Automatic date update in version.in
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 void
125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Set that this version is not the default for this symbol name.
144 void
145 set_is_not_default()
146 { this->is_def_ = false; }
147
148 // Return the symbol's name as name@version (or name@@version).
149 std::string
150 versioned_name() const;
151
152 // Return the symbol source.
153 Source
154 source() const
155 { return this->source_; }
156
157 // Return the object with which this symbol is associated.
158 Object*
159 object() const
160 {
161 gold_assert(this->source_ == FROM_OBJECT);
162 return this->u_.from_object.object;
163 }
164
165 // Return the index of the section in the input relocatable or
166 // dynamic object file.
167 unsigned int
168 shndx(bool* is_ordinary) const
169 {
170 gold_assert(this->source_ == FROM_OBJECT);
171 *is_ordinary = this->is_ordinary_shndx_;
172 return this->u_.from_object.shndx;
173 }
174
175 // Return the output data section with which this symbol is
176 // associated, if the symbol was specially defined with respect to
177 // an output data section.
178 Output_data*
179 output_data() const
180 {
181 gold_assert(this->source_ == IN_OUTPUT_DATA);
182 return this->u_.in_output_data.output_data;
183 }
184
185 // If this symbol was defined with respect to an output data
186 // section, return whether the value is an offset from end.
187 bool
188 offset_is_from_end() const
189 {
190 gold_assert(this->source_ == IN_OUTPUT_DATA);
191 return this->u_.in_output_data.offset_is_from_end;
192 }
193
194 // Return the output segment with which this symbol is associated,
195 // if the symbol was specially defined with respect to an output
196 // segment.
197 Output_segment*
198 output_segment() const
199 {
200 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201 return this->u_.in_output_segment.output_segment;
202 }
203
204 // If this symbol was defined with respect to an output segment,
205 // return the offset base.
206 Segment_offset_base
207 offset_base() const
208 {
209 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
210 return this->u_.in_output_segment.offset_base;
211 }
212
213 // Return the symbol binding.
214 elfcpp::STB
215 binding() const
216 { return this->binding_; }
217
218 // Return the symbol type.
219 elfcpp::STT
220 type() const
221 { return this->type_; }
222
223 // Set the symbol type.
224 void
225 set_type(elfcpp::STT type)
226 { this->type_ = type; }
227
228 // Return true for function symbol.
229 bool
230 is_func() const
231 {
232 return (this->type_ == elfcpp::STT_FUNC
233 || this->type_ == elfcpp::STT_GNU_IFUNC);
234 }
235
236 // Return the symbol visibility.
237 elfcpp::STV
238 visibility() const
239 { return this->visibility_; }
240
241 // Set the visibility.
242 void
243 set_visibility(elfcpp::STV visibility)
244 { this->visibility_ = visibility; }
245
246 // Override symbol visibility.
247 void
248 override_visibility(elfcpp::STV);
249
250 // Set whether the symbol was originally a weak undef or a regular undef
251 // when resolved by a dynamic def or by a special symbol.
252 inline void
253 set_undef_binding(elfcpp::STB bind)
254 {
255 if (!this->undef_binding_set_ || this->undef_binding_weak_)
256 {
257 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
258 this->undef_binding_set_ = true;
259 }
260 }
261
262 // Return TRUE if a weak undef was resolved by a dynamic def or
263 // by a special symbol.
264 inline bool
265 is_undef_binding_weak() const
266 { return this->undef_binding_weak_; }
267
268 // Return the non-visibility part of the st_other field.
269 unsigned char
270 nonvis() const
271 { return this->nonvis_; }
272
273 // Set the non-visibility part of the st_other field.
274 void
275 set_nonvis(unsigned int nonvis)
276 { this->nonvis_ = nonvis; }
277
278 // Return whether this symbol is a forwarder. This will never be
279 // true of a symbol found in the hash table, but may be true of
280 // symbol pointers attached to object files.
281 bool
282 is_forwarder() const
283 { return this->is_forwarder_; }
284
285 // Mark this symbol as a forwarder.
286 void
287 set_forwarder()
288 { this->is_forwarder_ = true; }
289
290 // Return whether this symbol has an alias in the weak aliases table
291 // in Symbol_table.
292 bool
293 has_alias() const
294 { return this->has_alias_; }
295
296 // Mark this symbol as having an alias.
297 void
298 set_has_alias()
299 { this->has_alias_ = true; }
300
301 // Return whether this symbol needs an entry in the dynamic symbol
302 // table.
303 bool
304 needs_dynsym_entry() const
305 {
306 return (this->needs_dynsym_entry_
307 || (this->in_reg()
308 && this->in_dyn()
309 && this->is_externally_visible()));
310 }
311
312 // Mark this symbol as needing an entry in the dynamic symbol table.
313 void
314 set_needs_dynsym_entry()
315 { this->needs_dynsym_entry_ = true; }
316
317 // Return whether this symbol should be added to the dynamic symbol
318 // table.
319 bool
320 should_add_dynsym_entry(Symbol_table*) const;
321
322 // Return whether this symbol has been seen in a regular object.
323 bool
324 in_reg() const
325 { return this->in_reg_; }
326
327 // Mark this symbol as having been seen in a regular object.
328 void
329 set_in_reg()
330 { this->in_reg_ = true; }
331
332 // Return whether this symbol has been seen in a dynamic object.
333 bool
334 in_dyn() const
335 { return this->in_dyn_; }
336
337 // Mark this symbol as having been seen in a dynamic object.
338 void
339 set_in_dyn()
340 { this->in_dyn_ = true; }
341
342 // Return whether this symbol has been seen in a real ELF object.
343 // (IN_REG will return TRUE if the symbol has been seen in either
344 // a real ELF object or an object claimed by a plugin.)
345 bool
346 in_real_elf() const
347 { return this->in_real_elf_; }
348
349 // Mark this symbol as having been seen in a real ELF object.
350 void
351 set_in_real_elf()
352 { this->in_real_elf_ = true; }
353
354 // Return whether this symbol was defined in a section that was
355 // discarded from the link. This is used to control some error
356 // reporting.
357 bool
358 is_defined_in_discarded_section() const
359 { return this->is_defined_in_discarded_section_; }
360
361 // Mark this symbol as having been defined in a discarded section.
362 void
363 set_is_defined_in_discarded_section()
364 { this->is_defined_in_discarded_section_ = true; }
365
366 // Return the index of this symbol in the output file symbol table.
367 // A value of -1U means that this symbol is not going into the
368 // output file. This starts out as zero, and is set to a non-zero
369 // value by Symbol_table::finalize. It is an error to ask for the
370 // symbol table index before it has been set.
371 unsigned int
372 symtab_index() const
373 {
374 gold_assert(this->symtab_index_ != 0);
375 return this->symtab_index_;
376 }
377
378 // Set the index of the symbol in the output file symbol table.
379 void
380 set_symtab_index(unsigned int index)
381 {
382 gold_assert(index != 0);
383 this->symtab_index_ = index;
384 }
385
386 // Return whether this symbol already has an index in the output
387 // file symbol table.
388 bool
389 has_symtab_index() const
390 { return this->symtab_index_ != 0; }
391
392 // Return the index of this symbol in the dynamic symbol table. A
393 // value of -1U means that this symbol is not going into the dynamic
394 // symbol table. This starts out as zero, and is set to a non-zero
395 // during Layout::finalize. It is an error to ask for the dynamic
396 // symbol table index before it has been set.
397 unsigned int
398 dynsym_index() const
399 {
400 gold_assert(this->dynsym_index_ != 0);
401 return this->dynsym_index_;
402 }
403
404 // Set the index of the symbol in the dynamic symbol table.
405 void
406 set_dynsym_index(unsigned int index)
407 {
408 gold_assert(index != 0);
409 this->dynsym_index_ = index;
410 }
411
412 // Return whether this symbol already has an index in the dynamic
413 // symbol table.
414 bool
415 has_dynsym_index() const
416 { return this->dynsym_index_ != 0; }
417
418 // Return whether this symbol has an entry in the GOT section.
419 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
420 bool
421 has_got_offset(unsigned int got_type) const
422 { return this->got_offsets_.get_offset(got_type) != -1U; }
423
424 // Return the offset into the GOT section of this symbol.
425 unsigned int
426 got_offset(unsigned int got_type) const
427 {
428 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
429 gold_assert(got_offset != -1U);
430 return got_offset;
431 }
432
433 // Set the GOT offset of this symbol.
434 void
435 set_got_offset(unsigned int got_type, unsigned int got_offset)
436 { this->got_offsets_.set_offset(got_type, got_offset); }
437
438 // Return the GOT offset list.
439 const Got_offset_list*
440 got_offset_list() const
441 { return this->got_offsets_.get_list(); }
442
443 // Return whether this symbol has an entry in the PLT section.
444 bool
445 has_plt_offset() const
446 { return this->plt_offset_ != -1U; }
447
448 // Return the offset into the PLT section of this symbol.
449 unsigned int
450 plt_offset() const
451 {
452 gold_assert(this->has_plt_offset());
453 return this->plt_offset_;
454 }
455
456 // Set the PLT offset of this symbol.
457 void
458 set_plt_offset(unsigned int plt_offset)
459 {
460 gold_assert(plt_offset != -1U);
461 this->plt_offset_ = plt_offset;
462 }
463
464 // Return whether this dynamic symbol needs a special value in the
465 // dynamic symbol table.
466 bool
467 needs_dynsym_value() const
468 { return this->needs_dynsym_value_; }
469
470 // Set that this dynamic symbol needs a special value in the dynamic
471 // symbol table.
472 void
473 set_needs_dynsym_value()
474 {
475 gold_assert(this->object()->is_dynamic());
476 this->needs_dynsym_value_ = true;
477 }
478
479 // Return true if the final value of this symbol is known at link
480 // time.
481 bool
482 final_value_is_known() const;
483
484 // Return true if SHNDX represents a common symbol. This depends on
485 // the target.
486 static bool
487 is_common_shndx(unsigned int shndx);
488
489 // Return whether this is a defined symbol (not undefined or
490 // common).
491 bool
492 is_defined() const
493 {
494 bool is_ordinary;
495 if (this->source_ != FROM_OBJECT)
496 return this->source_ != IS_UNDEFINED;
497 unsigned int shndx = this->shndx(&is_ordinary);
498 return (is_ordinary
499 ? shndx != elfcpp::SHN_UNDEF
500 : !Symbol::is_common_shndx(shndx));
501 }
502
503 // Return true if this symbol is from a dynamic object.
504 bool
505 is_from_dynobj() const
506 {
507 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
508 }
509
510 // Return whether this is a placeholder symbol from a plugin object.
511 bool
512 is_placeholder() const
513 {
514 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
515 }
516
517 // Return whether this is an undefined symbol.
518 bool
519 is_undefined() const
520 {
521 bool is_ordinary;
522 return ((this->source_ == FROM_OBJECT
523 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
524 && is_ordinary)
525 || this->source_ == IS_UNDEFINED);
526 }
527
528 // Return whether this is a weak undefined symbol.
529 bool
530 is_weak_undefined() const
531 {
532 return (this->is_undefined()
533 && (this->binding() == elfcpp::STB_WEAK
534 || this->is_undef_binding_weak()
535 || parameters->options().weak_unresolved_symbols()));
536 }
537
538 // Return whether this is a strong undefined symbol.
539 bool
540 is_strong_undefined() const
541 {
542 return (this->is_undefined()
543 && this->binding() != elfcpp::STB_WEAK
544 && !this->is_undef_binding_weak()
545 && !parameters->options().weak_unresolved_symbols());
546 }
547
548 // Return whether this is an absolute symbol.
549 bool
550 is_absolute() const
551 {
552 bool is_ordinary;
553 return ((this->source_ == FROM_OBJECT
554 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
555 && !is_ordinary)
556 || this->source_ == IS_CONSTANT);
557 }
558
559 // Return whether this is a common symbol.
560 bool
561 is_common() const
562 {
563 if (this->source_ != FROM_OBJECT)
564 return false;
565 bool is_ordinary;
566 unsigned int shndx = this->shndx(&is_ordinary);
567 return !is_ordinary && Symbol::is_common_shndx(shndx);
568 }
569
570 // Return whether this symbol can be seen outside this object.
571 bool
572 is_externally_visible() const
573 {
574 return ((this->visibility_ == elfcpp::STV_DEFAULT
575 || this->visibility_ == elfcpp::STV_PROTECTED)
576 && !this->is_forced_local_);
577 }
578
579 // Return true if this symbol can be preempted by a definition in
580 // another link unit.
581 bool
582 is_preemptible() const
583 {
584 // It doesn't make sense to ask whether a symbol defined in
585 // another object is preemptible.
586 gold_assert(!this->is_from_dynobj());
587
588 // It doesn't make sense to ask whether an undefined symbol
589 // is preemptible.
590 gold_assert(!this->is_undefined());
591
592 // If a symbol does not have default visibility, it can not be
593 // seen outside this link unit and therefore is not preemptible.
594 if (this->visibility_ != elfcpp::STV_DEFAULT)
595 return false;
596
597 // If this symbol has been forced to be a local symbol by a
598 // version script, then it is not visible outside this link unit
599 // and is not preemptible.
600 if (this->is_forced_local_)
601 return false;
602
603 // If we are not producing a shared library, then nothing is
604 // preemptible.
605 if (!parameters->options().shared())
606 return false;
607
608 // If the symbol was named in a --dynamic-list script, it is preemptible.
609 if (parameters->options().in_dynamic_list(this->name()))
610 return true;
611
612 // If the user used -Bsymbolic, then nothing (else) is preemptible.
613 if (parameters->options().Bsymbolic())
614 return false;
615
616 // If the user used -Bsymbolic-functions, then functions are not
617 // preemptible. We explicitly check for not being STT_OBJECT,
618 // rather than for being STT_FUNC, because that is what the GNU
619 // linker does.
620 if (this->type() != elfcpp::STT_OBJECT
621 && parameters->options().Bsymbolic_functions())
622 return false;
623
624 // Otherwise the symbol is preemptible.
625 return true;
626 }
627
628 // Return true if this symbol is a function that needs a PLT entry.
629 bool
630 needs_plt_entry() const
631 {
632 // An undefined symbol from an executable does not need a PLT entry.
633 if (this->is_undefined() && !parameters->options().shared())
634 return false;
635
636 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
637 // doing a static link.
638 if (this->type() == elfcpp::STT_GNU_IFUNC)
639 return true;
640
641 // We only need a PLT entry for a function.
642 if (!this->is_func())
643 return false;
644
645 // If we're doing a static link or a -pie link, we don't create
646 // PLT entries.
647 if (parameters->doing_static_link()
648 || parameters->options().pie())
649 return false;
650
651 // We need a PLT entry if the function is defined in a dynamic
652 // object, or is undefined when building a shared object, or if it
653 // is subject to pre-emption.
654 return (this->is_from_dynobj()
655 || this->is_undefined()
656 || this->is_preemptible());
657 }
658
659 // When determining whether a reference to a symbol needs a dynamic
660 // relocation, we need to know several things about the reference.
661 // These flags may be or'ed together. 0 means that the symbol
662 // isn't referenced at all.
663 enum Reference_flags
664 {
665 // A reference to the symbol's absolute address. This includes
666 // references that cause an absolute address to be stored in the GOT.
667 ABSOLUTE_REF = 1,
668 // A reference that calculates the offset of the symbol from some
669 // anchor point, such as the PC or GOT.
670 RELATIVE_REF = 2,
671 // A TLS-related reference.
672 TLS_REF = 4,
673 // A reference that can always be treated as a function call.
674 FUNCTION_CALL = 8,
675 // When set, says that dynamic relocations are needed even if a
676 // symbol has a plt entry.
677 FUNC_DESC_ABI = 16,
678 };
679
680 // Given a direct absolute or pc-relative static relocation against
681 // the global symbol, this function returns whether a dynamic relocation
682 // is needed.
683
684 bool
685 needs_dynamic_reloc(int flags) const
686 {
687 // No dynamic relocations in a static link!
688 if (parameters->doing_static_link())
689 return false;
690
691 // A reference to an undefined symbol from an executable should be
692 // statically resolved to 0, and does not need a dynamic relocation.
693 // This matches gnu ld behavior.
694 if (this->is_undefined() && !parameters->options().shared())
695 return false;
696
697 // A reference to an absolute symbol does not need a dynamic relocation.
698 if (this->is_absolute())
699 return false;
700
701 // An absolute reference within a position-independent output file
702 // will need a dynamic relocation.
703 if ((flags & ABSOLUTE_REF)
704 && parameters->options().output_is_position_independent())
705 return true;
706
707 // A function call that can branch to a local PLT entry does not need
708 // a dynamic relocation.
709 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
710 return false;
711
712 // A reference to any PLT entry in a non-position-independent executable
713 // does not need a dynamic relocation.
714 if (!(flags & FUNC_DESC_ABI)
715 && !parameters->options().output_is_position_independent()
716 && this->has_plt_offset())
717 return false;
718
719 // A reference to a symbol defined in a dynamic object or to a
720 // symbol that is preemptible will need a dynamic relocation.
721 if (this->is_from_dynobj()
722 || this->is_undefined()
723 || this->is_preemptible())
724 return true;
725
726 // For all other cases, return FALSE.
727 return false;
728 }
729
730 // Whether we should use the PLT offset associated with a symbol for
731 // a relocation. FLAGS is a set of Reference_flags.
732
733 bool
734 use_plt_offset(int flags) const
735 {
736 // If the symbol doesn't have a PLT offset, then naturally we
737 // don't want to use it.
738 if (!this->has_plt_offset())
739 return false;
740
741 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
742 if (this->type() == elfcpp::STT_GNU_IFUNC)
743 return true;
744
745 // If we are going to generate a dynamic relocation, then we will
746 // wind up using that, so no need to use the PLT entry.
747 if (this->needs_dynamic_reloc(flags))
748 return false;
749
750 // If the symbol is from a dynamic object, we need to use the PLT
751 // entry.
752 if (this->is_from_dynobj())
753 return true;
754
755 // If we are generating a shared object, and this symbol is
756 // undefined or preemptible, we need to use the PLT entry.
757 if (parameters->options().shared()
758 && (this->is_undefined() || this->is_preemptible()))
759 return true;
760
761 // If this is a call to a weak undefined symbol, we need to use
762 // the PLT entry; the symbol may be defined by a library loaded
763 // at runtime.
764 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
765 return true;
766
767 // Otherwise we can use the regular definition.
768 return false;
769 }
770
771 // Given a direct absolute static relocation against
772 // the global symbol, where a dynamic relocation is needed, this
773 // function returns whether a relative dynamic relocation can be used.
774 // The caller must determine separately whether the static relocation
775 // is compatible with a relative relocation.
776
777 bool
778 can_use_relative_reloc(bool is_function_call) const
779 {
780 // A function call that can branch to a local PLT entry can
781 // use a RELATIVE relocation.
782 if (is_function_call && this->has_plt_offset())
783 return true;
784
785 // A reference to a symbol defined in a dynamic object or to a
786 // symbol that is preemptible can not use a RELATIVE relocation.
787 if (this->is_from_dynobj()
788 || this->is_undefined()
789 || this->is_preemptible())
790 return false;
791
792 // For all other cases, return TRUE.
793 return true;
794 }
795
796 // Return the output section where this symbol is defined. Return
797 // NULL if the symbol has an absolute value.
798 Output_section*
799 output_section() const;
800
801 // Set the symbol's output section. This is used for symbols
802 // defined in scripts. This should only be called after the symbol
803 // table has been finalized.
804 void
805 set_output_section(Output_section*);
806
807 // Set the symbol's output segment. This is used for pre-defined
808 // symbols whose segments aren't known until after layout is done
809 // (e.g., __ehdr_start).
810 void
811 set_output_segment(Output_segment*, Segment_offset_base);
812
813 // Set the symbol to undefined. This is used for pre-defined
814 // symbols whose segments aren't known until after layout is done
815 // (e.g., __ehdr_start).
816 void
817 set_undefined();
818
819 // Return whether there should be a warning for references to this
820 // symbol.
821 bool
822 has_warning() const
823 { return this->has_warning_; }
824
825 // Mark this symbol as having a warning.
826 void
827 set_has_warning()
828 { this->has_warning_ = true; }
829
830 // Return whether this symbol is defined by a COPY reloc from a
831 // dynamic object.
832 bool
833 is_copied_from_dynobj() const
834 { return this->is_copied_from_dynobj_; }
835
836 // Mark this symbol as defined by a COPY reloc.
837 void
838 set_is_copied_from_dynobj()
839 { this->is_copied_from_dynobj_ = true; }
840
841 // Return whether this symbol is forced to visibility STB_LOCAL
842 // by a "local:" entry in a version script.
843 bool
844 is_forced_local() const
845 { return this->is_forced_local_; }
846
847 // Mark this symbol as forced to STB_LOCAL visibility.
848 void
849 set_is_forced_local()
850 { this->is_forced_local_ = true; }
851
852 // Return true if this may need a COPY relocation.
853 // References from an executable object to non-function symbols
854 // defined in a dynamic object may need a COPY relocation.
855 bool
856 may_need_copy_reloc() const
857 {
858 return (parameters->options().copyreloc()
859 && this->is_from_dynobj()
860 && !this->is_func());
861 }
862
863 // Return true if this symbol was predefined by the linker.
864 bool
865 is_predefined() const
866 { return this->is_predefined_; }
867
868 // Return true if this is a C++ vtable symbol.
869 bool
870 is_cxx_vtable() const
871 { return is_prefix_of("_ZTV", this->name_); }
872
873 // Return true if this symbol is protected in a shared object.
874 // This is not the same as checking if visibility() == elfcpp::STV_PROTECTED,
875 // because the visibility_ field reflects the symbol's visibility from
876 // outside the shared object.
877 bool
878 is_protected() const
879 { return this->is_protected_; }
880
881 // Mark this symbol as protected in a shared object.
882 void
883 set_is_protected()
884 { this->is_protected_ = true; }
885
886 protected:
887 // Instances of this class should always be created at a specific
888 // size.
889 Symbol()
890 { memset(this, 0, sizeof *this); }
891
892 // Initialize the general fields.
893 void
894 init_fields(const char* name, const char* version,
895 elfcpp::STT type, elfcpp::STB binding,
896 elfcpp::STV visibility, unsigned char nonvis);
897
898 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
899 // section index, IS_ORDINARY is whether it is a normal section
900 // index rather than a special code.
901 template<int size, bool big_endian>
902 void
903 init_base_object(const char* name, const char* version, Object* object,
904 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
905 bool is_ordinary);
906
907 // Initialize fields for an Output_data.
908 void
909 init_base_output_data(const char* name, const char* version, Output_data*,
910 elfcpp::STT, elfcpp::STB, elfcpp::STV,
911 unsigned char nonvis, bool offset_is_from_end,
912 bool is_predefined);
913
914 // Initialize fields for an Output_segment.
915 void
916 init_base_output_segment(const char* name, const char* version,
917 Output_segment* os, elfcpp::STT type,
918 elfcpp::STB binding, elfcpp::STV visibility,
919 unsigned char nonvis,
920 Segment_offset_base offset_base,
921 bool is_predefined);
922
923 // Initialize fields for a constant.
924 void
925 init_base_constant(const char* name, const char* version, elfcpp::STT type,
926 elfcpp::STB binding, elfcpp::STV visibility,
927 unsigned char nonvis, bool is_predefined);
928
929 // Initialize fields for an undefined symbol.
930 void
931 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
932 elfcpp::STB binding, elfcpp::STV visibility,
933 unsigned char nonvis);
934
935 // Override existing symbol.
936 template<int size, bool big_endian>
937 void
938 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
939 bool is_ordinary, Object* object, const char* version);
940
941 // Override existing symbol with a special symbol.
942 void
943 override_base_with_special(const Symbol* from);
944
945 // Override symbol version.
946 void
947 override_version(const char* version);
948
949 // Allocate a common symbol by giving it a location in the output
950 // file.
951 void
952 allocate_base_common(Output_data*);
953
954 private:
955 Symbol(const Symbol&);
956 Symbol& operator=(const Symbol&);
957
958 // Symbol name (expected to point into a Stringpool).
959 const char* name_;
960 // Symbol version (expected to point into a Stringpool). This may
961 // be NULL.
962 const char* version_;
963
964 union
965 {
966 // This struct is used if SOURCE_ == FROM_OBJECT.
967 struct
968 {
969 // Object in which symbol is defined, or in which it was first
970 // seen.
971 Object* object;
972 // Section number in object_ in which symbol is defined.
973 unsigned int shndx;
974 } from_object;
975
976 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
977 struct
978 {
979 // Output_data in which symbol is defined. Before
980 // Layout::finalize the symbol's value is an offset within the
981 // Output_data.
982 Output_data* output_data;
983 // True if the offset is from the end, false if the offset is
984 // from the beginning.
985 bool offset_is_from_end;
986 } in_output_data;
987
988 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
989 struct
990 {
991 // Output_segment in which the symbol is defined. Before
992 // Layout::finalize the symbol's value is an offset.
993 Output_segment* output_segment;
994 // The base to use for the offset before Layout::finalize.
995 Segment_offset_base offset_base;
996 } in_output_segment;
997 } u_;
998
999 // The index of this symbol in the output file. If the symbol is
1000 // not going into the output file, this value is -1U. This field
1001 // starts as always holding zero. It is set to a non-zero value by
1002 // Symbol_table::finalize.
1003 unsigned int symtab_index_;
1004
1005 // The index of this symbol in the dynamic symbol table. If the
1006 // symbol is not going into the dynamic symbol table, this value is
1007 // -1U. This field starts as always holding zero. It is set to a
1008 // non-zero value during Layout::finalize.
1009 unsigned int dynsym_index_;
1010
1011 // The GOT section entries for this symbol. A symbol may have more
1012 // than one GOT offset (e.g., when mixing modules compiled with two
1013 // different TLS models), but will usually have at most one.
1014 Got_offset_list got_offsets_;
1015
1016 // If this symbol has an entry in the PLT section, then this is the
1017 // offset from the start of the PLT section. This is -1U if there
1018 // is no PLT entry.
1019 unsigned int plt_offset_;
1020
1021 // Symbol type (bits 0 to 3).
1022 elfcpp::STT type_ : 4;
1023 // Symbol binding (bits 4 to 7).
1024 elfcpp::STB binding_ : 4;
1025 // Symbol visibility (bits 8 to 9).
1026 elfcpp::STV visibility_ : 2;
1027 // Rest of symbol st_other field (bits 10 to 15).
1028 unsigned int nonvis_ : 6;
1029 // The type of symbol (bits 16 to 18).
1030 Source source_ : 3;
1031 // True if this is the default version of the symbol (bit 19).
1032 bool is_def_ : 1;
1033 // True if this symbol really forwards to another symbol. This is
1034 // used when we discover after the fact that two different entries
1035 // in the hash table really refer to the same symbol. This will
1036 // never be set for a symbol found in the hash table, but may be set
1037 // for a symbol found in the list of symbols attached to an Object.
1038 // It forwards to the symbol found in the forwarders_ map of
1039 // Symbol_table (bit 20).
1040 bool is_forwarder_ : 1;
1041 // True if the symbol has an alias in the weak_aliases table in
1042 // Symbol_table (bit 21).
1043 bool has_alias_ : 1;
1044 // True if this symbol needs to be in the dynamic symbol table (bit
1045 // 22).
1046 bool needs_dynsym_entry_ : 1;
1047 // True if we've seen this symbol in a regular object (bit 23).
1048 bool in_reg_ : 1;
1049 // True if we've seen this symbol in a dynamic object (bit 24).
1050 bool in_dyn_ : 1;
1051 // True if this is a dynamic symbol which needs a special value in
1052 // the dynamic symbol table (bit 25).
1053 bool needs_dynsym_value_ : 1;
1054 // True if there is a warning for this symbol (bit 26).
1055 bool has_warning_ : 1;
1056 // True if we are using a COPY reloc for this symbol, so that the
1057 // real definition lives in a dynamic object (bit 27).
1058 bool is_copied_from_dynobj_ : 1;
1059 // True if this symbol was forced to local visibility by a version
1060 // script (bit 28).
1061 bool is_forced_local_ : 1;
1062 // True if the field u_.from_object.shndx is an ordinary section
1063 // index, not one of the special codes from SHN_LORESERVE to
1064 // SHN_HIRESERVE (bit 29).
1065 bool is_ordinary_shndx_ : 1;
1066 // True if we've seen this symbol in a "real" ELF object (bit 30).
1067 // If the symbol has been seen in a relocatable, non-IR, object file,
1068 // it's known to be referenced from outside the IR. A reference from
1069 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1070 // mark the symbol as "visible" from outside the IR. The compiler
1071 // can use this distinction to guide its handling of COMDAT symbols.
1072 bool in_real_elf_ : 1;
1073 // True if this symbol is defined in a section which was discarded
1074 // (bit 31).
1075 bool is_defined_in_discarded_section_ : 1;
1076 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1077 bool undef_binding_set_ : 1;
1078 // True if this symbol was a weak undef resolved by a dynamic def
1079 // or by a special symbol (bit 33).
1080 bool undef_binding_weak_ : 1;
1081 // True if this symbol is a predefined linker symbol (bit 34).
1082 bool is_predefined_ : 1;
1083 // True if this symbol has protected visibility in a shared object (bit 35).
1084 // The visibility_ field will be STV_DEFAULT in this case because we
1085 // must treat it as such from outside the shared object.
1086 bool is_protected_ : 1;
1087 };
1088
1089 // The parts of a symbol which are size specific. Using a template
1090 // derived class like this helps us use less space on a 32-bit system.
1091
1092 template<int size>
1093 class Sized_symbol : public Symbol
1094 {
1095 public:
1096 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1097 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1098
1099 Sized_symbol()
1100 { }
1101
1102 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1103 // section index, IS_ORDINARY is whether it is a normal section
1104 // index rather than a special code.
1105 template<bool big_endian>
1106 void
1107 init_object(const char* name, const char* version, Object* object,
1108 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1109 bool is_ordinary);
1110
1111 // Initialize fields for an Output_data.
1112 void
1113 init_output_data(const char* name, const char* version, Output_data*,
1114 Value_type value, Size_type symsize, elfcpp::STT,
1115 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1116 bool offset_is_from_end, bool is_predefined);
1117
1118 // Initialize fields for an Output_segment.
1119 void
1120 init_output_segment(const char* name, const char* version, Output_segment*,
1121 Value_type value, Size_type symsize, elfcpp::STT,
1122 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1123 Segment_offset_base offset_base, bool is_predefined);
1124
1125 // Initialize fields for a constant.
1126 void
1127 init_constant(const char* name, const char* version, Value_type value,
1128 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1129 unsigned char nonvis, bool is_predefined);
1130
1131 // Initialize fields for an undefined symbol.
1132 void
1133 init_undefined(const char* name, const char* version, Value_type value,
1134 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1135
1136 // Override existing symbol.
1137 template<bool big_endian>
1138 void
1139 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1140 bool is_ordinary, Object* object, const char* version);
1141
1142 // Override existing symbol with a special symbol.
1143 void
1144 override_with_special(const Sized_symbol<size>*);
1145
1146 // Return the symbol's value.
1147 Value_type
1148 value() const
1149 { return this->value_; }
1150
1151 // Return the symbol's size (we can't call this 'size' because that
1152 // is a template parameter).
1153 Size_type
1154 symsize() const
1155 { return this->symsize_; }
1156
1157 // Set the symbol size. This is used when resolving common symbols.
1158 void
1159 set_symsize(Size_type symsize)
1160 { this->symsize_ = symsize; }
1161
1162 // Set the symbol value. This is called when we store the final
1163 // values of the symbols into the symbol table.
1164 void
1165 set_value(Value_type value)
1166 { this->value_ = value; }
1167
1168 // Allocate a common symbol by giving it a location in the output
1169 // file.
1170 void
1171 allocate_common(Output_data*, Value_type value);
1172
1173 private:
1174 Sized_symbol(const Sized_symbol&);
1175 Sized_symbol& operator=(const Sized_symbol&);
1176
1177 // Symbol value. Before Layout::finalize this is the offset in the
1178 // input section. This is set to the final value during
1179 // Layout::finalize.
1180 Value_type value_;
1181 // Symbol size.
1182 Size_type symsize_;
1183 };
1184
1185 // A struct describing a symbol defined by the linker, where the value
1186 // of the symbol is defined based on an output section. This is used
1187 // for symbols defined by the linker, like "_init_array_start".
1188
1189 struct Define_symbol_in_section
1190 {
1191 // The symbol name.
1192 const char* name;
1193 // The name of the output section with which this symbol should be
1194 // associated. If there is no output section with that name, the
1195 // symbol will be defined as zero.
1196 const char* output_section;
1197 // The offset of the symbol within the output section. This is an
1198 // offset from the start of the output section, unless start_at_end
1199 // is true, in which case this is an offset from the end of the
1200 // output section.
1201 uint64_t value;
1202 // The size of the symbol.
1203 uint64_t size;
1204 // The symbol type.
1205 elfcpp::STT type;
1206 // The symbol binding.
1207 elfcpp::STB binding;
1208 // The symbol visibility.
1209 elfcpp::STV visibility;
1210 // The rest of the st_other field.
1211 unsigned char nonvis;
1212 // If true, the value field is an offset from the end of the output
1213 // section.
1214 bool offset_is_from_end;
1215 // If true, this symbol is defined only if we see a reference to it.
1216 bool only_if_ref;
1217 };
1218
1219 // A struct describing a symbol defined by the linker, where the value
1220 // of the symbol is defined based on a segment. This is used for
1221 // symbols defined by the linker, like "_end". We describe the
1222 // segment with which the symbol should be associated by its
1223 // characteristics. If no segment meets these characteristics, the
1224 // symbol will be defined as zero. If there is more than one segment
1225 // which meets these characteristics, we will use the first one.
1226
1227 struct Define_symbol_in_segment
1228 {
1229 // The symbol name.
1230 const char* name;
1231 // The segment type where the symbol should be defined, typically
1232 // PT_LOAD.
1233 elfcpp::PT segment_type;
1234 // Bitmask of segment flags which must be set.
1235 elfcpp::PF segment_flags_set;
1236 // Bitmask of segment flags which must be clear.
1237 elfcpp::PF segment_flags_clear;
1238 // The offset of the symbol within the segment. The offset is
1239 // calculated from the position set by offset_base.
1240 uint64_t value;
1241 // The size of the symbol.
1242 uint64_t size;
1243 // The symbol type.
1244 elfcpp::STT type;
1245 // The symbol binding.
1246 elfcpp::STB binding;
1247 // The symbol visibility.
1248 elfcpp::STV visibility;
1249 // The rest of the st_other field.
1250 unsigned char nonvis;
1251 // The base from which we compute the offset.
1252 Symbol::Segment_offset_base offset_base;
1253 // If true, this symbol is defined only if we see a reference to it.
1254 bool only_if_ref;
1255 };
1256
1257 // Specify an object/section/offset location. Used by ODR code.
1258
1259 struct Symbol_location
1260 {
1261 // Object where the symbol is defined.
1262 Object* object;
1263 // Section-in-object where the symbol is defined.
1264 unsigned int shndx;
1265 // For relocatable objects, offset-in-section where the symbol is defined.
1266 // For dynamic objects, address where the symbol is defined.
1267 off_t offset;
1268 bool operator==(const Symbol_location& that) const
1269 {
1270 return (this->object == that.object
1271 && this->shndx == that.shndx
1272 && this->offset == that.offset);
1273 }
1274 };
1275
1276 // A map from symbol name (as a pointer into the namepool) to all
1277 // the locations the symbols is (weakly) defined (and certain other
1278 // conditions are met). This map will be used later to detect
1279 // possible One Definition Rule (ODR) violations.
1280 struct Symbol_location_hash
1281 {
1282 size_t operator()(const Symbol_location& loc) const
1283 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1284 };
1285
1286 // This class manages warnings. Warnings are a GNU extension. When
1287 // we see a section named .gnu.warning.SYM in an object file, and if
1288 // we wind using the definition of SYM from that object file, then we
1289 // will issue a warning for any relocation against SYM from a
1290 // different object file. The text of the warning is the contents of
1291 // the section. This is not precisely the definition used by the old
1292 // GNU linker; the old GNU linker treated an occurrence of
1293 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1294 // would trigger a warning on any reference. However, it was
1295 // inconsistent in that a warning in a dynamic object only triggered
1296 // if there was no definition in a regular object. This linker is
1297 // different in that we only issue a warning if we use the symbol
1298 // definition from the same object file as the warning section.
1299
1300 class Warnings
1301 {
1302 public:
1303 Warnings()
1304 : warnings_()
1305 { }
1306
1307 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1308 // of the warning.
1309 void
1310 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1311 const std::string& warning);
1312
1313 // For each symbol for which we should give a warning, make a note
1314 // on the symbol.
1315 void
1316 note_warnings(Symbol_table* symtab);
1317
1318 // Issue a warning for a reference to SYM at RELINFO's location.
1319 template<int size, bool big_endian>
1320 void
1321 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1322 size_t relnum, off_t reloffset) const;
1323
1324 private:
1325 Warnings(const Warnings&);
1326 Warnings& operator=(const Warnings&);
1327
1328 // What we need to know to get the warning text.
1329 struct Warning_location
1330 {
1331 // The object the warning is in.
1332 Object* object;
1333 // The warning text.
1334 std::string text;
1335
1336 Warning_location()
1337 : object(NULL), text()
1338 { }
1339
1340 void
1341 set(Object* o, const std::string& t)
1342 {
1343 this->object = o;
1344 this->text = t;
1345 }
1346 };
1347
1348 // A mapping from warning symbol names (canonicalized in
1349 // Symbol_table's namepool_ field) to warning information.
1350 typedef Unordered_map<const char*, Warning_location> Warning_table;
1351
1352 Warning_table warnings_;
1353 };
1354
1355 // The main linker symbol table.
1356
1357 class Symbol_table
1358 {
1359 public:
1360 // The different places where a symbol definition can come from.
1361 enum Defined
1362 {
1363 // Defined in an object file--the normal case.
1364 OBJECT,
1365 // Defined for a COPY reloc.
1366 COPY,
1367 // Defined on the command line using --defsym.
1368 DEFSYM,
1369 // Defined (so to speak) on the command line using -u.
1370 UNDEFINED,
1371 // Defined in a linker script.
1372 SCRIPT,
1373 // Predefined by the linker.
1374 PREDEFINED,
1375 // Defined by the linker during an incremental base link, but not
1376 // a predefined symbol (e.g., common, defined in script).
1377 INCREMENTAL_BASE,
1378 };
1379
1380 // The order in which we sort common symbols.
1381 enum Sort_commons_order
1382 {
1383 SORT_COMMONS_BY_SIZE_DESCENDING,
1384 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1385 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1386 };
1387
1388 // COUNT is an estimate of how many symbols will be inserted in the
1389 // symbol table. It's ok to put 0 if you don't know; a correct
1390 // guess will just save some CPU by reducing hashtable resizes.
1391 Symbol_table(unsigned int count, const Version_script_info& version_script);
1392
1393 ~Symbol_table();
1394
1395 void
1396 set_icf(Icf* icf)
1397 { this->icf_ = icf;}
1398
1399 Icf*
1400 icf() const
1401 { return this->icf_; }
1402
1403 // Returns true if ICF determined that this is a duplicate section.
1404 bool
1405 is_section_folded(Relobj* obj, unsigned int shndx) const;
1406
1407 void
1408 set_gc(Garbage_collection* gc)
1409 { this->gc_ = gc; }
1410
1411 Garbage_collection*
1412 gc() const
1413 { return this->gc_; }
1414
1415 // During garbage collection, this keeps undefined symbols.
1416 void
1417 gc_mark_undef_symbols(Layout*);
1418
1419 // This tells garbage collection that this symbol is referenced.
1420 void
1421 gc_mark_symbol(Symbol* sym);
1422
1423 // During garbage collection, this keeps sections that correspond to
1424 // symbols seen in dynamic objects.
1425 inline void
1426 gc_mark_dyn_syms(Symbol* sym);
1427
1428 // Add COUNT external symbols from the relocatable object RELOBJ to
1429 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1430 // offset in the symbol table of the first symbol, SYM_NAMES is
1431 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1432 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1433 // *DEFINED to the number of defined symbols.
1434 template<int size, bool big_endian>
1435 void
1436 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1437 const unsigned char* syms, size_t count,
1438 size_t symndx_offset, const char* sym_names,
1439 size_t sym_name_size,
1440 typename Sized_relobj_file<size, big_endian>::Symbols*,
1441 size_t* defined);
1442
1443 // Add one external symbol from the plugin object OBJ to the symbol table.
1444 // Returns a pointer to the resolved symbol in the symbol table.
1445 template<int size, bool big_endian>
1446 Symbol*
1447 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1448 const char* name, const char* ver,
1449 elfcpp::Sym<size, big_endian>* sym);
1450
1451 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1452 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1453 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1454 // symbol version data.
1455 template<int size, bool big_endian>
1456 void
1457 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1458 const unsigned char* syms, size_t count,
1459 const char* sym_names, size_t sym_name_size,
1460 const unsigned char* versym, size_t versym_size,
1461 const std::vector<const char*>*,
1462 typename Sized_relobj_file<size, big_endian>::Symbols*,
1463 size_t* defined);
1464
1465 // Add one external symbol from the incremental object OBJ to the symbol
1466 // table. Returns a pointer to the resolved symbol in the symbol table.
1467 template<int size, bool big_endian>
1468 Sized_symbol<size>*
1469 add_from_incrobj(Object* obj, const char* name,
1470 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1471
1472 // Define a special symbol based on an Output_data. It is a
1473 // multiple definition error if this symbol is already defined.
1474 Symbol*
1475 define_in_output_data(const char* name, const char* version, Defined,
1476 Output_data*, uint64_t value, uint64_t symsize,
1477 elfcpp::STT type, elfcpp::STB binding,
1478 elfcpp::STV visibility, unsigned char nonvis,
1479 bool offset_is_from_end, bool only_if_ref);
1480
1481 // Define a special symbol based on an Output_segment. It is a
1482 // multiple definition error if this symbol is already defined.
1483 Symbol*
1484 define_in_output_segment(const char* name, const char* version, Defined,
1485 Output_segment*, uint64_t value, uint64_t symsize,
1486 elfcpp::STT type, elfcpp::STB binding,
1487 elfcpp::STV visibility, unsigned char nonvis,
1488 Symbol::Segment_offset_base, bool only_if_ref);
1489
1490 // Define a special symbol with a constant value. It is a multiple
1491 // definition error if this symbol is already defined.
1492 Symbol*
1493 define_as_constant(const char* name, const char* version, Defined,
1494 uint64_t value, uint64_t symsize, elfcpp::STT type,
1495 elfcpp::STB binding, elfcpp::STV visibility,
1496 unsigned char nonvis, bool only_if_ref,
1497 bool force_override);
1498
1499 // Define a set of symbols in output sections. If ONLY_IF_REF is
1500 // true, only define them if they are referenced.
1501 void
1502 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1503 bool only_if_ref);
1504
1505 // Define a set of symbols in output segments. If ONLY_IF_REF is
1506 // true, only defined them if they are referenced.
1507 void
1508 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1509 bool only_if_ref);
1510
1511 // Add a target-specific global symbol.
1512 // (Used by SPARC backend to add STT_SPARC_REGISTER symbols.)
1513 void
1514 add_target_global_symbol(Symbol* sym)
1515 { this->target_symbols_.push_back(sym); }
1516
1517 // Define SYM using a COPY reloc. POSD is the Output_data where the
1518 // symbol should be defined--typically a .dyn.bss section. VALUE is
1519 // the offset within POSD.
1520 template<int size>
1521 void
1522 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1523 typename elfcpp::Elf_types<size>::Elf_Addr);
1524
1525 // Look up a symbol.
1526 Symbol*
1527 lookup(const char*, const char* version = NULL) const;
1528
1529 // Return the real symbol associated with the forwarder symbol FROM.
1530 Symbol*
1531 resolve_forwards(const Symbol* from) const;
1532
1533 // Return the sized version of a symbol in this table.
1534 template<int size>
1535 Sized_symbol<size>*
1536 get_sized_symbol(Symbol*) const;
1537
1538 template<int size>
1539 const Sized_symbol<size>*
1540 get_sized_symbol(const Symbol*) const;
1541
1542 // Return the count of undefined symbols seen.
1543 size_t
1544 saw_undefined() const
1545 { return this->saw_undefined_; }
1546
1547 // Allocate the common symbols
1548 void
1549 allocate_commons(Layout*, Mapfile*);
1550
1551 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1552 // of the warning.
1553 void
1554 add_warning(const char* name, Object* obj, const std::string& warning)
1555 { this->warnings_.add_warning(this, name, obj, warning); }
1556
1557 // Canonicalize a symbol name for use in the hash table.
1558 const char*
1559 canonicalize_name(const char* name)
1560 { return this->namepool_.add(name, true, NULL); }
1561
1562 // Possibly issue a warning for a reference to SYM at LOCATION which
1563 // is in OBJ.
1564 template<int size, bool big_endian>
1565 void
1566 issue_warning(const Symbol* sym,
1567 const Relocate_info<size, big_endian>* relinfo,
1568 size_t relnum, off_t reloffset) const
1569 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1570
1571 // Check candidate_odr_violations_ to find symbols with the same name
1572 // but apparently different definitions (different source-file/line-no).
1573 void
1574 detect_odr_violations(const Task*, const char* output_file_name) const;
1575
1576 // Add any undefined symbols named on the command line to the symbol
1577 // table.
1578 void
1579 add_undefined_symbols_from_command_line(Layout*);
1580
1581 // SYM is defined using a COPY reloc. Return the dynamic object
1582 // where the original definition was found.
1583 Dynobj*
1584 get_copy_source(const Symbol* sym) const;
1585
1586 // Set the dynamic symbol indexes. INDEX is the index of the first
1587 // global dynamic symbol. Return the count of forced-local symbols in
1588 // *PFORCED_LOCAL_COUNT. Pointers to the symbols are stored into
1589 // the vector. The names are stored into the Stringpool. This
1590 // returns an updated dynamic symbol index.
1591 unsigned int
1592 set_dynsym_indexes(unsigned int index, unsigned int* pforced_local_count,
1593 std::vector<Symbol*>*, Stringpool*, Versions*);
1594
1595 // Finalize the symbol table after we have set the final addresses
1596 // of all the input sections. This sets the final symbol indexes,
1597 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1598 // index of the first global symbol. OFF is the file offset of the
1599 // global symbol table, DYNOFF is the offset of the globals in the
1600 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1601 // global dynamic symbol, and DYNCOUNT is the number of global
1602 // dynamic symbols. This records the parameters, and returns the
1603 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1604 // local symbols.
1605 off_t
1606 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1607 Stringpool* pool, unsigned int* plocal_symcount);
1608
1609 // Set the final file offset of the symbol table.
1610 void
1611 set_file_offset(off_t off)
1612 { this->offset_ = off; }
1613
1614 // Status code of Symbol_table::compute_final_value.
1615 enum Compute_final_value_status
1616 {
1617 // No error.
1618 CFVS_OK,
1619 // Unsupported symbol section.
1620 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1621 // No output section.
1622 CFVS_NO_OUTPUT_SECTION
1623 };
1624
1625 // Compute the final value of SYM and store status in location PSTATUS.
1626 // During relaxation, this may be called multiple times for a symbol to
1627 // compute its would-be final value in each relaxation pass.
1628
1629 template<int size>
1630 typename Sized_symbol<size>::Value_type
1631 compute_final_value(const Sized_symbol<size>* sym,
1632 Compute_final_value_status* pstatus) const;
1633
1634 // Return the index of the first global symbol.
1635 unsigned int
1636 first_global_index() const
1637 { return this->first_global_index_; }
1638
1639 // Return the total number of symbols in the symbol table.
1640 unsigned int
1641 output_count() const
1642 { return this->output_count_; }
1643
1644 // Write out the global symbols.
1645 void
1646 write_globals(const Stringpool*, const Stringpool*,
1647 Output_symtab_xindex*, Output_symtab_xindex*,
1648 Output_file*) const;
1649
1650 // Write out a section symbol. Return the updated offset.
1651 void
1652 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1653 Output_file*, off_t) const;
1654
1655 // Loop over all symbols, applying the function F to each.
1656 template<int size, typename F>
1657 void
1658 for_all_symbols(F f) const
1659 {
1660 for (Symbol_table_type::const_iterator p = this->table_.begin();
1661 p != this->table_.end();
1662 ++p)
1663 {
1664 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1665 f(sym);
1666 }
1667 }
1668
1669 // Dump statistical information to stderr.
1670 void
1671 print_stats() const;
1672
1673 // Return the version script information.
1674 const Version_script_info&
1675 version_script() const
1676 { return version_script_; }
1677
1678 private:
1679 Symbol_table(const Symbol_table&);
1680 Symbol_table& operator=(const Symbol_table&);
1681
1682 // The type of the list of common symbols.
1683 typedef std::vector<Symbol*> Commons_type;
1684
1685 // The type of the symbol hash table.
1686
1687 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1688
1689 // The hash function. The key values are Stringpool keys.
1690 struct Symbol_table_hash
1691 {
1692 inline size_t
1693 operator()(const Symbol_table_key& key) const
1694 {
1695 return key.first ^ key.second;
1696 }
1697 };
1698
1699 struct Symbol_table_eq
1700 {
1701 bool
1702 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1703 };
1704
1705 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1706 Symbol_table_eq> Symbol_table_type;
1707
1708 typedef Unordered_map<const char*,
1709 Unordered_set<Symbol_location, Symbol_location_hash> >
1710 Odr_map;
1711
1712 // Make FROM a forwarder symbol to TO.
1713 void
1714 make_forwarder(Symbol* from, Symbol* to);
1715
1716 // Add a symbol.
1717 template<int size, bool big_endian>
1718 Sized_symbol<size>*
1719 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1720 const char* version, Stringpool::Key version_key,
1721 bool def, const elfcpp::Sym<size, big_endian>& sym,
1722 unsigned int st_shndx, bool is_ordinary,
1723 unsigned int orig_st_shndx);
1724
1725 // Define a default symbol.
1726 template<int size, bool big_endian>
1727 void
1728 define_default_version(Sized_symbol<size>*, bool,
1729 Symbol_table_type::iterator);
1730
1731 // Resolve symbols.
1732 template<int size, bool big_endian>
1733 void
1734 resolve(Sized_symbol<size>* to,
1735 const elfcpp::Sym<size, big_endian>& sym,
1736 unsigned int st_shndx, bool is_ordinary,
1737 unsigned int orig_st_shndx,
1738 Object*, const char* version,
1739 bool is_default_version);
1740
1741 template<int size, bool big_endian>
1742 void
1743 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1744
1745 // Record that a symbol is forced to be local by a version script or
1746 // by visibility.
1747 void
1748 force_local(Symbol*);
1749
1750 // Adjust NAME and *NAME_KEY for wrapping.
1751 const char*
1752 wrap_symbol(const char* name, Stringpool::Key* name_key);
1753
1754 // Whether we should override a symbol, based on flags in
1755 // resolve.cc.
1756 static bool
1757 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1758 Object*, bool*, bool*, bool);
1759
1760 // Report a problem in symbol resolution.
1761 static void
1762 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1763 Defined, Object* object);
1764
1765 // Override a symbol.
1766 template<int size, bool big_endian>
1767 void
1768 override(Sized_symbol<size>* tosym,
1769 const elfcpp::Sym<size, big_endian>& fromsym,
1770 unsigned int st_shndx, bool is_ordinary,
1771 Object* object, const char* version);
1772
1773 // Whether we should override a symbol with a special symbol which
1774 // is automatically defined by the linker.
1775 static bool
1776 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1777
1778 // Override a symbol with a special symbol.
1779 template<int size>
1780 void
1781 override_with_special(Sized_symbol<size>* tosym,
1782 const Sized_symbol<size>* fromsym);
1783
1784 // Record all weak alias sets for a dynamic object.
1785 template<int size>
1786 void
1787 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1788
1789 // Define a special symbol.
1790 template<int size, bool big_endian>
1791 Sized_symbol<size>*
1792 define_special_symbol(const char** pname, const char** pversion,
1793 bool only_if_ref, Sized_symbol<size>** poldsym,
1794 bool* resolve_oldsym, bool is_forced_local);
1795
1796 // Define a symbol in an Output_data, sized version.
1797 template<int size>
1798 Sized_symbol<size>*
1799 do_define_in_output_data(const char* name, const char* version, Defined,
1800 Output_data*,
1801 typename elfcpp::Elf_types<size>::Elf_Addr value,
1802 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1803 elfcpp::STT type, elfcpp::STB binding,
1804 elfcpp::STV visibility, unsigned char nonvis,
1805 bool offset_is_from_end, bool only_if_ref);
1806
1807 // Define a symbol in an Output_segment, sized version.
1808 template<int size>
1809 Sized_symbol<size>*
1810 do_define_in_output_segment(
1811 const char* name, const char* version, Defined, Output_segment* os,
1812 typename elfcpp::Elf_types<size>::Elf_Addr value,
1813 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1814 elfcpp::STT type, elfcpp::STB binding,
1815 elfcpp::STV visibility, unsigned char nonvis,
1816 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1817
1818 // Define a symbol as a constant, sized version.
1819 template<int size>
1820 Sized_symbol<size>*
1821 do_define_as_constant(
1822 const char* name, const char* version, Defined,
1823 typename elfcpp::Elf_types<size>::Elf_Addr value,
1824 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1825 elfcpp::STT type, elfcpp::STB binding,
1826 elfcpp::STV visibility, unsigned char nonvis,
1827 bool only_if_ref, bool force_override);
1828
1829 // Add any undefined symbols named on the command line to the symbol
1830 // table, sized version.
1831 template<int size>
1832 void
1833 do_add_undefined_symbols_from_command_line(Layout*);
1834
1835 // Add one undefined symbol.
1836 template<int size>
1837 void
1838 add_undefined_symbol_from_command_line(const char* name);
1839
1840 // Types of common symbols.
1841
1842 enum Commons_section_type
1843 {
1844 COMMONS_NORMAL,
1845 COMMONS_TLS,
1846 COMMONS_SMALL,
1847 COMMONS_LARGE
1848 };
1849
1850 // Allocate the common symbols, sized version.
1851 template<int size>
1852 void
1853 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1854
1855 // Allocate the common symbols from one list.
1856 template<int size>
1857 void
1858 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1859 Mapfile*, Sort_commons_order);
1860
1861 // Returns all of the lines attached to LOC, not just the one the
1862 // instruction actually came from. This helps the ODR checker avoid
1863 // false positives.
1864 static std::vector<std::string>
1865 linenos_from_loc(const Task* task, const Symbol_location& loc);
1866
1867 // Implement detect_odr_violations.
1868 template<int size, bool big_endian>
1869 void
1870 sized_detect_odr_violations() const;
1871
1872 // Finalize symbols specialized for size.
1873 template<int size>
1874 off_t
1875 sized_finalize(off_t, Stringpool*, unsigned int*);
1876
1877 // Finalize a symbol. Return whether it should be added to the
1878 // symbol table.
1879 template<int size>
1880 bool
1881 sized_finalize_symbol(Symbol*);
1882
1883 // Add a symbol the final symtab by setting its index.
1884 template<int size>
1885 void
1886 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1887
1888 // Write globals specialized for size and endianness.
1889 template<int size, bool big_endian>
1890 void
1891 sized_write_globals(const Stringpool*, const Stringpool*,
1892 Output_symtab_xindex*, Output_symtab_xindex*,
1893 Output_file*) const;
1894
1895 // Write out a symbol to P.
1896 template<int size, bool big_endian>
1897 void
1898 sized_write_symbol(Sized_symbol<size>*,
1899 typename elfcpp::Elf_types<size>::Elf_Addr value,
1900 unsigned int shndx, elfcpp::STB,
1901 const Stringpool*, unsigned char* p) const;
1902
1903 // Possibly warn about an undefined symbol from a dynamic object.
1904 void
1905 warn_about_undefined_dynobj_symbol(Symbol*) const;
1906
1907 // Write out a section symbol, specialized for size and endianness.
1908 template<int size, bool big_endian>
1909 void
1910 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1911 Output_file*, off_t) const;
1912
1913 // The type of the list of symbols which have been forced local.
1914 typedef std::vector<Symbol*> Forced_locals;
1915
1916 // A map from symbols with COPY relocs to the dynamic objects where
1917 // they are defined.
1918 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1919
1920 // We increment this every time we see a new undefined symbol, for
1921 // use in archive groups.
1922 size_t saw_undefined_;
1923 // The index of the first global symbol in the output file.
1924 unsigned int first_global_index_;
1925 // The file offset within the output symtab section where we should
1926 // write the table.
1927 off_t offset_;
1928 // The number of global symbols we want to write out.
1929 unsigned int output_count_;
1930 // The file offset of the global dynamic symbols, or 0 if none.
1931 off_t dynamic_offset_;
1932 // The index of the first global dynamic symbol (including
1933 // forced-local symbols).
1934 unsigned int first_dynamic_global_index_;
1935 // The number of global dynamic symbols (including forced-local symbols),
1936 // or 0 if none.
1937 unsigned int dynamic_count_;
1938 // The symbol hash table.
1939 Symbol_table_type table_;
1940 // A pool of symbol names. This is used for all global symbols.
1941 // Entries in the hash table point into this pool.
1942 Stringpool namepool_;
1943 // Forwarding symbols.
1944 Unordered_map<const Symbol*, Symbol*> forwarders_;
1945 // Weak aliases. A symbol in this list points to the next alias.
1946 // The aliases point to each other in a circular list.
1947 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1948 // We don't expect there to be very many common symbols, so we keep
1949 // a list of them. When we find a common symbol we add it to this
1950 // list. It is possible that by the time we process the list the
1951 // symbol is no longer a common symbol. It may also have become a
1952 // forwarder.
1953 Commons_type commons_;
1954 // This is like the commons_ field, except that it holds TLS common
1955 // symbols.
1956 Commons_type tls_commons_;
1957 // This is for small common symbols.
1958 Commons_type small_commons_;
1959 // This is for large common symbols.
1960 Commons_type large_commons_;
1961 // A list of symbols which have been forced to be local. We don't
1962 // expect there to be very many of them, so we keep a list of them
1963 // rather than walking the whole table to find them.
1964 Forced_locals forced_locals_;
1965 // Manage symbol warnings.
1966 Warnings warnings_;
1967 // Manage potential One Definition Rule (ODR) violations.
1968 Odr_map candidate_odr_violations_;
1969
1970 // When we emit a COPY reloc for a symbol, we define it in an
1971 // Output_data. When it's time to emit version information for it,
1972 // we need to know the dynamic object in which we found the original
1973 // definition. This maps symbols with COPY relocs to the dynamic
1974 // object where they were defined.
1975 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1976 // Information parsed from the version script, if any.
1977 const Version_script_info& version_script_;
1978 Garbage_collection* gc_;
1979 Icf* icf_;
1980 // Target-specific symbols, if any.
1981 std::vector<Symbol*> target_symbols_;
1982 };
1983
1984 // We inline get_sized_symbol for efficiency.
1985
1986 template<int size>
1987 Sized_symbol<size>*
1988 Symbol_table::get_sized_symbol(Symbol* sym) const
1989 {
1990 gold_assert(size == parameters->target().get_size());
1991 return static_cast<Sized_symbol<size>*>(sym);
1992 }
1993
1994 template<int size>
1995 const Sized_symbol<size>*
1996 Symbol_table::get_sized_symbol(const Symbol* sym) const
1997 {
1998 gold_assert(size == parameters->target().get_size());
1999 return static_cast<const Sized_symbol<size>*>(sym);
2000 }
2001
2002 } // End namespace gold.
2003
2004 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.069222 seconds and 4 git commands to generate.