1200 unsigned char nonvis,
1201 bool only_if_ref)
1202 {
1203 Sized_symbol<size>* sym;
1204 Sized_symbol<size>* oldsym;
1205
1206 if (parameters->is_big_endian())
1207 {
1208 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1209 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1210 target, &name, &version, only_if_ref, &oldsym
1211 SELECT_SIZE_ENDIAN(size, true));
1212 #else
1213 gold_unreachable();
1214 #endif
1215 }
1216 else
1217 {
1218 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1219 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1220 target, &name, &version, only_if_ref, &oldsym
1221 SELECT_SIZE_ENDIAN(size, false));
1222 #else
1223 gold_unreachable();
1224 #endif
1225 }
1226
1227 if (sym == NULL)
1228 return NULL;
1229
1230 gold_assert(version == NULL || oldsym != NULL);
1231 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1232
1233 if (oldsym != NULL
1234 && Symbol_table::should_override_with_special(oldsym))
1235 this->override_with_special(oldsym, sym);
1236
1237 return sym;
1238 }
1239
1240 // Define a set of symbols in output sections.
1241
1242 void
1243 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1244 int count, const Define_symbol_in_section* p)
1245 {
1246 for (int i = 0; i < count; ++i, ++p)
1247 {
1248 Output_section* os = layout->find_output_section(p->output_section);
1249 if (os != NULL)
1250 this->define_in_output_data(target, p->name, NULL, os, p->value,
1251 p->size, p->type, p->binding,
1252 p->visibility, p->nonvis,
1253 p->offset_is_from_end, p->only_if_ref);
1254 else
1255 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1256 p->binding, p->visibility, p->nonvis,
1257 p->only_if_ref);
1258 }
1259 }
1260
1261 // Define a set of symbols in output segments.
1262
1263 void
1264 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1265 int count, const Define_symbol_in_segment* p)
1266 {
1267 for (int i = 0; i < count; ++i, ++p)
1268 {
1269 Output_segment* os = layout->find_output_segment(p->segment_type,
1270 p->segment_flags_set,
1271 p->segment_flags_clear);
1272 if (os != NULL)
1273 this->define_in_output_segment(target, p->name, NULL, os, p->value,
1274 p->size, p->type, p->binding,
1275 p->visibility, p->nonvis,
1276 p->offset_base, p->only_if_ref);
1277 else
1278 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1279 p->binding, p->visibility, p->nonvis,
1280 p->only_if_ref);
1281 }
1282 }
1283
1284 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1285 // symbol should be defined--typically a .dyn.bss section. VALUE is
1286 // the offset within POSD.
1287
1288 template<int size>
1289 void
1290 Symbol_table::define_with_copy_reloc(const Target* target,
1291 Sized_symbol<size>* csym,
1292 Output_data* posd, uint64_t value)
1293 {
1294 gold_assert(csym->is_from_dynobj());
1295 gold_assert(!csym->is_copied_from_dynobj());
1296 Object* object = csym->object();
1297 gold_assert(object->is_dynamic());
1298 Dynobj* dynobj = static_cast<Dynobj*>(object);
1299
1300 // Our copied variable has to override any variable in a shared
1301 // library.
1302 elfcpp::STB binding = csym->binding();
1303 if (binding == elfcpp::STB_WEAK)
1304 binding = elfcpp::STB_GLOBAL;
1305
1306 this->define_in_output_data(target, csym->name(), csym->version(),
1307 posd, value, csym->symsize(),
1308 csym->type(), binding,
1309 csym->visibility(), csym->nonvis(),
1310 false, false);
1311
1312 csym->set_is_copied_from_dynobj();
1313 csym->set_needs_dynsym_entry();
1314
1315 this->copied_symbol_dynobjs_[csym] = dynobj;
1316
1317 // We have now defined all aliases, but we have not entered them all
1318 // in the copied_symbol_dynobjs_ map.
1319 if (csym->has_alias())
1320 {
1321 Symbol* sym = csym;
1322 while (true)
1323 {
1324 sym = this->weak_aliases_[sym];
1325 if (sym == csym)
1326 break;
1327 gold_assert(sym->output_data() == posd);
1328
1329 sym->set_is_copied_from_dynobj();
1330 this->copied_symbol_dynobjs_[sym] = dynobj;
1331 }
1332 }
1333 }
1334
1335 // SYM is defined using a COPY reloc. Return the dynamic object where
1336 // the original definition was found.
1337
1338 Dynobj*
1339 Symbol_table::get_copy_source(const Symbol* sym) const
1340 {
1341 gold_assert(sym->is_copied_from_dynobj());
1342 Copied_symbol_dynobjs::const_iterator p =
1343 this->copied_symbol_dynobjs_.find(sym);
1344 gold_assert(p != this->copied_symbol_dynobjs_.end());
1345 return p->second;
1346 }
1347
1348 // Set the dynamic symbol indexes. INDEX is the index of the first
1349 // global dynamic symbol. Pointers to the symbols are stored into the
1350 // vector SYMS. The names are added to DYNPOOL. This returns an
1351 // updated dynamic symbol index.
1352
1353 unsigned int
1354 Symbol_table::set_dynsym_indexes(const Target* target,
1355 unsigned int index,
1356 std::vector<Symbol*>* syms,
1357 Stringpool* dynpool,
1358 Versions* versions)
1359 {
1360 for (Symbol_table_type::iterator p = this->table_.begin();
1361 p != this->table_.end();
1362 ++p)
1363 {
1364 Symbol* sym = p->second;
1365
1366 // Note that SYM may already have a dynamic symbol index, since
1367 // some symbols appear more than once in the symbol table, with
1368 // and without a version.
1369
1370 if (!sym->should_add_dynsym_entry())
1371 sym->set_dynsym_index(-1U);
1372 else if (!sym->has_dynsym_index())
1373 {
1374 sym->set_dynsym_index(index);
1375 ++index;
1376 syms->push_back(sym);
1377 dynpool->add(sym->name(), false, NULL);
1378
1379 // Record any version information.
1380 if (sym->version() != NULL)
1381 versions->record_version(this, dynpool, sym);
1382 }
1383 }
1384
1385 // Finish up the versions. In some cases this may add new dynamic
1386 // symbols.
1387 index = versions->finalize(target, this, index, syms);
1388
1389 return index;
1390 }
1391
1392 // Set the final values for all the symbols. The index of the first
1393 // global symbol in the output file is INDEX. Record the file offset
1394 // OFF. Add their names to POOL. Return the new file offset.
1395
1396 off_t
1397 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1398 size_t dyn_global_index, size_t dyncount,
1399 Stringpool* pool)
1400 {
1401 off_t ret;
1402
1403 gold_assert(index != 0);
1404 this->first_global_index_ = index;
1405
1406 this->dynamic_offset_ = dynoff;
1407 this->first_dynamic_global_index_ = dyn_global_index;
1408 this->dynamic_count_ = dyncount;
1409
1410 if (parameters->get_size() == 32)
1411 {
1412 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1413 ret = this->sized_finalize<32>(index, off, pool);
1414 #else
1415 gold_unreachable();
1416 #endif
1417 }
1418 else if (parameters->get_size() == 64)
1419 {
1420 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1421 ret = this->sized_finalize<64>(index, off, pool);
1422 #else
1423 gold_unreachable();
1424 #endif
1425 }
1426 else
1427 gold_unreachable();
1428
1429 // Now that we have the final symbol table, we can reliably note
1430 // which symbols should get warnings.
1431 this->warnings_.note_warnings(this);
1432
1433 return ret;
1434 }
1435
1436 // Set the final value for all the symbols. This is called after
1437 // Layout::finalize, so all the output sections have their final
1438 // address.
1439
1440 template<int size>
1441 off_t
1442 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1443 {
1444 off = align_address(off, size >> 3);
1445 this->offset_ = off;
1446
1447 size_t orig_index = index;
1448
1449 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1450 for (Symbol_table_type::iterator p = this->table_.begin();
1451 p != this->table_.end();
1452 ++p)
1453 {
1454 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1455
1456 // FIXME: Here we need to decide which symbols should go into
1457 // the output file, based on --strip.
1458
1459 // The default version of a symbol may appear twice in the
1460 // symbol table. We only need to finalize it once.
1461 if (sym->has_symtab_index())
1462 continue;
1463
1464 if (!sym->in_reg())
1465 {
1466 gold_assert(!sym->has_symtab_index());
1467 sym->set_symtab_index(-1U);
1468 gold_assert(sym->dynsym_index() == -1U);
1469 continue;
1470 }
1471
1472 typename Sized_symbol<size>::Value_type value;
1473
1474 switch (sym->source())
1475 {
1476 case Symbol::FROM_OBJECT:
1477 {
1478 unsigned int shndx = sym->shndx();
1479
1480 // FIXME: We need some target specific support here.
1481 if (shndx >= elfcpp::SHN_LORESERVE
1482 && shndx != elfcpp::SHN_ABS)
1483 {
1484 gold_error(_("%s: unsupported symbol section 0x%x"),
1485 sym->demangled_name().c_str(), shndx);
1486 shndx = elfcpp::SHN_UNDEF;
1487 }
1488
1489 Object* symobj = sym->object();
1490 if (symobj->is_dynamic())
1491 {
1492 value = 0;
1493 shndx = elfcpp::SHN_UNDEF;
1494 }
1495 else if (shndx == elfcpp::SHN_UNDEF)
1496 value = 0;
1497 else if (shndx == elfcpp::SHN_ABS)
1498 value = sym->value();
1499 else
1500 {
1501 Relobj* relobj = static_cast<Relobj*>(symobj);
1502 off_t secoff;
1503 Output_section* os = relobj->output_section(shndx, &secoff);
1504
1505 if (os == NULL)
1506 {
1507 sym->set_symtab_index(-1U);
1508 gold_assert(sym->dynsym_index() == -1U);
1509 continue;
1510 }
1511
1512 value = sym->value() + os->address() + secoff;
1513 }
1514 }
1515 break;
1516
1517 case Symbol::IN_OUTPUT_DATA:
1518 {
1519 Output_data* od = sym->output_data();
1520 value = sym->value() + od->address();
1521 if (sym->offset_is_from_end())
1522 value += od->data_size();
1523 }
1524 break;
1525
1526 case Symbol::IN_OUTPUT_SEGMENT:
1527 {
1528 Output_segment* os = sym->output_segment();
1529 value = sym->value() + os->vaddr();
1530 switch (sym->offset_base())
1531 {
1532 case Symbol::SEGMENT_START:
1533 break;
1534 case Symbol::SEGMENT_END:
1535 value += os->memsz();
1536 break;
1537 case Symbol::SEGMENT_BSS:
1538 value += os->filesz();
1539 break;
1540 default:
1541 gold_unreachable();
1542 }
1543 }
1544 break;
1545
1546 case Symbol::CONSTANT:
1547 value = sym->value();
1548 break;
1549
1550 default:
1551 gold_unreachable();
1552 }
1553
1554 sym->set_value(value);
1555
1556 if (parameters->strip_all())
1557 sym->set_symtab_index(-1U);
1558 else
1559 {
1560 sym->set_symtab_index(index);
1561 pool->add(sym->name(), false, NULL);
1562 ++index;
1563 off += sym_size;
1564 }
1565 }
1566
1567 this->output_count_ = index - orig_index;
1568
1569 return off;
1570 }
1571
1572 // Write out the global symbols.
1573
1574 void
1575 Symbol_table::write_globals(const Input_objects* input_objects,
1576 const Stringpool* sympool,
1577 const Stringpool* dynpool, Output_file* of) const
1578 {
1579 if (parameters->get_size() == 32)
1580 {
1581 if (parameters->is_big_endian())
1582 {
1583 #ifdef HAVE_TARGET_32_BIG
1584 this->sized_write_globals<32, true>(input_objects, sympool,
1585 dynpool, of);
1586 #else
1587 gold_unreachable();
1588 #endif
1589 }
1590 else
1591 {
1592 #ifdef HAVE_TARGET_32_LITTLE
1593 this->sized_write_globals<32, false>(input_objects, sympool,
1594 dynpool, of);
1595 #else
1596 gold_unreachable();
1597 #endif
1598 }
1599 }
1600 else if (parameters->get_size() == 64)
1601 {
1602 if (parameters->is_big_endian())
1603 {
1604 #ifdef HAVE_TARGET_64_BIG
1605 this->sized_write_globals<64, true>(input_objects, sympool,
1606 dynpool, of);
1607 #else
1608 gold_unreachable();
1609 #endif
1610 }
1611 else
1612 {
1613 #ifdef HAVE_TARGET_64_LITTLE
1614 this->sized_write_globals<64, false>(input_objects, sympool,
1615 dynpool, of);
1616 #else
1617 gold_unreachable();
1618 #endif
1619 }
1620 }
1621 else
1622 gold_unreachable();
1623 }
1624
1625 // Write out the global symbols.
1626
1627 template<int size, bool big_endian>
1628 void
1629 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1630 const Stringpool* sympool,
1631 const Stringpool* dynpool,
1632 Output_file* of) const
1633 {
1634 const Target* const target = input_objects->target();
1635
1636 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1637 unsigned int index = this->first_global_index_;
1638 const off_t oview_size = this->output_count_ * sym_size;
1639 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1640
1641 unsigned int dynamic_count = this->dynamic_count_;
1642 off_t dynamic_size = dynamic_count * sym_size;
1643 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1644 unsigned char* dynamic_view;
1645 if (this->dynamic_offset_ == 0)
1646 dynamic_view = NULL;
1647 else
1648 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1649
1650 unsigned char* ps = psyms;
1651 for (Symbol_table_type::const_iterator p = this->table_.begin();
1652 p != this->table_.end();
1653 ++p)
1654 {
1655 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1656
1657 // Possibly warn about unresolved symbols in shared libraries.
1658 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1659
1660 unsigned int sym_index = sym->symtab_index();
1661 unsigned int dynsym_index;
1662 if (dynamic_view == NULL)
1663 dynsym_index = -1U;
1664 else
1665 dynsym_index = sym->dynsym_index();
1666
1667 if (sym_index == -1U && dynsym_index == -1U)
1668 {
1669 // This symbol is not included in the output file.
1670 continue;
1671 }
1672
1673 if (sym_index == index)
1674 ++index;
1675 else if (sym_index != -1U)
1676 {
1677 // We have already seen this symbol, because it has a
1678 // default version.
1679 gold_assert(sym_index < index);
1680 if (dynsym_index == -1U)
1681 continue;
1682 sym_index = -1U;
1683 }
1684
1685 unsigned int shndx;
1686 typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1687 switch (sym->source())
1688 {
1689 case Symbol::FROM_OBJECT:
1690 {
1691 unsigned int in_shndx = sym->shndx();
1692
1693 // FIXME: We need some target specific support here.
1694 if (in_shndx >= elfcpp::SHN_LORESERVE
1695 && in_shndx != elfcpp::SHN_ABS)
1696 {
1697 gold_error(_("%s: unsupported symbol section 0x%x"),
1698 sym->demangled_name().c_str(), in_shndx);
1699 shndx = in_shndx;
1700 }
1701 else
1702 {
1703 Object* symobj = sym->object();
1704 if (symobj->is_dynamic())
1705 {
1706 if (sym->needs_dynsym_value())
1707 value = target->dynsym_value(sym);
1708 shndx = elfcpp::SHN_UNDEF;
1709 }
1710 else if (in_shndx == elfcpp::SHN_UNDEF
1711 || in_shndx == elfcpp::SHN_ABS)
1712 shndx = in_shndx;
1713 else
1714 {
1715 Relobj* relobj = static_cast<Relobj*>(symobj);
1716 off_t secoff;
1717 Output_section* os = relobj->output_section(in_shndx,
1718 &secoff);
1719 gold_assert(os != NULL);
1720 shndx = os->out_shndx();
1721 }
1722 }
1723 }
1724 break;
1725
1726 case Symbol::IN_OUTPUT_DATA:
1727 shndx = sym->output_data()->out_shndx();
1728 break;
1729
1730 case Symbol::IN_OUTPUT_SEGMENT:
1731 shndx = elfcpp::SHN_ABS;
1732 break;
1733
1734 case Symbol::CONSTANT:
1735 shndx = elfcpp::SHN_ABS;
1736 break;
1737
1738 default:
1739 gold_unreachable();
1740 }
1741
1742 if (sym_index != -1U)
1743 {
1744 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1745 sym, sym->value(), shndx, sympool, ps
1746 SELECT_SIZE_ENDIAN(size, big_endian));
1747 ps += sym_size;
1748 }
1749
1750 if (dynsym_index != -1U)
1751 {
1752 dynsym_index -= first_dynamic_global_index;
1753 gold_assert(dynsym_index < dynamic_count);
1754 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1755 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1756 sym, value, shndx, dynpool, pd
1757 SELECT_SIZE_ENDIAN(size, big_endian));
1758 }
1759 }
1760
1761 gold_assert(ps - psyms == oview_size);
1762
1763 of->write_output_view(this->offset_, oview_size, psyms);
1764 if (dynamic_view != NULL)
1765 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1766 }
1767
1768 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1769 // strtab holding the name.
1770
1771 template<int size, bool big_endian>
1772 void
1773 Symbol_table::sized_write_symbol(
1774 Sized_symbol<size>* sym,
1775 typename elfcpp::Elf_types<size>::Elf_Addr value,
1776 unsigned int shndx,
1777 const Stringpool* pool,
1778 unsigned char* p
1779 ACCEPT_SIZE_ENDIAN) const
1780 {
1781 elfcpp::Sym_write<size, big_endian> osym(p);
1782 osym.put_st_name(pool->get_offset(sym->name()));
1783 osym.put_st_value(value);
1784 osym.put_st_size(sym->symsize());
1785 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1786 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1787 osym.put_st_shndx(shndx);
1788 }
1789
1790 // Check for unresolved symbols in shared libraries. This is
1791 // controlled by the --allow-shlib-undefined option.
1792
1793 // We only warn about libraries for which we have seen all the
1794 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
1795 // which were not seen in this link. If we didn't see a DT_NEEDED
1796 // entry, we aren't going to be able to reliably report whether the
1797 // symbol is undefined.
1798
1799 // We also don't warn about libraries found in the system library
1800 // directory (the directory were we find libc.so); we assume that
1801 // those libraries are OK. This heuristic avoids problems in
1802 // GNU/Linux, in which -ldl can have undefined references satisfied by
1803 // ld-linux.so.
1804
1805 inline void
1806 Symbol_table::warn_about_undefined_dynobj_symbol(
1807 const Input_objects* input_objects,
1808 Symbol* sym) const
1809 {
1810 if (sym->source() == Symbol::FROM_OBJECT
1811 && sym->object()->is_dynamic()
1812 && sym->shndx() == elfcpp::SHN_UNDEF
1813 && sym->binding() != elfcpp::STB_WEAK
1814 && !parameters->allow_shlib_undefined()
1815 && !input_objects->target()->is_defined_by_abi(sym)
1816 && !input_objects->found_in_system_library_directory(sym->object()))
1817 {
1818 // A very ugly cast.
1819 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1820 if (!dynobj->has_unknown_needed_entries())
1821 gold_error(_("%s: undefined reference to '%s'"),
1822 sym->object()->name().c_str(),
1823 sym->demangled_name().c_str());
1824 }
1825 }
1826
1827 // Write out a section symbol. Return the update offset.
1828
1829 void
1830 Symbol_table::write_section_symbol(const Output_section *os,
1831 Output_file* of,
1832 off_t offset) const
1833 {
1834 if (parameters->get_size() == 32)
1835 {
1836 if (parameters->is_big_endian())
1837 {
1838 #ifdef HAVE_TARGET_32_BIG
1839 this->sized_write_section_symbol<32, true>(os, of, offset);
1840 #else
1841 gold_unreachable();
1842 #endif
1843 }
1844 else
1845 {
1846 #ifdef HAVE_TARGET_32_LITTLE
1847 this->sized_write_section_symbol<32, false>(os, of, offset);
1848 #else
1849 gold_unreachable();
1850 #endif
1851 }
1852 }
1853 else if (parameters->get_size() == 64)
1854 {
1855 if (parameters->is_big_endian())
1856 {
1857 #ifdef HAVE_TARGET_64_BIG
1858 this->sized_write_section_symbol<64, true>(os, of, offset);
1859 #else
1860 gold_unreachable();
1861 #endif
1862 }
1863 else
1864 {
1865 #ifdef HAVE_TARGET_64_LITTLE
1866 this->sized_write_section_symbol<64, false>(os, of, offset);
1867 #else
1868 gold_unreachable();
1869 #endif
1870 }
1871 }
1872 else
1873 gold_unreachable();
1874 }
1875
1876 // Write out a section symbol, specialized for size and endianness.
1877
1878 template<int size, bool big_endian>
1879 void
1880 Symbol_table::sized_write_section_symbol(const Output_section* os,
1881 Output_file* of,
1882 off_t offset) const
1883 {
1884 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1885
1886 unsigned char* pov = of->get_output_view(offset, sym_size);
1887
1888 elfcpp::Sym_write<size, big_endian> osym(pov);
1889 osym.put_st_name(0);
1890 osym.put_st_value(os->address());
1891 osym.put_st_size(0);
1892 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1893 elfcpp::STT_SECTION));
1894 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1895 osym.put_st_shndx(os->out_shndx());
1896
1897 of->write_output_view(offset, sym_size, pov);
1898 }
1899
1900 // We check for ODR violations by looking for symbols with the same
1901 // name for which the debugging information reports that they were
1902 // defined in different source locations. When comparing the source
1903 // location, we consider instances with the same base filename and
1904 // line number to be the same. This is because different object
1905 // files/shared libraries can include the same header file using
1906 // different paths, and we don't want to report an ODR violation in
1907 // that case.
1908
1909 // This struct is used to compare line information, as returned by
1910 // Dwarf_line_info::one_addr2line. It imlements a < comparison
1911 // operator used with std::set.
1912
1913 struct Odr_violation_compare
1914 {
1915 bool
1916 operator()(const std::string& s1, const std::string& s2) const
1917 {
1918 std::string::size_type pos1 = s1.rfind('/');
1919 std::string::size_type pos2 = s2.rfind('/');
1920 if (pos1 == std::string::npos
1921 || pos2 == std::string::npos)
1922 return s1 < s2;
1923 return s1.compare(pos1, std::string::npos,
1924 s2, pos2, std::string::npos) < 0;
1925 }
1926 };
1927
1928 // Check candidate_odr_violations_ to find symbols with the same name
1929 // but apparently different definitions (different source-file/line-no).
1930
1931 void
1932 Symbol_table::detect_odr_violations(const char* output_file_name) const
1933 {
1934 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
1935 it != candidate_odr_violations_.end();
1936 ++it)
1937 {
1938 const char* symbol_name = it->first;
1939 // We use a sorted set so the output is deterministic.
1940 std::set<std::string, Odr_violation_compare> line_nums;
1941
1942 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
1943 locs = it->second.begin();
1944 locs != it->second.end();
1945 ++locs)
1946 {
1947 // We need to lock the object in order to read it. This
1948 // means that we can not run inside a Task. If we want to
1949 // run this in a Task for better performance, we will need
1950 // one Task for object, plus appropriate locking to ensure
1951 // that we don't conflict with other uses of the object.
1952 locs->object->lock();
1953 std::string lineno = Dwarf_line_info::one_addr2line(
1954 locs->object, locs->shndx, locs->offset);
1955 locs->object->unlock();
1956 if (!lineno.empty())
1957 line_nums.insert(lineno);
1958 }
1959
1960 if (line_nums.size() > 1)
1961 {
1962 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
1963 "places (possible ODR violation):"),
1964 output_file_name, demangle(symbol_name).c_str());
1965 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
1966 it2 != line_nums.end();
1967 ++it2)
1968 fprintf(stderr, " %s\n", it2->c_str());
1969 }
1970 }
1971 }
1972
1973 // Warnings functions.
1974
1975 // Add a new warning.
1976
1977 void
1978 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1979 unsigned int shndx)
1980 {
1981 name = symtab->canonicalize_name(name);
1982 this->warnings_[name].set(obj, shndx);
1983 }
1984
1985 // Look through the warnings and mark the symbols for which we should
1986 // warn. This is called during Layout::finalize when we know the
1987 // sources for all the symbols.
1988
1989 void
1990 Warnings::note_warnings(Symbol_table* symtab)
1991 {
1992 for (Warning_table::iterator p = this->warnings_.begin();
1993 p != this->warnings_.end();
1994 ++p)
1995 {
1996 Symbol* sym = symtab->lookup(p->first, NULL);
1997 if (sym != NULL
1998 && sym->source() == Symbol::FROM_OBJECT
1999 && sym->object() == p->second.object)
2000 {
2001 sym->set_has_warning();
2002
2003 // Read the section contents to get the warning text. It
2004 // would be nicer if we only did this if we have to actually
2005 // issue a warning. Unfortunately, warnings are issued as
2006 // we relocate sections. That means that we can not lock
2007 // the object then, as we might try to issue the same
2008 // warning multiple times simultaneously.
2009 {
2010 Task_locker_obj<Object> tl(*p->second.object);
2011 const unsigned char* c;
2012 off_t len;
2013 c = p->second.object->section_contents(p->second.shndx, &len,
2014 false);
2015 p->second.set_text(reinterpret_cast<const char*>(c), len);
2016 }
2017 }
2018 }
2019 }
2020
2021 // Issue a warning. This is called when we see a relocation against a
2022 // symbol for which has a warning.
2023
2024 template<int size, bool big_endian>
2025 void
2026 Warnings::issue_warning(const Symbol* sym,
2027 const Relocate_info<size, big_endian>* relinfo,
2028 size_t relnum, off_t reloffset) const
2029 {
2030 gold_assert(sym->has_warning());
2031 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2032 gold_assert(p != this->warnings_.end());
2033 gold_warning_at_location(relinfo, relnum, reloffset,
2034 "%s", p->second.text.c_str());
2035 }
2036
2037 // Instantiate the templates we need. We could use the configure
2038 // script to restrict this to only the ones needed for implemented
2039 // targets.
2040
2041 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2042 template
2043 void
2044 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2045 #endif
2046
2047 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2048 template
2049 void
2050 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2051 #endif
2052
2053 #ifdef HAVE_TARGET_32_LITTLE
2054 template
2055 void
2056 Symbol_table::add_from_relobj<32, false>(
2057 Sized_relobj<32, false>* relobj,
2058 const unsigned char* syms,
2059 size_t count,
2060 const char* sym_names,
2061 size_t sym_name_size,
2062 Sized_relobj<32, true>::Symbols* sympointers);
2063 #endif
2064
2065 #ifdef HAVE_TARGET_32_BIG
2066 template
2067 void
2068 Symbol_table::add_from_relobj<32, true>(
2069 Sized_relobj<32, true>* relobj,
2070 const unsigned char* syms,
2071 size_t count,
2072 const char* sym_names,
2073 size_t sym_name_size,
2074 Sized_relobj<32, false>::Symbols* sympointers);
2075 #endif
2076
2077 #ifdef HAVE_TARGET_64_LITTLE
2078 template
2079 void
2080 Symbol_table::add_from_relobj<64, false>(
2081 Sized_relobj<64, false>* relobj,
2082 const unsigned char* syms,
2083 size_t count,
2084 const char* sym_names,
2085 size_t sym_name_size,
2086 Sized_relobj<64, true>::Symbols* sympointers);
2087 #endif
2088
2089 #ifdef HAVE_TARGET_64_BIG
2090 template
2091 void
2092 Symbol_table::add_from_relobj<64, true>(
2093 Sized_relobj<64, true>* relobj,
2094 const unsigned char* syms,
2095 size_t count,
2096 const char* sym_names,
2097 size_t sym_name_size,
2098 Sized_relobj<64, false>::Symbols* sympointers);
2099 #endif
2100
2101 #ifdef HAVE_TARGET_32_LITTLE
2102 template
2103 void
2104 Symbol_table::add_from_dynobj<32, false>(
2105 Sized_dynobj<32, false>* dynobj,
2106 const unsigned char* syms,
2107 size_t count,
2108 const char* sym_names,
2109 size_t sym_name_size,
2110 const unsigned char* versym,
2111 size_t versym_size,
2112 const std::vector<const char*>* version_map);
2113 #endif
2114
2115 #ifdef HAVE_TARGET_32_BIG
2116 template
2117 void
2118 Symbol_table::add_from_dynobj<32, true>(
2119 Sized_dynobj<32, true>* dynobj,
2120 const unsigned char* syms,
2121 size_t count,
2122 const char* sym_names,
2123 size_t sym_name_size,
2124 const unsigned char* versym,
2125 size_t versym_size,
2126 const std::vector<const char*>* version_map);
2127 #endif
2128
2129 #ifdef HAVE_TARGET_64_LITTLE
2130 template
2131 void
2132 Symbol_table::add_from_dynobj<64, false>(
2133 Sized_dynobj<64, false>* dynobj,
2134 const unsigned char* syms,
2135 size_t count,
2136 const char* sym_names,
2137 size_t sym_name_size,
2138 const unsigned char* versym,
2139 size_t versym_size,
2140 const std::vector<const char*>* version_map);
2141 #endif
2142
2143 #ifdef HAVE_TARGET_64_BIG
2144 template
2145 void
2146 Symbol_table::add_from_dynobj<64, true>(
2147 Sized_dynobj<64, true>* dynobj,
2148 const unsigned char* syms,
2149 size_t count,
2150 const char* sym_names,
2151 size_t sym_name_size,
2152 const unsigned char* versym,
2153 size_t versym_size,
2154 const std::vector<const char*>* version_map);
2155 #endif
2156
2157 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2158 template
2159 void
2160 Symbol_table::define_with_copy_reloc<32>(const Target* target,
2161 Sized_symbol<32>* sym,
2162 Output_data* posd, uint64_t value);
2163 #endif
2164
2165 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2166 template
2167 void
2168 Symbol_table::define_with_copy_reloc<64>(const Target* target,
2169 Sized_symbol<64>* sym,
2170 Output_data* posd, uint64_t value);
2171 #endif
2172
2173 #ifdef HAVE_TARGET_32_LITTLE
2174 template
2175 void
2176 Warnings::issue_warning<32, false>(const Symbol* sym,
2177 const Relocate_info<32, false>* relinfo,
2178 size_t relnum, off_t reloffset) const;
2179 #endif
2180
2181 #ifdef HAVE_TARGET_32_BIG
2182 template
2183 void
2184 Warnings::issue_warning<32, true>(const Symbol* sym,
2185 const Relocate_info<32, true>* relinfo,
2186 size_t relnum, off_t reloffset) const;
2187 #endif
2188
2189 #ifdef HAVE_TARGET_64_LITTLE
2190 template
2191 void
2192 Warnings::issue_warning<64, false>(const Symbol* sym,
2193 const Relocate_info<64, false>* relinfo,
2194 size_t relnum, off_t reloffset) const;
2195 #endif
2196
2197 #ifdef HAVE_TARGET_64_BIG
2198 template
2199 void
2200 Warnings::issue_warning<64, true>(const Symbol* sym,
2201 const Relocate_info<64, true>* relinfo,
2202 size_t relnum, off_t reloffset) const;
2203 #endif
2204
2205 } // End namespace gold.
This page took 0.189171 seconds and 4 git commands to generate.