Add support for --enable-target to control which template
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 #include "gold.h"
4
5 #include <stdint.h>
6 #include <string>
7 #include <utility>
8
9 #include "object.h"
10 #include "dynobj.h"
11 #include "output.h"
12 #include "target.h"
13 #include "workqueue.h"
14 #include "symtab.h"
15
16 namespace gold
17 {
18
19 // Class Symbol.
20
21 // Initialize fields in Symbol. This initializes everything except u_
22 // and source_.
23
24 void
25 Symbol::init_fields(const char* name, const char* version,
26 elfcpp::STT type, elfcpp::STB binding,
27 elfcpp::STV visibility, unsigned char nonvis)
28 {
29 this->name_ = name;
30 this->version_ = version;
31 this->symtab_index_ = 0;
32 this->dynsym_index_ = 0;
33 this->got_offset_ = 0;
34 this->plt_offset_ = 0;
35 this->type_ = type;
36 this->binding_ = binding;
37 this->visibility_ = visibility;
38 this->nonvis_ = nonvis;
39 this->is_target_special_ = false;
40 this->is_def_ = false;
41 this->is_forwarder_ = false;
42 this->needs_dynsym_entry_ = false;
43 this->in_reg_ = false;
44 this->in_dyn_ = false;
45 this->has_got_offset_ = false;
46 this->has_plt_offset_ = false;
47 this->has_warning_ = false;
48 }
49
50 // Initialize the fields in the base class Symbol for SYM in OBJECT.
51
52 template<int size, bool big_endian>
53 void
54 Symbol::init_base(const char* name, const char* version, Object* object,
55 const elfcpp::Sym<size, big_endian>& sym)
56 {
57 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
58 sym.get_st_visibility(), sym.get_st_nonvis());
59 this->u_.from_object.object = object;
60 // FIXME: Handle SHN_XINDEX.
61 this->u_.from_object.shndx = sym.get_st_shndx();
62 this->source_ = FROM_OBJECT;
63 this->in_reg_ = !object->is_dynamic();
64 this->in_dyn_ = object->is_dynamic();
65 }
66
67 // Initialize the fields in the base class Symbol for a symbol defined
68 // in an Output_data.
69
70 void
71 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
72 elfcpp::STB binding, elfcpp::STV visibility,
73 unsigned char nonvis, bool offset_is_from_end)
74 {
75 this->init_fields(name, NULL, type, binding, visibility, nonvis);
76 this->u_.in_output_data.output_data = od;
77 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
78 this->source_ = IN_OUTPUT_DATA;
79 this->in_reg_ = true;
80 }
81
82 // Initialize the fields in the base class Symbol for a symbol defined
83 // in an Output_segment.
84
85 void
86 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
87 elfcpp::STB binding, elfcpp::STV visibility,
88 unsigned char nonvis, Segment_offset_base offset_base)
89 {
90 this->init_fields(name, NULL, type, binding, visibility, nonvis);
91 this->u_.in_output_segment.output_segment = os;
92 this->u_.in_output_segment.offset_base = offset_base;
93 this->source_ = IN_OUTPUT_SEGMENT;
94 this->in_reg_ = true;
95 }
96
97 // Initialize the fields in the base class Symbol for a symbol defined
98 // as a constant.
99
100 void
101 Symbol::init_base(const char* name, elfcpp::STT type,
102 elfcpp::STB binding, elfcpp::STV visibility,
103 unsigned char nonvis)
104 {
105 this->init_fields(name, NULL, type, binding, visibility, nonvis);
106 this->source_ = CONSTANT;
107 this->in_reg_ = true;
108 }
109
110 // Initialize the fields in Sized_symbol for SYM in OBJECT.
111
112 template<int size>
113 template<bool big_endian>
114 void
115 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym)
117 {
118 this->init_base(name, version, object, sym);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
121 }
122
123 // Initialize the fields in Sized_symbol for a symbol defined in an
124 // Output_data.
125
126 template<int size>
127 void
128 Sized_symbol<size>::init(const char* name, Output_data* od,
129 Value_type value, Size_type symsize,
130 elfcpp::STT type, elfcpp::STB binding,
131 elfcpp::STV visibility, unsigned char nonvis,
132 bool offset_is_from_end)
133 {
134 this->init_base(name, od, type, binding, visibility, nonvis,
135 offset_is_from_end);
136 this->value_ = value;
137 this->symsize_ = symsize;
138 }
139
140 // Initialize the fields in Sized_symbol for a symbol defined in an
141 // Output_segment.
142
143 template<int size>
144 void
145 Sized_symbol<size>::init(const char* name, Output_segment* os,
146 Value_type value, Size_type symsize,
147 elfcpp::STT type, elfcpp::STB binding,
148 elfcpp::STV visibility, unsigned char nonvis,
149 Segment_offset_base offset_base)
150 {
151 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
152 this->value_ = value;
153 this->symsize_ = symsize;
154 }
155
156 // Initialize the fields in Sized_symbol for a symbol defined as a
157 // constant.
158
159 template<int size>
160 void
161 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
162 elfcpp::STT type, elfcpp::STB binding,
163 elfcpp::STV visibility, unsigned char nonvis)
164 {
165 this->init_base(name, type, binding, visibility, nonvis);
166 this->value_ = value;
167 this->symsize_ = symsize;
168 }
169
170 // Class Symbol_table.
171
172 Symbol_table::Symbol_table()
173 : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
174 forwarders_(), commons_(), warnings_()
175 {
176 }
177
178 Symbol_table::~Symbol_table()
179 {
180 }
181
182 // The hash function. The key is always canonicalized, so we use a
183 // simple combination of the pointers.
184
185 size_t
186 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
187 {
188 return key.first ^ key.second;
189 }
190
191 // The symbol table key equality function. This is only called with
192 // canonicalized name and version strings, so we can use pointer
193 // comparison.
194
195 bool
196 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
197 const Symbol_table_key& k2) const
198 {
199 return k1.first == k2.first && k1.second == k2.second;
200 }
201
202 // Make TO a symbol which forwards to FROM.
203
204 void
205 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
206 {
207 gold_assert(from != to);
208 gold_assert(!from->is_forwarder() && !to->is_forwarder());
209 this->forwarders_[from] = to;
210 from->set_forwarder();
211 }
212
213 // Resolve the forwards from FROM, returning the real symbol.
214
215 Symbol*
216 Symbol_table::resolve_forwards(const Symbol* from) const
217 {
218 gold_assert(from->is_forwarder());
219 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
220 this->forwarders_.find(from);
221 gold_assert(p != this->forwarders_.end());
222 return p->second;
223 }
224
225 // Look up a symbol by name.
226
227 Symbol*
228 Symbol_table::lookup(const char* name, const char* version) const
229 {
230 Stringpool::Key name_key;
231 name = this->namepool_.find(name, &name_key);
232 if (name == NULL)
233 return NULL;
234
235 Stringpool::Key version_key = 0;
236 if (version != NULL)
237 {
238 version = this->namepool_.find(version, &version_key);
239 if (version == NULL)
240 return NULL;
241 }
242
243 Symbol_table_key key(name_key, version_key);
244 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
245 if (p == this->table_.end())
246 return NULL;
247 return p->second;
248 }
249
250 // Resolve a Symbol with another Symbol. This is only used in the
251 // unusual case where there are references to both an unversioned
252 // symbol and a symbol with a version, and we then discover that that
253 // version is the default version. Because this is unusual, we do
254 // this the slow way, by converting back to an ELF symbol.
255
256 template<int size, bool big_endian>
257 void
258 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
259 const char* version ACCEPT_SIZE_ENDIAN)
260 {
261 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
262 elfcpp::Sym_write<size, big_endian> esym(buf);
263 // We don't bother to set the st_name field.
264 esym.put_st_value(from->value());
265 esym.put_st_size(from->symsize());
266 esym.put_st_info(from->binding(), from->type());
267 esym.put_st_other(from->visibility(), from->nonvis());
268 esym.put_st_shndx(from->shndx());
269 Symbol_table::resolve(to, esym.sym(), from->object(), version);
270 if (from->in_reg())
271 to->set_in_reg();
272 if (from->in_dyn())
273 to->set_in_dyn();
274 }
275
276 // Add one symbol from OBJECT to the symbol table. NAME is symbol
277 // name and VERSION is the version; both are canonicalized. DEF is
278 // whether this is the default version.
279
280 // If DEF is true, then this is the definition of a default version of
281 // a symbol. That means that any lookup of NAME/NULL and any lookup
282 // of NAME/VERSION should always return the same symbol. This is
283 // obvious for references, but in particular we want to do this for
284 // definitions: overriding NAME/NULL should also override
285 // NAME/VERSION. If we don't do that, it would be very hard to
286 // override functions in a shared library which uses versioning.
287
288 // We implement this by simply making both entries in the hash table
289 // point to the same Symbol structure. That is easy enough if this is
290 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
291 // that we have seen both already, in which case they will both have
292 // independent entries in the symbol table. We can't simply change
293 // the symbol table entry, because we have pointers to the entries
294 // attached to the object files. So we mark the entry attached to the
295 // object file as a forwarder, and record it in the forwarders_ map.
296 // Note that entries in the hash table will never be marked as
297 // forwarders.
298
299 template<int size, bool big_endian>
300 Symbol*
301 Symbol_table::add_from_object(Object* object,
302 const char *name,
303 Stringpool::Key name_key,
304 const char *version,
305 Stringpool::Key version_key,
306 bool def,
307 const elfcpp::Sym<size, big_endian>& sym)
308 {
309 Symbol* const snull = NULL;
310 std::pair<typename Symbol_table_type::iterator, bool> ins =
311 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
312 snull));
313
314 std::pair<typename Symbol_table_type::iterator, bool> insdef =
315 std::make_pair(this->table_.end(), false);
316 if (def)
317 {
318 const Stringpool::Key vnull_key = 0;
319 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
320 vnull_key),
321 snull));
322 }
323
324 // ins.first: an iterator, which is a pointer to a pair.
325 // ins.first->first: the key (a pair of name and version).
326 // ins.first->second: the value (Symbol*).
327 // ins.second: true if new entry was inserted, false if not.
328
329 Sized_symbol<size>* ret;
330 bool was_undefined;
331 bool was_common;
332 if (!ins.second)
333 {
334 // We already have an entry for NAME/VERSION.
335 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
336 SELECT_SIZE(size));
337 gold_assert(ret != NULL);
338
339 was_undefined = ret->is_undefined();
340 was_common = ret->is_common();
341
342 Symbol_table::resolve(ret, sym, object, version);
343
344 if (def)
345 {
346 if (insdef.second)
347 {
348 // This is the first time we have seen NAME/NULL. Make
349 // NAME/NULL point to NAME/VERSION.
350 insdef.first->second = ret;
351 }
352 else if (insdef.first->second != ret)
353 {
354 // This is the unfortunate case where we already have
355 // entries for both NAME/VERSION and NAME/NULL.
356 const Sized_symbol<size>* sym2;
357 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
358 insdef.first->second
359 SELECT_SIZE(size));
360 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
361 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
362 this->make_forwarder(insdef.first->second, ret);
363 insdef.first->second = ret;
364 }
365 }
366 }
367 else
368 {
369 // This is the first time we have seen NAME/VERSION.
370 gold_assert(ins.first->second == NULL);
371
372 was_undefined = false;
373 was_common = false;
374
375 if (def && !insdef.second)
376 {
377 // We already have an entry for NAME/NULL. If we override
378 // it, then change it to NAME/VERSION.
379 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
380 insdef.first->second
381 SELECT_SIZE(size));
382 Symbol_table::resolve(ret, sym, object, version);
383 ins.first->second = ret;
384 }
385 else
386 {
387 Sized_target<size, big_endian>* target =
388 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
389 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
390 if (!target->has_make_symbol())
391 ret = new Sized_symbol<size>();
392 else
393 {
394 ret = target->make_symbol();
395 if (ret == NULL)
396 {
397 // This means that we don't want a symbol table
398 // entry after all.
399 if (!def)
400 this->table_.erase(ins.first);
401 else
402 {
403 this->table_.erase(insdef.first);
404 // Inserting insdef invalidated ins.
405 this->table_.erase(std::make_pair(name_key,
406 version_key));
407 }
408 return NULL;
409 }
410 }
411
412 ret->init(name, version, object, sym);
413
414 ins.first->second = ret;
415 if (def)
416 {
417 // This is the first time we have seen NAME/NULL. Point
418 // it at the new entry for NAME/VERSION.
419 gold_assert(insdef.second);
420 insdef.first->second = ret;
421 }
422 }
423 }
424
425 // Record every time we see a new undefined symbol, to speed up
426 // archive groups.
427 if (!was_undefined && ret->is_undefined())
428 ++this->saw_undefined_;
429
430 // Keep track of common symbols, to speed up common symbol
431 // allocation.
432 if (!was_common && ret->is_common())
433 this->commons_.push_back(ret);
434
435 return ret;
436 }
437
438 // Add all the symbols in a relocatable object to the hash table.
439
440 template<int size, bool big_endian>
441 void
442 Symbol_table::add_from_relobj(
443 Sized_relobj<size, big_endian>* relobj,
444 const unsigned char* syms,
445 size_t count,
446 const char* sym_names,
447 size_t sym_name_size,
448 Symbol** sympointers)
449 {
450 // We take the size from the first object we see.
451 if (this->get_size() == 0)
452 this->set_size(size);
453
454 if (size != this->get_size() || size != relobj->target()->get_size())
455 {
456 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
457 program_name, relobj->name().c_str());
458 gold_exit(false);
459 }
460
461 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
462
463 const unsigned char* p = syms;
464 for (size_t i = 0; i < count; ++i, p += sym_size)
465 {
466 elfcpp::Sym<size, big_endian> sym(p);
467 elfcpp::Sym<size, big_endian>* psym = &sym;
468
469 unsigned int st_name = psym->get_st_name();
470 if (st_name >= sym_name_size)
471 {
472 fprintf(stderr,
473 _("%s: %s: bad global symbol name offset %u at %lu\n"),
474 program_name, relobj->name().c_str(), st_name,
475 static_cast<unsigned long>(i));
476 gold_exit(false);
477 }
478
479 const char* name = sym_names + st_name;
480
481 // A symbol defined in a section which we are not including must
482 // be treated as an undefined symbol.
483 unsigned char symbuf[sym_size];
484 elfcpp::Sym<size, big_endian> sym2(symbuf);
485 unsigned int st_shndx = psym->get_st_shndx();
486 if (st_shndx != elfcpp::SHN_UNDEF
487 && st_shndx < elfcpp::SHN_LORESERVE
488 && !relobj->is_section_included(st_shndx))
489 {
490 memcpy(symbuf, p, sym_size);
491 elfcpp::Sym_write<size, big_endian> sw(symbuf);
492 sw.put_st_shndx(elfcpp::SHN_UNDEF);
493 psym = &sym2;
494 }
495
496 // In an object file, an '@' in the name separates the symbol
497 // name from the version name. If there are two '@' characters,
498 // this is the default version.
499 const char* ver = strchr(name, '@');
500
501 Symbol* res;
502 if (ver == NULL)
503 {
504 Stringpool::Key name_key;
505 name = this->namepool_.add(name, &name_key);
506 res = this->add_from_object(relobj, name, name_key, NULL, 0,
507 false, *psym);
508 }
509 else
510 {
511 Stringpool::Key name_key;
512 name = this->namepool_.add(name, ver - name, &name_key);
513
514 bool def = false;
515 ++ver;
516 if (*ver == '@')
517 {
518 def = true;
519 ++ver;
520 }
521
522 Stringpool::Key ver_key;
523 ver = this->namepool_.add(ver, &ver_key);
524
525 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
526 def, *psym);
527 }
528
529 *sympointers++ = res;
530 }
531 }
532
533 // Add all the symbols in a dynamic object to the hash table.
534
535 template<int size, bool big_endian>
536 void
537 Symbol_table::add_from_dynobj(
538 Sized_dynobj<size, big_endian>* dynobj,
539 const unsigned char* syms,
540 size_t count,
541 const char* sym_names,
542 size_t sym_name_size,
543 const unsigned char* versym,
544 size_t versym_size,
545 const std::vector<const char*>* version_map)
546 {
547 // We take the size from the first object we see.
548 if (this->get_size() == 0)
549 this->set_size(size);
550
551 if (size != this->get_size() || size != dynobj->target()->get_size())
552 {
553 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
554 program_name, dynobj->name().c_str());
555 gold_exit(false);
556 }
557
558 if (versym != NULL && versym_size / 2 < count)
559 {
560 fprintf(stderr, _("%s: %s: too few symbol versions\n"),
561 program_name, dynobj->name().c_str());
562 gold_exit(false);
563 }
564
565 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
566
567 const unsigned char* p = syms;
568 const unsigned char* vs = versym;
569 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
570 {
571 elfcpp::Sym<size, big_endian> sym(p);
572
573 // Ignore symbols with local binding.
574 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
575 continue;
576
577 unsigned int st_name = sym.get_st_name();
578 if (st_name >= sym_name_size)
579 {
580 fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"),
581 program_name, dynobj->name().c_str(), st_name,
582 static_cast<unsigned long>(i));
583 gold_exit(false);
584 }
585
586 const char* name = sym_names + st_name;
587
588 if (versym == NULL)
589 {
590 Stringpool::Key name_key;
591 name = this->namepool_.add(name, &name_key);
592 this->add_from_object(dynobj, name, name_key, NULL, 0,
593 false, sym);
594 continue;
595 }
596
597 // Read the version information.
598
599 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
600
601 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
602 v &= elfcpp::VERSYM_VERSION;
603
604 // The Sun documentation says that V can be VER_NDX_LOCAL, or
605 // VER_NDX_GLOBAL, or a version index. The meaning of
606 // VER_NDX_LOCAL is defined as "Symbol has local scope." The
607 // old GNU linker will happily generate VER_NDX_LOCAL for an
608 // undefined symbol. I don't know what the Sun linker will
609 // generate.
610
611 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
612 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
613 {
614 // This symbol should not be visible outside the object.
615 continue;
616 }
617
618 // At this point we are definitely going to add this symbol.
619 Stringpool::Key name_key;
620 name = this->namepool_.add(name, &name_key);
621
622 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
623 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
624 {
625 // This symbol does not have a version.
626 this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
627 continue;
628 }
629
630 if (v >= version_map->size())
631 {
632 fprintf(stderr,
633 _("%s: %s: versym for symbol %zu out of range: %u\n"),
634 program_name, dynobj->name().c_str(), i, v);
635 gold_exit(false);
636 }
637
638 const char* version = (*version_map)[v];
639 if (version == NULL)
640 {
641 fprintf(stderr, _("%s: %s: versym for symbol %zu has no name: %u\n"),
642 program_name, dynobj->name().c_str(), i, v);
643 gold_exit(false);
644 }
645
646 Stringpool::Key version_key;
647 version = this->namepool_.add(version, &version_key);
648
649 // If this is an absolute symbol, and the version name and
650 // symbol name are the same, then this is the version definition
651 // symbol. These symbols exist to support using -u to pull in
652 // particular versions. We do not want to record a version for
653 // them.
654 if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key)
655 {
656 this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
657 continue;
658 }
659
660 const bool def = !hidden && sym.get_st_shndx() != elfcpp::SHN_UNDEF;
661
662 this->add_from_object(dynobj, name, name_key, version, version_key,
663 def, sym);
664 }
665 }
666
667 // Create and return a specially defined symbol. If ONLY_IF_REF is
668 // true, then only create the symbol if there is a reference to it.
669
670 template<int size, bool big_endian>
671 Sized_symbol<size>*
672 Symbol_table::define_special_symbol(const Target* target, const char* name,
673 const char* version, bool only_if_ref
674 ACCEPT_SIZE_ENDIAN)
675 {
676 gold_assert(this->size_ == size);
677
678 Symbol* oldsym;
679 Sized_symbol<size>* sym;
680
681 if (only_if_ref)
682 {
683 oldsym = this->lookup(name, version);
684 if (oldsym == NULL || !oldsym->is_undefined())
685 return NULL;
686 sym = NULL;
687
688 // Canonicalize NAME and VERSION.
689 name = oldsym->name();
690 version = oldsym->version();
691 }
692 else
693 {
694 // Canonicalize NAME and VERSION.
695 Stringpool::Key name_key;
696 name = this->namepool_.add(name, &name_key);
697
698 Stringpool::Key version_key = 0;
699 if (version != NULL)
700 version = this->namepool_.add(version, &version_key);
701
702 Symbol* const snull = NULL;
703 std::pair<typename Symbol_table_type::iterator, bool> ins =
704 this->table_.insert(std::make_pair(std::make_pair(name_key,
705 version_key),
706 snull));
707
708 if (!ins.second)
709 {
710 // We already have a symbol table entry for NAME/VERSION.
711 oldsym = ins.first->second;
712 gold_assert(oldsym != NULL);
713 sym = NULL;
714 }
715 else
716 {
717 // We haven't seen this symbol before.
718 gold_assert(ins.first->second == NULL);
719
720 if (!target->has_make_symbol())
721 sym = new Sized_symbol<size>();
722 else
723 {
724 gold_assert(target->get_size() == size);
725 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
726 typedef Sized_target<size, big_endian> My_target;
727 const My_target* sized_target =
728 static_cast<const My_target*>(target);
729 sym = sized_target->make_symbol();
730 if (sym == NULL)
731 return NULL;
732 }
733
734 ins.first->second = sym;
735 oldsym = NULL;
736 }
737 }
738
739 if (oldsym != NULL)
740 {
741 gold_assert(sym == NULL);
742
743 sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
744 SELECT_SIZE(size));
745 gold_assert(sym->source() == Symbol::FROM_OBJECT);
746 const int old_shndx = sym->shndx();
747 if (old_shndx != elfcpp::SHN_UNDEF
748 && old_shndx != elfcpp::SHN_COMMON
749 && !sym->object()->is_dynamic())
750 {
751 fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
752 program_name, name);
753 // FIXME: Report old location. Record that we have seen an
754 // error.
755 return NULL;
756 }
757
758 // Our new definition is going to override the old reference.
759 }
760
761 return sym;
762 }
763
764 // Define a symbol based on an Output_data.
765
766 Symbol*
767 Symbol_table::define_in_output_data(const Target* target, const char* name,
768 const char* version, Output_data* od,
769 uint64_t value, uint64_t symsize,
770 elfcpp::STT type, elfcpp::STB binding,
771 elfcpp::STV visibility,
772 unsigned char nonvis,
773 bool offset_is_from_end,
774 bool only_if_ref)
775 {
776 gold_assert(target->get_size() == this->size_);
777 if (this->size_ == 32)
778 return this->do_define_in_output_data<32>(target, name, version, od, value,
779 symsize, type, binding,
780 visibility, nonvis,
781 offset_is_from_end, only_if_ref);
782 else if (this->size_ == 64)
783 return this->do_define_in_output_data<64>(target, name, version, od, value,
784 symsize, type, binding,
785 visibility, nonvis,
786 offset_is_from_end, only_if_ref);
787 else
788 gold_unreachable();
789 }
790
791 // Define a symbol in an Output_data, sized version.
792
793 template<int size>
794 Sized_symbol<size>*
795 Symbol_table::do_define_in_output_data(
796 const Target* target,
797 const char* name,
798 const char* version,
799 Output_data* od,
800 typename elfcpp::Elf_types<size>::Elf_Addr value,
801 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
802 elfcpp::STT type,
803 elfcpp::STB binding,
804 elfcpp::STV visibility,
805 unsigned char nonvis,
806 bool offset_is_from_end,
807 bool only_if_ref)
808 {
809 Sized_symbol<size>* sym;
810
811 if (target->is_big_endian())
812 {
813 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
814 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
815 target, name, version, only_if_ref
816 SELECT_SIZE_ENDIAN(size, true));
817 #else
818 gold_unreachable();
819 #endif
820 }
821 else
822 {
823 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
824 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
825 target, name, version, only_if_ref
826 SELECT_SIZE_ENDIAN(size, false));
827 #else
828 gold_unreachable();
829 #endif
830 }
831
832 if (sym == NULL)
833 return NULL;
834
835 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
836 offset_is_from_end);
837
838 return sym;
839 }
840
841 // Define a symbol based on an Output_segment.
842
843 Symbol*
844 Symbol_table::define_in_output_segment(const Target* target, const char* name,
845 const char* version, Output_segment* os,
846 uint64_t value, uint64_t symsize,
847 elfcpp::STT type, elfcpp::STB binding,
848 elfcpp::STV visibility,
849 unsigned char nonvis,
850 Symbol::Segment_offset_base offset_base,
851 bool only_if_ref)
852 {
853 gold_assert(target->get_size() == this->size_);
854 if (this->size_ == 32)
855 return this->do_define_in_output_segment<32>(target, name, version, os,
856 value, symsize, type, binding,
857 visibility, nonvis,
858 offset_base, only_if_ref);
859 else if (this->size_ == 64)
860 return this->do_define_in_output_segment<64>(target, name, version, os,
861 value, symsize, type, binding,
862 visibility, nonvis,
863 offset_base, only_if_ref);
864 else
865 gold_unreachable();
866 }
867
868 // Define a symbol in an Output_segment, sized version.
869
870 template<int size>
871 Sized_symbol<size>*
872 Symbol_table::do_define_in_output_segment(
873 const Target* target,
874 const char* name,
875 const char* version,
876 Output_segment* os,
877 typename elfcpp::Elf_types<size>::Elf_Addr value,
878 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
879 elfcpp::STT type,
880 elfcpp::STB binding,
881 elfcpp::STV visibility,
882 unsigned char nonvis,
883 Symbol::Segment_offset_base offset_base,
884 bool only_if_ref)
885 {
886 Sized_symbol<size>* sym;
887
888 if (target->is_big_endian())
889 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
890 target, name, version, only_if_ref
891 SELECT_SIZE_ENDIAN(size, true));
892 else
893 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
894 target, name, version, only_if_ref
895 SELECT_SIZE_ENDIAN(size, false));
896
897 if (sym == NULL)
898 return NULL;
899
900 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
901 offset_base);
902
903 return sym;
904 }
905
906 // Define a special symbol with a constant value. It is a multiple
907 // definition error if this symbol is already defined.
908
909 Symbol*
910 Symbol_table::define_as_constant(const Target* target, const char* name,
911 const char* version, uint64_t value,
912 uint64_t symsize, elfcpp::STT type,
913 elfcpp::STB binding, elfcpp::STV visibility,
914 unsigned char nonvis, bool only_if_ref)
915 {
916 gold_assert(target->get_size() == this->size_);
917 if (this->size_ == 32)
918 return this->do_define_as_constant<32>(target, name, version, value,
919 symsize, type, binding, visibility,
920 nonvis, only_if_ref);
921 else if (this->size_ == 64)
922 return this->do_define_as_constant<64>(target, name, version, value,
923 symsize, type, binding, visibility,
924 nonvis, only_if_ref);
925 else
926 gold_unreachable();
927 }
928
929 // Define a symbol as a constant, sized version.
930
931 template<int size>
932 Sized_symbol<size>*
933 Symbol_table::do_define_as_constant(
934 const Target* target,
935 const char* name,
936 const char* version,
937 typename elfcpp::Elf_types<size>::Elf_Addr value,
938 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
939 elfcpp::STT type,
940 elfcpp::STB binding,
941 elfcpp::STV visibility,
942 unsigned char nonvis,
943 bool only_if_ref)
944 {
945 Sized_symbol<size>* sym;
946
947 if (target->is_big_endian())
948 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
949 target, name, version, only_if_ref
950 SELECT_SIZE_ENDIAN(size, true));
951 else
952 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
953 target, name, version, only_if_ref
954 SELECT_SIZE_ENDIAN(size, false));
955
956 if (sym == NULL)
957 return NULL;
958
959 sym->init(name, value, symsize, type, binding, visibility, nonvis);
960
961 return sym;
962 }
963
964 // Define a set of symbols in output sections.
965
966 void
967 Symbol_table::define_symbols(const Layout* layout, const Target* target,
968 int count, const Define_symbol_in_section* p)
969 {
970 for (int i = 0; i < count; ++i, ++p)
971 {
972 Output_section* os = layout->find_output_section(p->output_section);
973 if (os != NULL)
974 this->define_in_output_data(target, p->name, NULL, os, p->value,
975 p->size, p->type, p->binding,
976 p->visibility, p->nonvis,
977 p->offset_is_from_end, p->only_if_ref);
978 else
979 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
980 p->binding, p->visibility, p->nonvis,
981 p->only_if_ref);
982 }
983 }
984
985 // Define a set of symbols in output segments.
986
987 void
988 Symbol_table::define_symbols(const Layout* layout, const Target* target,
989 int count, const Define_symbol_in_segment* p)
990 {
991 for (int i = 0; i < count; ++i, ++p)
992 {
993 Output_segment* os = layout->find_output_segment(p->segment_type,
994 p->segment_flags_set,
995 p->segment_flags_clear);
996 if (os != NULL)
997 this->define_in_output_segment(target, p->name, NULL, os, p->value,
998 p->size, p->type, p->binding,
999 p->visibility, p->nonvis,
1000 p->offset_base, p->only_if_ref);
1001 else
1002 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1003 p->binding, p->visibility, p->nonvis,
1004 p->only_if_ref);
1005 }
1006 }
1007
1008 // Set the dynamic symbol indexes. INDEX is the index of the first
1009 // global dynamic symbol. Pointers to the symbols are stored into the
1010 // vector SYMS. The names are added to DYNPOOL. This returns an
1011 // updated dynamic symbol index.
1012
1013 unsigned int
1014 Symbol_table::set_dynsym_indexes(const General_options* options,
1015 const Target* target,
1016 unsigned int index,
1017 std::vector<Symbol*>* syms,
1018 Stringpool* dynpool,
1019 Versions* versions)
1020 {
1021 for (Symbol_table_type::iterator p = this->table_.begin();
1022 p != this->table_.end();
1023 ++p)
1024 {
1025 Symbol* sym = p->second;
1026
1027 // Note that SYM may already have a dynamic symbol index, since
1028 // some symbols appear more than once in the symbol table, with
1029 // and without a version.
1030
1031 if (!sym->needs_dynsym_entry()
1032 && (!options->export_dynamic()
1033 || !sym->in_reg()
1034 || !sym->is_externally_visible()))
1035 sym->set_dynsym_index(-1U);
1036 else if (!sym->has_dynsym_index())
1037 {
1038 sym->set_dynsym_index(index);
1039 ++index;
1040 syms->push_back(sym);
1041 dynpool->add(sym->name(), NULL);
1042
1043 // Record any version information.
1044 if (sym->version() != NULL)
1045 versions->record_version(options, dynpool, sym);
1046 }
1047 }
1048
1049 // Finish up the versions. In some cases this may add new dynamic
1050 // symbols.
1051 index = versions->finalize(target, this, index, syms);
1052
1053 return index;
1054 }
1055
1056 // Set the final values for all the symbols. The index of the first
1057 // global symbol in the output file is INDEX. Record the file offset
1058 // OFF. Add their names to POOL. Return the new file offset.
1059
1060 off_t
1061 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1062 size_t dyn_global_index, size_t dyncount,
1063 Stringpool* pool)
1064 {
1065 off_t ret;
1066
1067 gold_assert(index != 0);
1068 this->first_global_index_ = index;
1069
1070 this->dynamic_offset_ = dynoff;
1071 this->first_dynamic_global_index_ = dyn_global_index;
1072 this->dynamic_count_ = dyncount;
1073
1074 if (this->size_ == 32)
1075 ret = this->sized_finalize<32>(index, off, pool);
1076 else if (this->size_ == 64)
1077 ret = this->sized_finalize<64>(index, off, pool);
1078 else
1079 gold_unreachable();
1080
1081 // Now that we have the final symbol table, we can reliably note
1082 // which symbols should get warnings.
1083 this->warnings_.note_warnings(this);
1084
1085 return ret;
1086 }
1087
1088 // Set the final value for all the symbols. This is called after
1089 // Layout::finalize, so all the output sections have their final
1090 // address.
1091
1092 template<int size>
1093 off_t
1094 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1095 {
1096 off = align_address(off, size >> 3);
1097 this->offset_ = off;
1098
1099 size_t orig_index = index;
1100
1101 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1102 for (Symbol_table_type::iterator p = this->table_.begin();
1103 p != this->table_.end();
1104 ++p)
1105 {
1106 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1107
1108 // FIXME: Here we need to decide which symbols should go into
1109 // the output file, based on --strip.
1110
1111 // The default version of a symbol may appear twice in the
1112 // symbol table. We only need to finalize it once.
1113 if (sym->has_symtab_index())
1114 continue;
1115
1116 if (!sym->in_reg())
1117 {
1118 gold_assert(!sym->has_symtab_index());
1119 sym->set_symtab_index(-1U);
1120 gold_assert(sym->dynsym_index() == -1U);
1121 continue;
1122 }
1123
1124 typename Sized_symbol<size>::Value_type value;
1125
1126 switch (sym->source())
1127 {
1128 case Symbol::FROM_OBJECT:
1129 {
1130 unsigned int shndx = sym->shndx();
1131
1132 // FIXME: We need some target specific support here.
1133 if (shndx >= elfcpp::SHN_LORESERVE
1134 && shndx != elfcpp::SHN_ABS)
1135 {
1136 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1137 program_name, sym->name(), shndx);
1138 gold_exit(false);
1139 }
1140
1141 Object* symobj = sym->object();
1142 if (symobj->is_dynamic())
1143 {
1144 value = 0;
1145 shndx = elfcpp::SHN_UNDEF;
1146 }
1147 else if (shndx == elfcpp::SHN_UNDEF)
1148 value = 0;
1149 else if (shndx == elfcpp::SHN_ABS)
1150 value = sym->value();
1151 else
1152 {
1153 Relobj* relobj = static_cast<Relobj*>(symobj);
1154 off_t secoff;
1155 Output_section* os = relobj->output_section(shndx, &secoff);
1156
1157 if (os == NULL)
1158 {
1159 sym->set_symtab_index(-1U);
1160 gold_assert(sym->dynsym_index() == -1U);
1161 continue;
1162 }
1163
1164 value = sym->value() + os->address() + secoff;
1165 }
1166 }
1167 break;
1168
1169 case Symbol::IN_OUTPUT_DATA:
1170 {
1171 Output_data* od = sym->output_data();
1172 value = sym->value() + od->address();
1173 if (sym->offset_is_from_end())
1174 value += od->data_size();
1175 }
1176 break;
1177
1178 case Symbol::IN_OUTPUT_SEGMENT:
1179 {
1180 Output_segment* os = sym->output_segment();
1181 value = sym->value() + os->vaddr();
1182 switch (sym->offset_base())
1183 {
1184 case Symbol::SEGMENT_START:
1185 break;
1186 case Symbol::SEGMENT_END:
1187 value += os->memsz();
1188 break;
1189 case Symbol::SEGMENT_BSS:
1190 value += os->filesz();
1191 break;
1192 default:
1193 gold_unreachable();
1194 }
1195 }
1196 break;
1197
1198 case Symbol::CONSTANT:
1199 value = sym->value();
1200 break;
1201
1202 default:
1203 gold_unreachable();
1204 }
1205
1206 sym->set_value(value);
1207 sym->set_symtab_index(index);
1208 pool->add(sym->name(), NULL);
1209 ++index;
1210 off += sym_size;
1211 }
1212
1213 this->output_count_ = index - orig_index;
1214
1215 return off;
1216 }
1217
1218 // Write out the global symbols.
1219
1220 void
1221 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1222 const Stringpool* dynpool, Output_file* of) const
1223 {
1224 if (this->size_ == 32)
1225 {
1226 if (target->is_big_endian())
1227 this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1228 else
1229 this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1230 }
1231 else if (this->size_ == 64)
1232 {
1233 if (target->is_big_endian())
1234 this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1235 else
1236 this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1237 }
1238 else
1239 gold_unreachable();
1240 }
1241
1242 // Write out the global symbols.
1243
1244 template<int size, bool big_endian>
1245 void
1246 Symbol_table::sized_write_globals(const Target*,
1247 const Stringpool* sympool,
1248 const Stringpool* dynpool,
1249 Output_file* of) const
1250 {
1251 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1252 unsigned int index = this->first_global_index_;
1253 const off_t oview_size = this->output_count_ * sym_size;
1254 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1255
1256 unsigned int dynamic_count = this->dynamic_count_;
1257 off_t dynamic_size = dynamic_count * sym_size;
1258 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1259 unsigned char* dynamic_view;
1260 if (this->dynamic_offset_ == 0)
1261 dynamic_view = NULL;
1262 else
1263 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1264
1265 unsigned char* ps = psyms;
1266 for (Symbol_table_type::const_iterator p = this->table_.begin();
1267 p != this->table_.end();
1268 ++p)
1269 {
1270 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1271
1272 unsigned int sym_index = sym->symtab_index();
1273 unsigned int dynsym_index;
1274 if (dynamic_view == NULL)
1275 dynsym_index = -1U;
1276 else
1277 dynsym_index = sym->dynsym_index();
1278
1279 if (sym_index == -1U && dynsym_index == -1U)
1280 {
1281 // This symbol is not included in the output file.
1282 continue;
1283 }
1284
1285 if (sym_index == index)
1286 ++index;
1287 else if (sym_index != -1U)
1288 {
1289 // We have already seen this symbol, because it has a
1290 // default version.
1291 gold_assert(sym_index < index);
1292 if (dynsym_index == -1U)
1293 continue;
1294 sym_index = -1U;
1295 }
1296
1297 unsigned int shndx;
1298 switch (sym->source())
1299 {
1300 case Symbol::FROM_OBJECT:
1301 {
1302 unsigned int in_shndx = sym->shndx();
1303
1304 // FIXME: We need some target specific support here.
1305 if (in_shndx >= elfcpp::SHN_LORESERVE
1306 && in_shndx != elfcpp::SHN_ABS)
1307 {
1308 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1309 program_name, sym->name(), in_shndx);
1310 gold_exit(false);
1311 }
1312
1313 Object* symobj = sym->object();
1314 if (symobj->is_dynamic())
1315 {
1316 // FIXME.
1317 shndx = elfcpp::SHN_UNDEF;
1318 }
1319 else if (in_shndx == elfcpp::SHN_UNDEF
1320 || in_shndx == elfcpp::SHN_ABS)
1321 shndx = in_shndx;
1322 else
1323 {
1324 Relobj* relobj = static_cast<Relobj*>(symobj);
1325 off_t secoff;
1326 Output_section* os = relobj->output_section(in_shndx, &secoff);
1327 gold_assert(os != NULL);
1328 shndx = os->out_shndx();
1329 }
1330 }
1331 break;
1332
1333 case Symbol::IN_OUTPUT_DATA:
1334 shndx = sym->output_data()->out_shndx();
1335 break;
1336
1337 case Symbol::IN_OUTPUT_SEGMENT:
1338 shndx = elfcpp::SHN_ABS;
1339 break;
1340
1341 case Symbol::CONSTANT:
1342 shndx = elfcpp::SHN_ABS;
1343 break;
1344
1345 default:
1346 gold_unreachable();
1347 }
1348
1349 if (sym_index != -1U)
1350 {
1351 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1352 sym, shndx, sympool, ps
1353 SELECT_SIZE_ENDIAN(size, big_endian));
1354 ps += sym_size;
1355 }
1356
1357 if (dynsym_index != -1U)
1358 {
1359 dynsym_index -= first_dynamic_global_index;
1360 gold_assert(dynsym_index < dynamic_count);
1361 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1362 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1363 sym, shndx, dynpool, pd
1364 SELECT_SIZE_ENDIAN(size, big_endian));
1365 }
1366 }
1367
1368 gold_assert(ps - psyms == oview_size);
1369
1370 of->write_output_view(this->offset_, oview_size, psyms);
1371 if (dynamic_view != NULL)
1372 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1373 }
1374
1375 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1376 // strtab holding the name.
1377
1378 template<int size, bool big_endian>
1379 void
1380 Symbol_table::sized_write_symbol(Sized_symbol<size>* sym,
1381 unsigned int shndx,
1382 const Stringpool* pool,
1383 unsigned char* p
1384 ACCEPT_SIZE_ENDIAN) const
1385 {
1386 elfcpp::Sym_write<size, big_endian> osym(p);
1387 osym.put_st_name(pool->get_offset(sym->name()));
1388 osym.put_st_value(sym->value());
1389 osym.put_st_size(sym->symsize());
1390 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1391 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1392 osym.put_st_shndx(shndx);
1393 }
1394
1395 // Write out a section symbol. Return the update offset.
1396
1397 void
1398 Symbol_table::write_section_symbol(const Target* target,
1399 const Output_section *os,
1400 Output_file* of,
1401 off_t offset) const
1402 {
1403 if (this->size_ == 32)
1404 {
1405 if (target->is_big_endian())
1406 this->sized_write_section_symbol<32, true>(os, of, offset);
1407 else
1408 this->sized_write_section_symbol<32, false>(os, of, offset);
1409 }
1410 else if (this->size_ == 64)
1411 {
1412 if (target->is_big_endian())
1413 this->sized_write_section_symbol<64, true>(os, of, offset);
1414 else
1415 this->sized_write_section_symbol<64, false>(os, of, offset);
1416 }
1417 else
1418 gold_unreachable();
1419 }
1420
1421 // Write out a section symbol, specialized for size and endianness.
1422
1423 template<int size, bool big_endian>
1424 void
1425 Symbol_table::sized_write_section_symbol(const Output_section* os,
1426 Output_file* of,
1427 off_t offset) const
1428 {
1429 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1430
1431 unsigned char* pov = of->get_output_view(offset, sym_size);
1432
1433 elfcpp::Sym_write<size, big_endian> osym(pov);
1434 osym.put_st_name(0);
1435 osym.put_st_value(os->address());
1436 osym.put_st_size(0);
1437 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1438 elfcpp::STT_SECTION));
1439 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1440 osym.put_st_shndx(os->out_shndx());
1441
1442 of->write_output_view(offset, sym_size, pov);
1443 }
1444
1445 // Warnings functions.
1446
1447 // Add a new warning.
1448
1449 void
1450 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1451 unsigned int shndx)
1452 {
1453 name = symtab->canonicalize_name(name);
1454 this->warnings_[name].set(obj, shndx);
1455 }
1456
1457 // Look through the warnings and mark the symbols for which we should
1458 // warn. This is called during Layout::finalize when we know the
1459 // sources for all the symbols.
1460
1461 void
1462 Warnings::note_warnings(Symbol_table* symtab)
1463 {
1464 for (Warning_table::iterator p = this->warnings_.begin();
1465 p != this->warnings_.end();
1466 ++p)
1467 {
1468 Symbol* sym = symtab->lookup(p->first, NULL);
1469 if (sym != NULL
1470 && sym->source() == Symbol::FROM_OBJECT
1471 && sym->object() == p->second.object)
1472 {
1473 sym->set_has_warning();
1474
1475 // Read the section contents to get the warning text. It
1476 // would be nicer if we only did this if we have to actually
1477 // issue a warning. Unfortunately, warnings are issued as
1478 // we relocate sections. That means that we can not lock
1479 // the object then, as we might try to issue the same
1480 // warning multiple times simultaneously.
1481 {
1482 Task_locker_obj<Object> tl(*p->second.object);
1483 const unsigned char* c;
1484 off_t len;
1485 c = p->second.object->section_contents(p->second.shndx, &len);
1486 p->second.set_text(reinterpret_cast<const char*>(c), len);
1487 }
1488 }
1489 }
1490 }
1491
1492 // Issue a warning. This is called when we see a relocation against a
1493 // symbol for which has a warning.
1494
1495 void
1496 Warnings::issue_warning(const Symbol* sym, const std::string& location) const
1497 {
1498 gold_assert(sym->has_warning());
1499 Warning_table::const_iterator p = this->warnings_.find(sym->name());
1500 gold_assert(p != this->warnings_.end());
1501 fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
1502 p->second.text.c_str());
1503 }
1504
1505 // Instantiate the templates we need. We could use the configure
1506 // script to restrict this to only the ones needed for implemented
1507 // targets.
1508
1509 #ifdef HAVE_TARGET_32_LITTLE
1510 template
1511 void
1512 Symbol_table::add_from_relobj<32, false>(
1513 Sized_relobj<32, false>* relobj,
1514 const unsigned char* syms,
1515 size_t count,
1516 const char* sym_names,
1517 size_t sym_name_size,
1518 Symbol** sympointers);
1519 #endif
1520
1521 #ifdef HAVE_TARGET_32_BIG
1522 template
1523 void
1524 Symbol_table::add_from_relobj<32, true>(
1525 Sized_relobj<32, true>* relobj,
1526 const unsigned char* syms,
1527 size_t count,
1528 const char* sym_names,
1529 size_t sym_name_size,
1530 Symbol** sympointers);
1531 #endif
1532
1533 #ifdef HAVE_TARGET_64_LITTLE
1534 template
1535 void
1536 Symbol_table::add_from_relobj<64, false>(
1537 Sized_relobj<64, false>* relobj,
1538 const unsigned char* syms,
1539 size_t count,
1540 const char* sym_names,
1541 size_t sym_name_size,
1542 Symbol** sympointers);
1543 #endif
1544
1545 #ifdef HAVE_TARGET_64_BIG
1546 template
1547 void
1548 Symbol_table::add_from_relobj<64, true>(
1549 Sized_relobj<64, true>* relobj,
1550 const unsigned char* syms,
1551 size_t count,
1552 const char* sym_names,
1553 size_t sym_name_size,
1554 Symbol** sympointers);
1555 #endif
1556
1557 #ifdef HAVE_TARGET_32_LITTLE
1558 template
1559 void
1560 Symbol_table::add_from_dynobj<32, false>(
1561 Sized_dynobj<32, false>* dynobj,
1562 const unsigned char* syms,
1563 size_t count,
1564 const char* sym_names,
1565 size_t sym_name_size,
1566 const unsigned char* versym,
1567 size_t versym_size,
1568 const std::vector<const char*>* version_map);
1569 #endif
1570
1571 #ifdef HAVE_TARGET_32_BIG
1572 template
1573 void
1574 Symbol_table::add_from_dynobj<32, true>(
1575 Sized_dynobj<32, true>* dynobj,
1576 const unsigned char* syms,
1577 size_t count,
1578 const char* sym_names,
1579 size_t sym_name_size,
1580 const unsigned char* versym,
1581 size_t versym_size,
1582 const std::vector<const char*>* version_map);
1583 #endif
1584
1585 #ifdef HAVE_TARGET_64_LITTLE
1586 template
1587 void
1588 Symbol_table::add_from_dynobj<64, false>(
1589 Sized_dynobj<64, false>* dynobj,
1590 const unsigned char* syms,
1591 size_t count,
1592 const char* sym_names,
1593 size_t sym_name_size,
1594 const unsigned char* versym,
1595 size_t versym_size,
1596 const std::vector<const char*>* version_map);
1597 #endif
1598
1599 #ifdef HAVE_TARGET_64_BIG
1600 template
1601 void
1602 Symbol_table::add_from_dynobj<64, true>(
1603 Sized_dynobj<64, true>* dynobj,
1604 const unsigned char* syms,
1605 size_t count,
1606 const char* sym_names,
1607 size_t sym_name_size,
1608 const unsigned char* versym,
1609 size_t versym_size,
1610 const std::vector<const char*>* version_map);
1611 #endif
1612
1613 } // End namespace gold.
This page took 0.062987 seconds and 5 git commands to generate.