daily update
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "demangle.h" // needed for --dynamic-list-cpp-new
42 #include "plugin.h"
43
44 namespace gold
45 {
46
47 // Class Symbol.
48
49 // Initialize fields in Symbol. This initializes everything except u_
50 // and source_.
51
52 void
53 Symbol::init_fields(const char* name, const char* version,
54 elfcpp::STT type, elfcpp::STB binding,
55 elfcpp::STV visibility, unsigned char nonvis)
56 {
57 this->name_ = name;
58 this->version_ = version;
59 this->symtab_index_ = 0;
60 this->dynsym_index_ = 0;
61 this->got_offsets_.init();
62 this->plt_offset_ = 0;
63 this->type_ = type;
64 this->binding_ = binding;
65 this->visibility_ = visibility;
66 this->nonvis_ = nonvis;
67 this->is_target_special_ = false;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_plt_offset_ = false;
75 this->has_warning_ = false;
76 this->is_copied_from_dynobj_ = false;
77 this->is_forced_local_ = false;
78 this->is_ordinary_shndx_ = false;
79 this->in_real_elf_ = false;
80 }
81
82 // Return the demangled version of the symbol's name, but only
83 // if the --demangle flag was set.
84
85 static std::string
86 demangle(const char* name)
87 {
88 if (!parameters->options().do_demangle())
89 return name;
90
91 // cplus_demangle allocates memory for the result it returns,
92 // and returns NULL if the name is already demangled.
93 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
94 if (demangled_name == NULL)
95 return name;
96
97 std::string retval(demangled_name);
98 free(demangled_name);
99 return retval;
100 }
101
102 std::string
103 Symbol::demangled_name() const
104 {
105 return demangle(this->name());
106 }
107
108 // Initialize the fields in the base class Symbol for SYM in OBJECT.
109
110 template<int size, bool big_endian>
111 void
112 Symbol::init_base_object(const char* name, const char* version, Object* object,
113 const elfcpp::Sym<size, big_endian>& sym,
114 unsigned int st_shndx, bool is_ordinary)
115 {
116 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
117 sym.get_st_visibility(), sym.get_st_nonvis());
118 this->u_.from_object.object = object;
119 this->u_.from_object.shndx = st_shndx;
120 this->is_ordinary_shndx_ = is_ordinary;
121 this->source_ = FROM_OBJECT;
122 this->in_reg_ = !object->is_dynamic();
123 this->in_dyn_ = object->is_dynamic();
124 this->in_real_elf_ = object->pluginobj() == NULL;
125 }
126
127 // Initialize the fields in the base class Symbol for a symbol defined
128 // in an Output_data.
129
130 void
131 Symbol::init_base_output_data(const char* name, const char* version,
132 Output_data* od, elfcpp::STT type,
133 elfcpp::STB binding, elfcpp::STV visibility,
134 unsigned char nonvis, bool offset_is_from_end)
135 {
136 this->init_fields(name, version, type, binding, visibility, nonvis);
137 this->u_.in_output_data.output_data = od;
138 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
139 this->source_ = IN_OUTPUT_DATA;
140 this->in_reg_ = true;
141 this->in_real_elf_ = true;
142 }
143
144 // Initialize the fields in the base class Symbol for a symbol defined
145 // in an Output_segment.
146
147 void
148 Symbol::init_base_output_segment(const char* name, const char* version,
149 Output_segment* os, elfcpp::STT type,
150 elfcpp::STB binding, elfcpp::STV visibility,
151 unsigned char nonvis,
152 Segment_offset_base offset_base)
153 {
154 this->init_fields(name, version, type, binding, visibility, nonvis);
155 this->u_.in_output_segment.output_segment = os;
156 this->u_.in_output_segment.offset_base = offset_base;
157 this->source_ = IN_OUTPUT_SEGMENT;
158 this->in_reg_ = true;
159 this->in_real_elf_ = true;
160 }
161
162 // Initialize the fields in the base class Symbol for a symbol defined
163 // as a constant.
164
165 void
166 Symbol::init_base_constant(const char* name, const char* version,
167 elfcpp::STT type, elfcpp::STB binding,
168 elfcpp::STV visibility, unsigned char nonvis)
169 {
170 this->init_fields(name, version, type, binding, visibility, nonvis);
171 this->source_ = IS_CONSTANT;
172 this->in_reg_ = true;
173 this->in_real_elf_ = true;
174 }
175
176 // Initialize the fields in the base class Symbol for an undefined
177 // symbol.
178
179 void
180 Symbol::init_base_undefined(const char* name, const char* version,
181 elfcpp::STT type, elfcpp::STB binding,
182 elfcpp::STV visibility, unsigned char nonvis)
183 {
184 this->init_fields(name, version, type, binding, visibility, nonvis);
185 this->dynsym_index_ = -1U;
186 this->source_ = IS_UNDEFINED;
187 this->in_reg_ = true;
188 this->in_real_elf_ = true;
189 }
190
191 // Allocate a common symbol in the base.
192
193 void
194 Symbol::allocate_base_common(Output_data* od)
195 {
196 gold_assert(this->is_common());
197 this->source_ = IN_OUTPUT_DATA;
198 this->u_.in_output_data.output_data = od;
199 this->u_.in_output_data.offset_is_from_end = false;
200 }
201
202 // Initialize the fields in Sized_symbol for SYM in OBJECT.
203
204 template<int size>
205 template<bool big_endian>
206 void
207 Sized_symbol<size>::init_object(const char* name, const char* version,
208 Object* object,
209 const elfcpp::Sym<size, big_endian>& sym,
210 unsigned int st_shndx, bool is_ordinary)
211 {
212 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
213 this->value_ = sym.get_st_value();
214 this->symsize_ = sym.get_st_size();
215 }
216
217 // Initialize the fields in Sized_symbol for a symbol defined in an
218 // Output_data.
219
220 template<int size>
221 void
222 Sized_symbol<size>::init_output_data(const char* name, const char* version,
223 Output_data* od, Value_type value,
224 Size_type symsize, elfcpp::STT type,
225 elfcpp::STB binding,
226 elfcpp::STV visibility,
227 unsigned char nonvis,
228 bool offset_is_from_end)
229 {
230 this->init_base_output_data(name, version, od, type, binding, visibility,
231 nonvis, offset_is_from_end);
232 this->value_ = value;
233 this->symsize_ = symsize;
234 }
235
236 // Initialize the fields in Sized_symbol for a symbol defined in an
237 // Output_segment.
238
239 template<int size>
240 void
241 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
242 Output_segment* os, Value_type value,
243 Size_type symsize, elfcpp::STT type,
244 elfcpp::STB binding,
245 elfcpp::STV visibility,
246 unsigned char nonvis,
247 Segment_offset_base offset_base)
248 {
249 this->init_base_output_segment(name, version, os, type, binding, visibility,
250 nonvis, offset_base);
251 this->value_ = value;
252 this->symsize_ = symsize;
253 }
254
255 // Initialize the fields in Sized_symbol for a symbol defined as a
256 // constant.
257
258 template<int size>
259 void
260 Sized_symbol<size>::init_constant(const char* name, const char* version,
261 Value_type value, Size_type symsize,
262 elfcpp::STT type, elfcpp::STB binding,
263 elfcpp::STV visibility, unsigned char nonvis)
264 {
265 this->init_base_constant(name, version, type, binding, visibility, nonvis);
266 this->value_ = value;
267 this->symsize_ = symsize;
268 }
269
270 // Initialize the fields in Sized_symbol for an undefined symbol.
271
272 template<int size>
273 void
274 Sized_symbol<size>::init_undefined(const char* name, const char* version,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis)
277 {
278 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
279 this->value_ = 0;
280 this->symsize_ = 0;
281 }
282
283 // Return true if SHNDX represents a common symbol.
284
285 bool
286 Symbol::is_common_shndx(unsigned int shndx)
287 {
288 return (shndx == elfcpp::SHN_COMMON
289 || shndx == parameters->target().small_common_shndx()
290 || shndx == parameters->target().large_common_shndx());
291 }
292
293 // Allocate a common symbol.
294
295 template<int size>
296 void
297 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
298 {
299 this->allocate_base_common(od);
300 this->value_ = value;
301 }
302
303 // The ""'s around str ensure str is a string literal, so sizeof works.
304 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
305
306 // Return true if this symbol should be added to the dynamic symbol
307 // table.
308
309 inline bool
310 Symbol::should_add_dynsym_entry() const
311 {
312 // If the symbol is used by a dynamic relocation, we need to add it.
313 if (this->needs_dynsym_entry())
314 return true;
315
316 // If this symbol's section is not added, the symbol need not be added.
317 // The section may have been GCed. Note that export_dynamic is being
318 // overridden here. This should not be done for shared objects.
319 if (parameters->options().gc_sections()
320 && !parameters->options().shared()
321 && this->source() == Symbol::FROM_OBJECT
322 && !this->object()->is_dynamic())
323 {
324 Relobj* relobj = static_cast<Relobj*>(this->object());
325 bool is_ordinary;
326 unsigned int shndx = this->shndx(&is_ordinary);
327 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
328 && !relobj->is_section_included(shndx))
329 return false;
330 }
331
332 // If the symbol was forced local in a version script, do not add it.
333 if (this->is_forced_local())
334 return false;
335
336 // If the symbol was forced dynamic in a --dynamic-list file, add it.
337 if (parameters->options().in_dynamic_list(this->name()))
338 return true;
339
340 // If dynamic-list-data was specified, add any STT_OBJECT.
341 if (parameters->options().dynamic_list_data()
342 && !this->is_from_dynobj()
343 && this->type() == elfcpp::STT_OBJECT)
344 return true;
345
346 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
347 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
348 if ((parameters->options().dynamic_list_cpp_new()
349 || parameters->options().dynamic_list_cpp_typeinfo())
350 && !this->is_from_dynobj())
351 {
352 // TODO(csilvers): We could probably figure out if we're an operator
353 // new/delete or typeinfo without the need to demangle.
354 char* demangled_name = cplus_demangle(this->name(),
355 DMGL_ANSI | DMGL_PARAMS);
356 if (demangled_name == NULL)
357 {
358 // Not a C++ symbol, so it can't satisfy these flags
359 }
360 else if (parameters->options().dynamic_list_cpp_new()
361 && (strprefix(demangled_name, "operator new")
362 || strprefix(demangled_name, "operator delete")))
363 {
364 free(demangled_name);
365 return true;
366 }
367 else if (parameters->options().dynamic_list_cpp_typeinfo()
368 && (strprefix(demangled_name, "typeinfo name for")
369 || strprefix(demangled_name, "typeinfo for")))
370 {
371 free(demangled_name);
372 return true;
373 }
374 else
375 free(demangled_name);
376 }
377
378 // If exporting all symbols or building a shared library,
379 // and the symbol is defined in a regular object and is
380 // externally visible, we need to add it.
381 if ((parameters->options().export_dynamic() || parameters->options().shared())
382 && !this->is_from_dynobj()
383 && this->is_externally_visible())
384 return true;
385
386 return false;
387 }
388
389 // Return true if the final value of this symbol is known at link
390 // time.
391
392 bool
393 Symbol::final_value_is_known() const
394 {
395 // If we are not generating an executable, then no final values are
396 // known, since they will change at runtime.
397 if (parameters->options().shared() || parameters->options().relocatable())
398 return false;
399
400 // If the symbol is not from an object file, and is not undefined,
401 // then it is defined, and known.
402 if (this->source_ != FROM_OBJECT)
403 {
404 if (this->source_ != IS_UNDEFINED)
405 return true;
406 }
407 else
408 {
409 // If the symbol is from a dynamic object, then the final value
410 // is not known.
411 if (this->object()->is_dynamic())
412 return false;
413
414 // If the symbol is not undefined (it is defined or common),
415 // then the final value is known.
416 if (!this->is_undefined())
417 return true;
418 }
419
420 // If the symbol is undefined, then whether the final value is known
421 // depends on whether we are doing a static link. If we are doing a
422 // dynamic link, then the final value could be filled in at runtime.
423 // This could reasonably be the case for a weak undefined symbol.
424 return parameters->doing_static_link();
425 }
426
427 // Return the output section where this symbol is defined.
428
429 Output_section*
430 Symbol::output_section() const
431 {
432 switch (this->source_)
433 {
434 case FROM_OBJECT:
435 {
436 unsigned int shndx = this->u_.from_object.shndx;
437 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
438 {
439 gold_assert(!this->u_.from_object.object->is_dynamic());
440 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
441 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
442 return relobj->output_section(shndx);
443 }
444 return NULL;
445 }
446
447 case IN_OUTPUT_DATA:
448 return this->u_.in_output_data.output_data->output_section();
449
450 case IN_OUTPUT_SEGMENT:
451 case IS_CONSTANT:
452 case IS_UNDEFINED:
453 return NULL;
454
455 default:
456 gold_unreachable();
457 }
458 }
459
460 // Set the symbol's output section. This is used for symbols defined
461 // in scripts. This should only be called after the symbol table has
462 // been finalized.
463
464 void
465 Symbol::set_output_section(Output_section* os)
466 {
467 switch (this->source_)
468 {
469 case FROM_OBJECT:
470 case IN_OUTPUT_DATA:
471 gold_assert(this->output_section() == os);
472 break;
473 case IS_CONSTANT:
474 this->source_ = IN_OUTPUT_DATA;
475 this->u_.in_output_data.output_data = os;
476 this->u_.in_output_data.offset_is_from_end = false;
477 break;
478 case IN_OUTPUT_SEGMENT:
479 case IS_UNDEFINED:
480 default:
481 gold_unreachable();
482 }
483 }
484
485 // Class Symbol_table.
486
487 Symbol_table::Symbol_table(unsigned int count,
488 const Version_script_info& version_script)
489 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
490 forwarders_(), commons_(), tls_commons_(), small_commons_(),
491 large_commons_(), forced_locals_(), warnings_(),
492 version_script_(version_script), gc_(NULL)
493 {
494 namepool_.reserve(count);
495 }
496
497 Symbol_table::~Symbol_table()
498 {
499 }
500
501 // The hash function. The key values are Stringpool keys.
502
503 inline size_t
504 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
505 {
506 return key.first ^ key.second;
507 }
508
509 // The symbol table key equality function. This is called with
510 // Stringpool keys.
511
512 inline bool
513 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
514 const Symbol_table_key& k2) const
515 {
516 return k1.first == k2.first && k1.second == k2.second;
517 }
518
519 // For symbols that have been listed with -u option, add them to the
520 // work list to avoid gc'ing them.
521
522 void
523 Symbol_table::gc_mark_undef_symbols()
524 {
525 for (options::String_set::const_iterator p =
526 parameters->options().undefined_begin();
527 p != parameters->options().undefined_end();
528 ++p)
529 {
530 const char* name = p->c_str();
531 Symbol* sym = this->lookup(name);
532 gold_assert (sym != NULL);
533 if (sym->source() == Symbol::FROM_OBJECT
534 && !sym->object()->is_dynamic())
535 {
536 Relobj* obj = static_cast<Relobj*>(sym->object());
537 bool is_ordinary;
538 unsigned int shndx = sym->shndx(&is_ordinary);
539 if (is_ordinary)
540 {
541 gold_assert(this->gc_ != NULL);
542 this->gc_->worklist().push(Section_id(obj, shndx));
543 }
544 }
545 }
546 }
547
548 void
549 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
550 {
551 if (!sym->is_from_dynobj()
552 && sym->is_externally_visible())
553 {
554 //Add the object and section to the work list.
555 Relobj* obj = static_cast<Relobj*>(sym->object());
556 bool is_ordinary;
557 unsigned int shndx = sym->shndx(&is_ordinary);
558 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
559 {
560 gold_assert(this->gc_!= NULL);
561 this->gc_->worklist().push(Section_id(obj, shndx));
562 }
563 }
564 }
565
566 // When doing garbage collection, keep symbols that have been seen in
567 // dynamic objects.
568 inline void
569 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
570 {
571 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
572 && !sym->object()->is_dynamic())
573 {
574 Relobj *obj = static_cast<Relobj*>(sym->object());
575 bool is_ordinary;
576 unsigned int shndx = sym->shndx(&is_ordinary);
577 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
578 {
579 gold_assert(this->gc_ != NULL);
580 this->gc_->worklist().push(Section_id(obj, shndx));
581 }
582 }
583 }
584
585 // Make TO a symbol which forwards to FROM.
586
587 void
588 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
589 {
590 gold_assert(from != to);
591 gold_assert(!from->is_forwarder() && !to->is_forwarder());
592 this->forwarders_[from] = to;
593 from->set_forwarder();
594 }
595
596 // Resolve the forwards from FROM, returning the real symbol.
597
598 Symbol*
599 Symbol_table::resolve_forwards(const Symbol* from) const
600 {
601 gold_assert(from->is_forwarder());
602 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
603 this->forwarders_.find(from);
604 gold_assert(p != this->forwarders_.end());
605 return p->second;
606 }
607
608 // Look up a symbol by name.
609
610 Symbol*
611 Symbol_table::lookup(const char* name, const char* version) const
612 {
613 Stringpool::Key name_key;
614 name = this->namepool_.find(name, &name_key);
615 if (name == NULL)
616 return NULL;
617
618 Stringpool::Key version_key = 0;
619 if (version != NULL)
620 {
621 version = this->namepool_.find(version, &version_key);
622 if (version == NULL)
623 return NULL;
624 }
625
626 Symbol_table_key key(name_key, version_key);
627 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
628 if (p == this->table_.end())
629 return NULL;
630 return p->second;
631 }
632
633 // Resolve a Symbol with another Symbol. This is only used in the
634 // unusual case where there are references to both an unversioned
635 // symbol and a symbol with a version, and we then discover that that
636 // version is the default version. Because this is unusual, we do
637 // this the slow way, by converting back to an ELF symbol.
638
639 template<int size, bool big_endian>
640 void
641 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
642 {
643 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
644 elfcpp::Sym_write<size, big_endian> esym(buf);
645 // We don't bother to set the st_name or the st_shndx field.
646 esym.put_st_value(from->value());
647 esym.put_st_size(from->symsize());
648 esym.put_st_info(from->binding(), from->type());
649 esym.put_st_other(from->visibility(), from->nonvis());
650 bool is_ordinary;
651 unsigned int shndx = from->shndx(&is_ordinary);
652 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
653 from->version());
654 if (from->in_reg())
655 to->set_in_reg();
656 if (from->in_dyn())
657 to->set_in_dyn();
658 if (parameters->options().gc_sections())
659 this->gc_mark_dyn_syms(to);
660 }
661
662 // Record that a symbol is forced to be local by a version script or
663 // by visibility.
664
665 void
666 Symbol_table::force_local(Symbol* sym)
667 {
668 if (!sym->is_defined() && !sym->is_common())
669 return;
670 if (sym->is_forced_local())
671 {
672 // We already got this one.
673 return;
674 }
675 sym->set_is_forced_local();
676 this->forced_locals_.push_back(sym);
677 }
678
679 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
680 // is only called for undefined symbols, when at least one --wrap
681 // option was used.
682
683 const char*
684 Symbol_table::wrap_symbol(Object* object, const char* name,
685 Stringpool::Key* name_key)
686 {
687 // For some targets, we need to ignore a specific character when
688 // wrapping, and add it back later.
689 char prefix = '\0';
690 if (name[0] == object->target()->wrap_char())
691 {
692 prefix = name[0];
693 ++name;
694 }
695
696 if (parameters->options().is_wrap(name))
697 {
698 // Turn NAME into __wrap_NAME.
699 std::string s;
700 if (prefix != '\0')
701 s += prefix;
702 s += "__wrap_";
703 s += name;
704
705 // This will give us both the old and new name in NAMEPOOL_, but
706 // that is OK. Only the versions we need will wind up in the
707 // real string table in the output file.
708 return this->namepool_.add(s.c_str(), true, name_key);
709 }
710
711 const char* const real_prefix = "__real_";
712 const size_t real_prefix_length = strlen(real_prefix);
713 if (strncmp(name, real_prefix, real_prefix_length) == 0
714 && parameters->options().is_wrap(name + real_prefix_length))
715 {
716 // Turn __real_NAME into NAME.
717 std::string s;
718 if (prefix != '\0')
719 s += prefix;
720 s += name + real_prefix_length;
721 return this->namepool_.add(s.c_str(), true, name_key);
722 }
723
724 return name;
725 }
726
727 // This is called when we see a symbol NAME/VERSION, and the symbol
728 // already exists in the symbol table, and VERSION is marked as being
729 // the default version. SYM is the NAME/VERSION symbol we just added.
730 // DEFAULT_IS_NEW is true if this is the first time we have seen the
731 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
732
733 template<int size, bool big_endian>
734 void
735 Symbol_table::define_default_version(Sized_symbol<size>* sym,
736 bool default_is_new,
737 Symbol_table_type::iterator pdef)
738 {
739 if (default_is_new)
740 {
741 // This is the first time we have seen NAME/NULL. Make
742 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
743 // version.
744 pdef->second = sym;
745 sym->set_is_default();
746 }
747 else if (pdef->second == sym)
748 {
749 // NAME/NULL already points to NAME/VERSION. Don't mark the
750 // symbol as the default if it is not already the default.
751 }
752 else
753 {
754 // This is the unfortunate case where we already have entries
755 // for both NAME/VERSION and NAME/NULL. We now see a symbol
756 // NAME/VERSION where VERSION is the default version. We have
757 // already resolved this new symbol with the existing
758 // NAME/VERSION symbol.
759
760 // It's possible that NAME/NULL and NAME/VERSION are both
761 // defined in regular objects. This can only happen if one
762 // object file defines foo and another defines foo@@ver. This
763 // is somewhat obscure, but we call it a multiple definition
764 // error.
765
766 // It's possible that NAME/NULL actually has a version, in which
767 // case it won't be the same as VERSION. This happens with
768 // ver_test_7.so in the testsuite for the symbol t2_2. We see
769 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
770 // then see an unadorned t2_2 in an object file and give it
771 // version VER1 from the version script. This looks like a
772 // default definition for VER1, so it looks like we should merge
773 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
774 // not obvious that this is an error, either. So we just punt.
775
776 // If one of the symbols has non-default visibility, and the
777 // other is defined in a shared object, then they are different
778 // symbols.
779
780 // Otherwise, we just resolve the symbols as though they were
781 // the same.
782
783 if (pdef->second->version() != NULL)
784 gold_assert(pdef->second->version() != sym->version());
785 else if (sym->visibility() != elfcpp::STV_DEFAULT
786 && pdef->second->is_from_dynobj())
787 ;
788 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
789 && sym->is_from_dynobj())
790 ;
791 else
792 {
793 const Sized_symbol<size>* symdef;
794 symdef = this->get_sized_symbol<size>(pdef->second);
795 Symbol_table::resolve<size, big_endian>(sym, symdef);
796 this->make_forwarder(pdef->second, sym);
797 pdef->second = sym;
798 sym->set_is_default();
799 }
800 }
801 }
802
803 // Add one symbol from OBJECT to the symbol table. NAME is symbol
804 // name and VERSION is the version; both are canonicalized. DEF is
805 // whether this is the default version. ST_SHNDX is the symbol's
806 // section index; IS_ORDINARY is whether this is a normal section
807 // rather than a special code.
808
809 // If DEF is true, then this is the definition of a default version of
810 // a symbol. That means that any lookup of NAME/NULL and any lookup
811 // of NAME/VERSION should always return the same symbol. This is
812 // obvious for references, but in particular we want to do this for
813 // definitions: overriding NAME/NULL should also override
814 // NAME/VERSION. If we don't do that, it would be very hard to
815 // override functions in a shared library which uses versioning.
816
817 // We implement this by simply making both entries in the hash table
818 // point to the same Symbol structure. That is easy enough if this is
819 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
820 // that we have seen both already, in which case they will both have
821 // independent entries in the symbol table. We can't simply change
822 // the symbol table entry, because we have pointers to the entries
823 // attached to the object files. So we mark the entry attached to the
824 // object file as a forwarder, and record it in the forwarders_ map.
825 // Note that entries in the hash table will never be marked as
826 // forwarders.
827 //
828 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
829 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
830 // for a special section code. ST_SHNDX may be modified if the symbol
831 // is defined in a section being discarded.
832
833 template<int size, bool big_endian>
834 Sized_symbol<size>*
835 Symbol_table::add_from_object(Object* object,
836 const char *name,
837 Stringpool::Key name_key,
838 const char *version,
839 Stringpool::Key version_key,
840 bool def,
841 const elfcpp::Sym<size, big_endian>& sym,
842 unsigned int st_shndx,
843 bool is_ordinary,
844 unsigned int orig_st_shndx)
845 {
846 // Print a message if this symbol is being traced.
847 if (parameters->options().is_trace_symbol(name))
848 {
849 if (orig_st_shndx == elfcpp::SHN_UNDEF)
850 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
851 else
852 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
853 }
854
855 // For an undefined symbol, we may need to adjust the name using
856 // --wrap.
857 if (orig_st_shndx == elfcpp::SHN_UNDEF
858 && parameters->options().any_wrap())
859 {
860 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
861 if (wrap_name != name)
862 {
863 // If we see a reference to malloc with version GLIBC_2.0,
864 // and we turn it into a reference to __wrap_malloc, then we
865 // discard the version number. Otherwise the user would be
866 // required to specify the correct version for
867 // __wrap_malloc.
868 version = NULL;
869 version_key = 0;
870 name = wrap_name;
871 }
872 }
873
874 Symbol* const snull = NULL;
875 std::pair<typename Symbol_table_type::iterator, bool> ins =
876 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
877 snull));
878
879 std::pair<typename Symbol_table_type::iterator, bool> insdef =
880 std::make_pair(this->table_.end(), false);
881 if (def)
882 {
883 const Stringpool::Key vnull_key = 0;
884 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
885 vnull_key),
886 snull));
887 }
888
889 // ins.first: an iterator, which is a pointer to a pair.
890 // ins.first->first: the key (a pair of name and version).
891 // ins.first->second: the value (Symbol*).
892 // ins.second: true if new entry was inserted, false if not.
893
894 Sized_symbol<size>* ret;
895 bool was_undefined;
896 bool was_common;
897 if (!ins.second)
898 {
899 // We already have an entry for NAME/VERSION.
900 ret = this->get_sized_symbol<size>(ins.first->second);
901 gold_assert(ret != NULL);
902
903 was_undefined = ret->is_undefined();
904 was_common = ret->is_common();
905
906 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
907 version);
908 if (parameters->options().gc_sections())
909 this->gc_mark_dyn_syms(ret);
910
911 if (def)
912 this->define_default_version<size, big_endian>(ret, insdef.second,
913 insdef.first);
914 }
915 else
916 {
917 // This is the first time we have seen NAME/VERSION.
918 gold_assert(ins.first->second == NULL);
919
920 if (def && !insdef.second)
921 {
922 // We already have an entry for NAME/NULL. If we override
923 // it, then change it to NAME/VERSION.
924 ret = this->get_sized_symbol<size>(insdef.first->second);
925
926 was_undefined = ret->is_undefined();
927 was_common = ret->is_common();
928
929 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
930 version);
931 if (parameters->options().gc_sections())
932 this->gc_mark_dyn_syms(ret);
933 ins.first->second = ret;
934 }
935 else
936 {
937 was_undefined = false;
938 was_common = false;
939
940 Sized_target<size, big_endian>* target =
941 object->sized_target<size, big_endian>();
942 if (!target->has_make_symbol())
943 ret = new Sized_symbol<size>();
944 else
945 {
946 ret = target->make_symbol();
947 if (ret == NULL)
948 {
949 // This means that we don't want a symbol table
950 // entry after all.
951 if (!def)
952 this->table_.erase(ins.first);
953 else
954 {
955 this->table_.erase(insdef.first);
956 // Inserting insdef invalidated ins.
957 this->table_.erase(std::make_pair(name_key,
958 version_key));
959 }
960 return NULL;
961 }
962 }
963
964 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
965
966 ins.first->second = ret;
967 if (def)
968 {
969 // This is the first time we have seen NAME/NULL. Point
970 // it at the new entry for NAME/VERSION.
971 gold_assert(insdef.second);
972 insdef.first->second = ret;
973 }
974 }
975
976 if (def)
977 ret->set_is_default();
978 }
979
980 // Record every time we see a new undefined symbol, to speed up
981 // archive groups.
982 if (!was_undefined && ret->is_undefined())
983 ++this->saw_undefined_;
984
985 // Keep track of common symbols, to speed up common symbol
986 // allocation.
987 if (!was_common && ret->is_common())
988 {
989 if (ret->type() == elfcpp::STT_TLS)
990 this->tls_commons_.push_back(ret);
991 else if (!is_ordinary
992 && st_shndx == parameters->target().small_common_shndx())
993 this->small_commons_.push_back(ret);
994 else if (!is_ordinary
995 && st_shndx == parameters->target().large_common_shndx())
996 this->large_commons_.push_back(ret);
997 else
998 this->commons_.push_back(ret);
999 }
1000
1001 // If we're not doing a relocatable link, then any symbol with
1002 // hidden or internal visibility is local.
1003 if ((ret->visibility() == elfcpp::STV_HIDDEN
1004 || ret->visibility() == elfcpp::STV_INTERNAL)
1005 && (ret->binding() == elfcpp::STB_GLOBAL
1006 || ret->binding() == elfcpp::STB_WEAK)
1007 && !parameters->options().relocatable())
1008 this->force_local(ret);
1009
1010 return ret;
1011 }
1012
1013 // Add all the symbols in a relocatable object to the hash table.
1014
1015 template<int size, bool big_endian>
1016 void
1017 Symbol_table::add_from_relobj(
1018 Sized_relobj<size, big_endian>* relobj,
1019 const unsigned char* syms,
1020 size_t count,
1021 size_t symndx_offset,
1022 const char* sym_names,
1023 size_t sym_name_size,
1024 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1025 size_t *defined)
1026 {
1027 *defined = 0;
1028
1029 gold_assert(size == relobj->target()->get_size());
1030 gold_assert(size == parameters->target().get_size());
1031
1032 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1033
1034 const bool just_symbols = relobj->just_symbols();
1035
1036 const unsigned char* p = syms;
1037 for (size_t i = 0; i < count; ++i, p += sym_size)
1038 {
1039 (*sympointers)[i] = NULL;
1040
1041 elfcpp::Sym<size, big_endian> sym(p);
1042
1043 unsigned int st_name = sym.get_st_name();
1044 if (st_name >= sym_name_size)
1045 {
1046 relobj->error(_("bad global symbol name offset %u at %zu"),
1047 st_name, i);
1048 continue;
1049 }
1050
1051 const char* name = sym_names + st_name;
1052
1053 bool is_ordinary;
1054 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1055 sym.get_st_shndx(),
1056 &is_ordinary);
1057 unsigned int orig_st_shndx = st_shndx;
1058 if (!is_ordinary)
1059 orig_st_shndx = elfcpp::SHN_UNDEF;
1060
1061 if (st_shndx != elfcpp::SHN_UNDEF)
1062 ++*defined;
1063
1064 // A symbol defined in a section which we are not including must
1065 // be treated as an undefined symbol.
1066 if (st_shndx != elfcpp::SHN_UNDEF
1067 && is_ordinary
1068 && !relobj->is_section_included(st_shndx))
1069 st_shndx = elfcpp::SHN_UNDEF;
1070
1071 // In an object file, an '@' in the name separates the symbol
1072 // name from the version name. If there are two '@' characters,
1073 // this is the default version.
1074 const char* ver = strchr(name, '@');
1075 Stringpool::Key ver_key = 0;
1076 int namelen = 0;
1077 // DEF: is the version default? LOCAL: is the symbol forced local?
1078 bool def = false;
1079 bool local = false;
1080
1081 if (ver != NULL)
1082 {
1083 // The symbol name is of the form foo@VERSION or foo@@VERSION
1084 namelen = ver - name;
1085 ++ver;
1086 if (*ver == '@')
1087 {
1088 def = true;
1089 ++ver;
1090 }
1091 ver = this->namepool_.add(ver, true, &ver_key);
1092 }
1093 // We don't want to assign a version to an undefined symbol,
1094 // even if it is listed in the version script. FIXME: What
1095 // about a common symbol?
1096 else
1097 {
1098 namelen = strlen(name);
1099 if (!this->version_script_.empty()
1100 && st_shndx != elfcpp::SHN_UNDEF)
1101 {
1102 // The symbol name did not have a version, but the
1103 // version script may assign a version anyway.
1104 std::string version;
1105 if (this->version_script_.get_symbol_version(name, &version))
1106 {
1107 // The version can be empty if the version script is
1108 // only used to force some symbols to be local.
1109 if (!version.empty())
1110 {
1111 ver = this->namepool_.add_with_length(version.c_str(),
1112 version.length(),
1113 true,
1114 &ver_key);
1115 def = true;
1116 }
1117 }
1118 else if (this->version_script_.symbol_is_local(name))
1119 local = true;
1120 }
1121 }
1122
1123 elfcpp::Sym<size, big_endian>* psym = &sym;
1124 unsigned char symbuf[sym_size];
1125 elfcpp::Sym<size, big_endian> sym2(symbuf);
1126 if (just_symbols)
1127 {
1128 memcpy(symbuf, p, sym_size);
1129 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1130 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1131 {
1132 // Symbol values in object files are section relative.
1133 // This is normally what we want, but since here we are
1134 // converting the symbol to absolute we need to add the
1135 // section address. The section address in an object
1136 // file is normally zero, but people can use a linker
1137 // script to change it.
1138 sw.put_st_value(sym.get_st_value()
1139 + relobj->section_address(orig_st_shndx));
1140 }
1141 st_shndx = elfcpp::SHN_ABS;
1142 is_ordinary = false;
1143 psym = &sym2;
1144 }
1145
1146 // Fix up visibility if object has no-export set.
1147 if (relobj->no_export())
1148 {
1149 // We may have copied symbol already above.
1150 if (psym != &sym2)
1151 {
1152 memcpy(symbuf, p, sym_size);
1153 psym = &sym2;
1154 }
1155
1156 elfcpp::STV visibility = sym2.get_st_visibility();
1157 if (visibility == elfcpp::STV_DEFAULT
1158 || visibility == elfcpp::STV_PROTECTED)
1159 {
1160 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1161 unsigned char nonvis = sym2.get_st_nonvis();
1162 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1163 }
1164 }
1165
1166 Stringpool::Key name_key;
1167 name = this->namepool_.add_with_length(name, namelen, true,
1168 &name_key);
1169
1170 Sized_symbol<size>* res;
1171 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1172 def, *psym, st_shndx, is_ordinary,
1173 orig_st_shndx);
1174
1175 // If building a shared library using garbage collection, do not
1176 // treat externally visible symbols as garbage.
1177 if (parameters->options().gc_sections()
1178 && parameters->options().shared())
1179 this->gc_mark_symbol_for_shlib(res);
1180
1181 if (local)
1182 this->force_local(res);
1183
1184 (*sympointers)[i] = res;
1185 }
1186 }
1187
1188 // Add a symbol from a plugin-claimed file.
1189
1190 template<int size, bool big_endian>
1191 Symbol*
1192 Symbol_table::add_from_pluginobj(
1193 Sized_pluginobj<size, big_endian>* obj,
1194 const char* name,
1195 const char* ver,
1196 elfcpp::Sym<size, big_endian>* sym)
1197 {
1198 unsigned int st_shndx = sym->get_st_shndx();
1199
1200 Stringpool::Key ver_key = 0;
1201 bool def = false;
1202 bool local = false;
1203
1204 if (ver != NULL)
1205 {
1206 ver = this->namepool_.add(ver, true, &ver_key);
1207 }
1208 // We don't want to assign a version to an undefined symbol,
1209 // even if it is listed in the version script. FIXME: What
1210 // about a common symbol?
1211 else
1212 {
1213 if (!this->version_script_.empty()
1214 && st_shndx != elfcpp::SHN_UNDEF)
1215 {
1216 // The symbol name did not have a version, but the
1217 // version script may assign a version anyway.
1218 std::string version;
1219 if (this->version_script_.get_symbol_version(name, &version))
1220 {
1221 // The version can be empty if the version script is
1222 // only used to force some symbols to be local.
1223 if (!version.empty())
1224 {
1225 ver = this->namepool_.add_with_length(version.c_str(),
1226 version.length(),
1227 true,
1228 &ver_key);
1229 def = true;
1230 }
1231 }
1232 else if (this->version_script_.symbol_is_local(name))
1233 local = true;
1234 }
1235 }
1236
1237 Stringpool::Key name_key;
1238 name = this->namepool_.add(name, true, &name_key);
1239
1240 Sized_symbol<size>* res;
1241 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1242 def, *sym, st_shndx, true, st_shndx);
1243
1244 if (local)
1245 this->force_local(res);
1246
1247 return res;
1248 }
1249
1250 // Add all the symbols in a dynamic object to the hash table.
1251
1252 template<int size, bool big_endian>
1253 void
1254 Symbol_table::add_from_dynobj(
1255 Sized_dynobj<size, big_endian>* dynobj,
1256 const unsigned char* syms,
1257 size_t count,
1258 const char* sym_names,
1259 size_t sym_name_size,
1260 const unsigned char* versym,
1261 size_t versym_size,
1262 const std::vector<const char*>* version_map,
1263 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1264 size_t* defined)
1265 {
1266 *defined = 0;
1267
1268 gold_assert(size == dynobj->target()->get_size());
1269 gold_assert(size == parameters->target().get_size());
1270
1271 if (dynobj->just_symbols())
1272 {
1273 gold_error(_("--just-symbols does not make sense with a shared object"));
1274 return;
1275 }
1276
1277 if (versym != NULL && versym_size / 2 < count)
1278 {
1279 dynobj->error(_("too few symbol versions"));
1280 return;
1281 }
1282
1283 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1284
1285 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1286 // weak aliases. This is necessary because if the dynamic object
1287 // provides the same variable under two names, one of which is a
1288 // weak definition, and the regular object refers to the weak
1289 // definition, we have to put both the weak definition and the
1290 // strong definition into the dynamic symbol table. Given a weak
1291 // definition, the only way that we can find the corresponding
1292 // strong definition, if any, is to search the symbol table.
1293 std::vector<Sized_symbol<size>*> object_symbols;
1294
1295 const unsigned char* p = syms;
1296 const unsigned char* vs = versym;
1297 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1298 {
1299 elfcpp::Sym<size, big_endian> sym(p);
1300
1301 if (sympointers != NULL)
1302 (*sympointers)[i] = NULL;
1303
1304 // Ignore symbols with local binding or that have
1305 // internal or hidden visibility.
1306 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1307 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1308 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1309 continue;
1310
1311 // A protected symbol in a shared library must be treated as a
1312 // normal symbol when viewed from outside the shared library.
1313 // Implement this by overriding the visibility here.
1314 elfcpp::Sym<size, big_endian>* psym = &sym;
1315 unsigned char symbuf[sym_size];
1316 elfcpp::Sym<size, big_endian> sym2(symbuf);
1317 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1318 {
1319 memcpy(symbuf, p, sym_size);
1320 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1321 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1322 psym = &sym2;
1323 }
1324
1325 unsigned int st_name = psym->get_st_name();
1326 if (st_name >= sym_name_size)
1327 {
1328 dynobj->error(_("bad symbol name offset %u at %zu"),
1329 st_name, i);
1330 continue;
1331 }
1332
1333 const char* name = sym_names + st_name;
1334
1335 bool is_ordinary;
1336 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1337 &is_ordinary);
1338
1339 if (st_shndx != elfcpp::SHN_UNDEF)
1340 ++*defined;
1341
1342 Sized_symbol<size>* res;
1343
1344 if (versym == NULL)
1345 {
1346 Stringpool::Key name_key;
1347 name = this->namepool_.add(name, true, &name_key);
1348 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1349 false, *psym, st_shndx, is_ordinary,
1350 st_shndx);
1351 }
1352 else
1353 {
1354 // Read the version information.
1355
1356 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1357
1358 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1359 v &= elfcpp::VERSYM_VERSION;
1360
1361 // The Sun documentation says that V can be VER_NDX_LOCAL,
1362 // or VER_NDX_GLOBAL, or a version index. The meaning of
1363 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1364 // The old GNU linker will happily generate VER_NDX_LOCAL
1365 // for an undefined symbol. I don't know what the Sun
1366 // linker will generate.
1367
1368 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1369 && st_shndx != elfcpp::SHN_UNDEF)
1370 {
1371 // This symbol should not be visible outside the object.
1372 continue;
1373 }
1374
1375 // At this point we are definitely going to add this symbol.
1376 Stringpool::Key name_key;
1377 name = this->namepool_.add(name, true, &name_key);
1378
1379 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1380 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1381 {
1382 // This symbol does not have a version.
1383 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1384 false, *psym, st_shndx, is_ordinary,
1385 st_shndx);
1386 }
1387 else
1388 {
1389 if (v >= version_map->size())
1390 {
1391 dynobj->error(_("versym for symbol %zu out of range: %u"),
1392 i, v);
1393 continue;
1394 }
1395
1396 const char* version = (*version_map)[v];
1397 if (version == NULL)
1398 {
1399 dynobj->error(_("versym for symbol %zu has no name: %u"),
1400 i, v);
1401 continue;
1402 }
1403
1404 Stringpool::Key version_key;
1405 version = this->namepool_.add(version, true, &version_key);
1406
1407 // If this is an absolute symbol, and the version name
1408 // and symbol name are the same, then this is the
1409 // version definition symbol. These symbols exist to
1410 // support using -u to pull in particular versions. We
1411 // do not want to record a version for them.
1412 if (st_shndx == elfcpp::SHN_ABS
1413 && !is_ordinary
1414 && name_key == version_key)
1415 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1416 false, *psym, st_shndx, is_ordinary,
1417 st_shndx);
1418 else
1419 {
1420 const bool def = (!hidden
1421 && st_shndx != elfcpp::SHN_UNDEF);
1422 res = this->add_from_object(dynobj, name, name_key, version,
1423 version_key, def, *psym, st_shndx,
1424 is_ordinary, st_shndx);
1425 }
1426 }
1427 }
1428
1429 // Note that it is possible that RES was overridden by an
1430 // earlier object, in which case it can't be aliased here.
1431 if (st_shndx != elfcpp::SHN_UNDEF
1432 && is_ordinary
1433 && psym->get_st_type() == elfcpp::STT_OBJECT
1434 && res->source() == Symbol::FROM_OBJECT
1435 && res->object() == dynobj)
1436 object_symbols.push_back(res);
1437
1438 if (sympointers != NULL)
1439 (*sympointers)[i] = res;
1440 }
1441
1442 this->record_weak_aliases(&object_symbols);
1443 }
1444
1445 // This is used to sort weak aliases. We sort them first by section
1446 // index, then by offset, then by weak ahead of strong.
1447
1448 template<int size>
1449 class Weak_alias_sorter
1450 {
1451 public:
1452 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1453 };
1454
1455 template<int size>
1456 bool
1457 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1458 const Sized_symbol<size>* s2) const
1459 {
1460 bool is_ordinary;
1461 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1462 gold_assert(is_ordinary);
1463 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1464 gold_assert(is_ordinary);
1465 if (s1_shndx != s2_shndx)
1466 return s1_shndx < s2_shndx;
1467
1468 if (s1->value() != s2->value())
1469 return s1->value() < s2->value();
1470 if (s1->binding() != s2->binding())
1471 {
1472 if (s1->binding() == elfcpp::STB_WEAK)
1473 return true;
1474 if (s2->binding() == elfcpp::STB_WEAK)
1475 return false;
1476 }
1477 return std::string(s1->name()) < std::string(s2->name());
1478 }
1479
1480 // SYMBOLS is a list of object symbols from a dynamic object. Look
1481 // for any weak aliases, and record them so that if we add the weak
1482 // alias to the dynamic symbol table, we also add the corresponding
1483 // strong symbol.
1484
1485 template<int size>
1486 void
1487 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1488 {
1489 // Sort the vector by section index, then by offset, then by weak
1490 // ahead of strong.
1491 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1492
1493 // Walk through the vector. For each weak definition, record
1494 // aliases.
1495 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1496 symbols->begin();
1497 p != symbols->end();
1498 ++p)
1499 {
1500 if ((*p)->binding() != elfcpp::STB_WEAK)
1501 continue;
1502
1503 // Build a circular list of weak aliases. Each symbol points to
1504 // the next one in the circular list.
1505
1506 Sized_symbol<size>* from_sym = *p;
1507 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1508 for (q = p + 1; q != symbols->end(); ++q)
1509 {
1510 bool dummy;
1511 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1512 || (*q)->value() != from_sym->value())
1513 break;
1514
1515 this->weak_aliases_[from_sym] = *q;
1516 from_sym->set_has_alias();
1517 from_sym = *q;
1518 }
1519
1520 if (from_sym != *p)
1521 {
1522 this->weak_aliases_[from_sym] = *p;
1523 from_sym->set_has_alias();
1524 }
1525
1526 p = q - 1;
1527 }
1528 }
1529
1530 // Create and return a specially defined symbol. If ONLY_IF_REF is
1531 // true, then only create the symbol if there is a reference to it.
1532 // If this does not return NULL, it sets *POLDSYM to the existing
1533 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1534 // resolve the newly created symbol to the old one. This
1535 // canonicalizes *PNAME and *PVERSION.
1536
1537 template<int size, bool big_endian>
1538 Sized_symbol<size>*
1539 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1540 bool only_if_ref,
1541 Sized_symbol<size>** poldsym,
1542 bool *resolve_oldsym)
1543 {
1544 *resolve_oldsym = false;
1545
1546 // If the caller didn't give us a version, see if we get one from
1547 // the version script.
1548 std::string v;
1549 bool is_default_version = false;
1550 if (*pversion == NULL)
1551 {
1552 if (this->version_script_.get_symbol_version(*pname, &v))
1553 {
1554 if (!v.empty())
1555 *pversion = v.c_str();
1556
1557 // If we get the version from a version script, then we are
1558 // also the default version.
1559 is_default_version = true;
1560 }
1561 }
1562
1563 Symbol* oldsym;
1564 Sized_symbol<size>* sym;
1565
1566 bool add_to_table = false;
1567 typename Symbol_table_type::iterator add_loc = this->table_.end();
1568 bool add_def_to_table = false;
1569 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1570
1571 if (only_if_ref)
1572 {
1573 oldsym = this->lookup(*pname, *pversion);
1574 if (oldsym == NULL && is_default_version)
1575 oldsym = this->lookup(*pname, NULL);
1576 if (oldsym == NULL || !oldsym->is_undefined())
1577 return NULL;
1578
1579 *pname = oldsym->name();
1580 if (!is_default_version)
1581 *pversion = oldsym->version();
1582 }
1583 else
1584 {
1585 // Canonicalize NAME and VERSION.
1586 Stringpool::Key name_key;
1587 *pname = this->namepool_.add(*pname, true, &name_key);
1588
1589 Stringpool::Key version_key = 0;
1590 if (*pversion != NULL)
1591 *pversion = this->namepool_.add(*pversion, true, &version_key);
1592
1593 Symbol* const snull = NULL;
1594 std::pair<typename Symbol_table_type::iterator, bool> ins =
1595 this->table_.insert(std::make_pair(std::make_pair(name_key,
1596 version_key),
1597 snull));
1598
1599 std::pair<typename Symbol_table_type::iterator, bool> insdef =
1600 std::make_pair(this->table_.end(), false);
1601 if (is_default_version)
1602 {
1603 const Stringpool::Key vnull = 0;
1604 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
1605 vnull),
1606 snull));
1607 }
1608
1609 if (!ins.second)
1610 {
1611 // We already have a symbol table entry for NAME/VERSION.
1612 oldsym = ins.first->second;
1613 gold_assert(oldsym != NULL);
1614
1615 if (is_default_version)
1616 {
1617 Sized_symbol<size>* soldsym =
1618 this->get_sized_symbol<size>(oldsym);
1619 this->define_default_version<size, big_endian>(soldsym,
1620 insdef.second,
1621 insdef.first);
1622 }
1623 }
1624 else
1625 {
1626 // We haven't seen this symbol before.
1627 gold_assert(ins.first->second == NULL);
1628
1629 add_to_table = true;
1630 add_loc = ins.first;
1631
1632 if (is_default_version && !insdef.second)
1633 {
1634 // We are adding NAME/VERSION, and it is the default
1635 // version. We already have an entry for NAME/NULL.
1636 oldsym = insdef.first->second;
1637 *resolve_oldsym = true;
1638 }
1639 else
1640 {
1641 oldsym = NULL;
1642
1643 if (is_default_version)
1644 {
1645 add_def_to_table = true;
1646 add_def_loc = insdef.first;
1647 }
1648 }
1649 }
1650 }
1651
1652 const Target& target = parameters->target();
1653 if (!target.has_make_symbol())
1654 sym = new Sized_symbol<size>();
1655 else
1656 {
1657 gold_assert(target.get_size() == size);
1658 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1659 typedef Sized_target<size, big_endian> My_target;
1660 const My_target* sized_target =
1661 static_cast<const My_target*>(&target);
1662 sym = sized_target->make_symbol();
1663 if (sym == NULL)
1664 return NULL;
1665 }
1666
1667 if (add_to_table)
1668 add_loc->second = sym;
1669 else
1670 gold_assert(oldsym != NULL);
1671
1672 if (add_def_to_table)
1673 add_def_loc->second = sym;
1674
1675 *poldsym = this->get_sized_symbol<size>(oldsym);
1676
1677 return sym;
1678 }
1679
1680 // Define a symbol based on an Output_data.
1681
1682 Symbol*
1683 Symbol_table::define_in_output_data(const char* name,
1684 const char* version,
1685 Output_data* od,
1686 uint64_t value,
1687 uint64_t symsize,
1688 elfcpp::STT type,
1689 elfcpp::STB binding,
1690 elfcpp::STV visibility,
1691 unsigned char nonvis,
1692 bool offset_is_from_end,
1693 bool only_if_ref)
1694 {
1695 if (parameters->target().get_size() == 32)
1696 {
1697 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1698 return this->do_define_in_output_data<32>(name, version, od,
1699 value, symsize, type, binding,
1700 visibility, nonvis,
1701 offset_is_from_end,
1702 only_if_ref);
1703 #else
1704 gold_unreachable();
1705 #endif
1706 }
1707 else if (parameters->target().get_size() == 64)
1708 {
1709 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1710 return this->do_define_in_output_data<64>(name, version, od,
1711 value, symsize, type, binding,
1712 visibility, nonvis,
1713 offset_is_from_end,
1714 only_if_ref);
1715 #else
1716 gold_unreachable();
1717 #endif
1718 }
1719 else
1720 gold_unreachable();
1721 }
1722
1723 // Define a symbol in an Output_data, sized version.
1724
1725 template<int size>
1726 Sized_symbol<size>*
1727 Symbol_table::do_define_in_output_data(
1728 const char* name,
1729 const char* version,
1730 Output_data* od,
1731 typename elfcpp::Elf_types<size>::Elf_Addr value,
1732 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1733 elfcpp::STT type,
1734 elfcpp::STB binding,
1735 elfcpp::STV visibility,
1736 unsigned char nonvis,
1737 bool offset_is_from_end,
1738 bool only_if_ref)
1739 {
1740 Sized_symbol<size>* sym;
1741 Sized_symbol<size>* oldsym;
1742 bool resolve_oldsym;
1743
1744 if (parameters->target().is_big_endian())
1745 {
1746 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1747 sym = this->define_special_symbol<size, true>(&name, &version,
1748 only_if_ref, &oldsym,
1749 &resolve_oldsym);
1750 #else
1751 gold_unreachable();
1752 #endif
1753 }
1754 else
1755 {
1756 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1757 sym = this->define_special_symbol<size, false>(&name, &version,
1758 only_if_ref, &oldsym,
1759 &resolve_oldsym);
1760 #else
1761 gold_unreachable();
1762 #endif
1763 }
1764
1765 if (sym == NULL)
1766 return NULL;
1767
1768 sym->init_output_data(name, version, od, value, symsize, type, binding,
1769 visibility, nonvis, offset_is_from_end);
1770
1771 if (oldsym == NULL)
1772 {
1773 if (binding == elfcpp::STB_LOCAL
1774 || this->version_script_.symbol_is_local(name))
1775 this->force_local(sym);
1776 else if (version != NULL)
1777 sym->set_is_default();
1778 return sym;
1779 }
1780
1781 if (Symbol_table::should_override_with_special(oldsym))
1782 this->override_with_special(oldsym, sym);
1783
1784 if (resolve_oldsym)
1785 return sym;
1786 else
1787 {
1788 delete sym;
1789 return oldsym;
1790 }
1791 }
1792
1793 // Define a symbol based on an Output_segment.
1794
1795 Symbol*
1796 Symbol_table::define_in_output_segment(const char* name,
1797 const char* version, Output_segment* os,
1798 uint64_t value,
1799 uint64_t symsize,
1800 elfcpp::STT type,
1801 elfcpp::STB binding,
1802 elfcpp::STV visibility,
1803 unsigned char nonvis,
1804 Symbol::Segment_offset_base offset_base,
1805 bool only_if_ref)
1806 {
1807 if (parameters->target().get_size() == 32)
1808 {
1809 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1810 return this->do_define_in_output_segment<32>(name, version, os,
1811 value, symsize, type,
1812 binding, visibility, nonvis,
1813 offset_base, only_if_ref);
1814 #else
1815 gold_unreachable();
1816 #endif
1817 }
1818 else if (parameters->target().get_size() == 64)
1819 {
1820 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1821 return this->do_define_in_output_segment<64>(name, version, os,
1822 value, symsize, type,
1823 binding, visibility, nonvis,
1824 offset_base, only_if_ref);
1825 #else
1826 gold_unreachable();
1827 #endif
1828 }
1829 else
1830 gold_unreachable();
1831 }
1832
1833 // Define a symbol in an Output_segment, sized version.
1834
1835 template<int size>
1836 Sized_symbol<size>*
1837 Symbol_table::do_define_in_output_segment(
1838 const char* name,
1839 const char* version,
1840 Output_segment* os,
1841 typename elfcpp::Elf_types<size>::Elf_Addr value,
1842 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1843 elfcpp::STT type,
1844 elfcpp::STB binding,
1845 elfcpp::STV visibility,
1846 unsigned char nonvis,
1847 Symbol::Segment_offset_base offset_base,
1848 bool only_if_ref)
1849 {
1850 Sized_symbol<size>* sym;
1851 Sized_symbol<size>* oldsym;
1852 bool resolve_oldsym;
1853
1854 if (parameters->target().is_big_endian())
1855 {
1856 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1857 sym = this->define_special_symbol<size, true>(&name, &version,
1858 only_if_ref, &oldsym,
1859 &resolve_oldsym);
1860 #else
1861 gold_unreachable();
1862 #endif
1863 }
1864 else
1865 {
1866 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1867 sym = this->define_special_symbol<size, false>(&name, &version,
1868 only_if_ref, &oldsym,
1869 &resolve_oldsym);
1870 #else
1871 gold_unreachable();
1872 #endif
1873 }
1874
1875 if (sym == NULL)
1876 return NULL;
1877
1878 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1879 visibility, nonvis, offset_base);
1880
1881 if (oldsym == NULL)
1882 {
1883 if (binding == elfcpp::STB_LOCAL
1884 || this->version_script_.symbol_is_local(name))
1885 this->force_local(sym);
1886 else if (version != NULL)
1887 sym->set_is_default();
1888 return sym;
1889 }
1890
1891 if (Symbol_table::should_override_with_special(oldsym))
1892 this->override_with_special(oldsym, sym);
1893
1894 if (resolve_oldsym)
1895 return sym;
1896 else
1897 {
1898 delete sym;
1899 return oldsym;
1900 }
1901 }
1902
1903 // Define a special symbol with a constant value. It is a multiple
1904 // definition error if this symbol is already defined.
1905
1906 Symbol*
1907 Symbol_table::define_as_constant(const char* name,
1908 const char* version,
1909 uint64_t value,
1910 uint64_t symsize,
1911 elfcpp::STT type,
1912 elfcpp::STB binding,
1913 elfcpp::STV visibility,
1914 unsigned char nonvis,
1915 bool only_if_ref,
1916 bool force_override)
1917 {
1918 if (parameters->target().get_size() == 32)
1919 {
1920 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1921 return this->do_define_as_constant<32>(name, version, value,
1922 symsize, type, binding,
1923 visibility, nonvis, only_if_ref,
1924 force_override);
1925 #else
1926 gold_unreachable();
1927 #endif
1928 }
1929 else if (parameters->target().get_size() == 64)
1930 {
1931 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1932 return this->do_define_as_constant<64>(name, version, value,
1933 symsize, type, binding,
1934 visibility, nonvis, only_if_ref,
1935 force_override);
1936 #else
1937 gold_unreachable();
1938 #endif
1939 }
1940 else
1941 gold_unreachable();
1942 }
1943
1944 // Define a symbol as a constant, sized version.
1945
1946 template<int size>
1947 Sized_symbol<size>*
1948 Symbol_table::do_define_as_constant(
1949 const char* name,
1950 const char* version,
1951 typename elfcpp::Elf_types<size>::Elf_Addr value,
1952 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1953 elfcpp::STT type,
1954 elfcpp::STB binding,
1955 elfcpp::STV visibility,
1956 unsigned char nonvis,
1957 bool only_if_ref,
1958 bool force_override)
1959 {
1960 Sized_symbol<size>* sym;
1961 Sized_symbol<size>* oldsym;
1962 bool resolve_oldsym;
1963
1964 if (parameters->target().is_big_endian())
1965 {
1966 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1967 sym = this->define_special_symbol<size, true>(&name, &version,
1968 only_if_ref, &oldsym,
1969 &resolve_oldsym);
1970 #else
1971 gold_unreachable();
1972 #endif
1973 }
1974 else
1975 {
1976 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1977 sym = this->define_special_symbol<size, false>(&name, &version,
1978 only_if_ref, &oldsym,
1979 &resolve_oldsym);
1980 #else
1981 gold_unreachable();
1982 #endif
1983 }
1984
1985 if (sym == NULL)
1986 return NULL;
1987
1988 sym->init_constant(name, version, value, symsize, type, binding, visibility,
1989 nonvis);
1990
1991 if (oldsym == NULL)
1992 {
1993 // Version symbols are absolute symbols with name == version.
1994 // We don't want to force them to be local.
1995 if ((version == NULL
1996 || name != version
1997 || value != 0)
1998 && (binding == elfcpp::STB_LOCAL
1999 || this->version_script_.symbol_is_local(name)))
2000 this->force_local(sym);
2001 else if (version != NULL
2002 && (name != version || value != 0))
2003 sym->set_is_default();
2004 return sym;
2005 }
2006
2007 if (force_override || Symbol_table::should_override_with_special(oldsym))
2008 this->override_with_special(oldsym, sym);
2009
2010 if (resolve_oldsym)
2011 return sym;
2012 else
2013 {
2014 delete sym;
2015 return oldsym;
2016 }
2017 }
2018
2019 // Define a set of symbols in output sections.
2020
2021 void
2022 Symbol_table::define_symbols(const Layout* layout, int count,
2023 const Define_symbol_in_section* p,
2024 bool only_if_ref)
2025 {
2026 for (int i = 0; i < count; ++i, ++p)
2027 {
2028 Output_section* os = layout->find_output_section(p->output_section);
2029 if (os != NULL)
2030 this->define_in_output_data(p->name, NULL, os, p->value,
2031 p->size, p->type, p->binding,
2032 p->visibility, p->nonvis,
2033 p->offset_is_from_end,
2034 only_if_ref || p->only_if_ref);
2035 else
2036 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2037 p->binding, p->visibility, p->nonvis,
2038 only_if_ref || p->only_if_ref,
2039 false);
2040 }
2041 }
2042
2043 // Define a set of symbols in output segments.
2044
2045 void
2046 Symbol_table::define_symbols(const Layout* layout, int count,
2047 const Define_symbol_in_segment* p,
2048 bool only_if_ref)
2049 {
2050 for (int i = 0; i < count; ++i, ++p)
2051 {
2052 Output_segment* os = layout->find_output_segment(p->segment_type,
2053 p->segment_flags_set,
2054 p->segment_flags_clear);
2055 if (os != NULL)
2056 this->define_in_output_segment(p->name, NULL, os, p->value,
2057 p->size, p->type, p->binding,
2058 p->visibility, p->nonvis,
2059 p->offset_base,
2060 only_if_ref || p->only_if_ref);
2061 else
2062 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
2063 p->binding, p->visibility, p->nonvis,
2064 only_if_ref || p->only_if_ref,
2065 false);
2066 }
2067 }
2068
2069 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2070 // symbol should be defined--typically a .dyn.bss section. VALUE is
2071 // the offset within POSD.
2072
2073 template<int size>
2074 void
2075 Symbol_table::define_with_copy_reloc(
2076 Sized_symbol<size>* csym,
2077 Output_data* posd,
2078 typename elfcpp::Elf_types<size>::Elf_Addr value)
2079 {
2080 gold_assert(csym->is_from_dynobj());
2081 gold_assert(!csym->is_copied_from_dynobj());
2082 Object* object = csym->object();
2083 gold_assert(object->is_dynamic());
2084 Dynobj* dynobj = static_cast<Dynobj*>(object);
2085
2086 // Our copied variable has to override any variable in a shared
2087 // library.
2088 elfcpp::STB binding = csym->binding();
2089 if (binding == elfcpp::STB_WEAK)
2090 binding = elfcpp::STB_GLOBAL;
2091
2092 this->define_in_output_data(csym->name(), csym->version(),
2093 posd, value, csym->symsize(),
2094 csym->type(), binding,
2095 csym->visibility(), csym->nonvis(),
2096 false, false);
2097
2098 csym->set_is_copied_from_dynobj();
2099 csym->set_needs_dynsym_entry();
2100
2101 this->copied_symbol_dynobjs_[csym] = dynobj;
2102
2103 // We have now defined all aliases, but we have not entered them all
2104 // in the copied_symbol_dynobjs_ map.
2105 if (csym->has_alias())
2106 {
2107 Symbol* sym = csym;
2108 while (true)
2109 {
2110 sym = this->weak_aliases_[sym];
2111 if (sym == csym)
2112 break;
2113 gold_assert(sym->output_data() == posd);
2114
2115 sym->set_is_copied_from_dynobj();
2116 this->copied_symbol_dynobjs_[sym] = dynobj;
2117 }
2118 }
2119 }
2120
2121 // SYM is defined using a COPY reloc. Return the dynamic object where
2122 // the original definition was found.
2123
2124 Dynobj*
2125 Symbol_table::get_copy_source(const Symbol* sym) const
2126 {
2127 gold_assert(sym->is_copied_from_dynobj());
2128 Copied_symbol_dynobjs::const_iterator p =
2129 this->copied_symbol_dynobjs_.find(sym);
2130 gold_assert(p != this->copied_symbol_dynobjs_.end());
2131 return p->second;
2132 }
2133
2134 // Add any undefined symbols named on the command line.
2135
2136 void
2137 Symbol_table::add_undefined_symbols_from_command_line()
2138 {
2139 if (parameters->options().any_undefined())
2140 {
2141 if (parameters->target().get_size() == 32)
2142 {
2143 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2144 this->do_add_undefined_symbols_from_command_line<32>();
2145 #else
2146 gold_unreachable();
2147 #endif
2148 }
2149 else if (parameters->target().get_size() == 64)
2150 {
2151 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2152 this->do_add_undefined_symbols_from_command_line<64>();
2153 #else
2154 gold_unreachable();
2155 #endif
2156 }
2157 else
2158 gold_unreachable();
2159 }
2160 }
2161
2162 template<int size>
2163 void
2164 Symbol_table::do_add_undefined_symbols_from_command_line()
2165 {
2166 for (options::String_set::const_iterator p =
2167 parameters->options().undefined_begin();
2168 p != parameters->options().undefined_end();
2169 ++p)
2170 {
2171 const char* name = p->c_str();
2172
2173 if (this->lookup(name) != NULL)
2174 continue;
2175
2176 const char* version = NULL;
2177
2178 Sized_symbol<size>* sym;
2179 Sized_symbol<size>* oldsym;
2180 bool resolve_oldsym;
2181 if (parameters->target().is_big_endian())
2182 {
2183 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2184 sym = this->define_special_symbol<size, true>(&name, &version,
2185 false, &oldsym,
2186 &resolve_oldsym);
2187 #else
2188 gold_unreachable();
2189 #endif
2190 }
2191 else
2192 {
2193 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2194 sym = this->define_special_symbol<size, false>(&name, &version,
2195 false, &oldsym,
2196 &resolve_oldsym);
2197 #else
2198 gold_unreachable();
2199 #endif
2200 }
2201
2202 gold_assert(oldsym == NULL);
2203
2204 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2205 elfcpp::STV_DEFAULT, 0);
2206 ++this->saw_undefined_;
2207 }
2208 }
2209
2210 // Set the dynamic symbol indexes. INDEX is the index of the first
2211 // global dynamic symbol. Pointers to the symbols are stored into the
2212 // vector SYMS. The names are added to DYNPOOL. This returns an
2213 // updated dynamic symbol index.
2214
2215 unsigned int
2216 Symbol_table::set_dynsym_indexes(unsigned int index,
2217 std::vector<Symbol*>* syms,
2218 Stringpool* dynpool,
2219 Versions* versions)
2220 {
2221 for (Symbol_table_type::iterator p = this->table_.begin();
2222 p != this->table_.end();
2223 ++p)
2224 {
2225 Symbol* sym = p->second;
2226
2227 // Note that SYM may already have a dynamic symbol index, since
2228 // some symbols appear more than once in the symbol table, with
2229 // and without a version.
2230
2231 if (!sym->should_add_dynsym_entry())
2232 sym->set_dynsym_index(-1U);
2233 else if (!sym->has_dynsym_index())
2234 {
2235 sym->set_dynsym_index(index);
2236 ++index;
2237 syms->push_back(sym);
2238 dynpool->add(sym->name(), false, NULL);
2239
2240 // Record any version information.
2241 if (sym->version() != NULL)
2242 versions->record_version(this, dynpool, sym);
2243 }
2244 }
2245
2246 // Finish up the versions. In some cases this may add new dynamic
2247 // symbols.
2248 index = versions->finalize(this, index, syms);
2249
2250 return index;
2251 }
2252
2253 // Set the final values for all the symbols. The index of the first
2254 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2255 // file offset OFF. Add their names to POOL. Return the new file
2256 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2257
2258 off_t
2259 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2260 size_t dyncount, Stringpool* pool,
2261 unsigned int *plocal_symcount)
2262 {
2263 off_t ret;
2264
2265 gold_assert(*plocal_symcount != 0);
2266 this->first_global_index_ = *plocal_symcount;
2267
2268 this->dynamic_offset_ = dynoff;
2269 this->first_dynamic_global_index_ = dyn_global_index;
2270 this->dynamic_count_ = dyncount;
2271
2272 if (parameters->target().get_size() == 32)
2273 {
2274 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2275 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2276 #else
2277 gold_unreachable();
2278 #endif
2279 }
2280 else if (parameters->target().get_size() == 64)
2281 {
2282 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2283 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2284 #else
2285 gold_unreachable();
2286 #endif
2287 }
2288 else
2289 gold_unreachable();
2290
2291 // Now that we have the final symbol table, we can reliably note
2292 // which symbols should get warnings.
2293 this->warnings_.note_warnings(this);
2294
2295 return ret;
2296 }
2297
2298 // SYM is going into the symbol table at *PINDEX. Add the name to
2299 // POOL, update *PINDEX and *POFF.
2300
2301 template<int size>
2302 void
2303 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2304 unsigned int* pindex, off_t* poff)
2305 {
2306 sym->set_symtab_index(*pindex);
2307 pool->add(sym->name(), false, NULL);
2308 ++*pindex;
2309 *poff += elfcpp::Elf_sizes<size>::sym_size;
2310 }
2311
2312 // Set the final value for all the symbols. This is called after
2313 // Layout::finalize, so all the output sections have their final
2314 // address.
2315
2316 template<int size>
2317 off_t
2318 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2319 unsigned int* plocal_symcount)
2320 {
2321 off = align_address(off, size >> 3);
2322 this->offset_ = off;
2323
2324 unsigned int index = *plocal_symcount;
2325 const unsigned int orig_index = index;
2326
2327 // First do all the symbols which have been forced to be local, as
2328 // they must appear before all global symbols.
2329 for (Forced_locals::iterator p = this->forced_locals_.begin();
2330 p != this->forced_locals_.end();
2331 ++p)
2332 {
2333 Symbol* sym = *p;
2334 gold_assert(sym->is_forced_local());
2335 if (this->sized_finalize_symbol<size>(sym))
2336 {
2337 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2338 ++*plocal_symcount;
2339 }
2340 }
2341
2342 // Now do all the remaining symbols.
2343 for (Symbol_table_type::iterator p = this->table_.begin();
2344 p != this->table_.end();
2345 ++p)
2346 {
2347 Symbol* sym = p->second;
2348 if (this->sized_finalize_symbol<size>(sym))
2349 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2350 }
2351
2352 this->output_count_ = index - orig_index;
2353
2354 return off;
2355 }
2356
2357 // Finalize the symbol SYM. This returns true if the symbol should be
2358 // added to the symbol table, false otherwise.
2359
2360 template<int size>
2361 bool
2362 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2363 {
2364 typedef typename Sized_symbol<size>::Value_type Value_type;
2365
2366 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2367
2368 // The default version of a symbol may appear twice in the symbol
2369 // table. We only need to finalize it once.
2370 if (sym->has_symtab_index())
2371 return false;
2372
2373 if (!sym->in_reg())
2374 {
2375 gold_assert(!sym->has_symtab_index());
2376 sym->set_symtab_index(-1U);
2377 gold_assert(sym->dynsym_index() == -1U);
2378 return false;
2379 }
2380
2381 Value_type value;
2382
2383 switch (sym->source())
2384 {
2385 case Symbol::FROM_OBJECT:
2386 {
2387 bool is_ordinary;
2388 unsigned int shndx = sym->shndx(&is_ordinary);
2389
2390 if (!is_ordinary
2391 && shndx != elfcpp::SHN_ABS
2392 && !Symbol::is_common_shndx(shndx))
2393 {
2394 gold_error(_("%s: unsupported symbol section 0x%x"),
2395 sym->demangled_name().c_str(), shndx);
2396 shndx = elfcpp::SHN_UNDEF;
2397 }
2398
2399 Object* symobj = sym->object();
2400 if (symobj->is_dynamic())
2401 {
2402 value = 0;
2403 shndx = elfcpp::SHN_UNDEF;
2404 }
2405 else if (symobj->pluginobj() != NULL)
2406 {
2407 value = 0;
2408 shndx = elfcpp::SHN_UNDEF;
2409 }
2410 else if (shndx == elfcpp::SHN_UNDEF)
2411 value = 0;
2412 else if (!is_ordinary
2413 && (shndx == elfcpp::SHN_ABS
2414 || Symbol::is_common_shndx(shndx)))
2415 value = sym->value();
2416 else
2417 {
2418 Relobj* relobj = static_cast<Relobj*>(symobj);
2419 Output_section* os = relobj->output_section(shndx);
2420
2421 if (os == NULL)
2422 {
2423 sym->set_symtab_index(-1U);
2424 bool static_or_reloc = (parameters->doing_static_link() ||
2425 parameters->options().relocatable());
2426 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2427
2428 return false;
2429 }
2430
2431 uint64_t secoff64 = relobj->output_section_offset(shndx);
2432 if (secoff64 == -1ULL)
2433 {
2434 // The section needs special handling (e.g., a merge section).
2435 value = os->output_address(relobj, shndx, sym->value());
2436 }
2437 else
2438 {
2439 Value_type secoff =
2440 convert_types<Value_type, uint64_t>(secoff64);
2441 if (sym->type() == elfcpp::STT_TLS)
2442 value = sym->value() + os->tls_offset() + secoff;
2443 else
2444 value = sym->value() + os->address() + secoff;
2445 }
2446 }
2447 }
2448 break;
2449
2450 case Symbol::IN_OUTPUT_DATA:
2451 {
2452 Output_data* od = sym->output_data();
2453 value = sym->value();
2454 if (sym->type() != elfcpp::STT_TLS)
2455 value += od->address();
2456 else
2457 {
2458 Output_section* os = od->output_section();
2459 gold_assert(os != NULL);
2460 value += os->tls_offset() + (od->address() - os->address());
2461 }
2462 if (sym->offset_is_from_end())
2463 value += od->data_size();
2464 }
2465 break;
2466
2467 case Symbol::IN_OUTPUT_SEGMENT:
2468 {
2469 Output_segment* os = sym->output_segment();
2470 value = sym->value();
2471 if (sym->type() != elfcpp::STT_TLS)
2472 value += os->vaddr();
2473 switch (sym->offset_base())
2474 {
2475 case Symbol::SEGMENT_START:
2476 break;
2477 case Symbol::SEGMENT_END:
2478 value += os->memsz();
2479 break;
2480 case Symbol::SEGMENT_BSS:
2481 value += os->filesz();
2482 break;
2483 default:
2484 gold_unreachable();
2485 }
2486 }
2487 break;
2488
2489 case Symbol::IS_CONSTANT:
2490 value = sym->value();
2491 break;
2492
2493 case Symbol::IS_UNDEFINED:
2494 value = 0;
2495 break;
2496
2497 default:
2498 gold_unreachable();
2499 }
2500
2501 sym->set_value(value);
2502
2503 if (parameters->options().strip_all())
2504 {
2505 sym->set_symtab_index(-1U);
2506 return false;
2507 }
2508
2509 return true;
2510 }
2511
2512 // Write out the global symbols.
2513
2514 void
2515 Symbol_table::write_globals(const Stringpool* sympool,
2516 const Stringpool* dynpool,
2517 Output_symtab_xindex* symtab_xindex,
2518 Output_symtab_xindex* dynsym_xindex,
2519 Output_file* of) const
2520 {
2521 switch (parameters->size_and_endianness())
2522 {
2523 #ifdef HAVE_TARGET_32_LITTLE
2524 case Parameters::TARGET_32_LITTLE:
2525 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2526 dynsym_xindex, of);
2527 break;
2528 #endif
2529 #ifdef HAVE_TARGET_32_BIG
2530 case Parameters::TARGET_32_BIG:
2531 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2532 dynsym_xindex, of);
2533 break;
2534 #endif
2535 #ifdef HAVE_TARGET_64_LITTLE
2536 case Parameters::TARGET_64_LITTLE:
2537 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2538 dynsym_xindex, of);
2539 break;
2540 #endif
2541 #ifdef HAVE_TARGET_64_BIG
2542 case Parameters::TARGET_64_BIG:
2543 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2544 dynsym_xindex, of);
2545 break;
2546 #endif
2547 default:
2548 gold_unreachable();
2549 }
2550 }
2551
2552 // Write out the global symbols.
2553
2554 template<int size, bool big_endian>
2555 void
2556 Symbol_table::sized_write_globals(const Stringpool* sympool,
2557 const Stringpool* dynpool,
2558 Output_symtab_xindex* symtab_xindex,
2559 Output_symtab_xindex* dynsym_xindex,
2560 Output_file* of) const
2561 {
2562 const Target& target = parameters->target();
2563
2564 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2565
2566 const unsigned int output_count = this->output_count_;
2567 const section_size_type oview_size = output_count * sym_size;
2568 const unsigned int first_global_index = this->first_global_index_;
2569 unsigned char* psyms;
2570 if (this->offset_ == 0 || output_count == 0)
2571 psyms = NULL;
2572 else
2573 psyms = of->get_output_view(this->offset_, oview_size);
2574
2575 const unsigned int dynamic_count = this->dynamic_count_;
2576 const section_size_type dynamic_size = dynamic_count * sym_size;
2577 const unsigned int first_dynamic_global_index =
2578 this->first_dynamic_global_index_;
2579 unsigned char* dynamic_view;
2580 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2581 dynamic_view = NULL;
2582 else
2583 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2584
2585 for (Symbol_table_type::const_iterator p = this->table_.begin();
2586 p != this->table_.end();
2587 ++p)
2588 {
2589 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2590
2591 // Possibly warn about unresolved symbols in shared libraries.
2592 this->warn_about_undefined_dynobj_symbol(sym);
2593
2594 unsigned int sym_index = sym->symtab_index();
2595 unsigned int dynsym_index;
2596 if (dynamic_view == NULL)
2597 dynsym_index = -1U;
2598 else
2599 dynsym_index = sym->dynsym_index();
2600
2601 if (sym_index == -1U && dynsym_index == -1U)
2602 {
2603 // This symbol is not included in the output file.
2604 continue;
2605 }
2606
2607 unsigned int shndx;
2608 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2609 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2610 switch (sym->source())
2611 {
2612 case Symbol::FROM_OBJECT:
2613 {
2614 bool is_ordinary;
2615 unsigned int in_shndx = sym->shndx(&is_ordinary);
2616
2617 if (!is_ordinary
2618 && in_shndx != elfcpp::SHN_ABS
2619 && !Symbol::is_common_shndx(in_shndx))
2620 {
2621 gold_error(_("%s: unsupported symbol section 0x%x"),
2622 sym->demangled_name().c_str(), in_shndx);
2623 shndx = in_shndx;
2624 }
2625 else
2626 {
2627 Object* symobj = sym->object();
2628 if (symobj->is_dynamic())
2629 {
2630 if (sym->needs_dynsym_value())
2631 dynsym_value = target.dynsym_value(sym);
2632 shndx = elfcpp::SHN_UNDEF;
2633 }
2634 else if (symobj->pluginobj() != NULL)
2635 shndx = elfcpp::SHN_UNDEF;
2636 else if (in_shndx == elfcpp::SHN_UNDEF
2637 || (!is_ordinary
2638 && (in_shndx == elfcpp::SHN_ABS
2639 || Symbol::is_common_shndx(in_shndx))))
2640 shndx = in_shndx;
2641 else
2642 {
2643 Relobj* relobj = static_cast<Relobj*>(symobj);
2644 Output_section* os = relobj->output_section(in_shndx);
2645 gold_assert(os != NULL);
2646 shndx = os->out_shndx();
2647
2648 if (shndx >= elfcpp::SHN_LORESERVE)
2649 {
2650 if (sym_index != -1U)
2651 symtab_xindex->add(sym_index, shndx);
2652 if (dynsym_index != -1U)
2653 dynsym_xindex->add(dynsym_index, shndx);
2654 shndx = elfcpp::SHN_XINDEX;
2655 }
2656
2657 // In object files symbol values are section
2658 // relative.
2659 if (parameters->options().relocatable())
2660 sym_value -= os->address();
2661 }
2662 }
2663 }
2664 break;
2665
2666 case Symbol::IN_OUTPUT_DATA:
2667 shndx = sym->output_data()->out_shndx();
2668 if (shndx >= elfcpp::SHN_LORESERVE)
2669 {
2670 if (sym_index != -1U)
2671 symtab_xindex->add(sym_index, shndx);
2672 if (dynsym_index != -1U)
2673 dynsym_xindex->add(dynsym_index, shndx);
2674 shndx = elfcpp::SHN_XINDEX;
2675 }
2676 break;
2677
2678 case Symbol::IN_OUTPUT_SEGMENT:
2679 shndx = elfcpp::SHN_ABS;
2680 break;
2681
2682 case Symbol::IS_CONSTANT:
2683 shndx = elfcpp::SHN_ABS;
2684 break;
2685
2686 case Symbol::IS_UNDEFINED:
2687 shndx = elfcpp::SHN_UNDEF;
2688 break;
2689
2690 default:
2691 gold_unreachable();
2692 }
2693
2694 if (sym_index != -1U)
2695 {
2696 sym_index -= first_global_index;
2697 gold_assert(sym_index < output_count);
2698 unsigned char* ps = psyms + (sym_index * sym_size);
2699 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2700 sympool, ps);
2701 }
2702
2703 if (dynsym_index != -1U)
2704 {
2705 dynsym_index -= first_dynamic_global_index;
2706 gold_assert(dynsym_index < dynamic_count);
2707 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2708 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2709 dynpool, pd);
2710 }
2711 }
2712
2713 of->write_output_view(this->offset_, oview_size, psyms);
2714 if (dynamic_view != NULL)
2715 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2716 }
2717
2718 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2719 // strtab holding the name.
2720
2721 template<int size, bool big_endian>
2722 void
2723 Symbol_table::sized_write_symbol(
2724 Sized_symbol<size>* sym,
2725 typename elfcpp::Elf_types<size>::Elf_Addr value,
2726 unsigned int shndx,
2727 const Stringpool* pool,
2728 unsigned char* p) const
2729 {
2730 elfcpp::Sym_write<size, big_endian> osym(p);
2731 osym.put_st_name(pool->get_offset(sym->name()));
2732 osym.put_st_value(value);
2733 // Use a symbol size of zero for undefined symbols from shared libraries.
2734 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2735 osym.put_st_size(0);
2736 else
2737 osym.put_st_size(sym->symsize());
2738 // A version script may have overridden the default binding.
2739 if (sym->is_forced_local())
2740 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2741 else
2742 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2743 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2744 osym.put_st_shndx(shndx);
2745 }
2746
2747 // Check for unresolved symbols in shared libraries. This is
2748 // controlled by the --allow-shlib-undefined option.
2749
2750 // We only warn about libraries for which we have seen all the
2751 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2752 // which were not seen in this link. If we didn't see a DT_NEEDED
2753 // entry, we aren't going to be able to reliably report whether the
2754 // symbol is undefined.
2755
2756 // We also don't warn about libraries found in a system library
2757 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2758 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2759 // can have undefined references satisfied by ld-linux.so.
2760
2761 inline void
2762 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2763 {
2764 bool dummy;
2765 if (sym->source() == Symbol::FROM_OBJECT
2766 && sym->object()->is_dynamic()
2767 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2768 && sym->binding() != elfcpp::STB_WEAK
2769 && !parameters->options().allow_shlib_undefined()
2770 && !parameters->target().is_defined_by_abi(sym)
2771 && !sym->object()->is_in_system_directory())
2772 {
2773 // A very ugly cast.
2774 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2775 if (!dynobj->has_unknown_needed_entries())
2776 gold_undefined_symbol(sym);
2777 }
2778 }
2779
2780 // Write out a section symbol. Return the update offset.
2781
2782 void
2783 Symbol_table::write_section_symbol(const Output_section *os,
2784 Output_symtab_xindex* symtab_xindex,
2785 Output_file* of,
2786 off_t offset) const
2787 {
2788 switch (parameters->size_and_endianness())
2789 {
2790 #ifdef HAVE_TARGET_32_LITTLE
2791 case Parameters::TARGET_32_LITTLE:
2792 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2793 offset);
2794 break;
2795 #endif
2796 #ifdef HAVE_TARGET_32_BIG
2797 case Parameters::TARGET_32_BIG:
2798 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2799 offset);
2800 break;
2801 #endif
2802 #ifdef HAVE_TARGET_64_LITTLE
2803 case Parameters::TARGET_64_LITTLE:
2804 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2805 offset);
2806 break;
2807 #endif
2808 #ifdef HAVE_TARGET_64_BIG
2809 case Parameters::TARGET_64_BIG:
2810 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2811 offset);
2812 break;
2813 #endif
2814 default:
2815 gold_unreachable();
2816 }
2817 }
2818
2819 // Write out a section symbol, specialized for size and endianness.
2820
2821 template<int size, bool big_endian>
2822 void
2823 Symbol_table::sized_write_section_symbol(const Output_section* os,
2824 Output_symtab_xindex* symtab_xindex,
2825 Output_file* of,
2826 off_t offset) const
2827 {
2828 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2829
2830 unsigned char* pov = of->get_output_view(offset, sym_size);
2831
2832 elfcpp::Sym_write<size, big_endian> osym(pov);
2833 osym.put_st_name(0);
2834 if (parameters->options().relocatable())
2835 osym.put_st_value(0);
2836 else
2837 osym.put_st_value(os->address());
2838 osym.put_st_size(0);
2839 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2840 elfcpp::STT_SECTION));
2841 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2842
2843 unsigned int shndx = os->out_shndx();
2844 if (shndx >= elfcpp::SHN_LORESERVE)
2845 {
2846 symtab_xindex->add(os->symtab_index(), shndx);
2847 shndx = elfcpp::SHN_XINDEX;
2848 }
2849 osym.put_st_shndx(shndx);
2850
2851 of->write_output_view(offset, sym_size, pov);
2852 }
2853
2854 // Print statistical information to stderr. This is used for --stats.
2855
2856 void
2857 Symbol_table::print_stats() const
2858 {
2859 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2860 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2861 program_name, this->table_.size(), this->table_.bucket_count());
2862 #else
2863 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2864 program_name, this->table_.size());
2865 #endif
2866 this->namepool_.print_stats("symbol table stringpool");
2867 }
2868
2869 // We check for ODR violations by looking for symbols with the same
2870 // name for which the debugging information reports that they were
2871 // defined in different source locations. When comparing the source
2872 // location, we consider instances with the same base filename and
2873 // line number to be the same. This is because different object
2874 // files/shared libraries can include the same header file using
2875 // different paths, and we don't want to report an ODR violation in
2876 // that case.
2877
2878 // This struct is used to compare line information, as returned by
2879 // Dwarf_line_info::one_addr2line. It implements a < comparison
2880 // operator used with std::set.
2881
2882 struct Odr_violation_compare
2883 {
2884 bool
2885 operator()(const std::string& s1, const std::string& s2) const
2886 {
2887 std::string::size_type pos1 = s1.rfind('/');
2888 std::string::size_type pos2 = s2.rfind('/');
2889 if (pos1 == std::string::npos
2890 || pos2 == std::string::npos)
2891 return s1 < s2;
2892 return s1.compare(pos1, std::string::npos,
2893 s2, pos2, std::string::npos) < 0;
2894 }
2895 };
2896
2897 // Check candidate_odr_violations_ to find symbols with the same name
2898 // but apparently different definitions (different source-file/line-no).
2899
2900 void
2901 Symbol_table::detect_odr_violations(const Task* task,
2902 const char* output_file_name) const
2903 {
2904 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2905 it != candidate_odr_violations_.end();
2906 ++it)
2907 {
2908 const char* symbol_name = it->first;
2909 // We use a sorted set so the output is deterministic.
2910 std::set<std::string, Odr_violation_compare> line_nums;
2911
2912 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2913 locs = it->second.begin();
2914 locs != it->second.end();
2915 ++locs)
2916 {
2917 // We need to lock the object in order to read it. This
2918 // means that we have to run in a singleton Task. If we
2919 // want to run this in a general Task for better
2920 // performance, we will need one Task for object, plus
2921 // appropriate locking to ensure that we don't conflict with
2922 // other uses of the object. Also note, one_addr2line is not
2923 // currently thread-safe.
2924 Task_lock_obj<Object> tl(task, locs->object);
2925 // 16 is the size of the object-cache that one_addr2line should use.
2926 std::string lineno = Dwarf_line_info::one_addr2line(
2927 locs->object, locs->shndx, locs->offset, 16);
2928 if (!lineno.empty())
2929 line_nums.insert(lineno);
2930 }
2931
2932 if (line_nums.size() > 1)
2933 {
2934 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2935 "places (possible ODR violation):"),
2936 output_file_name, demangle(symbol_name).c_str());
2937 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2938 it2 != line_nums.end();
2939 ++it2)
2940 fprintf(stderr, " %s\n", it2->c_str());
2941 }
2942 }
2943 // We only call one_addr2line() in this function, so we can clear its cache.
2944 Dwarf_line_info::clear_addr2line_cache();
2945 }
2946
2947 // Warnings functions.
2948
2949 // Add a new warning.
2950
2951 void
2952 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2953 const std::string& warning)
2954 {
2955 name = symtab->canonicalize_name(name);
2956 this->warnings_[name].set(obj, warning);
2957 }
2958
2959 // Look through the warnings and mark the symbols for which we should
2960 // warn. This is called during Layout::finalize when we know the
2961 // sources for all the symbols.
2962
2963 void
2964 Warnings::note_warnings(Symbol_table* symtab)
2965 {
2966 for (Warning_table::iterator p = this->warnings_.begin();
2967 p != this->warnings_.end();
2968 ++p)
2969 {
2970 Symbol* sym = symtab->lookup(p->first, NULL);
2971 if (sym != NULL
2972 && sym->source() == Symbol::FROM_OBJECT
2973 && sym->object() == p->second.object)
2974 sym->set_has_warning();
2975 }
2976 }
2977
2978 // Issue a warning. This is called when we see a relocation against a
2979 // symbol for which has a warning.
2980
2981 template<int size, bool big_endian>
2982 void
2983 Warnings::issue_warning(const Symbol* sym,
2984 const Relocate_info<size, big_endian>* relinfo,
2985 size_t relnum, off_t reloffset) const
2986 {
2987 gold_assert(sym->has_warning());
2988 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2989 gold_assert(p != this->warnings_.end());
2990 gold_warning_at_location(relinfo, relnum, reloffset,
2991 "%s", p->second.text.c_str());
2992 }
2993
2994 // Instantiate the templates we need. We could use the configure
2995 // script to restrict this to only the ones needed for implemented
2996 // targets.
2997
2998 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2999 template
3000 void
3001 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3002 #endif
3003
3004 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3005 template
3006 void
3007 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3008 #endif
3009
3010 #ifdef HAVE_TARGET_32_LITTLE
3011 template
3012 void
3013 Symbol_table::add_from_relobj<32, false>(
3014 Sized_relobj<32, false>* relobj,
3015 const unsigned char* syms,
3016 size_t count,
3017 size_t symndx_offset,
3018 const char* sym_names,
3019 size_t sym_name_size,
3020 Sized_relobj<32, false>::Symbols* sympointers,
3021 size_t* defined);
3022 #endif
3023
3024 #ifdef HAVE_TARGET_32_BIG
3025 template
3026 void
3027 Symbol_table::add_from_relobj<32, true>(
3028 Sized_relobj<32, true>* relobj,
3029 const unsigned char* syms,
3030 size_t count,
3031 size_t symndx_offset,
3032 const char* sym_names,
3033 size_t sym_name_size,
3034 Sized_relobj<32, true>::Symbols* sympointers,
3035 size_t* defined);
3036 #endif
3037
3038 #ifdef HAVE_TARGET_64_LITTLE
3039 template
3040 void
3041 Symbol_table::add_from_relobj<64, false>(
3042 Sized_relobj<64, false>* relobj,
3043 const unsigned char* syms,
3044 size_t count,
3045 size_t symndx_offset,
3046 const char* sym_names,
3047 size_t sym_name_size,
3048 Sized_relobj<64, false>::Symbols* sympointers,
3049 size_t* defined);
3050 #endif
3051
3052 #ifdef HAVE_TARGET_64_BIG
3053 template
3054 void
3055 Symbol_table::add_from_relobj<64, true>(
3056 Sized_relobj<64, true>* relobj,
3057 const unsigned char* syms,
3058 size_t count,
3059 size_t symndx_offset,
3060 const char* sym_names,
3061 size_t sym_name_size,
3062 Sized_relobj<64, true>::Symbols* sympointers,
3063 size_t* defined);
3064 #endif
3065
3066 #ifdef HAVE_TARGET_32_LITTLE
3067 template
3068 Symbol*
3069 Symbol_table::add_from_pluginobj<32, false>(
3070 Sized_pluginobj<32, false>* obj,
3071 const char* name,
3072 const char* ver,
3073 elfcpp::Sym<32, false>* sym);
3074 #endif
3075
3076 #ifdef HAVE_TARGET_32_BIG
3077 template
3078 Symbol*
3079 Symbol_table::add_from_pluginobj<32, true>(
3080 Sized_pluginobj<32, true>* obj,
3081 const char* name,
3082 const char* ver,
3083 elfcpp::Sym<32, true>* sym);
3084 #endif
3085
3086 #ifdef HAVE_TARGET_64_LITTLE
3087 template
3088 Symbol*
3089 Symbol_table::add_from_pluginobj<64, false>(
3090 Sized_pluginobj<64, false>* obj,
3091 const char* name,
3092 const char* ver,
3093 elfcpp::Sym<64, false>* sym);
3094 #endif
3095
3096 #ifdef HAVE_TARGET_64_BIG
3097 template
3098 Symbol*
3099 Symbol_table::add_from_pluginobj<64, true>(
3100 Sized_pluginobj<64, true>* obj,
3101 const char* name,
3102 const char* ver,
3103 elfcpp::Sym<64, true>* sym);
3104 #endif
3105
3106 #ifdef HAVE_TARGET_32_LITTLE
3107 template
3108 void
3109 Symbol_table::add_from_dynobj<32, false>(
3110 Sized_dynobj<32, false>* dynobj,
3111 const unsigned char* syms,
3112 size_t count,
3113 const char* sym_names,
3114 size_t sym_name_size,
3115 const unsigned char* versym,
3116 size_t versym_size,
3117 const std::vector<const char*>* version_map,
3118 Sized_relobj<32, false>::Symbols* sympointers,
3119 size_t* defined);
3120 #endif
3121
3122 #ifdef HAVE_TARGET_32_BIG
3123 template
3124 void
3125 Symbol_table::add_from_dynobj<32, true>(
3126 Sized_dynobj<32, true>* dynobj,
3127 const unsigned char* syms,
3128 size_t count,
3129 const char* sym_names,
3130 size_t sym_name_size,
3131 const unsigned char* versym,
3132 size_t versym_size,
3133 const std::vector<const char*>* version_map,
3134 Sized_relobj<32, true>::Symbols* sympointers,
3135 size_t* defined);
3136 #endif
3137
3138 #ifdef HAVE_TARGET_64_LITTLE
3139 template
3140 void
3141 Symbol_table::add_from_dynobj<64, false>(
3142 Sized_dynobj<64, false>* dynobj,
3143 const unsigned char* syms,
3144 size_t count,
3145 const char* sym_names,
3146 size_t sym_name_size,
3147 const unsigned char* versym,
3148 size_t versym_size,
3149 const std::vector<const char*>* version_map,
3150 Sized_relobj<64, false>::Symbols* sympointers,
3151 size_t* defined);
3152 #endif
3153
3154 #ifdef HAVE_TARGET_64_BIG
3155 template
3156 void
3157 Symbol_table::add_from_dynobj<64, true>(
3158 Sized_dynobj<64, true>* dynobj,
3159 const unsigned char* syms,
3160 size_t count,
3161 const char* sym_names,
3162 size_t sym_name_size,
3163 const unsigned char* versym,
3164 size_t versym_size,
3165 const std::vector<const char*>* version_map,
3166 Sized_relobj<64, true>::Symbols* sympointers,
3167 size_t* defined);
3168 #endif
3169
3170 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3171 template
3172 void
3173 Symbol_table::define_with_copy_reloc<32>(
3174 Sized_symbol<32>* sym,
3175 Output_data* posd,
3176 elfcpp::Elf_types<32>::Elf_Addr value);
3177 #endif
3178
3179 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3180 template
3181 void
3182 Symbol_table::define_with_copy_reloc<64>(
3183 Sized_symbol<64>* sym,
3184 Output_data* posd,
3185 elfcpp::Elf_types<64>::Elf_Addr value);
3186 #endif
3187
3188 #ifdef HAVE_TARGET_32_LITTLE
3189 template
3190 void
3191 Warnings::issue_warning<32, false>(const Symbol* sym,
3192 const Relocate_info<32, false>* relinfo,
3193 size_t relnum, off_t reloffset) const;
3194 #endif
3195
3196 #ifdef HAVE_TARGET_32_BIG
3197 template
3198 void
3199 Warnings::issue_warning<32, true>(const Symbol* sym,
3200 const Relocate_info<32, true>* relinfo,
3201 size_t relnum, off_t reloffset) const;
3202 #endif
3203
3204 #ifdef HAVE_TARGET_64_LITTLE
3205 template
3206 void
3207 Warnings::issue_warning<64, false>(const Symbol* sym,
3208 const Relocate_info<64, false>* relinfo,
3209 size_t relnum, off_t reloffset) const;
3210 #endif
3211
3212 #ifdef HAVE_TARGET_64_BIG
3213 template
3214 void
3215 Warnings::issue_warning<64, true>(const Symbol* sym,
3216 const Relocate_info<64, true>* relinfo,
3217 size_t relnum, off_t reloffset) const;
3218 #endif
3219
3220 } // End namespace gold.
This page took 0.100084 seconds and 4 git commands to generate.