* elf32-ppc.c (ppc_elf_check_relocs): Always add a plt ref count
[deliverable/binutils-gdb.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41
42 namespace
43 {
44
45 using namespace gold;
46
47 class Output_data_plt_x86_64;
48
49 // The x86_64 target class.
50 // See the ABI at
51 // http://www.x86-64.org/documentation/abi.pdf
52 // TLS info comes from
53 // http://people.redhat.com/drepper/tls.pdf
54 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
55
56 class Target_x86_64 : public Target_freebsd<64, false>
57 {
58 public:
59 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
60 // uses only Elf64_Rela relocation entries with explicit addends."
61 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
62
63 Target_x86_64()
64 : Target_freebsd<64, false>(&x86_64_info),
65 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
66 copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
67 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
68 { }
69
70 // Hook for a new output section.
71 void
72 do_new_output_section(Output_section*) const;
73
74 // Scan the relocations to look for symbol adjustments.
75 void
76 gc_process_relocs(const General_options& options,
77 Symbol_table* symtab,
78 Layout* layout,
79 Sized_relobj<64, false>* object,
80 unsigned int data_shndx,
81 unsigned int sh_type,
82 const unsigned char* prelocs,
83 size_t reloc_count,
84 Output_section* output_section,
85 bool needs_special_offset_handling,
86 size_t local_symbol_count,
87 const unsigned char* plocal_symbols);
88
89 // Scan the relocations to look for symbol adjustments.
90 void
91 scan_relocs(const General_options& options,
92 Symbol_table* symtab,
93 Layout* layout,
94 Sized_relobj<64, false>* object,
95 unsigned int data_shndx,
96 unsigned int sh_type,
97 const unsigned char* prelocs,
98 size_t reloc_count,
99 Output_section* output_section,
100 bool needs_special_offset_handling,
101 size_t local_symbol_count,
102 const unsigned char* plocal_symbols);
103
104 // Finalize the sections.
105 void
106 do_finalize_sections(Layout*);
107
108 // Return the value to use for a dynamic which requires special
109 // treatment.
110 uint64_t
111 do_dynsym_value(const Symbol*) const;
112
113 // Relocate a section.
114 void
115 relocate_section(const Relocate_info<64, false>*,
116 unsigned int sh_type,
117 const unsigned char* prelocs,
118 size_t reloc_count,
119 Output_section* output_section,
120 bool needs_special_offset_handling,
121 unsigned char* view,
122 elfcpp::Elf_types<64>::Elf_Addr view_address,
123 section_size_type view_size);
124
125 // Scan the relocs during a relocatable link.
126 void
127 scan_relocatable_relocs(const General_options& options,
128 Symbol_table* symtab,
129 Layout* layout,
130 Sized_relobj<64, false>* object,
131 unsigned int data_shndx,
132 unsigned int sh_type,
133 const unsigned char* prelocs,
134 size_t reloc_count,
135 Output_section* output_section,
136 bool needs_special_offset_handling,
137 size_t local_symbol_count,
138 const unsigned char* plocal_symbols,
139 Relocatable_relocs*);
140
141 // Relocate a section during a relocatable link.
142 void
143 relocate_for_relocatable(const Relocate_info<64, false>*,
144 unsigned int sh_type,
145 const unsigned char* prelocs,
146 size_t reloc_count,
147 Output_section* output_section,
148 off_t offset_in_output_section,
149 const Relocatable_relocs*,
150 unsigned char* view,
151 elfcpp::Elf_types<64>::Elf_Addr view_address,
152 section_size_type view_size,
153 unsigned char* reloc_view,
154 section_size_type reloc_view_size);
155
156 // Return a string used to fill a code section with nops.
157 std::string
158 do_code_fill(section_size_type length) const;
159
160 // Return whether SYM is defined by the ABI.
161 bool
162 do_is_defined_by_abi(const Symbol* sym) const
163 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
164
165 // Return the size of the GOT section.
166 section_size_type
167 got_size()
168 {
169 gold_assert(this->got_ != NULL);
170 return this->got_->data_size();
171 }
172
173 private:
174 // The class which scans relocations.
175 class Scan
176 {
177 public:
178 Scan()
179 : issued_non_pic_error_(false)
180 { }
181
182 inline void
183 local(const General_options& options, Symbol_table* symtab,
184 Layout* layout, Target_x86_64* target,
185 Sized_relobj<64, false>* object,
186 unsigned int data_shndx,
187 Output_section* output_section,
188 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
189 const elfcpp::Sym<64, false>& lsym);
190
191 inline void
192 global(const General_options& options, Symbol_table* symtab,
193 Layout* layout, Target_x86_64* target,
194 Sized_relobj<64, false>* object,
195 unsigned int data_shndx,
196 Output_section* output_section,
197 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
198 Symbol* gsym);
199
200 private:
201 static void
202 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
203
204 static void
205 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
206 Symbol*);
207
208 void
209 check_non_pic(Relobj*, unsigned int r_type);
210
211 // Whether we have issued an error about a non-PIC compilation.
212 bool issued_non_pic_error_;
213 };
214
215 // The class which implements relocation.
216 class Relocate
217 {
218 public:
219 Relocate()
220 : skip_call_tls_get_addr_(false), saw_tls_block_reloc_(false)
221 { }
222
223 ~Relocate()
224 {
225 if (this->skip_call_tls_get_addr_)
226 {
227 // FIXME: This needs to specify the location somehow.
228 gold_error(_("missing expected TLS relocation"));
229 }
230 }
231
232 // Do a relocation. Return false if the caller should not issue
233 // any warnings about this relocation.
234 inline bool
235 relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
236 size_t relnum, const elfcpp::Rela<64, false>&,
237 unsigned int r_type, const Sized_symbol<64>*,
238 const Symbol_value<64>*,
239 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
240 section_size_type);
241
242 private:
243 // Do a TLS relocation.
244 inline void
245 relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
246 size_t relnum, const elfcpp::Rela<64, false>&,
247 unsigned int r_type, const Sized_symbol<64>*,
248 const Symbol_value<64>*,
249 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
250 section_size_type);
251
252 // Do a TLS General-Dynamic to Initial-Exec transition.
253 inline void
254 tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
255 Output_segment* tls_segment,
256 const elfcpp::Rela<64, false>&, unsigned int r_type,
257 elfcpp::Elf_types<64>::Elf_Addr value,
258 unsigned char* view,
259 elfcpp::Elf_types<64>::Elf_Addr,
260 section_size_type view_size);
261
262 // Do a TLS General-Dynamic to Local-Exec transition.
263 inline void
264 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
265 Output_segment* tls_segment,
266 const elfcpp::Rela<64, false>&, unsigned int r_type,
267 elfcpp::Elf_types<64>::Elf_Addr value,
268 unsigned char* view,
269 section_size_type view_size);
270
271 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
272 inline void
273 tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
274 Output_segment* tls_segment,
275 const elfcpp::Rela<64, false>&, unsigned int r_type,
276 elfcpp::Elf_types<64>::Elf_Addr value,
277 unsigned char* view,
278 elfcpp::Elf_types<64>::Elf_Addr,
279 section_size_type view_size);
280
281 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
282 inline void
283 tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
284 Output_segment* tls_segment,
285 const elfcpp::Rela<64, false>&, unsigned int r_type,
286 elfcpp::Elf_types<64>::Elf_Addr value,
287 unsigned char* view,
288 section_size_type view_size);
289
290 // Do a TLS Local-Dynamic to Local-Exec transition.
291 inline void
292 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
293 Output_segment* tls_segment,
294 const elfcpp::Rela<64, false>&, unsigned int r_type,
295 elfcpp::Elf_types<64>::Elf_Addr value,
296 unsigned char* view,
297 section_size_type view_size);
298
299 // Do a TLS Initial-Exec to Local-Exec transition.
300 static inline void
301 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
302 Output_segment* tls_segment,
303 const elfcpp::Rela<64, false>&, unsigned int r_type,
304 elfcpp::Elf_types<64>::Elf_Addr value,
305 unsigned char* view,
306 section_size_type view_size);
307
308 // This is set if we should skip the next reloc, which should be a
309 // PLT32 reloc against ___tls_get_addr.
310 bool skip_call_tls_get_addr_;
311
312 // This is set if we see a relocation which could load the address
313 // of the TLS block. Whether we see such a relocation determines
314 // how we handle the R_X86_64_DTPOFF32 relocation, which is used
315 // in debugging sections.
316 bool saw_tls_block_reloc_;
317 };
318
319 // A class which returns the size required for a relocation type,
320 // used while scanning relocs during a relocatable link.
321 class Relocatable_size_for_reloc
322 {
323 public:
324 unsigned int
325 get_size_for_reloc(unsigned int, Relobj*);
326 };
327
328 // Adjust TLS relocation type based on the options and whether this
329 // is a local symbol.
330 static tls::Tls_optimization
331 optimize_tls_reloc(bool is_final, int r_type);
332
333 // Get the GOT section, creating it if necessary.
334 Output_data_got<64, false>*
335 got_section(Symbol_table*, Layout*);
336
337 // Get the GOT PLT section.
338 Output_data_space*
339 got_plt_section() const
340 {
341 gold_assert(this->got_plt_ != NULL);
342 return this->got_plt_;
343 }
344
345 // Create the PLT section.
346 void
347 make_plt_section(Symbol_table* symtab, Layout* layout);
348
349 // Create a PLT entry for a global symbol.
350 void
351 make_plt_entry(Symbol_table*, Layout*, Symbol*);
352
353 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
354 void
355 define_tls_base_symbol(Symbol_table*, Layout*);
356
357 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
358 void
359 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
360
361 // Create a GOT entry for the TLS module index.
362 unsigned int
363 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
364 Sized_relobj<64, false>* object);
365
366 // Get the PLT section.
367 Output_data_plt_x86_64*
368 plt_section() const
369 {
370 gold_assert(this->plt_ != NULL);
371 return this->plt_;
372 }
373
374 // Get the dynamic reloc section, creating it if necessary.
375 Reloc_section*
376 rela_dyn_section(Layout*);
377
378 // Return true if the symbol may need a COPY relocation.
379 // References from an executable object to non-function symbols
380 // defined in a dynamic object may need a COPY relocation.
381 bool
382 may_need_copy_reloc(Symbol* gsym)
383 {
384 return (!parameters->options().shared()
385 && gsym->is_from_dynobj()
386 && gsym->type() != elfcpp::STT_FUNC);
387 }
388
389 // Add a potential copy relocation.
390 void
391 copy_reloc(Symbol_table* symtab, Layout* layout,
392 Sized_relobj<64, false>* object,
393 unsigned int shndx, Output_section* output_section,
394 Symbol* sym, const elfcpp::Rela<64, false>& reloc)
395 {
396 this->copy_relocs_.copy_reloc(symtab, layout,
397 symtab->get_sized_symbol<64>(sym),
398 object, shndx, output_section,
399 reloc, this->rela_dyn_section(layout));
400 }
401
402 // Information about this specific target which we pass to the
403 // general Target structure.
404 static const Target::Target_info x86_64_info;
405
406 enum Got_type
407 {
408 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
409 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
410 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
411 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
412 };
413
414 // The GOT section.
415 Output_data_got<64, false>* got_;
416 // The PLT section.
417 Output_data_plt_x86_64* plt_;
418 // The GOT PLT section.
419 Output_data_space* got_plt_;
420 // The dynamic reloc section.
421 Reloc_section* rela_dyn_;
422 // Relocs saved to avoid a COPY reloc.
423 Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
424 // Space for variables copied with a COPY reloc.
425 Output_data_space* dynbss_;
426 // Offset of the GOT entry for the TLS module index.
427 unsigned int got_mod_index_offset_;
428 // True if the _TLS_MODULE_BASE_ symbol has been defined.
429 bool tls_base_symbol_defined_;
430 };
431
432 const Target::Target_info Target_x86_64::x86_64_info =
433 {
434 64, // size
435 false, // is_big_endian
436 elfcpp::EM_X86_64, // machine_code
437 false, // has_make_symbol
438 false, // has_resolve
439 true, // has_code_fill
440 true, // is_default_stack_executable
441 '\0', // wrap_char
442 "/lib/ld64.so.1", // program interpreter
443 0x400000, // default_text_segment_address
444 0x1000, // abi_pagesize (overridable by -z max-page-size)
445 0x1000, // common_pagesize (overridable by -z common-page-size)
446 elfcpp::SHN_UNDEF, // small_common_shndx
447 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
448 0, // small_common_section_flags
449 elfcpp::SHF_X86_64_LARGE // large_common_section_flags
450 };
451
452 // This is called when a new output section is created. This is where
453 // we handle the SHF_X86_64_LARGE.
454
455 void
456 Target_x86_64::do_new_output_section(Output_section *os) const
457 {
458 if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
459 os->set_is_large_section();
460 }
461
462 // Get the GOT section, creating it if necessary.
463
464 Output_data_got<64, false>*
465 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
466 {
467 if (this->got_ == NULL)
468 {
469 gold_assert(symtab != NULL && layout != NULL);
470
471 this->got_ = new Output_data_got<64, false>();
472
473 Output_section* os;
474 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
475 (elfcpp::SHF_ALLOC
476 | elfcpp::SHF_WRITE),
477 this->got_);
478 os->set_is_relro();
479
480 // The old GNU linker creates a .got.plt section. We just
481 // create another set of data in the .got section. Note that we
482 // always create a PLT if we create a GOT, although the PLT
483 // might be empty.
484 this->got_plt_ = new Output_data_space(8, "** GOT PLT");
485 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
486 (elfcpp::SHF_ALLOC
487 | elfcpp::SHF_WRITE),
488 this->got_plt_);
489 os->set_is_relro();
490
491 // The first three entries are reserved.
492 this->got_plt_->set_current_data_size(3 * 8);
493
494 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
495 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
496 this->got_plt_,
497 0, 0, elfcpp::STT_OBJECT,
498 elfcpp::STB_LOCAL,
499 elfcpp::STV_HIDDEN, 0,
500 false, false);
501 }
502
503 return this->got_;
504 }
505
506 // Get the dynamic reloc section, creating it if necessary.
507
508 Target_x86_64::Reloc_section*
509 Target_x86_64::rela_dyn_section(Layout* layout)
510 {
511 if (this->rela_dyn_ == NULL)
512 {
513 gold_assert(layout != NULL);
514 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
515 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
516 elfcpp::SHF_ALLOC, this->rela_dyn_);
517 }
518 return this->rela_dyn_;
519 }
520
521 // A class to handle the PLT data.
522
523 class Output_data_plt_x86_64 : public Output_section_data
524 {
525 public:
526 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
527
528 Output_data_plt_x86_64(Layout*, Output_data_got<64, false>*,
529 Output_data_space*);
530
531 // Add an entry to the PLT.
532 void
533 add_entry(Symbol* gsym);
534
535 // Add the reserved TLSDESC_PLT entry to the PLT.
536 void
537 reserve_tlsdesc_entry(unsigned int got_offset)
538 { this->tlsdesc_got_offset_ = got_offset; }
539
540 // Return true if a TLSDESC_PLT entry has been reserved.
541 bool
542 has_tlsdesc_entry() const
543 { return this->tlsdesc_got_offset_ != -1U; }
544
545 // Return the GOT offset for the reserved TLSDESC_PLT entry.
546 unsigned int
547 get_tlsdesc_got_offset() const
548 { return this->tlsdesc_got_offset_; }
549
550 // Return the offset of the reserved TLSDESC_PLT entry.
551 unsigned int
552 get_tlsdesc_plt_offset() const
553 { return (this->count_ + 1) * plt_entry_size; }
554
555 // Return the .rel.plt section data.
556 const Reloc_section*
557 rel_plt() const
558 { return this->rel_; }
559
560 protected:
561 void
562 do_adjust_output_section(Output_section* os);
563
564 // Write to a map file.
565 void
566 do_print_to_mapfile(Mapfile* mapfile) const
567 { mapfile->print_output_data(this, _("** PLT")); }
568
569 private:
570 // The size of an entry in the PLT.
571 static const int plt_entry_size = 16;
572
573 // The first entry in the PLT.
574 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
575 // procedure linkage table for both programs and shared objects."
576 static unsigned char first_plt_entry[plt_entry_size];
577
578 // Other entries in the PLT for an executable.
579 static unsigned char plt_entry[plt_entry_size];
580
581 // The reserved TLSDESC entry in the PLT for an executable.
582 static unsigned char tlsdesc_plt_entry[plt_entry_size];
583
584 // Set the final size.
585 void
586 set_final_data_size();
587
588 // Write out the PLT data.
589 void
590 do_write(Output_file*);
591
592 // The reloc section.
593 Reloc_section* rel_;
594 // The .got section.
595 Output_data_got<64, false>* got_;
596 // The .got.plt section.
597 Output_data_space* got_plt_;
598 // The number of PLT entries.
599 unsigned int count_;
600 // Offset of the reserved TLSDESC_GOT entry when needed.
601 unsigned int tlsdesc_got_offset_;
602 };
603
604 // Create the PLT section. The ordinary .got section is an argument,
605 // since we need to refer to the start. We also create our own .got
606 // section just for PLT entries.
607
608 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
609 Output_data_got<64, false>* got,
610 Output_data_space* got_plt)
611 : Output_section_data(8), got_(got), got_plt_(got_plt), count_(0),
612 tlsdesc_got_offset_(-1U)
613 {
614 this->rel_ = new Reloc_section(false);
615 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
616 elfcpp::SHF_ALLOC, this->rel_);
617 }
618
619 void
620 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
621 {
622 os->set_entsize(plt_entry_size);
623 }
624
625 // Add an entry to the PLT.
626
627 void
628 Output_data_plt_x86_64::add_entry(Symbol* gsym)
629 {
630 gold_assert(!gsym->has_plt_offset());
631
632 // Note that when setting the PLT offset we skip the initial
633 // reserved PLT entry.
634 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
635
636 ++this->count_;
637
638 section_offset_type got_offset = this->got_plt_->current_data_size();
639
640 // Every PLT entry needs a GOT entry which points back to the PLT
641 // entry (this will be changed by the dynamic linker, normally
642 // lazily when the function is called).
643 this->got_plt_->set_current_data_size(got_offset + 8);
644
645 // Every PLT entry needs a reloc.
646 gsym->set_needs_dynsym_entry();
647 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
648 got_offset, 0);
649
650 // Note that we don't need to save the symbol. The contents of the
651 // PLT are independent of which symbols are used. The symbols only
652 // appear in the relocations.
653 }
654
655 // Set the final size.
656 void
657 Output_data_plt_x86_64::set_final_data_size()
658 {
659 unsigned int count = this->count_;
660 if (this->has_tlsdesc_entry())
661 ++count;
662 this->set_data_size((count + 1) * plt_entry_size);
663 }
664
665 // The first entry in the PLT for an executable.
666
667 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
668 {
669 // From AMD64 ABI Draft 0.98, page 76
670 0xff, 0x35, // pushq contents of memory address
671 0, 0, 0, 0, // replaced with address of .got + 8
672 0xff, 0x25, // jmp indirect
673 0, 0, 0, 0, // replaced with address of .got + 16
674 0x90, 0x90, 0x90, 0x90 // noop (x4)
675 };
676
677 // Subsequent entries in the PLT for an executable.
678
679 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
680 {
681 // From AMD64 ABI Draft 0.98, page 76
682 0xff, 0x25, // jmpq indirect
683 0, 0, 0, 0, // replaced with address of symbol in .got
684 0x68, // pushq immediate
685 0, 0, 0, 0, // replaced with offset into relocation table
686 0xe9, // jmpq relative
687 0, 0, 0, 0 // replaced with offset to start of .plt
688 };
689
690 // The reserved TLSDESC entry in the PLT for an executable.
691
692 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
693 {
694 // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
695 // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
696 0xff, 0x35, // pushq x(%rip)
697 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
698 0xff, 0x25, // jmpq *y(%rip)
699 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
700 0x0f, 0x1f, // nop
701 0x40, 0
702 };
703
704 // Write out the PLT. This uses the hand-coded instructions above,
705 // and adjusts them as needed. This is specified by the AMD64 ABI.
706
707 void
708 Output_data_plt_x86_64::do_write(Output_file* of)
709 {
710 const off_t offset = this->offset();
711 const section_size_type oview_size =
712 convert_to_section_size_type(this->data_size());
713 unsigned char* const oview = of->get_output_view(offset, oview_size);
714
715 const off_t got_file_offset = this->got_plt_->offset();
716 const section_size_type got_size =
717 convert_to_section_size_type(this->got_plt_->data_size());
718 unsigned char* const got_view = of->get_output_view(got_file_offset,
719 got_size);
720
721 unsigned char* pov = oview;
722
723 // The base address of the .plt section.
724 elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
725 // The base address of the .got section.
726 elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
727 // The base address of the PLT portion of the .got section,
728 // which is where the GOT pointer will point, and where the
729 // three reserved GOT entries are located.
730 elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
731
732 memcpy(pov, first_plt_entry, plt_entry_size);
733 // We do a jmp relative to the PC at the end of this instruction.
734 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
735 (got_address + 8
736 - (plt_address + 6)));
737 elfcpp::Swap<32, false>::writeval(pov + 8,
738 (got_address + 16
739 - (plt_address + 12)));
740 pov += plt_entry_size;
741
742 unsigned char* got_pov = got_view;
743
744 memset(got_pov, 0, 24);
745 got_pov += 24;
746
747 unsigned int plt_offset = plt_entry_size;
748 unsigned int got_offset = 24;
749 const unsigned int count = this->count_;
750 for (unsigned int plt_index = 0;
751 plt_index < count;
752 ++plt_index,
753 pov += plt_entry_size,
754 got_pov += 8,
755 plt_offset += plt_entry_size,
756 got_offset += 8)
757 {
758 // Set and adjust the PLT entry itself.
759 memcpy(pov, plt_entry, plt_entry_size);
760 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
761 (got_address + got_offset
762 - (plt_address + plt_offset
763 + 6)));
764
765 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
766 elfcpp::Swap<32, false>::writeval(pov + 12,
767 - (plt_offset + plt_entry_size));
768
769 // Set the entry in the GOT.
770 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
771 }
772
773 if (this->has_tlsdesc_entry())
774 {
775 // Set and adjust the reserved TLSDESC PLT entry.
776 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
777 memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
778 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
779 (got_address + 8
780 - (plt_address + plt_offset
781 + 6)));
782 elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
783 (got_base
784 + tlsdesc_got_offset
785 - (plt_address + plt_offset
786 + 12)));
787 pov += plt_entry_size;
788 }
789
790 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
791 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
792
793 of->write_output_view(offset, oview_size, oview);
794 of->write_output_view(got_file_offset, got_size, got_view);
795 }
796
797 // Create the PLT section.
798
799 void
800 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
801 {
802 if (this->plt_ == NULL)
803 {
804 // Create the GOT sections first.
805 this->got_section(symtab, layout);
806
807 this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
808 this->got_plt_);
809 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
810 (elfcpp::SHF_ALLOC
811 | elfcpp::SHF_EXECINSTR),
812 this->plt_);
813 }
814 }
815
816 // Create a PLT entry for a global symbol.
817
818 void
819 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
820 Symbol* gsym)
821 {
822 if (gsym->has_plt_offset())
823 return;
824
825 if (this->plt_ == NULL)
826 this->make_plt_section(symtab, layout);
827
828 this->plt_->add_entry(gsym);
829 }
830
831 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
832
833 void
834 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
835 {
836 if (this->tls_base_symbol_defined_)
837 return;
838
839 Output_segment* tls_segment = layout->tls_segment();
840 if (tls_segment != NULL)
841 {
842 bool is_exec = parameters->options().output_is_executable();
843 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
844 tls_segment, 0, 0,
845 elfcpp::STT_TLS,
846 elfcpp::STB_LOCAL,
847 elfcpp::STV_HIDDEN, 0,
848 (is_exec
849 ? Symbol::SEGMENT_END
850 : Symbol::SEGMENT_START),
851 true);
852 }
853 this->tls_base_symbol_defined_ = true;
854 }
855
856 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
857
858 void
859 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
860 Layout* layout)
861 {
862 if (this->plt_ == NULL)
863 this->make_plt_section(symtab, layout);
864
865 if (!this->plt_->has_tlsdesc_entry())
866 {
867 // Allocate the TLSDESC_GOT entry.
868 Output_data_got<64, false>* got = this->got_section(symtab, layout);
869 unsigned int got_offset = got->add_constant(0);
870
871 // Allocate the TLSDESC_PLT entry.
872 this->plt_->reserve_tlsdesc_entry(got_offset);
873 }
874 }
875
876 // Create a GOT entry for the TLS module index.
877
878 unsigned int
879 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
880 Sized_relobj<64, false>* object)
881 {
882 if (this->got_mod_index_offset_ == -1U)
883 {
884 gold_assert(symtab != NULL && layout != NULL && object != NULL);
885 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
886 Output_data_got<64, false>* got = this->got_section(symtab, layout);
887 unsigned int got_offset = got->add_constant(0);
888 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
889 got_offset, 0);
890 got->add_constant(0);
891 this->got_mod_index_offset_ = got_offset;
892 }
893 return this->got_mod_index_offset_;
894 }
895
896 // Optimize the TLS relocation type based on what we know about the
897 // symbol. IS_FINAL is true if the final address of this symbol is
898 // known at link time.
899
900 tls::Tls_optimization
901 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
902 {
903 // If we are generating a shared library, then we can't do anything
904 // in the linker.
905 if (parameters->options().shared())
906 return tls::TLSOPT_NONE;
907
908 switch (r_type)
909 {
910 case elfcpp::R_X86_64_TLSGD:
911 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
912 case elfcpp::R_X86_64_TLSDESC_CALL:
913 // These are General-Dynamic which permits fully general TLS
914 // access. Since we know that we are generating an executable,
915 // we can convert this to Initial-Exec. If we also know that
916 // this is a local symbol, we can further switch to Local-Exec.
917 if (is_final)
918 return tls::TLSOPT_TO_LE;
919 return tls::TLSOPT_TO_IE;
920
921 case elfcpp::R_X86_64_TLSLD:
922 // This is Local-Dynamic, which refers to a local symbol in the
923 // dynamic TLS block. Since we know that we generating an
924 // executable, we can switch to Local-Exec.
925 return tls::TLSOPT_TO_LE;
926
927 case elfcpp::R_X86_64_DTPOFF32:
928 case elfcpp::R_X86_64_DTPOFF64:
929 // Another Local-Dynamic reloc.
930 return tls::TLSOPT_TO_LE;
931
932 case elfcpp::R_X86_64_GOTTPOFF:
933 // These are Initial-Exec relocs which get the thread offset
934 // from the GOT. If we know that we are linking against the
935 // local symbol, we can switch to Local-Exec, which links the
936 // thread offset into the instruction.
937 if (is_final)
938 return tls::TLSOPT_TO_LE;
939 return tls::TLSOPT_NONE;
940
941 case elfcpp::R_X86_64_TPOFF32:
942 // When we already have Local-Exec, there is nothing further we
943 // can do.
944 return tls::TLSOPT_NONE;
945
946 default:
947 gold_unreachable();
948 }
949 }
950
951 // Report an unsupported relocation against a local symbol.
952
953 void
954 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
955 unsigned int r_type)
956 {
957 gold_error(_("%s: unsupported reloc %u against local symbol"),
958 object->name().c_str(), r_type);
959 }
960
961 // We are about to emit a dynamic relocation of type R_TYPE. If the
962 // dynamic linker does not support it, issue an error. The GNU linker
963 // only issues a non-PIC error for an allocated read-only section.
964 // Here we know the section is allocated, but we don't know that it is
965 // read-only. But we check for all the relocation types which the
966 // glibc dynamic linker supports, so it seems appropriate to issue an
967 // error even if the section is not read-only.
968
969 void
970 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
971 {
972 switch (r_type)
973 {
974 // These are the relocation types supported by glibc for x86_64.
975 case elfcpp::R_X86_64_RELATIVE:
976 case elfcpp::R_X86_64_GLOB_DAT:
977 case elfcpp::R_X86_64_JUMP_SLOT:
978 case elfcpp::R_X86_64_DTPMOD64:
979 case elfcpp::R_X86_64_DTPOFF64:
980 case elfcpp::R_X86_64_TPOFF64:
981 case elfcpp::R_X86_64_64:
982 case elfcpp::R_X86_64_32:
983 case elfcpp::R_X86_64_PC32:
984 case elfcpp::R_X86_64_COPY:
985 return;
986
987 default:
988 // This prevents us from issuing more than one error per reloc
989 // section. But we can still wind up issuing more than one
990 // error per object file.
991 if (this->issued_non_pic_error_)
992 return;
993 gold_assert(parameters->options().output_is_position_independent());
994 object->error(_("requires unsupported dynamic reloc; "
995 "recompile with -fPIC"));
996 this->issued_non_pic_error_ = true;
997 return;
998
999 case elfcpp::R_X86_64_NONE:
1000 gold_unreachable();
1001 }
1002 }
1003
1004 // Scan a relocation for a local symbol.
1005
1006 inline void
1007 Target_x86_64::Scan::local(const General_options&,
1008 Symbol_table* symtab,
1009 Layout* layout,
1010 Target_x86_64* target,
1011 Sized_relobj<64, false>* object,
1012 unsigned int data_shndx,
1013 Output_section* output_section,
1014 const elfcpp::Rela<64, false>& reloc,
1015 unsigned int r_type,
1016 const elfcpp::Sym<64, false>& lsym)
1017 {
1018 switch (r_type)
1019 {
1020 case elfcpp::R_X86_64_NONE:
1021 case elfcpp::R_386_GNU_VTINHERIT:
1022 case elfcpp::R_386_GNU_VTENTRY:
1023 break;
1024
1025 case elfcpp::R_X86_64_64:
1026 // If building a shared library (or a position-independent
1027 // executable), we need to create a dynamic relocation for this
1028 // location. The relocation applied at link time will apply the
1029 // link-time value, so we flag the location with an
1030 // R_X86_64_RELATIVE relocation so the dynamic loader can
1031 // relocate it easily.
1032 if (parameters->options().output_is_position_independent())
1033 {
1034 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1035 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1036 rela_dyn->add_local_relative(object, r_sym,
1037 elfcpp::R_X86_64_RELATIVE,
1038 output_section, data_shndx,
1039 reloc.get_r_offset(),
1040 reloc.get_r_addend());
1041 }
1042 break;
1043
1044 case elfcpp::R_X86_64_32:
1045 case elfcpp::R_X86_64_32S:
1046 case elfcpp::R_X86_64_16:
1047 case elfcpp::R_X86_64_8:
1048 // If building a shared library (or a position-independent
1049 // executable), we need to create a dynamic relocation for this
1050 // location. We can't use an R_X86_64_RELATIVE relocation
1051 // because that is always a 64-bit relocation.
1052 if (parameters->options().output_is_position_independent())
1053 {
1054 this->check_non_pic(object, r_type);
1055
1056 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1057 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1058 if (lsym.get_st_type() != elfcpp::STT_SECTION)
1059 rela_dyn->add_local(object, r_sym, r_type, output_section,
1060 data_shndx, reloc.get_r_offset(),
1061 reloc.get_r_addend());
1062 else
1063 {
1064 gold_assert(lsym.get_st_value() == 0);
1065 unsigned int shndx = lsym.get_st_shndx();
1066 bool is_ordinary;
1067 shndx = object->adjust_sym_shndx(r_sym, shndx,
1068 &is_ordinary);
1069 if (!is_ordinary)
1070 object->error(_("section symbol %u has bad shndx %u"),
1071 r_sym, shndx);
1072 else
1073 rela_dyn->add_local_section(object, shndx,
1074 r_type, output_section,
1075 data_shndx, reloc.get_r_offset(),
1076 reloc.get_r_addend());
1077 }
1078 }
1079 break;
1080
1081 case elfcpp::R_X86_64_PC64:
1082 case elfcpp::R_X86_64_PC32:
1083 case elfcpp::R_X86_64_PC16:
1084 case elfcpp::R_X86_64_PC8:
1085 break;
1086
1087 case elfcpp::R_X86_64_PLT32:
1088 // Since we know this is a local symbol, we can handle this as a
1089 // PC32 reloc.
1090 break;
1091
1092 case elfcpp::R_X86_64_GOTPC32:
1093 case elfcpp::R_X86_64_GOTOFF64:
1094 case elfcpp::R_X86_64_GOTPC64:
1095 case elfcpp::R_X86_64_PLTOFF64:
1096 // We need a GOT section.
1097 target->got_section(symtab, layout);
1098 // For PLTOFF64, we'd normally want a PLT section, but since we
1099 // know this is a local symbol, no PLT is needed.
1100 break;
1101
1102 case elfcpp::R_X86_64_GOT64:
1103 case elfcpp::R_X86_64_GOT32:
1104 case elfcpp::R_X86_64_GOTPCREL64:
1105 case elfcpp::R_X86_64_GOTPCREL:
1106 case elfcpp::R_X86_64_GOTPLT64:
1107 {
1108 // The symbol requires a GOT entry.
1109 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1110 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1111 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
1112 {
1113 // If we are generating a shared object, we need to add a
1114 // dynamic relocation for this symbol's GOT entry.
1115 if (parameters->options().output_is_position_independent())
1116 {
1117 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1118 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1119 if (r_type != elfcpp::R_X86_64_GOT32)
1120 rela_dyn->add_local_relative(
1121 object, r_sym, elfcpp::R_X86_64_RELATIVE, got,
1122 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1123 else
1124 {
1125 this->check_non_pic(object, r_type);
1126
1127 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1128 rela_dyn->add_local(
1129 object, r_sym, r_type, got,
1130 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1131 }
1132 }
1133 }
1134 // For GOTPLT64, we'd normally want a PLT section, but since
1135 // we know this is a local symbol, no PLT is needed.
1136 }
1137 break;
1138
1139 case elfcpp::R_X86_64_COPY:
1140 case elfcpp::R_X86_64_GLOB_DAT:
1141 case elfcpp::R_X86_64_JUMP_SLOT:
1142 case elfcpp::R_X86_64_RELATIVE:
1143 // These are outstanding tls relocs, which are unexpected when linking
1144 case elfcpp::R_X86_64_TPOFF64:
1145 case elfcpp::R_X86_64_DTPMOD64:
1146 case elfcpp::R_X86_64_TLSDESC:
1147 gold_error(_("%s: unexpected reloc %u in object file"),
1148 object->name().c_str(), r_type);
1149 break;
1150
1151 // These are initial tls relocs, which are expected when linking
1152 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1153 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1154 case elfcpp::R_X86_64_TLSDESC_CALL:
1155 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1156 case elfcpp::R_X86_64_DTPOFF32:
1157 case elfcpp::R_X86_64_DTPOFF64:
1158 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1159 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1160 {
1161 bool output_is_shared = parameters->options().shared();
1162 const tls::Tls_optimization optimized_type
1163 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1164 switch (r_type)
1165 {
1166 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1167 if (optimized_type == tls::TLSOPT_NONE)
1168 {
1169 // Create a pair of GOT entries for the module index and
1170 // dtv-relative offset.
1171 Output_data_got<64, false>* got
1172 = target->got_section(symtab, layout);
1173 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1174 unsigned int shndx = lsym.get_st_shndx();
1175 bool is_ordinary;
1176 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1177 if (!is_ordinary)
1178 object->error(_("local symbol %u has bad shndx %u"),
1179 r_sym, shndx);
1180 else
1181 got->add_local_pair_with_rela(object, r_sym,
1182 shndx,
1183 GOT_TYPE_TLS_PAIR,
1184 target->rela_dyn_section(layout),
1185 elfcpp::R_X86_64_DTPMOD64, 0);
1186 }
1187 else if (optimized_type != tls::TLSOPT_TO_LE)
1188 unsupported_reloc_local(object, r_type);
1189 break;
1190
1191 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1192 target->define_tls_base_symbol(symtab, layout);
1193 if (optimized_type == tls::TLSOPT_NONE)
1194 {
1195 // Create reserved PLT and GOT entries for the resolver.
1196 target->reserve_tlsdesc_entries(symtab, layout);
1197
1198 // Generate a double GOT entry with an R_X86_64_TLSDESC reloc.
1199 Output_data_got<64, false>* got
1200 = target->got_section(symtab, layout);
1201 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1202 unsigned int shndx = lsym.get_st_shndx();
1203 bool is_ordinary;
1204 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1205 if (!is_ordinary)
1206 object->error(_("local symbol %u has bad shndx %u"),
1207 r_sym, shndx);
1208 else
1209 got->add_local_pair_with_rela(object, r_sym,
1210 shndx,
1211 GOT_TYPE_TLS_DESC,
1212 target->rela_dyn_section(layout),
1213 elfcpp::R_X86_64_TLSDESC, 0);
1214 }
1215 else if (optimized_type != tls::TLSOPT_TO_LE)
1216 unsupported_reloc_local(object, r_type);
1217 break;
1218
1219 case elfcpp::R_X86_64_TLSDESC_CALL:
1220 break;
1221
1222 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1223 if (optimized_type == tls::TLSOPT_NONE)
1224 {
1225 // Create a GOT entry for the module index.
1226 target->got_mod_index_entry(symtab, layout, object);
1227 }
1228 else if (optimized_type != tls::TLSOPT_TO_LE)
1229 unsupported_reloc_local(object, r_type);
1230 break;
1231
1232 case elfcpp::R_X86_64_DTPOFF32:
1233 case elfcpp::R_X86_64_DTPOFF64:
1234 break;
1235
1236 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1237 layout->set_has_static_tls();
1238 if (optimized_type == tls::TLSOPT_NONE)
1239 {
1240 // Create a GOT entry for the tp-relative offset.
1241 Output_data_got<64, false>* got
1242 = target->got_section(symtab, layout);
1243 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1244 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1245 target->rela_dyn_section(layout),
1246 elfcpp::R_X86_64_TPOFF64);
1247 }
1248 else if (optimized_type != tls::TLSOPT_TO_LE)
1249 unsupported_reloc_local(object, r_type);
1250 break;
1251
1252 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1253 layout->set_has_static_tls();
1254 if (output_is_shared)
1255 unsupported_reloc_local(object, r_type);
1256 break;
1257
1258 default:
1259 gold_unreachable();
1260 }
1261 }
1262 break;
1263
1264 case elfcpp::R_X86_64_SIZE32:
1265 case elfcpp::R_X86_64_SIZE64:
1266 default:
1267 gold_error(_("%s: unsupported reloc %u against local symbol"),
1268 object->name().c_str(), r_type);
1269 break;
1270 }
1271 }
1272
1273
1274 // Report an unsupported relocation against a global symbol.
1275
1276 void
1277 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1278 unsigned int r_type,
1279 Symbol* gsym)
1280 {
1281 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1282 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1283 }
1284
1285 // Scan a relocation for a global symbol.
1286
1287 inline void
1288 Target_x86_64::Scan::global(const General_options&,
1289 Symbol_table* symtab,
1290 Layout* layout,
1291 Target_x86_64* target,
1292 Sized_relobj<64, false>* object,
1293 unsigned int data_shndx,
1294 Output_section* output_section,
1295 const elfcpp::Rela<64, false>& reloc,
1296 unsigned int r_type,
1297 Symbol* gsym)
1298 {
1299 switch (r_type)
1300 {
1301 case elfcpp::R_X86_64_NONE:
1302 case elfcpp::R_386_GNU_VTINHERIT:
1303 case elfcpp::R_386_GNU_VTENTRY:
1304 break;
1305
1306 case elfcpp::R_X86_64_64:
1307 case elfcpp::R_X86_64_32:
1308 case elfcpp::R_X86_64_32S:
1309 case elfcpp::R_X86_64_16:
1310 case elfcpp::R_X86_64_8:
1311 {
1312 // Make a PLT entry if necessary.
1313 if (gsym->needs_plt_entry())
1314 {
1315 target->make_plt_entry(symtab, layout, gsym);
1316 // Since this is not a PC-relative relocation, we may be
1317 // taking the address of a function. In that case we need to
1318 // set the entry in the dynamic symbol table to the address of
1319 // the PLT entry.
1320 if (gsym->is_from_dynobj() && !parameters->options().shared())
1321 gsym->set_needs_dynsym_value();
1322 }
1323 // Make a dynamic relocation if necessary.
1324 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1325 {
1326 if (target->may_need_copy_reloc(gsym))
1327 {
1328 target->copy_reloc(symtab, layout, object,
1329 data_shndx, output_section, gsym, reloc);
1330 }
1331 else if (r_type == elfcpp::R_X86_64_64
1332 && gsym->can_use_relative_reloc(false))
1333 {
1334 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1335 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1336 output_section, object,
1337 data_shndx, reloc.get_r_offset(),
1338 reloc.get_r_addend());
1339 }
1340 else
1341 {
1342 this->check_non_pic(object, r_type);
1343 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1344 rela_dyn->add_global(gsym, r_type, output_section, object,
1345 data_shndx, reloc.get_r_offset(),
1346 reloc.get_r_addend());
1347 }
1348 }
1349 }
1350 break;
1351
1352 case elfcpp::R_X86_64_PC64:
1353 case elfcpp::R_X86_64_PC32:
1354 case elfcpp::R_X86_64_PC16:
1355 case elfcpp::R_X86_64_PC8:
1356 {
1357 // Make a PLT entry if necessary.
1358 if (gsym->needs_plt_entry())
1359 target->make_plt_entry(symtab, layout, gsym);
1360 // Make a dynamic relocation if necessary.
1361 int flags = Symbol::NON_PIC_REF;
1362 if (gsym->type() == elfcpp::STT_FUNC)
1363 flags |= Symbol::FUNCTION_CALL;
1364 if (gsym->needs_dynamic_reloc(flags))
1365 {
1366 if (target->may_need_copy_reloc(gsym))
1367 {
1368 target->copy_reloc(symtab, layout, object,
1369 data_shndx, output_section, gsym, reloc);
1370 }
1371 else
1372 {
1373 this->check_non_pic(object, r_type);
1374 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1375 rela_dyn->add_global(gsym, r_type, output_section, object,
1376 data_shndx, reloc.get_r_offset(),
1377 reloc.get_r_addend());
1378 }
1379 }
1380 }
1381 break;
1382
1383 case elfcpp::R_X86_64_GOT64:
1384 case elfcpp::R_X86_64_GOT32:
1385 case elfcpp::R_X86_64_GOTPCREL64:
1386 case elfcpp::R_X86_64_GOTPCREL:
1387 case elfcpp::R_X86_64_GOTPLT64:
1388 {
1389 // The symbol requires a GOT entry.
1390 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1391 if (gsym->final_value_is_known())
1392 got->add_global(gsym, GOT_TYPE_STANDARD);
1393 else
1394 {
1395 // If this symbol is not fully resolved, we need to add a
1396 // dynamic relocation for it.
1397 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1398 if (gsym->is_from_dynobj()
1399 || gsym->is_undefined()
1400 || gsym->is_preemptible())
1401 got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
1402 elfcpp::R_X86_64_GLOB_DAT);
1403 else
1404 {
1405 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1406 rela_dyn->add_global_relative(
1407 gsym, elfcpp::R_X86_64_RELATIVE, got,
1408 gsym->got_offset(GOT_TYPE_STANDARD), 0);
1409 }
1410 }
1411 // For GOTPLT64, we also need a PLT entry (but only if the
1412 // symbol is not fully resolved).
1413 if (r_type == elfcpp::R_X86_64_GOTPLT64
1414 && !gsym->final_value_is_known())
1415 target->make_plt_entry(symtab, layout, gsym);
1416 }
1417 break;
1418
1419 case elfcpp::R_X86_64_PLT32:
1420 // If the symbol is fully resolved, this is just a PC32 reloc.
1421 // Otherwise we need a PLT entry.
1422 if (gsym->final_value_is_known())
1423 break;
1424 // If building a shared library, we can also skip the PLT entry
1425 // if the symbol is defined in the output file and is protected
1426 // or hidden.
1427 if (gsym->is_defined()
1428 && !gsym->is_from_dynobj()
1429 && !gsym->is_preemptible())
1430 break;
1431 target->make_plt_entry(symtab, layout, gsym);
1432 break;
1433
1434 case elfcpp::R_X86_64_GOTPC32:
1435 case elfcpp::R_X86_64_GOTOFF64:
1436 case elfcpp::R_X86_64_GOTPC64:
1437 case elfcpp::R_X86_64_PLTOFF64:
1438 // We need a GOT section.
1439 target->got_section(symtab, layout);
1440 // For PLTOFF64, we also need a PLT entry (but only if the
1441 // symbol is not fully resolved).
1442 if (r_type == elfcpp::R_X86_64_PLTOFF64
1443 && !gsym->final_value_is_known())
1444 target->make_plt_entry(symtab, layout, gsym);
1445 break;
1446
1447 case elfcpp::R_X86_64_COPY:
1448 case elfcpp::R_X86_64_GLOB_DAT:
1449 case elfcpp::R_X86_64_JUMP_SLOT:
1450 case elfcpp::R_X86_64_RELATIVE:
1451 // These are outstanding tls relocs, which are unexpected when linking
1452 case elfcpp::R_X86_64_TPOFF64:
1453 case elfcpp::R_X86_64_DTPMOD64:
1454 case elfcpp::R_X86_64_TLSDESC:
1455 gold_error(_("%s: unexpected reloc %u in object file"),
1456 object->name().c_str(), r_type);
1457 break;
1458
1459 // These are initial tls relocs, which are expected for global()
1460 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1461 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1462 case elfcpp::R_X86_64_TLSDESC_CALL:
1463 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1464 case elfcpp::R_X86_64_DTPOFF32:
1465 case elfcpp::R_X86_64_DTPOFF64:
1466 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1467 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1468 {
1469 const bool is_final = gsym->final_value_is_known();
1470 const tls::Tls_optimization optimized_type
1471 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1472 switch (r_type)
1473 {
1474 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1475 if (optimized_type == tls::TLSOPT_NONE)
1476 {
1477 // Create a pair of GOT entries for the module index and
1478 // dtv-relative offset.
1479 Output_data_got<64, false>* got
1480 = target->got_section(symtab, layout);
1481 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
1482 target->rela_dyn_section(layout),
1483 elfcpp::R_X86_64_DTPMOD64,
1484 elfcpp::R_X86_64_DTPOFF64);
1485 }
1486 else if (optimized_type == tls::TLSOPT_TO_IE)
1487 {
1488 // Create a GOT entry for the tp-relative offset.
1489 Output_data_got<64, false>* got
1490 = target->got_section(symtab, layout);
1491 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1492 target->rela_dyn_section(layout),
1493 elfcpp::R_X86_64_TPOFF64);
1494 }
1495 else if (optimized_type != tls::TLSOPT_TO_LE)
1496 unsupported_reloc_global(object, r_type, gsym);
1497 break;
1498
1499 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1500 target->define_tls_base_symbol(symtab, layout);
1501 if (optimized_type == tls::TLSOPT_NONE)
1502 {
1503 // Create reserved PLT and GOT entries for the resolver.
1504 target->reserve_tlsdesc_entries(symtab, layout);
1505
1506 // Create a double GOT entry with an R_X86_64_TLSDESC reloc.
1507 Output_data_got<64, false>* got
1508 = target->got_section(symtab, layout);
1509 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC,
1510 target->rela_dyn_section(layout),
1511 elfcpp::R_X86_64_TLSDESC, 0);
1512 }
1513 else if (optimized_type == tls::TLSOPT_TO_IE)
1514 {
1515 // Create a GOT entry for the tp-relative offset.
1516 Output_data_got<64, false>* got
1517 = target->got_section(symtab, layout);
1518 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1519 target->rela_dyn_section(layout),
1520 elfcpp::R_X86_64_TPOFF64);
1521 }
1522 else if (optimized_type != tls::TLSOPT_TO_LE)
1523 unsupported_reloc_global(object, r_type, gsym);
1524 break;
1525
1526 case elfcpp::R_X86_64_TLSDESC_CALL:
1527 break;
1528
1529 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1530 if (optimized_type == tls::TLSOPT_NONE)
1531 {
1532 // Create a GOT entry for the module index.
1533 target->got_mod_index_entry(symtab, layout, object);
1534 }
1535 else if (optimized_type != tls::TLSOPT_TO_LE)
1536 unsupported_reloc_global(object, r_type, gsym);
1537 break;
1538
1539 case elfcpp::R_X86_64_DTPOFF32:
1540 case elfcpp::R_X86_64_DTPOFF64:
1541 break;
1542
1543 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1544 layout->set_has_static_tls();
1545 if (optimized_type == tls::TLSOPT_NONE)
1546 {
1547 // Create a GOT entry for the tp-relative offset.
1548 Output_data_got<64, false>* got
1549 = target->got_section(symtab, layout);
1550 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1551 target->rela_dyn_section(layout),
1552 elfcpp::R_X86_64_TPOFF64);
1553 }
1554 else if (optimized_type != tls::TLSOPT_TO_LE)
1555 unsupported_reloc_global(object, r_type, gsym);
1556 break;
1557
1558 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1559 layout->set_has_static_tls();
1560 if (parameters->options().shared())
1561 unsupported_reloc_local(object, r_type);
1562 break;
1563
1564 default:
1565 gold_unreachable();
1566 }
1567 }
1568 break;
1569
1570 case elfcpp::R_X86_64_SIZE32:
1571 case elfcpp::R_X86_64_SIZE64:
1572 default:
1573 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1574 object->name().c_str(), r_type,
1575 gsym->demangled_name().c_str());
1576 break;
1577 }
1578 }
1579
1580 void
1581 Target_x86_64::gc_process_relocs(const General_options& options,
1582 Symbol_table* symtab,
1583 Layout* layout,
1584 Sized_relobj<64, false>* object,
1585 unsigned int data_shndx,
1586 unsigned int sh_type,
1587 const unsigned char* prelocs,
1588 size_t reloc_count,
1589 Output_section* output_section,
1590 bool needs_special_offset_handling,
1591 size_t local_symbol_count,
1592 const unsigned char* plocal_symbols)
1593 {
1594
1595 if (sh_type == elfcpp::SHT_REL)
1596 {
1597 return;
1598 }
1599
1600 gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1601 Target_x86_64::Scan>(
1602 options,
1603 symtab,
1604 layout,
1605 this,
1606 object,
1607 data_shndx,
1608 prelocs,
1609 reloc_count,
1610 output_section,
1611 needs_special_offset_handling,
1612 local_symbol_count,
1613 plocal_symbols);
1614
1615 }
1616 // Scan relocations for a section.
1617
1618 void
1619 Target_x86_64::scan_relocs(const General_options& options,
1620 Symbol_table* symtab,
1621 Layout* layout,
1622 Sized_relobj<64, false>* object,
1623 unsigned int data_shndx,
1624 unsigned int sh_type,
1625 const unsigned char* prelocs,
1626 size_t reloc_count,
1627 Output_section* output_section,
1628 bool needs_special_offset_handling,
1629 size_t local_symbol_count,
1630 const unsigned char* plocal_symbols)
1631 {
1632 if (sh_type == elfcpp::SHT_REL)
1633 {
1634 gold_error(_("%s: unsupported REL reloc section"),
1635 object->name().c_str());
1636 return;
1637 }
1638
1639 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1640 Target_x86_64::Scan>(
1641 options,
1642 symtab,
1643 layout,
1644 this,
1645 object,
1646 data_shndx,
1647 prelocs,
1648 reloc_count,
1649 output_section,
1650 needs_special_offset_handling,
1651 local_symbol_count,
1652 plocal_symbols);
1653 }
1654
1655 // Finalize the sections.
1656
1657 void
1658 Target_x86_64::do_finalize_sections(Layout* layout)
1659 {
1660 // Fill in some more dynamic tags.
1661 Output_data_dynamic* const odyn = layout->dynamic_data();
1662 if (odyn != NULL)
1663 {
1664 if (this->got_plt_ != NULL)
1665 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1666
1667 if (this->plt_ != NULL)
1668 {
1669 const Output_data* od = this->plt_->rel_plt();
1670 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1671 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1672 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1673 if (this->plt_->has_tlsdesc_entry())
1674 {
1675 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
1676 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
1677 this->got_->finalize_data_size();
1678 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
1679 this->plt_, plt_offset);
1680 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
1681 this->got_, got_offset);
1682 }
1683 }
1684
1685 if (this->rela_dyn_ != NULL)
1686 {
1687 const Output_data* od = this->rela_dyn_;
1688 odyn->add_section_address(elfcpp::DT_RELA, od);
1689 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1690 odyn->add_constant(elfcpp::DT_RELAENT,
1691 elfcpp::Elf_sizes<64>::rela_size);
1692 }
1693
1694 if (!parameters->options().shared())
1695 {
1696 // The value of the DT_DEBUG tag is filled in by the dynamic
1697 // linker at run time, and used by the debugger.
1698 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1699 }
1700 }
1701
1702 // Emit any relocs we saved in an attempt to avoid generating COPY
1703 // relocs.
1704 if (this->copy_relocs_.any_saved_relocs())
1705 this->copy_relocs_.emit(this->rela_dyn_section(layout));
1706 }
1707
1708 // Perform a relocation.
1709
1710 inline bool
1711 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1712 Target_x86_64* target,
1713 Output_section*,
1714 size_t relnum,
1715 const elfcpp::Rela<64, false>& rela,
1716 unsigned int r_type,
1717 const Sized_symbol<64>* gsym,
1718 const Symbol_value<64>* psymval,
1719 unsigned char* view,
1720 elfcpp::Elf_types<64>::Elf_Addr address,
1721 section_size_type view_size)
1722 {
1723 if (this->skip_call_tls_get_addr_)
1724 {
1725 if ((r_type != elfcpp::R_X86_64_PLT32
1726 && r_type != elfcpp::R_X86_64_PC32)
1727 || gsym == NULL
1728 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1729 {
1730 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1731 _("missing expected TLS relocation"));
1732 }
1733 else
1734 {
1735 this->skip_call_tls_get_addr_ = false;
1736 return false;
1737 }
1738 }
1739
1740 // Pick the value to use for symbols defined in shared objects.
1741 Symbol_value<64> symval;
1742 if (gsym != NULL
1743 && gsym->use_plt_offset(r_type == elfcpp::R_X86_64_PC64
1744 || r_type == elfcpp::R_X86_64_PC32
1745 || r_type == elfcpp::R_X86_64_PC16
1746 || r_type == elfcpp::R_X86_64_PC8))
1747 {
1748 symval.set_output_value(target->plt_section()->address()
1749 + gsym->plt_offset());
1750 psymval = &symval;
1751 }
1752
1753 const Sized_relobj<64, false>* object = relinfo->object;
1754 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1755
1756 // Get the GOT offset if needed.
1757 // The GOT pointer points to the end of the GOT section.
1758 // We need to subtract the size of the GOT section to get
1759 // the actual offset to use in the relocation.
1760 bool have_got_offset = false;
1761 unsigned int got_offset = 0;
1762 switch (r_type)
1763 {
1764 case elfcpp::R_X86_64_GOT32:
1765 case elfcpp::R_X86_64_GOT64:
1766 case elfcpp::R_X86_64_GOTPLT64:
1767 case elfcpp::R_X86_64_GOTPCREL:
1768 case elfcpp::R_X86_64_GOTPCREL64:
1769 if (gsym != NULL)
1770 {
1771 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1772 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
1773 }
1774 else
1775 {
1776 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1777 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1778 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1779 - target->got_size());
1780 }
1781 have_got_offset = true;
1782 break;
1783
1784 default:
1785 break;
1786 }
1787
1788 switch (r_type)
1789 {
1790 case elfcpp::R_X86_64_NONE:
1791 case elfcpp::R_386_GNU_VTINHERIT:
1792 case elfcpp::R_386_GNU_VTENTRY:
1793 break;
1794
1795 case elfcpp::R_X86_64_64:
1796 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1797 break;
1798
1799 case elfcpp::R_X86_64_PC64:
1800 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1801 address);
1802 break;
1803
1804 case elfcpp::R_X86_64_32:
1805 // FIXME: we need to verify that value + addend fits into 32 bits:
1806 // uint64_t x = value + addend;
1807 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1808 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1809 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1810 break;
1811
1812 case elfcpp::R_X86_64_32S:
1813 // FIXME: we need to verify that value + addend fits into 32 bits:
1814 // int64_t x = value + addend; // note this quantity is signed!
1815 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1816 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1817 break;
1818
1819 case elfcpp::R_X86_64_PC32:
1820 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1821 address);
1822 break;
1823
1824 case elfcpp::R_X86_64_16:
1825 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1826 break;
1827
1828 case elfcpp::R_X86_64_PC16:
1829 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1830 address);
1831 break;
1832
1833 case elfcpp::R_X86_64_8:
1834 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1835 break;
1836
1837 case elfcpp::R_X86_64_PC8:
1838 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1839 address);
1840 break;
1841
1842 case elfcpp::R_X86_64_PLT32:
1843 gold_assert(gsym == NULL
1844 || gsym->has_plt_offset()
1845 || gsym->final_value_is_known()
1846 || (gsym->is_defined()
1847 && !gsym->is_from_dynobj()
1848 && !gsym->is_preemptible()));
1849 // Note: while this code looks the same as for R_X86_64_PC32, it
1850 // behaves differently because psymval was set to point to
1851 // the PLT entry, rather than the symbol, in Scan::global().
1852 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1853 address);
1854 break;
1855
1856 case elfcpp::R_X86_64_PLTOFF64:
1857 {
1858 gold_assert(gsym);
1859 gold_assert(gsym->has_plt_offset()
1860 || gsym->final_value_is_known());
1861 elfcpp::Elf_types<64>::Elf_Addr got_address;
1862 got_address = target->got_section(NULL, NULL)->address();
1863 Relocate_functions<64, false>::rela64(view, object, psymval,
1864 addend - got_address);
1865 }
1866
1867 case elfcpp::R_X86_64_GOT32:
1868 gold_assert(have_got_offset);
1869 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1870 break;
1871
1872 case elfcpp::R_X86_64_GOTPC32:
1873 {
1874 gold_assert(gsym);
1875 elfcpp::Elf_types<64>::Elf_Addr value;
1876 value = target->got_plt_section()->address();
1877 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1878 }
1879 break;
1880
1881 case elfcpp::R_X86_64_GOT64:
1882 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1883 // Since we always add a PLT entry, this is equivalent.
1884 case elfcpp::R_X86_64_GOTPLT64:
1885 gold_assert(have_got_offset);
1886 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1887 break;
1888
1889 case elfcpp::R_X86_64_GOTPC64:
1890 {
1891 gold_assert(gsym);
1892 elfcpp::Elf_types<64>::Elf_Addr value;
1893 value = target->got_plt_section()->address();
1894 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1895 }
1896 break;
1897
1898 case elfcpp::R_X86_64_GOTOFF64:
1899 {
1900 elfcpp::Elf_types<64>::Elf_Addr value;
1901 value = (psymval->value(object, 0)
1902 - target->got_plt_section()->address());
1903 Relocate_functions<64, false>::rela64(view, value, addend);
1904 }
1905 break;
1906
1907 case elfcpp::R_X86_64_GOTPCREL:
1908 {
1909 gold_assert(have_got_offset);
1910 elfcpp::Elf_types<64>::Elf_Addr value;
1911 value = target->got_plt_section()->address() + got_offset;
1912 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1913 }
1914 break;
1915
1916 case elfcpp::R_X86_64_GOTPCREL64:
1917 {
1918 gold_assert(have_got_offset);
1919 elfcpp::Elf_types<64>::Elf_Addr value;
1920 value = target->got_plt_section()->address() + got_offset;
1921 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1922 }
1923 break;
1924
1925 case elfcpp::R_X86_64_COPY:
1926 case elfcpp::R_X86_64_GLOB_DAT:
1927 case elfcpp::R_X86_64_JUMP_SLOT:
1928 case elfcpp::R_X86_64_RELATIVE:
1929 // These are outstanding tls relocs, which are unexpected when linking
1930 case elfcpp::R_X86_64_TPOFF64:
1931 case elfcpp::R_X86_64_DTPMOD64:
1932 case elfcpp::R_X86_64_TLSDESC:
1933 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1934 _("unexpected reloc %u in object file"),
1935 r_type);
1936 break;
1937
1938 // These are initial tls relocs, which are expected when linking
1939 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1940 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1941 case elfcpp::R_X86_64_TLSDESC_CALL:
1942 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1943 case elfcpp::R_X86_64_DTPOFF32:
1944 case elfcpp::R_X86_64_DTPOFF64:
1945 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1946 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1947 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1948 view, address, view_size);
1949 break;
1950
1951 case elfcpp::R_X86_64_SIZE32:
1952 case elfcpp::R_X86_64_SIZE64:
1953 default:
1954 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1955 _("unsupported reloc %u"),
1956 r_type);
1957 break;
1958 }
1959
1960 return true;
1961 }
1962
1963 // Perform a TLS relocation.
1964
1965 inline void
1966 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1967 Target_x86_64* target,
1968 size_t relnum,
1969 const elfcpp::Rela<64, false>& rela,
1970 unsigned int r_type,
1971 const Sized_symbol<64>* gsym,
1972 const Symbol_value<64>* psymval,
1973 unsigned char* view,
1974 elfcpp::Elf_types<64>::Elf_Addr address,
1975 section_size_type view_size)
1976 {
1977 Output_segment* tls_segment = relinfo->layout->tls_segment();
1978
1979 const Sized_relobj<64, false>* object = relinfo->object;
1980 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1981
1982 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1983
1984 const bool is_final = (gsym == NULL
1985 ? !parameters->options().output_is_position_independent()
1986 : gsym->final_value_is_known());
1987 const tls::Tls_optimization optimized_type
1988 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1989 switch (r_type)
1990 {
1991 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1992 this->saw_tls_block_reloc_ = true;
1993 if (optimized_type == tls::TLSOPT_TO_LE)
1994 {
1995 gold_assert(tls_segment != NULL);
1996 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1997 rela, r_type, value, view,
1998 view_size);
1999 break;
2000 }
2001 else
2002 {
2003 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2004 ? GOT_TYPE_TLS_OFFSET
2005 : GOT_TYPE_TLS_PAIR);
2006 unsigned int got_offset;
2007 if (gsym != NULL)
2008 {
2009 gold_assert(gsym->has_got_offset(got_type));
2010 got_offset = gsym->got_offset(got_type) - target->got_size();
2011 }
2012 else
2013 {
2014 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2015 gold_assert(object->local_has_got_offset(r_sym, got_type));
2016 got_offset = (object->local_got_offset(r_sym, got_type)
2017 - target->got_size());
2018 }
2019 if (optimized_type == tls::TLSOPT_TO_IE)
2020 {
2021 gold_assert(tls_segment != NULL);
2022 value = target->got_plt_section()->address() + got_offset;
2023 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2024 value, view, address, view_size);
2025 break;
2026 }
2027 else if (optimized_type == tls::TLSOPT_NONE)
2028 {
2029 // Relocate the field with the offset of the pair of GOT
2030 // entries.
2031 value = target->got_plt_section()->address() + got_offset;
2032 Relocate_functions<64, false>::pcrela32(view, value, addend,
2033 address);
2034 break;
2035 }
2036 }
2037 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2038 _("unsupported reloc %u"), r_type);
2039 break;
2040
2041 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2042 case elfcpp::R_X86_64_TLSDESC_CALL:
2043 this->saw_tls_block_reloc_ = true;
2044 if (optimized_type == tls::TLSOPT_TO_LE)
2045 {
2046 gold_assert(tls_segment != NULL);
2047 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2048 rela, r_type, value, view,
2049 view_size);
2050 break;
2051 }
2052 else
2053 {
2054 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2055 ? GOT_TYPE_TLS_OFFSET
2056 : GOT_TYPE_TLS_DESC);
2057 unsigned int got_offset;
2058 if (gsym != NULL)
2059 {
2060 gold_assert(gsym->has_got_offset(got_type));
2061 got_offset = gsym->got_offset(got_type) - target->got_size();
2062 }
2063 else
2064 {
2065 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2066 gold_assert(object->local_has_got_offset(r_sym, got_type));
2067 got_offset = (object->local_got_offset(r_sym, got_type)
2068 - target->got_size());
2069 }
2070 if (optimized_type == tls::TLSOPT_TO_IE)
2071 {
2072 gold_assert(tls_segment != NULL);
2073 value = target->got_plt_section()->address() + got_offset;
2074 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2075 rela, r_type, value, view, address,
2076 view_size);
2077 break;
2078 }
2079 else if (optimized_type == tls::TLSOPT_NONE)
2080 {
2081 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2082 {
2083 // Relocate the field with the offset of the pair of GOT
2084 // entries.
2085 value = target->got_plt_section()->address() + got_offset;
2086 Relocate_functions<64, false>::pcrela32(view, value, addend,
2087 address);
2088 }
2089 break;
2090 }
2091 }
2092 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2093 _("unsupported reloc %u"), r_type);
2094 break;
2095
2096 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2097 this->saw_tls_block_reloc_ = true;
2098 if (optimized_type == tls::TLSOPT_TO_LE)
2099 {
2100 gold_assert(tls_segment != NULL);
2101 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2102 value, view, view_size);
2103 break;
2104 }
2105 else if (optimized_type == tls::TLSOPT_NONE)
2106 {
2107 // Relocate the field with the offset of the GOT entry for
2108 // the module index.
2109 unsigned int got_offset;
2110 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2111 - target->got_size());
2112 value = target->got_plt_section()->address() + got_offset;
2113 Relocate_functions<64, false>::pcrela32(view, value, addend,
2114 address);
2115 break;
2116 }
2117 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2118 _("unsupported reloc %u"), r_type);
2119 break;
2120
2121 case elfcpp::R_X86_64_DTPOFF32:
2122 gold_assert(tls_segment != NULL);
2123 if (optimized_type == tls::TLSOPT_TO_LE)
2124 {
2125 // This relocation type is used in debugging information.
2126 // In that case we need to not optimize the value. If we
2127 // haven't seen a TLSLD reloc, then we assume we should not
2128 // optimize this reloc.
2129 if (this->saw_tls_block_reloc_)
2130 value -= tls_segment->memsz();
2131 }
2132 Relocate_functions<64, false>::rela32(view, value, addend);
2133 break;
2134
2135 case elfcpp::R_X86_64_DTPOFF64:
2136 gold_assert(tls_segment != NULL);
2137 if (optimized_type == tls::TLSOPT_TO_LE)
2138 {
2139 // See R_X86_64_DTPOFF32, just above, for why we test this.
2140 if (this->saw_tls_block_reloc_)
2141 value -= tls_segment->memsz();
2142 }
2143 Relocate_functions<64, false>::rela64(view, value, addend);
2144 break;
2145
2146 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2147 if (optimized_type == tls::TLSOPT_TO_LE)
2148 {
2149 gold_assert(tls_segment != NULL);
2150 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2151 rela, r_type, value, view,
2152 view_size);
2153 break;
2154 }
2155 else if (optimized_type == tls::TLSOPT_NONE)
2156 {
2157 // Relocate the field with the offset of the GOT entry for
2158 // the tp-relative offset of the symbol.
2159 unsigned int got_offset;
2160 if (gsym != NULL)
2161 {
2162 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
2163 got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
2164 - target->got_size());
2165 }
2166 else
2167 {
2168 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2169 gold_assert(object->local_has_got_offset(r_sym,
2170 GOT_TYPE_TLS_OFFSET));
2171 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
2172 - target->got_size());
2173 }
2174 value = target->got_plt_section()->address() + got_offset;
2175 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2176 break;
2177 }
2178 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2179 _("unsupported reloc type %u"),
2180 r_type);
2181 break;
2182
2183 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2184 value -= tls_segment->memsz();
2185 Relocate_functions<64, false>::rela32(view, value, addend);
2186 break;
2187 }
2188 }
2189
2190 // Do a relocation in which we convert a TLS General-Dynamic to an
2191 // Initial-Exec.
2192
2193 inline void
2194 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
2195 size_t relnum,
2196 Output_segment*,
2197 const elfcpp::Rela<64, false>& rela,
2198 unsigned int,
2199 elfcpp::Elf_types<64>::Elf_Addr value,
2200 unsigned char* view,
2201 elfcpp::Elf_types<64>::Elf_Addr address,
2202 section_size_type view_size)
2203 {
2204 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2205 // .word 0x6666; rex64; call __tls_get_addr
2206 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
2207
2208 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2209 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2210
2211 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2212 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2213 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2214 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2215
2216 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
2217
2218 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2219 Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
2220
2221 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2222 // We can skip it.
2223 this->skip_call_tls_get_addr_ = true;
2224 }
2225
2226 // Do a relocation in which we convert a TLS General-Dynamic to a
2227 // Local-Exec.
2228
2229 inline void
2230 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
2231 size_t relnum,
2232 Output_segment* tls_segment,
2233 const elfcpp::Rela<64, false>& rela,
2234 unsigned int,
2235 elfcpp::Elf_types<64>::Elf_Addr value,
2236 unsigned char* view,
2237 section_size_type view_size)
2238 {
2239 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2240 // .word 0x6666; rex64; call __tls_get_addr
2241 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2242
2243 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2244 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2245
2246 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2247 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2248 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2249 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2250
2251 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2252
2253 value -= tls_segment->memsz();
2254 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2255
2256 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2257 // We can skip it.
2258 this->skip_call_tls_get_addr_ = true;
2259 }
2260
2261 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
2262
2263 inline void
2264 Target_x86_64::Relocate::tls_desc_gd_to_ie(
2265 const Relocate_info<64, false>* relinfo,
2266 size_t relnum,
2267 Output_segment*,
2268 const elfcpp::Rela<64, false>& rela,
2269 unsigned int r_type,
2270 elfcpp::Elf_types<64>::Elf_Addr value,
2271 unsigned char* view,
2272 elfcpp::Elf_types<64>::Elf_Addr address,
2273 section_size_type view_size)
2274 {
2275 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2276 {
2277 // leaq foo@tlsdesc(%rip), %rax
2278 // ==> movq foo@gottpoff(%rip), %rax
2279 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2280 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2281 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2282 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2283 view[-2] = 0x8b;
2284 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2285 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2286 }
2287 else
2288 {
2289 // call *foo@tlscall(%rax)
2290 // ==> nop; nop
2291 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2292 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2293 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2294 view[0] == 0xff && view[1] == 0x10);
2295 view[0] = 0x66;
2296 view[1] = 0x90;
2297 }
2298 }
2299
2300 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
2301
2302 inline void
2303 Target_x86_64::Relocate::tls_desc_gd_to_le(
2304 const Relocate_info<64, false>* relinfo,
2305 size_t relnum,
2306 Output_segment* tls_segment,
2307 const elfcpp::Rela<64, false>& rela,
2308 unsigned int r_type,
2309 elfcpp::Elf_types<64>::Elf_Addr value,
2310 unsigned char* view,
2311 section_size_type view_size)
2312 {
2313 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2314 {
2315 // leaq foo@tlsdesc(%rip), %rax
2316 // ==> movq foo@tpoff, %rax
2317 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2318 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2319 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2320 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2321 view[-2] = 0xc7;
2322 view[-1] = 0xc0;
2323 value -= tls_segment->memsz();
2324 Relocate_functions<64, false>::rela32(view, value, 0);
2325 }
2326 else
2327 {
2328 // call *foo@tlscall(%rax)
2329 // ==> nop; nop
2330 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2331 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2332 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2333 view[0] == 0xff && view[1] == 0x10);
2334 view[0] = 0x66;
2335 view[1] = 0x90;
2336 }
2337 }
2338
2339 inline void
2340 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
2341 size_t relnum,
2342 Output_segment*,
2343 const elfcpp::Rela<64, false>& rela,
2344 unsigned int,
2345 elfcpp::Elf_types<64>::Elf_Addr,
2346 unsigned char* view,
2347 section_size_type view_size)
2348 {
2349 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
2350 // ... leq foo@dtpoff(%rax),%reg
2351 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2352
2353 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2354 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2355
2356 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2357 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
2358
2359 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
2360
2361 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
2362
2363 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2364 // We can skip it.
2365 this->skip_call_tls_get_addr_ = true;
2366 }
2367
2368 // Do a relocation in which we convert a TLS Initial-Exec to a
2369 // Local-Exec.
2370
2371 inline void
2372 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
2373 size_t relnum,
2374 Output_segment* tls_segment,
2375 const elfcpp::Rela<64, false>& rela,
2376 unsigned int,
2377 elfcpp::Elf_types<64>::Elf_Addr value,
2378 unsigned char* view,
2379 section_size_type view_size)
2380 {
2381 // We need to examine the opcodes to figure out which instruction we
2382 // are looking at.
2383
2384 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
2385 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
2386
2387 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2388 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2389
2390 unsigned char op1 = view[-3];
2391 unsigned char op2 = view[-2];
2392 unsigned char op3 = view[-1];
2393 unsigned char reg = op3 >> 3;
2394
2395 if (op2 == 0x8b)
2396 {
2397 // movq
2398 if (op1 == 0x4c)
2399 view[-3] = 0x49;
2400 view[-2] = 0xc7;
2401 view[-1] = 0xc0 | reg;
2402 }
2403 else if (reg == 4)
2404 {
2405 // Special handling for %rsp.
2406 if (op1 == 0x4c)
2407 view[-3] = 0x49;
2408 view[-2] = 0x81;
2409 view[-1] = 0xc0 | reg;
2410 }
2411 else
2412 {
2413 // addq
2414 if (op1 == 0x4c)
2415 view[-3] = 0x4d;
2416 view[-2] = 0x8d;
2417 view[-1] = 0x80 | reg | (reg << 3);
2418 }
2419
2420 value -= tls_segment->memsz();
2421 Relocate_functions<64, false>::rela32(view, value, 0);
2422 }
2423
2424 // Relocate section data.
2425
2426 void
2427 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
2428 unsigned int sh_type,
2429 const unsigned char* prelocs,
2430 size_t reloc_count,
2431 Output_section* output_section,
2432 bool needs_special_offset_handling,
2433 unsigned char* view,
2434 elfcpp::Elf_types<64>::Elf_Addr address,
2435 section_size_type view_size)
2436 {
2437 gold_assert(sh_type == elfcpp::SHT_RELA);
2438
2439 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
2440 Target_x86_64::Relocate>(
2441 relinfo,
2442 this,
2443 prelocs,
2444 reloc_count,
2445 output_section,
2446 needs_special_offset_handling,
2447 view,
2448 address,
2449 view_size);
2450 }
2451
2452 // Return the size of a relocation while scanning during a relocatable
2453 // link.
2454
2455 unsigned int
2456 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2457 unsigned int r_type,
2458 Relobj* object)
2459 {
2460 switch (r_type)
2461 {
2462 case elfcpp::R_X86_64_NONE:
2463 case elfcpp::R_386_GNU_VTINHERIT:
2464 case elfcpp::R_386_GNU_VTENTRY:
2465 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2466 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2467 case elfcpp::R_X86_64_TLSDESC_CALL:
2468 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2469 case elfcpp::R_X86_64_DTPOFF32:
2470 case elfcpp::R_X86_64_DTPOFF64:
2471 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2472 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2473 return 0;
2474
2475 case elfcpp::R_X86_64_64:
2476 case elfcpp::R_X86_64_PC64:
2477 case elfcpp::R_X86_64_GOTOFF64:
2478 case elfcpp::R_X86_64_GOTPC64:
2479 case elfcpp::R_X86_64_PLTOFF64:
2480 case elfcpp::R_X86_64_GOT64:
2481 case elfcpp::R_X86_64_GOTPCREL64:
2482 case elfcpp::R_X86_64_GOTPCREL:
2483 case elfcpp::R_X86_64_GOTPLT64:
2484 return 8;
2485
2486 case elfcpp::R_X86_64_32:
2487 case elfcpp::R_X86_64_32S:
2488 case elfcpp::R_X86_64_PC32:
2489 case elfcpp::R_X86_64_PLT32:
2490 case elfcpp::R_X86_64_GOTPC32:
2491 case elfcpp::R_X86_64_GOT32:
2492 return 4;
2493
2494 case elfcpp::R_X86_64_16:
2495 case elfcpp::R_X86_64_PC16:
2496 return 2;
2497
2498 case elfcpp::R_X86_64_8:
2499 case elfcpp::R_X86_64_PC8:
2500 return 1;
2501
2502 case elfcpp::R_X86_64_COPY:
2503 case elfcpp::R_X86_64_GLOB_DAT:
2504 case elfcpp::R_X86_64_JUMP_SLOT:
2505 case elfcpp::R_X86_64_RELATIVE:
2506 // These are outstanding tls relocs, which are unexpected when linking
2507 case elfcpp::R_X86_64_TPOFF64:
2508 case elfcpp::R_X86_64_DTPMOD64:
2509 case elfcpp::R_X86_64_TLSDESC:
2510 object->error(_("unexpected reloc %u in object file"), r_type);
2511 return 0;
2512
2513 case elfcpp::R_X86_64_SIZE32:
2514 case elfcpp::R_X86_64_SIZE64:
2515 default:
2516 object->error(_("unsupported reloc %u against local symbol"), r_type);
2517 return 0;
2518 }
2519 }
2520
2521 // Scan the relocs during a relocatable link.
2522
2523 void
2524 Target_x86_64::scan_relocatable_relocs(const General_options& options,
2525 Symbol_table* symtab,
2526 Layout* layout,
2527 Sized_relobj<64, false>* object,
2528 unsigned int data_shndx,
2529 unsigned int sh_type,
2530 const unsigned char* prelocs,
2531 size_t reloc_count,
2532 Output_section* output_section,
2533 bool needs_special_offset_handling,
2534 size_t local_symbol_count,
2535 const unsigned char* plocal_symbols,
2536 Relocatable_relocs* rr)
2537 {
2538 gold_assert(sh_type == elfcpp::SHT_RELA);
2539
2540 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2541 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2542
2543 gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
2544 Scan_relocatable_relocs>(
2545 options,
2546 symtab,
2547 layout,
2548 object,
2549 data_shndx,
2550 prelocs,
2551 reloc_count,
2552 output_section,
2553 needs_special_offset_handling,
2554 local_symbol_count,
2555 plocal_symbols,
2556 rr);
2557 }
2558
2559 // Relocate a section during a relocatable link.
2560
2561 void
2562 Target_x86_64::relocate_for_relocatable(
2563 const Relocate_info<64, false>* relinfo,
2564 unsigned int sh_type,
2565 const unsigned char* prelocs,
2566 size_t reloc_count,
2567 Output_section* output_section,
2568 off_t offset_in_output_section,
2569 const Relocatable_relocs* rr,
2570 unsigned char* view,
2571 elfcpp::Elf_types<64>::Elf_Addr view_address,
2572 section_size_type view_size,
2573 unsigned char* reloc_view,
2574 section_size_type reloc_view_size)
2575 {
2576 gold_assert(sh_type == elfcpp::SHT_RELA);
2577
2578 gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
2579 relinfo,
2580 prelocs,
2581 reloc_count,
2582 output_section,
2583 offset_in_output_section,
2584 rr,
2585 view,
2586 view_address,
2587 view_size,
2588 reloc_view,
2589 reloc_view_size);
2590 }
2591
2592 // Return the value to use for a dynamic which requires special
2593 // treatment. This is how we support equality comparisons of function
2594 // pointers across shared library boundaries, as described in the
2595 // processor specific ABI supplement.
2596
2597 uint64_t
2598 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2599 {
2600 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2601 return this->plt_section()->address() + gsym->plt_offset();
2602 }
2603
2604 // Return a string used to fill a code section with nops to take up
2605 // the specified length.
2606
2607 std::string
2608 Target_x86_64::do_code_fill(section_size_type length) const
2609 {
2610 if (length >= 16)
2611 {
2612 // Build a jmpq instruction to skip over the bytes.
2613 unsigned char jmp[5];
2614 jmp[0] = 0xe9;
2615 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2616 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2617 + std::string(length - 5, '\0'));
2618 }
2619
2620 // Nop sequences of various lengths.
2621 const char nop1[1] = { 0x90 }; // nop
2622 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2623 const char nop3[3] = { 0x0f, 0x1f, 0x00 }; // nop (%rax)
2624 const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00}; // nop 0(%rax)
2625 const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00, // nop 0(%rax,%rax,1)
2626 0x00 };
2627 const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44, // nopw 0(%rax,%rax,1)
2628 0x00, 0x00 };
2629 const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00, // nopl 0L(%rax)
2630 0x00, 0x00, 0x00 };
2631 const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00, // nopl 0L(%rax,%rax,1)
2632 0x00, 0x00, 0x00, 0x00 };
2633 const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84, // nopw 0L(%rax,%rax,1)
2634 0x00, 0x00, 0x00, 0x00,
2635 0x00 };
2636 const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
2637 0x84, 0x00, 0x00, 0x00,
2638 0x00, 0x00 };
2639 const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
2640 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2641 0x00, 0x00, 0x00 };
2642 const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
2643 0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
2644 0x00, 0x00, 0x00, 0x00 };
2645 const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2646 0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
2647 0x00, 0x00, 0x00, 0x00,
2648 0x00 };
2649 const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2650 0x66, 0x2e, 0x0f, 0x1f, // data16
2651 0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2652 0x00, 0x00 };
2653 const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2654 0x66, 0x66, 0x2e, 0x0f, // data16; data16
2655 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2656 0x00, 0x00, 0x00 };
2657
2658 const char* nops[16] = {
2659 NULL,
2660 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2661 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2662 };
2663
2664 return std::string(nops[length], length);
2665 }
2666
2667 // The selector for x86_64 object files.
2668
2669 class Target_selector_x86_64 : public Target_selector_freebsd
2670 {
2671 public:
2672 Target_selector_x86_64()
2673 : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
2674 "elf64-x86-64-freebsd")
2675 { }
2676
2677 Target*
2678 do_instantiate_target()
2679 { return new Target_x86_64(); }
2680
2681 };
2682
2683 Target_selector_x86_64 target_selector_x86_64;
2684
2685 } // End anonymous namespace.
This page took 0.141801 seconds and 4 git commands to generate.