* symtab.cc (Symbol_table::add_from_relobj): Don't set the version
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40
41 namespace gold
42 {
43
44 // Class Symbol.
45
46 // Initialize fields in Symbol. This initializes everything except u_
47 // and source_.
48
49 void
50 Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
53 {
54 this->name_ = name;
55 this->version_ = version;
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
58 this->got_offsets_.init();
59 this->plt_offset_ = 0;
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
67 this->has_alias_ = false;
68 this->needs_dynsym_entry_ = false;
69 this->in_reg_ = false;
70 this->in_dyn_ = false;
71 this->has_plt_offset_ = false;
72 this->has_warning_ = false;
73 this->is_copied_from_dynobj_ = false;
74 this->is_forced_local_ = false;
75 }
76
77 // Return the demangled version of the symbol's name, but only
78 // if the --demangle flag was set.
79
80 static std::string
81 demangle(const char* name)
82 {
83 if (!parameters->options().do_demangle())
84 return name;
85
86 // cplus_demangle allocates memory for the result it returns,
87 // and returns NULL if the name is already demangled.
88 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89 if (demangled_name == NULL)
90 return name;
91
92 std::string retval(demangled_name);
93 free(demangled_name);
94 return retval;
95 }
96
97 std::string
98 Symbol::demangled_name() const
99 {
100 return demangle(this->name());
101 }
102
103 // Initialize the fields in the base class Symbol for SYM in OBJECT.
104
105 template<int size, bool big_endian>
106 void
107 Symbol::init_base(const char* name, const char* version, Object* object,
108 const elfcpp::Sym<size, big_endian>& sym)
109 {
110 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111 sym.get_st_visibility(), sym.get_st_nonvis());
112 this->u_.from_object.object = object;
113 // FIXME: Handle SHN_XINDEX.
114 this->u_.from_object.shndx = sym.get_st_shndx();
115 this->source_ = FROM_OBJECT;
116 this->in_reg_ = !object->is_dynamic();
117 this->in_dyn_ = object->is_dynamic();
118 }
119
120 // Initialize the fields in the base class Symbol for a symbol defined
121 // in an Output_data.
122
123 void
124 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis, bool offset_is_from_end)
127 {
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->u_.in_output_data.output_data = od;
130 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131 this->source_ = IN_OUTPUT_DATA;
132 this->in_reg_ = true;
133 }
134
135 // Initialize the fields in the base class Symbol for a symbol defined
136 // in an Output_segment.
137
138 void
139 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140 elfcpp::STB binding, elfcpp::STV visibility,
141 unsigned char nonvis, Segment_offset_base offset_base)
142 {
143 this->init_fields(name, NULL, type, binding, visibility, nonvis);
144 this->u_.in_output_segment.output_segment = os;
145 this->u_.in_output_segment.offset_base = offset_base;
146 this->source_ = IN_OUTPUT_SEGMENT;
147 this->in_reg_ = true;
148 }
149
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // as a constant.
152
153 void
154 Symbol::init_base(const char* name, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis)
157 {
158 this->init_fields(name, NULL, type, binding, visibility, nonvis);
159 this->source_ = CONSTANT;
160 this->in_reg_ = true;
161 }
162
163 // Allocate a common symbol in the base.
164
165 void
166 Symbol::allocate_base_common(Output_data* od)
167 {
168 gold_assert(this->is_common());
169 this->source_ = IN_OUTPUT_DATA;
170 this->u_.in_output_data.output_data = od;
171 this->u_.in_output_data.offset_is_from_end = false;
172 }
173
174 // Initialize the fields in Sized_symbol for SYM in OBJECT.
175
176 template<int size>
177 template<bool big_endian>
178 void
179 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180 const elfcpp::Sym<size, big_endian>& sym)
181 {
182 this->init_base(name, version, object, sym);
183 this->value_ = sym.get_st_value();
184 this->symsize_ = sym.get_st_size();
185 }
186
187 // Initialize the fields in Sized_symbol for a symbol defined in an
188 // Output_data.
189
190 template<int size>
191 void
192 Sized_symbol<size>::init(const char* name, Output_data* od,
193 Value_type value, Size_type symsize,
194 elfcpp::STT type, elfcpp::STB binding,
195 elfcpp::STV visibility, unsigned char nonvis,
196 bool offset_is_from_end)
197 {
198 this->init_base(name, od, type, binding, visibility, nonvis,
199 offset_is_from_end);
200 this->value_ = value;
201 this->symsize_ = symsize;
202 }
203
204 // Initialize the fields in Sized_symbol for a symbol defined in an
205 // Output_segment.
206
207 template<int size>
208 void
209 Sized_symbol<size>::init(const char* name, Output_segment* os,
210 Value_type value, Size_type symsize,
211 elfcpp::STT type, elfcpp::STB binding,
212 elfcpp::STV visibility, unsigned char nonvis,
213 Segment_offset_base offset_base)
214 {
215 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216 this->value_ = value;
217 this->symsize_ = symsize;
218 }
219
220 // Initialize the fields in Sized_symbol for a symbol defined as a
221 // constant.
222
223 template<int size>
224 void
225 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226 elfcpp::STT type, elfcpp::STB binding,
227 elfcpp::STV visibility, unsigned char nonvis)
228 {
229 this->init_base(name, type, binding, visibility, nonvis);
230 this->value_ = value;
231 this->symsize_ = symsize;
232 }
233
234 // Allocate a common symbol.
235
236 template<int size>
237 void
238 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239 {
240 this->allocate_base_common(od);
241 this->value_ = value;
242 }
243
244 // Return true if this symbol should be added to the dynamic symbol
245 // table.
246
247 inline bool
248 Symbol::should_add_dynsym_entry() const
249 {
250 // If the symbol is used by a dynamic relocation, we need to add it.
251 if (this->needs_dynsym_entry())
252 return true;
253
254 // If the symbol was forced local in a version script, do not add it.
255 if (this->is_forced_local())
256 return false;
257
258 // If exporting all symbols or building a shared library,
259 // and the symbol is defined in a regular object and is
260 // externally visible, we need to add it.
261 if ((parameters->options().export_dynamic() || parameters->options().shared())
262 && !this->is_from_dynobj()
263 && this->is_externally_visible())
264 return true;
265
266 return false;
267 }
268
269 // Return true if the final value of this symbol is known at link
270 // time.
271
272 bool
273 Symbol::final_value_is_known() const
274 {
275 // If we are not generating an executable, then no final values are
276 // known, since they will change at runtime.
277 if (parameters->options().shared() || parameters->options().relocatable())
278 return false;
279
280 // If the symbol is not from an object file, then it is defined, and
281 // known.
282 if (this->source_ != FROM_OBJECT)
283 return true;
284
285 // If the symbol is from a dynamic object, then the final value is
286 // not known.
287 if (this->object()->is_dynamic())
288 return false;
289
290 // If the symbol is not undefined (it is defined or common), then
291 // the final value is known.
292 if (!this->is_undefined())
293 return true;
294
295 // If the symbol is undefined, then whether the final value is known
296 // depends on whether we are doing a static link. If we are doing a
297 // dynamic link, then the final value could be filled in at runtime.
298 // This could reasonably be the case for a weak undefined symbol.
299 return parameters->doing_static_link();
300 }
301
302 // Return the output section where this symbol is defined.
303
304 Output_section*
305 Symbol::output_section() const
306 {
307 switch (this->source_)
308 {
309 case FROM_OBJECT:
310 {
311 unsigned int shndx = this->u_.from_object.shndx;
312 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313 {
314 gold_assert(!this->u_.from_object.object->is_dynamic());
315 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316 section_offset_type dummy;
317 return relobj->output_section(shndx, &dummy);
318 }
319 return NULL;
320 }
321
322 case IN_OUTPUT_DATA:
323 return this->u_.in_output_data.output_data->output_section();
324
325 case IN_OUTPUT_SEGMENT:
326 case CONSTANT:
327 return NULL;
328
329 default:
330 gold_unreachable();
331 }
332 }
333
334 // Set the symbol's output section. This is used for symbols defined
335 // in scripts. This should only be called after the symbol table has
336 // been finalized.
337
338 void
339 Symbol::set_output_section(Output_section* os)
340 {
341 switch (this->source_)
342 {
343 case FROM_OBJECT:
344 case IN_OUTPUT_DATA:
345 gold_assert(this->output_section() == os);
346 break;
347 case CONSTANT:
348 this->source_ = IN_OUTPUT_DATA;
349 this->u_.in_output_data.output_data = os;
350 this->u_.in_output_data.offset_is_from_end = false;
351 break;
352 case IN_OUTPUT_SEGMENT:
353 default:
354 gold_unreachable();
355 }
356 }
357
358 // Class Symbol_table.
359
360 Symbol_table::Symbol_table(unsigned int count,
361 const Version_script_info& version_script)
362 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
363 forwarders_(), commons_(), forced_locals_(), warnings_(),
364 version_script_(version_script)
365 {
366 namepool_.reserve(count);
367 }
368
369 Symbol_table::~Symbol_table()
370 {
371 }
372
373 // The hash function. The key values are Stringpool keys.
374
375 inline size_t
376 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377 {
378 return key.first ^ key.second;
379 }
380
381 // The symbol table key equality function. This is called with
382 // Stringpool keys.
383
384 inline bool
385 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386 const Symbol_table_key& k2) const
387 {
388 return k1.first == k2.first && k1.second == k2.second;
389 }
390
391 // Make TO a symbol which forwards to FROM.
392
393 void
394 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395 {
396 gold_assert(from != to);
397 gold_assert(!from->is_forwarder() && !to->is_forwarder());
398 this->forwarders_[from] = to;
399 from->set_forwarder();
400 }
401
402 // Resolve the forwards from FROM, returning the real symbol.
403
404 Symbol*
405 Symbol_table::resolve_forwards(const Symbol* from) const
406 {
407 gold_assert(from->is_forwarder());
408 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
409 this->forwarders_.find(from);
410 gold_assert(p != this->forwarders_.end());
411 return p->second;
412 }
413
414 // Look up a symbol by name.
415
416 Symbol*
417 Symbol_table::lookup(const char* name, const char* version) const
418 {
419 Stringpool::Key name_key;
420 name = this->namepool_.find(name, &name_key);
421 if (name == NULL)
422 return NULL;
423
424 Stringpool::Key version_key = 0;
425 if (version != NULL)
426 {
427 version = this->namepool_.find(version, &version_key);
428 if (version == NULL)
429 return NULL;
430 }
431
432 Symbol_table_key key(name_key, version_key);
433 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434 if (p == this->table_.end())
435 return NULL;
436 return p->second;
437 }
438
439 // Resolve a Symbol with another Symbol. This is only used in the
440 // unusual case where there are references to both an unversioned
441 // symbol and a symbol with a version, and we then discover that that
442 // version is the default version. Because this is unusual, we do
443 // this the slow way, by converting back to an ELF symbol.
444
445 template<int size, bool big_endian>
446 void
447 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
448 const char* version)
449 {
450 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451 elfcpp::Sym_write<size, big_endian> esym(buf);
452 // We don't bother to set the st_name field.
453 esym.put_st_value(from->value());
454 esym.put_st_size(from->symsize());
455 esym.put_st_info(from->binding(), from->type());
456 esym.put_st_other(from->visibility(), from->nonvis());
457 esym.put_st_shndx(from->shndx());
458 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
459 if (from->in_reg())
460 to->set_in_reg();
461 if (from->in_dyn())
462 to->set_in_dyn();
463 }
464
465 // Record that a symbol is forced to be local by a version script.
466
467 void
468 Symbol_table::force_local(Symbol* sym)
469 {
470 if (!sym->is_defined() && !sym->is_common())
471 return;
472 if (sym->is_forced_local())
473 {
474 // We already got this one.
475 return;
476 }
477 sym->set_is_forced_local();
478 this->forced_locals_.push_back(sym);
479 }
480
481 // Add one symbol from OBJECT to the symbol table. NAME is symbol
482 // name and VERSION is the version; both are canonicalized. DEF is
483 // whether this is the default version.
484
485 // If DEF is true, then this is the definition of a default version of
486 // a symbol. That means that any lookup of NAME/NULL and any lookup
487 // of NAME/VERSION should always return the same symbol. This is
488 // obvious for references, but in particular we want to do this for
489 // definitions: overriding NAME/NULL should also override
490 // NAME/VERSION. If we don't do that, it would be very hard to
491 // override functions in a shared library which uses versioning.
492
493 // We implement this by simply making both entries in the hash table
494 // point to the same Symbol structure. That is easy enough if this is
495 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
496 // that we have seen both already, in which case they will both have
497 // independent entries in the symbol table. We can't simply change
498 // the symbol table entry, because we have pointers to the entries
499 // attached to the object files. So we mark the entry attached to the
500 // object file as a forwarder, and record it in the forwarders_ map.
501 // Note that entries in the hash table will never be marked as
502 // forwarders.
503 //
504 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
505 // symbol exactly as it existed in the input file. SYM is usually
506 // that as well, but can be modified, for instance if we determine
507 // it's in a to-be-discarded section.
508
509 template<int size, bool big_endian>
510 Sized_symbol<size>*
511 Symbol_table::add_from_object(Object* object,
512 const char *name,
513 Stringpool::Key name_key,
514 const char *version,
515 Stringpool::Key version_key,
516 bool def,
517 const elfcpp::Sym<size, big_endian>& sym,
518 const elfcpp::Sym<size, big_endian>& orig_sym)
519 {
520 Symbol* const snull = NULL;
521 std::pair<typename Symbol_table_type::iterator, bool> ins =
522 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
523 snull));
524
525 std::pair<typename Symbol_table_type::iterator, bool> insdef =
526 std::make_pair(this->table_.end(), false);
527 if (def)
528 {
529 const Stringpool::Key vnull_key = 0;
530 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
531 vnull_key),
532 snull));
533 }
534
535 // ins.first: an iterator, which is a pointer to a pair.
536 // ins.first->first: the key (a pair of name and version).
537 // ins.first->second: the value (Symbol*).
538 // ins.second: true if new entry was inserted, false if not.
539
540 Sized_symbol<size>* ret;
541 bool was_undefined;
542 bool was_common;
543 if (!ins.second)
544 {
545 // We already have an entry for NAME/VERSION.
546 ret = this->get_sized_symbol<size>(ins.first->second);
547 gold_assert(ret != NULL);
548
549 was_undefined = ret->is_undefined();
550 was_common = ret->is_common();
551
552 this->resolve(ret, sym, orig_sym, object, version);
553
554 if (def)
555 {
556 if (insdef.second)
557 {
558 // This is the first time we have seen NAME/NULL. Make
559 // NAME/NULL point to NAME/VERSION.
560 insdef.first->second = ret;
561 }
562 else if (insdef.first->second != ret
563 && insdef.first->second->is_undefined())
564 {
565 // This is the unfortunate case where we already have
566 // entries for both NAME/VERSION and NAME/NULL. Note
567 // that we don't want to combine them if the existing
568 // symbol is going to override the new one. FIXME: We
569 // currently just test is_undefined, but this may not do
570 // the right thing if the existing symbol is from a
571 // shared library and the new one is from a regular
572 // object.
573
574 const Sized_symbol<size>* sym2;
575 sym2 = this->get_sized_symbol<size>(insdef.first->second);
576 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
577 this->make_forwarder(insdef.first->second, ret);
578 insdef.first->second = ret;
579 }
580 }
581 }
582 else
583 {
584 // This is the first time we have seen NAME/VERSION.
585 gold_assert(ins.first->second == NULL);
586
587 was_undefined = false;
588 was_common = false;
589
590 if (def && !insdef.second)
591 {
592 // We already have an entry for NAME/NULL. If we override
593 // it, then change it to NAME/VERSION.
594 ret = this->get_sized_symbol<size>(insdef.first->second);
595 this->resolve(ret, sym, orig_sym, object, version);
596 ins.first->second = ret;
597 }
598 else
599 {
600 Sized_target<size, big_endian>* target =
601 object->sized_target<size, big_endian>();
602 if (!target->has_make_symbol())
603 ret = new Sized_symbol<size>();
604 else
605 {
606 ret = target->make_symbol();
607 if (ret == NULL)
608 {
609 // This means that we don't want a symbol table
610 // entry after all.
611 if (!def)
612 this->table_.erase(ins.first);
613 else
614 {
615 this->table_.erase(insdef.first);
616 // Inserting insdef invalidated ins.
617 this->table_.erase(std::make_pair(name_key,
618 version_key));
619 }
620 return NULL;
621 }
622 }
623
624 ret->init(name, version, object, sym);
625
626 ins.first->second = ret;
627 if (def)
628 {
629 // This is the first time we have seen NAME/NULL. Point
630 // it at the new entry for NAME/VERSION.
631 gold_assert(insdef.second);
632 insdef.first->second = ret;
633 }
634 }
635 }
636
637 // Record every time we see a new undefined symbol, to speed up
638 // archive groups.
639 if (!was_undefined && ret->is_undefined())
640 ++this->saw_undefined_;
641
642 // Keep track of common symbols, to speed up common symbol
643 // allocation.
644 if (!was_common && ret->is_common())
645 this->commons_.push_back(ret);
646
647 if (def)
648 ret->set_is_default();
649 return ret;
650 }
651
652 // Add all the symbols in a relocatable object to the hash table.
653
654 template<int size, bool big_endian>
655 void
656 Symbol_table::add_from_relobj(
657 Sized_relobj<size, big_endian>* relobj,
658 const unsigned char* syms,
659 size_t count,
660 const char* sym_names,
661 size_t sym_name_size,
662 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
663 {
664 gold_assert(size == relobj->target()->get_size());
665 gold_assert(size == parameters->target().get_size());
666
667 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
668
669 const bool just_symbols = relobj->just_symbols();
670
671 const unsigned char* p = syms;
672 for (size_t i = 0; i < count; ++i, p += sym_size)
673 {
674 elfcpp::Sym<size, big_endian> sym(p);
675 elfcpp::Sym<size, big_endian>* psym = &sym;
676
677 unsigned int st_name = psym->get_st_name();
678 if (st_name >= sym_name_size)
679 {
680 relobj->error(_("bad global symbol name offset %u at %zu"),
681 st_name, i);
682 continue;
683 }
684
685 const char* name = sym_names + st_name;
686
687 // A symbol defined in a section which we are not including must
688 // be treated as an undefined symbol.
689 unsigned char symbuf[sym_size];
690 elfcpp::Sym<size, big_endian> sym2(symbuf);
691 unsigned int st_shndx = psym->get_st_shndx();
692 if (st_shndx != elfcpp::SHN_UNDEF
693 && st_shndx < elfcpp::SHN_LORESERVE
694 && !relobj->is_section_included(st_shndx))
695 {
696 memcpy(symbuf, p, sym_size);
697 elfcpp::Sym_write<size, big_endian> sw(symbuf);
698 sw.put_st_shndx(elfcpp::SHN_UNDEF);
699 psym = &sym2;
700 }
701
702 // In an object file, an '@' in the name separates the symbol
703 // name from the version name. If there are two '@' characters,
704 // this is the default version.
705 const char* ver = strchr(name, '@');
706 int namelen = 0;
707 // DEF: is the version default? LOCAL: is the symbol forced local?
708 bool def = false;
709 bool local = false;
710
711 if (ver != NULL)
712 {
713 // The symbol name is of the form foo@VERSION or foo@@VERSION
714 namelen = ver - name;
715 ++ver;
716 if (*ver == '@')
717 {
718 def = true;
719 ++ver;
720 }
721 }
722 // We don't want to assign a version to an undefined symbol,
723 // even if it is listed in the version script. FIXME: What
724 // about a common symbol?
725 else if (!version_script_.empty()
726 && psym->get_st_shndx() != elfcpp::SHN_UNDEF)
727 {
728 // The symbol name did not have a version, but
729 // the version script may assign a version anyway.
730 namelen = strlen(name);
731 def = true;
732 // Check the global: entries from the version script.
733 const std::string& version =
734 version_script_.get_symbol_version(name);
735 if (!version.empty())
736 ver = version.c_str();
737 // Check the local: entries from the version script
738 if (version_script_.symbol_is_local(name))
739 local = true;
740 }
741
742 if (just_symbols)
743 {
744 if (psym != &sym2)
745 memcpy(symbuf, p, sym_size);
746 elfcpp::Sym_write<size, big_endian> sw(symbuf);
747 sw.put_st_shndx(elfcpp::SHN_ABS);
748 if (st_shndx != elfcpp::SHN_UNDEF
749 && st_shndx < elfcpp::SHN_LORESERVE)
750 {
751 // Symbol values in object files are section relative.
752 // This is normally what we want, but since here we are
753 // converting the symbol to absolute we need to add the
754 // section address. The section address in an object
755 // file is normally zero, but people can use a linker
756 // script to change it.
757 sw.put_st_value(sym2.get_st_value()
758 + relobj->section_address(st_shndx));
759 }
760 psym = &sym2;
761 }
762
763 Sized_symbol<size>* res;
764 if (ver == NULL)
765 {
766 Stringpool::Key name_key;
767 name = this->namepool_.add(name, true, &name_key);
768 res = this->add_from_object(relobj, name, name_key, NULL, 0,
769 false, *psym, sym);
770 if (local)
771 this->force_local(res);
772 }
773 else
774 {
775 Stringpool::Key name_key;
776 name = this->namepool_.add_with_length(name, namelen, true,
777 &name_key);
778 Stringpool::Key ver_key;
779 ver = this->namepool_.add(ver, true, &ver_key);
780
781 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
782 def, *psym, sym);
783 }
784
785 (*sympointers)[i] = res;
786 }
787 }
788
789 // Add all the symbols in a dynamic object to the hash table.
790
791 template<int size, bool big_endian>
792 void
793 Symbol_table::add_from_dynobj(
794 Sized_dynobj<size, big_endian>* dynobj,
795 const unsigned char* syms,
796 size_t count,
797 const char* sym_names,
798 size_t sym_name_size,
799 const unsigned char* versym,
800 size_t versym_size,
801 const std::vector<const char*>* version_map)
802 {
803 gold_assert(size == dynobj->target()->get_size());
804 gold_assert(size == parameters->target().get_size());
805
806 if (dynobj->just_symbols())
807 {
808 gold_error(_("--just-symbols does not make sense with a shared object"));
809 return;
810 }
811
812 if (versym != NULL && versym_size / 2 < count)
813 {
814 dynobj->error(_("too few symbol versions"));
815 return;
816 }
817
818 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
819
820 // We keep a list of all STT_OBJECT symbols, so that we can resolve
821 // weak aliases. This is necessary because if the dynamic object
822 // provides the same variable under two names, one of which is a
823 // weak definition, and the regular object refers to the weak
824 // definition, we have to put both the weak definition and the
825 // strong definition into the dynamic symbol table. Given a weak
826 // definition, the only way that we can find the corresponding
827 // strong definition, if any, is to search the symbol table.
828 std::vector<Sized_symbol<size>*> object_symbols;
829
830 const unsigned char* p = syms;
831 const unsigned char* vs = versym;
832 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
833 {
834 elfcpp::Sym<size, big_endian> sym(p);
835
836 // Ignore symbols with local binding or that have
837 // internal or hidden visibility.
838 if (sym.get_st_bind() == elfcpp::STB_LOCAL
839 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
840 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
841 continue;
842
843 unsigned int st_name = sym.get_st_name();
844 if (st_name >= sym_name_size)
845 {
846 dynobj->error(_("bad symbol name offset %u at %zu"),
847 st_name, i);
848 continue;
849 }
850
851 const char* name = sym_names + st_name;
852
853 Sized_symbol<size>* res;
854
855 if (versym == NULL)
856 {
857 Stringpool::Key name_key;
858 name = this->namepool_.add(name, true, &name_key);
859 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
860 false, sym, sym);
861 }
862 else
863 {
864 // Read the version information.
865
866 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
867
868 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
869 v &= elfcpp::VERSYM_VERSION;
870
871 // The Sun documentation says that V can be VER_NDX_LOCAL,
872 // or VER_NDX_GLOBAL, or a version index. The meaning of
873 // VER_NDX_LOCAL is defined as "Symbol has local scope."
874 // The old GNU linker will happily generate VER_NDX_LOCAL
875 // for an undefined symbol. I don't know what the Sun
876 // linker will generate.
877
878 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
879 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
880 {
881 // This symbol should not be visible outside the object.
882 continue;
883 }
884
885 // At this point we are definitely going to add this symbol.
886 Stringpool::Key name_key;
887 name = this->namepool_.add(name, true, &name_key);
888
889 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
890 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
891 {
892 // This symbol does not have a version.
893 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
894 false, sym, sym);
895 }
896 else
897 {
898 if (v >= version_map->size())
899 {
900 dynobj->error(_("versym for symbol %zu out of range: %u"),
901 i, v);
902 continue;
903 }
904
905 const char* version = (*version_map)[v];
906 if (version == NULL)
907 {
908 dynobj->error(_("versym for symbol %zu has no name: %u"),
909 i, v);
910 continue;
911 }
912
913 Stringpool::Key version_key;
914 version = this->namepool_.add(version, true, &version_key);
915
916 // If this is an absolute symbol, and the version name
917 // and symbol name are the same, then this is the
918 // version definition symbol. These symbols exist to
919 // support using -u to pull in particular versions. We
920 // do not want to record a version for them.
921 if (sym.get_st_shndx() == elfcpp::SHN_ABS
922 && name_key == version_key)
923 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
924 false, sym, sym);
925 else
926 {
927 const bool def = (!hidden
928 && (sym.get_st_shndx()
929 != elfcpp::SHN_UNDEF));
930 res = this->add_from_object(dynobj, name, name_key, version,
931 version_key, def, sym, sym);
932 }
933 }
934 }
935
936 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
937 && sym.get_st_type() == elfcpp::STT_OBJECT)
938 object_symbols.push_back(res);
939 }
940
941 this->record_weak_aliases(&object_symbols);
942 }
943
944 // This is used to sort weak aliases. We sort them first by section
945 // index, then by offset, then by weak ahead of strong.
946
947 template<int size>
948 class Weak_alias_sorter
949 {
950 public:
951 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
952 };
953
954 template<int size>
955 bool
956 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
957 const Sized_symbol<size>* s2) const
958 {
959 if (s1->shndx() != s2->shndx())
960 return s1->shndx() < s2->shndx();
961 if (s1->value() != s2->value())
962 return s1->value() < s2->value();
963 if (s1->binding() != s2->binding())
964 {
965 if (s1->binding() == elfcpp::STB_WEAK)
966 return true;
967 if (s2->binding() == elfcpp::STB_WEAK)
968 return false;
969 }
970 return std::string(s1->name()) < std::string(s2->name());
971 }
972
973 // SYMBOLS is a list of object symbols from a dynamic object. Look
974 // for any weak aliases, and record them so that if we add the weak
975 // alias to the dynamic symbol table, we also add the corresponding
976 // strong symbol.
977
978 template<int size>
979 void
980 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
981 {
982 // Sort the vector by section index, then by offset, then by weak
983 // ahead of strong.
984 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
985
986 // Walk through the vector. For each weak definition, record
987 // aliases.
988 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
989 symbols->begin();
990 p != symbols->end();
991 ++p)
992 {
993 if ((*p)->binding() != elfcpp::STB_WEAK)
994 continue;
995
996 // Build a circular list of weak aliases. Each symbol points to
997 // the next one in the circular list.
998
999 Sized_symbol<size>* from_sym = *p;
1000 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1001 for (q = p + 1; q != symbols->end(); ++q)
1002 {
1003 if ((*q)->shndx() != from_sym->shndx()
1004 || (*q)->value() != from_sym->value())
1005 break;
1006
1007 this->weak_aliases_[from_sym] = *q;
1008 from_sym->set_has_alias();
1009 from_sym = *q;
1010 }
1011
1012 if (from_sym != *p)
1013 {
1014 this->weak_aliases_[from_sym] = *p;
1015 from_sym->set_has_alias();
1016 }
1017
1018 p = q - 1;
1019 }
1020 }
1021
1022 // Create and return a specially defined symbol. If ONLY_IF_REF is
1023 // true, then only create the symbol if there is a reference to it.
1024 // If this does not return NULL, it sets *POLDSYM to the existing
1025 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1026
1027 template<int size, bool big_endian>
1028 Sized_symbol<size>*
1029 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1030 bool only_if_ref,
1031 Sized_symbol<size>** poldsym)
1032 {
1033 Symbol* oldsym;
1034 Sized_symbol<size>* sym;
1035 bool add_to_table = false;
1036 typename Symbol_table_type::iterator add_loc = this->table_.end();
1037
1038 // If the caller didn't give us a version, see if we get one from
1039 // the version script.
1040 if (*pversion == NULL)
1041 {
1042 const std::string& v(this->version_script_.get_symbol_version(*pname));
1043 if (!v.empty())
1044 *pversion = v.c_str();
1045 }
1046
1047 if (only_if_ref)
1048 {
1049 oldsym = this->lookup(*pname, *pversion);
1050 if (oldsym == NULL || !oldsym->is_undefined())
1051 return NULL;
1052
1053 *pname = oldsym->name();
1054 *pversion = oldsym->version();
1055 }
1056 else
1057 {
1058 // Canonicalize NAME and VERSION.
1059 Stringpool::Key name_key;
1060 *pname = this->namepool_.add(*pname, true, &name_key);
1061
1062 Stringpool::Key version_key = 0;
1063 if (*pversion != NULL)
1064 *pversion = this->namepool_.add(*pversion, true, &version_key);
1065
1066 Symbol* const snull = NULL;
1067 std::pair<typename Symbol_table_type::iterator, bool> ins =
1068 this->table_.insert(std::make_pair(std::make_pair(name_key,
1069 version_key),
1070 snull));
1071
1072 if (!ins.second)
1073 {
1074 // We already have a symbol table entry for NAME/VERSION.
1075 oldsym = ins.first->second;
1076 gold_assert(oldsym != NULL);
1077 }
1078 else
1079 {
1080 // We haven't seen this symbol before.
1081 gold_assert(ins.first->second == NULL);
1082 add_to_table = true;
1083 add_loc = ins.first;
1084 oldsym = NULL;
1085 }
1086 }
1087
1088 const Target& target = parameters->target();
1089 if (!target.has_make_symbol())
1090 sym = new Sized_symbol<size>();
1091 else
1092 {
1093 gold_assert(target.get_size() == size);
1094 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1095 typedef Sized_target<size, big_endian> My_target;
1096 const My_target* sized_target =
1097 static_cast<const My_target*>(&target);
1098 sym = sized_target->make_symbol();
1099 if (sym == NULL)
1100 return NULL;
1101 }
1102
1103 if (add_to_table)
1104 add_loc->second = sym;
1105 else
1106 gold_assert(oldsym != NULL);
1107
1108 *poldsym = this->get_sized_symbol<size>(oldsym);
1109
1110 return sym;
1111 }
1112
1113 // Define a symbol based on an Output_data.
1114
1115 Symbol*
1116 Symbol_table::define_in_output_data(const char* name,
1117 const char* version,
1118 Output_data* od,
1119 uint64_t value,
1120 uint64_t symsize,
1121 elfcpp::STT type,
1122 elfcpp::STB binding,
1123 elfcpp::STV visibility,
1124 unsigned char nonvis,
1125 bool offset_is_from_end,
1126 bool only_if_ref)
1127 {
1128 if (parameters->target().get_size() == 32)
1129 {
1130 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1131 return this->do_define_in_output_data<32>(name, version, od,
1132 value, symsize, type, binding,
1133 visibility, nonvis,
1134 offset_is_from_end,
1135 only_if_ref);
1136 #else
1137 gold_unreachable();
1138 #endif
1139 }
1140 else if (parameters->target().get_size() == 64)
1141 {
1142 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1143 return this->do_define_in_output_data<64>(name, version, od,
1144 value, symsize, type, binding,
1145 visibility, nonvis,
1146 offset_is_from_end,
1147 only_if_ref);
1148 #else
1149 gold_unreachable();
1150 #endif
1151 }
1152 else
1153 gold_unreachable();
1154 }
1155
1156 // Define a symbol in an Output_data, sized version.
1157
1158 template<int size>
1159 Sized_symbol<size>*
1160 Symbol_table::do_define_in_output_data(
1161 const char* name,
1162 const char* version,
1163 Output_data* od,
1164 typename elfcpp::Elf_types<size>::Elf_Addr value,
1165 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1166 elfcpp::STT type,
1167 elfcpp::STB binding,
1168 elfcpp::STV visibility,
1169 unsigned char nonvis,
1170 bool offset_is_from_end,
1171 bool only_if_ref)
1172 {
1173 Sized_symbol<size>* sym;
1174 Sized_symbol<size>* oldsym;
1175
1176 if (parameters->target().is_big_endian())
1177 {
1178 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1179 sym = this->define_special_symbol<size, true>(&name, &version,
1180 only_if_ref, &oldsym);
1181 #else
1182 gold_unreachable();
1183 #endif
1184 }
1185 else
1186 {
1187 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1188 sym = this->define_special_symbol<size, false>(&name, &version,
1189 only_if_ref, &oldsym);
1190 #else
1191 gold_unreachable();
1192 #endif
1193 }
1194
1195 if (sym == NULL)
1196 return NULL;
1197
1198 gold_assert(version == NULL || oldsym != NULL);
1199 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1200 offset_is_from_end);
1201
1202 if (oldsym == NULL)
1203 {
1204 if (binding == elfcpp::STB_LOCAL
1205 || this->version_script_.symbol_is_local(name))
1206 this->force_local(sym);
1207 return sym;
1208 }
1209
1210 if (Symbol_table::should_override_with_special(oldsym))
1211 this->override_with_special(oldsym, sym);
1212 delete sym;
1213 return oldsym;
1214 }
1215
1216 // Define a symbol based on an Output_segment.
1217
1218 Symbol*
1219 Symbol_table::define_in_output_segment(const char* name,
1220 const char* version, Output_segment* os,
1221 uint64_t value,
1222 uint64_t symsize,
1223 elfcpp::STT type,
1224 elfcpp::STB binding,
1225 elfcpp::STV visibility,
1226 unsigned char nonvis,
1227 Symbol::Segment_offset_base offset_base,
1228 bool only_if_ref)
1229 {
1230 if (parameters->target().get_size() == 32)
1231 {
1232 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1233 return this->do_define_in_output_segment<32>(name, version, os,
1234 value, symsize, type,
1235 binding, visibility, nonvis,
1236 offset_base, only_if_ref);
1237 #else
1238 gold_unreachable();
1239 #endif
1240 }
1241 else if (parameters->target().get_size() == 64)
1242 {
1243 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1244 return this->do_define_in_output_segment<64>(name, version, os,
1245 value, symsize, type,
1246 binding, visibility, nonvis,
1247 offset_base, only_if_ref);
1248 #else
1249 gold_unreachable();
1250 #endif
1251 }
1252 else
1253 gold_unreachable();
1254 }
1255
1256 // Define a symbol in an Output_segment, sized version.
1257
1258 template<int size>
1259 Sized_symbol<size>*
1260 Symbol_table::do_define_in_output_segment(
1261 const char* name,
1262 const char* version,
1263 Output_segment* os,
1264 typename elfcpp::Elf_types<size>::Elf_Addr value,
1265 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1266 elfcpp::STT type,
1267 elfcpp::STB binding,
1268 elfcpp::STV visibility,
1269 unsigned char nonvis,
1270 Symbol::Segment_offset_base offset_base,
1271 bool only_if_ref)
1272 {
1273 Sized_symbol<size>* sym;
1274 Sized_symbol<size>* oldsym;
1275
1276 if (parameters->target().is_big_endian())
1277 {
1278 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1279 sym = this->define_special_symbol<size, true>(&name, &version,
1280 only_if_ref, &oldsym);
1281 #else
1282 gold_unreachable();
1283 #endif
1284 }
1285 else
1286 {
1287 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1288 sym = this->define_special_symbol<size, false>(&name, &version,
1289 only_if_ref, &oldsym);
1290 #else
1291 gold_unreachable();
1292 #endif
1293 }
1294
1295 if (sym == NULL)
1296 return NULL;
1297
1298 gold_assert(version == NULL || oldsym != NULL);
1299 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1300 offset_base);
1301
1302 if (oldsym == NULL)
1303 {
1304 if (binding == elfcpp::STB_LOCAL
1305 || this->version_script_.symbol_is_local(name))
1306 this->force_local(sym);
1307 return sym;
1308 }
1309
1310 if (Symbol_table::should_override_with_special(oldsym))
1311 this->override_with_special(oldsym, sym);
1312 delete sym;
1313 return oldsym;
1314 }
1315
1316 // Define a special symbol with a constant value. It is a multiple
1317 // definition error if this symbol is already defined.
1318
1319 Symbol*
1320 Symbol_table::define_as_constant(const char* name,
1321 const char* version,
1322 uint64_t value,
1323 uint64_t symsize,
1324 elfcpp::STT type,
1325 elfcpp::STB binding,
1326 elfcpp::STV visibility,
1327 unsigned char nonvis,
1328 bool only_if_ref,
1329 bool force_override)
1330 {
1331 if (parameters->target().get_size() == 32)
1332 {
1333 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1334 return this->do_define_as_constant<32>(name, version, value,
1335 symsize, type, binding,
1336 visibility, nonvis, only_if_ref,
1337 force_override);
1338 #else
1339 gold_unreachable();
1340 #endif
1341 }
1342 else if (parameters->target().get_size() == 64)
1343 {
1344 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1345 return this->do_define_as_constant<64>(name, version, value,
1346 symsize, type, binding,
1347 visibility, nonvis, only_if_ref,
1348 force_override);
1349 #else
1350 gold_unreachable();
1351 #endif
1352 }
1353 else
1354 gold_unreachable();
1355 }
1356
1357 // Define a symbol as a constant, sized version.
1358
1359 template<int size>
1360 Sized_symbol<size>*
1361 Symbol_table::do_define_as_constant(
1362 const char* name,
1363 const char* version,
1364 typename elfcpp::Elf_types<size>::Elf_Addr value,
1365 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1366 elfcpp::STT type,
1367 elfcpp::STB binding,
1368 elfcpp::STV visibility,
1369 unsigned char nonvis,
1370 bool only_if_ref,
1371 bool force_override)
1372 {
1373 Sized_symbol<size>* sym;
1374 Sized_symbol<size>* oldsym;
1375
1376 if (parameters->target().is_big_endian())
1377 {
1378 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1379 sym = this->define_special_symbol<size, true>(&name, &version,
1380 only_if_ref, &oldsym);
1381 #else
1382 gold_unreachable();
1383 #endif
1384 }
1385 else
1386 {
1387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1388 sym = this->define_special_symbol<size, false>(&name, &version,
1389 only_if_ref, &oldsym);
1390 #else
1391 gold_unreachable();
1392 #endif
1393 }
1394
1395 if (sym == NULL)
1396 return NULL;
1397
1398 gold_assert(version == NULL || version == name || oldsym != NULL);
1399 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1400
1401 if (oldsym == NULL)
1402 {
1403 if (binding == elfcpp::STB_LOCAL
1404 || this->version_script_.symbol_is_local(name))
1405 this->force_local(sym);
1406 return sym;
1407 }
1408
1409 if (force_override || Symbol_table::should_override_with_special(oldsym))
1410 this->override_with_special(oldsym, sym);
1411 delete sym;
1412 return oldsym;
1413 }
1414
1415 // Define a set of symbols in output sections.
1416
1417 void
1418 Symbol_table::define_symbols(const Layout* layout, int count,
1419 const Define_symbol_in_section* p,
1420 bool only_if_ref)
1421 {
1422 for (int i = 0; i < count; ++i, ++p)
1423 {
1424 Output_section* os = layout->find_output_section(p->output_section);
1425 if (os != NULL)
1426 this->define_in_output_data(p->name, NULL, os, p->value,
1427 p->size, p->type, p->binding,
1428 p->visibility, p->nonvis,
1429 p->offset_is_from_end,
1430 only_if_ref || p->only_if_ref);
1431 else
1432 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1433 p->binding, p->visibility, p->nonvis,
1434 only_if_ref || p->only_if_ref,
1435 false);
1436 }
1437 }
1438
1439 // Define a set of symbols in output segments.
1440
1441 void
1442 Symbol_table::define_symbols(const Layout* layout, int count,
1443 const Define_symbol_in_segment* p,
1444 bool only_if_ref)
1445 {
1446 for (int i = 0; i < count; ++i, ++p)
1447 {
1448 Output_segment* os = layout->find_output_segment(p->segment_type,
1449 p->segment_flags_set,
1450 p->segment_flags_clear);
1451 if (os != NULL)
1452 this->define_in_output_segment(p->name, NULL, os, p->value,
1453 p->size, p->type, p->binding,
1454 p->visibility, p->nonvis,
1455 p->offset_base,
1456 only_if_ref || p->only_if_ref);
1457 else
1458 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1459 p->binding, p->visibility, p->nonvis,
1460 only_if_ref || p->only_if_ref,
1461 false);
1462 }
1463 }
1464
1465 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1466 // symbol should be defined--typically a .dyn.bss section. VALUE is
1467 // the offset within POSD.
1468
1469 template<int size>
1470 void
1471 Symbol_table::define_with_copy_reloc(
1472 Sized_symbol<size>* csym,
1473 Output_data* posd,
1474 typename elfcpp::Elf_types<size>::Elf_Addr value)
1475 {
1476 gold_assert(csym->is_from_dynobj());
1477 gold_assert(!csym->is_copied_from_dynobj());
1478 Object* object = csym->object();
1479 gold_assert(object->is_dynamic());
1480 Dynobj* dynobj = static_cast<Dynobj*>(object);
1481
1482 // Our copied variable has to override any variable in a shared
1483 // library.
1484 elfcpp::STB binding = csym->binding();
1485 if (binding == elfcpp::STB_WEAK)
1486 binding = elfcpp::STB_GLOBAL;
1487
1488 this->define_in_output_data(csym->name(), csym->version(),
1489 posd, value, csym->symsize(),
1490 csym->type(), binding,
1491 csym->visibility(), csym->nonvis(),
1492 false, false);
1493
1494 csym->set_is_copied_from_dynobj();
1495 csym->set_needs_dynsym_entry();
1496
1497 this->copied_symbol_dynobjs_[csym] = dynobj;
1498
1499 // We have now defined all aliases, but we have not entered them all
1500 // in the copied_symbol_dynobjs_ map.
1501 if (csym->has_alias())
1502 {
1503 Symbol* sym = csym;
1504 while (true)
1505 {
1506 sym = this->weak_aliases_[sym];
1507 if (sym == csym)
1508 break;
1509 gold_assert(sym->output_data() == posd);
1510
1511 sym->set_is_copied_from_dynobj();
1512 this->copied_symbol_dynobjs_[sym] = dynobj;
1513 }
1514 }
1515 }
1516
1517 // SYM is defined using a COPY reloc. Return the dynamic object where
1518 // the original definition was found.
1519
1520 Dynobj*
1521 Symbol_table::get_copy_source(const Symbol* sym) const
1522 {
1523 gold_assert(sym->is_copied_from_dynobj());
1524 Copied_symbol_dynobjs::const_iterator p =
1525 this->copied_symbol_dynobjs_.find(sym);
1526 gold_assert(p != this->copied_symbol_dynobjs_.end());
1527 return p->second;
1528 }
1529
1530 // Set the dynamic symbol indexes. INDEX is the index of the first
1531 // global dynamic symbol. Pointers to the symbols are stored into the
1532 // vector SYMS. The names are added to DYNPOOL. This returns an
1533 // updated dynamic symbol index.
1534
1535 unsigned int
1536 Symbol_table::set_dynsym_indexes(unsigned int index,
1537 std::vector<Symbol*>* syms,
1538 Stringpool* dynpool,
1539 Versions* versions)
1540 {
1541 for (Symbol_table_type::iterator p = this->table_.begin();
1542 p != this->table_.end();
1543 ++p)
1544 {
1545 Symbol* sym = p->second;
1546
1547 // Note that SYM may already have a dynamic symbol index, since
1548 // some symbols appear more than once in the symbol table, with
1549 // and without a version.
1550
1551 if (!sym->should_add_dynsym_entry())
1552 sym->set_dynsym_index(-1U);
1553 else if (!sym->has_dynsym_index())
1554 {
1555 sym->set_dynsym_index(index);
1556 ++index;
1557 syms->push_back(sym);
1558 dynpool->add(sym->name(), false, NULL);
1559
1560 // Record any version information.
1561 if (sym->version() != NULL)
1562 versions->record_version(this, dynpool, sym);
1563 }
1564 }
1565
1566 // Finish up the versions. In some cases this may add new dynamic
1567 // symbols.
1568 index = versions->finalize(this, index, syms);
1569
1570 return index;
1571 }
1572
1573 // Set the final values for all the symbols. The index of the first
1574 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1575 // file offset OFF. Add their names to POOL. Return the new file
1576 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1577
1578 off_t
1579 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1580 size_t dyncount, Stringpool* pool,
1581 unsigned int *plocal_symcount)
1582 {
1583 off_t ret;
1584
1585 gold_assert(*plocal_symcount != 0);
1586 this->first_global_index_ = *plocal_symcount;
1587
1588 this->dynamic_offset_ = dynoff;
1589 this->first_dynamic_global_index_ = dyn_global_index;
1590 this->dynamic_count_ = dyncount;
1591
1592 if (parameters->target().get_size() == 32)
1593 {
1594 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1595 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1596 #else
1597 gold_unreachable();
1598 #endif
1599 }
1600 else if (parameters->target().get_size() == 64)
1601 {
1602 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1603 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1604 #else
1605 gold_unreachable();
1606 #endif
1607 }
1608 else
1609 gold_unreachable();
1610
1611 // Now that we have the final symbol table, we can reliably note
1612 // which symbols should get warnings.
1613 this->warnings_.note_warnings(this);
1614
1615 return ret;
1616 }
1617
1618 // SYM is going into the symbol table at *PINDEX. Add the name to
1619 // POOL, update *PINDEX and *POFF.
1620
1621 template<int size>
1622 void
1623 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1624 unsigned int* pindex, off_t* poff)
1625 {
1626 sym->set_symtab_index(*pindex);
1627 pool->add(sym->name(), false, NULL);
1628 ++*pindex;
1629 *poff += elfcpp::Elf_sizes<size>::sym_size;
1630 }
1631
1632 // Set the final value for all the symbols. This is called after
1633 // Layout::finalize, so all the output sections have their final
1634 // address.
1635
1636 template<int size>
1637 off_t
1638 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1639 unsigned int* plocal_symcount)
1640 {
1641 off = align_address(off, size >> 3);
1642 this->offset_ = off;
1643
1644 unsigned int index = *plocal_symcount;
1645 const unsigned int orig_index = index;
1646
1647 // First do all the symbols which have been forced to be local, as
1648 // they must appear before all global symbols.
1649 for (Forced_locals::iterator p = this->forced_locals_.begin();
1650 p != this->forced_locals_.end();
1651 ++p)
1652 {
1653 Symbol* sym = *p;
1654 gold_assert(sym->is_forced_local());
1655 if (this->sized_finalize_symbol<size>(sym))
1656 {
1657 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1658 ++*plocal_symcount;
1659 }
1660 }
1661
1662 // Now do all the remaining symbols.
1663 for (Symbol_table_type::iterator p = this->table_.begin();
1664 p != this->table_.end();
1665 ++p)
1666 {
1667 Symbol* sym = p->second;
1668 if (this->sized_finalize_symbol<size>(sym))
1669 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1670 }
1671
1672 this->output_count_ = index - orig_index;
1673
1674 return off;
1675 }
1676
1677 // Finalize the symbol SYM. This returns true if the symbol should be
1678 // added to the symbol table, false otherwise.
1679
1680 template<int size>
1681 bool
1682 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1683 {
1684 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1685
1686 // The default version of a symbol may appear twice in the symbol
1687 // table. We only need to finalize it once.
1688 if (sym->has_symtab_index())
1689 return false;
1690
1691 if (!sym->in_reg())
1692 {
1693 gold_assert(!sym->has_symtab_index());
1694 sym->set_symtab_index(-1U);
1695 gold_assert(sym->dynsym_index() == -1U);
1696 return false;
1697 }
1698
1699 typename Sized_symbol<size>::Value_type value;
1700
1701 switch (sym->source())
1702 {
1703 case Symbol::FROM_OBJECT:
1704 {
1705 unsigned int shndx = sym->shndx();
1706
1707 // FIXME: We need some target specific support here.
1708 if (shndx >= elfcpp::SHN_LORESERVE
1709 && shndx != elfcpp::SHN_ABS
1710 && shndx != elfcpp::SHN_COMMON)
1711 {
1712 gold_error(_("%s: unsupported symbol section 0x%x"),
1713 sym->demangled_name().c_str(), shndx);
1714 shndx = elfcpp::SHN_UNDEF;
1715 }
1716
1717 Object* symobj = sym->object();
1718 if (symobj->is_dynamic())
1719 {
1720 value = 0;
1721 shndx = elfcpp::SHN_UNDEF;
1722 }
1723 else if (shndx == elfcpp::SHN_UNDEF)
1724 value = 0;
1725 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1726 value = sym->value();
1727 else
1728 {
1729 Relobj* relobj = static_cast<Relobj*>(symobj);
1730 section_offset_type secoff;
1731 Output_section* os = relobj->output_section(shndx, &secoff);
1732
1733 if (os == NULL)
1734 {
1735 sym->set_symtab_index(-1U);
1736 gold_assert(sym->dynsym_index() == -1U);
1737 return false;
1738 }
1739
1740 if (sym->type() == elfcpp::STT_TLS)
1741 value = sym->value() + os->tls_offset() + secoff;
1742 else
1743 value = sym->value() + os->address() + secoff;
1744 }
1745 }
1746 break;
1747
1748 case Symbol::IN_OUTPUT_DATA:
1749 {
1750 Output_data* od = sym->output_data();
1751 value = sym->value() + od->address();
1752 if (sym->offset_is_from_end())
1753 value += od->data_size();
1754 }
1755 break;
1756
1757 case Symbol::IN_OUTPUT_SEGMENT:
1758 {
1759 Output_segment* os = sym->output_segment();
1760 value = sym->value() + os->vaddr();
1761 switch (sym->offset_base())
1762 {
1763 case Symbol::SEGMENT_START:
1764 break;
1765 case Symbol::SEGMENT_END:
1766 value += os->memsz();
1767 break;
1768 case Symbol::SEGMENT_BSS:
1769 value += os->filesz();
1770 break;
1771 default:
1772 gold_unreachable();
1773 }
1774 }
1775 break;
1776
1777 case Symbol::CONSTANT:
1778 value = sym->value();
1779 break;
1780
1781 default:
1782 gold_unreachable();
1783 }
1784
1785 sym->set_value(value);
1786
1787 if (parameters->options().strip_all())
1788 {
1789 sym->set_symtab_index(-1U);
1790 return false;
1791 }
1792
1793 return true;
1794 }
1795
1796 // Write out the global symbols.
1797
1798 void
1799 Symbol_table::write_globals(const Input_objects* input_objects,
1800 const Stringpool* sympool,
1801 const Stringpool* dynpool, Output_file* of) const
1802 {
1803 switch (parameters->size_and_endianness())
1804 {
1805 #ifdef HAVE_TARGET_32_LITTLE
1806 case Parameters::TARGET_32_LITTLE:
1807 this->sized_write_globals<32, false>(input_objects, sympool,
1808 dynpool, of);
1809 break;
1810 #endif
1811 #ifdef HAVE_TARGET_32_BIG
1812 case Parameters::TARGET_32_BIG:
1813 this->sized_write_globals<32, true>(input_objects, sympool,
1814 dynpool, of);
1815 break;
1816 #endif
1817 #ifdef HAVE_TARGET_64_LITTLE
1818 case Parameters::TARGET_64_LITTLE:
1819 this->sized_write_globals<64, false>(input_objects, sympool,
1820 dynpool, of);
1821 break;
1822 #endif
1823 #ifdef HAVE_TARGET_64_BIG
1824 case Parameters::TARGET_64_BIG:
1825 this->sized_write_globals<64, true>(input_objects, sympool,
1826 dynpool, of);
1827 break;
1828 #endif
1829 default:
1830 gold_unreachable();
1831 }
1832 }
1833
1834 // Write out the global symbols.
1835
1836 template<int size, bool big_endian>
1837 void
1838 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1839 const Stringpool* sympool,
1840 const Stringpool* dynpool,
1841 Output_file* of) const
1842 {
1843 const Target& target = parameters->target();
1844
1845 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1846
1847 const unsigned int output_count = this->output_count_;
1848 const section_size_type oview_size = output_count * sym_size;
1849 const unsigned int first_global_index = this->first_global_index_;
1850 unsigned char* psyms;
1851 if (this->offset_ == 0 || output_count == 0)
1852 psyms = NULL;
1853 else
1854 psyms = of->get_output_view(this->offset_, oview_size);
1855
1856 const unsigned int dynamic_count = this->dynamic_count_;
1857 const section_size_type dynamic_size = dynamic_count * sym_size;
1858 const unsigned int first_dynamic_global_index =
1859 this->first_dynamic_global_index_;
1860 unsigned char* dynamic_view;
1861 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1862 dynamic_view = NULL;
1863 else
1864 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1865
1866 for (Symbol_table_type::const_iterator p = this->table_.begin();
1867 p != this->table_.end();
1868 ++p)
1869 {
1870 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1871
1872 // Possibly warn about unresolved symbols in shared libraries.
1873 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1874
1875 unsigned int sym_index = sym->symtab_index();
1876 unsigned int dynsym_index;
1877 if (dynamic_view == NULL)
1878 dynsym_index = -1U;
1879 else
1880 dynsym_index = sym->dynsym_index();
1881
1882 if (sym_index == -1U && dynsym_index == -1U)
1883 {
1884 // This symbol is not included in the output file.
1885 continue;
1886 }
1887
1888 unsigned int shndx;
1889 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1890 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1891 switch (sym->source())
1892 {
1893 case Symbol::FROM_OBJECT:
1894 {
1895 unsigned int in_shndx = sym->shndx();
1896
1897 // FIXME: We need some target specific support here.
1898 if (in_shndx >= elfcpp::SHN_LORESERVE
1899 && in_shndx != elfcpp::SHN_ABS
1900 && in_shndx != elfcpp::SHN_COMMON)
1901 {
1902 gold_error(_("%s: unsupported symbol section 0x%x"),
1903 sym->demangled_name().c_str(), in_shndx);
1904 shndx = in_shndx;
1905 }
1906 else
1907 {
1908 Object* symobj = sym->object();
1909 if (symobj->is_dynamic())
1910 {
1911 if (sym->needs_dynsym_value())
1912 dynsym_value = target.dynsym_value(sym);
1913 shndx = elfcpp::SHN_UNDEF;
1914 }
1915 else if (in_shndx == elfcpp::SHN_UNDEF
1916 || in_shndx == elfcpp::SHN_ABS
1917 || in_shndx == elfcpp::SHN_COMMON)
1918 shndx = in_shndx;
1919 else
1920 {
1921 Relobj* relobj = static_cast<Relobj*>(symobj);
1922 section_offset_type secoff;
1923 Output_section* os = relobj->output_section(in_shndx,
1924 &secoff);
1925 gold_assert(os != NULL);
1926 shndx = os->out_shndx();
1927
1928 // In object files symbol values are section
1929 // relative.
1930 if (parameters->options().relocatable())
1931 sym_value -= os->address();
1932 }
1933 }
1934 }
1935 break;
1936
1937 case Symbol::IN_OUTPUT_DATA:
1938 shndx = sym->output_data()->out_shndx();
1939 break;
1940
1941 case Symbol::IN_OUTPUT_SEGMENT:
1942 shndx = elfcpp::SHN_ABS;
1943 break;
1944
1945 case Symbol::CONSTANT:
1946 shndx = elfcpp::SHN_ABS;
1947 break;
1948
1949 default:
1950 gold_unreachable();
1951 }
1952
1953 if (sym_index != -1U)
1954 {
1955 sym_index -= first_global_index;
1956 gold_assert(sym_index < output_count);
1957 unsigned char* ps = psyms + (sym_index * sym_size);
1958 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
1959 sympool, ps);
1960 }
1961
1962 if (dynsym_index != -1U)
1963 {
1964 dynsym_index -= first_dynamic_global_index;
1965 gold_assert(dynsym_index < dynamic_count);
1966 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1967 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
1968 dynpool, pd);
1969 }
1970 }
1971
1972 of->write_output_view(this->offset_, oview_size, psyms);
1973 if (dynamic_view != NULL)
1974 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1975 }
1976
1977 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1978 // strtab holding the name.
1979
1980 template<int size, bool big_endian>
1981 void
1982 Symbol_table::sized_write_symbol(
1983 Sized_symbol<size>* sym,
1984 typename elfcpp::Elf_types<size>::Elf_Addr value,
1985 unsigned int shndx,
1986 const Stringpool* pool,
1987 unsigned char* p) const
1988 {
1989 elfcpp::Sym_write<size, big_endian> osym(p);
1990 osym.put_st_name(pool->get_offset(sym->name()));
1991 osym.put_st_value(value);
1992 osym.put_st_size(sym->symsize());
1993 // A version script may have overridden the default binding.
1994 if (sym->is_forced_local())
1995 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1996 else
1997 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1998 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1999 osym.put_st_shndx(shndx);
2000 }
2001
2002 // Check for unresolved symbols in shared libraries. This is
2003 // controlled by the --allow-shlib-undefined option.
2004
2005 // We only warn about libraries for which we have seen all the
2006 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2007 // which were not seen in this link. If we didn't see a DT_NEEDED
2008 // entry, we aren't going to be able to reliably report whether the
2009 // symbol is undefined.
2010
2011 // We also don't warn about libraries found in the system library
2012 // directory (the directory were we find libc.so); we assume that
2013 // those libraries are OK. This heuristic avoids problems in
2014 // GNU/Linux, in which -ldl can have undefined references satisfied by
2015 // ld-linux.so.
2016
2017 inline void
2018 Symbol_table::warn_about_undefined_dynobj_symbol(
2019 const Input_objects* input_objects,
2020 Symbol* sym) const
2021 {
2022 if (sym->source() == Symbol::FROM_OBJECT
2023 && sym->object()->is_dynamic()
2024 && sym->shndx() == elfcpp::SHN_UNDEF
2025 && sym->binding() != elfcpp::STB_WEAK
2026 && !parameters->options().allow_shlib_undefined()
2027 && !parameters->target().is_defined_by_abi(sym)
2028 && !input_objects->found_in_system_library_directory(sym->object()))
2029 {
2030 // A very ugly cast.
2031 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2032 if (!dynobj->has_unknown_needed_entries())
2033 gold_error(_("%s: undefined reference to '%s'"),
2034 sym->object()->name().c_str(),
2035 sym->demangled_name().c_str());
2036 }
2037 }
2038
2039 // Write out a section symbol. Return the update offset.
2040
2041 void
2042 Symbol_table::write_section_symbol(const Output_section *os,
2043 Output_file* of,
2044 off_t offset) const
2045 {
2046 switch (parameters->size_and_endianness())
2047 {
2048 #ifdef HAVE_TARGET_32_LITTLE
2049 case Parameters::TARGET_32_LITTLE:
2050 this->sized_write_section_symbol<32, false>(os, of, offset);
2051 break;
2052 #endif
2053 #ifdef HAVE_TARGET_32_BIG
2054 case Parameters::TARGET_32_BIG:
2055 this->sized_write_section_symbol<32, true>(os, of, offset);
2056 break;
2057 #endif
2058 #ifdef HAVE_TARGET_64_LITTLE
2059 case Parameters::TARGET_64_LITTLE:
2060 this->sized_write_section_symbol<64, false>(os, of, offset);
2061 break;
2062 #endif
2063 #ifdef HAVE_TARGET_64_BIG
2064 case Parameters::TARGET_64_BIG:
2065 this->sized_write_section_symbol<64, true>(os, of, offset);
2066 break;
2067 #endif
2068 default:
2069 gold_unreachable();
2070 }
2071 }
2072
2073 // Write out a section symbol, specialized for size and endianness.
2074
2075 template<int size, bool big_endian>
2076 void
2077 Symbol_table::sized_write_section_symbol(const Output_section* os,
2078 Output_file* of,
2079 off_t offset) const
2080 {
2081 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2082
2083 unsigned char* pov = of->get_output_view(offset, sym_size);
2084
2085 elfcpp::Sym_write<size, big_endian> osym(pov);
2086 osym.put_st_name(0);
2087 osym.put_st_value(os->address());
2088 osym.put_st_size(0);
2089 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2090 elfcpp::STT_SECTION));
2091 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2092 osym.put_st_shndx(os->out_shndx());
2093
2094 of->write_output_view(offset, sym_size, pov);
2095 }
2096
2097 // Print statistical information to stderr. This is used for --stats.
2098
2099 void
2100 Symbol_table::print_stats() const
2101 {
2102 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2103 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2104 program_name, this->table_.size(), this->table_.bucket_count());
2105 #else
2106 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2107 program_name, this->table_.size());
2108 #endif
2109 this->namepool_.print_stats("symbol table stringpool");
2110 }
2111
2112 // We check for ODR violations by looking for symbols with the same
2113 // name for which the debugging information reports that they were
2114 // defined in different source locations. When comparing the source
2115 // location, we consider instances with the same base filename and
2116 // line number to be the same. This is because different object
2117 // files/shared libraries can include the same header file using
2118 // different paths, and we don't want to report an ODR violation in
2119 // that case.
2120
2121 // This struct is used to compare line information, as returned by
2122 // Dwarf_line_info::one_addr2line. It implements a < comparison
2123 // operator used with std::set.
2124
2125 struct Odr_violation_compare
2126 {
2127 bool
2128 operator()(const std::string& s1, const std::string& s2) const
2129 {
2130 std::string::size_type pos1 = s1.rfind('/');
2131 std::string::size_type pos2 = s2.rfind('/');
2132 if (pos1 == std::string::npos
2133 || pos2 == std::string::npos)
2134 return s1 < s2;
2135 return s1.compare(pos1, std::string::npos,
2136 s2, pos2, std::string::npos) < 0;
2137 }
2138 };
2139
2140 // Check candidate_odr_violations_ to find symbols with the same name
2141 // but apparently different definitions (different source-file/line-no).
2142
2143 void
2144 Symbol_table::detect_odr_violations(const Task* task,
2145 const char* output_file_name) const
2146 {
2147 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2148 it != candidate_odr_violations_.end();
2149 ++it)
2150 {
2151 const char* symbol_name = it->first;
2152 // We use a sorted set so the output is deterministic.
2153 std::set<std::string, Odr_violation_compare> line_nums;
2154
2155 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2156 locs = it->second.begin();
2157 locs != it->second.end();
2158 ++locs)
2159 {
2160 // We need to lock the object in order to read it. This
2161 // means that we have to run in a singleton Task. If we
2162 // want to run this in a general Task for better
2163 // performance, we will need one Task for object, plus
2164 // appropriate locking to ensure that we don't conflict with
2165 // other uses of the object.
2166 Task_lock_obj<Object> tl(task, locs->object);
2167 std::string lineno = Dwarf_line_info::one_addr2line(
2168 locs->object, locs->shndx, locs->offset);
2169 if (!lineno.empty())
2170 line_nums.insert(lineno);
2171 }
2172
2173 if (line_nums.size() > 1)
2174 {
2175 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2176 "places (possible ODR violation):"),
2177 output_file_name, demangle(symbol_name).c_str());
2178 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2179 it2 != line_nums.end();
2180 ++it2)
2181 fprintf(stderr, " %s\n", it2->c_str());
2182 }
2183 }
2184 }
2185
2186 // Warnings functions.
2187
2188 // Add a new warning.
2189
2190 void
2191 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2192 const std::string& warning)
2193 {
2194 name = symtab->canonicalize_name(name);
2195 this->warnings_[name].set(obj, warning);
2196 }
2197
2198 // Look through the warnings and mark the symbols for which we should
2199 // warn. This is called during Layout::finalize when we know the
2200 // sources for all the symbols.
2201
2202 void
2203 Warnings::note_warnings(Symbol_table* symtab)
2204 {
2205 for (Warning_table::iterator p = this->warnings_.begin();
2206 p != this->warnings_.end();
2207 ++p)
2208 {
2209 Symbol* sym = symtab->lookup(p->first, NULL);
2210 if (sym != NULL
2211 && sym->source() == Symbol::FROM_OBJECT
2212 && sym->object() == p->second.object)
2213 sym->set_has_warning();
2214 }
2215 }
2216
2217 // Issue a warning. This is called when we see a relocation against a
2218 // symbol for which has a warning.
2219
2220 template<int size, bool big_endian>
2221 void
2222 Warnings::issue_warning(const Symbol* sym,
2223 const Relocate_info<size, big_endian>* relinfo,
2224 size_t relnum, off_t reloffset) const
2225 {
2226 gold_assert(sym->has_warning());
2227 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2228 gold_assert(p != this->warnings_.end());
2229 gold_warning_at_location(relinfo, relnum, reloffset,
2230 "%s", p->second.text.c_str());
2231 }
2232
2233 // Instantiate the templates we need. We could use the configure
2234 // script to restrict this to only the ones needed for implemented
2235 // targets.
2236
2237 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2238 template
2239 void
2240 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2241 #endif
2242
2243 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2244 template
2245 void
2246 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2247 #endif
2248
2249 #ifdef HAVE_TARGET_32_LITTLE
2250 template
2251 void
2252 Symbol_table::add_from_relobj<32, false>(
2253 Sized_relobj<32, false>* relobj,
2254 const unsigned char* syms,
2255 size_t count,
2256 const char* sym_names,
2257 size_t sym_name_size,
2258 Sized_relobj<32, true>::Symbols* sympointers);
2259 #endif
2260
2261 #ifdef HAVE_TARGET_32_BIG
2262 template
2263 void
2264 Symbol_table::add_from_relobj<32, true>(
2265 Sized_relobj<32, true>* relobj,
2266 const unsigned char* syms,
2267 size_t count,
2268 const char* sym_names,
2269 size_t sym_name_size,
2270 Sized_relobj<32, false>::Symbols* sympointers);
2271 #endif
2272
2273 #ifdef HAVE_TARGET_64_LITTLE
2274 template
2275 void
2276 Symbol_table::add_from_relobj<64, false>(
2277 Sized_relobj<64, false>* relobj,
2278 const unsigned char* syms,
2279 size_t count,
2280 const char* sym_names,
2281 size_t sym_name_size,
2282 Sized_relobj<64, true>::Symbols* sympointers);
2283 #endif
2284
2285 #ifdef HAVE_TARGET_64_BIG
2286 template
2287 void
2288 Symbol_table::add_from_relobj<64, true>(
2289 Sized_relobj<64, true>* relobj,
2290 const unsigned char* syms,
2291 size_t count,
2292 const char* sym_names,
2293 size_t sym_name_size,
2294 Sized_relobj<64, false>::Symbols* sympointers);
2295 #endif
2296
2297 #ifdef HAVE_TARGET_32_LITTLE
2298 template
2299 void
2300 Symbol_table::add_from_dynobj<32, false>(
2301 Sized_dynobj<32, false>* dynobj,
2302 const unsigned char* syms,
2303 size_t count,
2304 const char* sym_names,
2305 size_t sym_name_size,
2306 const unsigned char* versym,
2307 size_t versym_size,
2308 const std::vector<const char*>* version_map);
2309 #endif
2310
2311 #ifdef HAVE_TARGET_32_BIG
2312 template
2313 void
2314 Symbol_table::add_from_dynobj<32, true>(
2315 Sized_dynobj<32, true>* dynobj,
2316 const unsigned char* syms,
2317 size_t count,
2318 const char* sym_names,
2319 size_t sym_name_size,
2320 const unsigned char* versym,
2321 size_t versym_size,
2322 const std::vector<const char*>* version_map);
2323 #endif
2324
2325 #ifdef HAVE_TARGET_64_LITTLE
2326 template
2327 void
2328 Symbol_table::add_from_dynobj<64, false>(
2329 Sized_dynobj<64, false>* dynobj,
2330 const unsigned char* syms,
2331 size_t count,
2332 const char* sym_names,
2333 size_t sym_name_size,
2334 const unsigned char* versym,
2335 size_t versym_size,
2336 const std::vector<const char*>* version_map);
2337 #endif
2338
2339 #ifdef HAVE_TARGET_64_BIG
2340 template
2341 void
2342 Symbol_table::add_from_dynobj<64, true>(
2343 Sized_dynobj<64, true>* dynobj,
2344 const unsigned char* syms,
2345 size_t count,
2346 const char* sym_names,
2347 size_t sym_name_size,
2348 const unsigned char* versym,
2349 size_t versym_size,
2350 const std::vector<const char*>* version_map);
2351 #endif
2352
2353 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2354 template
2355 void
2356 Symbol_table::define_with_copy_reloc<32>(
2357 Sized_symbol<32>* sym,
2358 Output_data* posd,
2359 elfcpp::Elf_types<32>::Elf_Addr value);
2360 #endif
2361
2362 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2363 template
2364 void
2365 Symbol_table::define_with_copy_reloc<64>(
2366 Sized_symbol<64>* sym,
2367 Output_data* posd,
2368 elfcpp::Elf_types<64>::Elf_Addr value);
2369 #endif
2370
2371 #ifdef HAVE_TARGET_32_LITTLE
2372 template
2373 void
2374 Warnings::issue_warning<32, false>(const Symbol* sym,
2375 const Relocate_info<32, false>* relinfo,
2376 size_t relnum, off_t reloffset) const;
2377 #endif
2378
2379 #ifdef HAVE_TARGET_32_BIG
2380 template
2381 void
2382 Warnings::issue_warning<32, true>(const Symbol* sym,
2383 const Relocate_info<32, true>* relinfo,
2384 size_t relnum, off_t reloffset) const;
2385 #endif
2386
2387 #ifdef HAVE_TARGET_64_LITTLE
2388 template
2389 void
2390 Warnings::issue_warning<64, false>(const Symbol* sym,
2391 const Relocate_info<64, false>* relinfo,
2392 size_t relnum, off_t reloffset) const;
2393 #endif
2394
2395 #ifdef HAVE_TARGET_64_BIG
2396 template
2397 void
2398 Warnings::issue_warning<64, true>(const Symbol* sym,
2399 const Relocate_info<64, true>* relinfo,
2400 size_t relnum, off_t reloffset) const;
2401 #endif
2402
2403 } // End namespace gold.
This page took 0.080391 seconds and 5 git commands to generate.