daily update
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol. This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
53 {
54 this->name_ = name;
55 this->version_ = version;
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
58 this->got_offsets_.init();
59 this->plt_offset_ = 0;
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
67 this->has_alias_ = false;
68 this->needs_dynsym_entry_ = false;
69 this->in_reg_ = false;
70 this->in_dyn_ = false;
71 this->has_plt_offset_ = false;
72 this->has_warning_ = false;
73 this->is_copied_from_dynobj_ = false;
74 this->is_forced_local_ = false;
75 this->is_ordinary_shndx_ = false;
76 }
77
78 // Return the demangled version of the symbol's name, but only
79 // if the --demangle flag was set.
80
81 static std::string
82 demangle(const char* name)
83 {
84 if (!parameters->options().do_demangle())
85 return name;
86
87 // cplus_demangle allocates memory for the result it returns,
88 // and returns NULL if the name is already demangled.
89 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
90 if (demangled_name == NULL)
91 return name;
92
93 std::string retval(demangled_name);
94 free(demangled_name);
95 return retval;
96 }
97
98 std::string
99 Symbol::demangled_name() const
100 {
101 return demangle(this->name());
102 }
103
104 // Initialize the fields in the base class Symbol for SYM in OBJECT.
105
106 template<int size, bool big_endian>
107 void
108 Symbol::init_base_object(const char* name, const char* version, Object* object,
109 const elfcpp::Sym<size, big_endian>& sym,
110 unsigned int st_shndx, bool is_ordinary)
111 {
112 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
113 sym.get_st_visibility(), sym.get_st_nonvis());
114 this->u_.from_object.object = object;
115 this->u_.from_object.shndx = st_shndx;
116 this->is_ordinary_shndx_ = is_ordinary;
117 this->source_ = FROM_OBJECT;
118 this->in_reg_ = !object->is_dynamic();
119 this->in_dyn_ = object->is_dynamic();
120 }
121
122 // Initialize the fields in the base class Symbol for a symbol defined
123 // in an Output_data.
124
125 void
126 Symbol::init_base_output_data(const char* name, const char* version,
127 Output_data* od, elfcpp::STT type,
128 elfcpp::STB binding, elfcpp::STV visibility,
129 unsigned char nonvis, bool offset_is_from_end)
130 {
131 this->init_fields(name, version, type, binding, visibility, nonvis);
132 this->u_.in_output_data.output_data = od;
133 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
134 this->source_ = IN_OUTPUT_DATA;
135 this->in_reg_ = true;
136 }
137
138 // Initialize the fields in the base class Symbol for a symbol defined
139 // in an Output_segment.
140
141 void
142 Symbol::init_base_output_segment(const char* name, const char* version,
143 Output_segment* os, elfcpp::STT type,
144 elfcpp::STB binding, elfcpp::STV visibility,
145 unsigned char nonvis,
146 Segment_offset_base offset_base)
147 {
148 this->init_fields(name, version, type, binding, visibility, nonvis);
149 this->u_.in_output_segment.output_segment = os;
150 this->u_.in_output_segment.offset_base = offset_base;
151 this->source_ = IN_OUTPUT_SEGMENT;
152 this->in_reg_ = true;
153 }
154
155 // Initialize the fields in the base class Symbol for a symbol defined
156 // as a constant.
157
158 void
159 Symbol::init_base_constant(const char* name, const char* version,
160 elfcpp::STT type, elfcpp::STB binding,
161 elfcpp::STV visibility, unsigned char nonvis)
162 {
163 this->init_fields(name, version, type, binding, visibility, nonvis);
164 this->source_ = IS_CONSTANT;
165 this->in_reg_ = true;
166 }
167
168 // Initialize the fields in the base class Symbol for an undefined
169 // symbol.
170
171 void
172 Symbol::init_base_undefined(const char* name, const char* version,
173 elfcpp::STT type, elfcpp::STB binding,
174 elfcpp::STV visibility, unsigned char nonvis)
175 {
176 this->init_fields(name, version, type, binding, visibility, nonvis);
177 this->source_ = IS_UNDEFINED;
178 this->in_reg_ = true;
179 }
180
181 // Allocate a common symbol in the base.
182
183 void
184 Symbol::allocate_base_common(Output_data* od)
185 {
186 gold_assert(this->is_common());
187 this->source_ = IN_OUTPUT_DATA;
188 this->u_.in_output_data.output_data = od;
189 this->u_.in_output_data.offset_is_from_end = false;
190 }
191
192 // Initialize the fields in Sized_symbol for SYM in OBJECT.
193
194 template<int size>
195 template<bool big_endian>
196 void
197 Sized_symbol<size>::init_object(const char* name, const char* version,
198 Object* object,
199 const elfcpp::Sym<size, big_endian>& sym,
200 unsigned int st_shndx, bool is_ordinary)
201 {
202 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
203 this->value_ = sym.get_st_value();
204 this->symsize_ = sym.get_st_size();
205 }
206
207 // Initialize the fields in Sized_symbol for a symbol defined in an
208 // Output_data.
209
210 template<int size>
211 void
212 Sized_symbol<size>::init_output_data(const char* name, const char* version,
213 Output_data* od, Value_type value,
214 Size_type symsize, elfcpp::STT type,
215 elfcpp::STB binding,
216 elfcpp::STV visibility,
217 unsigned char nonvis,
218 bool offset_is_from_end)
219 {
220 this->init_base_output_data(name, version, od, type, binding, visibility,
221 nonvis, offset_is_from_end);
222 this->value_ = value;
223 this->symsize_ = symsize;
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_segment.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
232 Output_segment* os, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 Segment_offset_base offset_base)
238 {
239 this->init_base_output_segment(name, version, os, type, binding, visibility,
240 nonvis, offset_base);
241 this->value_ = value;
242 this->symsize_ = symsize;
243 }
244
245 // Initialize the fields in Sized_symbol for a symbol defined as a
246 // constant.
247
248 template<int size>
249 void
250 Sized_symbol<size>::init_constant(const char* name, const char* version,
251 Value_type value, Size_type symsize,
252 elfcpp::STT type, elfcpp::STB binding,
253 elfcpp::STV visibility, unsigned char nonvis)
254 {
255 this->init_base_constant(name, version, type, binding, visibility, nonvis);
256 this->value_ = value;
257 this->symsize_ = symsize;
258 }
259
260 // Initialize the fields in Sized_symbol for an undefined symbol.
261
262 template<int size>
263 void
264 Sized_symbol<size>::init_undefined(const char* name, const char* version,
265 elfcpp::STT type, elfcpp::STB binding,
266 elfcpp::STV visibility, unsigned char nonvis)
267 {
268 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
269 this->value_ = 0;
270 this->symsize_ = 0;
271 }
272
273 // Allocate a common symbol.
274
275 template<int size>
276 void
277 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
278 {
279 this->allocate_base_common(od);
280 this->value_ = value;
281 }
282
283 // Return true if this symbol should be added to the dynamic symbol
284 // table.
285
286 inline bool
287 Symbol::should_add_dynsym_entry() const
288 {
289 // If the symbol is used by a dynamic relocation, we need to add it.
290 if (this->needs_dynsym_entry())
291 return true;
292
293 // If the symbol was forced local in a version script, do not add it.
294 if (this->is_forced_local())
295 return false;
296
297 // If exporting all symbols or building a shared library,
298 // and the symbol is defined in a regular object and is
299 // externally visible, we need to add it.
300 if ((parameters->options().export_dynamic() || parameters->options().shared())
301 && !this->is_from_dynobj()
302 && this->is_externally_visible())
303 return true;
304
305 return false;
306 }
307
308 // Return true if the final value of this symbol is known at link
309 // time.
310
311 bool
312 Symbol::final_value_is_known() const
313 {
314 // If we are not generating an executable, then no final values are
315 // known, since they will change at runtime.
316 if (parameters->options().shared() || parameters->options().relocatable())
317 return false;
318
319 // If the symbol is not from an object file, and is not undefined,
320 // then it is defined, and known.
321 if (this->source_ != FROM_OBJECT)
322 {
323 if (this->source_ != IS_UNDEFINED)
324 return true;
325 }
326 else
327 {
328 // If the symbol is from a dynamic object, then the final value
329 // is not known.
330 if (this->object()->is_dynamic())
331 return false;
332
333 // If the symbol is not undefined (it is defined or common),
334 // then the final value is known.
335 if (!this->is_undefined())
336 return true;
337 }
338
339 // If the symbol is undefined, then whether the final value is known
340 // depends on whether we are doing a static link. If we are doing a
341 // dynamic link, then the final value could be filled in at runtime.
342 // This could reasonably be the case for a weak undefined symbol.
343 return parameters->doing_static_link();
344 }
345
346 // Return the output section where this symbol is defined.
347
348 Output_section*
349 Symbol::output_section() const
350 {
351 switch (this->source_)
352 {
353 case FROM_OBJECT:
354 {
355 unsigned int shndx = this->u_.from_object.shndx;
356 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
357 {
358 gold_assert(!this->u_.from_object.object->is_dynamic());
359 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
360 section_offset_type dummy;
361 return relobj->output_section(shndx, &dummy);
362 }
363 return NULL;
364 }
365
366 case IN_OUTPUT_DATA:
367 return this->u_.in_output_data.output_data->output_section();
368
369 case IN_OUTPUT_SEGMENT:
370 case IS_CONSTANT:
371 case IS_UNDEFINED:
372 return NULL;
373
374 default:
375 gold_unreachable();
376 }
377 }
378
379 // Set the symbol's output section. This is used for symbols defined
380 // in scripts. This should only be called after the symbol table has
381 // been finalized.
382
383 void
384 Symbol::set_output_section(Output_section* os)
385 {
386 switch (this->source_)
387 {
388 case FROM_OBJECT:
389 case IN_OUTPUT_DATA:
390 gold_assert(this->output_section() == os);
391 break;
392 case IS_CONSTANT:
393 this->source_ = IN_OUTPUT_DATA;
394 this->u_.in_output_data.output_data = os;
395 this->u_.in_output_data.offset_is_from_end = false;
396 break;
397 case IN_OUTPUT_SEGMENT:
398 case IS_UNDEFINED:
399 default:
400 gold_unreachable();
401 }
402 }
403
404 // Class Symbol_table.
405
406 Symbol_table::Symbol_table(unsigned int count,
407 const Version_script_info& version_script)
408 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
409 forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
410 version_script_(version_script)
411 {
412 namepool_.reserve(count);
413 }
414
415 Symbol_table::~Symbol_table()
416 {
417 }
418
419 // The hash function. The key values are Stringpool keys.
420
421 inline size_t
422 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
423 {
424 return key.first ^ key.second;
425 }
426
427 // The symbol table key equality function. This is called with
428 // Stringpool keys.
429
430 inline bool
431 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
432 const Symbol_table_key& k2) const
433 {
434 return k1.first == k2.first && k1.second == k2.second;
435 }
436
437 // Make TO a symbol which forwards to FROM.
438
439 void
440 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
441 {
442 gold_assert(from != to);
443 gold_assert(!from->is_forwarder() && !to->is_forwarder());
444 this->forwarders_[from] = to;
445 from->set_forwarder();
446 }
447
448 // Resolve the forwards from FROM, returning the real symbol.
449
450 Symbol*
451 Symbol_table::resolve_forwards(const Symbol* from) const
452 {
453 gold_assert(from->is_forwarder());
454 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
455 this->forwarders_.find(from);
456 gold_assert(p != this->forwarders_.end());
457 return p->second;
458 }
459
460 // Look up a symbol by name.
461
462 Symbol*
463 Symbol_table::lookup(const char* name, const char* version) const
464 {
465 Stringpool::Key name_key;
466 name = this->namepool_.find(name, &name_key);
467 if (name == NULL)
468 return NULL;
469
470 Stringpool::Key version_key = 0;
471 if (version != NULL)
472 {
473 version = this->namepool_.find(version, &version_key);
474 if (version == NULL)
475 return NULL;
476 }
477
478 Symbol_table_key key(name_key, version_key);
479 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
480 if (p == this->table_.end())
481 return NULL;
482 return p->second;
483 }
484
485 // Resolve a Symbol with another Symbol. This is only used in the
486 // unusual case where there are references to both an unversioned
487 // symbol and a symbol with a version, and we then discover that that
488 // version is the default version. Because this is unusual, we do
489 // this the slow way, by converting back to an ELF symbol.
490
491 template<int size, bool big_endian>
492 void
493 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
494 const char* version)
495 {
496 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
497 elfcpp::Sym_write<size, big_endian> esym(buf);
498 // We don't bother to set the st_name or the st_shndx field.
499 esym.put_st_value(from->value());
500 esym.put_st_size(from->symsize());
501 esym.put_st_info(from->binding(), from->type());
502 esym.put_st_other(from->visibility(), from->nonvis());
503 bool is_ordinary;
504 unsigned int shndx = from->shndx(&is_ordinary);
505 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
506 version);
507 if (from->in_reg())
508 to->set_in_reg();
509 if (from->in_dyn())
510 to->set_in_dyn();
511 }
512
513 // Record that a symbol is forced to be local by a version script.
514
515 void
516 Symbol_table::force_local(Symbol* sym)
517 {
518 if (!sym->is_defined() && !sym->is_common())
519 return;
520 if (sym->is_forced_local())
521 {
522 // We already got this one.
523 return;
524 }
525 sym->set_is_forced_local();
526 this->forced_locals_.push_back(sym);
527 }
528
529 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
530 // is only called for undefined symbols, when at least one --wrap
531 // option was used.
532
533 const char*
534 Symbol_table::wrap_symbol(Object* object, const char* name,
535 Stringpool::Key* name_key)
536 {
537 // For some targets, we need to ignore a specific character when
538 // wrapping, and add it back later.
539 char prefix = '\0';
540 if (name[0] == object->target()->wrap_char())
541 {
542 prefix = name[0];
543 ++name;
544 }
545
546 if (parameters->options().is_wrap(name))
547 {
548 // Turn NAME into __wrap_NAME.
549 std::string s;
550 if (prefix != '\0')
551 s += prefix;
552 s += "__wrap_";
553 s += name;
554
555 // This will give us both the old and new name in NAMEPOOL_, but
556 // that is OK. Only the versions we need will wind up in the
557 // real string table in the output file.
558 return this->namepool_.add(s.c_str(), true, name_key);
559 }
560
561 const char* const real_prefix = "__real_";
562 const size_t real_prefix_length = strlen(real_prefix);
563 if (strncmp(name, real_prefix, real_prefix_length) == 0
564 && parameters->options().is_wrap(name + real_prefix_length))
565 {
566 // Turn __real_NAME into NAME.
567 std::string s;
568 if (prefix != '\0')
569 s += prefix;
570 s += name + real_prefix_length;
571 return this->namepool_.add(s.c_str(), true, name_key);
572 }
573
574 return name;
575 }
576
577 // Add one symbol from OBJECT to the symbol table. NAME is symbol
578 // name and VERSION is the version; both are canonicalized. DEF is
579 // whether this is the default version. ST_SHNDX is the symbol's
580 // section index; IS_ORDINARY is whether this is a normal section
581 // rather than a special code.
582
583 // If DEF is true, then this is the definition of a default version of
584 // a symbol. That means that any lookup of NAME/NULL and any lookup
585 // of NAME/VERSION should always return the same symbol. This is
586 // obvious for references, but in particular we want to do this for
587 // definitions: overriding NAME/NULL should also override
588 // NAME/VERSION. If we don't do that, it would be very hard to
589 // override functions in a shared library which uses versioning.
590
591 // We implement this by simply making both entries in the hash table
592 // point to the same Symbol structure. That is easy enough if this is
593 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
594 // that we have seen both already, in which case they will both have
595 // independent entries in the symbol table. We can't simply change
596 // the symbol table entry, because we have pointers to the entries
597 // attached to the object files. So we mark the entry attached to the
598 // object file as a forwarder, and record it in the forwarders_ map.
599 // Note that entries in the hash table will never be marked as
600 // forwarders.
601 //
602 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
603 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
604 // for a special section code. ST_SHNDX may be modified if the symbol
605 // is defined in a section being discarded.
606
607 template<int size, bool big_endian>
608 Sized_symbol<size>*
609 Symbol_table::add_from_object(Object* object,
610 const char *name,
611 Stringpool::Key name_key,
612 const char *version,
613 Stringpool::Key version_key,
614 bool def,
615 const elfcpp::Sym<size, big_endian>& sym,
616 unsigned int st_shndx,
617 bool is_ordinary,
618 unsigned int orig_st_shndx)
619 {
620 // Print a message if this symbol is being traced.
621 if (parameters->options().is_trace_symbol(name))
622 {
623 if (orig_st_shndx == elfcpp::SHN_UNDEF)
624 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
625 else
626 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
627 }
628
629 // For an undefined symbol, we may need to adjust the name using
630 // --wrap.
631 if (orig_st_shndx == elfcpp::SHN_UNDEF
632 && parameters->options().any_wrap())
633 {
634 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
635 if (wrap_name != name)
636 {
637 // If we see a reference to malloc with version GLIBC_2.0,
638 // and we turn it into a reference to __wrap_malloc, then we
639 // discard the version number. Otherwise the user would be
640 // required to specify the correct version for
641 // __wrap_malloc.
642 version = NULL;
643 version_key = 0;
644 name = wrap_name;
645 }
646 }
647
648 Symbol* const snull = NULL;
649 std::pair<typename Symbol_table_type::iterator, bool> ins =
650 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
651 snull));
652
653 std::pair<typename Symbol_table_type::iterator, bool> insdef =
654 std::make_pair(this->table_.end(), false);
655 if (def)
656 {
657 const Stringpool::Key vnull_key = 0;
658 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
659 vnull_key),
660 snull));
661 }
662
663 // ins.first: an iterator, which is a pointer to a pair.
664 // ins.first->first: the key (a pair of name and version).
665 // ins.first->second: the value (Symbol*).
666 // ins.second: true if new entry was inserted, false if not.
667
668 Sized_symbol<size>* ret;
669 bool was_undefined;
670 bool was_common;
671 if (!ins.second)
672 {
673 // We already have an entry for NAME/VERSION.
674 ret = this->get_sized_symbol<size>(ins.first->second);
675 gold_assert(ret != NULL);
676
677 was_undefined = ret->is_undefined();
678 was_common = ret->is_common();
679
680 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
681 version);
682
683 if (def)
684 {
685 if (insdef.second)
686 {
687 // This is the first time we have seen NAME/NULL. Make
688 // NAME/NULL point to NAME/VERSION.
689 insdef.first->second = ret;
690 }
691 else if (insdef.first->second != ret
692 && insdef.first->second->is_undefined())
693 {
694 // This is the unfortunate case where we already have
695 // entries for both NAME/VERSION and NAME/NULL. Note
696 // that we don't want to combine them if the existing
697 // symbol is going to override the new one. FIXME: We
698 // currently just test is_undefined, but this may not do
699 // the right thing if the existing symbol is from a
700 // shared library and the new one is from a regular
701 // object.
702
703 const Sized_symbol<size>* sym2;
704 sym2 = this->get_sized_symbol<size>(insdef.first->second);
705 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
706 this->make_forwarder(insdef.first->second, ret);
707 insdef.first->second = ret;
708 }
709 else
710 def = false;
711 }
712 }
713 else
714 {
715 // This is the first time we have seen NAME/VERSION.
716 gold_assert(ins.first->second == NULL);
717
718 if (def && !insdef.second)
719 {
720 // We already have an entry for NAME/NULL. If we override
721 // it, then change it to NAME/VERSION.
722 ret = this->get_sized_symbol<size>(insdef.first->second);
723
724 was_undefined = ret->is_undefined();
725 was_common = ret->is_common();
726
727 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
728 version);
729 ins.first->second = ret;
730 }
731 else
732 {
733 was_undefined = false;
734 was_common = false;
735
736 Sized_target<size, big_endian>* target =
737 object->sized_target<size, big_endian>();
738 if (!target->has_make_symbol())
739 ret = new Sized_symbol<size>();
740 else
741 {
742 ret = target->make_symbol();
743 if (ret == NULL)
744 {
745 // This means that we don't want a symbol table
746 // entry after all.
747 if (!def)
748 this->table_.erase(ins.first);
749 else
750 {
751 this->table_.erase(insdef.first);
752 // Inserting insdef invalidated ins.
753 this->table_.erase(std::make_pair(name_key,
754 version_key));
755 }
756 return NULL;
757 }
758 }
759
760 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
761
762 ins.first->second = ret;
763 if (def)
764 {
765 // This is the first time we have seen NAME/NULL. Point
766 // it at the new entry for NAME/VERSION.
767 gold_assert(insdef.second);
768 insdef.first->second = ret;
769 }
770 }
771 }
772
773 // Record every time we see a new undefined symbol, to speed up
774 // archive groups.
775 if (!was_undefined && ret->is_undefined())
776 ++this->saw_undefined_;
777
778 // Keep track of common symbols, to speed up common symbol
779 // allocation.
780 if (!was_common && ret->is_common())
781 {
782 if (ret->type() != elfcpp::STT_TLS)
783 this->commons_.push_back(ret);
784 else
785 this->tls_commons_.push_back(ret);
786 }
787
788 if (def)
789 ret->set_is_default();
790 return ret;
791 }
792
793 // Add all the symbols in a relocatable object to the hash table.
794
795 template<int size, bool big_endian>
796 void
797 Symbol_table::add_from_relobj(
798 Sized_relobj<size, big_endian>* relobj,
799 const unsigned char* syms,
800 size_t count,
801 size_t symndx_offset,
802 const char* sym_names,
803 size_t sym_name_size,
804 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
805 {
806 gold_assert(size == relobj->target()->get_size());
807 gold_assert(size == parameters->target().get_size());
808
809 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
810
811 const bool just_symbols = relobj->just_symbols();
812
813 const unsigned char* p = syms;
814 for (size_t i = 0; i < count; ++i, p += sym_size)
815 {
816 elfcpp::Sym<size, big_endian> sym(p);
817
818 unsigned int st_name = sym.get_st_name();
819 if (st_name >= sym_name_size)
820 {
821 relobj->error(_("bad global symbol name offset %u at %zu"),
822 st_name, i);
823 continue;
824 }
825
826 const char* name = sym_names + st_name;
827
828 bool is_ordinary;
829 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
830 sym.get_st_shndx(),
831 &is_ordinary);
832 unsigned int orig_st_shndx = st_shndx;
833 if (!is_ordinary)
834 orig_st_shndx = elfcpp::SHN_UNDEF;
835
836 // A symbol defined in a section which we are not including must
837 // be treated as an undefined symbol.
838 if (st_shndx != elfcpp::SHN_UNDEF
839 && is_ordinary
840 && !relobj->is_section_included(st_shndx))
841 st_shndx = elfcpp::SHN_UNDEF;
842
843 // In an object file, an '@' in the name separates the symbol
844 // name from the version name. If there are two '@' characters,
845 // this is the default version.
846 const char* ver = strchr(name, '@');
847 int namelen = 0;
848 // DEF: is the version default? LOCAL: is the symbol forced local?
849 bool def = false;
850 bool local = false;
851
852 if (ver != NULL)
853 {
854 // The symbol name is of the form foo@VERSION or foo@@VERSION
855 namelen = ver - name;
856 ++ver;
857 if (*ver == '@')
858 {
859 def = true;
860 ++ver;
861 }
862 }
863 // We don't want to assign a version to an undefined symbol,
864 // even if it is listed in the version script. FIXME: What
865 // about a common symbol?
866 else if (!version_script_.empty()
867 && st_shndx != elfcpp::SHN_UNDEF)
868 {
869 // The symbol name did not have a version, but
870 // the version script may assign a version anyway.
871 namelen = strlen(name);
872 def = true;
873 // Check the global: entries from the version script.
874 const std::string& version =
875 version_script_.get_symbol_version(name);
876 if (!version.empty())
877 ver = version.c_str();
878 // Check the local: entries from the version script
879 if (version_script_.symbol_is_local(name))
880 local = true;
881 }
882
883 elfcpp::Sym<size, big_endian>* psym = &sym;
884 unsigned char symbuf[sym_size];
885 elfcpp::Sym<size, big_endian> sym2(symbuf);
886 if (just_symbols)
887 {
888 memcpy(symbuf, p, sym_size);
889 elfcpp::Sym_write<size, big_endian> sw(symbuf);
890 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
891 {
892 // Symbol values in object files are section relative.
893 // This is normally what we want, but since here we are
894 // converting the symbol to absolute we need to add the
895 // section address. The section address in an object
896 // file is normally zero, but people can use a linker
897 // script to change it.
898 sw.put_st_value(sym.get_st_value()
899 + relobj->section_address(orig_st_shndx));
900 }
901 st_shndx = elfcpp::SHN_ABS;
902 is_ordinary = false;
903 psym = &sym2;
904 }
905
906 Sized_symbol<size>* res;
907 if (ver == NULL)
908 {
909 Stringpool::Key name_key;
910 name = this->namepool_.add(name, true, &name_key);
911 res = this->add_from_object(relobj, name, name_key, NULL, 0,
912 false, *psym, st_shndx, is_ordinary,
913 orig_st_shndx);
914 if (local)
915 this->force_local(res);
916 }
917 else
918 {
919 Stringpool::Key name_key;
920 name = this->namepool_.add_with_length(name, namelen, true,
921 &name_key);
922 Stringpool::Key ver_key;
923 ver = this->namepool_.add(ver, true, &ver_key);
924
925 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
926 def, *psym, st_shndx, is_ordinary,
927 orig_st_shndx);
928 }
929
930 (*sympointers)[i] = res;
931 }
932 }
933
934 // Add all the symbols in a dynamic object to the hash table.
935
936 template<int size, bool big_endian>
937 void
938 Symbol_table::add_from_dynobj(
939 Sized_dynobj<size, big_endian>* dynobj,
940 const unsigned char* syms,
941 size_t count,
942 const char* sym_names,
943 size_t sym_name_size,
944 const unsigned char* versym,
945 size_t versym_size,
946 const std::vector<const char*>* version_map)
947 {
948 gold_assert(size == dynobj->target()->get_size());
949 gold_assert(size == parameters->target().get_size());
950
951 if (dynobj->just_symbols())
952 {
953 gold_error(_("--just-symbols does not make sense with a shared object"));
954 return;
955 }
956
957 if (versym != NULL && versym_size / 2 < count)
958 {
959 dynobj->error(_("too few symbol versions"));
960 return;
961 }
962
963 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
964
965 // We keep a list of all STT_OBJECT symbols, so that we can resolve
966 // weak aliases. This is necessary because if the dynamic object
967 // provides the same variable under two names, one of which is a
968 // weak definition, and the regular object refers to the weak
969 // definition, we have to put both the weak definition and the
970 // strong definition into the dynamic symbol table. Given a weak
971 // definition, the only way that we can find the corresponding
972 // strong definition, if any, is to search the symbol table.
973 std::vector<Sized_symbol<size>*> object_symbols;
974
975 const unsigned char* p = syms;
976 const unsigned char* vs = versym;
977 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
978 {
979 elfcpp::Sym<size, big_endian> sym(p);
980
981 // Ignore symbols with local binding or that have
982 // internal or hidden visibility.
983 if (sym.get_st_bind() == elfcpp::STB_LOCAL
984 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
985 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
986 continue;
987
988 // A protected symbol in a shared library must be treated as a
989 // normal symbol when viewed from outside the shared library.
990 // Implement this by overriding the visibility here.
991 elfcpp::Sym<size, big_endian>* psym = &sym;
992 unsigned char symbuf[sym_size];
993 elfcpp::Sym<size, big_endian> sym2(symbuf);
994 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
995 {
996 memcpy(symbuf, p, sym_size);
997 elfcpp::Sym_write<size, big_endian> sw(symbuf);
998 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
999 psym = &sym2;
1000 }
1001
1002 unsigned int st_name = psym->get_st_name();
1003 if (st_name >= sym_name_size)
1004 {
1005 dynobj->error(_("bad symbol name offset %u at %zu"),
1006 st_name, i);
1007 continue;
1008 }
1009
1010 const char* name = sym_names + st_name;
1011
1012 bool is_ordinary;
1013 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1014 &is_ordinary);
1015
1016 Sized_symbol<size>* res;
1017
1018 if (versym == NULL)
1019 {
1020 Stringpool::Key name_key;
1021 name = this->namepool_.add(name, true, &name_key);
1022 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1023 false, *psym, st_shndx, is_ordinary,
1024 st_shndx);
1025 }
1026 else
1027 {
1028 // Read the version information.
1029
1030 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1031
1032 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1033 v &= elfcpp::VERSYM_VERSION;
1034
1035 // The Sun documentation says that V can be VER_NDX_LOCAL,
1036 // or VER_NDX_GLOBAL, or a version index. The meaning of
1037 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1038 // The old GNU linker will happily generate VER_NDX_LOCAL
1039 // for an undefined symbol. I don't know what the Sun
1040 // linker will generate.
1041
1042 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1043 && st_shndx != elfcpp::SHN_UNDEF)
1044 {
1045 // This symbol should not be visible outside the object.
1046 continue;
1047 }
1048
1049 // At this point we are definitely going to add this symbol.
1050 Stringpool::Key name_key;
1051 name = this->namepool_.add(name, true, &name_key);
1052
1053 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1054 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1055 {
1056 // This symbol does not have a version.
1057 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1058 false, *psym, st_shndx, is_ordinary,
1059 st_shndx);
1060 }
1061 else
1062 {
1063 if (v >= version_map->size())
1064 {
1065 dynobj->error(_("versym for symbol %zu out of range: %u"),
1066 i, v);
1067 continue;
1068 }
1069
1070 const char* version = (*version_map)[v];
1071 if (version == NULL)
1072 {
1073 dynobj->error(_("versym for symbol %zu has no name: %u"),
1074 i, v);
1075 continue;
1076 }
1077
1078 Stringpool::Key version_key;
1079 version = this->namepool_.add(version, true, &version_key);
1080
1081 // If this is an absolute symbol, and the version name
1082 // and symbol name are the same, then this is the
1083 // version definition symbol. These symbols exist to
1084 // support using -u to pull in particular versions. We
1085 // do not want to record a version for them.
1086 if (st_shndx == elfcpp::SHN_ABS
1087 && !is_ordinary
1088 && name_key == version_key)
1089 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1090 false, *psym, st_shndx, is_ordinary,
1091 st_shndx);
1092 else
1093 {
1094 const bool def = (!hidden
1095 && st_shndx != elfcpp::SHN_UNDEF);
1096 res = this->add_from_object(dynobj, name, name_key, version,
1097 version_key, def, *psym, st_shndx,
1098 is_ordinary, st_shndx);
1099 }
1100 }
1101 }
1102
1103 // Note that it is possible that RES was overridden by an
1104 // earlier object, in which case it can't be aliased here.
1105 if (st_shndx != elfcpp::SHN_UNDEF
1106 && is_ordinary
1107 && psym->get_st_type() == elfcpp::STT_OBJECT
1108 && res->source() == Symbol::FROM_OBJECT
1109 && res->object() == dynobj)
1110 object_symbols.push_back(res);
1111 }
1112
1113 this->record_weak_aliases(&object_symbols);
1114 }
1115
1116 // This is used to sort weak aliases. We sort them first by section
1117 // index, then by offset, then by weak ahead of strong.
1118
1119 template<int size>
1120 class Weak_alias_sorter
1121 {
1122 public:
1123 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1124 };
1125
1126 template<int size>
1127 bool
1128 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1129 const Sized_symbol<size>* s2) const
1130 {
1131 bool is_ordinary;
1132 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1133 gold_assert(is_ordinary);
1134 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1135 gold_assert(is_ordinary);
1136 if (s1_shndx != s2_shndx)
1137 return s1_shndx < s2_shndx;
1138
1139 if (s1->value() != s2->value())
1140 return s1->value() < s2->value();
1141 if (s1->binding() != s2->binding())
1142 {
1143 if (s1->binding() == elfcpp::STB_WEAK)
1144 return true;
1145 if (s2->binding() == elfcpp::STB_WEAK)
1146 return false;
1147 }
1148 return std::string(s1->name()) < std::string(s2->name());
1149 }
1150
1151 // SYMBOLS is a list of object symbols from a dynamic object. Look
1152 // for any weak aliases, and record them so that if we add the weak
1153 // alias to the dynamic symbol table, we also add the corresponding
1154 // strong symbol.
1155
1156 template<int size>
1157 void
1158 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1159 {
1160 // Sort the vector by section index, then by offset, then by weak
1161 // ahead of strong.
1162 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1163
1164 // Walk through the vector. For each weak definition, record
1165 // aliases.
1166 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1167 symbols->begin();
1168 p != symbols->end();
1169 ++p)
1170 {
1171 if ((*p)->binding() != elfcpp::STB_WEAK)
1172 continue;
1173
1174 // Build a circular list of weak aliases. Each symbol points to
1175 // the next one in the circular list.
1176
1177 Sized_symbol<size>* from_sym = *p;
1178 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1179 for (q = p + 1; q != symbols->end(); ++q)
1180 {
1181 bool dummy;
1182 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1183 || (*q)->value() != from_sym->value())
1184 break;
1185
1186 this->weak_aliases_[from_sym] = *q;
1187 from_sym->set_has_alias();
1188 from_sym = *q;
1189 }
1190
1191 if (from_sym != *p)
1192 {
1193 this->weak_aliases_[from_sym] = *p;
1194 from_sym->set_has_alias();
1195 }
1196
1197 p = q - 1;
1198 }
1199 }
1200
1201 // Create and return a specially defined symbol. If ONLY_IF_REF is
1202 // true, then only create the symbol if there is a reference to it.
1203 // If this does not return NULL, it sets *POLDSYM to the existing
1204 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1205
1206 template<int size, bool big_endian>
1207 Sized_symbol<size>*
1208 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1209 bool only_if_ref,
1210 Sized_symbol<size>** poldsym)
1211 {
1212 Symbol* oldsym;
1213 Sized_symbol<size>* sym;
1214 bool add_to_table = false;
1215 typename Symbol_table_type::iterator add_loc = this->table_.end();
1216
1217 // If the caller didn't give us a version, see if we get one from
1218 // the version script.
1219 if (*pversion == NULL)
1220 {
1221 const std::string& v(this->version_script_.get_symbol_version(*pname));
1222 if (!v.empty())
1223 *pversion = v.c_str();
1224 }
1225
1226 if (only_if_ref)
1227 {
1228 oldsym = this->lookup(*pname, *pversion);
1229 if (oldsym == NULL || !oldsym->is_undefined())
1230 return NULL;
1231
1232 *pname = oldsym->name();
1233 *pversion = oldsym->version();
1234 }
1235 else
1236 {
1237 // Canonicalize NAME and VERSION.
1238 Stringpool::Key name_key;
1239 *pname = this->namepool_.add(*pname, true, &name_key);
1240
1241 Stringpool::Key version_key = 0;
1242 if (*pversion != NULL)
1243 *pversion = this->namepool_.add(*pversion, true, &version_key);
1244
1245 Symbol* const snull = NULL;
1246 std::pair<typename Symbol_table_type::iterator, bool> ins =
1247 this->table_.insert(std::make_pair(std::make_pair(name_key,
1248 version_key),
1249 snull));
1250
1251 if (!ins.second)
1252 {
1253 // We already have a symbol table entry for NAME/VERSION.
1254 oldsym = ins.first->second;
1255 gold_assert(oldsym != NULL);
1256 }
1257 else
1258 {
1259 // We haven't seen this symbol before.
1260 gold_assert(ins.first->second == NULL);
1261 add_to_table = true;
1262 add_loc = ins.first;
1263 oldsym = NULL;
1264 }
1265 }
1266
1267 const Target& target = parameters->target();
1268 if (!target.has_make_symbol())
1269 sym = new Sized_symbol<size>();
1270 else
1271 {
1272 gold_assert(target.get_size() == size);
1273 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1274 typedef Sized_target<size, big_endian> My_target;
1275 const My_target* sized_target =
1276 static_cast<const My_target*>(&target);
1277 sym = sized_target->make_symbol();
1278 if (sym == NULL)
1279 return NULL;
1280 }
1281
1282 if (add_to_table)
1283 add_loc->second = sym;
1284 else
1285 gold_assert(oldsym != NULL);
1286
1287 *poldsym = this->get_sized_symbol<size>(oldsym);
1288
1289 return sym;
1290 }
1291
1292 // Define a symbol based on an Output_data.
1293
1294 Symbol*
1295 Symbol_table::define_in_output_data(const char* name,
1296 const char* version,
1297 Output_data* od,
1298 uint64_t value,
1299 uint64_t symsize,
1300 elfcpp::STT type,
1301 elfcpp::STB binding,
1302 elfcpp::STV visibility,
1303 unsigned char nonvis,
1304 bool offset_is_from_end,
1305 bool only_if_ref)
1306 {
1307 if (parameters->target().get_size() == 32)
1308 {
1309 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1310 return this->do_define_in_output_data<32>(name, version, od,
1311 value, symsize, type, binding,
1312 visibility, nonvis,
1313 offset_is_from_end,
1314 only_if_ref);
1315 #else
1316 gold_unreachable();
1317 #endif
1318 }
1319 else if (parameters->target().get_size() == 64)
1320 {
1321 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1322 return this->do_define_in_output_data<64>(name, version, od,
1323 value, symsize, type, binding,
1324 visibility, nonvis,
1325 offset_is_from_end,
1326 only_if_ref);
1327 #else
1328 gold_unreachable();
1329 #endif
1330 }
1331 else
1332 gold_unreachable();
1333 }
1334
1335 // Define a symbol in an Output_data, sized version.
1336
1337 template<int size>
1338 Sized_symbol<size>*
1339 Symbol_table::do_define_in_output_data(
1340 const char* name,
1341 const char* version,
1342 Output_data* od,
1343 typename elfcpp::Elf_types<size>::Elf_Addr value,
1344 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1345 elfcpp::STT type,
1346 elfcpp::STB binding,
1347 elfcpp::STV visibility,
1348 unsigned char nonvis,
1349 bool offset_is_from_end,
1350 bool only_if_ref)
1351 {
1352 Sized_symbol<size>* sym;
1353 Sized_symbol<size>* oldsym;
1354
1355 if (parameters->target().is_big_endian())
1356 {
1357 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1358 sym = this->define_special_symbol<size, true>(&name, &version,
1359 only_if_ref, &oldsym);
1360 #else
1361 gold_unreachable();
1362 #endif
1363 }
1364 else
1365 {
1366 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1367 sym = this->define_special_symbol<size, false>(&name, &version,
1368 only_if_ref, &oldsym);
1369 #else
1370 gold_unreachable();
1371 #endif
1372 }
1373
1374 if (sym == NULL)
1375 return NULL;
1376
1377 sym->init_output_data(name, version, od, value, symsize, type, binding,
1378 visibility, nonvis, offset_is_from_end);
1379
1380 if (oldsym == NULL)
1381 {
1382 if (binding == elfcpp::STB_LOCAL
1383 || this->version_script_.symbol_is_local(name))
1384 this->force_local(sym);
1385 else if (version != NULL)
1386 sym->set_is_default();
1387 return sym;
1388 }
1389
1390 if (Symbol_table::should_override_with_special(oldsym))
1391 this->override_with_special(oldsym, sym);
1392 delete sym;
1393 return oldsym;
1394 }
1395
1396 // Define a symbol based on an Output_segment.
1397
1398 Symbol*
1399 Symbol_table::define_in_output_segment(const char* name,
1400 const char* version, Output_segment* os,
1401 uint64_t value,
1402 uint64_t symsize,
1403 elfcpp::STT type,
1404 elfcpp::STB binding,
1405 elfcpp::STV visibility,
1406 unsigned char nonvis,
1407 Symbol::Segment_offset_base offset_base,
1408 bool only_if_ref)
1409 {
1410 if (parameters->target().get_size() == 32)
1411 {
1412 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1413 return this->do_define_in_output_segment<32>(name, version, os,
1414 value, symsize, type,
1415 binding, visibility, nonvis,
1416 offset_base, only_if_ref);
1417 #else
1418 gold_unreachable();
1419 #endif
1420 }
1421 else if (parameters->target().get_size() == 64)
1422 {
1423 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1424 return this->do_define_in_output_segment<64>(name, version, os,
1425 value, symsize, type,
1426 binding, visibility, nonvis,
1427 offset_base, only_if_ref);
1428 #else
1429 gold_unreachable();
1430 #endif
1431 }
1432 else
1433 gold_unreachable();
1434 }
1435
1436 // Define a symbol in an Output_segment, sized version.
1437
1438 template<int size>
1439 Sized_symbol<size>*
1440 Symbol_table::do_define_in_output_segment(
1441 const char* name,
1442 const char* version,
1443 Output_segment* os,
1444 typename elfcpp::Elf_types<size>::Elf_Addr value,
1445 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1446 elfcpp::STT type,
1447 elfcpp::STB binding,
1448 elfcpp::STV visibility,
1449 unsigned char nonvis,
1450 Symbol::Segment_offset_base offset_base,
1451 bool only_if_ref)
1452 {
1453 Sized_symbol<size>* sym;
1454 Sized_symbol<size>* oldsym;
1455
1456 if (parameters->target().is_big_endian())
1457 {
1458 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1459 sym = this->define_special_symbol<size, true>(&name, &version,
1460 only_if_ref, &oldsym);
1461 #else
1462 gold_unreachable();
1463 #endif
1464 }
1465 else
1466 {
1467 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1468 sym = this->define_special_symbol<size, false>(&name, &version,
1469 only_if_ref, &oldsym);
1470 #else
1471 gold_unreachable();
1472 #endif
1473 }
1474
1475 if (sym == NULL)
1476 return NULL;
1477
1478 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1479 visibility, nonvis, offset_base);
1480
1481 if (oldsym == NULL)
1482 {
1483 if (binding == elfcpp::STB_LOCAL
1484 || this->version_script_.symbol_is_local(name))
1485 this->force_local(sym);
1486 else if (version != NULL)
1487 sym->set_is_default();
1488 return sym;
1489 }
1490
1491 if (Symbol_table::should_override_with_special(oldsym))
1492 this->override_with_special(oldsym, sym);
1493 delete sym;
1494 return oldsym;
1495 }
1496
1497 // Define a special symbol with a constant value. It is a multiple
1498 // definition error if this symbol is already defined.
1499
1500 Symbol*
1501 Symbol_table::define_as_constant(const char* name,
1502 const char* version,
1503 uint64_t value,
1504 uint64_t symsize,
1505 elfcpp::STT type,
1506 elfcpp::STB binding,
1507 elfcpp::STV visibility,
1508 unsigned char nonvis,
1509 bool only_if_ref,
1510 bool force_override)
1511 {
1512 if (parameters->target().get_size() == 32)
1513 {
1514 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1515 return this->do_define_as_constant<32>(name, version, value,
1516 symsize, type, binding,
1517 visibility, nonvis, only_if_ref,
1518 force_override);
1519 #else
1520 gold_unreachable();
1521 #endif
1522 }
1523 else if (parameters->target().get_size() == 64)
1524 {
1525 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1526 return this->do_define_as_constant<64>(name, version, value,
1527 symsize, type, binding,
1528 visibility, nonvis, only_if_ref,
1529 force_override);
1530 #else
1531 gold_unreachable();
1532 #endif
1533 }
1534 else
1535 gold_unreachable();
1536 }
1537
1538 // Define a symbol as a constant, sized version.
1539
1540 template<int size>
1541 Sized_symbol<size>*
1542 Symbol_table::do_define_as_constant(
1543 const char* name,
1544 const char* version,
1545 typename elfcpp::Elf_types<size>::Elf_Addr value,
1546 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1547 elfcpp::STT type,
1548 elfcpp::STB binding,
1549 elfcpp::STV visibility,
1550 unsigned char nonvis,
1551 bool only_if_ref,
1552 bool force_override)
1553 {
1554 Sized_symbol<size>* sym;
1555 Sized_symbol<size>* oldsym;
1556
1557 if (parameters->target().is_big_endian())
1558 {
1559 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1560 sym = this->define_special_symbol<size, true>(&name, &version,
1561 only_if_ref, &oldsym);
1562 #else
1563 gold_unreachable();
1564 #endif
1565 }
1566 else
1567 {
1568 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1569 sym = this->define_special_symbol<size, false>(&name, &version,
1570 only_if_ref, &oldsym);
1571 #else
1572 gold_unreachable();
1573 #endif
1574 }
1575
1576 if (sym == NULL)
1577 return NULL;
1578
1579 sym->init_constant(name, version, value, symsize, type, binding, visibility,
1580 nonvis);
1581
1582 if (oldsym == NULL)
1583 {
1584 // Version symbols are absolute symbols with name == version.
1585 // We don't want to force them to be local.
1586 if ((version == NULL
1587 || name != version
1588 || value != 0)
1589 && (binding == elfcpp::STB_LOCAL
1590 || this->version_script_.symbol_is_local(name)))
1591 this->force_local(sym);
1592 else if (version != NULL
1593 && (name != version || value != 0))
1594 sym->set_is_default();
1595 return sym;
1596 }
1597
1598 if (force_override || Symbol_table::should_override_with_special(oldsym))
1599 this->override_with_special(oldsym, sym);
1600 delete sym;
1601 return oldsym;
1602 }
1603
1604 // Define a set of symbols in output sections.
1605
1606 void
1607 Symbol_table::define_symbols(const Layout* layout, int count,
1608 const Define_symbol_in_section* p,
1609 bool only_if_ref)
1610 {
1611 for (int i = 0; i < count; ++i, ++p)
1612 {
1613 Output_section* os = layout->find_output_section(p->output_section);
1614 if (os != NULL)
1615 this->define_in_output_data(p->name, NULL, os, p->value,
1616 p->size, p->type, p->binding,
1617 p->visibility, p->nonvis,
1618 p->offset_is_from_end,
1619 only_if_ref || p->only_if_ref);
1620 else
1621 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1622 p->binding, p->visibility, p->nonvis,
1623 only_if_ref || p->only_if_ref,
1624 false);
1625 }
1626 }
1627
1628 // Define a set of symbols in output segments.
1629
1630 void
1631 Symbol_table::define_symbols(const Layout* layout, int count,
1632 const Define_symbol_in_segment* p,
1633 bool only_if_ref)
1634 {
1635 for (int i = 0; i < count; ++i, ++p)
1636 {
1637 Output_segment* os = layout->find_output_segment(p->segment_type,
1638 p->segment_flags_set,
1639 p->segment_flags_clear);
1640 if (os != NULL)
1641 this->define_in_output_segment(p->name, NULL, os, p->value,
1642 p->size, p->type, p->binding,
1643 p->visibility, p->nonvis,
1644 p->offset_base,
1645 only_if_ref || p->only_if_ref);
1646 else
1647 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1648 p->binding, p->visibility, p->nonvis,
1649 only_if_ref || p->only_if_ref,
1650 false);
1651 }
1652 }
1653
1654 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1655 // symbol should be defined--typically a .dyn.bss section. VALUE is
1656 // the offset within POSD.
1657
1658 template<int size>
1659 void
1660 Symbol_table::define_with_copy_reloc(
1661 Sized_symbol<size>* csym,
1662 Output_data* posd,
1663 typename elfcpp::Elf_types<size>::Elf_Addr value)
1664 {
1665 gold_assert(csym->is_from_dynobj());
1666 gold_assert(!csym->is_copied_from_dynobj());
1667 Object* object = csym->object();
1668 gold_assert(object->is_dynamic());
1669 Dynobj* dynobj = static_cast<Dynobj*>(object);
1670
1671 // Our copied variable has to override any variable in a shared
1672 // library.
1673 elfcpp::STB binding = csym->binding();
1674 if (binding == elfcpp::STB_WEAK)
1675 binding = elfcpp::STB_GLOBAL;
1676
1677 this->define_in_output_data(csym->name(), csym->version(),
1678 posd, value, csym->symsize(),
1679 csym->type(), binding,
1680 csym->visibility(), csym->nonvis(),
1681 false, false);
1682
1683 csym->set_is_copied_from_dynobj();
1684 csym->set_needs_dynsym_entry();
1685
1686 this->copied_symbol_dynobjs_[csym] = dynobj;
1687
1688 // We have now defined all aliases, but we have not entered them all
1689 // in the copied_symbol_dynobjs_ map.
1690 if (csym->has_alias())
1691 {
1692 Symbol* sym = csym;
1693 while (true)
1694 {
1695 sym = this->weak_aliases_[sym];
1696 if (sym == csym)
1697 break;
1698 gold_assert(sym->output_data() == posd);
1699
1700 sym->set_is_copied_from_dynobj();
1701 this->copied_symbol_dynobjs_[sym] = dynobj;
1702 }
1703 }
1704 }
1705
1706 // SYM is defined using a COPY reloc. Return the dynamic object where
1707 // the original definition was found.
1708
1709 Dynobj*
1710 Symbol_table::get_copy_source(const Symbol* sym) const
1711 {
1712 gold_assert(sym->is_copied_from_dynobj());
1713 Copied_symbol_dynobjs::const_iterator p =
1714 this->copied_symbol_dynobjs_.find(sym);
1715 gold_assert(p != this->copied_symbol_dynobjs_.end());
1716 return p->second;
1717 }
1718
1719 // Add any undefined symbols named on the command line.
1720
1721 void
1722 Symbol_table::add_undefined_symbols_from_command_line()
1723 {
1724 if (parameters->options().any_undefined())
1725 {
1726 if (parameters->target().get_size() == 32)
1727 {
1728 #if defined(HAVE_TARGET_32_LITTL) || defined(HAVE_TARGET_32_BIG)
1729 this->do_add_undefined_symbols_from_command_line<32>();
1730 #else
1731 gold_unreachable();
1732 #endif
1733 }
1734 else if (parameters->target().get_size() == 64)
1735 {
1736 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1737 this->do_add_undefined_symbols_from_command_line<64>();
1738 #else
1739 gold_unreachable();
1740 #endif
1741 }
1742 else
1743 gold_unreachable();
1744 }
1745 }
1746
1747 template<int size>
1748 void
1749 Symbol_table::do_add_undefined_symbols_from_command_line()
1750 {
1751 for (options::String_set::const_iterator p =
1752 parameters->options().undefined_begin();
1753 p != parameters->options().undefined_end();
1754 ++p)
1755 {
1756 const char* name = p->c_str();
1757
1758 if (this->lookup(name) != NULL)
1759 continue;
1760
1761 const char* version = NULL;
1762
1763 Sized_symbol<size>* sym;
1764 Sized_symbol<size>* oldsym;
1765 if (parameters->target().is_big_endian())
1766 {
1767 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1768 sym = this->define_special_symbol<size, true>(&name, &version,
1769 false, &oldsym);
1770 #else
1771 gold_unreachable();
1772 #endif
1773 }
1774 else
1775 {
1776 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1777 sym = this->define_special_symbol<size, false>(&name, &version,
1778 false, &oldsym);
1779 #else
1780 gold_unreachable();
1781 #endif
1782 }
1783
1784 gold_assert(oldsym == NULL);
1785
1786 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1787 elfcpp::STV_DEFAULT, 0);
1788 ++this->saw_undefined_;
1789 }
1790 }
1791
1792 // Set the dynamic symbol indexes. INDEX is the index of the first
1793 // global dynamic symbol. Pointers to the symbols are stored into the
1794 // vector SYMS. The names are added to DYNPOOL. This returns an
1795 // updated dynamic symbol index.
1796
1797 unsigned int
1798 Symbol_table::set_dynsym_indexes(unsigned int index,
1799 std::vector<Symbol*>* syms,
1800 Stringpool* dynpool,
1801 Versions* versions)
1802 {
1803 for (Symbol_table_type::iterator p = this->table_.begin();
1804 p != this->table_.end();
1805 ++p)
1806 {
1807 Symbol* sym = p->second;
1808
1809 // Note that SYM may already have a dynamic symbol index, since
1810 // some symbols appear more than once in the symbol table, with
1811 // and without a version.
1812
1813 if (!sym->should_add_dynsym_entry())
1814 sym->set_dynsym_index(-1U);
1815 else if (!sym->has_dynsym_index())
1816 {
1817 sym->set_dynsym_index(index);
1818 ++index;
1819 syms->push_back(sym);
1820 dynpool->add(sym->name(), false, NULL);
1821
1822 // Record any version information.
1823 if (sym->version() != NULL)
1824 versions->record_version(this, dynpool, sym);
1825 }
1826 }
1827
1828 // Finish up the versions. In some cases this may add new dynamic
1829 // symbols.
1830 index = versions->finalize(this, index, syms);
1831
1832 return index;
1833 }
1834
1835 // Set the final values for all the symbols. The index of the first
1836 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1837 // file offset OFF. Add their names to POOL. Return the new file
1838 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1839
1840 off_t
1841 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1842 size_t dyncount, Stringpool* pool,
1843 unsigned int *plocal_symcount)
1844 {
1845 off_t ret;
1846
1847 gold_assert(*plocal_symcount != 0);
1848 this->first_global_index_ = *plocal_symcount;
1849
1850 this->dynamic_offset_ = dynoff;
1851 this->first_dynamic_global_index_ = dyn_global_index;
1852 this->dynamic_count_ = dyncount;
1853
1854 if (parameters->target().get_size() == 32)
1855 {
1856 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1857 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1858 #else
1859 gold_unreachable();
1860 #endif
1861 }
1862 else if (parameters->target().get_size() == 64)
1863 {
1864 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1865 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1866 #else
1867 gold_unreachable();
1868 #endif
1869 }
1870 else
1871 gold_unreachable();
1872
1873 // Now that we have the final symbol table, we can reliably note
1874 // which symbols should get warnings.
1875 this->warnings_.note_warnings(this);
1876
1877 return ret;
1878 }
1879
1880 // SYM is going into the symbol table at *PINDEX. Add the name to
1881 // POOL, update *PINDEX and *POFF.
1882
1883 template<int size>
1884 void
1885 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1886 unsigned int* pindex, off_t* poff)
1887 {
1888 sym->set_symtab_index(*pindex);
1889 pool->add(sym->name(), false, NULL);
1890 ++*pindex;
1891 *poff += elfcpp::Elf_sizes<size>::sym_size;
1892 }
1893
1894 // Set the final value for all the symbols. This is called after
1895 // Layout::finalize, so all the output sections have their final
1896 // address.
1897
1898 template<int size>
1899 off_t
1900 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1901 unsigned int* plocal_symcount)
1902 {
1903 off = align_address(off, size >> 3);
1904 this->offset_ = off;
1905
1906 unsigned int index = *plocal_symcount;
1907 const unsigned int orig_index = index;
1908
1909 // First do all the symbols which have been forced to be local, as
1910 // they must appear before all global symbols.
1911 for (Forced_locals::iterator p = this->forced_locals_.begin();
1912 p != this->forced_locals_.end();
1913 ++p)
1914 {
1915 Symbol* sym = *p;
1916 gold_assert(sym->is_forced_local());
1917 if (this->sized_finalize_symbol<size>(sym))
1918 {
1919 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1920 ++*plocal_symcount;
1921 }
1922 }
1923
1924 // Now do all the remaining symbols.
1925 for (Symbol_table_type::iterator p = this->table_.begin();
1926 p != this->table_.end();
1927 ++p)
1928 {
1929 Symbol* sym = p->second;
1930 if (this->sized_finalize_symbol<size>(sym))
1931 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1932 }
1933
1934 this->output_count_ = index - orig_index;
1935
1936 return off;
1937 }
1938
1939 // Finalize the symbol SYM. This returns true if the symbol should be
1940 // added to the symbol table, false otherwise.
1941
1942 template<int size>
1943 bool
1944 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1945 {
1946 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1947
1948 // The default version of a symbol may appear twice in the symbol
1949 // table. We only need to finalize it once.
1950 if (sym->has_symtab_index())
1951 return false;
1952
1953 if (!sym->in_reg())
1954 {
1955 gold_assert(!sym->has_symtab_index());
1956 sym->set_symtab_index(-1U);
1957 gold_assert(sym->dynsym_index() == -1U);
1958 return false;
1959 }
1960
1961 typename Sized_symbol<size>::Value_type value;
1962
1963 switch (sym->source())
1964 {
1965 case Symbol::FROM_OBJECT:
1966 {
1967 bool is_ordinary;
1968 unsigned int shndx = sym->shndx(&is_ordinary);
1969
1970 // FIXME: We need some target specific support here.
1971 if (!is_ordinary
1972 && shndx != elfcpp::SHN_ABS
1973 && shndx != elfcpp::SHN_COMMON)
1974 {
1975 gold_error(_("%s: unsupported symbol section 0x%x"),
1976 sym->demangled_name().c_str(), shndx);
1977 shndx = elfcpp::SHN_UNDEF;
1978 }
1979
1980 Object* symobj = sym->object();
1981 if (symobj->is_dynamic())
1982 {
1983 value = 0;
1984 shndx = elfcpp::SHN_UNDEF;
1985 }
1986 else if (shndx == elfcpp::SHN_UNDEF)
1987 value = 0;
1988 else if (!is_ordinary
1989 && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
1990 value = sym->value();
1991 else
1992 {
1993 Relobj* relobj = static_cast<Relobj*>(symobj);
1994 section_offset_type secoff;
1995 Output_section* os = relobj->output_section(shndx, &secoff);
1996
1997 if (os == NULL)
1998 {
1999 sym->set_symtab_index(-1U);
2000 gold_assert(sym->dynsym_index() == -1U);
2001 return false;
2002 }
2003
2004 if (sym->type() == elfcpp::STT_TLS)
2005 value = sym->value() + os->tls_offset() + secoff;
2006 else
2007 value = sym->value() + os->address() + secoff;
2008 }
2009 }
2010 break;
2011
2012 case Symbol::IN_OUTPUT_DATA:
2013 {
2014 Output_data* od = sym->output_data();
2015 value = sym->value();
2016 if (sym->type() != elfcpp::STT_TLS)
2017 value += od->address();
2018 else
2019 {
2020 Output_section* os = od->output_section();
2021 gold_assert(os != NULL);
2022 value += os->tls_offset() + (od->address() - os->address());
2023 }
2024 if (sym->offset_is_from_end())
2025 value += od->data_size();
2026 }
2027 break;
2028
2029 case Symbol::IN_OUTPUT_SEGMENT:
2030 {
2031 Output_segment* os = sym->output_segment();
2032 value = sym->value();
2033 if (sym->type() != elfcpp::STT_TLS)
2034 value += os->vaddr();
2035 switch (sym->offset_base())
2036 {
2037 case Symbol::SEGMENT_START:
2038 break;
2039 case Symbol::SEGMENT_END:
2040 value += os->memsz();
2041 break;
2042 case Symbol::SEGMENT_BSS:
2043 value += os->filesz();
2044 break;
2045 default:
2046 gold_unreachable();
2047 }
2048 }
2049 break;
2050
2051 case Symbol::IS_CONSTANT:
2052 value = sym->value();
2053 break;
2054
2055 case Symbol::IS_UNDEFINED:
2056 value = 0;
2057 break;
2058
2059 default:
2060 gold_unreachable();
2061 }
2062
2063 sym->set_value(value);
2064
2065 if (parameters->options().strip_all())
2066 {
2067 sym->set_symtab_index(-1U);
2068 return false;
2069 }
2070
2071 return true;
2072 }
2073
2074 // Write out the global symbols.
2075
2076 void
2077 Symbol_table::write_globals(const Input_objects* input_objects,
2078 const Stringpool* sympool,
2079 const Stringpool* dynpool,
2080 Output_symtab_xindex* symtab_xindex,
2081 Output_symtab_xindex* dynsym_xindex,
2082 Output_file* of) const
2083 {
2084 switch (parameters->size_and_endianness())
2085 {
2086 #ifdef HAVE_TARGET_32_LITTLE
2087 case Parameters::TARGET_32_LITTLE:
2088 this->sized_write_globals<32, false>(input_objects, sympool,
2089 dynpool, symtab_xindex,
2090 dynsym_xindex, of);
2091 break;
2092 #endif
2093 #ifdef HAVE_TARGET_32_BIG
2094 case Parameters::TARGET_32_BIG:
2095 this->sized_write_globals<32, true>(input_objects, sympool,
2096 dynpool, symtab_xindex,
2097 dynsym_xindex, of);
2098 break;
2099 #endif
2100 #ifdef HAVE_TARGET_64_LITTLE
2101 case Parameters::TARGET_64_LITTLE:
2102 this->sized_write_globals<64, false>(input_objects, sympool,
2103 dynpool, symtab_xindex,
2104 dynsym_xindex, of);
2105 break;
2106 #endif
2107 #ifdef HAVE_TARGET_64_BIG
2108 case Parameters::TARGET_64_BIG:
2109 this->sized_write_globals<64, true>(input_objects, sympool,
2110 dynpool, symtab_xindex,
2111 dynsym_xindex, of);
2112 break;
2113 #endif
2114 default:
2115 gold_unreachable();
2116 }
2117 }
2118
2119 // Write out the global symbols.
2120
2121 template<int size, bool big_endian>
2122 void
2123 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2124 const Stringpool* sympool,
2125 const Stringpool* dynpool,
2126 Output_symtab_xindex* symtab_xindex,
2127 Output_symtab_xindex* dynsym_xindex,
2128 Output_file* of) const
2129 {
2130 const Target& target = parameters->target();
2131
2132 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2133
2134 const unsigned int output_count = this->output_count_;
2135 const section_size_type oview_size = output_count * sym_size;
2136 const unsigned int first_global_index = this->first_global_index_;
2137 unsigned char* psyms;
2138 if (this->offset_ == 0 || output_count == 0)
2139 psyms = NULL;
2140 else
2141 psyms = of->get_output_view(this->offset_, oview_size);
2142
2143 const unsigned int dynamic_count = this->dynamic_count_;
2144 const section_size_type dynamic_size = dynamic_count * sym_size;
2145 const unsigned int first_dynamic_global_index =
2146 this->first_dynamic_global_index_;
2147 unsigned char* dynamic_view;
2148 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2149 dynamic_view = NULL;
2150 else
2151 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2152
2153 for (Symbol_table_type::const_iterator p = this->table_.begin();
2154 p != this->table_.end();
2155 ++p)
2156 {
2157 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2158
2159 // Possibly warn about unresolved symbols in shared libraries.
2160 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2161
2162 unsigned int sym_index = sym->symtab_index();
2163 unsigned int dynsym_index;
2164 if (dynamic_view == NULL)
2165 dynsym_index = -1U;
2166 else
2167 dynsym_index = sym->dynsym_index();
2168
2169 if (sym_index == -1U && dynsym_index == -1U)
2170 {
2171 // This symbol is not included in the output file.
2172 continue;
2173 }
2174
2175 unsigned int shndx;
2176 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2177 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2178 switch (sym->source())
2179 {
2180 case Symbol::FROM_OBJECT:
2181 {
2182 bool is_ordinary;
2183 unsigned int in_shndx = sym->shndx(&is_ordinary);
2184
2185 // FIXME: We need some target specific support here.
2186 if (!is_ordinary
2187 && in_shndx != elfcpp::SHN_ABS
2188 && in_shndx != elfcpp::SHN_COMMON)
2189 {
2190 gold_error(_("%s: unsupported symbol section 0x%x"),
2191 sym->demangled_name().c_str(), in_shndx);
2192 shndx = in_shndx;
2193 }
2194 else
2195 {
2196 Object* symobj = sym->object();
2197 if (symobj->is_dynamic())
2198 {
2199 if (sym->needs_dynsym_value())
2200 dynsym_value = target.dynsym_value(sym);
2201 shndx = elfcpp::SHN_UNDEF;
2202 }
2203 else if (in_shndx == elfcpp::SHN_UNDEF
2204 || (!is_ordinary
2205 && (in_shndx == elfcpp::SHN_ABS
2206 || in_shndx == elfcpp::SHN_COMMON)))
2207 shndx = in_shndx;
2208 else
2209 {
2210 Relobj* relobj = static_cast<Relobj*>(symobj);
2211 section_offset_type secoff;
2212 Output_section* os = relobj->output_section(in_shndx,
2213 &secoff);
2214 gold_assert(os != NULL);
2215 shndx = os->out_shndx();
2216
2217 if (shndx >= elfcpp::SHN_LORESERVE)
2218 {
2219 if (sym_index != -1U)
2220 symtab_xindex->add(sym_index, shndx);
2221 if (dynsym_index != -1U)
2222 dynsym_xindex->add(dynsym_index, shndx);
2223 shndx = elfcpp::SHN_XINDEX;
2224 }
2225
2226 // In object files symbol values are section
2227 // relative.
2228 if (parameters->options().relocatable())
2229 sym_value -= os->address();
2230 }
2231 }
2232 }
2233 break;
2234
2235 case Symbol::IN_OUTPUT_DATA:
2236 shndx = sym->output_data()->out_shndx();
2237 if (shndx >= elfcpp::SHN_LORESERVE)
2238 {
2239 if (sym_index != -1U)
2240 symtab_xindex->add(sym_index, shndx);
2241 if (dynsym_index != -1U)
2242 dynsym_xindex->add(dynsym_index, shndx);
2243 shndx = elfcpp::SHN_XINDEX;
2244 }
2245 break;
2246
2247 case Symbol::IN_OUTPUT_SEGMENT:
2248 shndx = elfcpp::SHN_ABS;
2249 break;
2250
2251 case Symbol::IS_CONSTANT:
2252 shndx = elfcpp::SHN_ABS;
2253 break;
2254
2255 case Symbol::IS_UNDEFINED:
2256 shndx = elfcpp::SHN_UNDEF;
2257 break;
2258
2259 default:
2260 gold_unreachable();
2261 }
2262
2263 if (sym_index != -1U)
2264 {
2265 sym_index -= first_global_index;
2266 gold_assert(sym_index < output_count);
2267 unsigned char* ps = psyms + (sym_index * sym_size);
2268 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2269 sympool, ps);
2270 }
2271
2272 if (dynsym_index != -1U)
2273 {
2274 dynsym_index -= first_dynamic_global_index;
2275 gold_assert(dynsym_index < dynamic_count);
2276 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2277 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2278 dynpool, pd);
2279 }
2280 }
2281
2282 of->write_output_view(this->offset_, oview_size, psyms);
2283 if (dynamic_view != NULL)
2284 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2285 }
2286
2287 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2288 // strtab holding the name.
2289
2290 template<int size, bool big_endian>
2291 void
2292 Symbol_table::sized_write_symbol(
2293 Sized_symbol<size>* sym,
2294 typename elfcpp::Elf_types<size>::Elf_Addr value,
2295 unsigned int shndx,
2296 const Stringpool* pool,
2297 unsigned char* p) const
2298 {
2299 elfcpp::Sym_write<size, big_endian> osym(p);
2300 osym.put_st_name(pool->get_offset(sym->name()));
2301 osym.put_st_value(value);
2302 osym.put_st_size(sym->symsize());
2303 // A version script may have overridden the default binding.
2304 if (sym->is_forced_local())
2305 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2306 else
2307 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2308 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2309 osym.put_st_shndx(shndx);
2310 }
2311
2312 // Check for unresolved symbols in shared libraries. This is
2313 // controlled by the --allow-shlib-undefined option.
2314
2315 // We only warn about libraries for which we have seen all the
2316 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2317 // which were not seen in this link. If we didn't see a DT_NEEDED
2318 // entry, we aren't going to be able to reliably report whether the
2319 // symbol is undefined.
2320
2321 // We also don't warn about libraries found in the system library
2322 // directory (the directory were we find libc.so); we assume that
2323 // those libraries are OK. This heuristic avoids problems in
2324 // GNU/Linux, in which -ldl can have undefined references satisfied by
2325 // ld-linux.so.
2326
2327 inline void
2328 Symbol_table::warn_about_undefined_dynobj_symbol(
2329 const Input_objects* input_objects,
2330 Symbol* sym) const
2331 {
2332 bool dummy;
2333 if (sym->source() == Symbol::FROM_OBJECT
2334 && sym->object()->is_dynamic()
2335 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2336 && sym->binding() != elfcpp::STB_WEAK
2337 && !parameters->options().allow_shlib_undefined()
2338 && !parameters->target().is_defined_by_abi(sym)
2339 && !input_objects->found_in_system_library_directory(sym->object()))
2340 {
2341 // A very ugly cast.
2342 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2343 if (!dynobj->has_unknown_needed_entries())
2344 gold_error(_("%s: undefined reference to '%s'"),
2345 sym->object()->name().c_str(),
2346 sym->demangled_name().c_str());
2347 }
2348 }
2349
2350 // Write out a section symbol. Return the update offset.
2351
2352 void
2353 Symbol_table::write_section_symbol(const Output_section *os,
2354 Output_symtab_xindex* symtab_xindex,
2355 Output_file* of,
2356 off_t offset) const
2357 {
2358 switch (parameters->size_and_endianness())
2359 {
2360 #ifdef HAVE_TARGET_32_LITTLE
2361 case Parameters::TARGET_32_LITTLE:
2362 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2363 offset);
2364 break;
2365 #endif
2366 #ifdef HAVE_TARGET_32_BIG
2367 case Parameters::TARGET_32_BIG:
2368 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2369 offset);
2370 break;
2371 #endif
2372 #ifdef HAVE_TARGET_64_LITTLE
2373 case Parameters::TARGET_64_LITTLE:
2374 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2375 offset);
2376 break;
2377 #endif
2378 #ifdef HAVE_TARGET_64_BIG
2379 case Parameters::TARGET_64_BIG:
2380 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2381 offset);
2382 break;
2383 #endif
2384 default:
2385 gold_unreachable();
2386 }
2387 }
2388
2389 // Write out a section symbol, specialized for size and endianness.
2390
2391 template<int size, bool big_endian>
2392 void
2393 Symbol_table::sized_write_section_symbol(const Output_section* os,
2394 Output_symtab_xindex* symtab_xindex,
2395 Output_file* of,
2396 off_t offset) const
2397 {
2398 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2399
2400 unsigned char* pov = of->get_output_view(offset, sym_size);
2401
2402 elfcpp::Sym_write<size, big_endian> osym(pov);
2403 osym.put_st_name(0);
2404 osym.put_st_value(os->address());
2405 osym.put_st_size(0);
2406 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2407 elfcpp::STT_SECTION));
2408 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2409
2410 unsigned int shndx = os->out_shndx();
2411 if (shndx >= elfcpp::SHN_LORESERVE)
2412 {
2413 symtab_xindex->add(os->symtab_index(), shndx);
2414 shndx = elfcpp::SHN_XINDEX;
2415 }
2416 osym.put_st_shndx(shndx);
2417
2418 of->write_output_view(offset, sym_size, pov);
2419 }
2420
2421 // Print statistical information to stderr. This is used for --stats.
2422
2423 void
2424 Symbol_table::print_stats() const
2425 {
2426 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2427 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2428 program_name, this->table_.size(), this->table_.bucket_count());
2429 #else
2430 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2431 program_name, this->table_.size());
2432 #endif
2433 this->namepool_.print_stats("symbol table stringpool");
2434 }
2435
2436 // We check for ODR violations by looking for symbols with the same
2437 // name for which the debugging information reports that they were
2438 // defined in different source locations. When comparing the source
2439 // location, we consider instances with the same base filename and
2440 // line number to be the same. This is because different object
2441 // files/shared libraries can include the same header file using
2442 // different paths, and we don't want to report an ODR violation in
2443 // that case.
2444
2445 // This struct is used to compare line information, as returned by
2446 // Dwarf_line_info::one_addr2line. It implements a < comparison
2447 // operator used with std::set.
2448
2449 struct Odr_violation_compare
2450 {
2451 bool
2452 operator()(const std::string& s1, const std::string& s2) const
2453 {
2454 std::string::size_type pos1 = s1.rfind('/');
2455 std::string::size_type pos2 = s2.rfind('/');
2456 if (pos1 == std::string::npos
2457 || pos2 == std::string::npos)
2458 return s1 < s2;
2459 return s1.compare(pos1, std::string::npos,
2460 s2, pos2, std::string::npos) < 0;
2461 }
2462 };
2463
2464 // Check candidate_odr_violations_ to find symbols with the same name
2465 // but apparently different definitions (different source-file/line-no).
2466
2467 void
2468 Symbol_table::detect_odr_violations(const Task* task,
2469 const char* output_file_name) const
2470 {
2471 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2472 it != candidate_odr_violations_.end();
2473 ++it)
2474 {
2475 const char* symbol_name = it->first;
2476 // We use a sorted set so the output is deterministic.
2477 std::set<std::string, Odr_violation_compare> line_nums;
2478
2479 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2480 locs = it->second.begin();
2481 locs != it->second.end();
2482 ++locs)
2483 {
2484 // We need to lock the object in order to read it. This
2485 // means that we have to run in a singleton Task. If we
2486 // want to run this in a general Task for better
2487 // performance, we will need one Task for object, plus
2488 // appropriate locking to ensure that we don't conflict with
2489 // other uses of the object. Also note, one_addr2line is not
2490 // currently thread-safe.
2491 Task_lock_obj<Object> tl(task, locs->object);
2492 // 16 is the size of the object-cache that one_addr2line should use.
2493 std::string lineno = Dwarf_line_info::one_addr2line(
2494 locs->object, locs->shndx, locs->offset, 16);
2495 if (!lineno.empty())
2496 line_nums.insert(lineno);
2497 }
2498
2499 if (line_nums.size() > 1)
2500 {
2501 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2502 "places (possible ODR violation):"),
2503 output_file_name, demangle(symbol_name).c_str());
2504 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2505 it2 != line_nums.end();
2506 ++it2)
2507 fprintf(stderr, " %s\n", it2->c_str());
2508 }
2509 }
2510 // We only call one_addr2line() in this function, so we can clear its cache.
2511 Dwarf_line_info::clear_addr2line_cache();
2512 }
2513
2514 // Warnings functions.
2515
2516 // Add a new warning.
2517
2518 void
2519 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2520 const std::string& warning)
2521 {
2522 name = symtab->canonicalize_name(name);
2523 this->warnings_[name].set(obj, warning);
2524 }
2525
2526 // Look through the warnings and mark the symbols for which we should
2527 // warn. This is called during Layout::finalize when we know the
2528 // sources for all the symbols.
2529
2530 void
2531 Warnings::note_warnings(Symbol_table* symtab)
2532 {
2533 for (Warning_table::iterator p = this->warnings_.begin();
2534 p != this->warnings_.end();
2535 ++p)
2536 {
2537 Symbol* sym = symtab->lookup(p->first, NULL);
2538 if (sym != NULL
2539 && sym->source() == Symbol::FROM_OBJECT
2540 && sym->object() == p->second.object)
2541 sym->set_has_warning();
2542 }
2543 }
2544
2545 // Issue a warning. This is called when we see a relocation against a
2546 // symbol for which has a warning.
2547
2548 template<int size, bool big_endian>
2549 void
2550 Warnings::issue_warning(const Symbol* sym,
2551 const Relocate_info<size, big_endian>* relinfo,
2552 size_t relnum, off_t reloffset) const
2553 {
2554 gold_assert(sym->has_warning());
2555 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2556 gold_assert(p != this->warnings_.end());
2557 gold_warning_at_location(relinfo, relnum, reloffset,
2558 "%s", p->second.text.c_str());
2559 }
2560
2561 // Instantiate the templates we need. We could use the configure
2562 // script to restrict this to only the ones needed for implemented
2563 // targets.
2564
2565 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2566 template
2567 void
2568 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2569 #endif
2570
2571 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2572 template
2573 void
2574 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2575 #endif
2576
2577 #ifdef HAVE_TARGET_32_LITTLE
2578 template
2579 void
2580 Symbol_table::add_from_relobj<32, false>(
2581 Sized_relobj<32, false>* relobj,
2582 const unsigned char* syms,
2583 size_t count,
2584 size_t symndx_offset,
2585 const char* sym_names,
2586 size_t sym_name_size,
2587 Sized_relobj<32, true>::Symbols* sympointers);
2588 #endif
2589
2590 #ifdef HAVE_TARGET_32_BIG
2591 template
2592 void
2593 Symbol_table::add_from_relobj<32, true>(
2594 Sized_relobj<32, true>* relobj,
2595 const unsigned char* syms,
2596 size_t count,
2597 size_t symndx_offset,
2598 const char* sym_names,
2599 size_t sym_name_size,
2600 Sized_relobj<32, false>::Symbols* sympointers);
2601 #endif
2602
2603 #ifdef HAVE_TARGET_64_LITTLE
2604 template
2605 void
2606 Symbol_table::add_from_relobj<64, false>(
2607 Sized_relobj<64, false>* relobj,
2608 const unsigned char* syms,
2609 size_t count,
2610 size_t symndx_offset,
2611 const char* sym_names,
2612 size_t sym_name_size,
2613 Sized_relobj<64, true>::Symbols* sympointers);
2614 #endif
2615
2616 #ifdef HAVE_TARGET_64_BIG
2617 template
2618 void
2619 Symbol_table::add_from_relobj<64, true>(
2620 Sized_relobj<64, true>* relobj,
2621 const unsigned char* syms,
2622 size_t count,
2623 size_t symndx_offset,
2624 const char* sym_names,
2625 size_t sym_name_size,
2626 Sized_relobj<64, false>::Symbols* sympointers);
2627 #endif
2628
2629 #ifdef HAVE_TARGET_32_LITTLE
2630 template
2631 void
2632 Symbol_table::add_from_dynobj<32, false>(
2633 Sized_dynobj<32, false>* dynobj,
2634 const unsigned char* syms,
2635 size_t count,
2636 const char* sym_names,
2637 size_t sym_name_size,
2638 const unsigned char* versym,
2639 size_t versym_size,
2640 const std::vector<const char*>* version_map);
2641 #endif
2642
2643 #ifdef HAVE_TARGET_32_BIG
2644 template
2645 void
2646 Symbol_table::add_from_dynobj<32, true>(
2647 Sized_dynobj<32, true>* dynobj,
2648 const unsigned char* syms,
2649 size_t count,
2650 const char* sym_names,
2651 size_t sym_name_size,
2652 const unsigned char* versym,
2653 size_t versym_size,
2654 const std::vector<const char*>* version_map);
2655 #endif
2656
2657 #ifdef HAVE_TARGET_64_LITTLE
2658 template
2659 void
2660 Symbol_table::add_from_dynobj<64, false>(
2661 Sized_dynobj<64, false>* dynobj,
2662 const unsigned char* syms,
2663 size_t count,
2664 const char* sym_names,
2665 size_t sym_name_size,
2666 const unsigned char* versym,
2667 size_t versym_size,
2668 const std::vector<const char*>* version_map);
2669 #endif
2670
2671 #ifdef HAVE_TARGET_64_BIG
2672 template
2673 void
2674 Symbol_table::add_from_dynobj<64, true>(
2675 Sized_dynobj<64, true>* dynobj,
2676 const unsigned char* syms,
2677 size_t count,
2678 const char* sym_names,
2679 size_t sym_name_size,
2680 const unsigned char* versym,
2681 size_t versym_size,
2682 const std::vector<const char*>* version_map);
2683 #endif
2684
2685 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2686 template
2687 void
2688 Symbol_table::define_with_copy_reloc<32>(
2689 Sized_symbol<32>* sym,
2690 Output_data* posd,
2691 elfcpp::Elf_types<32>::Elf_Addr value);
2692 #endif
2693
2694 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2695 template
2696 void
2697 Symbol_table::define_with_copy_reloc<64>(
2698 Sized_symbol<64>* sym,
2699 Output_data* posd,
2700 elfcpp::Elf_types<64>::Elf_Addr value);
2701 #endif
2702
2703 #ifdef HAVE_TARGET_32_LITTLE
2704 template
2705 void
2706 Warnings::issue_warning<32, false>(const Symbol* sym,
2707 const Relocate_info<32, false>* relinfo,
2708 size_t relnum, off_t reloffset) const;
2709 #endif
2710
2711 #ifdef HAVE_TARGET_32_BIG
2712 template
2713 void
2714 Warnings::issue_warning<32, true>(const Symbol* sym,
2715 const Relocate_info<32, true>* relinfo,
2716 size_t relnum, off_t reloffset) const;
2717 #endif
2718
2719 #ifdef HAVE_TARGET_64_LITTLE
2720 template
2721 void
2722 Warnings::issue_warning<64, false>(const Symbol* sym,
2723 const Relocate_info<64, false>* relinfo,
2724 size_t relnum, off_t reloffset) const;
2725 #endif
2726
2727 #ifdef HAVE_TARGET_64_BIG
2728 template
2729 void
2730 Warnings::issue_warning<64, true>(const Symbol* sym,
2731 const Relocate_info<64, true>* relinfo,
2732 size_t relnum, off_t reloffset) const;
2733 #endif
2734
2735 } // End namespace gold.
This page took 0.121981 seconds and 4 git commands to generate.