From Cary Coutant: Fix mixing PIC and non-PIC relocs in the same
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "elfcpp.h"
31 #include "parameters.h"
32 #include "stringpool.h"
33 #include "object.h"
34
35 #ifndef GOLD_SYMTAB_H
36 #define GOLD_SYMTAB_H
37
38 namespace gold
39 {
40
41 class Object;
42 class Relobj;
43 template<int size, bool big_endian>
44 class Sized_relobj;
45 class Dynobj;
46 template<int size, bool big_endian>
47 class Sized_dynobj;
48 class Versions;
49 class Version_script_info;
50 class Input_objects;
51 class Output_data;
52 class Output_section;
53 class Output_segment;
54 class Output_file;
55 class Target;
56
57 // The base class of an entry in the symbol table. The symbol table
58 // can have a lot of entries, so we don't want this class to big.
59 // Size dependent fields can be found in the template class
60 // Sized_symbol. Targets may support their own derived classes.
61
62 class Symbol
63 {
64 public:
65 // Because we want the class to be small, we don't use any virtual
66 // functions. But because symbols can be defined in different
67 // places, we need to classify them. This enum is the different
68 // sources of symbols we support.
69 enum Source
70 {
71 // Symbol defined in a relocatable or dynamic input file--this is
72 // the most common case.
73 FROM_OBJECT,
74 // Symbol defined in an Output_data, a special section created by
75 // the target.
76 IN_OUTPUT_DATA,
77 // Symbol defined in an Output_segment, with no associated
78 // section.
79 IN_OUTPUT_SEGMENT,
80 // Symbol value is constant.
81 CONSTANT
82 };
83
84 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
85 // the offset means.
86 enum Segment_offset_base
87 {
88 // From the start of the segment.
89 SEGMENT_START,
90 // From the end of the segment.
91 SEGMENT_END,
92 // From the filesz of the segment--i.e., after the loaded bytes
93 // but before the bytes which are allocated but zeroed.
94 SEGMENT_BSS
95 };
96
97 // Return the symbol name.
98 const char*
99 name() const
100 { return this->name_; }
101
102 // Return the (ANSI) demangled version of the name, if
103 // parameters.demangle() is true. Otherwise, return the name. This
104 // is intended to be used only for logging errors, so it's not
105 // super-efficient.
106 std::string
107 demangled_name() const;
108
109 // Return the symbol version. This will return NULL for an
110 // unversioned symbol.
111 const char*
112 version() const
113 { return this->version_; }
114
115 // Return whether this version is the default for this symbol name
116 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
117 // meaningful for versioned symbols.
118 bool
119 is_default() const
120 {
121 gold_assert(this->version_ != NULL);
122 return this->is_def_;
123 }
124
125 // Set whether this version is the default for this symbol name.
126 void
127 set_is_default(bool def)
128 { this->is_def_ = def; }
129
130 // Return the symbol source.
131 Source
132 source() const
133 { return this->source_; }
134
135 // Return the object with which this symbol is associated.
136 Object*
137 object() const
138 {
139 gold_assert(this->source_ == FROM_OBJECT);
140 return this->u_.from_object.object;
141 }
142
143 // Return the index of the section in the input relocatable or
144 // dynamic object file.
145 unsigned int
146 shndx() const
147 {
148 gold_assert(this->source_ == FROM_OBJECT);
149 return this->u_.from_object.shndx;
150 }
151
152 // Return the output data section with which this symbol is
153 // associated, if the symbol was specially defined with respect to
154 // an output data section.
155 Output_data*
156 output_data() const
157 {
158 gold_assert(this->source_ == IN_OUTPUT_DATA);
159 return this->u_.in_output_data.output_data;
160 }
161
162 // If this symbol was defined with respect to an output data
163 // section, return whether the value is an offset from end.
164 bool
165 offset_is_from_end() const
166 {
167 gold_assert(this->source_ == IN_OUTPUT_DATA);
168 return this->u_.in_output_data.offset_is_from_end;
169 }
170
171 // Return the output segment with which this symbol is associated,
172 // if the symbol was specially defined with respect to an output
173 // segment.
174 Output_segment*
175 output_segment() const
176 {
177 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
178 return this->u_.in_output_segment.output_segment;
179 }
180
181 // If this symbol was defined with respect to an output segment,
182 // return the offset base.
183 Segment_offset_base
184 offset_base() const
185 {
186 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
187 return this->u_.in_output_segment.offset_base;
188 }
189
190 // Return the symbol binding.
191 elfcpp::STB
192 binding() const
193 { return this->binding_; }
194
195 // Return the symbol type.
196 elfcpp::STT
197 type() const
198 { return this->type_; }
199
200 // Return the symbol visibility.
201 elfcpp::STV
202 visibility() const
203 { return this->visibility_; }
204
205 // Return the non-visibility part of the st_other field.
206 unsigned char
207 nonvis() const
208 { return this->nonvis_; }
209
210 // Return whether this symbol is a forwarder. This will never be
211 // true of a symbol found in the hash table, but may be true of
212 // symbol pointers attached to object files.
213 bool
214 is_forwarder() const
215 { return this->is_forwarder_; }
216
217 // Mark this symbol as a forwarder.
218 void
219 set_forwarder()
220 { this->is_forwarder_ = true; }
221
222 // Return whether this symbol has an alias in the weak aliases table
223 // in Symbol_table.
224 bool
225 has_alias() const
226 { return this->has_alias_; }
227
228 // Mark this symbol as having an alias.
229 void
230 set_has_alias()
231 { this->has_alias_ = true; }
232
233 // Return whether this symbol needs an entry in the dynamic symbol
234 // table.
235 bool
236 needs_dynsym_entry() const
237 {
238 return (this->needs_dynsym_entry_
239 || (this->in_reg() && this->in_dyn()));
240 }
241
242 // Mark this symbol as needing an entry in the dynamic symbol table.
243 void
244 set_needs_dynsym_entry()
245 { this->needs_dynsym_entry_ = true; }
246
247 // Return whether this symbol should be added to the dynamic symbol
248 // table.
249 bool
250 should_add_dynsym_entry() const;
251
252 // Return whether this symbol has been seen in a regular object.
253 bool
254 in_reg() const
255 { return this->in_reg_; }
256
257 // Mark this symbol as having been seen in a regular object.
258 void
259 set_in_reg()
260 { this->in_reg_ = true; }
261
262 // Return whether this symbol has been seen in a dynamic object.
263 bool
264 in_dyn() const
265 { return this->in_dyn_; }
266
267 // Mark this symbol as having been seen in a dynamic object.
268 void
269 set_in_dyn()
270 { this->in_dyn_ = true; }
271
272 // Return the index of this symbol in the output file symbol table.
273 // A value of -1U means that this symbol is not going into the
274 // output file. This starts out as zero, and is set to a non-zero
275 // value by Symbol_table::finalize. It is an error to ask for the
276 // symbol table index before it has been set.
277 unsigned int
278 symtab_index() const
279 {
280 gold_assert(this->symtab_index_ != 0);
281 return this->symtab_index_;
282 }
283
284 // Set the index of the symbol in the output file symbol table.
285 void
286 set_symtab_index(unsigned int index)
287 {
288 gold_assert(index != 0);
289 this->symtab_index_ = index;
290 }
291
292 // Return whether this symbol already has an index in the output
293 // file symbol table.
294 bool
295 has_symtab_index() const
296 { return this->symtab_index_ != 0; }
297
298 // Return the index of this symbol in the dynamic symbol table. A
299 // value of -1U means that this symbol is not going into the dynamic
300 // symbol table. This starts out as zero, and is set to a non-zero
301 // during Layout::finalize. It is an error to ask for the dynamic
302 // symbol table index before it has been set.
303 unsigned int
304 dynsym_index() const
305 {
306 gold_assert(this->dynsym_index_ != 0);
307 return this->dynsym_index_;
308 }
309
310 // Set the index of the symbol in the dynamic symbol table.
311 void
312 set_dynsym_index(unsigned int index)
313 {
314 gold_assert(index != 0);
315 this->dynsym_index_ = index;
316 }
317
318 // Return whether this symbol already has an index in the dynamic
319 // symbol table.
320 bool
321 has_dynsym_index() const
322 { return this->dynsym_index_ != 0; }
323
324 // Return whether this symbol has an entry in the GOT section.
325 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
326 bool
327 has_got_offset() const
328 { return this->has_got_offset_; }
329
330 // Return the offset into the GOT section of this symbol.
331 unsigned int
332 got_offset() const
333 {
334 gold_assert(this->has_got_offset());
335 return this->got_offset_;
336 }
337
338 // Set the GOT offset of this symbol.
339 void
340 set_got_offset(unsigned int got_offset)
341 {
342 this->has_got_offset_ = true;
343 this->got_offset_ = got_offset;
344 }
345
346 // Return whether this TLS symbol has an entry in the GOT section for
347 // its module index or, if NEED_PAIR is true, has a pair of entries
348 // for its module index and dtv-relative offset.
349 bool
350 has_tls_got_offset(bool need_pair) const
351 {
352 return (this->has_tls_mod_got_offset_
353 && (!need_pair || this->has_tls_pair_got_offset_));
354 }
355
356 // Return the offset into the GOT section for this symbol's TLS module
357 // index or, if NEED_PAIR is true, for the pair of entries for the
358 // module index and dtv-relative offset.
359 unsigned int
360 tls_got_offset(bool need_pair) const
361 {
362 gold_assert(this->has_tls_got_offset(need_pair));
363 return this->tls_mod_got_offset_;
364 }
365
366 // Set the GOT offset of this symbol.
367 void
368 set_tls_got_offset(unsigned int got_offset, bool have_pair)
369 {
370 this->has_tls_mod_got_offset_ = true;
371 this->has_tls_pair_got_offset_ = have_pair;
372 this->tls_mod_got_offset_ = got_offset;
373 }
374
375 // Return whether this symbol has an entry in the PLT section.
376 bool
377 has_plt_offset() const
378 { return this->has_plt_offset_; }
379
380 // Return the offset into the PLT section of this symbol.
381 unsigned int
382 plt_offset() const
383 {
384 gold_assert(this->has_plt_offset());
385 return this->plt_offset_;
386 }
387
388 // Set the PLT offset of this symbol.
389 void
390 set_plt_offset(unsigned int plt_offset)
391 {
392 this->has_plt_offset_ = true;
393 this->plt_offset_ = plt_offset;
394 }
395
396 // Return whether this dynamic symbol needs a special value in the
397 // dynamic symbol table.
398 bool
399 needs_dynsym_value() const
400 { return this->needs_dynsym_value_; }
401
402 // Set that this dynamic symbol needs a special value in the dynamic
403 // symbol table.
404 void
405 set_needs_dynsym_value()
406 {
407 gold_assert(this->object()->is_dynamic());
408 this->needs_dynsym_value_ = true;
409 }
410
411 // Return true if the final value of this symbol is known at link
412 // time.
413 bool
414 final_value_is_known() const;
415
416 // Return whether this is a defined symbol (not undefined or
417 // common).
418 bool
419 is_defined() const
420 {
421 return (this->source_ != FROM_OBJECT
422 || (this->shndx() != elfcpp::SHN_UNDEF
423 && this->shndx() != elfcpp::SHN_COMMON));
424 }
425
426 // Return true if this symbol is from a dynamic object.
427 bool
428 is_from_dynobj() const
429 {
430 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
431 }
432
433 // Return whether this is an undefined symbol.
434 bool
435 is_undefined() const
436 {
437 return this->source_ == FROM_OBJECT && this->shndx() == elfcpp::SHN_UNDEF;
438 }
439
440 // Return whether this is a common symbol.
441 bool
442 is_common() const
443 {
444 return (this->source_ == FROM_OBJECT
445 && (this->shndx() == elfcpp::SHN_COMMON
446 || this->type_ == elfcpp::STT_COMMON));
447 }
448
449 // Return whether this symbol can be seen outside this object.
450 bool
451 is_externally_visible() const
452 {
453 return (this->visibility_ == elfcpp::STV_DEFAULT
454 || this->visibility_ == elfcpp::STV_PROTECTED);
455 }
456
457 // Return true if this symbol can be preempted by a definition in
458 // another link unit.
459 bool
460 is_preemptible() const
461 {
462 // It doesn't make sense to ask whether a symbol defined in
463 // another object is preemptible.
464 gold_assert(!this->is_from_dynobj());
465
466 return (this->visibility_ != elfcpp::STV_INTERNAL
467 && this->visibility_ != elfcpp::STV_HIDDEN
468 && this->visibility_ != elfcpp::STV_PROTECTED
469 && parameters->output_is_shared()
470 && !parameters->symbolic());
471 }
472
473 // Return true if this symbol is a function that needs a PLT entry.
474 // If the symbol is defined in a dynamic object or if it is subject
475 // to pre-emption, we need to make a PLT entry.
476 bool
477 needs_plt_entry() const
478 {
479 return (this->type() == elfcpp::STT_FUNC
480 && (this->is_from_dynobj() || this->is_preemptible()));
481 }
482
483 // When determining whether a reference to a symbol needs a dynamic
484 // relocation, we need to know several things about the reference.
485 // These flags may be or'ed together.
486 enum Reference_flags
487 {
488 // Reference to the symbol's absolute address.
489 ABSOLUTE_REF = 1,
490 // A non-PIC reference.
491 NON_PIC_REF = 2,
492 // A function call.
493 FUNCTION_CALL = 4
494 };
495
496 // Given a direct absolute or pc-relative static relocation against
497 // the global symbol, this function returns whether a dynamic relocation
498 // is needed.
499
500 bool
501 needs_dynamic_reloc(int flags) const
502 {
503 // An absolute reference within a position-independent output file
504 // will need a dynamic relocation.
505 if ((flags & ABSOLUTE_REF)
506 && parameters->output_is_position_independent())
507 return true;
508
509 // A function call that can branch to a local PLT entry does not need
510 // a dynamic relocation.
511 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
512 return false;
513
514 // A non-pic pc-relative function call in a shared library whose target
515 // is defined in the same load module does not need a dynamic relocation.
516 // Even if the target is preemptible, we will bind directly, since we
517 // cannot use a PLT entry in this case.
518 if ((flags & FUNCTION_CALL)
519 && (flags & NON_PIC_REF)
520 && this->is_defined()
521 && parameters->output_is_shared())
522 return false;
523
524 // A reference to any PLT entry in a non-position-independent executable
525 // does not need a dynamic relocation.
526 if (!parameters->output_is_position_independent()
527 && this->has_plt_offset())
528 return false;
529
530 // A reference to a symbol defined in a dynamic object or to a
531 // symbol that is preemptible will need a dynamic relocation.
532 if (this->is_from_dynobj() || this->is_preemptible())
533 return true;
534
535 // For all other cases, return FALSE.
536 return false;
537 }
538
539 // Given a direct absolute static relocation against
540 // the global symbol, where a dynamic relocation is needed, this
541 // function returns whether a relative dynamic relocation can be used.
542 // The caller must determine separately whether the static relocation
543 // is compatible with a relative relocation.
544
545 bool
546 can_use_relative_reloc(bool is_function_call) const
547 {
548 // A function call that can branch to a local PLT entry can
549 // use a RELATIVE relocation.
550 if (is_function_call && this->has_plt_offset())
551 return true;
552
553 // A reference to a symbol defined in a dynamic object or to a
554 // symbol that is preemptible can not use a RELATIVE relocaiton.
555 if (this->is_from_dynobj() || this->is_preemptible())
556 return false;
557
558 // For all other cases, return TRUE.
559 return true;
560 }
561
562 // Return whether there should be a warning for references to this
563 // symbol.
564 bool
565 has_warning() const
566 { return this->has_warning_; }
567
568 // Mark this symbol as having a warning.
569 void
570 set_has_warning()
571 { this->has_warning_ = true; }
572
573 // Return whether this symbol is defined by a COPY reloc from a
574 // dynamic object.
575 bool
576 is_copied_from_dynobj() const
577 { return this->is_copied_from_dynobj_; }
578
579 // Mark this symbol as defined by a COPY reloc.
580 void
581 set_is_copied_from_dynobj()
582 { this->is_copied_from_dynobj_ = true; }
583
584 protected:
585 // Instances of this class should always be created at a specific
586 // size.
587 Symbol()
588 { memset(this, 0, sizeof *this); }
589
590 // Initialize the general fields.
591 void
592 init_fields(const char* name, const char* version,
593 elfcpp::STT type, elfcpp::STB binding,
594 elfcpp::STV visibility, unsigned char nonvis);
595
596 // Initialize fields from an ELF symbol in OBJECT.
597 template<int size, bool big_endian>
598 void
599 init_base(const char *name, const char* version, Object* object,
600 const elfcpp::Sym<size, big_endian>&);
601
602 // Initialize fields for an Output_data.
603 void
604 init_base(const char* name, Output_data*, elfcpp::STT, elfcpp::STB,
605 elfcpp::STV, unsigned char nonvis, bool offset_is_from_end);
606
607 // Initialize fields for an Output_segment.
608 void
609 init_base(const char* name, Output_segment* os, elfcpp::STT type,
610 elfcpp::STB binding, elfcpp::STV visibility,
611 unsigned char nonvis, Segment_offset_base offset_base);
612
613 // Initialize fields for a constant.
614 void
615 init_base(const char* name, elfcpp::STT type, elfcpp::STB binding,
616 elfcpp::STV visibility, unsigned char nonvis);
617
618 // Override existing symbol.
619 template<int size, bool big_endian>
620 void
621 override_base(const elfcpp::Sym<size, big_endian>&, Object* object,
622 const char* version);
623
624 // Override existing symbol with a special symbol.
625 void
626 override_base_with_special(const Symbol* from);
627
628 // Allocate a common symbol by giving it a location in the output
629 // file.
630 void
631 allocate_base_common(Output_data*);
632
633 private:
634 Symbol(const Symbol&);
635 Symbol& operator=(const Symbol&);
636
637 // Symbol name (expected to point into a Stringpool).
638 const char* name_;
639 // Symbol version (expected to point into a Stringpool). This may
640 // be NULL.
641 const char* version_;
642
643 union
644 {
645 // This struct is used if SOURCE_ == FROM_OBJECT.
646 struct
647 {
648 // Object in which symbol is defined, or in which it was first
649 // seen.
650 Object* object;
651 // Section number in object_ in which symbol is defined.
652 unsigned int shndx;
653 } from_object;
654
655 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
656 struct
657 {
658 // Output_data in which symbol is defined. Before
659 // Layout::finalize the symbol's value is an offset within the
660 // Output_data.
661 Output_data* output_data;
662 // True if the offset is from the end, false if the offset is
663 // from the beginning.
664 bool offset_is_from_end;
665 } in_output_data;
666
667 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
668 struct
669 {
670 // Output_segment in which the symbol is defined. Before
671 // Layout::finalize the symbol's value is an offset.
672 Output_segment* output_segment;
673 // The base to use for the offset before Layout::finalize.
674 Segment_offset_base offset_base;
675 } in_output_segment;
676 } u_;
677
678 // The index of this symbol in the output file. If the symbol is
679 // not going into the output file, this value is -1U. This field
680 // starts as always holding zero. It is set to a non-zero value by
681 // Symbol_table::finalize.
682 unsigned int symtab_index_;
683
684 // The index of this symbol in the dynamic symbol table. If the
685 // symbol is not going into the dynamic symbol table, this value is
686 // -1U. This field starts as always holding zero. It is set to a
687 // non-zero value during Layout::finalize.
688 unsigned int dynsym_index_;
689
690 // If this symbol has an entry in the GOT section (has_got_offset_
691 // is true), this is the offset from the start of the GOT section.
692 // For a TLS symbol, if has_tls_tpoff_got_offset_ is true, this
693 // serves as the GOT offset for the GOT entry that holds its
694 // TP-relative offset.
695 unsigned int got_offset_;
696
697 // If this is a TLS symbol and has an entry in the GOT section
698 // for a module index or a pair of entries (module index,
699 // dtv-relative offset), these are the offsets from the start
700 // of the GOT section.
701 unsigned int tls_mod_got_offset_;
702 unsigned int tls_pair_got_offset_;
703
704 // If this symbol has an entry in the PLT section (has_plt_offset_
705 // is true), then this is the offset from the start of the PLT
706 // section.
707 unsigned int plt_offset_;
708
709 // Symbol type.
710 elfcpp::STT type_ : 4;
711 // Symbol binding.
712 elfcpp::STB binding_ : 4;
713 // Symbol visibility.
714 elfcpp::STV visibility_ : 2;
715 // Rest of symbol st_other field.
716 unsigned int nonvis_ : 6;
717 // The type of symbol.
718 Source source_ : 3;
719 // True if this symbol always requires special target-specific
720 // handling.
721 bool is_target_special_ : 1;
722 // True if this is the default version of the symbol.
723 bool is_def_ : 1;
724 // True if this symbol really forwards to another symbol. This is
725 // used when we discover after the fact that two different entries
726 // in the hash table really refer to the same symbol. This will
727 // never be set for a symbol found in the hash table, but may be set
728 // for a symbol found in the list of symbols attached to an Object.
729 // It forwards to the symbol found in the forwarders_ map of
730 // Symbol_table.
731 bool is_forwarder_ : 1;
732 // True if the symbol has an alias in the weak_aliases table in
733 // Symbol_table.
734 bool has_alias_ : 1;
735 // True if this symbol needs to be in the dynamic symbol table.
736 bool needs_dynsym_entry_ : 1;
737 // True if we've seen this symbol in a regular object.
738 bool in_reg_ : 1;
739 // True if we've seen this symbol in a dynamic object.
740 bool in_dyn_ : 1;
741 // True if the symbol has an entry in the GOT section.
742 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
743 bool has_got_offset_ : 1;
744 // True if the symbol has an entry in the GOT section for its
745 // module index.
746 bool has_tls_mod_got_offset_ : 1;
747 // True if the symbol has a pair of entries in the GOT section for its
748 // module index and dtv-relative offset.
749 bool has_tls_pair_got_offset_ : 1;
750 // True if the symbol has an entry in the PLT section.
751 bool has_plt_offset_ : 1;
752 // True if this is a dynamic symbol which needs a special value in
753 // the dynamic symbol table.
754 bool needs_dynsym_value_ : 1;
755 // True if there is a warning for this symbol.
756 bool has_warning_ : 1;
757 // True if we are using a COPY reloc for this symbol, so that the
758 // real definition lives in a dynamic object.
759 bool is_copied_from_dynobj_ : 1;
760 };
761
762 // The parts of a symbol which are size specific. Using a template
763 // derived class like this helps us use less space on a 32-bit system.
764
765 template<int size>
766 class Sized_symbol : public Symbol
767 {
768 public:
769 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
770 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
771
772 Sized_symbol()
773 { }
774
775 // Initialize fields from an ELF symbol in OBJECT.
776 template<bool big_endian>
777 void
778 init(const char *name, const char* version, Object* object,
779 const elfcpp::Sym<size, big_endian>&);
780
781 // Initialize fields for an Output_data.
782 void
783 init(const char* name, Output_data*, Value_type value, Size_type symsize,
784 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
785 bool offset_is_from_end);
786
787 // Initialize fields for an Output_segment.
788 void
789 init(const char* name, Output_segment*, Value_type value, Size_type symsize,
790 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
791 Segment_offset_base offset_base);
792
793 // Initialize fields for a constant.
794 void
795 init(const char* name, Value_type value, Size_type symsize,
796 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
797
798 // Override existing symbol.
799 template<bool big_endian>
800 void
801 override(const elfcpp::Sym<size, big_endian>&, Object* object,
802 const char* version);
803
804 // Override existing symbol with a special symbol.
805 void
806 override_with_special(const Sized_symbol<size>*);
807
808 // Return the symbol's value.
809 Value_type
810 value() const
811 { return this->value_; }
812
813 // Return the symbol's size (we can't call this 'size' because that
814 // is a template parameter).
815 Size_type
816 symsize() const
817 { return this->symsize_; }
818
819 // Set the symbol size. This is used when resolving common symbols.
820 void
821 set_symsize(Size_type symsize)
822 { this->symsize_ = symsize; }
823
824 // Set the symbol value. This is called when we store the final
825 // values of the symbols into the symbol table.
826 void
827 set_value(Value_type value)
828 { this->value_ = value; }
829
830 // Allocate a common symbol by giving it a location in the output
831 // file.
832 void
833 allocate_common(Output_data*, Value_type value);
834
835 private:
836 Sized_symbol(const Sized_symbol&);
837 Sized_symbol& operator=(const Sized_symbol&);
838
839 // Symbol value. Before Layout::finalize this is the offset in the
840 // input section. This is set to the final value during
841 // Layout::finalize.
842 Value_type value_;
843 // Symbol size.
844 Size_type symsize_;
845 };
846
847 // A struct describing a symbol defined by the linker, where the value
848 // of the symbol is defined based on an output section. This is used
849 // for symbols defined by the linker, like "_init_array_start".
850
851 struct Define_symbol_in_section
852 {
853 // The symbol name.
854 const char* name;
855 // The name of the output section with which this symbol should be
856 // associated. If there is no output section with that name, the
857 // symbol will be defined as zero.
858 const char* output_section;
859 // The offset of the symbol within the output section. This is an
860 // offset from the start of the output section, unless start_at_end
861 // is true, in which case this is an offset from the end of the
862 // output section.
863 uint64_t value;
864 // The size of the symbol.
865 uint64_t size;
866 // The symbol type.
867 elfcpp::STT type;
868 // The symbol binding.
869 elfcpp::STB binding;
870 // The symbol visibility.
871 elfcpp::STV visibility;
872 // The rest of the st_other field.
873 unsigned char nonvis;
874 // If true, the value field is an offset from the end of the output
875 // section.
876 bool offset_is_from_end;
877 // If true, this symbol is defined only if we see a reference to it.
878 bool only_if_ref;
879 };
880
881 // A struct describing a symbol defined by the linker, where the value
882 // of the symbol is defined based on a segment. This is used for
883 // symbols defined by the linker, like "_end". We describe the
884 // segment with which the symbol should be associated by its
885 // characteristics. If no segment meets these characteristics, the
886 // symbol will be defined as zero. If there is more than one segment
887 // which meets these characteristics, we will use the first one.
888
889 struct Define_symbol_in_segment
890 {
891 // The symbol name.
892 const char* name;
893 // The segment type where the symbol should be defined, typically
894 // PT_LOAD.
895 elfcpp::PT segment_type;
896 // Bitmask of segment flags which must be set.
897 elfcpp::PF segment_flags_set;
898 // Bitmask of segment flags which must be clear.
899 elfcpp::PF segment_flags_clear;
900 // The offset of the symbol within the segment. The offset is
901 // calculated from the position set by offset_base.
902 uint64_t value;
903 // The size of the symbol.
904 uint64_t size;
905 // The symbol type.
906 elfcpp::STT type;
907 // The symbol binding.
908 elfcpp::STB binding;
909 // The symbol visibility.
910 elfcpp::STV visibility;
911 // The rest of the st_other field.
912 unsigned char nonvis;
913 // The base from which we compute the offset.
914 Symbol::Segment_offset_base offset_base;
915 // If true, this symbol is defined only if we see a reference to it.
916 bool only_if_ref;
917 };
918
919 // This class manages warnings. Warnings are a GNU extension. When
920 // we see a section named .gnu.warning.SYM in an object file, and if
921 // we wind using the definition of SYM from that object file, then we
922 // will issue a warning for any relocation against SYM from a
923 // different object file. The text of the warning is the contents of
924 // the section. This is not precisely the definition used by the old
925 // GNU linker; the old GNU linker treated an occurrence of
926 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
927 // would trigger a warning on any reference. However, it was
928 // inconsistent in that a warning in a dynamic object only triggered
929 // if there was no definition in a regular object. This linker is
930 // different in that we only issue a warning if we use the symbol
931 // definition from the same object file as the warning section.
932
933 class Warnings
934 {
935 public:
936 Warnings()
937 : warnings_()
938 { }
939
940 // Add a warning for symbol NAME in object OBJ. WARNING is the text
941 // of the warning.
942 void
943 add_warning(Symbol_table* symtab, const char* name, Object* obj,
944 const std::string& warning);
945
946 // For each symbol for which we should give a warning, make a note
947 // on the symbol.
948 void
949 note_warnings(Symbol_table* symtab);
950
951 // Issue a warning for a reference to SYM at RELINFO's location.
952 template<int size, bool big_endian>
953 void
954 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
955 size_t relnum, off_t reloffset) const;
956
957 private:
958 Warnings(const Warnings&);
959 Warnings& operator=(const Warnings&);
960
961 // What we need to know to get the warning text.
962 struct Warning_location
963 {
964 // The object the warning is in.
965 Object* object;
966 // The warning text.
967 std::string text;
968
969 Warning_location()
970 : object(NULL), text()
971 { }
972
973 void
974 set(Object* o, const std::string& t)
975 {
976 this->object = o;
977 this->text = t;
978 }
979 };
980
981 // A mapping from warning symbol names (canonicalized in
982 // Symbol_table's namepool_ field) to warning information.
983 typedef Unordered_map<const char*, Warning_location> Warning_table;
984
985 Warning_table warnings_;
986 };
987
988 // The main linker symbol table.
989
990 class Symbol_table
991 {
992 public:
993 // COUNT is an estimate of how many symbosl will be inserted in the
994 // symbol table. It's ok to put 0 if you don't know; a correct
995 // guess will just save some CPU by reducing hashtable resizes.
996 Symbol_table(unsigned int count, const Version_script_info& version_script);
997
998 ~Symbol_table();
999
1000 // Add COUNT external symbols from the relocatable object RELOBJ to
1001 // the symbol table. SYMS is the symbols, SYM_NAMES is their names,
1002 // SYM_NAME_SIZE is the size of SYM_NAMES. This sets SYMPOINTERS to
1003 // point to the symbols in the symbol table.
1004 template<int size, bool big_endian>
1005 void
1006 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1007 const unsigned char* syms, size_t count,
1008 const char* sym_names, size_t sym_name_size,
1009 typename Sized_relobj<size, big_endian>::Symbols*);
1010
1011 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1012 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1013 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1014 // symbol version data.
1015 template<int size, bool big_endian>
1016 void
1017 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1018 const unsigned char* syms, size_t count,
1019 const char* sym_names, size_t sym_name_size,
1020 const unsigned char* versym, size_t versym_size,
1021 const std::vector<const char*>*);
1022
1023 // Define a special symbol based on an Output_data. It is a
1024 // multiple definition error if this symbol is already defined.
1025 Symbol*
1026 define_in_output_data(const Target*, const char* name, const char* version,
1027 Output_data*, uint64_t value, uint64_t symsize,
1028 elfcpp::STT type, elfcpp::STB binding,
1029 elfcpp::STV visibility, unsigned char nonvis,
1030 bool offset_is_from_end, bool only_if_ref);
1031
1032 // Define a special symbol based on an Output_segment. It is a
1033 // multiple definition error if this symbol is already defined.
1034 Symbol*
1035 define_in_output_segment(const Target*, const char* name,
1036 const char* version, Output_segment*,
1037 uint64_t value, uint64_t symsize,
1038 elfcpp::STT type, elfcpp::STB binding,
1039 elfcpp::STV visibility, unsigned char nonvis,
1040 Symbol::Segment_offset_base, bool only_if_ref);
1041
1042 // Define a special symbol with a constant value. It is a multiple
1043 // definition error if this symbol is already defined.
1044 Symbol*
1045 define_as_constant(const Target*, const char* name, const char* version,
1046 uint64_t value, uint64_t symsize, elfcpp::STT type,
1047 elfcpp::STB binding, elfcpp::STV visibility,
1048 unsigned char nonvis, bool only_if_ref);
1049
1050 // Define a set of symbols in output sections.
1051 void
1052 define_symbols(const Layout*, const Target*, int count,
1053 const Define_symbol_in_section*);
1054
1055 // Define a set of symbols in output segments.
1056 void
1057 define_symbols(const Layout*, const Target*, int count,
1058 const Define_symbol_in_segment*);
1059
1060 // Define SYM using a COPY reloc. POSD is the Output_data where the
1061 // symbol should be defined--typically a .dyn.bss section. VALUE is
1062 // the offset within POSD.
1063 template<int size>
1064 void
1065 define_with_copy_reloc(const Target*, Sized_symbol<size>* sym,
1066 Output_data* posd,
1067 typename elfcpp::Elf_types<size>::Elf_Addr);
1068
1069 // Look up a symbol.
1070 Symbol*
1071 lookup(const char*, const char* version = NULL) const;
1072
1073 // Return the real symbol associated with the forwarder symbol FROM.
1074 Symbol*
1075 resolve_forwards(const Symbol* from) const;
1076
1077 // Return the sized version of a symbol in this table.
1078 template<int size>
1079 Sized_symbol<size>*
1080 get_sized_symbol(Symbol* ACCEPT_SIZE) const;
1081
1082 template<int size>
1083 const Sized_symbol<size>*
1084 get_sized_symbol(const Symbol* ACCEPT_SIZE) const;
1085
1086 // Return the count of undefined symbols seen.
1087 int
1088 saw_undefined() const
1089 { return this->saw_undefined_; }
1090
1091 // Allocate the common symbols
1092 void
1093 allocate_commons(const General_options&, Layout*);
1094
1095 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1096 // of the warning.
1097 void
1098 add_warning(const char* name, Object* obj, const std::string& warning)
1099 { this->warnings_.add_warning(this, name, obj, warning); }
1100
1101 // Canonicalize a symbol name for use in the hash table.
1102 const char*
1103 canonicalize_name(const char* name)
1104 { return this->namepool_.add(name, true, NULL); }
1105
1106 // Possibly issue a warning for a reference to SYM at LOCATION which
1107 // is in OBJ.
1108 template<int size, bool big_endian>
1109 void
1110 issue_warning(const Symbol* sym,
1111 const Relocate_info<size, big_endian>* relinfo,
1112 size_t relnum, off_t reloffset) const
1113 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1114
1115 // Check candidate_odr_violations_ to find symbols with the same name
1116 // but apparently different definitions (different source-file/line-no).
1117 void
1118 detect_odr_violations(const Task*, const char* output_file_name) const;
1119
1120 // SYM is defined using a COPY reloc. Return the dynamic object
1121 // where the original definition was found.
1122 Dynobj*
1123 get_copy_source(const Symbol* sym) const;
1124
1125 // Set the dynamic symbol indexes. INDEX is the index of the first
1126 // global dynamic symbol. Pointers to the symbols are stored into
1127 // the vector. The names are stored into the Stringpool. This
1128 // returns an updated dynamic symbol index.
1129 unsigned int
1130 set_dynsym_indexes(const Target*, unsigned int index,
1131 std::vector<Symbol*>*, Stringpool*, Versions*);
1132
1133 // Finalize the symbol table after we have set the final addresses
1134 // of all the input sections. This sets the final symbol indexes,
1135 // values and adds the names to *POOL. INDEX is the index of the
1136 // first global symbol. OFF is the file offset of the global symbol
1137 // table, DYNOFF is the offset of the globals in the dynamic symbol
1138 // table, DYN_GLOBAL_INDEX is the index of the first global dynamic
1139 // symbol, and DYNCOUNT is the number of global dynamic symbols.
1140 // This records the parameters, and returns the new file offset.
1141 off_t
1142 finalize(unsigned int index, off_t off, off_t dynoff,
1143 size_t dyn_global_index, size_t dyncount, Stringpool* pool);
1144
1145 // Write out the global symbols.
1146 void
1147 write_globals(const Input_objects*, const Stringpool*, const Stringpool*,
1148 Output_file*) const;
1149
1150 // Write out a section symbol. Return the updated offset.
1151 void
1152 write_section_symbol(const Output_section*, Output_file*, off_t) const;
1153
1154 // Dump statistical information to stderr.
1155 void
1156 print_stats() const;
1157
1158 // Return the version script information.
1159 const Version_script_info&
1160 version_script() const
1161 { return version_script_; }
1162
1163 private:
1164 Symbol_table(const Symbol_table&);
1165 Symbol_table& operator=(const Symbol_table&);
1166
1167 // Make FROM a forwarder symbol to TO.
1168 void
1169 make_forwarder(Symbol* from, Symbol* to);
1170
1171 // Add a symbol.
1172 template<int size, bool big_endian>
1173 Sized_symbol<size>*
1174 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1175 const char *version, Stringpool::Key version_key,
1176 bool def, const elfcpp::Sym<size, big_endian>& sym,
1177 const elfcpp::Sym<size, big_endian>& orig_sym);
1178
1179 // Resolve symbols.
1180 template<int size, bool big_endian>
1181 void
1182 resolve(Sized_symbol<size>* to,
1183 const elfcpp::Sym<size, big_endian>& sym,
1184 const elfcpp::Sym<size, big_endian>& orig_sym,
1185 Object*, const char* version);
1186
1187 template<int size, bool big_endian>
1188 void
1189 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
1190 const char* version ACCEPT_SIZE_ENDIAN);
1191
1192 // Whether we should override a symbol, based on flags in
1193 // resolve.cc.
1194 static bool
1195 should_override(const Symbol*, unsigned int, Object*, bool*);
1196
1197 // Override a symbol.
1198 template<int size, bool big_endian>
1199 void
1200 override(Sized_symbol<size>* tosym,
1201 const elfcpp::Sym<size, big_endian>& fromsym,
1202 Object* object, const char* version);
1203
1204 // Whether we should override a symbol with a special symbol which
1205 // is automatically defined by the linker.
1206 static bool
1207 should_override_with_special(const Symbol*);
1208
1209 // Override a symbol with a special symbol.
1210 template<int size>
1211 void
1212 override_with_special(Sized_symbol<size>* tosym,
1213 const Sized_symbol<size>* fromsym);
1214
1215 // Record all weak alias sets for a dynamic object.
1216 template<int size>
1217 void
1218 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1219
1220 // Define a special symbol.
1221 template<int size, bool big_endian>
1222 Sized_symbol<size>*
1223 define_special_symbol(const Target* target, const char** pname,
1224 const char** pversion, bool only_if_ref,
1225 Sized_symbol<size>** poldsym ACCEPT_SIZE_ENDIAN);
1226
1227 // Define a symbol in an Output_data, sized version.
1228 template<int size>
1229 Sized_symbol<size>*
1230 do_define_in_output_data(const Target*, const char* name,
1231 const char* version, Output_data*,
1232 typename elfcpp::Elf_types<size>::Elf_Addr value,
1233 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1234 elfcpp::STT type, elfcpp::STB binding,
1235 elfcpp::STV visibility, unsigned char nonvis,
1236 bool offset_is_from_end, bool only_if_ref);
1237
1238 // Define a symbol in an Output_segment, sized version.
1239 template<int size>
1240 Sized_symbol<size>*
1241 do_define_in_output_segment(
1242 const Target*, const char* name, const char* version, Output_segment* os,
1243 typename elfcpp::Elf_types<size>::Elf_Addr value,
1244 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1245 elfcpp::STT type, elfcpp::STB binding,
1246 elfcpp::STV visibility, unsigned char nonvis,
1247 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1248
1249 // Define a symbol as a constant, sized version.
1250 template<int size>
1251 Sized_symbol<size>*
1252 do_define_as_constant(
1253 const Target*, const char* name, const char* version,
1254 typename elfcpp::Elf_types<size>::Elf_Addr value,
1255 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1256 elfcpp::STT type, elfcpp::STB binding,
1257 elfcpp::STV visibility, unsigned char nonvis,
1258 bool only_if_ref);
1259
1260 // Allocate the common symbols, sized version.
1261 template<int size>
1262 void
1263 do_allocate_commons(const General_options&, Layout*);
1264
1265 // Implement detect_odr_violations.
1266 template<int size, bool big_endian>
1267 void
1268 sized_detect_odr_violations() const;
1269
1270 // Finalize symbols specialized for size.
1271 template<int size>
1272 off_t
1273 sized_finalize(unsigned int, off_t, Stringpool*);
1274
1275 // Write globals specialized for size and endianness.
1276 template<int size, bool big_endian>
1277 void
1278 sized_write_globals(const Input_objects*, const Stringpool*,
1279 const Stringpool*, Output_file*) const;
1280
1281 // Write out a symbol to P.
1282 template<int size, bool big_endian>
1283 void
1284 sized_write_symbol(Sized_symbol<size>*,
1285 typename elfcpp::Elf_types<size>::Elf_Addr value,
1286 unsigned int shndx,
1287 const Stringpool*, unsigned char* p
1288 ACCEPT_SIZE_ENDIAN) const;
1289
1290 // Possibly warn about an undefined symbol from a dynamic object.
1291 void
1292 warn_about_undefined_dynobj_symbol(const Input_objects*, Symbol*) const;
1293
1294 // Write out a section symbol, specialized for size and endianness.
1295 template<int size, bool big_endian>
1296 void
1297 sized_write_section_symbol(const Output_section*, Output_file*, off_t) const;
1298
1299 // The type of the symbol hash table.
1300
1301 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1302
1303 struct Symbol_table_hash
1304 {
1305 size_t
1306 operator()(const Symbol_table_key&) const;
1307 };
1308
1309 struct Symbol_table_eq
1310 {
1311 bool
1312 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1313 };
1314
1315 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1316 Symbol_table_eq> Symbol_table_type;
1317
1318 // The type of the list of common symbols.
1319 typedef std::vector<Symbol*> Commons_type;
1320
1321 // A map from symbols with COPY relocs to the dynamic objects where
1322 // they are defined.
1323 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1324
1325 // A map from symbol name (as a pointer into the namepool) to all
1326 // the locations the symbols is (weakly) defined (and certain other
1327 // conditions are met). This map will be used later to detect
1328 // possible One Definition Rule (ODR) violations.
1329 struct Symbol_location
1330 {
1331 Object* object; // Object where the symbol is defined.
1332 unsigned int shndx; // Section-in-object where the symbol is defined.
1333 off_t offset; // Offset-in-section where the symbol is defined.
1334 bool operator==(const Symbol_location& that) const
1335 {
1336 return (this->object == that.object
1337 && this->shndx == that.shndx
1338 && this->offset == that.offset);
1339 }
1340 };
1341
1342 struct Symbol_location_hash
1343 {
1344 size_t operator()(const Symbol_location& loc) const
1345 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1346 };
1347
1348 typedef Unordered_map<const char*,
1349 Unordered_set<Symbol_location, Symbol_location_hash> >
1350 Odr_map;
1351
1352 // We increment this every time we see a new undefined symbol, for
1353 // use in archive groups.
1354 int saw_undefined_;
1355 // The index of the first global symbol in the output file.
1356 unsigned int first_global_index_;
1357 // The file offset within the output symtab section where we should
1358 // write the table.
1359 off_t offset_;
1360 // The number of global symbols we want to write out.
1361 size_t output_count_;
1362 // The file offset of the global dynamic symbols, or 0 if none.
1363 off_t dynamic_offset_;
1364 // The index of the first global dynamic symbol.
1365 unsigned int first_dynamic_global_index_;
1366 // The number of global dynamic symbols, or 0 if none.
1367 off_t dynamic_count_;
1368 // The symbol hash table.
1369 Symbol_table_type table_;
1370 // A pool of symbol names. This is used for all global symbols.
1371 // Entries in the hash table point into this pool.
1372 Stringpool namepool_;
1373 // Forwarding symbols.
1374 Unordered_map<const Symbol*, Symbol*> forwarders_;
1375 // Weak aliases. A symbol in this list points to the next alias.
1376 // The aliases point to each other in a circular list.
1377 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1378 // We don't expect there to be very many common symbols, so we keep
1379 // a list of them. When we find a common symbol we add it to this
1380 // list. It is possible that by the time we process the list the
1381 // symbol is no longer a common symbol. It may also have become a
1382 // forwarder.
1383 Commons_type commons_;
1384 // Manage symbol warnings.
1385 Warnings warnings_;
1386 // Manage potential One Definition Rule (ODR) violations.
1387 Odr_map candidate_odr_violations_;
1388
1389 // When we emit a COPY reloc for a symbol, we define it in an
1390 // Output_data. When it's time to emit version information for it,
1391 // we need to know the dynamic object in which we found the original
1392 // definition. This maps symbols with COPY relocs to the dynamic
1393 // object where they were defined.
1394 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1395 // Information parsed from the version script, if any.
1396 const Version_script_info& version_script_;
1397 };
1398
1399 // We inline get_sized_symbol for efficiency.
1400
1401 template<int size>
1402 Sized_symbol<size>*
1403 Symbol_table::get_sized_symbol(Symbol* sym ACCEPT_SIZE) const
1404 {
1405 gold_assert(size == parameters->get_size());
1406 return static_cast<Sized_symbol<size>*>(sym);
1407 }
1408
1409 template<int size>
1410 const Sized_symbol<size>*
1411 Symbol_table::get_sized_symbol(const Symbol* sym ACCEPT_SIZE) const
1412 {
1413 gold_assert(size == parameters->get_size());
1414 return static_cast<const Sized_symbol<size>*>(sym);
1415 }
1416
1417 } // End namespace gold.
1418
1419 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.078357 seconds and 5 git commands to generate.