Fix gdb.trace/mi-traceframe-changed.exp on s390.
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 void
125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Return the symbol's name as name@version (or name@@version).
144 std::string
145 versioned_name() const;
146
147 // Return the symbol source.
148 Source
149 source() const
150 { return this->source_; }
151
152 // Return the object with which this symbol is associated.
153 Object*
154 object() const
155 {
156 gold_assert(this->source_ == FROM_OBJECT);
157 return this->u_.from_object.object;
158 }
159
160 // Return the index of the section in the input relocatable or
161 // dynamic object file.
162 unsigned int
163 shndx(bool* is_ordinary) const
164 {
165 gold_assert(this->source_ == FROM_OBJECT);
166 *is_ordinary = this->is_ordinary_shndx_;
167 return this->u_.from_object.shndx;
168 }
169
170 // Return the output data section with which this symbol is
171 // associated, if the symbol was specially defined with respect to
172 // an output data section.
173 Output_data*
174 output_data() const
175 {
176 gold_assert(this->source_ == IN_OUTPUT_DATA);
177 return this->u_.in_output_data.output_data;
178 }
179
180 // If this symbol was defined with respect to an output data
181 // section, return whether the value is an offset from end.
182 bool
183 offset_is_from_end() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_DATA);
186 return this->u_.in_output_data.offset_is_from_end;
187 }
188
189 // Return the output segment with which this symbol is associated,
190 // if the symbol was specially defined with respect to an output
191 // segment.
192 Output_segment*
193 output_segment() const
194 {
195 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
196 return this->u_.in_output_segment.output_segment;
197 }
198
199 // If this symbol was defined with respect to an output segment,
200 // return the offset base.
201 Segment_offset_base
202 offset_base() const
203 {
204 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
205 return this->u_.in_output_segment.offset_base;
206 }
207
208 // Return the symbol binding.
209 elfcpp::STB
210 binding() const
211 { return this->binding_; }
212
213 // Return the symbol type.
214 elfcpp::STT
215 type() const
216 { return this->type_; }
217
218 // Return true for function symbol.
219 bool
220 is_func() const
221 {
222 return (this->type_ == elfcpp::STT_FUNC
223 || this->type_ == elfcpp::STT_GNU_IFUNC);
224 }
225
226 // Return the symbol visibility.
227 elfcpp::STV
228 visibility() const
229 { return this->visibility_; }
230
231 // Set the visibility.
232 void
233 set_visibility(elfcpp::STV visibility)
234 { this->visibility_ = visibility; }
235
236 // Override symbol visibility.
237 void
238 override_visibility(elfcpp::STV);
239
240 // Set whether the symbol was originally a weak undef or a regular undef
241 // when resolved by a dynamic def.
242 inline void
243 set_undef_binding(elfcpp::STB bind)
244 {
245 if (!this->undef_binding_set_ || this->undef_binding_weak_)
246 {
247 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
248 this->undef_binding_set_ = true;
249 }
250 }
251
252 // Return TRUE if a weak undef was resolved by a dynamic def.
253 inline bool
254 is_undef_binding_weak() const
255 { return this->undef_binding_weak_; }
256
257 // Return the non-visibility part of the st_other field.
258 unsigned char
259 nonvis() const
260 { return this->nonvis_; }
261
262 // Return whether this symbol is a forwarder. This will never be
263 // true of a symbol found in the hash table, but may be true of
264 // symbol pointers attached to object files.
265 bool
266 is_forwarder() const
267 { return this->is_forwarder_; }
268
269 // Mark this symbol as a forwarder.
270 void
271 set_forwarder()
272 { this->is_forwarder_ = true; }
273
274 // Return whether this symbol has an alias in the weak aliases table
275 // in Symbol_table.
276 bool
277 has_alias() const
278 { return this->has_alias_; }
279
280 // Mark this symbol as having an alias.
281 void
282 set_has_alias()
283 { this->has_alias_ = true; }
284
285 // Return whether this symbol needs an entry in the dynamic symbol
286 // table.
287 bool
288 needs_dynsym_entry() const
289 {
290 return (this->needs_dynsym_entry_
291 || (this->in_reg()
292 && this->in_dyn()
293 && this->is_externally_visible()));
294 }
295
296 // Mark this symbol as needing an entry in the dynamic symbol table.
297 void
298 set_needs_dynsym_entry()
299 { this->needs_dynsym_entry_ = true; }
300
301 // Return whether this symbol should be added to the dynamic symbol
302 // table.
303 bool
304 should_add_dynsym_entry(Symbol_table*) const;
305
306 // Return whether this symbol has been seen in a regular object.
307 bool
308 in_reg() const
309 { return this->in_reg_; }
310
311 // Mark this symbol as having been seen in a regular object.
312 void
313 set_in_reg()
314 { this->in_reg_ = true; }
315
316 // Return whether this symbol has been seen in a dynamic object.
317 bool
318 in_dyn() const
319 { return this->in_dyn_; }
320
321 // Mark this symbol as having been seen in a dynamic object.
322 void
323 set_in_dyn()
324 { this->in_dyn_ = true; }
325
326 // Return whether this symbol has been seen in a real ELF object.
327 // (IN_REG will return TRUE if the symbol has been seen in either
328 // a real ELF object or an object claimed by a plugin.)
329 bool
330 in_real_elf() const
331 { return this->in_real_elf_; }
332
333 // Mark this symbol as having been seen in a real ELF object.
334 void
335 set_in_real_elf()
336 { this->in_real_elf_ = true; }
337
338 // Return whether this symbol was defined in a section that was
339 // discarded from the link. This is used to control some error
340 // reporting.
341 bool
342 is_defined_in_discarded_section() const
343 { return this->is_defined_in_discarded_section_; }
344
345 // Mark this symbol as having been defined in a discarded section.
346 void
347 set_is_defined_in_discarded_section()
348 { this->is_defined_in_discarded_section_ = true; }
349
350 // Return the index of this symbol in the output file symbol table.
351 // A value of -1U means that this symbol is not going into the
352 // output file. This starts out as zero, and is set to a non-zero
353 // value by Symbol_table::finalize. It is an error to ask for the
354 // symbol table index before it has been set.
355 unsigned int
356 symtab_index() const
357 {
358 gold_assert(this->symtab_index_ != 0);
359 return this->symtab_index_;
360 }
361
362 // Set the index of the symbol in the output file symbol table.
363 void
364 set_symtab_index(unsigned int index)
365 {
366 gold_assert(index != 0);
367 this->symtab_index_ = index;
368 }
369
370 // Return whether this symbol already has an index in the output
371 // file symbol table.
372 bool
373 has_symtab_index() const
374 { return this->symtab_index_ != 0; }
375
376 // Return the index of this symbol in the dynamic symbol table. A
377 // value of -1U means that this symbol is not going into the dynamic
378 // symbol table. This starts out as zero, and is set to a non-zero
379 // during Layout::finalize. It is an error to ask for the dynamic
380 // symbol table index before it has been set.
381 unsigned int
382 dynsym_index() const
383 {
384 gold_assert(this->dynsym_index_ != 0);
385 return this->dynsym_index_;
386 }
387
388 // Set the index of the symbol in the dynamic symbol table.
389 void
390 set_dynsym_index(unsigned int index)
391 {
392 gold_assert(index != 0);
393 this->dynsym_index_ = index;
394 }
395
396 // Return whether this symbol already has an index in the dynamic
397 // symbol table.
398 bool
399 has_dynsym_index() const
400 { return this->dynsym_index_ != 0; }
401
402 // Return whether this symbol has an entry in the GOT section.
403 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
404 bool
405 has_got_offset(unsigned int got_type) const
406 { return this->got_offsets_.get_offset(got_type) != -1U; }
407
408 // Return the offset into the GOT section of this symbol.
409 unsigned int
410 got_offset(unsigned int got_type) const
411 {
412 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
413 gold_assert(got_offset != -1U);
414 return got_offset;
415 }
416
417 // Set the GOT offset of this symbol.
418 void
419 set_got_offset(unsigned int got_type, unsigned int got_offset)
420 { this->got_offsets_.set_offset(got_type, got_offset); }
421
422 // Return the GOT offset list.
423 const Got_offset_list*
424 got_offset_list() const
425 { return this->got_offsets_.get_list(); }
426
427 // Return whether this symbol has an entry in the PLT section.
428 bool
429 has_plt_offset() const
430 { return this->plt_offset_ != -1U; }
431
432 // Return the offset into the PLT section of this symbol.
433 unsigned int
434 plt_offset() const
435 {
436 gold_assert(this->has_plt_offset());
437 return this->plt_offset_;
438 }
439
440 // Set the PLT offset of this symbol.
441 void
442 set_plt_offset(unsigned int plt_offset)
443 {
444 gold_assert(plt_offset != -1U);
445 this->plt_offset_ = plt_offset;
446 }
447
448 // Return whether this dynamic symbol needs a special value in the
449 // dynamic symbol table.
450 bool
451 needs_dynsym_value() const
452 { return this->needs_dynsym_value_; }
453
454 // Set that this dynamic symbol needs a special value in the dynamic
455 // symbol table.
456 void
457 set_needs_dynsym_value()
458 {
459 gold_assert(this->object()->is_dynamic());
460 this->needs_dynsym_value_ = true;
461 }
462
463 // Return true if the final value of this symbol is known at link
464 // time.
465 bool
466 final_value_is_known() const;
467
468 // Return true if SHNDX represents a common symbol. This depends on
469 // the target.
470 static bool
471 is_common_shndx(unsigned int shndx);
472
473 // Return whether this is a defined symbol (not undefined or
474 // common).
475 bool
476 is_defined() const
477 {
478 bool is_ordinary;
479 if (this->source_ != FROM_OBJECT)
480 return this->source_ != IS_UNDEFINED;
481 unsigned int shndx = this->shndx(&is_ordinary);
482 return (is_ordinary
483 ? shndx != elfcpp::SHN_UNDEF
484 : !Symbol::is_common_shndx(shndx));
485 }
486
487 // Return true if this symbol is from a dynamic object.
488 bool
489 is_from_dynobj() const
490 {
491 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
492 }
493
494 // Return whether this is a placeholder symbol from a plugin object.
495 bool
496 is_placeholder() const
497 {
498 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
499 }
500
501 // Return whether this is an undefined symbol.
502 bool
503 is_undefined() const
504 {
505 bool is_ordinary;
506 return ((this->source_ == FROM_OBJECT
507 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
508 && is_ordinary)
509 || this->source_ == IS_UNDEFINED);
510 }
511
512 // Return whether this is a weak undefined symbol.
513 bool
514 is_weak_undefined() const
515 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
516
517 // Return whether this is an absolute symbol.
518 bool
519 is_absolute() const
520 {
521 bool is_ordinary;
522 return ((this->source_ == FROM_OBJECT
523 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
524 && !is_ordinary)
525 || this->source_ == IS_CONSTANT);
526 }
527
528 // Return whether this is a common symbol.
529 bool
530 is_common() const
531 {
532 if (this->source_ != FROM_OBJECT)
533 return false;
534 if (this->type_ == elfcpp::STT_COMMON)
535 return true;
536 bool is_ordinary;
537 unsigned int shndx = this->shndx(&is_ordinary);
538 return !is_ordinary && Symbol::is_common_shndx(shndx);
539 }
540
541 // Return whether this symbol can be seen outside this object.
542 bool
543 is_externally_visible() const
544 {
545 return ((this->visibility_ == elfcpp::STV_DEFAULT
546 || this->visibility_ == elfcpp::STV_PROTECTED)
547 && !this->is_forced_local_);
548 }
549
550 // Return true if this symbol can be preempted by a definition in
551 // another link unit.
552 bool
553 is_preemptible() const
554 {
555 // It doesn't make sense to ask whether a symbol defined in
556 // another object is preemptible.
557 gold_assert(!this->is_from_dynobj());
558
559 // It doesn't make sense to ask whether an undefined symbol
560 // is preemptible.
561 gold_assert(!this->is_undefined());
562
563 // If a symbol does not have default visibility, it can not be
564 // seen outside this link unit and therefore is not preemptible.
565 if (this->visibility_ != elfcpp::STV_DEFAULT)
566 return false;
567
568 // If this symbol has been forced to be a local symbol by a
569 // version script, then it is not visible outside this link unit
570 // and is not preemptible.
571 if (this->is_forced_local_)
572 return false;
573
574 // If we are not producing a shared library, then nothing is
575 // preemptible.
576 if (!parameters->options().shared())
577 return false;
578
579 // If the user used -Bsymbolic, then nothing is preemptible.
580 if (parameters->options().Bsymbolic())
581 return false;
582
583 // If the user used -Bsymbolic-functions, then functions are not
584 // preemptible. We explicitly check for not being STT_OBJECT,
585 // rather than for being STT_FUNC, because that is what the GNU
586 // linker does.
587 if (this->type() != elfcpp::STT_OBJECT
588 && parameters->options().Bsymbolic_functions())
589 return false;
590
591 // Otherwise the symbol is preemptible.
592 return true;
593 }
594
595 // Return true if this symbol is a function that needs a PLT entry.
596 bool
597 needs_plt_entry() const
598 {
599 // An undefined symbol from an executable does not need a PLT entry.
600 if (this->is_undefined() && !parameters->options().shared())
601 return false;
602
603 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
604 // doing a static link.
605 if (this->type() == elfcpp::STT_GNU_IFUNC)
606 return true;
607
608 // We only need a PLT entry for a function.
609 if (!this->is_func())
610 return false;
611
612 // If we're doing a static link or a -pie link, we don't create
613 // PLT entries.
614 if (parameters->doing_static_link()
615 || parameters->options().pie())
616 return false;
617
618 // We need a PLT entry if the function is defined in a dynamic
619 // object, or is undefined when building a shared object, or if it
620 // is subject to pre-emption.
621 return (this->is_from_dynobj()
622 || this->is_undefined()
623 || this->is_preemptible());
624 }
625
626 // When determining whether a reference to a symbol needs a dynamic
627 // relocation, we need to know several things about the reference.
628 // These flags may be or'ed together. 0 means that the symbol
629 // isn't referenced at all.
630 enum Reference_flags
631 {
632 // A reference to the symbol's absolute address. This includes
633 // references that cause an absolute address to be stored in the GOT.
634 ABSOLUTE_REF = 1,
635 // A reference that calculates the offset of the symbol from some
636 // anchor point, such as the PC or GOT.
637 RELATIVE_REF = 2,
638 // A TLS-related reference.
639 TLS_REF = 4,
640 // A reference that can always be treated as a function call.
641 FUNCTION_CALL = 8,
642 // When set, says that dynamic relocations are needed even if a
643 // symbol has a plt entry.
644 FUNC_DESC_ABI = 16,
645 };
646
647 // Given a direct absolute or pc-relative static relocation against
648 // the global symbol, this function returns whether a dynamic relocation
649 // is needed.
650
651 bool
652 needs_dynamic_reloc(int flags) const
653 {
654 // No dynamic relocations in a static link!
655 if (parameters->doing_static_link())
656 return false;
657
658 // A reference to an undefined symbol from an executable should be
659 // statically resolved to 0, and does not need a dynamic relocation.
660 // This matches gnu ld behavior.
661 if (this->is_undefined() && !parameters->options().shared())
662 return false;
663
664 // A reference to an absolute symbol does not need a dynamic relocation.
665 if (this->is_absolute())
666 return false;
667
668 // An absolute reference within a position-independent output file
669 // will need a dynamic relocation.
670 if ((flags & ABSOLUTE_REF)
671 && parameters->options().output_is_position_independent())
672 return true;
673
674 // A function call that can branch to a local PLT entry does not need
675 // a dynamic relocation.
676 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
677 return false;
678
679 // A reference to any PLT entry in a non-position-independent executable
680 // does not need a dynamic relocation.
681 if (!(flags & FUNC_DESC_ABI)
682 && !parameters->options().output_is_position_independent()
683 && this->has_plt_offset())
684 return false;
685
686 // A reference to a symbol defined in a dynamic object or to a
687 // symbol that is preemptible will need a dynamic relocation.
688 if (this->is_from_dynobj()
689 || this->is_undefined()
690 || this->is_preemptible())
691 return true;
692
693 // For all other cases, return FALSE.
694 return false;
695 }
696
697 // Whether we should use the PLT offset associated with a symbol for
698 // a relocation. FLAGS is a set of Reference_flags.
699
700 bool
701 use_plt_offset(int flags) const
702 {
703 // If the symbol doesn't have a PLT offset, then naturally we
704 // don't want to use it.
705 if (!this->has_plt_offset())
706 return false;
707
708 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
709 if (this->type() == elfcpp::STT_GNU_IFUNC)
710 return true;
711
712 // If we are going to generate a dynamic relocation, then we will
713 // wind up using that, so no need to use the PLT entry.
714 if (this->needs_dynamic_reloc(flags))
715 return false;
716
717 // If the symbol is from a dynamic object, we need to use the PLT
718 // entry.
719 if (this->is_from_dynobj())
720 return true;
721
722 // If we are generating a shared object, and this symbol is
723 // undefined or preemptible, we need to use the PLT entry.
724 if (parameters->options().shared()
725 && (this->is_undefined() || this->is_preemptible()))
726 return true;
727
728 // If this is a call to a weak undefined symbol, we need to use
729 // the PLT entry; the symbol may be defined by a library loaded
730 // at runtime.
731 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
732 return true;
733
734 // Otherwise we can use the regular definition.
735 return false;
736 }
737
738 // Given a direct absolute static relocation against
739 // the global symbol, where a dynamic relocation is needed, this
740 // function returns whether a relative dynamic relocation can be used.
741 // The caller must determine separately whether the static relocation
742 // is compatible with a relative relocation.
743
744 bool
745 can_use_relative_reloc(bool is_function_call) const
746 {
747 // A function call that can branch to a local PLT entry can
748 // use a RELATIVE relocation.
749 if (is_function_call && this->has_plt_offset())
750 return true;
751
752 // A reference to a symbol defined in a dynamic object or to a
753 // symbol that is preemptible can not use a RELATIVE relocation.
754 if (this->is_from_dynobj()
755 || this->is_undefined()
756 || this->is_preemptible())
757 return false;
758
759 // For all other cases, return TRUE.
760 return true;
761 }
762
763 // Return the output section where this symbol is defined. Return
764 // NULL if the symbol has an absolute value.
765 Output_section*
766 output_section() const;
767
768 // Set the symbol's output section. This is used for symbols
769 // defined in scripts. This should only be called after the symbol
770 // table has been finalized.
771 void
772 set_output_section(Output_section*);
773
774 // Return whether there should be a warning for references to this
775 // symbol.
776 bool
777 has_warning() const
778 { return this->has_warning_; }
779
780 // Mark this symbol as having a warning.
781 void
782 set_has_warning()
783 { this->has_warning_ = true; }
784
785 // Return whether this symbol is defined by a COPY reloc from a
786 // dynamic object.
787 bool
788 is_copied_from_dynobj() const
789 { return this->is_copied_from_dynobj_; }
790
791 // Mark this symbol as defined by a COPY reloc.
792 void
793 set_is_copied_from_dynobj()
794 { this->is_copied_from_dynobj_ = true; }
795
796 // Return whether this symbol is forced to visibility STB_LOCAL
797 // by a "local:" entry in a version script.
798 bool
799 is_forced_local() const
800 { return this->is_forced_local_; }
801
802 // Mark this symbol as forced to STB_LOCAL visibility.
803 void
804 set_is_forced_local()
805 { this->is_forced_local_ = true; }
806
807 // Return true if this may need a COPY relocation.
808 // References from an executable object to non-function symbols
809 // defined in a dynamic object may need a COPY relocation.
810 bool
811 may_need_copy_reloc() const
812 {
813 return (!parameters->options().output_is_position_independent()
814 && parameters->options().copyreloc()
815 && this->is_from_dynobj()
816 && !this->is_func());
817 }
818
819 // Return true if this symbol was predefined by the linker.
820 bool
821 is_predefined() const
822 { return this->is_predefined_; }
823
824 // Return true if this is a C++ vtable symbol.
825 bool
826 is_cxx_vtable() const
827 { return is_prefix_of("_ZTV", this->name_); }
828
829 protected:
830 // Instances of this class should always be created at a specific
831 // size.
832 Symbol()
833 { memset(this, 0, sizeof *this); }
834
835 // Initialize the general fields.
836 void
837 init_fields(const char* name, const char* version,
838 elfcpp::STT type, elfcpp::STB binding,
839 elfcpp::STV visibility, unsigned char nonvis);
840
841 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
842 // section index, IS_ORDINARY is whether it is a normal section
843 // index rather than a special code.
844 template<int size, bool big_endian>
845 void
846 init_base_object(const char* name, const char* version, Object* object,
847 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
848 bool is_ordinary);
849
850 // Initialize fields for an Output_data.
851 void
852 init_base_output_data(const char* name, const char* version, Output_data*,
853 elfcpp::STT, elfcpp::STB, elfcpp::STV,
854 unsigned char nonvis, bool offset_is_from_end,
855 bool is_predefined);
856
857 // Initialize fields for an Output_segment.
858 void
859 init_base_output_segment(const char* name, const char* version,
860 Output_segment* os, elfcpp::STT type,
861 elfcpp::STB binding, elfcpp::STV visibility,
862 unsigned char nonvis,
863 Segment_offset_base offset_base,
864 bool is_predefined);
865
866 // Initialize fields for a constant.
867 void
868 init_base_constant(const char* name, const char* version, elfcpp::STT type,
869 elfcpp::STB binding, elfcpp::STV visibility,
870 unsigned char nonvis, bool is_predefined);
871
872 // Initialize fields for an undefined symbol.
873 void
874 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
875 elfcpp::STB binding, elfcpp::STV visibility,
876 unsigned char nonvis);
877
878 // Override existing symbol.
879 template<int size, bool big_endian>
880 void
881 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
882 bool is_ordinary, Object* object, const char* version);
883
884 // Override existing symbol with a special symbol.
885 void
886 override_base_with_special(const Symbol* from);
887
888 // Override symbol version.
889 void
890 override_version(const char* version);
891
892 // Allocate a common symbol by giving it a location in the output
893 // file.
894 void
895 allocate_base_common(Output_data*);
896
897 private:
898 Symbol(const Symbol&);
899 Symbol& operator=(const Symbol&);
900
901 // Symbol name (expected to point into a Stringpool).
902 const char* name_;
903 // Symbol version (expected to point into a Stringpool). This may
904 // be NULL.
905 const char* version_;
906
907 union
908 {
909 // This struct is used if SOURCE_ == FROM_OBJECT.
910 struct
911 {
912 // Object in which symbol is defined, or in which it was first
913 // seen.
914 Object* object;
915 // Section number in object_ in which symbol is defined.
916 unsigned int shndx;
917 } from_object;
918
919 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
920 struct
921 {
922 // Output_data in which symbol is defined. Before
923 // Layout::finalize the symbol's value is an offset within the
924 // Output_data.
925 Output_data* output_data;
926 // True if the offset is from the end, false if the offset is
927 // from the beginning.
928 bool offset_is_from_end;
929 } in_output_data;
930
931 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
932 struct
933 {
934 // Output_segment in which the symbol is defined. Before
935 // Layout::finalize the symbol's value is an offset.
936 Output_segment* output_segment;
937 // The base to use for the offset before Layout::finalize.
938 Segment_offset_base offset_base;
939 } in_output_segment;
940 } u_;
941
942 // The index of this symbol in the output file. If the symbol is
943 // not going into the output file, this value is -1U. This field
944 // starts as always holding zero. It is set to a non-zero value by
945 // Symbol_table::finalize.
946 unsigned int symtab_index_;
947
948 // The index of this symbol in the dynamic symbol table. If the
949 // symbol is not going into the dynamic symbol table, this value is
950 // -1U. This field starts as always holding zero. It is set to a
951 // non-zero value during Layout::finalize.
952 unsigned int dynsym_index_;
953
954 // The GOT section entries for this symbol. A symbol may have more
955 // than one GOT offset (e.g., when mixing modules compiled with two
956 // different TLS models), but will usually have at most one.
957 Got_offset_list got_offsets_;
958
959 // If this symbol has an entry in the PLT section, then this is the
960 // offset from the start of the PLT section. This is -1U if there
961 // is no PLT entry.
962 unsigned int plt_offset_;
963
964 // Symbol type (bits 0 to 3).
965 elfcpp::STT type_ : 4;
966 // Symbol binding (bits 4 to 7).
967 elfcpp::STB binding_ : 4;
968 // Symbol visibility (bits 8 to 9).
969 elfcpp::STV visibility_ : 2;
970 // Rest of symbol st_other field (bits 10 to 15).
971 unsigned int nonvis_ : 6;
972 // The type of symbol (bits 16 to 18).
973 Source source_ : 3;
974 // True if this is the default version of the symbol (bit 19).
975 bool is_def_ : 1;
976 // True if this symbol really forwards to another symbol. This is
977 // used when we discover after the fact that two different entries
978 // in the hash table really refer to the same symbol. This will
979 // never be set for a symbol found in the hash table, but may be set
980 // for a symbol found in the list of symbols attached to an Object.
981 // It forwards to the symbol found in the forwarders_ map of
982 // Symbol_table (bit 20).
983 bool is_forwarder_ : 1;
984 // True if the symbol has an alias in the weak_aliases table in
985 // Symbol_table (bit 21).
986 bool has_alias_ : 1;
987 // True if this symbol needs to be in the dynamic symbol table (bit
988 // 22).
989 bool needs_dynsym_entry_ : 1;
990 // True if we've seen this symbol in a regular object (bit 23).
991 bool in_reg_ : 1;
992 // True if we've seen this symbol in a dynamic object (bit 24).
993 bool in_dyn_ : 1;
994 // True if this is a dynamic symbol which needs a special value in
995 // the dynamic symbol table (bit 25).
996 bool needs_dynsym_value_ : 1;
997 // True if there is a warning for this symbol (bit 26).
998 bool has_warning_ : 1;
999 // True if we are using a COPY reloc for this symbol, so that the
1000 // real definition lives in a dynamic object (bit 27).
1001 bool is_copied_from_dynobj_ : 1;
1002 // True if this symbol was forced to local visibility by a version
1003 // script (bit 28).
1004 bool is_forced_local_ : 1;
1005 // True if the field u_.from_object.shndx is an ordinary section
1006 // index, not one of the special codes from SHN_LORESERVE to
1007 // SHN_HIRESERVE (bit 29).
1008 bool is_ordinary_shndx_ : 1;
1009 // True if we've seen this symbol in a "real" ELF object (bit 30).
1010 // If the symbol has been seen in a relocatable, non-IR, object file,
1011 // it's known to be referenced from outside the IR. A reference from
1012 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1013 // mark the symbol as "visible" from outside the IR. The compiler
1014 // can use this distinction to guide its handling of COMDAT symbols.
1015 bool in_real_elf_ : 1;
1016 // True if this symbol is defined in a section which was discarded
1017 // (bit 31).
1018 bool is_defined_in_discarded_section_ : 1;
1019 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1020 bool undef_binding_set_ : 1;
1021 // True if this symbol was a weak undef resolved by a dynamic def
1022 // (bit 33).
1023 bool undef_binding_weak_ : 1;
1024 // True if this symbol is a predefined linker symbol (bit 34).
1025 bool is_predefined_ : 1;
1026 };
1027
1028 // The parts of a symbol which are size specific. Using a template
1029 // derived class like this helps us use less space on a 32-bit system.
1030
1031 template<int size>
1032 class Sized_symbol : public Symbol
1033 {
1034 public:
1035 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1036 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1037
1038 Sized_symbol()
1039 { }
1040
1041 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1042 // section index, IS_ORDINARY is whether it is a normal section
1043 // index rather than a special code.
1044 template<bool big_endian>
1045 void
1046 init_object(const char* name, const char* version, Object* object,
1047 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1048 bool is_ordinary);
1049
1050 // Initialize fields for an Output_data.
1051 void
1052 init_output_data(const char* name, const char* version, Output_data*,
1053 Value_type value, Size_type symsize, elfcpp::STT,
1054 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1055 bool offset_is_from_end, bool is_predefined);
1056
1057 // Initialize fields for an Output_segment.
1058 void
1059 init_output_segment(const char* name, const char* version, Output_segment*,
1060 Value_type value, Size_type symsize, elfcpp::STT,
1061 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1062 Segment_offset_base offset_base, bool is_predefined);
1063
1064 // Initialize fields for a constant.
1065 void
1066 init_constant(const char* name, const char* version, Value_type value,
1067 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1068 unsigned char nonvis, bool is_predefined);
1069
1070 // Initialize fields for an undefined symbol.
1071 void
1072 init_undefined(const char* name, const char* version, elfcpp::STT,
1073 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1074
1075 // Override existing symbol.
1076 template<bool big_endian>
1077 void
1078 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1079 bool is_ordinary, Object* object, const char* version);
1080
1081 // Override existing symbol with a special symbol.
1082 void
1083 override_with_special(const Sized_symbol<size>*);
1084
1085 // Return the symbol's value.
1086 Value_type
1087 value() const
1088 { return this->value_; }
1089
1090 // Return the symbol's size (we can't call this 'size' because that
1091 // is a template parameter).
1092 Size_type
1093 symsize() const
1094 { return this->symsize_; }
1095
1096 // Set the symbol size. This is used when resolving common symbols.
1097 void
1098 set_symsize(Size_type symsize)
1099 { this->symsize_ = symsize; }
1100
1101 // Set the symbol value. This is called when we store the final
1102 // values of the symbols into the symbol table.
1103 void
1104 set_value(Value_type value)
1105 { this->value_ = value; }
1106
1107 // Allocate a common symbol by giving it a location in the output
1108 // file.
1109 void
1110 allocate_common(Output_data*, Value_type value);
1111
1112 private:
1113 Sized_symbol(const Sized_symbol&);
1114 Sized_symbol& operator=(const Sized_symbol&);
1115
1116 // Symbol value. Before Layout::finalize this is the offset in the
1117 // input section. This is set to the final value during
1118 // Layout::finalize.
1119 Value_type value_;
1120 // Symbol size.
1121 Size_type symsize_;
1122 };
1123
1124 // A struct describing a symbol defined by the linker, where the value
1125 // of the symbol is defined based on an output section. This is used
1126 // for symbols defined by the linker, like "_init_array_start".
1127
1128 struct Define_symbol_in_section
1129 {
1130 // The symbol name.
1131 const char* name;
1132 // The name of the output section with which this symbol should be
1133 // associated. If there is no output section with that name, the
1134 // symbol will be defined as zero.
1135 const char* output_section;
1136 // The offset of the symbol within the output section. This is an
1137 // offset from the start of the output section, unless start_at_end
1138 // is true, in which case this is an offset from the end of the
1139 // output section.
1140 uint64_t value;
1141 // The size of the symbol.
1142 uint64_t size;
1143 // The symbol type.
1144 elfcpp::STT type;
1145 // The symbol binding.
1146 elfcpp::STB binding;
1147 // The symbol visibility.
1148 elfcpp::STV visibility;
1149 // The rest of the st_other field.
1150 unsigned char nonvis;
1151 // If true, the value field is an offset from the end of the output
1152 // section.
1153 bool offset_is_from_end;
1154 // If true, this symbol is defined only if we see a reference to it.
1155 bool only_if_ref;
1156 };
1157
1158 // A struct describing a symbol defined by the linker, where the value
1159 // of the symbol is defined based on a segment. This is used for
1160 // symbols defined by the linker, like "_end". We describe the
1161 // segment with which the symbol should be associated by its
1162 // characteristics. If no segment meets these characteristics, the
1163 // symbol will be defined as zero. If there is more than one segment
1164 // which meets these characteristics, we will use the first one.
1165
1166 struct Define_symbol_in_segment
1167 {
1168 // The symbol name.
1169 const char* name;
1170 // The segment type where the symbol should be defined, typically
1171 // PT_LOAD.
1172 elfcpp::PT segment_type;
1173 // Bitmask of segment flags which must be set.
1174 elfcpp::PF segment_flags_set;
1175 // Bitmask of segment flags which must be clear.
1176 elfcpp::PF segment_flags_clear;
1177 // The offset of the symbol within the segment. The offset is
1178 // calculated from the position set by offset_base.
1179 uint64_t value;
1180 // The size of the symbol.
1181 uint64_t size;
1182 // The symbol type.
1183 elfcpp::STT type;
1184 // The symbol binding.
1185 elfcpp::STB binding;
1186 // The symbol visibility.
1187 elfcpp::STV visibility;
1188 // The rest of the st_other field.
1189 unsigned char nonvis;
1190 // The base from which we compute the offset.
1191 Symbol::Segment_offset_base offset_base;
1192 // If true, this symbol is defined only if we see a reference to it.
1193 bool only_if_ref;
1194 };
1195
1196 // Specify an object/section/offset location. Used by ODR code.
1197
1198 struct Symbol_location
1199 {
1200 // Object where the symbol is defined.
1201 Object* object;
1202 // Section-in-object where the symbol is defined.
1203 unsigned int shndx;
1204 // For relocatable objects, offset-in-section where the symbol is defined.
1205 // For dynamic objects, address where the symbol is defined.
1206 off_t offset;
1207 bool operator==(const Symbol_location& that) const
1208 {
1209 return (this->object == that.object
1210 && this->shndx == that.shndx
1211 && this->offset == that.offset);
1212 }
1213 };
1214
1215 // This class manages warnings. Warnings are a GNU extension. When
1216 // we see a section named .gnu.warning.SYM in an object file, and if
1217 // we wind using the definition of SYM from that object file, then we
1218 // will issue a warning for any relocation against SYM from a
1219 // different object file. The text of the warning is the contents of
1220 // the section. This is not precisely the definition used by the old
1221 // GNU linker; the old GNU linker treated an occurrence of
1222 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1223 // would trigger a warning on any reference. However, it was
1224 // inconsistent in that a warning in a dynamic object only triggered
1225 // if there was no definition in a regular object. This linker is
1226 // different in that we only issue a warning if we use the symbol
1227 // definition from the same object file as the warning section.
1228
1229 class Warnings
1230 {
1231 public:
1232 Warnings()
1233 : warnings_()
1234 { }
1235
1236 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1237 // of the warning.
1238 void
1239 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1240 const std::string& warning);
1241
1242 // For each symbol for which we should give a warning, make a note
1243 // on the symbol.
1244 void
1245 note_warnings(Symbol_table* symtab);
1246
1247 // Issue a warning for a reference to SYM at RELINFO's location.
1248 template<int size, bool big_endian>
1249 void
1250 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1251 size_t relnum, off_t reloffset) const;
1252
1253 private:
1254 Warnings(const Warnings&);
1255 Warnings& operator=(const Warnings&);
1256
1257 // What we need to know to get the warning text.
1258 struct Warning_location
1259 {
1260 // The object the warning is in.
1261 Object* object;
1262 // The warning text.
1263 std::string text;
1264
1265 Warning_location()
1266 : object(NULL), text()
1267 { }
1268
1269 void
1270 set(Object* o, const std::string& t)
1271 {
1272 this->object = o;
1273 this->text = t;
1274 }
1275 };
1276
1277 // A mapping from warning symbol names (canonicalized in
1278 // Symbol_table's namepool_ field) to warning information.
1279 typedef Unordered_map<const char*, Warning_location> Warning_table;
1280
1281 Warning_table warnings_;
1282 };
1283
1284 // The main linker symbol table.
1285
1286 class Symbol_table
1287 {
1288 public:
1289 // The different places where a symbol definition can come from.
1290 enum Defined
1291 {
1292 // Defined in an object file--the normal case.
1293 OBJECT,
1294 // Defined for a COPY reloc.
1295 COPY,
1296 // Defined on the command line using --defsym.
1297 DEFSYM,
1298 // Defined (so to speak) on the command line using -u.
1299 UNDEFINED,
1300 // Defined in a linker script.
1301 SCRIPT,
1302 // Predefined by the linker.
1303 PREDEFINED,
1304 // Defined by the linker during an incremental base link, but not
1305 // a predefined symbol (e.g., common, defined in script).
1306 INCREMENTAL_BASE,
1307 };
1308
1309 // The order in which we sort common symbols.
1310 enum Sort_commons_order
1311 {
1312 SORT_COMMONS_BY_SIZE_DESCENDING,
1313 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1314 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1315 };
1316
1317 // COUNT is an estimate of how many symbols will be inserted in the
1318 // symbol table. It's ok to put 0 if you don't know; a correct
1319 // guess will just save some CPU by reducing hashtable resizes.
1320 Symbol_table(unsigned int count, const Version_script_info& version_script);
1321
1322 ~Symbol_table();
1323
1324 void
1325 set_icf(Icf* icf)
1326 { this->icf_ = icf;}
1327
1328 Icf*
1329 icf() const
1330 { return this->icf_; }
1331
1332 // Returns true if ICF determined that this is a duplicate section.
1333 bool
1334 is_section_folded(Object* obj, unsigned int shndx) const;
1335
1336 void
1337 set_gc(Garbage_collection* gc)
1338 { this->gc_ = gc; }
1339
1340 Garbage_collection*
1341 gc() const
1342 { return this->gc_; }
1343
1344 // During garbage collection, this keeps undefined symbols.
1345 void
1346 gc_mark_undef_symbols(Layout*);
1347
1348 // This tells garbage collection that this symbol is referenced.
1349 void
1350 gc_mark_symbol(Symbol* sym);
1351
1352 // During garbage collection, this keeps sections that correspond to
1353 // symbols seen in dynamic objects.
1354 inline void
1355 gc_mark_dyn_syms(Symbol* sym);
1356
1357 // Add COUNT external symbols from the relocatable object RELOBJ to
1358 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1359 // offset in the symbol table of the first symbol, SYM_NAMES is
1360 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1361 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1362 // *DEFINED to the number of defined symbols.
1363 template<int size, bool big_endian>
1364 void
1365 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1366 const unsigned char* syms, size_t count,
1367 size_t symndx_offset, const char* sym_names,
1368 size_t sym_name_size,
1369 typename Sized_relobj_file<size, big_endian>::Symbols*,
1370 size_t* defined);
1371
1372 // Add one external symbol from the plugin object OBJ to the symbol table.
1373 // Returns a pointer to the resolved symbol in the symbol table.
1374 template<int size, bool big_endian>
1375 Symbol*
1376 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1377 const char* name, const char* ver,
1378 elfcpp::Sym<size, big_endian>* sym);
1379
1380 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1381 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1382 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1383 // symbol version data.
1384 template<int size, bool big_endian>
1385 void
1386 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1387 const unsigned char* syms, size_t count,
1388 const char* sym_names, size_t sym_name_size,
1389 const unsigned char* versym, size_t versym_size,
1390 const std::vector<const char*>*,
1391 typename Sized_relobj_file<size, big_endian>::Symbols*,
1392 size_t* defined);
1393
1394 // Add one external symbol from the incremental object OBJ to the symbol
1395 // table. Returns a pointer to the resolved symbol in the symbol table.
1396 template<int size, bool big_endian>
1397 Sized_symbol<size>*
1398 add_from_incrobj(Object* obj, const char* name,
1399 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1400
1401 // Define a special symbol based on an Output_data. It is a
1402 // multiple definition error if this symbol is already defined.
1403 Symbol*
1404 define_in_output_data(const char* name, const char* version, Defined,
1405 Output_data*, uint64_t value, uint64_t symsize,
1406 elfcpp::STT type, elfcpp::STB binding,
1407 elfcpp::STV visibility, unsigned char nonvis,
1408 bool offset_is_from_end, bool only_if_ref);
1409
1410 // Define a special symbol based on an Output_segment. It is a
1411 // multiple definition error if this symbol is already defined.
1412 Symbol*
1413 define_in_output_segment(const char* name, const char* version, Defined,
1414 Output_segment*, uint64_t value, uint64_t symsize,
1415 elfcpp::STT type, elfcpp::STB binding,
1416 elfcpp::STV visibility, unsigned char nonvis,
1417 Symbol::Segment_offset_base, bool only_if_ref);
1418
1419 // Define a special symbol with a constant value. It is a multiple
1420 // definition error if this symbol is already defined.
1421 Symbol*
1422 define_as_constant(const char* name, const char* version, Defined,
1423 uint64_t value, uint64_t symsize, elfcpp::STT type,
1424 elfcpp::STB binding, elfcpp::STV visibility,
1425 unsigned char nonvis, bool only_if_ref,
1426 bool force_override);
1427
1428 // Define a set of symbols in output sections. If ONLY_IF_REF is
1429 // true, only define them if they are referenced.
1430 void
1431 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1432 bool only_if_ref);
1433
1434 // Define a set of symbols in output segments. If ONLY_IF_REF is
1435 // true, only defined them if they are referenced.
1436 void
1437 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1438 bool only_if_ref);
1439
1440 // Define SYM using a COPY reloc. POSD is the Output_data where the
1441 // symbol should be defined--typically a .dyn.bss section. VALUE is
1442 // the offset within POSD.
1443 template<int size>
1444 void
1445 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1446 typename elfcpp::Elf_types<size>::Elf_Addr);
1447
1448 // Look up a symbol.
1449 Symbol*
1450 lookup(const char*, const char* version = NULL) const;
1451
1452 // Return the real symbol associated with the forwarder symbol FROM.
1453 Symbol*
1454 resolve_forwards(const Symbol* from) const;
1455
1456 // Return the sized version of a symbol in this table.
1457 template<int size>
1458 Sized_symbol<size>*
1459 get_sized_symbol(Symbol*) const;
1460
1461 template<int size>
1462 const Sized_symbol<size>*
1463 get_sized_symbol(const Symbol*) const;
1464
1465 // Return the count of undefined symbols seen.
1466 size_t
1467 saw_undefined() const
1468 { return this->saw_undefined_; }
1469
1470 // Allocate the common symbols
1471 void
1472 allocate_commons(Layout*, Mapfile*);
1473
1474 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1475 // of the warning.
1476 void
1477 add_warning(const char* name, Object* obj, const std::string& warning)
1478 { this->warnings_.add_warning(this, name, obj, warning); }
1479
1480 // Canonicalize a symbol name for use in the hash table.
1481 const char*
1482 canonicalize_name(const char* name)
1483 { return this->namepool_.add(name, true, NULL); }
1484
1485 // Possibly issue a warning for a reference to SYM at LOCATION which
1486 // is in OBJ.
1487 template<int size, bool big_endian>
1488 void
1489 issue_warning(const Symbol* sym,
1490 const Relocate_info<size, big_endian>* relinfo,
1491 size_t relnum, off_t reloffset) const
1492 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1493
1494 // Check candidate_odr_violations_ to find symbols with the same name
1495 // but apparently different definitions (different source-file/line-no).
1496 void
1497 detect_odr_violations(const Task*, const char* output_file_name) const;
1498
1499 // Add any undefined symbols named on the command line to the symbol
1500 // table.
1501 void
1502 add_undefined_symbols_from_command_line(Layout*);
1503
1504 // SYM is defined using a COPY reloc. Return the dynamic object
1505 // where the original definition was found.
1506 Dynobj*
1507 get_copy_source(const Symbol* sym) const;
1508
1509 // Set the dynamic symbol indexes. INDEX is the index of the first
1510 // global dynamic symbol. Pointers to the symbols are stored into
1511 // the vector. The names are stored into the Stringpool. This
1512 // returns an updated dynamic symbol index.
1513 unsigned int
1514 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1515 Stringpool*, Versions*);
1516
1517 // Finalize the symbol table after we have set the final addresses
1518 // of all the input sections. This sets the final symbol indexes,
1519 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1520 // index of the first global symbol. OFF is the file offset of the
1521 // global symbol table, DYNOFF is the offset of the globals in the
1522 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1523 // global dynamic symbol, and DYNCOUNT is the number of global
1524 // dynamic symbols. This records the parameters, and returns the
1525 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1526 // local symbols.
1527 off_t
1528 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1529 Stringpool* pool, unsigned int* plocal_symcount);
1530
1531 // Set the final file offset of the symbol table.
1532 void
1533 set_file_offset(off_t off)
1534 { this->offset_ = off; }
1535
1536 // Status code of Symbol_table::compute_final_value.
1537 enum Compute_final_value_status
1538 {
1539 // No error.
1540 CFVS_OK,
1541 // Unsupported symbol section.
1542 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1543 // No output section.
1544 CFVS_NO_OUTPUT_SECTION
1545 };
1546
1547 // Compute the final value of SYM and store status in location PSTATUS.
1548 // During relaxation, this may be called multiple times for a symbol to
1549 // compute its would-be final value in each relaxation pass.
1550
1551 template<int size>
1552 typename Sized_symbol<size>::Value_type
1553 compute_final_value(const Sized_symbol<size>* sym,
1554 Compute_final_value_status* pstatus) const;
1555
1556 // Return the index of the first global symbol.
1557 unsigned int
1558 first_global_index() const
1559 { return this->first_global_index_; }
1560
1561 // Return the total number of symbols in the symbol table.
1562 unsigned int
1563 output_count() const
1564 { return this->output_count_; }
1565
1566 // Write out the global symbols.
1567 void
1568 write_globals(const Stringpool*, const Stringpool*,
1569 Output_symtab_xindex*, Output_symtab_xindex*,
1570 Output_file*) const;
1571
1572 // Write out a section symbol. Return the updated offset.
1573 void
1574 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1575 Output_file*, off_t) const;
1576
1577 // Loop over all symbols, applying the function F to each.
1578 template<int size, typename F>
1579 void
1580 for_all_symbols(F f) const
1581 {
1582 for (Symbol_table_type::const_iterator p = this->table_.begin();
1583 p != this->table_.end();
1584 ++p)
1585 {
1586 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1587 f(sym);
1588 }
1589 }
1590
1591 // Dump statistical information to stderr.
1592 void
1593 print_stats() const;
1594
1595 // Return the version script information.
1596 const Version_script_info&
1597 version_script() const
1598 { return version_script_; }
1599
1600 private:
1601 Symbol_table(const Symbol_table&);
1602 Symbol_table& operator=(const Symbol_table&);
1603
1604 // The type of the list of common symbols.
1605 typedef std::vector<Symbol*> Commons_type;
1606
1607 // The type of the symbol hash table.
1608
1609 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1610
1611 // The hash function. The key values are Stringpool keys.
1612 struct Symbol_table_hash
1613 {
1614 inline size_t
1615 operator()(const Symbol_table_key& key) const
1616 {
1617 return key.first ^ key.second;
1618 }
1619 };
1620
1621 struct Symbol_table_eq
1622 {
1623 bool
1624 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1625 };
1626
1627 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1628 Symbol_table_eq> Symbol_table_type;
1629
1630 // A map from symbol name (as a pointer into the namepool) to all
1631 // the locations the symbols is (weakly) defined (and certain other
1632 // conditions are met). This map will be used later to detect
1633 // possible One Definition Rule (ODR) violations.
1634 struct Symbol_location_hash
1635 {
1636 size_t operator()(const Symbol_location& loc) const
1637 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1638 };
1639
1640 typedef Unordered_map<const char*,
1641 Unordered_set<Symbol_location, Symbol_location_hash> >
1642 Odr_map;
1643
1644 // Make FROM a forwarder symbol to TO.
1645 void
1646 make_forwarder(Symbol* from, Symbol* to);
1647
1648 // Add a symbol.
1649 template<int size, bool big_endian>
1650 Sized_symbol<size>*
1651 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1652 const char* version, Stringpool::Key version_key,
1653 bool def, const elfcpp::Sym<size, big_endian>& sym,
1654 unsigned int st_shndx, bool is_ordinary,
1655 unsigned int orig_st_shndx);
1656
1657 // Define a default symbol.
1658 template<int size, bool big_endian>
1659 void
1660 define_default_version(Sized_symbol<size>*, bool,
1661 Symbol_table_type::iterator);
1662
1663 // Resolve symbols.
1664 template<int size, bool big_endian>
1665 void
1666 resolve(Sized_symbol<size>* to,
1667 const elfcpp::Sym<size, big_endian>& sym,
1668 unsigned int st_shndx, bool is_ordinary,
1669 unsigned int orig_st_shndx,
1670 Object*, const char* version);
1671
1672 template<int size, bool big_endian>
1673 void
1674 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1675
1676 // Record that a symbol is forced to be local by a version script or
1677 // by visibility.
1678 void
1679 force_local(Symbol*);
1680
1681 // Adjust NAME and *NAME_KEY for wrapping.
1682 const char*
1683 wrap_symbol(const char* name, Stringpool::Key* name_key);
1684
1685 // Whether we should override a symbol, based on flags in
1686 // resolve.cc.
1687 static bool
1688 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1689 Object*, bool*, bool*);
1690
1691 // Report a problem in symbol resolution.
1692 static void
1693 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1694 Defined, Object* object);
1695
1696 // Override a symbol.
1697 template<int size, bool big_endian>
1698 void
1699 override(Sized_symbol<size>* tosym,
1700 const elfcpp::Sym<size, big_endian>& fromsym,
1701 unsigned int st_shndx, bool is_ordinary,
1702 Object* object, const char* version);
1703
1704 // Whether we should override a symbol with a special symbol which
1705 // is automatically defined by the linker.
1706 static bool
1707 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1708
1709 // Override a symbol with a special symbol.
1710 template<int size>
1711 void
1712 override_with_special(Sized_symbol<size>* tosym,
1713 const Sized_symbol<size>* fromsym);
1714
1715 // Record all weak alias sets for a dynamic object.
1716 template<int size>
1717 void
1718 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1719
1720 // Define a special symbol.
1721 template<int size, bool big_endian>
1722 Sized_symbol<size>*
1723 define_special_symbol(const char** pname, const char** pversion,
1724 bool only_if_ref, Sized_symbol<size>** poldsym,
1725 bool* resolve_oldsym);
1726
1727 // Define a symbol in an Output_data, sized version.
1728 template<int size>
1729 Sized_symbol<size>*
1730 do_define_in_output_data(const char* name, const char* version, Defined,
1731 Output_data*,
1732 typename elfcpp::Elf_types<size>::Elf_Addr value,
1733 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1734 elfcpp::STT type, elfcpp::STB binding,
1735 elfcpp::STV visibility, unsigned char nonvis,
1736 bool offset_is_from_end, bool only_if_ref);
1737
1738 // Define a symbol in an Output_segment, sized version.
1739 template<int size>
1740 Sized_symbol<size>*
1741 do_define_in_output_segment(
1742 const char* name, const char* version, Defined, Output_segment* os,
1743 typename elfcpp::Elf_types<size>::Elf_Addr value,
1744 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1745 elfcpp::STT type, elfcpp::STB binding,
1746 elfcpp::STV visibility, unsigned char nonvis,
1747 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1748
1749 // Define a symbol as a constant, sized version.
1750 template<int size>
1751 Sized_symbol<size>*
1752 do_define_as_constant(
1753 const char* name, const char* version, Defined,
1754 typename elfcpp::Elf_types<size>::Elf_Addr value,
1755 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1756 elfcpp::STT type, elfcpp::STB binding,
1757 elfcpp::STV visibility, unsigned char nonvis,
1758 bool only_if_ref, bool force_override);
1759
1760 // Add any undefined symbols named on the command line to the symbol
1761 // table, sized version.
1762 template<int size>
1763 void
1764 do_add_undefined_symbols_from_command_line(Layout*);
1765
1766 // Add one undefined symbol.
1767 template<int size>
1768 void
1769 add_undefined_symbol_from_command_line(const char* name);
1770
1771 // Types of common symbols.
1772
1773 enum Commons_section_type
1774 {
1775 COMMONS_NORMAL,
1776 COMMONS_TLS,
1777 COMMONS_SMALL,
1778 COMMONS_LARGE
1779 };
1780
1781 // Allocate the common symbols, sized version.
1782 template<int size>
1783 void
1784 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1785
1786 // Allocate the common symbols from one list.
1787 template<int size>
1788 void
1789 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1790 Mapfile*, Sort_commons_order);
1791
1792 // Returns all of the lines attached to LOC, not just the one the
1793 // instruction actually came from. This helps the ODR checker avoid
1794 // false positives.
1795 static std::vector<std::string>
1796 linenos_from_loc(const Task* task, const Symbol_location& loc);
1797
1798 // Implement detect_odr_violations.
1799 template<int size, bool big_endian>
1800 void
1801 sized_detect_odr_violations() const;
1802
1803 // Finalize symbols specialized for size.
1804 template<int size>
1805 off_t
1806 sized_finalize(off_t, Stringpool*, unsigned int*);
1807
1808 // Finalize a symbol. Return whether it should be added to the
1809 // symbol table.
1810 template<int size>
1811 bool
1812 sized_finalize_symbol(Symbol*);
1813
1814 // Add a symbol the final symtab by setting its index.
1815 template<int size>
1816 void
1817 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1818
1819 // Write globals specialized for size and endianness.
1820 template<int size, bool big_endian>
1821 void
1822 sized_write_globals(const Stringpool*, const Stringpool*,
1823 Output_symtab_xindex*, Output_symtab_xindex*,
1824 Output_file*) const;
1825
1826 // Write out a symbol to P.
1827 template<int size, bool big_endian>
1828 void
1829 sized_write_symbol(Sized_symbol<size>*,
1830 typename elfcpp::Elf_types<size>::Elf_Addr value,
1831 unsigned int shndx, elfcpp::STB,
1832 const Stringpool*, unsigned char* p) const;
1833
1834 // Possibly warn about an undefined symbol from a dynamic object.
1835 void
1836 warn_about_undefined_dynobj_symbol(Symbol*) const;
1837
1838 // Write out a section symbol, specialized for size and endianness.
1839 template<int size, bool big_endian>
1840 void
1841 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1842 Output_file*, off_t) const;
1843
1844 // The type of the list of symbols which have been forced local.
1845 typedef std::vector<Symbol*> Forced_locals;
1846
1847 // A map from symbols with COPY relocs to the dynamic objects where
1848 // they are defined.
1849 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1850
1851 // We increment this every time we see a new undefined symbol, for
1852 // use in archive groups.
1853 size_t saw_undefined_;
1854 // The index of the first global symbol in the output file.
1855 unsigned int first_global_index_;
1856 // The file offset within the output symtab section where we should
1857 // write the table.
1858 off_t offset_;
1859 // The number of global symbols we want to write out.
1860 unsigned int output_count_;
1861 // The file offset of the global dynamic symbols, or 0 if none.
1862 off_t dynamic_offset_;
1863 // The index of the first global dynamic symbol.
1864 unsigned int first_dynamic_global_index_;
1865 // The number of global dynamic symbols, or 0 if none.
1866 unsigned int dynamic_count_;
1867 // The symbol hash table.
1868 Symbol_table_type table_;
1869 // A pool of symbol names. This is used for all global symbols.
1870 // Entries in the hash table point into this pool.
1871 Stringpool namepool_;
1872 // Forwarding symbols.
1873 Unordered_map<const Symbol*, Symbol*> forwarders_;
1874 // Weak aliases. A symbol in this list points to the next alias.
1875 // The aliases point to each other in a circular list.
1876 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1877 // We don't expect there to be very many common symbols, so we keep
1878 // a list of them. When we find a common symbol we add it to this
1879 // list. It is possible that by the time we process the list the
1880 // symbol is no longer a common symbol. It may also have become a
1881 // forwarder.
1882 Commons_type commons_;
1883 // This is like the commons_ field, except that it holds TLS common
1884 // symbols.
1885 Commons_type tls_commons_;
1886 // This is for small common symbols.
1887 Commons_type small_commons_;
1888 // This is for large common symbols.
1889 Commons_type large_commons_;
1890 // A list of symbols which have been forced to be local. We don't
1891 // expect there to be very many of them, so we keep a list of them
1892 // rather than walking the whole table to find them.
1893 Forced_locals forced_locals_;
1894 // Manage symbol warnings.
1895 Warnings warnings_;
1896 // Manage potential One Definition Rule (ODR) violations.
1897 Odr_map candidate_odr_violations_;
1898
1899 // When we emit a COPY reloc for a symbol, we define it in an
1900 // Output_data. When it's time to emit version information for it,
1901 // we need to know the dynamic object in which we found the original
1902 // definition. This maps symbols with COPY relocs to the dynamic
1903 // object where they were defined.
1904 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1905 // Information parsed from the version script, if any.
1906 const Version_script_info& version_script_;
1907 Garbage_collection* gc_;
1908 Icf* icf_;
1909 };
1910
1911 // We inline get_sized_symbol for efficiency.
1912
1913 template<int size>
1914 Sized_symbol<size>*
1915 Symbol_table::get_sized_symbol(Symbol* sym) const
1916 {
1917 gold_assert(size == parameters->target().get_size());
1918 return static_cast<Sized_symbol<size>*>(sym);
1919 }
1920
1921 template<int size>
1922 const Sized_symbol<size>*
1923 Symbol_table::get_sized_symbol(const Symbol* sym) const
1924 {
1925 gold_assert(size == parameters->target().get_size());
1926 return static_cast<const Sized_symbol<size>*>(sym);
1927 }
1928
1929 } // End namespace gold.
1930
1931 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.125311 seconds and 4 git commands to generate.