Correct handling of GOT references in a regular object.
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "elfcpp.h"
31 #include "parameters.h"
32 #include "stringpool.h"
33 #include "object.h"
34
35 #ifndef GOLD_SYMTAB_H
36 #define GOLD_SYMTAB_H
37
38 namespace gold
39 {
40
41 class Object;
42 class Relobj;
43 template<int size, bool big_endian>
44 class Sized_relobj;
45 class Dynobj;
46 template<int size, bool big_endian>
47 class Sized_dynobj;
48 class Versions;
49 class Output_data;
50 class Output_section;
51 class Output_segment;
52 class Output_file;
53 class Target;
54
55 // The base class of an entry in the symbol table. The symbol table
56 // can have a lot of entries, so we don't want this class to big.
57 // Size dependent fields can be found in the template class
58 // Sized_symbol. Targets may support their own derived classes.
59
60 class Symbol
61 {
62 public:
63 // Because we want the class to be small, we don't use any virtual
64 // functions. But because symbols can be defined in different
65 // places, we need to classify them. This enum is the different
66 // sources of symbols we support.
67 enum Source
68 {
69 // Symbol defined in a relocatable or dynamic input file--this is
70 // the most common case.
71 FROM_OBJECT,
72 // Symbol defined in an Output_data, a special section created by
73 // the target.
74 IN_OUTPUT_DATA,
75 // Symbol defined in an Output_segment, with no associated
76 // section.
77 IN_OUTPUT_SEGMENT,
78 // Symbol value is constant.
79 CONSTANT
80 };
81
82 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
83 // the offset means.
84 enum Segment_offset_base
85 {
86 // From the start of the segment.
87 SEGMENT_START,
88 // From the end of the segment.
89 SEGMENT_END,
90 // From the filesz of the segment--i.e., after the loaded bytes
91 // but before the bytes which are allocated but zeroed.
92 SEGMENT_BSS
93 };
94
95 // Return the symbol name.
96 const char*
97 name() const
98 { return this->name_; }
99
100 // Return the symbol version. This will return NULL for an
101 // unversioned symbol.
102 const char*
103 version() const
104 { return this->version_; }
105
106 // Return the symbol source.
107 Source
108 source() const
109 { return this->source_; }
110
111 // Return the object with which this symbol is associated.
112 Object*
113 object() const
114 {
115 gold_assert(this->source_ == FROM_OBJECT);
116 return this->u_.from_object.object;
117 }
118
119 // Return the index of the section in the input relocatable or
120 // dynamic object file.
121 unsigned int
122 shndx() const
123 {
124 gold_assert(this->source_ == FROM_OBJECT);
125 return this->u_.from_object.shndx;
126 }
127
128 // Return the output data section with which this symbol is
129 // associated, if the symbol was specially defined with respect to
130 // an output data section.
131 Output_data*
132 output_data() const
133 {
134 gold_assert(this->source_ == IN_OUTPUT_DATA);
135 return this->u_.in_output_data.output_data;
136 }
137
138 // If this symbol was defined with respect to an output data
139 // section, return whether the value is an offset from end.
140 bool
141 offset_is_from_end() const
142 {
143 gold_assert(this->source_ == IN_OUTPUT_DATA);
144 return this->u_.in_output_data.offset_is_from_end;
145 }
146
147 // Return the output segment with which this symbol is associated,
148 // if the symbol was specially defined with respect to an output
149 // segment.
150 Output_segment*
151 output_segment() const
152 {
153 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
154 return this->u_.in_output_segment.output_segment;
155 }
156
157 // If this symbol was defined with respect to an output segment,
158 // return the offset base.
159 Segment_offset_base
160 offset_base() const
161 {
162 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
163 return this->u_.in_output_segment.offset_base;
164 }
165
166 // Return the symbol binding.
167 elfcpp::STB
168 binding() const
169 { return this->binding_; }
170
171 // Return the symbol type.
172 elfcpp::STT
173 type() const
174 { return this->type_; }
175
176 // Return the symbol visibility.
177 elfcpp::STV
178 visibility() const
179 { return this->visibility_; }
180
181 // Return the non-visibility part of the st_other field.
182 unsigned char
183 nonvis() const
184 { return this->nonvis_; }
185
186 // Return whether this symbol is a forwarder. This will never be
187 // true of a symbol found in the hash table, but may be true of
188 // symbol pointers attached to object files.
189 bool
190 is_forwarder() const
191 { return this->is_forwarder_; }
192
193 // Mark this symbol as a forwarder.
194 void
195 set_forwarder()
196 { this->is_forwarder_ = true; }
197
198 // Return whether this symbol has an alias in the weak aliases table
199 // in Symbol_table.
200 bool
201 has_alias() const
202 { return this->has_alias_; }
203
204 // Mark this symbol as having an alias.
205 void
206 set_has_alias()
207 { this->has_alias_ = true; }
208
209 // Return whether this symbol needs an entry in the dynamic symbol
210 // table.
211 bool
212 needs_dynsym_entry() const
213 {
214 return (this->needs_dynsym_entry_
215 || (this->in_reg() && this->in_dyn()));
216 }
217
218 // Mark this symbol as needing an entry in the dynamic symbol table.
219 void
220 set_needs_dynsym_entry()
221 { this->needs_dynsym_entry_ = true; }
222
223 // Return whether this symbol should be added to the dynamic symbol
224 // table.
225 bool
226 should_add_dynsym_entry() const;
227
228 // Return whether this symbol has been seen in a regular object.
229 bool
230 in_reg() const
231 { return this->in_reg_; }
232
233 // Mark this symbol as having been seen in a regular object.
234 void
235 set_in_reg()
236 { this->in_reg_ = true; }
237
238 // Return whether this symbol has been seen in a dynamic object.
239 bool
240 in_dyn() const
241 { return this->in_dyn_; }
242
243 // Mark this symbol as having been seen in a dynamic object.
244 void
245 set_in_dyn()
246 { this->in_dyn_ = true; }
247
248 // Return the index of this symbol in the output file symbol table.
249 // A value of -1U means that this symbol is not going into the
250 // output file. This starts out as zero, and is set to a non-zero
251 // value by Symbol_table::finalize. It is an error to ask for the
252 // symbol table index before it has been set.
253 unsigned int
254 symtab_index() const
255 {
256 gold_assert(this->symtab_index_ != 0);
257 return this->symtab_index_;
258 }
259
260 // Set the index of the symbol in the output file symbol table.
261 void
262 set_symtab_index(unsigned int index)
263 {
264 gold_assert(index != 0);
265 this->symtab_index_ = index;
266 }
267
268 // Return whether this symbol already has an index in the output
269 // file symbol table.
270 bool
271 has_symtab_index() const
272 { return this->symtab_index_ != 0; }
273
274 // Return the index of this symbol in the dynamic symbol table. A
275 // value of -1U means that this symbol is not going into the dynamic
276 // symbol table. This starts out as zero, and is set to a non-zero
277 // during Layout::finalize. It is an error to ask for the dynamic
278 // symbol table index before it has been set.
279 unsigned int
280 dynsym_index() const
281 {
282 gold_assert(this->dynsym_index_ != 0);
283 return this->dynsym_index_;
284 }
285
286 // Set the index of the symbol in the dynamic symbol table.
287 void
288 set_dynsym_index(unsigned int index)
289 {
290 gold_assert(index != 0);
291 this->dynsym_index_ = index;
292 }
293
294 // Return whether this symbol already has an index in the dynamic
295 // symbol table.
296 bool
297 has_dynsym_index() const
298 { return this->dynsym_index_ != 0; }
299
300 // Return whether this symbol has an entry in the GOT section.
301 bool
302 has_got_offset() const
303 { return this->has_got_offset_; }
304
305 // Return the offset into the GOT section of this symbol.
306 unsigned int
307 got_offset() const
308 {
309 gold_assert(this->has_got_offset());
310 return this->got_offset_;
311 }
312
313 // Set the GOT offset of this symbol.
314 void
315 set_got_offset(unsigned int got_offset)
316 {
317 this->has_got_offset_ = true;
318 this->got_offset_ = got_offset;
319 }
320
321 // Return whether this symbol has an entry in the PLT section.
322 bool
323 has_plt_offset() const
324 { return this->has_plt_offset_; }
325
326 // Return the offset into the PLT section of this symbol.
327 unsigned int
328 plt_offset() const
329 {
330 gold_assert(this->has_plt_offset());
331 return this->plt_offset_;
332 }
333
334 // Set the PLT offset of this symbol.
335 void
336 set_plt_offset(unsigned int plt_offset)
337 {
338 this->has_plt_offset_ = true;
339 this->plt_offset_ = plt_offset;
340 }
341
342 // Return whether this dynamic symbol needs a special value in the
343 // dynamic symbol table.
344 bool
345 needs_dynsym_value() const
346 { return this->needs_dynsym_value_; }
347
348 // Set that this dynamic symbol needs a special value in the dynamic
349 // symbol table.
350 void
351 set_needs_dynsym_value()
352 {
353 gold_assert(this->object()->is_dynamic());
354 this->needs_dynsym_value_ = true;
355 }
356
357 // Return true if the final value of this symbol is known at link
358 // time.
359 bool
360 final_value_is_known() const;
361
362 // Return whether this is a defined symbol (not undefined or
363 // common).
364 bool
365 is_defined() const
366 {
367 return (this->source_ != FROM_OBJECT
368 || (this->shndx() != elfcpp::SHN_UNDEF
369 && this->shndx() != elfcpp::SHN_COMMON));
370 }
371
372 // Return true if this symbol is from a dynamic object.
373 bool
374 is_from_dynobj() const
375 {
376 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
377 }
378
379 // Return whether this is an undefined symbol.
380 bool
381 is_undefined() const
382 {
383 return this->source_ == FROM_OBJECT && this->shndx() == elfcpp::SHN_UNDEF;
384 }
385
386 // Return whether this is a common symbol.
387 bool
388 is_common() const
389 {
390 return (this->source_ == FROM_OBJECT
391 && (this->shndx() == elfcpp::SHN_COMMON
392 || this->type_ == elfcpp::STT_COMMON));
393 }
394
395 // Return whether this symbol can be seen outside this object.
396 bool
397 is_externally_visible() const
398 {
399 return (this->visibility_ == elfcpp::STV_DEFAULT
400 || this->visibility_ == elfcpp::STV_PROTECTED);
401 }
402
403 // Return true if this symbol can be preempted by a definition in
404 // another link unit.
405 bool
406 is_preemptible() const
407 {
408 // It doesn't make sense to ask whether a symbol defined in
409 // another object is preemptible.
410 gold_assert(!this->is_from_dynobj());
411
412 return (this->visibility_ != elfcpp::STV_INTERNAL
413 && this->visibility_ != elfcpp::STV_HIDDEN
414 && this->visibility_ != elfcpp::STV_PROTECTED
415 && parameters->output_is_shared()
416 && !parameters->symbolic());
417 }
418
419 // Return true if this symbol is a function that needs a PLT entry.
420 // If the symbol is defined in a dynamic object or if it is subject
421 // to pre-emption, we need to make a PLT entry.
422 bool
423 needs_plt_entry() const
424 {
425 return (this->type() == elfcpp::STT_FUNC
426 && (this->is_from_dynobj() || this->is_preemptible()));
427 }
428
429 // Given a direct absolute or pc-relative static relocation against
430 // the global symbol, this function returns whether a dynamic relocation
431 // is needed.
432
433 bool
434 needs_dynamic_reloc(bool is_absolute_ref, bool is_function_call) const
435 {
436 // An absolute reference within a position-independent output file
437 // will need a dynamic relocaion.
438 if (is_absolute_ref && parameters->output_is_position_independent())
439 return true;
440
441 // A function call that can branch to a local PLT entry does not need
442 // a dynamic relocation.
443 if (is_function_call && this->has_plt_offset())
444 return false;
445
446 // A reference to any PLT entry in a non-position-independent executable
447 // does not need a dynamic relocation.
448 if (!parameters->output_is_position_independent()
449 && this->has_plt_offset())
450 return false;
451
452 // A reference to a symbol defined in a dynamic object or to a
453 // symbol that is preemptible will need a dynamic relocation.
454 if (this->is_from_dynobj() || this->is_preemptible())
455 return true;
456
457 // For all other cases, return FALSE.
458 return false;
459 }
460
461 // Given a direct absolute static relocation against
462 // the global symbol, where a dynamic relocation is needed, this
463 // function returns whether a relative dynamic relocation can be used.
464 // The caller must determine separately whether the static relocation
465 // is compatible with a relative relocation.
466
467 bool
468 can_use_relative_reloc(bool is_function_call) const
469 {
470 // A function call that can branch to a local PLT entry can
471 // use a RELATIVE relocation.
472 if (is_function_call && this->has_plt_offset())
473 return true;
474
475 // A reference to a symbol defined in a dynamic object or to a
476 // symbol that is preemptible can not use a RELATIVE relocaiton.
477 if (this->is_from_dynobj() || this->is_preemptible())
478 return false;
479
480 // For all other cases, return TRUE.
481 return true;
482 }
483
484 // Return whether there should be a warning for references to this
485 // symbol.
486 bool
487 has_warning() const
488 { return this->has_warning_; }
489
490 // Mark this symbol as having a warning.
491 void
492 set_has_warning()
493 { this->has_warning_ = true; }
494
495 // Return whether this symbol is defined by a COPY reloc from a
496 // dynamic object.
497 bool
498 is_copied_from_dynobj() const
499 { return this->is_copied_from_dynobj_; }
500
501 // Mark this symbol as defined by a COPY reloc.
502 void
503 set_is_copied_from_dynobj()
504 { this->is_copied_from_dynobj_ = true; }
505
506 // Mark this symbol as needing its value written to the GOT even when
507 // the value is subject to dynamic relocation (e.g., when the target
508 // uses a RELATIVE relocation for the GOT entry).
509 void
510 set_needs_value_in_got()
511 { this->needs_value_in_got_ = true; }
512
513 // Return whether this symbol needs its value written to the GOT even
514 // when the value is subject to dynamic relocation.
515 bool
516 needs_value_in_got() const
517 { return this->needs_value_in_got_; }
518
519 protected:
520 // Instances of this class should always be created at a specific
521 // size.
522 Symbol()
523 { memset(this, 0, sizeof *this); }
524
525 // Initialize the general fields.
526 void
527 init_fields(const char* name, const char* version,
528 elfcpp::STT type, elfcpp::STB binding,
529 elfcpp::STV visibility, unsigned char nonvis);
530
531 // Initialize fields from an ELF symbol in OBJECT.
532 template<int size, bool big_endian>
533 void
534 init_base(const char *name, const char* version, Object* object,
535 const elfcpp::Sym<size, big_endian>&);
536
537 // Initialize fields for an Output_data.
538 void
539 init_base(const char* name, Output_data*, elfcpp::STT, elfcpp::STB,
540 elfcpp::STV, unsigned char nonvis, bool offset_is_from_end);
541
542 // Initialize fields for an Output_segment.
543 void
544 init_base(const char* name, Output_segment* os, elfcpp::STT type,
545 elfcpp::STB binding, elfcpp::STV visibility,
546 unsigned char nonvis, Segment_offset_base offset_base);
547
548 // Initialize fields for a constant.
549 void
550 init_base(const char* name, elfcpp::STT type, elfcpp::STB binding,
551 elfcpp::STV visibility, unsigned char nonvis);
552
553 // Override existing symbol.
554 template<int size, bool big_endian>
555 void
556 override_base(const elfcpp::Sym<size, big_endian>&, Object* object,
557 const char* version);
558
559 // Override existing symbol with a special symbol.
560 void
561 override_base_with_special(const Symbol* from);
562
563 private:
564 Symbol(const Symbol&);
565 Symbol& operator=(const Symbol&);
566
567 // Symbol name (expected to point into a Stringpool).
568 const char* name_;
569 // Symbol version (expected to point into a Stringpool). This may
570 // be NULL.
571 const char* version_;
572
573 union
574 {
575 // This struct is used if SOURCE_ == FROM_OBJECT.
576 struct
577 {
578 // Object in which symbol is defined, or in which it was first
579 // seen.
580 Object* object;
581 // Section number in object_ in which symbol is defined.
582 unsigned int shndx;
583 } from_object;
584
585 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
586 struct
587 {
588 // Output_data in which symbol is defined. Before
589 // Layout::finalize the symbol's value is an offset within the
590 // Output_data.
591 Output_data* output_data;
592 // True if the offset is from the end, false if the offset is
593 // from the beginning.
594 bool offset_is_from_end;
595 } in_output_data;
596
597 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
598 struct
599 {
600 // Output_segment in which the symbol is defined. Before
601 // Layout::finalize the symbol's value is an offset.
602 Output_segment* output_segment;
603 // The base to use for the offset before Layout::finalize.
604 Segment_offset_base offset_base;
605 } in_output_segment;
606 } u_;
607
608 // The index of this symbol in the output file. If the symbol is
609 // not going into the output file, this value is -1U. This field
610 // starts as always holding zero. It is set to a non-zero value by
611 // Symbol_table::finalize.
612 unsigned int symtab_index_;
613
614 // The index of this symbol in the dynamic symbol table. If the
615 // symbol is not going into the dynamic symbol table, this value is
616 // -1U. This field starts as always holding zero. It is set to a
617 // non-zero value during Layout::finalize.
618 unsigned int dynsym_index_;
619
620 // If this symbol has an entry in the GOT section (has_got_offset_
621 // is true), this is the offset from the start of the GOT section.
622 unsigned int got_offset_;
623
624 // If this symbol has an entry in the PLT section (has_plt_offset_
625 // is true), then this is the offset from the start of the PLT
626 // section.
627 unsigned int plt_offset_;
628
629 // Symbol type.
630 elfcpp::STT type_ : 4;
631 // Symbol binding.
632 elfcpp::STB binding_ : 4;
633 // Symbol visibility.
634 elfcpp::STV visibility_ : 2;
635 // Rest of symbol st_other field.
636 unsigned int nonvis_ : 6;
637 // The type of symbol.
638 Source source_ : 3;
639 // True if this symbol always requires special target-specific
640 // handling.
641 bool is_target_special_ : 1;
642 // True if this is the default version of the symbol.
643 bool is_def_ : 1;
644 // True if this symbol really forwards to another symbol. This is
645 // used when we discover after the fact that two different entries
646 // in the hash table really refer to the same symbol. This will
647 // never be set for a symbol found in the hash table, but may be set
648 // for a symbol found in the list of symbols attached to an Object.
649 // It forwards to the symbol found in the forwarders_ map of
650 // Symbol_table.
651 bool is_forwarder_ : 1;
652 // True if the symbol has an alias in the weak_aliases table in
653 // Symbol_table.
654 bool has_alias_ : 1;
655 // True if this symbol needs to be in the dynamic symbol table.
656 bool needs_dynsym_entry_ : 1;
657 // True if we've seen this symbol in a regular object.
658 bool in_reg_ : 1;
659 // True if we've seen this symbol in a dynamic object.
660 bool in_dyn_ : 1;
661 // True if the symbol has an entry in the GOT section.
662 bool has_got_offset_ : 1;
663 // True if the symbol has an entry in the PLT section.
664 bool has_plt_offset_ : 1;
665 // True if this is a dynamic symbol which needs a special value in
666 // the dynamic symbol table.
667 bool needs_dynsym_value_ : 1;
668 // True if there is a warning for this symbol.
669 bool has_warning_ : 1;
670 // True if we are using a COPY reloc for this symbol, so that the
671 // real definition lives in a dynamic object.
672 bool is_copied_from_dynobj_ : 1;
673 // True if the static value should be written to the GOT even
674 // when the final value is subject to dynamic relocation.
675 bool needs_value_in_got_ : 1;
676 };
677
678 // The parts of a symbol which are size specific. Using a template
679 // derived class like this helps us use less space on a 32-bit system.
680
681 template<int size>
682 class Sized_symbol : public Symbol
683 {
684 public:
685 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
686 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
687
688 Sized_symbol()
689 { }
690
691 // Initialize fields from an ELF symbol in OBJECT.
692 template<bool big_endian>
693 void
694 init(const char *name, const char* version, Object* object,
695 const elfcpp::Sym<size, big_endian>&);
696
697 // Initialize fields for an Output_data.
698 void
699 init(const char* name, Output_data*, Value_type value, Size_type symsize,
700 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
701 bool offset_is_from_end);
702
703 // Initialize fields for an Output_segment.
704 void
705 init(const char* name, Output_segment*, Value_type value, Size_type symsize,
706 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
707 Segment_offset_base offset_base);
708
709 // Initialize fields for a constant.
710 void
711 init(const char* name, Value_type value, Size_type symsize,
712 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
713
714 // Override existing symbol.
715 template<bool big_endian>
716 void
717 override(const elfcpp::Sym<size, big_endian>&, Object* object,
718 const char* version);
719
720 // Override existing symbol with a special symbol.
721 void
722 override_with_special(const Sized_symbol<size>*);
723
724 // Return the symbol's value.
725 Value_type
726 value() const
727 { return this->value_; }
728
729 // Return the symbol's size (we can't call this 'size' because that
730 // is a template parameter).
731 Size_type
732 symsize() const
733 { return this->symsize_; }
734
735 // Set the symbol size. This is used when resolving common symbols.
736 void
737 set_symsize(Size_type symsize)
738 { this->symsize_ = symsize; }
739
740 // Set the symbol value. This is called when we store the final
741 // values of the symbols into the symbol table.
742 void
743 set_value(Value_type value)
744 { this->value_ = value; }
745
746 private:
747 Sized_symbol(const Sized_symbol&);
748 Sized_symbol& operator=(const Sized_symbol&);
749
750 // Symbol value. Before Layout::finalize this is the offset in the
751 // input section. This is set to the final value during
752 // Layout::finalize.
753 Value_type value_;
754 // Symbol size.
755 Size_type symsize_;
756 };
757
758 // A struct describing a symbol defined by the linker, where the value
759 // of the symbol is defined based on an output section. This is used
760 // for symbols defined by the linker, like "_init_array_start".
761
762 struct Define_symbol_in_section
763 {
764 // The symbol name.
765 const char* name;
766 // The name of the output section with which this symbol should be
767 // associated. If there is no output section with that name, the
768 // symbol will be defined as zero.
769 const char* output_section;
770 // The offset of the symbol within the output section. This is an
771 // offset from the start of the output section, unless start_at_end
772 // is true, in which case this is an offset from the end of the
773 // output section.
774 uint64_t value;
775 // The size of the symbol.
776 uint64_t size;
777 // The symbol type.
778 elfcpp::STT type;
779 // The symbol binding.
780 elfcpp::STB binding;
781 // The symbol visibility.
782 elfcpp::STV visibility;
783 // The rest of the st_other field.
784 unsigned char nonvis;
785 // If true, the value field is an offset from the end of the output
786 // section.
787 bool offset_is_from_end;
788 // If true, this symbol is defined only if we see a reference to it.
789 bool only_if_ref;
790 };
791
792 // A struct describing a symbol defined by the linker, where the value
793 // of the symbol is defined based on a segment. This is used for
794 // symbols defined by the linker, like "_end". We describe the
795 // segment with which the symbol should be associated by its
796 // characteristics. If no segment meets these characteristics, the
797 // symbol will be defined as zero. If there is more than one segment
798 // which meets these characteristics, we will use the first one.
799
800 struct Define_symbol_in_segment
801 {
802 // The symbol name.
803 const char* name;
804 // The segment type where the symbol should be defined, typically
805 // PT_LOAD.
806 elfcpp::PT segment_type;
807 // Bitmask of segment flags which must be set.
808 elfcpp::PF segment_flags_set;
809 // Bitmask of segment flags which must be clear.
810 elfcpp::PF segment_flags_clear;
811 // The offset of the symbol within the segment. The offset is
812 // calculated from the position set by offset_base.
813 uint64_t value;
814 // The size of the symbol.
815 uint64_t size;
816 // The symbol type.
817 elfcpp::STT type;
818 // The symbol binding.
819 elfcpp::STB binding;
820 // The symbol visibility.
821 elfcpp::STV visibility;
822 // The rest of the st_other field.
823 unsigned char nonvis;
824 // The base from which we compute the offset.
825 Symbol::Segment_offset_base offset_base;
826 // If true, this symbol is defined only if we see a reference to it.
827 bool only_if_ref;
828 };
829
830 // This class manages warnings. Warnings are a GNU extension. When
831 // we see a section named .gnu.warning.SYM in an object file, and if
832 // we wind using the definition of SYM from that object file, then we
833 // will issue a warning for any relocation against SYM from a
834 // different object file. The text of the warning is the contents of
835 // the section. This is not precisely the definition used by the old
836 // GNU linker; the old GNU linker treated an occurrence of
837 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
838 // would trigger a warning on any reference. However, it was
839 // inconsistent in that a warning in a dynamic object only triggered
840 // if there was no definition in a regular object. This linker is
841 // different in that we only issue a warning if we use the symbol
842 // definition from the same object file as the warning section.
843
844 class Warnings
845 {
846 public:
847 Warnings()
848 : warnings_()
849 { }
850
851 // Add a warning for symbol NAME in section SHNDX in object OBJ.
852 void
853 add_warning(Symbol_table* symtab, const char* name, Object* obj,
854 unsigned int shndx);
855
856 // For each symbol for which we should give a warning, make a note
857 // on the symbol.
858 void
859 note_warnings(Symbol_table* symtab);
860
861 // Issue a warning for a reference to SYM at RELINFO's location.
862 template<int size, bool big_endian>
863 void
864 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
865 size_t relnum, off_t reloffset) const;
866
867 private:
868 Warnings(const Warnings&);
869 Warnings& operator=(const Warnings&);
870
871 // What we need to know to get the warning text.
872 struct Warning_location
873 {
874 // The object the warning is in.
875 Object* object;
876 // The index of the warning section.
877 unsigned int shndx;
878 // The warning text if we have already loaded it.
879 std::string text;
880
881 Warning_location()
882 : object(NULL), shndx(0), text()
883 { }
884
885 void
886 set(Object* o, unsigned int s)
887 {
888 this->object = o;
889 this->shndx = s;
890 }
891
892 void
893 set_text(const char* t, off_t l)
894 { this->text.assign(t, l); }
895 };
896
897 // A mapping from warning symbol names (canonicalized in
898 // Symbol_table's namepool_ field) to
899 typedef Unordered_map<const char*, Warning_location> Warning_table;
900
901 Warning_table warnings_;
902 };
903
904 // The main linker symbol table.
905
906 class Symbol_table
907 {
908 public:
909 Symbol_table();
910
911 ~Symbol_table();
912
913 // Add COUNT external symbols from the relocatable object RELOBJ to
914 // the symbol table. SYMS is the symbols, SYM_NAMES is their names,
915 // SYM_NAME_SIZE is the size of SYM_NAMES. This sets SYMPOINTERS to
916 // point to the symbols in the symbol table.
917 template<int size, bool big_endian>
918 void
919 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
920 const unsigned char* syms, size_t count,
921 const char* sym_names, size_t sym_name_size,
922 typename Sized_relobj<size, big_endian>::Symbols*);
923
924 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
925 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
926 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
927 // symbol version data.
928 template<int size, bool big_endian>
929 void
930 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
931 const unsigned char* syms, size_t count,
932 const char* sym_names, size_t sym_name_size,
933 const unsigned char* versym, size_t versym_size,
934 const std::vector<const char*>*);
935
936 // Define a special symbol based on an Output_data. It is a
937 // multiple definition error if this symbol is already defined.
938 Symbol*
939 define_in_output_data(const Target*, const char* name, const char* version,
940 Output_data*, uint64_t value, uint64_t symsize,
941 elfcpp::STT type, elfcpp::STB binding,
942 elfcpp::STV visibility, unsigned char nonvis,
943 bool offset_is_from_end, bool only_if_ref);
944
945 // Define a special symbol based on an Output_segment. It is a
946 // multiple definition error if this symbol is already defined.
947 Symbol*
948 define_in_output_segment(const Target*, const char* name,
949 const char* version, Output_segment*,
950 uint64_t value, uint64_t symsize,
951 elfcpp::STT type, elfcpp::STB binding,
952 elfcpp::STV visibility, unsigned char nonvis,
953 Symbol::Segment_offset_base, bool only_if_ref);
954
955 // Define a special symbol with a constant value. It is a multiple
956 // definition error if this symbol is already defined.
957 Symbol*
958 define_as_constant(const Target*, const char* name, const char* version,
959 uint64_t value, uint64_t symsize, elfcpp::STT type,
960 elfcpp::STB binding, elfcpp::STV visibility,
961 unsigned char nonvis, bool only_if_ref);
962
963 // Define a set of symbols in output sections.
964 void
965 define_symbols(const Layout*, const Target*, int count,
966 const Define_symbol_in_section*);
967
968 // Define a set of symbols in output segments.
969 void
970 define_symbols(const Layout*, const Target*, int count,
971 const Define_symbol_in_segment*);
972
973 // Define SYM using a COPY reloc. POSD is the Output_data where the
974 // symbol should be defined--typically a .dyn.bss section. VALUE is
975 // the offset within POSD.
976 template<int size>
977 void
978 define_with_copy_reloc(const Target*, Sized_symbol<size>* sym,
979 Output_data* posd, uint64_t value);
980
981 // Look up a symbol.
982 Symbol*
983 lookup(const char*, const char* version = NULL) const;
984
985 // Return the real symbol associated with the forwarder symbol FROM.
986 Symbol*
987 resolve_forwards(const Symbol* from) const;
988
989 // Return the sized version of a symbol in this table.
990 template<int size>
991 Sized_symbol<size>*
992 get_sized_symbol(Symbol* ACCEPT_SIZE) const;
993
994 template<int size>
995 const Sized_symbol<size>*
996 get_sized_symbol(const Symbol* ACCEPT_SIZE) const;
997
998 // Return the count of undefined symbols seen.
999 int
1000 saw_undefined() const
1001 { return this->saw_undefined_; }
1002
1003 // Allocate the common symbols
1004 void
1005 allocate_commons(const General_options&, Layout*);
1006
1007 // Add a warning for symbol NAME in section SHNDX in object OBJ.
1008 void
1009 add_warning(const char* name, Object* obj, unsigned int shndx)
1010 { this->warnings_.add_warning(this, name, obj, shndx); }
1011
1012 // Canonicalize a symbol name for use in the hash table.
1013 const char*
1014 canonicalize_name(const char* name)
1015 { return this->namepool_.add(name, true, NULL); }
1016
1017 // Possibly issue a warning for a reference to SYM at LOCATION which
1018 // is in OBJ.
1019 template<int size, bool big_endian>
1020 void
1021 issue_warning(const Symbol* sym,
1022 const Relocate_info<size, big_endian>* relinfo,
1023 size_t relnum, off_t reloffset) const
1024 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1025
1026 // SYM is defined using a COPY reloc. Return the dynamic object
1027 // where the original definition was found.
1028 Dynobj*
1029 get_copy_source(const Symbol* sym) const;
1030
1031 // Set the dynamic symbol indexes. INDEX is the index of the first
1032 // global dynamic symbol. Pointers to the symbols are stored into
1033 // the vector. The names are stored into the Stringpool. This
1034 // returns an updated dynamic symbol index.
1035 unsigned int
1036 set_dynsym_indexes(const Target*, unsigned int index,
1037 std::vector<Symbol*>*, Stringpool*, Versions*);
1038
1039 // Finalize the symbol table after we have set the final addresses
1040 // of all the input sections. This sets the final symbol indexes,
1041 // values and adds the names to *POOL. INDEX is the index of the
1042 // first global symbol. OFF is the file offset of the global symbol
1043 // table, DYNOFF is the offset of the globals in the dynamic symbol
1044 // table, DYN_GLOBAL_INDEX is the index of the first global dynamic
1045 // symbol, and DYNCOUNT is the number of global dynamic symbols.
1046 // This records the parameters, and returns the new file offset.
1047 off_t
1048 finalize(unsigned int index, off_t off, off_t dynoff,
1049 size_t dyn_global_index, size_t dyncount, Stringpool* pool);
1050
1051 // Write out the global symbols.
1052 void
1053 write_globals(const Target*, const Stringpool*, const Stringpool*,
1054 Output_file*) const;
1055
1056 // Write out a section symbol. Return the updated offset.
1057 void
1058 write_section_symbol(const Output_section*, Output_file*, off_t) const;
1059
1060 private:
1061 Symbol_table(const Symbol_table&);
1062 Symbol_table& operator=(const Symbol_table&);
1063
1064 // Make FROM a forwarder symbol to TO.
1065 void
1066 make_forwarder(Symbol* from, Symbol* to);
1067
1068 // Add a symbol.
1069 template<int size, bool big_endian>
1070 Sized_symbol<size>*
1071 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1072 const char *version, Stringpool::Key version_key,
1073 bool def, const elfcpp::Sym<size, big_endian>& sym);
1074
1075 // Resolve symbols.
1076 template<int size, bool big_endian>
1077 void
1078 resolve(Sized_symbol<size>* to,
1079 const elfcpp::Sym<size, big_endian>& sym,
1080 Object*, const char* version);
1081
1082 template<int size, bool big_endian>
1083 void
1084 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
1085 const char* version ACCEPT_SIZE_ENDIAN);
1086
1087 // Whether we should override a symbol, based on flags in
1088 // resolve.cc.
1089 static bool
1090 should_override(const Symbol*, unsigned int, Object*, bool*);
1091
1092 // Override a symbol.
1093 template<int size, bool big_endian>
1094 void
1095 override(Sized_symbol<size>* tosym,
1096 const elfcpp::Sym<size, big_endian>& fromsym,
1097 Object* object, const char* version);
1098
1099 // Whether we should override a symbol with a special symbol which
1100 // is automatically defined by the linker.
1101 static bool
1102 should_override_with_special(const Symbol*);
1103
1104 // Override a symbol with a special symbol.
1105 template<int size>
1106 void
1107 override_with_special(Sized_symbol<size>* tosym,
1108 const Sized_symbol<size>* fromsym);
1109
1110 // Record all weak alias sets for a dynamic object.
1111 template<int size>
1112 void
1113 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1114
1115 // Define a special symbol.
1116 template<int size, bool big_endian>
1117 Sized_symbol<size>*
1118 define_special_symbol(const Target* target, const char** pname,
1119 const char** pversion, bool only_if_ref,
1120 Sized_symbol<size>** poldsym ACCEPT_SIZE_ENDIAN);
1121
1122 // Define a symbol in an Output_data, sized version.
1123 template<int size>
1124 Sized_symbol<size>*
1125 do_define_in_output_data(const Target*, const char* name,
1126 const char* version, Output_data*,
1127 typename elfcpp::Elf_types<size>::Elf_Addr value,
1128 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1129 elfcpp::STT type, elfcpp::STB binding,
1130 elfcpp::STV visibility, unsigned char nonvis,
1131 bool offset_is_from_end, bool only_if_ref);
1132
1133 // Define a symbol in an Output_segment, sized version.
1134 template<int size>
1135 Sized_symbol<size>*
1136 do_define_in_output_segment(
1137 const Target*, const char* name, const char* version, Output_segment* os,
1138 typename elfcpp::Elf_types<size>::Elf_Addr value,
1139 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1140 elfcpp::STT type, elfcpp::STB binding,
1141 elfcpp::STV visibility, unsigned char nonvis,
1142 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1143
1144 // Define a symbol as a constant, sized version.
1145 template<int size>
1146 Sized_symbol<size>*
1147 do_define_as_constant(
1148 const Target*, const char* name, const char* version,
1149 typename elfcpp::Elf_types<size>::Elf_Addr value,
1150 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1151 elfcpp::STT type, elfcpp::STB binding,
1152 elfcpp::STV visibility, unsigned char nonvis,
1153 bool only_if_ref);
1154
1155 // Allocate the common symbols, sized version.
1156 template<int size>
1157 void
1158 do_allocate_commons(const General_options&, Layout*);
1159
1160 // Finalize symbols specialized for size.
1161 template<int size>
1162 off_t
1163 sized_finalize(unsigned int, off_t, Stringpool*);
1164
1165 // Write globals specialized for size and endianness.
1166 template<int size, bool big_endian>
1167 void
1168 sized_write_globals(const Target*, const Stringpool*, const Stringpool*,
1169 Output_file*) const;
1170
1171 // Write out a symbol to P.
1172 template<int size, bool big_endian>
1173 void
1174 sized_write_symbol(Sized_symbol<size>*,
1175 typename elfcpp::Elf_types<size>::Elf_Addr value,
1176 unsigned int shndx,
1177 const Stringpool*, unsigned char* p
1178 ACCEPT_SIZE_ENDIAN) const;
1179
1180 // Write out a section symbol, specialized for size and endianness.
1181 template<int size, bool big_endian>
1182 void
1183 sized_write_section_symbol(const Output_section*, Output_file*, off_t) const;
1184
1185 // The type of the symbol hash table.
1186
1187 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1188
1189 struct Symbol_table_hash
1190 {
1191 size_t
1192 operator()(const Symbol_table_key&) const;
1193 };
1194
1195 struct Symbol_table_eq
1196 {
1197 bool
1198 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1199 };
1200
1201 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1202 Symbol_table_eq> Symbol_table_type;
1203
1204 // The type of the list of common symbols.
1205 typedef std::vector<Symbol*> Commons_type;
1206
1207 // A map from symbols with COPY relocs to the dynamic objects where
1208 // they are defined.
1209 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1210
1211 // We increment this every time we see a new undefined symbol, for
1212 // use in archive groups.
1213 int saw_undefined_;
1214 // The index of the first global symbol in the output file.
1215 unsigned int first_global_index_;
1216 // The file offset within the output symtab section where we should
1217 // write the table.
1218 off_t offset_;
1219 // The number of global symbols we want to write out.
1220 size_t output_count_;
1221 // The file offset of the global dynamic symbols, or 0 if none.
1222 off_t dynamic_offset_;
1223 // The index of the first global dynamic symbol.
1224 unsigned int first_dynamic_global_index_;
1225 // The number of global dynamic symbols, or 0 if none.
1226 off_t dynamic_count_;
1227 // The symbol hash table.
1228 Symbol_table_type table_;
1229 // A pool of symbol names. This is used for all global symbols.
1230 // Entries in the hash table point into this pool.
1231 Stringpool namepool_;
1232 // Forwarding symbols.
1233 Unordered_map<const Symbol*, Symbol*> forwarders_;
1234 // Weak aliases. A symbol in this list points to the next alias.
1235 // The aliases point to each other in a circular list.
1236 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1237 // We don't expect there to be very many common symbols, so we keep
1238 // a list of them. When we find a common symbol we add it to this
1239 // list. It is possible that by the time we process the list the
1240 // symbol is no longer a common symbol. It may also have become a
1241 // forwarder.
1242 Commons_type commons_;
1243 // Manage symbol warnings.
1244 Warnings warnings_;
1245 // When we emit a COPY reloc for a symbol, we define it in an
1246 // Output_data. When it's time to emit version information for it,
1247 // we need to know the dynamic object in which we found the original
1248 // definition. This maps symbols with COPY relocs to the dynamic
1249 // object where they were defined.
1250 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1251 };
1252
1253 // We inline get_sized_symbol for efficiency.
1254
1255 template<int size>
1256 Sized_symbol<size>*
1257 Symbol_table::get_sized_symbol(Symbol* sym ACCEPT_SIZE) const
1258 {
1259 gold_assert(size == parameters->get_size());
1260 return static_cast<Sized_symbol<size>*>(sym);
1261 }
1262
1263 template<int size>
1264 const Sized_symbol<size>*
1265 Symbol_table::get_sized_symbol(const Symbol* sym ACCEPT_SIZE) const
1266 {
1267 gold_assert(size == parameters->get_size());
1268 return static_cast<const Sized_symbol<size>*>(sym);
1269 }
1270
1271 } // End namespace gold.
1272
1273 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.064441 seconds and 4 git commands to generate.