PR gold/5986
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol. This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
53 {
54 this->name_ = name;
55 this->version_ = version;
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
58 this->got_offsets_.init();
59 this->plt_offset_ = 0;
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
67 this->has_alias_ = false;
68 this->needs_dynsym_entry_ = false;
69 this->in_reg_ = false;
70 this->in_dyn_ = false;
71 this->has_plt_offset_ = false;
72 this->has_warning_ = false;
73 this->is_copied_from_dynobj_ = false;
74 this->is_forced_local_ = false;
75 }
76
77 // Return the demangled version of the symbol's name, but only
78 // if the --demangle flag was set.
79
80 static std::string
81 demangle(const char* name)
82 {
83 if (!parameters->options().do_demangle())
84 return name;
85
86 // cplus_demangle allocates memory for the result it returns,
87 // and returns NULL if the name is already demangled.
88 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89 if (demangled_name == NULL)
90 return name;
91
92 std::string retval(demangled_name);
93 free(demangled_name);
94 return retval;
95 }
96
97 std::string
98 Symbol::demangled_name() const
99 {
100 return demangle(this->name());
101 }
102
103 // Initialize the fields in the base class Symbol for SYM in OBJECT.
104
105 template<int size, bool big_endian>
106 void
107 Symbol::init_base(const char* name, const char* version, Object* object,
108 const elfcpp::Sym<size, big_endian>& sym)
109 {
110 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111 sym.get_st_visibility(), sym.get_st_nonvis());
112 this->u_.from_object.object = object;
113 // FIXME: Handle SHN_XINDEX.
114 this->u_.from_object.shndx = sym.get_st_shndx();
115 this->source_ = FROM_OBJECT;
116 this->in_reg_ = !object->is_dynamic();
117 this->in_dyn_ = object->is_dynamic();
118 }
119
120 // Initialize the fields in the base class Symbol for a symbol defined
121 // in an Output_data.
122
123 void
124 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis, bool offset_is_from_end)
127 {
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->u_.in_output_data.output_data = od;
130 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131 this->source_ = IN_OUTPUT_DATA;
132 this->in_reg_ = true;
133 }
134
135 // Initialize the fields in the base class Symbol for a symbol defined
136 // in an Output_segment.
137
138 void
139 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140 elfcpp::STB binding, elfcpp::STV visibility,
141 unsigned char nonvis, Segment_offset_base offset_base)
142 {
143 this->init_fields(name, NULL, type, binding, visibility, nonvis);
144 this->u_.in_output_segment.output_segment = os;
145 this->u_.in_output_segment.offset_base = offset_base;
146 this->source_ = IN_OUTPUT_SEGMENT;
147 this->in_reg_ = true;
148 }
149
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // as a constant.
152
153 void
154 Symbol::init_base(const char* name, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis)
157 {
158 this->init_fields(name, NULL, type, binding, visibility, nonvis);
159 this->source_ = CONSTANT;
160 this->in_reg_ = true;
161 }
162
163 // Allocate a common symbol in the base.
164
165 void
166 Symbol::allocate_base_common(Output_data* od)
167 {
168 gold_assert(this->is_common());
169 this->source_ = IN_OUTPUT_DATA;
170 this->u_.in_output_data.output_data = od;
171 this->u_.in_output_data.offset_is_from_end = false;
172 }
173
174 // Initialize the fields in Sized_symbol for SYM in OBJECT.
175
176 template<int size>
177 template<bool big_endian>
178 void
179 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180 const elfcpp::Sym<size, big_endian>& sym)
181 {
182 this->init_base(name, version, object, sym);
183 this->value_ = sym.get_st_value();
184 this->symsize_ = sym.get_st_size();
185 }
186
187 // Initialize the fields in Sized_symbol for a symbol defined in an
188 // Output_data.
189
190 template<int size>
191 void
192 Sized_symbol<size>::init(const char* name, Output_data* od,
193 Value_type value, Size_type symsize,
194 elfcpp::STT type, elfcpp::STB binding,
195 elfcpp::STV visibility, unsigned char nonvis,
196 bool offset_is_from_end)
197 {
198 this->init_base(name, od, type, binding, visibility, nonvis,
199 offset_is_from_end);
200 this->value_ = value;
201 this->symsize_ = symsize;
202 }
203
204 // Initialize the fields in Sized_symbol for a symbol defined in an
205 // Output_segment.
206
207 template<int size>
208 void
209 Sized_symbol<size>::init(const char* name, Output_segment* os,
210 Value_type value, Size_type symsize,
211 elfcpp::STT type, elfcpp::STB binding,
212 elfcpp::STV visibility, unsigned char nonvis,
213 Segment_offset_base offset_base)
214 {
215 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216 this->value_ = value;
217 this->symsize_ = symsize;
218 }
219
220 // Initialize the fields in Sized_symbol for a symbol defined as a
221 // constant.
222
223 template<int size>
224 void
225 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226 elfcpp::STT type, elfcpp::STB binding,
227 elfcpp::STV visibility, unsigned char nonvis)
228 {
229 this->init_base(name, type, binding, visibility, nonvis);
230 this->value_ = value;
231 this->symsize_ = symsize;
232 }
233
234 // Allocate a common symbol.
235
236 template<int size>
237 void
238 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239 {
240 this->allocate_base_common(od);
241 this->value_ = value;
242 }
243
244 // Return true if this symbol should be added to the dynamic symbol
245 // table.
246
247 inline bool
248 Symbol::should_add_dynsym_entry() const
249 {
250 // If the symbol is used by a dynamic relocation, we need to add it.
251 if (this->needs_dynsym_entry())
252 return true;
253
254 // If the symbol was forced local in a version script, do not add it.
255 if (this->is_forced_local())
256 return false;
257
258 // If exporting all symbols or building a shared library,
259 // and the symbol is defined in a regular object and is
260 // externally visible, we need to add it.
261 if ((parameters->options().export_dynamic() || parameters->options().shared())
262 && !this->is_from_dynobj()
263 && this->is_externally_visible())
264 return true;
265
266 return false;
267 }
268
269 // Return true if the final value of this symbol is known at link
270 // time.
271
272 bool
273 Symbol::final_value_is_known() const
274 {
275 // If we are not generating an executable, then no final values are
276 // known, since they will change at runtime.
277 if (parameters->options().shared() || parameters->options().relocatable())
278 return false;
279
280 // If the symbol is not from an object file, then it is defined, and
281 // known.
282 if (this->source_ != FROM_OBJECT)
283 return true;
284
285 // If the symbol is from a dynamic object, then the final value is
286 // not known.
287 if (this->object()->is_dynamic())
288 return false;
289
290 // If the symbol is not undefined (it is defined or common), then
291 // the final value is known.
292 if (!this->is_undefined())
293 return true;
294
295 // If the symbol is undefined, then whether the final value is known
296 // depends on whether we are doing a static link. If we are doing a
297 // dynamic link, then the final value could be filled in at runtime.
298 // This could reasonably be the case for a weak undefined symbol.
299 return parameters->doing_static_link();
300 }
301
302 // Return the output section where this symbol is defined.
303
304 Output_section*
305 Symbol::output_section() const
306 {
307 switch (this->source_)
308 {
309 case FROM_OBJECT:
310 {
311 unsigned int shndx = this->u_.from_object.shndx;
312 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313 {
314 gold_assert(!this->u_.from_object.object->is_dynamic());
315 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316 section_offset_type dummy;
317 return relobj->output_section(shndx, &dummy);
318 }
319 return NULL;
320 }
321
322 case IN_OUTPUT_DATA:
323 return this->u_.in_output_data.output_data->output_section();
324
325 case IN_OUTPUT_SEGMENT:
326 case CONSTANT:
327 return NULL;
328
329 default:
330 gold_unreachable();
331 }
332 }
333
334 // Set the symbol's output section. This is used for symbols defined
335 // in scripts. This should only be called after the symbol table has
336 // been finalized.
337
338 void
339 Symbol::set_output_section(Output_section* os)
340 {
341 switch (this->source_)
342 {
343 case FROM_OBJECT:
344 case IN_OUTPUT_DATA:
345 gold_assert(this->output_section() == os);
346 break;
347 case CONSTANT:
348 this->source_ = IN_OUTPUT_DATA;
349 this->u_.in_output_data.output_data = os;
350 this->u_.in_output_data.offset_is_from_end = false;
351 break;
352 case IN_OUTPUT_SEGMENT:
353 default:
354 gold_unreachable();
355 }
356 }
357
358 // Class Symbol_table.
359
360 Symbol_table::Symbol_table(unsigned int count,
361 const Version_script_info& version_script)
362 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
363 forwarders_(), commons_(), forced_locals_(), warnings_(),
364 version_script_(version_script)
365 {
366 namepool_.reserve(count);
367 }
368
369 Symbol_table::~Symbol_table()
370 {
371 }
372
373 // The hash function. The key values are Stringpool keys.
374
375 inline size_t
376 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377 {
378 return key.first ^ key.second;
379 }
380
381 // The symbol table key equality function. This is called with
382 // Stringpool keys.
383
384 inline bool
385 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386 const Symbol_table_key& k2) const
387 {
388 return k1.first == k2.first && k1.second == k2.second;
389 }
390
391 // Make TO a symbol which forwards to FROM.
392
393 void
394 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395 {
396 gold_assert(from != to);
397 gold_assert(!from->is_forwarder() && !to->is_forwarder());
398 this->forwarders_[from] = to;
399 from->set_forwarder();
400 }
401
402 // Resolve the forwards from FROM, returning the real symbol.
403
404 Symbol*
405 Symbol_table::resolve_forwards(const Symbol* from) const
406 {
407 gold_assert(from->is_forwarder());
408 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
409 this->forwarders_.find(from);
410 gold_assert(p != this->forwarders_.end());
411 return p->second;
412 }
413
414 // Look up a symbol by name.
415
416 Symbol*
417 Symbol_table::lookup(const char* name, const char* version) const
418 {
419 Stringpool::Key name_key;
420 name = this->namepool_.find(name, &name_key);
421 if (name == NULL)
422 return NULL;
423
424 Stringpool::Key version_key = 0;
425 if (version != NULL)
426 {
427 version = this->namepool_.find(version, &version_key);
428 if (version == NULL)
429 return NULL;
430 }
431
432 Symbol_table_key key(name_key, version_key);
433 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434 if (p == this->table_.end())
435 return NULL;
436 return p->second;
437 }
438
439 // Resolve a Symbol with another Symbol. This is only used in the
440 // unusual case where there are references to both an unversioned
441 // symbol and a symbol with a version, and we then discover that that
442 // version is the default version. Because this is unusual, we do
443 // this the slow way, by converting back to an ELF symbol.
444
445 template<int size, bool big_endian>
446 void
447 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
448 const char* version)
449 {
450 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451 elfcpp::Sym_write<size, big_endian> esym(buf);
452 // We don't bother to set the st_name field.
453 esym.put_st_value(from->value());
454 esym.put_st_size(from->symsize());
455 esym.put_st_info(from->binding(), from->type());
456 esym.put_st_other(from->visibility(), from->nonvis());
457 esym.put_st_shndx(from->shndx());
458 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
459 if (from->in_reg())
460 to->set_in_reg();
461 if (from->in_dyn())
462 to->set_in_dyn();
463 }
464
465 // Record that a symbol is forced to be local by a version script.
466
467 void
468 Symbol_table::force_local(Symbol* sym)
469 {
470 if (!sym->is_defined() && !sym->is_common())
471 return;
472 if (sym->is_forced_local())
473 {
474 // We already got this one.
475 return;
476 }
477 sym->set_is_forced_local();
478 this->forced_locals_.push_back(sym);
479 }
480
481 // Add one symbol from OBJECT to the symbol table. NAME is symbol
482 // name and VERSION is the version; both are canonicalized. DEF is
483 // whether this is the default version.
484
485 // If DEF is true, then this is the definition of a default version of
486 // a symbol. That means that any lookup of NAME/NULL and any lookup
487 // of NAME/VERSION should always return the same symbol. This is
488 // obvious for references, but in particular we want to do this for
489 // definitions: overriding NAME/NULL should also override
490 // NAME/VERSION. If we don't do that, it would be very hard to
491 // override functions in a shared library which uses versioning.
492
493 // We implement this by simply making both entries in the hash table
494 // point to the same Symbol structure. That is easy enough if this is
495 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
496 // that we have seen both already, in which case they will both have
497 // independent entries in the symbol table. We can't simply change
498 // the symbol table entry, because we have pointers to the entries
499 // attached to the object files. So we mark the entry attached to the
500 // object file as a forwarder, and record it in the forwarders_ map.
501 // Note that entries in the hash table will never be marked as
502 // forwarders.
503 //
504 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
505 // symbol exactly as it existed in the input file. SYM is usually
506 // that as well, but can be modified, for instance if we determine
507 // it's in a to-be-discarded section.
508
509 template<int size, bool big_endian>
510 Sized_symbol<size>*
511 Symbol_table::add_from_object(Object* object,
512 const char *name,
513 Stringpool::Key name_key,
514 const char *version,
515 Stringpool::Key version_key,
516 bool def,
517 const elfcpp::Sym<size, big_endian>& sym,
518 const elfcpp::Sym<size, big_endian>& orig_sym)
519 {
520 Symbol* const snull = NULL;
521 std::pair<typename Symbol_table_type::iterator, bool> ins =
522 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
523 snull));
524
525 std::pair<typename Symbol_table_type::iterator, bool> insdef =
526 std::make_pair(this->table_.end(), false);
527 if (def)
528 {
529 const Stringpool::Key vnull_key = 0;
530 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
531 vnull_key),
532 snull));
533 }
534
535 // ins.first: an iterator, which is a pointer to a pair.
536 // ins.first->first: the key (a pair of name and version).
537 // ins.first->second: the value (Symbol*).
538 // ins.second: true if new entry was inserted, false if not.
539
540 Sized_symbol<size>* ret;
541 bool was_undefined;
542 bool was_common;
543 if (!ins.second)
544 {
545 // We already have an entry for NAME/VERSION.
546 ret = this->get_sized_symbol<size>(ins.first->second);
547 gold_assert(ret != NULL);
548
549 was_undefined = ret->is_undefined();
550 was_common = ret->is_common();
551
552 this->resolve(ret, sym, orig_sym, object, version);
553
554 if (def)
555 {
556 if (insdef.second)
557 {
558 // This is the first time we have seen NAME/NULL. Make
559 // NAME/NULL point to NAME/VERSION.
560 insdef.first->second = ret;
561 }
562 else if (insdef.first->second != ret
563 && insdef.first->second->is_undefined())
564 {
565 // This is the unfortunate case where we already have
566 // entries for both NAME/VERSION and NAME/NULL. Note
567 // that we don't want to combine them if the existing
568 // symbol is going to override the new one. FIXME: We
569 // currently just test is_undefined, but this may not do
570 // the right thing if the existing symbol is from a
571 // shared library and the new one is from a regular
572 // object.
573
574 const Sized_symbol<size>* sym2;
575 sym2 = this->get_sized_symbol<size>(insdef.first->second);
576 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
577 this->make_forwarder(insdef.first->second, ret);
578 insdef.first->second = ret;
579 }
580 }
581 }
582 else
583 {
584 // This is the first time we have seen NAME/VERSION.
585 gold_assert(ins.first->second == NULL);
586
587 was_undefined = false;
588 was_common = false;
589
590 if (def && !insdef.second)
591 {
592 // We already have an entry for NAME/NULL. If we override
593 // it, then change it to NAME/VERSION.
594 ret = this->get_sized_symbol<size>(insdef.first->second);
595 this->resolve(ret, sym, orig_sym, object, version);
596 ins.first->second = ret;
597 }
598 else
599 {
600 Sized_target<size, big_endian>* target =
601 object->sized_target<size, big_endian>();
602 if (!target->has_make_symbol())
603 ret = new Sized_symbol<size>();
604 else
605 {
606 ret = target->make_symbol();
607 if (ret == NULL)
608 {
609 // This means that we don't want a symbol table
610 // entry after all.
611 if (!def)
612 this->table_.erase(ins.first);
613 else
614 {
615 this->table_.erase(insdef.first);
616 // Inserting insdef invalidated ins.
617 this->table_.erase(std::make_pair(name_key,
618 version_key));
619 }
620 return NULL;
621 }
622 }
623
624 ret->init(name, version, object, sym);
625
626 ins.first->second = ret;
627 if (def)
628 {
629 // This is the first time we have seen NAME/NULL. Point
630 // it at the new entry for NAME/VERSION.
631 gold_assert(insdef.second);
632 insdef.first->second = ret;
633 }
634 }
635 }
636
637 // Record every time we see a new undefined symbol, to speed up
638 // archive groups.
639 if (!was_undefined && ret->is_undefined())
640 ++this->saw_undefined_;
641
642 // Keep track of common symbols, to speed up common symbol
643 // allocation.
644 if (!was_common && ret->is_common())
645 this->commons_.push_back(ret);
646
647 if (def)
648 ret->set_is_default();
649 return ret;
650 }
651
652 // Add all the symbols in a relocatable object to the hash table.
653
654 template<int size, bool big_endian>
655 void
656 Symbol_table::add_from_relobj(
657 Sized_relobj<size, big_endian>* relobj,
658 const unsigned char* syms,
659 size_t count,
660 const char* sym_names,
661 size_t sym_name_size,
662 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
663 {
664 gold_assert(size == relobj->target()->get_size());
665 gold_assert(size == parameters->target().get_size());
666
667 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
668
669 const bool just_symbols = relobj->just_symbols();
670
671 const unsigned char* p = syms;
672 for (size_t i = 0; i < count; ++i, p += sym_size)
673 {
674 elfcpp::Sym<size, big_endian> sym(p);
675 elfcpp::Sym<size, big_endian>* psym = &sym;
676
677 unsigned int st_name = psym->get_st_name();
678 if (st_name >= sym_name_size)
679 {
680 relobj->error(_("bad global symbol name offset %u at %zu"),
681 st_name, i);
682 continue;
683 }
684
685 const char* name = sym_names + st_name;
686
687 // A symbol defined in a section which we are not including must
688 // be treated as an undefined symbol.
689 unsigned char symbuf[sym_size];
690 elfcpp::Sym<size, big_endian> sym2(symbuf);
691 unsigned int st_shndx = psym->get_st_shndx();
692 if (st_shndx != elfcpp::SHN_UNDEF
693 && st_shndx < elfcpp::SHN_LORESERVE
694 && !relobj->is_section_included(st_shndx))
695 {
696 memcpy(symbuf, p, sym_size);
697 elfcpp::Sym_write<size, big_endian> sw(symbuf);
698 sw.put_st_shndx(elfcpp::SHN_UNDEF);
699 psym = &sym2;
700 }
701
702 // In an object file, an '@' in the name separates the symbol
703 // name from the version name. If there are two '@' characters,
704 // this is the default version.
705 const char* ver = strchr(name, '@');
706 int namelen = 0;
707 // DEF: is the version default? LOCAL: is the symbol forced local?
708 bool def = false;
709 bool local = false;
710
711 if (ver != NULL)
712 {
713 // The symbol name is of the form foo@VERSION or foo@@VERSION
714 namelen = ver - name;
715 ++ver;
716 if (*ver == '@')
717 {
718 def = true;
719 ++ver;
720 }
721 }
722 else if (!version_script_.empty())
723 {
724 // The symbol name did not have a version, but
725 // the version script may assign a version anyway.
726 namelen = strlen(name);
727 def = true;
728 // Check the global: entries from the version script.
729 const std::string& version =
730 version_script_.get_symbol_version(name);
731 if (!version.empty())
732 ver = version.c_str();
733 // Check the local: entries from the version script
734 if (version_script_.symbol_is_local(name))
735 local = true;
736 }
737
738 if (just_symbols)
739 {
740 if (psym != &sym2)
741 memcpy(symbuf, p, sym_size);
742 elfcpp::Sym_write<size, big_endian> sw(symbuf);
743 sw.put_st_shndx(elfcpp::SHN_ABS);
744 if (st_shndx != elfcpp::SHN_UNDEF
745 && st_shndx < elfcpp::SHN_LORESERVE)
746 {
747 // Symbol values in object files are section relative.
748 // This is normally what we want, but since here we are
749 // converting the symbol to absolute we need to add the
750 // section address. The section address in an object
751 // file is normally zero, but people can use a linker
752 // script to change it.
753 sw.put_st_value(sym2.get_st_value()
754 + relobj->section_address(st_shndx));
755 }
756 psym = &sym2;
757 }
758
759 Sized_symbol<size>* res;
760 if (ver == NULL)
761 {
762 Stringpool::Key name_key;
763 name = this->namepool_.add(name, true, &name_key);
764 res = this->add_from_object(relobj, name, name_key, NULL, 0,
765 false, *psym, sym);
766 if (local)
767 this->force_local(res);
768 }
769 else
770 {
771 Stringpool::Key name_key;
772 name = this->namepool_.add_with_length(name, namelen, true,
773 &name_key);
774 Stringpool::Key ver_key;
775 ver = this->namepool_.add(ver, true, &ver_key);
776
777 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
778 def, *psym, sym);
779 }
780
781 (*sympointers)[i] = res;
782 }
783 }
784
785 // Add all the symbols in a dynamic object to the hash table.
786
787 template<int size, bool big_endian>
788 void
789 Symbol_table::add_from_dynobj(
790 Sized_dynobj<size, big_endian>* dynobj,
791 const unsigned char* syms,
792 size_t count,
793 const char* sym_names,
794 size_t sym_name_size,
795 const unsigned char* versym,
796 size_t versym_size,
797 const std::vector<const char*>* version_map)
798 {
799 gold_assert(size == dynobj->target()->get_size());
800 gold_assert(size == parameters->target().get_size());
801
802 if (dynobj->just_symbols())
803 {
804 gold_error(_("--just-symbols does not make sense with a shared object"));
805 return;
806 }
807
808 if (versym != NULL && versym_size / 2 < count)
809 {
810 dynobj->error(_("too few symbol versions"));
811 return;
812 }
813
814 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
815
816 // We keep a list of all STT_OBJECT symbols, so that we can resolve
817 // weak aliases. This is necessary because if the dynamic object
818 // provides the same variable under two names, one of which is a
819 // weak definition, and the regular object refers to the weak
820 // definition, we have to put both the weak definition and the
821 // strong definition into the dynamic symbol table. Given a weak
822 // definition, the only way that we can find the corresponding
823 // strong definition, if any, is to search the symbol table.
824 std::vector<Sized_symbol<size>*> object_symbols;
825
826 const unsigned char* p = syms;
827 const unsigned char* vs = versym;
828 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
829 {
830 elfcpp::Sym<size, big_endian> sym(p);
831
832 // Ignore symbols with local binding or that have
833 // internal or hidden visibility.
834 if (sym.get_st_bind() == elfcpp::STB_LOCAL
835 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
836 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
837 continue;
838
839 unsigned int st_name = sym.get_st_name();
840 if (st_name >= sym_name_size)
841 {
842 dynobj->error(_("bad symbol name offset %u at %zu"),
843 st_name, i);
844 continue;
845 }
846
847 const char* name = sym_names + st_name;
848
849 Sized_symbol<size>* res;
850
851 if (versym == NULL)
852 {
853 Stringpool::Key name_key;
854 name = this->namepool_.add(name, true, &name_key);
855 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
856 false, sym, sym);
857 }
858 else
859 {
860 // Read the version information.
861
862 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
863
864 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
865 v &= elfcpp::VERSYM_VERSION;
866
867 // The Sun documentation says that V can be VER_NDX_LOCAL,
868 // or VER_NDX_GLOBAL, or a version index. The meaning of
869 // VER_NDX_LOCAL is defined as "Symbol has local scope."
870 // The old GNU linker will happily generate VER_NDX_LOCAL
871 // for an undefined symbol. I don't know what the Sun
872 // linker will generate.
873
874 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
875 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
876 {
877 // This symbol should not be visible outside the object.
878 continue;
879 }
880
881 // At this point we are definitely going to add this symbol.
882 Stringpool::Key name_key;
883 name = this->namepool_.add(name, true, &name_key);
884
885 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
886 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
887 {
888 // This symbol does not have a version.
889 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
890 false, sym, sym);
891 }
892 else
893 {
894 if (v >= version_map->size())
895 {
896 dynobj->error(_("versym for symbol %zu out of range: %u"),
897 i, v);
898 continue;
899 }
900
901 const char* version = (*version_map)[v];
902 if (version == NULL)
903 {
904 dynobj->error(_("versym for symbol %zu has no name: %u"),
905 i, v);
906 continue;
907 }
908
909 Stringpool::Key version_key;
910 version = this->namepool_.add(version, true, &version_key);
911
912 // If this is an absolute symbol, and the version name
913 // and symbol name are the same, then this is the
914 // version definition symbol. These symbols exist to
915 // support using -u to pull in particular versions. We
916 // do not want to record a version for them.
917 if (sym.get_st_shndx() == elfcpp::SHN_ABS
918 && name_key == version_key)
919 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
920 false, sym, sym);
921 else
922 {
923 const bool def = (!hidden
924 && (sym.get_st_shndx()
925 != elfcpp::SHN_UNDEF));
926 res = this->add_from_object(dynobj, name, name_key, version,
927 version_key, def, sym, sym);
928 }
929 }
930 }
931
932 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
933 && sym.get_st_type() == elfcpp::STT_OBJECT)
934 object_symbols.push_back(res);
935 }
936
937 this->record_weak_aliases(&object_symbols);
938 }
939
940 // This is used to sort weak aliases. We sort them first by section
941 // index, then by offset, then by weak ahead of strong.
942
943 template<int size>
944 class Weak_alias_sorter
945 {
946 public:
947 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
948 };
949
950 template<int size>
951 bool
952 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
953 const Sized_symbol<size>* s2) const
954 {
955 if (s1->shndx() != s2->shndx())
956 return s1->shndx() < s2->shndx();
957 if (s1->value() != s2->value())
958 return s1->value() < s2->value();
959 if (s1->binding() != s2->binding())
960 {
961 if (s1->binding() == elfcpp::STB_WEAK)
962 return true;
963 if (s2->binding() == elfcpp::STB_WEAK)
964 return false;
965 }
966 return std::string(s1->name()) < std::string(s2->name());
967 }
968
969 // SYMBOLS is a list of object symbols from a dynamic object. Look
970 // for any weak aliases, and record them so that if we add the weak
971 // alias to the dynamic symbol table, we also add the corresponding
972 // strong symbol.
973
974 template<int size>
975 void
976 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
977 {
978 // Sort the vector by section index, then by offset, then by weak
979 // ahead of strong.
980 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
981
982 // Walk through the vector. For each weak definition, record
983 // aliases.
984 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
985 symbols->begin();
986 p != symbols->end();
987 ++p)
988 {
989 if ((*p)->binding() != elfcpp::STB_WEAK)
990 continue;
991
992 // Build a circular list of weak aliases. Each symbol points to
993 // the next one in the circular list.
994
995 Sized_symbol<size>* from_sym = *p;
996 typename std::vector<Sized_symbol<size>*>::const_iterator q;
997 for (q = p + 1; q != symbols->end(); ++q)
998 {
999 if ((*q)->shndx() != from_sym->shndx()
1000 || (*q)->value() != from_sym->value())
1001 break;
1002
1003 this->weak_aliases_[from_sym] = *q;
1004 from_sym->set_has_alias();
1005 from_sym = *q;
1006 }
1007
1008 if (from_sym != *p)
1009 {
1010 this->weak_aliases_[from_sym] = *p;
1011 from_sym->set_has_alias();
1012 }
1013
1014 p = q - 1;
1015 }
1016 }
1017
1018 // Create and return a specially defined symbol. If ONLY_IF_REF is
1019 // true, then only create the symbol if there is a reference to it.
1020 // If this does not return NULL, it sets *POLDSYM to the existing
1021 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1022
1023 template<int size, bool big_endian>
1024 Sized_symbol<size>*
1025 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1026 bool only_if_ref,
1027 Sized_symbol<size>** poldsym)
1028 {
1029 Symbol* oldsym;
1030 Sized_symbol<size>* sym;
1031 bool add_to_table = false;
1032 typename Symbol_table_type::iterator add_loc = this->table_.end();
1033
1034 // If the caller didn't give us a version, see if we get one from
1035 // the version script.
1036 if (*pversion == NULL)
1037 {
1038 const std::string& v(this->version_script_.get_symbol_version(*pname));
1039 if (!v.empty())
1040 *pversion = v.c_str();
1041 }
1042
1043 if (only_if_ref)
1044 {
1045 oldsym = this->lookup(*pname, *pversion);
1046 if (oldsym == NULL || !oldsym->is_undefined())
1047 return NULL;
1048
1049 *pname = oldsym->name();
1050 *pversion = oldsym->version();
1051 }
1052 else
1053 {
1054 // Canonicalize NAME and VERSION.
1055 Stringpool::Key name_key;
1056 *pname = this->namepool_.add(*pname, true, &name_key);
1057
1058 Stringpool::Key version_key = 0;
1059 if (*pversion != NULL)
1060 *pversion = this->namepool_.add(*pversion, true, &version_key);
1061
1062 Symbol* const snull = NULL;
1063 std::pair<typename Symbol_table_type::iterator, bool> ins =
1064 this->table_.insert(std::make_pair(std::make_pair(name_key,
1065 version_key),
1066 snull));
1067
1068 if (!ins.second)
1069 {
1070 // We already have a symbol table entry for NAME/VERSION.
1071 oldsym = ins.first->second;
1072 gold_assert(oldsym != NULL);
1073 }
1074 else
1075 {
1076 // We haven't seen this symbol before.
1077 gold_assert(ins.first->second == NULL);
1078 add_to_table = true;
1079 add_loc = ins.first;
1080 oldsym = NULL;
1081 }
1082 }
1083
1084 const Target& target = parameters->target();
1085 if (!target.has_make_symbol())
1086 sym = new Sized_symbol<size>();
1087 else
1088 {
1089 gold_assert(target.get_size() == size);
1090 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1091 typedef Sized_target<size, big_endian> My_target;
1092 const My_target* sized_target =
1093 static_cast<const My_target*>(&target);
1094 sym = sized_target->make_symbol();
1095 if (sym == NULL)
1096 return NULL;
1097 }
1098
1099 if (add_to_table)
1100 add_loc->second = sym;
1101 else
1102 gold_assert(oldsym != NULL);
1103
1104 *poldsym = this->get_sized_symbol<size>(oldsym);
1105
1106 return sym;
1107 }
1108
1109 // Define a symbol based on an Output_data.
1110
1111 Symbol*
1112 Symbol_table::define_in_output_data(const char* name,
1113 const char* version,
1114 Output_data* od,
1115 uint64_t value,
1116 uint64_t symsize,
1117 elfcpp::STT type,
1118 elfcpp::STB binding,
1119 elfcpp::STV visibility,
1120 unsigned char nonvis,
1121 bool offset_is_from_end,
1122 bool only_if_ref)
1123 {
1124 if (parameters->target().get_size() == 32)
1125 {
1126 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1127 return this->do_define_in_output_data<32>(name, version, od,
1128 value, symsize, type, binding,
1129 visibility, nonvis,
1130 offset_is_from_end,
1131 only_if_ref);
1132 #else
1133 gold_unreachable();
1134 #endif
1135 }
1136 else if (parameters->target().get_size() == 64)
1137 {
1138 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1139 return this->do_define_in_output_data<64>(name, version, od,
1140 value, symsize, type, binding,
1141 visibility, nonvis,
1142 offset_is_from_end,
1143 only_if_ref);
1144 #else
1145 gold_unreachable();
1146 #endif
1147 }
1148 else
1149 gold_unreachable();
1150 }
1151
1152 // Define a symbol in an Output_data, sized version.
1153
1154 template<int size>
1155 Sized_symbol<size>*
1156 Symbol_table::do_define_in_output_data(
1157 const char* name,
1158 const char* version,
1159 Output_data* od,
1160 typename elfcpp::Elf_types<size>::Elf_Addr value,
1161 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1162 elfcpp::STT type,
1163 elfcpp::STB binding,
1164 elfcpp::STV visibility,
1165 unsigned char nonvis,
1166 bool offset_is_from_end,
1167 bool only_if_ref)
1168 {
1169 Sized_symbol<size>* sym;
1170 Sized_symbol<size>* oldsym;
1171
1172 if (parameters->target().is_big_endian())
1173 {
1174 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1175 sym = this->define_special_symbol<size, true>(&name, &version,
1176 only_if_ref, &oldsym);
1177 #else
1178 gold_unreachable();
1179 #endif
1180 }
1181 else
1182 {
1183 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1184 sym = this->define_special_symbol<size, false>(&name, &version,
1185 only_if_ref, &oldsym);
1186 #else
1187 gold_unreachable();
1188 #endif
1189 }
1190
1191 if (sym == NULL)
1192 return NULL;
1193
1194 gold_assert(version == NULL || oldsym != NULL);
1195 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1196 offset_is_from_end);
1197
1198 if (oldsym == NULL)
1199 {
1200 if (binding == elfcpp::STB_LOCAL
1201 || this->version_script_.symbol_is_local(name))
1202 this->force_local(sym);
1203 return sym;
1204 }
1205
1206 if (Symbol_table::should_override_with_special(oldsym))
1207 this->override_with_special(oldsym, sym);
1208 delete sym;
1209 return oldsym;
1210 }
1211
1212 // Define a symbol based on an Output_segment.
1213
1214 Symbol*
1215 Symbol_table::define_in_output_segment(const char* name,
1216 const char* version, Output_segment* os,
1217 uint64_t value,
1218 uint64_t symsize,
1219 elfcpp::STT type,
1220 elfcpp::STB binding,
1221 elfcpp::STV visibility,
1222 unsigned char nonvis,
1223 Symbol::Segment_offset_base offset_base,
1224 bool only_if_ref)
1225 {
1226 if (parameters->target().get_size() == 32)
1227 {
1228 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1229 return this->do_define_in_output_segment<32>(name, version, os,
1230 value, symsize, type,
1231 binding, visibility, nonvis,
1232 offset_base, only_if_ref);
1233 #else
1234 gold_unreachable();
1235 #endif
1236 }
1237 else if (parameters->target().get_size() == 64)
1238 {
1239 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1240 return this->do_define_in_output_segment<64>(name, version, os,
1241 value, symsize, type,
1242 binding, visibility, nonvis,
1243 offset_base, only_if_ref);
1244 #else
1245 gold_unreachable();
1246 #endif
1247 }
1248 else
1249 gold_unreachable();
1250 }
1251
1252 // Define a symbol in an Output_segment, sized version.
1253
1254 template<int size>
1255 Sized_symbol<size>*
1256 Symbol_table::do_define_in_output_segment(
1257 const char* name,
1258 const char* version,
1259 Output_segment* os,
1260 typename elfcpp::Elf_types<size>::Elf_Addr value,
1261 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1262 elfcpp::STT type,
1263 elfcpp::STB binding,
1264 elfcpp::STV visibility,
1265 unsigned char nonvis,
1266 Symbol::Segment_offset_base offset_base,
1267 bool only_if_ref)
1268 {
1269 Sized_symbol<size>* sym;
1270 Sized_symbol<size>* oldsym;
1271
1272 if (parameters->target().is_big_endian())
1273 {
1274 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1275 sym = this->define_special_symbol<size, true>(&name, &version,
1276 only_if_ref, &oldsym);
1277 #else
1278 gold_unreachable();
1279 #endif
1280 }
1281 else
1282 {
1283 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1284 sym = this->define_special_symbol<size, false>(&name, &version,
1285 only_if_ref, &oldsym);
1286 #else
1287 gold_unreachable();
1288 #endif
1289 }
1290
1291 if (sym == NULL)
1292 return NULL;
1293
1294 gold_assert(version == NULL || oldsym != NULL);
1295 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1296 offset_base);
1297
1298 if (oldsym == NULL)
1299 {
1300 if (binding == elfcpp::STB_LOCAL
1301 || this->version_script_.symbol_is_local(name))
1302 this->force_local(sym);
1303 return sym;
1304 }
1305
1306 if (Symbol_table::should_override_with_special(oldsym))
1307 this->override_with_special(oldsym, sym);
1308 delete sym;
1309 return oldsym;
1310 }
1311
1312 // Define a special symbol with a constant value. It is a multiple
1313 // definition error if this symbol is already defined.
1314
1315 Symbol*
1316 Symbol_table::define_as_constant(const char* name,
1317 const char* version,
1318 uint64_t value,
1319 uint64_t symsize,
1320 elfcpp::STT type,
1321 elfcpp::STB binding,
1322 elfcpp::STV visibility,
1323 unsigned char nonvis,
1324 bool only_if_ref,
1325 bool force_override)
1326 {
1327 if (parameters->target().get_size() == 32)
1328 {
1329 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1330 return this->do_define_as_constant<32>(name, version, value,
1331 symsize, type, binding,
1332 visibility, nonvis, only_if_ref,
1333 force_override);
1334 #else
1335 gold_unreachable();
1336 #endif
1337 }
1338 else if (parameters->target().get_size() == 64)
1339 {
1340 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1341 return this->do_define_as_constant<64>(name, version, value,
1342 symsize, type, binding,
1343 visibility, nonvis, only_if_ref,
1344 force_override);
1345 #else
1346 gold_unreachable();
1347 #endif
1348 }
1349 else
1350 gold_unreachable();
1351 }
1352
1353 // Define a symbol as a constant, sized version.
1354
1355 template<int size>
1356 Sized_symbol<size>*
1357 Symbol_table::do_define_as_constant(
1358 const char* name,
1359 const char* version,
1360 typename elfcpp::Elf_types<size>::Elf_Addr value,
1361 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1362 elfcpp::STT type,
1363 elfcpp::STB binding,
1364 elfcpp::STV visibility,
1365 unsigned char nonvis,
1366 bool only_if_ref,
1367 bool force_override)
1368 {
1369 Sized_symbol<size>* sym;
1370 Sized_symbol<size>* oldsym;
1371
1372 if (parameters->target().is_big_endian())
1373 {
1374 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1375 sym = this->define_special_symbol<size, true>(&name, &version,
1376 only_if_ref, &oldsym);
1377 #else
1378 gold_unreachable();
1379 #endif
1380 }
1381 else
1382 {
1383 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1384 sym = this->define_special_symbol<size, false>(&name, &version,
1385 only_if_ref, &oldsym);
1386 #else
1387 gold_unreachable();
1388 #endif
1389 }
1390
1391 if (sym == NULL)
1392 return NULL;
1393
1394 gold_assert(version == NULL || version == name || oldsym != NULL);
1395 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1396
1397 if (oldsym == NULL)
1398 {
1399 if (binding == elfcpp::STB_LOCAL
1400 || this->version_script_.symbol_is_local(name))
1401 this->force_local(sym);
1402 return sym;
1403 }
1404
1405 if (force_override || Symbol_table::should_override_with_special(oldsym))
1406 this->override_with_special(oldsym, sym);
1407 delete sym;
1408 return oldsym;
1409 }
1410
1411 // Define a set of symbols in output sections.
1412
1413 void
1414 Symbol_table::define_symbols(const Layout* layout, int count,
1415 const Define_symbol_in_section* p,
1416 bool only_if_ref)
1417 {
1418 for (int i = 0; i < count; ++i, ++p)
1419 {
1420 Output_section* os = layout->find_output_section(p->output_section);
1421 if (os != NULL)
1422 this->define_in_output_data(p->name, NULL, os, p->value,
1423 p->size, p->type, p->binding,
1424 p->visibility, p->nonvis,
1425 p->offset_is_from_end,
1426 only_if_ref || p->only_if_ref);
1427 else
1428 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1429 p->binding, p->visibility, p->nonvis,
1430 only_if_ref || p->only_if_ref,
1431 false);
1432 }
1433 }
1434
1435 // Define a set of symbols in output segments.
1436
1437 void
1438 Symbol_table::define_symbols(const Layout* layout, int count,
1439 const Define_symbol_in_segment* p,
1440 bool only_if_ref)
1441 {
1442 for (int i = 0; i < count; ++i, ++p)
1443 {
1444 Output_segment* os = layout->find_output_segment(p->segment_type,
1445 p->segment_flags_set,
1446 p->segment_flags_clear);
1447 if (os != NULL)
1448 this->define_in_output_segment(p->name, NULL, os, p->value,
1449 p->size, p->type, p->binding,
1450 p->visibility, p->nonvis,
1451 p->offset_base,
1452 only_if_ref || p->only_if_ref);
1453 else
1454 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1455 p->binding, p->visibility, p->nonvis,
1456 only_if_ref || p->only_if_ref,
1457 false);
1458 }
1459 }
1460
1461 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1462 // symbol should be defined--typically a .dyn.bss section. VALUE is
1463 // the offset within POSD.
1464
1465 template<int size>
1466 void
1467 Symbol_table::define_with_copy_reloc(
1468 Sized_symbol<size>* csym,
1469 Output_data* posd,
1470 typename elfcpp::Elf_types<size>::Elf_Addr value)
1471 {
1472 gold_assert(csym->is_from_dynobj());
1473 gold_assert(!csym->is_copied_from_dynobj());
1474 Object* object = csym->object();
1475 gold_assert(object->is_dynamic());
1476 Dynobj* dynobj = static_cast<Dynobj*>(object);
1477
1478 // Our copied variable has to override any variable in a shared
1479 // library.
1480 elfcpp::STB binding = csym->binding();
1481 if (binding == elfcpp::STB_WEAK)
1482 binding = elfcpp::STB_GLOBAL;
1483
1484 this->define_in_output_data(csym->name(), csym->version(),
1485 posd, value, csym->symsize(),
1486 csym->type(), binding,
1487 csym->visibility(), csym->nonvis(),
1488 false, false);
1489
1490 csym->set_is_copied_from_dynobj();
1491 csym->set_needs_dynsym_entry();
1492
1493 this->copied_symbol_dynobjs_[csym] = dynobj;
1494
1495 // We have now defined all aliases, but we have not entered them all
1496 // in the copied_symbol_dynobjs_ map.
1497 if (csym->has_alias())
1498 {
1499 Symbol* sym = csym;
1500 while (true)
1501 {
1502 sym = this->weak_aliases_[sym];
1503 if (sym == csym)
1504 break;
1505 gold_assert(sym->output_data() == posd);
1506
1507 sym->set_is_copied_from_dynobj();
1508 this->copied_symbol_dynobjs_[sym] = dynobj;
1509 }
1510 }
1511 }
1512
1513 // SYM is defined using a COPY reloc. Return the dynamic object where
1514 // the original definition was found.
1515
1516 Dynobj*
1517 Symbol_table::get_copy_source(const Symbol* sym) const
1518 {
1519 gold_assert(sym->is_copied_from_dynobj());
1520 Copied_symbol_dynobjs::const_iterator p =
1521 this->copied_symbol_dynobjs_.find(sym);
1522 gold_assert(p != this->copied_symbol_dynobjs_.end());
1523 return p->second;
1524 }
1525
1526 // Set the dynamic symbol indexes. INDEX is the index of the first
1527 // global dynamic symbol. Pointers to the symbols are stored into the
1528 // vector SYMS. The names are added to DYNPOOL. This returns an
1529 // updated dynamic symbol index.
1530
1531 unsigned int
1532 Symbol_table::set_dynsym_indexes(unsigned int index,
1533 std::vector<Symbol*>* syms,
1534 Stringpool* dynpool,
1535 Versions* versions)
1536 {
1537 for (Symbol_table_type::iterator p = this->table_.begin();
1538 p != this->table_.end();
1539 ++p)
1540 {
1541 Symbol* sym = p->second;
1542
1543 // Note that SYM may already have a dynamic symbol index, since
1544 // some symbols appear more than once in the symbol table, with
1545 // and without a version.
1546
1547 if (!sym->should_add_dynsym_entry())
1548 sym->set_dynsym_index(-1U);
1549 else if (!sym->has_dynsym_index())
1550 {
1551 sym->set_dynsym_index(index);
1552 ++index;
1553 syms->push_back(sym);
1554 dynpool->add(sym->name(), false, NULL);
1555
1556 // Record any version information.
1557 if (sym->version() != NULL)
1558 versions->record_version(this, dynpool, sym);
1559 }
1560 }
1561
1562 // Finish up the versions. In some cases this may add new dynamic
1563 // symbols.
1564 index = versions->finalize(this, index, syms);
1565
1566 return index;
1567 }
1568
1569 // Set the final values for all the symbols. The index of the first
1570 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1571 // file offset OFF. Add their names to POOL. Return the new file
1572 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1573
1574 off_t
1575 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1576 size_t dyncount, Stringpool* pool,
1577 unsigned int *plocal_symcount)
1578 {
1579 off_t ret;
1580
1581 gold_assert(*plocal_symcount != 0);
1582 this->first_global_index_ = *plocal_symcount;
1583
1584 this->dynamic_offset_ = dynoff;
1585 this->first_dynamic_global_index_ = dyn_global_index;
1586 this->dynamic_count_ = dyncount;
1587
1588 if (parameters->target().get_size() == 32)
1589 {
1590 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1591 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1592 #else
1593 gold_unreachable();
1594 #endif
1595 }
1596 else if (parameters->target().get_size() == 64)
1597 {
1598 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1599 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1600 #else
1601 gold_unreachable();
1602 #endif
1603 }
1604 else
1605 gold_unreachable();
1606
1607 // Now that we have the final symbol table, we can reliably note
1608 // which symbols should get warnings.
1609 this->warnings_.note_warnings(this);
1610
1611 return ret;
1612 }
1613
1614 // SYM is going into the symbol table at *PINDEX. Add the name to
1615 // POOL, update *PINDEX and *POFF.
1616
1617 template<int size>
1618 void
1619 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1620 unsigned int* pindex, off_t* poff)
1621 {
1622 sym->set_symtab_index(*pindex);
1623 pool->add(sym->name(), false, NULL);
1624 ++*pindex;
1625 *poff += elfcpp::Elf_sizes<size>::sym_size;
1626 }
1627
1628 // Set the final value for all the symbols. This is called after
1629 // Layout::finalize, so all the output sections have their final
1630 // address.
1631
1632 template<int size>
1633 off_t
1634 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1635 unsigned int* plocal_symcount)
1636 {
1637 off = align_address(off, size >> 3);
1638 this->offset_ = off;
1639
1640 unsigned int index = *plocal_symcount;
1641 const unsigned int orig_index = index;
1642
1643 // First do all the symbols which have been forced to be local, as
1644 // they must appear before all global symbols.
1645 for (Forced_locals::iterator p = this->forced_locals_.begin();
1646 p != this->forced_locals_.end();
1647 ++p)
1648 {
1649 Symbol* sym = *p;
1650 gold_assert(sym->is_forced_local());
1651 if (this->sized_finalize_symbol<size>(sym))
1652 {
1653 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1654 ++*plocal_symcount;
1655 }
1656 }
1657
1658 // Now do all the remaining symbols.
1659 for (Symbol_table_type::iterator p = this->table_.begin();
1660 p != this->table_.end();
1661 ++p)
1662 {
1663 Symbol* sym = p->second;
1664 if (this->sized_finalize_symbol<size>(sym))
1665 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1666 }
1667
1668 this->output_count_ = index - orig_index;
1669
1670 return off;
1671 }
1672
1673 // Finalize the symbol SYM. This returns true if the symbol should be
1674 // added to the symbol table, false otherwise.
1675
1676 template<int size>
1677 bool
1678 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1679 {
1680 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1681
1682 // The default version of a symbol may appear twice in the symbol
1683 // table. We only need to finalize it once.
1684 if (sym->has_symtab_index())
1685 return false;
1686
1687 if (!sym->in_reg())
1688 {
1689 gold_assert(!sym->has_symtab_index());
1690 sym->set_symtab_index(-1U);
1691 gold_assert(sym->dynsym_index() == -1U);
1692 return false;
1693 }
1694
1695 typename Sized_symbol<size>::Value_type value;
1696
1697 switch (sym->source())
1698 {
1699 case Symbol::FROM_OBJECT:
1700 {
1701 unsigned int shndx = sym->shndx();
1702
1703 // FIXME: We need some target specific support here.
1704 if (shndx >= elfcpp::SHN_LORESERVE
1705 && shndx != elfcpp::SHN_ABS
1706 && shndx != elfcpp::SHN_COMMON)
1707 {
1708 gold_error(_("%s: unsupported symbol section 0x%x"),
1709 sym->demangled_name().c_str(), shndx);
1710 shndx = elfcpp::SHN_UNDEF;
1711 }
1712
1713 Object* symobj = sym->object();
1714 if (symobj->is_dynamic())
1715 {
1716 value = 0;
1717 shndx = elfcpp::SHN_UNDEF;
1718 }
1719 else if (shndx == elfcpp::SHN_UNDEF)
1720 value = 0;
1721 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1722 value = sym->value();
1723 else
1724 {
1725 Relobj* relobj = static_cast<Relobj*>(symobj);
1726 section_offset_type secoff;
1727 Output_section* os = relobj->output_section(shndx, &secoff);
1728
1729 if (os == NULL)
1730 {
1731 sym->set_symtab_index(-1U);
1732 gold_assert(sym->dynsym_index() == -1U);
1733 return false;
1734 }
1735
1736 if (sym->type() == elfcpp::STT_TLS)
1737 value = sym->value() + os->tls_offset() + secoff;
1738 else
1739 value = sym->value() + os->address() + secoff;
1740 }
1741 }
1742 break;
1743
1744 case Symbol::IN_OUTPUT_DATA:
1745 {
1746 Output_data* od = sym->output_data();
1747 value = sym->value() + od->address();
1748 if (sym->offset_is_from_end())
1749 value += od->data_size();
1750 }
1751 break;
1752
1753 case Symbol::IN_OUTPUT_SEGMENT:
1754 {
1755 Output_segment* os = sym->output_segment();
1756 value = sym->value() + os->vaddr();
1757 switch (sym->offset_base())
1758 {
1759 case Symbol::SEGMENT_START:
1760 break;
1761 case Symbol::SEGMENT_END:
1762 value += os->memsz();
1763 break;
1764 case Symbol::SEGMENT_BSS:
1765 value += os->filesz();
1766 break;
1767 default:
1768 gold_unreachable();
1769 }
1770 }
1771 break;
1772
1773 case Symbol::CONSTANT:
1774 value = sym->value();
1775 break;
1776
1777 default:
1778 gold_unreachable();
1779 }
1780
1781 sym->set_value(value);
1782
1783 if (parameters->options().strip_all())
1784 {
1785 sym->set_symtab_index(-1U);
1786 return false;
1787 }
1788
1789 return true;
1790 }
1791
1792 // Write out the global symbols.
1793
1794 void
1795 Symbol_table::write_globals(const Input_objects* input_objects,
1796 const Stringpool* sympool,
1797 const Stringpool* dynpool, Output_file* of) const
1798 {
1799 switch (parameters->size_and_endianness())
1800 {
1801 #ifdef HAVE_TARGET_32_LITTLE
1802 case Parameters::TARGET_32_LITTLE:
1803 this->sized_write_globals<32, false>(input_objects, sympool,
1804 dynpool, of);
1805 break;
1806 #endif
1807 #ifdef HAVE_TARGET_32_BIG
1808 case Parameters::TARGET_32_BIG:
1809 this->sized_write_globals<32, true>(input_objects, sympool,
1810 dynpool, of);
1811 break;
1812 #endif
1813 #ifdef HAVE_TARGET_64_LITTLE
1814 case Parameters::TARGET_64_LITTLE:
1815 this->sized_write_globals<64, false>(input_objects, sympool,
1816 dynpool, of);
1817 break;
1818 #endif
1819 #ifdef HAVE_TARGET_64_BIG
1820 case Parameters::TARGET_64_BIG:
1821 this->sized_write_globals<64, true>(input_objects, sympool,
1822 dynpool, of);
1823 break;
1824 #endif
1825 default:
1826 gold_unreachable();
1827 }
1828 }
1829
1830 // Write out the global symbols.
1831
1832 template<int size, bool big_endian>
1833 void
1834 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1835 const Stringpool* sympool,
1836 const Stringpool* dynpool,
1837 Output_file* of) const
1838 {
1839 const Target& target = parameters->target();
1840
1841 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1842
1843 const unsigned int output_count = this->output_count_;
1844 const section_size_type oview_size = output_count * sym_size;
1845 const unsigned int first_global_index = this->first_global_index_;
1846 unsigned char* psyms;
1847 if (this->offset_ == 0 || output_count == 0)
1848 psyms = NULL;
1849 else
1850 psyms = of->get_output_view(this->offset_, oview_size);
1851
1852 const unsigned int dynamic_count = this->dynamic_count_;
1853 const section_size_type dynamic_size = dynamic_count * sym_size;
1854 const unsigned int first_dynamic_global_index =
1855 this->first_dynamic_global_index_;
1856 unsigned char* dynamic_view;
1857 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1858 dynamic_view = NULL;
1859 else
1860 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1861
1862 for (Symbol_table_type::const_iterator p = this->table_.begin();
1863 p != this->table_.end();
1864 ++p)
1865 {
1866 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1867
1868 // Possibly warn about unresolved symbols in shared libraries.
1869 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1870
1871 unsigned int sym_index = sym->symtab_index();
1872 unsigned int dynsym_index;
1873 if (dynamic_view == NULL)
1874 dynsym_index = -1U;
1875 else
1876 dynsym_index = sym->dynsym_index();
1877
1878 if (sym_index == -1U && dynsym_index == -1U)
1879 {
1880 // This symbol is not included in the output file.
1881 continue;
1882 }
1883
1884 unsigned int shndx;
1885 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1886 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1887 switch (sym->source())
1888 {
1889 case Symbol::FROM_OBJECT:
1890 {
1891 unsigned int in_shndx = sym->shndx();
1892
1893 // FIXME: We need some target specific support here.
1894 if (in_shndx >= elfcpp::SHN_LORESERVE
1895 && in_shndx != elfcpp::SHN_ABS
1896 && in_shndx != elfcpp::SHN_COMMON)
1897 {
1898 gold_error(_("%s: unsupported symbol section 0x%x"),
1899 sym->demangled_name().c_str(), in_shndx);
1900 shndx = in_shndx;
1901 }
1902 else
1903 {
1904 Object* symobj = sym->object();
1905 if (symobj->is_dynamic())
1906 {
1907 if (sym->needs_dynsym_value())
1908 dynsym_value = target.dynsym_value(sym);
1909 shndx = elfcpp::SHN_UNDEF;
1910 }
1911 else if (in_shndx == elfcpp::SHN_UNDEF
1912 || in_shndx == elfcpp::SHN_ABS
1913 || in_shndx == elfcpp::SHN_COMMON)
1914 shndx = in_shndx;
1915 else
1916 {
1917 Relobj* relobj = static_cast<Relobj*>(symobj);
1918 section_offset_type secoff;
1919 Output_section* os = relobj->output_section(in_shndx,
1920 &secoff);
1921 gold_assert(os != NULL);
1922 shndx = os->out_shndx();
1923
1924 // In object files symbol values are section
1925 // relative.
1926 if (parameters->options().relocatable())
1927 sym_value -= os->address();
1928 }
1929 }
1930 }
1931 break;
1932
1933 case Symbol::IN_OUTPUT_DATA:
1934 shndx = sym->output_data()->out_shndx();
1935 break;
1936
1937 case Symbol::IN_OUTPUT_SEGMENT:
1938 shndx = elfcpp::SHN_ABS;
1939 break;
1940
1941 case Symbol::CONSTANT:
1942 shndx = elfcpp::SHN_ABS;
1943 break;
1944
1945 default:
1946 gold_unreachable();
1947 }
1948
1949 if (sym_index != -1U)
1950 {
1951 sym_index -= first_global_index;
1952 gold_assert(sym_index < output_count);
1953 unsigned char* ps = psyms + (sym_index * sym_size);
1954 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
1955 sympool, ps);
1956 }
1957
1958 if (dynsym_index != -1U)
1959 {
1960 dynsym_index -= first_dynamic_global_index;
1961 gold_assert(dynsym_index < dynamic_count);
1962 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1963 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
1964 dynpool, pd);
1965 }
1966 }
1967
1968 of->write_output_view(this->offset_, oview_size, psyms);
1969 if (dynamic_view != NULL)
1970 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1971 }
1972
1973 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1974 // strtab holding the name.
1975
1976 template<int size, bool big_endian>
1977 void
1978 Symbol_table::sized_write_symbol(
1979 Sized_symbol<size>* sym,
1980 typename elfcpp::Elf_types<size>::Elf_Addr value,
1981 unsigned int shndx,
1982 const Stringpool* pool,
1983 unsigned char* p) const
1984 {
1985 elfcpp::Sym_write<size, big_endian> osym(p);
1986 osym.put_st_name(pool->get_offset(sym->name()));
1987 osym.put_st_value(value);
1988 osym.put_st_size(sym->symsize());
1989 // A version script may have overridden the default binding.
1990 if (sym->is_forced_local())
1991 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1992 else
1993 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1994 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1995 osym.put_st_shndx(shndx);
1996 }
1997
1998 // Check for unresolved symbols in shared libraries. This is
1999 // controlled by the --allow-shlib-undefined option.
2000
2001 // We only warn about libraries for which we have seen all the
2002 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2003 // which were not seen in this link. If we didn't see a DT_NEEDED
2004 // entry, we aren't going to be able to reliably report whether the
2005 // symbol is undefined.
2006
2007 // We also don't warn about libraries found in the system library
2008 // directory (the directory were we find libc.so); we assume that
2009 // those libraries are OK. This heuristic avoids problems in
2010 // GNU/Linux, in which -ldl can have undefined references satisfied by
2011 // ld-linux.so.
2012
2013 inline void
2014 Symbol_table::warn_about_undefined_dynobj_symbol(
2015 const Input_objects* input_objects,
2016 Symbol* sym) const
2017 {
2018 if (sym->source() == Symbol::FROM_OBJECT
2019 && sym->object()->is_dynamic()
2020 && sym->shndx() == elfcpp::SHN_UNDEF
2021 && sym->binding() != elfcpp::STB_WEAK
2022 && !parameters->options().allow_shlib_undefined()
2023 && !parameters->target().is_defined_by_abi(sym)
2024 && !input_objects->found_in_system_library_directory(sym->object()))
2025 {
2026 // A very ugly cast.
2027 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2028 if (!dynobj->has_unknown_needed_entries())
2029 gold_error(_("%s: undefined reference to '%s'"),
2030 sym->object()->name().c_str(),
2031 sym->demangled_name().c_str());
2032 }
2033 }
2034
2035 // Write out a section symbol. Return the update offset.
2036
2037 void
2038 Symbol_table::write_section_symbol(const Output_section *os,
2039 Output_file* of,
2040 off_t offset) const
2041 {
2042 switch (parameters->size_and_endianness())
2043 {
2044 #ifdef HAVE_TARGET_32_LITTLE
2045 case Parameters::TARGET_32_LITTLE:
2046 this->sized_write_section_symbol<32, false>(os, of, offset);
2047 break;
2048 #endif
2049 #ifdef HAVE_TARGET_32_BIG
2050 case Parameters::TARGET_32_BIG:
2051 this->sized_write_section_symbol<32, true>(os, of, offset);
2052 break;
2053 #endif
2054 #ifdef HAVE_TARGET_64_LITTLE
2055 case Parameters::TARGET_64_LITTLE:
2056 this->sized_write_section_symbol<64, false>(os, of, offset);
2057 break;
2058 #endif
2059 #ifdef HAVE_TARGET_64_BIG
2060 case Parameters::TARGET_64_BIG:
2061 this->sized_write_section_symbol<64, true>(os, of, offset);
2062 break;
2063 #endif
2064 default:
2065 gold_unreachable();
2066 }
2067 }
2068
2069 // Write out a section symbol, specialized for size and endianness.
2070
2071 template<int size, bool big_endian>
2072 void
2073 Symbol_table::sized_write_section_symbol(const Output_section* os,
2074 Output_file* of,
2075 off_t offset) const
2076 {
2077 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2078
2079 unsigned char* pov = of->get_output_view(offset, sym_size);
2080
2081 elfcpp::Sym_write<size, big_endian> osym(pov);
2082 osym.put_st_name(0);
2083 osym.put_st_value(os->address());
2084 osym.put_st_size(0);
2085 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2086 elfcpp::STT_SECTION));
2087 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2088 osym.put_st_shndx(os->out_shndx());
2089
2090 of->write_output_view(offset, sym_size, pov);
2091 }
2092
2093 // Print statistical information to stderr. This is used for --stats.
2094
2095 void
2096 Symbol_table::print_stats() const
2097 {
2098 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2099 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2100 program_name, this->table_.size(), this->table_.bucket_count());
2101 #else
2102 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2103 program_name, this->table_.size());
2104 #endif
2105 this->namepool_.print_stats("symbol table stringpool");
2106 }
2107
2108 // We check for ODR violations by looking for symbols with the same
2109 // name for which the debugging information reports that they were
2110 // defined in different source locations. When comparing the source
2111 // location, we consider instances with the same base filename and
2112 // line number to be the same. This is because different object
2113 // files/shared libraries can include the same header file using
2114 // different paths, and we don't want to report an ODR violation in
2115 // that case.
2116
2117 // This struct is used to compare line information, as returned by
2118 // Dwarf_line_info::one_addr2line. It implements a < comparison
2119 // operator used with std::set.
2120
2121 struct Odr_violation_compare
2122 {
2123 bool
2124 operator()(const std::string& s1, const std::string& s2) const
2125 {
2126 std::string::size_type pos1 = s1.rfind('/');
2127 std::string::size_type pos2 = s2.rfind('/');
2128 if (pos1 == std::string::npos
2129 || pos2 == std::string::npos)
2130 return s1 < s2;
2131 return s1.compare(pos1, std::string::npos,
2132 s2, pos2, std::string::npos) < 0;
2133 }
2134 };
2135
2136 // Check candidate_odr_violations_ to find symbols with the same name
2137 // but apparently different definitions (different source-file/line-no).
2138
2139 void
2140 Symbol_table::detect_odr_violations(const Task* task,
2141 const char* output_file_name) const
2142 {
2143 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2144 it != candidate_odr_violations_.end();
2145 ++it)
2146 {
2147 const char* symbol_name = it->first;
2148 // We use a sorted set so the output is deterministic.
2149 std::set<std::string, Odr_violation_compare> line_nums;
2150
2151 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2152 locs = it->second.begin();
2153 locs != it->second.end();
2154 ++locs)
2155 {
2156 // We need to lock the object in order to read it. This
2157 // means that we have to run in a singleton Task. If we
2158 // want to run this in a general Task for better
2159 // performance, we will need one Task for object, plus
2160 // appropriate locking to ensure that we don't conflict with
2161 // other uses of the object.
2162 Task_lock_obj<Object> tl(task, locs->object);
2163 std::string lineno = Dwarf_line_info::one_addr2line(
2164 locs->object, locs->shndx, locs->offset);
2165 if (!lineno.empty())
2166 line_nums.insert(lineno);
2167 }
2168
2169 if (line_nums.size() > 1)
2170 {
2171 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2172 "places (possible ODR violation):"),
2173 output_file_name, demangle(symbol_name).c_str());
2174 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2175 it2 != line_nums.end();
2176 ++it2)
2177 fprintf(stderr, " %s\n", it2->c_str());
2178 }
2179 }
2180 }
2181
2182 // Warnings functions.
2183
2184 // Add a new warning.
2185
2186 void
2187 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2188 const std::string& warning)
2189 {
2190 name = symtab->canonicalize_name(name);
2191 this->warnings_[name].set(obj, warning);
2192 }
2193
2194 // Look through the warnings and mark the symbols for which we should
2195 // warn. This is called during Layout::finalize when we know the
2196 // sources for all the symbols.
2197
2198 void
2199 Warnings::note_warnings(Symbol_table* symtab)
2200 {
2201 for (Warning_table::iterator p = this->warnings_.begin();
2202 p != this->warnings_.end();
2203 ++p)
2204 {
2205 Symbol* sym = symtab->lookup(p->first, NULL);
2206 if (sym != NULL
2207 && sym->source() == Symbol::FROM_OBJECT
2208 && sym->object() == p->second.object)
2209 sym->set_has_warning();
2210 }
2211 }
2212
2213 // Issue a warning. This is called when we see a relocation against a
2214 // symbol for which has a warning.
2215
2216 template<int size, bool big_endian>
2217 void
2218 Warnings::issue_warning(const Symbol* sym,
2219 const Relocate_info<size, big_endian>* relinfo,
2220 size_t relnum, off_t reloffset) const
2221 {
2222 gold_assert(sym->has_warning());
2223 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2224 gold_assert(p != this->warnings_.end());
2225 gold_warning_at_location(relinfo, relnum, reloffset,
2226 "%s", p->second.text.c_str());
2227 }
2228
2229 // Instantiate the templates we need. We could use the configure
2230 // script to restrict this to only the ones needed for implemented
2231 // targets.
2232
2233 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2234 template
2235 void
2236 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2237 #endif
2238
2239 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2240 template
2241 void
2242 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2243 #endif
2244
2245 #ifdef HAVE_TARGET_32_LITTLE
2246 template
2247 void
2248 Symbol_table::add_from_relobj<32, false>(
2249 Sized_relobj<32, false>* relobj,
2250 const unsigned char* syms,
2251 size_t count,
2252 const char* sym_names,
2253 size_t sym_name_size,
2254 Sized_relobj<32, true>::Symbols* sympointers);
2255 #endif
2256
2257 #ifdef HAVE_TARGET_32_BIG
2258 template
2259 void
2260 Symbol_table::add_from_relobj<32, true>(
2261 Sized_relobj<32, true>* relobj,
2262 const unsigned char* syms,
2263 size_t count,
2264 const char* sym_names,
2265 size_t sym_name_size,
2266 Sized_relobj<32, false>::Symbols* sympointers);
2267 #endif
2268
2269 #ifdef HAVE_TARGET_64_LITTLE
2270 template
2271 void
2272 Symbol_table::add_from_relobj<64, false>(
2273 Sized_relobj<64, false>* relobj,
2274 const unsigned char* syms,
2275 size_t count,
2276 const char* sym_names,
2277 size_t sym_name_size,
2278 Sized_relobj<64, true>::Symbols* sympointers);
2279 #endif
2280
2281 #ifdef HAVE_TARGET_64_BIG
2282 template
2283 void
2284 Symbol_table::add_from_relobj<64, true>(
2285 Sized_relobj<64, true>* relobj,
2286 const unsigned char* syms,
2287 size_t count,
2288 const char* sym_names,
2289 size_t sym_name_size,
2290 Sized_relobj<64, false>::Symbols* sympointers);
2291 #endif
2292
2293 #ifdef HAVE_TARGET_32_LITTLE
2294 template
2295 void
2296 Symbol_table::add_from_dynobj<32, false>(
2297 Sized_dynobj<32, false>* dynobj,
2298 const unsigned char* syms,
2299 size_t count,
2300 const char* sym_names,
2301 size_t sym_name_size,
2302 const unsigned char* versym,
2303 size_t versym_size,
2304 const std::vector<const char*>* version_map);
2305 #endif
2306
2307 #ifdef HAVE_TARGET_32_BIG
2308 template
2309 void
2310 Symbol_table::add_from_dynobj<32, true>(
2311 Sized_dynobj<32, true>* dynobj,
2312 const unsigned char* syms,
2313 size_t count,
2314 const char* sym_names,
2315 size_t sym_name_size,
2316 const unsigned char* versym,
2317 size_t versym_size,
2318 const std::vector<const char*>* version_map);
2319 #endif
2320
2321 #ifdef HAVE_TARGET_64_LITTLE
2322 template
2323 void
2324 Symbol_table::add_from_dynobj<64, false>(
2325 Sized_dynobj<64, false>* dynobj,
2326 const unsigned char* syms,
2327 size_t count,
2328 const char* sym_names,
2329 size_t sym_name_size,
2330 const unsigned char* versym,
2331 size_t versym_size,
2332 const std::vector<const char*>* version_map);
2333 #endif
2334
2335 #ifdef HAVE_TARGET_64_BIG
2336 template
2337 void
2338 Symbol_table::add_from_dynobj<64, true>(
2339 Sized_dynobj<64, true>* dynobj,
2340 const unsigned char* syms,
2341 size_t count,
2342 const char* sym_names,
2343 size_t sym_name_size,
2344 const unsigned char* versym,
2345 size_t versym_size,
2346 const std::vector<const char*>* version_map);
2347 #endif
2348
2349 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2350 template
2351 void
2352 Symbol_table::define_with_copy_reloc<32>(
2353 Sized_symbol<32>* sym,
2354 Output_data* posd,
2355 elfcpp::Elf_types<32>::Elf_Addr value);
2356 #endif
2357
2358 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2359 template
2360 void
2361 Symbol_table::define_with_copy_reloc<64>(
2362 Sized_symbol<64>* sym,
2363 Output_data* posd,
2364 elfcpp::Elf_types<64>::Elf_Addr value);
2365 #endif
2366
2367 #ifdef HAVE_TARGET_32_LITTLE
2368 template
2369 void
2370 Warnings::issue_warning<32, false>(const Symbol* sym,
2371 const Relocate_info<32, false>* relinfo,
2372 size_t relnum, off_t reloffset) const;
2373 #endif
2374
2375 #ifdef HAVE_TARGET_32_BIG
2376 template
2377 void
2378 Warnings::issue_warning<32, true>(const Symbol* sym,
2379 const Relocate_info<32, true>* relinfo,
2380 size_t relnum, off_t reloffset) const;
2381 #endif
2382
2383 #ifdef HAVE_TARGET_64_LITTLE
2384 template
2385 void
2386 Warnings::issue_warning<64, false>(const Symbol* sym,
2387 const Relocate_info<64, false>* relinfo,
2388 size_t relnum, off_t reloffset) const;
2389 #endif
2390
2391 #ifdef HAVE_TARGET_64_BIG
2392 template
2393 void
2394 Warnings::issue_warning<64, true>(const Symbol* sym,
2395 const Relocate_info<64, true>* relinfo,
2396 size_t relnum, off_t reloffset) const;
2397 #endif
2398
2399 } // End namespace gold.
This page took 0.076352 seconds and 5 git commands to generate.