2009-10-22 Hui Zhu <teawater@gmail.com>
[deliverable/binutils-gdb.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41 #include "gc.h"
42
43 namespace
44 {
45
46 using namespace gold;
47
48 class Output_data_plt_x86_64;
49
50 // The x86_64 target class.
51 // See the ABI at
52 // http://www.x86-64.org/documentation/abi.pdf
53 // TLS info comes from
54 // http://people.redhat.com/drepper/tls.pdf
55 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
56
57 class Target_x86_64 : public Target_freebsd<64, false>
58 {
59 public:
60 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
61 // uses only Elf64_Rela relocation entries with explicit addends."
62 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
63
64 Target_x86_64()
65 : Target_freebsd<64, false>(&x86_64_info),
66 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
67 copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
68 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
69 { }
70
71 // Hook for a new output section.
72 void
73 do_new_output_section(Output_section*) const;
74
75 // Scan the relocations to look for symbol adjustments.
76 void
77 gc_process_relocs(const General_options& options,
78 Symbol_table* symtab,
79 Layout* layout,
80 Sized_relobj<64, false>* object,
81 unsigned int data_shndx,
82 unsigned int sh_type,
83 const unsigned char* prelocs,
84 size_t reloc_count,
85 Output_section* output_section,
86 bool needs_special_offset_handling,
87 size_t local_symbol_count,
88 const unsigned char* plocal_symbols);
89
90 // Scan the relocations to look for symbol adjustments.
91 void
92 scan_relocs(const General_options& options,
93 Symbol_table* symtab,
94 Layout* layout,
95 Sized_relobj<64, false>* object,
96 unsigned int data_shndx,
97 unsigned int sh_type,
98 const unsigned char* prelocs,
99 size_t reloc_count,
100 Output_section* output_section,
101 bool needs_special_offset_handling,
102 size_t local_symbol_count,
103 const unsigned char* plocal_symbols);
104
105 // Finalize the sections.
106 void
107 do_finalize_sections(Layout*);
108
109 // Return the value to use for a dynamic which requires special
110 // treatment.
111 uint64_t
112 do_dynsym_value(const Symbol*) const;
113
114 // Relocate a section.
115 void
116 relocate_section(const Relocate_info<64, false>*,
117 unsigned int sh_type,
118 const unsigned char* prelocs,
119 size_t reloc_count,
120 Output_section* output_section,
121 bool needs_special_offset_handling,
122 unsigned char* view,
123 elfcpp::Elf_types<64>::Elf_Addr view_address,
124 section_size_type view_size,
125 const Reloc_symbol_changes*);
126
127 // Scan the relocs during a relocatable link.
128 void
129 scan_relocatable_relocs(const General_options& options,
130 Symbol_table* symtab,
131 Layout* layout,
132 Sized_relobj<64, false>* object,
133 unsigned int data_shndx,
134 unsigned int sh_type,
135 const unsigned char* prelocs,
136 size_t reloc_count,
137 Output_section* output_section,
138 bool needs_special_offset_handling,
139 size_t local_symbol_count,
140 const unsigned char* plocal_symbols,
141 Relocatable_relocs*);
142
143 // Relocate a section during a relocatable link.
144 void
145 relocate_for_relocatable(const Relocate_info<64, false>*,
146 unsigned int sh_type,
147 const unsigned char* prelocs,
148 size_t reloc_count,
149 Output_section* output_section,
150 off_t offset_in_output_section,
151 const Relocatable_relocs*,
152 unsigned char* view,
153 elfcpp::Elf_types<64>::Elf_Addr view_address,
154 section_size_type view_size,
155 unsigned char* reloc_view,
156 section_size_type reloc_view_size);
157
158 // Return a string used to fill a code section with nops.
159 std::string
160 do_code_fill(section_size_type length) const;
161
162 // Return whether SYM is defined by the ABI.
163 bool
164 do_is_defined_by_abi(const Symbol* sym) const
165 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
166
167 // Adjust -fstack-split code which calls non-stack-split code.
168 void
169 do_calls_non_split(Relobj* object, unsigned int shndx,
170 section_offset_type fnoffset, section_size_type fnsize,
171 unsigned char* view, section_size_type view_size,
172 std::string* from, std::string* to) const;
173
174 // Return the size of the GOT section.
175 section_size_type
176 got_size()
177 {
178 gold_assert(this->got_ != NULL);
179 return this->got_->data_size();
180 }
181
182 private:
183 // The class which scans relocations.
184 class Scan
185 {
186 public:
187 Scan()
188 : issued_non_pic_error_(false)
189 { }
190
191 inline void
192 local(const General_options& options, Symbol_table* symtab,
193 Layout* layout, Target_x86_64* target,
194 Sized_relobj<64, false>* object,
195 unsigned int data_shndx,
196 Output_section* output_section,
197 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
198 const elfcpp::Sym<64, false>& lsym);
199
200 inline void
201 global(const General_options& options, Symbol_table* symtab,
202 Layout* layout, Target_x86_64* target,
203 Sized_relobj<64, false>* object,
204 unsigned int data_shndx,
205 Output_section* output_section,
206 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
207 Symbol* gsym);
208
209 private:
210 static void
211 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
212
213 static void
214 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
215 Symbol*);
216
217 void
218 check_non_pic(Relobj*, unsigned int r_type);
219
220 // Whether we have issued an error about a non-PIC compilation.
221 bool issued_non_pic_error_;
222 };
223
224 // The class which implements relocation.
225 class Relocate
226 {
227 public:
228 Relocate()
229 : skip_call_tls_get_addr_(false), saw_tls_block_reloc_(false)
230 { }
231
232 ~Relocate()
233 {
234 if (this->skip_call_tls_get_addr_)
235 {
236 // FIXME: This needs to specify the location somehow.
237 gold_error(_("missing expected TLS relocation"));
238 }
239 }
240
241 // Do a relocation. Return false if the caller should not issue
242 // any warnings about this relocation.
243 inline bool
244 relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
245 size_t relnum, const elfcpp::Rela<64, false>&,
246 unsigned int r_type, const Sized_symbol<64>*,
247 const Symbol_value<64>*,
248 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
249 section_size_type);
250
251 private:
252 // Do a TLS relocation.
253 inline void
254 relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
255 size_t relnum, const elfcpp::Rela<64, false>&,
256 unsigned int r_type, const Sized_symbol<64>*,
257 const Symbol_value<64>*,
258 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
259 section_size_type);
260
261 // Do a TLS General-Dynamic to Initial-Exec transition.
262 inline void
263 tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
264 Output_segment* tls_segment,
265 const elfcpp::Rela<64, false>&, unsigned int r_type,
266 elfcpp::Elf_types<64>::Elf_Addr value,
267 unsigned char* view,
268 elfcpp::Elf_types<64>::Elf_Addr,
269 section_size_type view_size);
270
271 // Do a TLS General-Dynamic to Local-Exec transition.
272 inline void
273 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
274 Output_segment* tls_segment,
275 const elfcpp::Rela<64, false>&, unsigned int r_type,
276 elfcpp::Elf_types<64>::Elf_Addr value,
277 unsigned char* view,
278 section_size_type view_size);
279
280 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
281 inline void
282 tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
283 Output_segment* tls_segment,
284 const elfcpp::Rela<64, false>&, unsigned int r_type,
285 elfcpp::Elf_types<64>::Elf_Addr value,
286 unsigned char* view,
287 elfcpp::Elf_types<64>::Elf_Addr,
288 section_size_type view_size);
289
290 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
291 inline void
292 tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
293 Output_segment* tls_segment,
294 const elfcpp::Rela<64, false>&, unsigned int r_type,
295 elfcpp::Elf_types<64>::Elf_Addr value,
296 unsigned char* view,
297 section_size_type view_size);
298
299 // Do a TLS Local-Dynamic to Local-Exec transition.
300 inline void
301 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
302 Output_segment* tls_segment,
303 const elfcpp::Rela<64, false>&, unsigned int r_type,
304 elfcpp::Elf_types<64>::Elf_Addr value,
305 unsigned char* view,
306 section_size_type view_size);
307
308 // Do a TLS Initial-Exec to Local-Exec transition.
309 static inline void
310 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
311 Output_segment* tls_segment,
312 const elfcpp::Rela<64, false>&, unsigned int r_type,
313 elfcpp::Elf_types<64>::Elf_Addr value,
314 unsigned char* view,
315 section_size_type view_size);
316
317 // This is set if we should skip the next reloc, which should be a
318 // PLT32 reloc against ___tls_get_addr.
319 bool skip_call_tls_get_addr_;
320
321 // This is set if we see a relocation which could load the address
322 // of the TLS block. Whether we see such a relocation determines
323 // how we handle the R_X86_64_DTPOFF32 relocation, which is used
324 // in debugging sections.
325 bool saw_tls_block_reloc_;
326 };
327
328 // A class which returns the size required for a relocation type,
329 // used while scanning relocs during a relocatable link.
330 class Relocatable_size_for_reloc
331 {
332 public:
333 unsigned int
334 get_size_for_reloc(unsigned int, Relobj*);
335 };
336
337 // Adjust TLS relocation type based on the options and whether this
338 // is a local symbol.
339 static tls::Tls_optimization
340 optimize_tls_reloc(bool is_final, int r_type);
341
342 // Get the GOT section, creating it if necessary.
343 Output_data_got<64, false>*
344 got_section(Symbol_table*, Layout*);
345
346 // Get the GOT PLT section.
347 Output_data_space*
348 got_plt_section() const
349 {
350 gold_assert(this->got_plt_ != NULL);
351 return this->got_plt_;
352 }
353
354 // Create the PLT section.
355 void
356 make_plt_section(Symbol_table* symtab, Layout* layout);
357
358 // Create a PLT entry for a global symbol.
359 void
360 make_plt_entry(Symbol_table*, Layout*, Symbol*);
361
362 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
363 void
364 define_tls_base_symbol(Symbol_table*, Layout*);
365
366 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
367 void
368 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
369
370 // Create a GOT entry for the TLS module index.
371 unsigned int
372 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
373 Sized_relobj<64, false>* object);
374
375 // Get the PLT section.
376 Output_data_plt_x86_64*
377 plt_section() const
378 {
379 gold_assert(this->plt_ != NULL);
380 return this->plt_;
381 }
382
383 // Get the dynamic reloc section, creating it if necessary.
384 Reloc_section*
385 rela_dyn_section(Layout*);
386
387 // Add a potential copy relocation.
388 void
389 copy_reloc(Symbol_table* symtab, Layout* layout,
390 Sized_relobj<64, false>* object,
391 unsigned int shndx, Output_section* output_section,
392 Symbol* sym, const elfcpp::Rela<64, false>& reloc)
393 {
394 this->copy_relocs_.copy_reloc(symtab, layout,
395 symtab->get_sized_symbol<64>(sym),
396 object, shndx, output_section,
397 reloc, this->rela_dyn_section(layout));
398 }
399
400 // Information about this specific target which we pass to the
401 // general Target structure.
402 static const Target::Target_info x86_64_info;
403
404 enum Got_type
405 {
406 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
407 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
408 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
409 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
410 };
411
412 // The GOT section.
413 Output_data_got<64, false>* got_;
414 // The PLT section.
415 Output_data_plt_x86_64* plt_;
416 // The GOT PLT section.
417 Output_data_space* got_plt_;
418 // The dynamic reloc section.
419 Reloc_section* rela_dyn_;
420 // Relocs saved to avoid a COPY reloc.
421 Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
422 // Space for variables copied with a COPY reloc.
423 Output_data_space* dynbss_;
424 // Offset of the GOT entry for the TLS module index.
425 unsigned int got_mod_index_offset_;
426 // True if the _TLS_MODULE_BASE_ symbol has been defined.
427 bool tls_base_symbol_defined_;
428 };
429
430 const Target::Target_info Target_x86_64::x86_64_info =
431 {
432 64, // size
433 false, // is_big_endian
434 elfcpp::EM_X86_64, // machine_code
435 false, // has_make_symbol
436 false, // has_resolve
437 true, // has_code_fill
438 true, // is_default_stack_executable
439 '\0', // wrap_char
440 "/lib/ld64.so.1", // program interpreter
441 0x400000, // default_text_segment_address
442 0x1000, // abi_pagesize (overridable by -z max-page-size)
443 0x1000, // common_pagesize (overridable by -z common-page-size)
444 elfcpp::SHN_UNDEF, // small_common_shndx
445 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
446 0, // small_common_section_flags
447 elfcpp::SHF_X86_64_LARGE // large_common_section_flags
448 };
449
450 // This is called when a new output section is created. This is where
451 // we handle the SHF_X86_64_LARGE.
452
453 void
454 Target_x86_64::do_new_output_section(Output_section *os) const
455 {
456 if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
457 os->set_is_large_section();
458 }
459
460 // Get the GOT section, creating it if necessary.
461
462 Output_data_got<64, false>*
463 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
464 {
465 if (this->got_ == NULL)
466 {
467 gold_assert(symtab != NULL && layout != NULL);
468
469 this->got_ = new Output_data_got<64, false>();
470
471 Output_section* os;
472 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
473 (elfcpp::SHF_ALLOC
474 | elfcpp::SHF_WRITE),
475 this->got_);
476 os->set_is_relro();
477
478 // The old GNU linker creates a .got.plt section. We just
479 // create another set of data in the .got section. Note that we
480 // always create a PLT if we create a GOT, although the PLT
481 // might be empty.
482 this->got_plt_ = new Output_data_space(8, "** GOT PLT");
483 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
484 (elfcpp::SHF_ALLOC
485 | elfcpp::SHF_WRITE),
486 this->got_plt_);
487 os->set_is_relro();
488
489 // The first three entries are reserved.
490 this->got_plt_->set_current_data_size(3 * 8);
491
492 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
493 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
494 this->got_plt_,
495 0, 0, elfcpp::STT_OBJECT,
496 elfcpp::STB_LOCAL,
497 elfcpp::STV_HIDDEN, 0,
498 false, false);
499 }
500
501 return this->got_;
502 }
503
504 // Get the dynamic reloc section, creating it if necessary.
505
506 Target_x86_64::Reloc_section*
507 Target_x86_64::rela_dyn_section(Layout* layout)
508 {
509 if (this->rela_dyn_ == NULL)
510 {
511 gold_assert(layout != NULL);
512 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
513 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
514 elfcpp::SHF_ALLOC, this->rela_dyn_);
515 }
516 return this->rela_dyn_;
517 }
518
519 // A class to handle the PLT data.
520
521 class Output_data_plt_x86_64 : public Output_section_data
522 {
523 public:
524 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
525
526 Output_data_plt_x86_64(Layout*, Output_data_got<64, false>*,
527 Output_data_space*);
528
529 // Add an entry to the PLT.
530 void
531 add_entry(Symbol* gsym);
532
533 // Add the reserved TLSDESC_PLT entry to the PLT.
534 void
535 reserve_tlsdesc_entry(unsigned int got_offset)
536 { this->tlsdesc_got_offset_ = got_offset; }
537
538 // Return true if a TLSDESC_PLT entry has been reserved.
539 bool
540 has_tlsdesc_entry() const
541 { return this->tlsdesc_got_offset_ != -1U; }
542
543 // Return the GOT offset for the reserved TLSDESC_PLT entry.
544 unsigned int
545 get_tlsdesc_got_offset() const
546 { return this->tlsdesc_got_offset_; }
547
548 // Return the offset of the reserved TLSDESC_PLT entry.
549 unsigned int
550 get_tlsdesc_plt_offset() const
551 { return (this->count_ + 1) * plt_entry_size; }
552
553 // Return the .rel.plt section data.
554 const Reloc_section*
555 rel_plt() const
556 { return this->rel_; }
557
558 protected:
559 void
560 do_adjust_output_section(Output_section* os);
561
562 // Write to a map file.
563 void
564 do_print_to_mapfile(Mapfile* mapfile) const
565 { mapfile->print_output_data(this, _("** PLT")); }
566
567 private:
568 // The size of an entry in the PLT.
569 static const int plt_entry_size = 16;
570
571 // The first entry in the PLT.
572 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
573 // procedure linkage table for both programs and shared objects."
574 static unsigned char first_plt_entry[plt_entry_size];
575
576 // Other entries in the PLT for an executable.
577 static unsigned char plt_entry[plt_entry_size];
578
579 // The reserved TLSDESC entry in the PLT for an executable.
580 static unsigned char tlsdesc_plt_entry[plt_entry_size];
581
582 // Set the final size.
583 void
584 set_final_data_size();
585
586 // Write out the PLT data.
587 void
588 do_write(Output_file*);
589
590 // The reloc section.
591 Reloc_section* rel_;
592 // The .got section.
593 Output_data_got<64, false>* got_;
594 // The .got.plt section.
595 Output_data_space* got_plt_;
596 // The number of PLT entries.
597 unsigned int count_;
598 // Offset of the reserved TLSDESC_GOT entry when needed.
599 unsigned int tlsdesc_got_offset_;
600 };
601
602 // Create the PLT section. The ordinary .got section is an argument,
603 // since we need to refer to the start. We also create our own .got
604 // section just for PLT entries.
605
606 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
607 Output_data_got<64, false>* got,
608 Output_data_space* got_plt)
609 : Output_section_data(8), got_(got), got_plt_(got_plt), count_(0),
610 tlsdesc_got_offset_(-1U)
611 {
612 this->rel_ = new Reloc_section(false);
613 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
614 elfcpp::SHF_ALLOC, this->rel_);
615 }
616
617 void
618 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
619 {
620 os->set_entsize(plt_entry_size);
621 }
622
623 // Add an entry to the PLT.
624
625 void
626 Output_data_plt_x86_64::add_entry(Symbol* gsym)
627 {
628 gold_assert(!gsym->has_plt_offset());
629
630 // Note that when setting the PLT offset we skip the initial
631 // reserved PLT entry.
632 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
633
634 ++this->count_;
635
636 section_offset_type got_offset = this->got_plt_->current_data_size();
637
638 // Every PLT entry needs a GOT entry which points back to the PLT
639 // entry (this will be changed by the dynamic linker, normally
640 // lazily when the function is called).
641 this->got_plt_->set_current_data_size(got_offset + 8);
642
643 // Every PLT entry needs a reloc.
644 gsym->set_needs_dynsym_entry();
645 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
646 got_offset, 0);
647
648 // Note that we don't need to save the symbol. The contents of the
649 // PLT are independent of which symbols are used. The symbols only
650 // appear in the relocations.
651 }
652
653 // Set the final size.
654 void
655 Output_data_plt_x86_64::set_final_data_size()
656 {
657 unsigned int count = this->count_;
658 if (this->has_tlsdesc_entry())
659 ++count;
660 this->set_data_size((count + 1) * plt_entry_size);
661 }
662
663 // The first entry in the PLT for an executable.
664
665 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
666 {
667 // From AMD64 ABI Draft 0.98, page 76
668 0xff, 0x35, // pushq contents of memory address
669 0, 0, 0, 0, // replaced with address of .got + 8
670 0xff, 0x25, // jmp indirect
671 0, 0, 0, 0, // replaced with address of .got + 16
672 0x90, 0x90, 0x90, 0x90 // noop (x4)
673 };
674
675 // Subsequent entries in the PLT for an executable.
676
677 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
678 {
679 // From AMD64 ABI Draft 0.98, page 76
680 0xff, 0x25, // jmpq indirect
681 0, 0, 0, 0, // replaced with address of symbol in .got
682 0x68, // pushq immediate
683 0, 0, 0, 0, // replaced with offset into relocation table
684 0xe9, // jmpq relative
685 0, 0, 0, 0 // replaced with offset to start of .plt
686 };
687
688 // The reserved TLSDESC entry in the PLT for an executable.
689
690 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
691 {
692 // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
693 // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
694 0xff, 0x35, // pushq x(%rip)
695 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
696 0xff, 0x25, // jmpq *y(%rip)
697 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
698 0x0f, 0x1f, // nop
699 0x40, 0
700 };
701
702 // Write out the PLT. This uses the hand-coded instructions above,
703 // and adjusts them as needed. This is specified by the AMD64 ABI.
704
705 void
706 Output_data_plt_x86_64::do_write(Output_file* of)
707 {
708 const off_t offset = this->offset();
709 const section_size_type oview_size =
710 convert_to_section_size_type(this->data_size());
711 unsigned char* const oview = of->get_output_view(offset, oview_size);
712
713 const off_t got_file_offset = this->got_plt_->offset();
714 const section_size_type got_size =
715 convert_to_section_size_type(this->got_plt_->data_size());
716 unsigned char* const got_view = of->get_output_view(got_file_offset,
717 got_size);
718
719 unsigned char* pov = oview;
720
721 // The base address of the .plt section.
722 elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
723 // The base address of the .got section.
724 elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
725 // The base address of the PLT portion of the .got section,
726 // which is where the GOT pointer will point, and where the
727 // three reserved GOT entries are located.
728 elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
729
730 memcpy(pov, first_plt_entry, plt_entry_size);
731 // We do a jmp relative to the PC at the end of this instruction.
732 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
733 (got_address + 8
734 - (plt_address + 6)));
735 elfcpp::Swap<32, false>::writeval(pov + 8,
736 (got_address + 16
737 - (plt_address + 12)));
738 pov += plt_entry_size;
739
740 unsigned char* got_pov = got_view;
741
742 memset(got_pov, 0, 24);
743 got_pov += 24;
744
745 unsigned int plt_offset = plt_entry_size;
746 unsigned int got_offset = 24;
747 const unsigned int count = this->count_;
748 for (unsigned int plt_index = 0;
749 plt_index < count;
750 ++plt_index,
751 pov += plt_entry_size,
752 got_pov += 8,
753 plt_offset += plt_entry_size,
754 got_offset += 8)
755 {
756 // Set and adjust the PLT entry itself.
757 memcpy(pov, plt_entry, plt_entry_size);
758 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
759 (got_address + got_offset
760 - (plt_address + plt_offset
761 + 6)));
762
763 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
764 elfcpp::Swap<32, false>::writeval(pov + 12,
765 - (plt_offset + plt_entry_size));
766
767 // Set the entry in the GOT.
768 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
769 }
770
771 if (this->has_tlsdesc_entry())
772 {
773 // Set and adjust the reserved TLSDESC PLT entry.
774 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
775 memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
776 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
777 (got_address + 8
778 - (plt_address + plt_offset
779 + 6)));
780 elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
781 (got_base
782 + tlsdesc_got_offset
783 - (plt_address + plt_offset
784 + 12)));
785 pov += plt_entry_size;
786 }
787
788 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
789 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
790
791 of->write_output_view(offset, oview_size, oview);
792 of->write_output_view(got_file_offset, got_size, got_view);
793 }
794
795 // Create the PLT section.
796
797 void
798 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
799 {
800 if (this->plt_ == NULL)
801 {
802 // Create the GOT sections first.
803 this->got_section(symtab, layout);
804
805 this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
806 this->got_plt_);
807 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
808 (elfcpp::SHF_ALLOC
809 | elfcpp::SHF_EXECINSTR),
810 this->plt_);
811 }
812 }
813
814 // Create a PLT entry for a global symbol.
815
816 void
817 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
818 Symbol* gsym)
819 {
820 if (gsym->has_plt_offset())
821 return;
822
823 if (this->plt_ == NULL)
824 this->make_plt_section(symtab, layout);
825
826 this->plt_->add_entry(gsym);
827 }
828
829 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
830
831 void
832 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
833 {
834 if (this->tls_base_symbol_defined_)
835 return;
836
837 Output_segment* tls_segment = layout->tls_segment();
838 if (tls_segment != NULL)
839 {
840 bool is_exec = parameters->options().output_is_executable();
841 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
842 tls_segment, 0, 0,
843 elfcpp::STT_TLS,
844 elfcpp::STB_LOCAL,
845 elfcpp::STV_HIDDEN, 0,
846 (is_exec
847 ? Symbol::SEGMENT_END
848 : Symbol::SEGMENT_START),
849 true);
850 }
851 this->tls_base_symbol_defined_ = true;
852 }
853
854 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
855
856 void
857 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
858 Layout* layout)
859 {
860 if (this->plt_ == NULL)
861 this->make_plt_section(symtab, layout);
862
863 if (!this->plt_->has_tlsdesc_entry())
864 {
865 // Allocate the TLSDESC_GOT entry.
866 Output_data_got<64, false>* got = this->got_section(symtab, layout);
867 unsigned int got_offset = got->add_constant(0);
868
869 // Allocate the TLSDESC_PLT entry.
870 this->plt_->reserve_tlsdesc_entry(got_offset);
871 }
872 }
873
874 // Create a GOT entry for the TLS module index.
875
876 unsigned int
877 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
878 Sized_relobj<64, false>* object)
879 {
880 if (this->got_mod_index_offset_ == -1U)
881 {
882 gold_assert(symtab != NULL && layout != NULL && object != NULL);
883 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
884 Output_data_got<64, false>* got = this->got_section(symtab, layout);
885 unsigned int got_offset = got->add_constant(0);
886 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
887 got_offset, 0);
888 got->add_constant(0);
889 this->got_mod_index_offset_ = got_offset;
890 }
891 return this->got_mod_index_offset_;
892 }
893
894 // Optimize the TLS relocation type based on what we know about the
895 // symbol. IS_FINAL is true if the final address of this symbol is
896 // known at link time.
897
898 tls::Tls_optimization
899 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
900 {
901 // If we are generating a shared library, then we can't do anything
902 // in the linker.
903 if (parameters->options().shared())
904 return tls::TLSOPT_NONE;
905
906 switch (r_type)
907 {
908 case elfcpp::R_X86_64_TLSGD:
909 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
910 case elfcpp::R_X86_64_TLSDESC_CALL:
911 // These are General-Dynamic which permits fully general TLS
912 // access. Since we know that we are generating an executable,
913 // we can convert this to Initial-Exec. If we also know that
914 // this is a local symbol, we can further switch to Local-Exec.
915 if (is_final)
916 return tls::TLSOPT_TO_LE;
917 return tls::TLSOPT_TO_IE;
918
919 case elfcpp::R_X86_64_TLSLD:
920 // This is Local-Dynamic, which refers to a local symbol in the
921 // dynamic TLS block. Since we know that we generating an
922 // executable, we can switch to Local-Exec.
923 return tls::TLSOPT_TO_LE;
924
925 case elfcpp::R_X86_64_DTPOFF32:
926 case elfcpp::R_X86_64_DTPOFF64:
927 // Another Local-Dynamic reloc.
928 return tls::TLSOPT_TO_LE;
929
930 case elfcpp::R_X86_64_GOTTPOFF:
931 // These are Initial-Exec relocs which get the thread offset
932 // from the GOT. If we know that we are linking against the
933 // local symbol, we can switch to Local-Exec, which links the
934 // thread offset into the instruction.
935 if (is_final)
936 return tls::TLSOPT_TO_LE;
937 return tls::TLSOPT_NONE;
938
939 case elfcpp::R_X86_64_TPOFF32:
940 // When we already have Local-Exec, there is nothing further we
941 // can do.
942 return tls::TLSOPT_NONE;
943
944 default:
945 gold_unreachable();
946 }
947 }
948
949 // Report an unsupported relocation against a local symbol.
950
951 void
952 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
953 unsigned int r_type)
954 {
955 gold_error(_("%s: unsupported reloc %u against local symbol"),
956 object->name().c_str(), r_type);
957 }
958
959 // We are about to emit a dynamic relocation of type R_TYPE. If the
960 // dynamic linker does not support it, issue an error. The GNU linker
961 // only issues a non-PIC error for an allocated read-only section.
962 // Here we know the section is allocated, but we don't know that it is
963 // read-only. But we check for all the relocation types which the
964 // glibc dynamic linker supports, so it seems appropriate to issue an
965 // error even if the section is not read-only.
966
967 void
968 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
969 {
970 switch (r_type)
971 {
972 // These are the relocation types supported by glibc for x86_64.
973 case elfcpp::R_X86_64_RELATIVE:
974 case elfcpp::R_X86_64_GLOB_DAT:
975 case elfcpp::R_X86_64_JUMP_SLOT:
976 case elfcpp::R_X86_64_DTPMOD64:
977 case elfcpp::R_X86_64_DTPOFF64:
978 case elfcpp::R_X86_64_TPOFF64:
979 case elfcpp::R_X86_64_64:
980 case elfcpp::R_X86_64_32:
981 case elfcpp::R_X86_64_PC32:
982 case elfcpp::R_X86_64_COPY:
983 return;
984
985 default:
986 // This prevents us from issuing more than one error per reloc
987 // section. But we can still wind up issuing more than one
988 // error per object file.
989 if (this->issued_non_pic_error_)
990 return;
991 gold_assert(parameters->options().output_is_position_independent());
992 object->error(_("requires unsupported dynamic reloc; "
993 "recompile with -fPIC"));
994 this->issued_non_pic_error_ = true;
995 return;
996
997 case elfcpp::R_X86_64_NONE:
998 gold_unreachable();
999 }
1000 }
1001
1002 // Scan a relocation for a local symbol.
1003
1004 inline void
1005 Target_x86_64::Scan::local(const General_options&,
1006 Symbol_table* symtab,
1007 Layout* layout,
1008 Target_x86_64* target,
1009 Sized_relobj<64, false>* object,
1010 unsigned int data_shndx,
1011 Output_section* output_section,
1012 const elfcpp::Rela<64, false>& reloc,
1013 unsigned int r_type,
1014 const elfcpp::Sym<64, false>& lsym)
1015 {
1016 switch (r_type)
1017 {
1018 case elfcpp::R_X86_64_NONE:
1019 case elfcpp::R_386_GNU_VTINHERIT:
1020 case elfcpp::R_386_GNU_VTENTRY:
1021 break;
1022
1023 case elfcpp::R_X86_64_64:
1024 // If building a shared library (or a position-independent
1025 // executable), we need to create a dynamic relocation for this
1026 // location. The relocation applied at link time will apply the
1027 // link-time value, so we flag the location with an
1028 // R_X86_64_RELATIVE relocation so the dynamic loader can
1029 // relocate it easily.
1030 if (parameters->options().output_is_position_independent())
1031 {
1032 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1033 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1034 rela_dyn->add_local_relative(object, r_sym,
1035 elfcpp::R_X86_64_RELATIVE,
1036 output_section, data_shndx,
1037 reloc.get_r_offset(),
1038 reloc.get_r_addend());
1039 }
1040 break;
1041
1042 case elfcpp::R_X86_64_32:
1043 case elfcpp::R_X86_64_32S:
1044 case elfcpp::R_X86_64_16:
1045 case elfcpp::R_X86_64_8:
1046 // If building a shared library (or a position-independent
1047 // executable), we need to create a dynamic relocation for this
1048 // location. We can't use an R_X86_64_RELATIVE relocation
1049 // because that is always a 64-bit relocation.
1050 if (parameters->options().output_is_position_independent())
1051 {
1052 this->check_non_pic(object, r_type);
1053
1054 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1055 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1056 if (lsym.get_st_type() != elfcpp::STT_SECTION)
1057 rela_dyn->add_local(object, r_sym, r_type, output_section,
1058 data_shndx, reloc.get_r_offset(),
1059 reloc.get_r_addend());
1060 else
1061 {
1062 gold_assert(lsym.get_st_value() == 0);
1063 unsigned int shndx = lsym.get_st_shndx();
1064 bool is_ordinary;
1065 shndx = object->adjust_sym_shndx(r_sym, shndx,
1066 &is_ordinary);
1067 if (!is_ordinary)
1068 object->error(_("section symbol %u has bad shndx %u"),
1069 r_sym, shndx);
1070 else
1071 rela_dyn->add_local_section(object, shndx,
1072 r_type, output_section,
1073 data_shndx, reloc.get_r_offset(),
1074 reloc.get_r_addend());
1075 }
1076 }
1077 break;
1078
1079 case elfcpp::R_X86_64_PC64:
1080 case elfcpp::R_X86_64_PC32:
1081 case elfcpp::R_X86_64_PC16:
1082 case elfcpp::R_X86_64_PC8:
1083 break;
1084
1085 case elfcpp::R_X86_64_PLT32:
1086 // Since we know this is a local symbol, we can handle this as a
1087 // PC32 reloc.
1088 break;
1089
1090 case elfcpp::R_X86_64_GOTPC32:
1091 case elfcpp::R_X86_64_GOTOFF64:
1092 case elfcpp::R_X86_64_GOTPC64:
1093 case elfcpp::R_X86_64_PLTOFF64:
1094 // We need a GOT section.
1095 target->got_section(symtab, layout);
1096 // For PLTOFF64, we'd normally want a PLT section, but since we
1097 // know this is a local symbol, no PLT is needed.
1098 break;
1099
1100 case elfcpp::R_X86_64_GOT64:
1101 case elfcpp::R_X86_64_GOT32:
1102 case elfcpp::R_X86_64_GOTPCREL64:
1103 case elfcpp::R_X86_64_GOTPCREL:
1104 case elfcpp::R_X86_64_GOTPLT64:
1105 {
1106 // The symbol requires a GOT entry.
1107 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1108 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1109 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
1110 {
1111 // If we are generating a shared object, we need to add a
1112 // dynamic relocation for this symbol's GOT entry.
1113 if (parameters->options().output_is_position_independent())
1114 {
1115 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1116 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1117 if (r_type != elfcpp::R_X86_64_GOT32)
1118 rela_dyn->add_local_relative(
1119 object, r_sym, elfcpp::R_X86_64_RELATIVE, got,
1120 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1121 else
1122 {
1123 this->check_non_pic(object, r_type);
1124
1125 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1126 rela_dyn->add_local(
1127 object, r_sym, r_type, got,
1128 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1129 }
1130 }
1131 }
1132 // For GOTPLT64, we'd normally want a PLT section, but since
1133 // we know this is a local symbol, no PLT is needed.
1134 }
1135 break;
1136
1137 case elfcpp::R_X86_64_COPY:
1138 case elfcpp::R_X86_64_GLOB_DAT:
1139 case elfcpp::R_X86_64_JUMP_SLOT:
1140 case elfcpp::R_X86_64_RELATIVE:
1141 // These are outstanding tls relocs, which are unexpected when linking
1142 case elfcpp::R_X86_64_TPOFF64:
1143 case elfcpp::R_X86_64_DTPMOD64:
1144 case elfcpp::R_X86_64_TLSDESC:
1145 gold_error(_("%s: unexpected reloc %u in object file"),
1146 object->name().c_str(), r_type);
1147 break;
1148
1149 // These are initial tls relocs, which are expected when linking
1150 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1151 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1152 case elfcpp::R_X86_64_TLSDESC_CALL:
1153 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1154 case elfcpp::R_X86_64_DTPOFF32:
1155 case elfcpp::R_X86_64_DTPOFF64:
1156 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1157 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1158 {
1159 bool output_is_shared = parameters->options().shared();
1160 const tls::Tls_optimization optimized_type
1161 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1162 switch (r_type)
1163 {
1164 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1165 if (optimized_type == tls::TLSOPT_NONE)
1166 {
1167 // Create a pair of GOT entries for the module index and
1168 // dtv-relative offset.
1169 Output_data_got<64, false>* got
1170 = target->got_section(symtab, layout);
1171 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1172 unsigned int shndx = lsym.get_st_shndx();
1173 bool is_ordinary;
1174 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1175 if (!is_ordinary)
1176 object->error(_("local symbol %u has bad shndx %u"),
1177 r_sym, shndx);
1178 else
1179 got->add_local_pair_with_rela(object, r_sym,
1180 shndx,
1181 GOT_TYPE_TLS_PAIR,
1182 target->rela_dyn_section(layout),
1183 elfcpp::R_X86_64_DTPMOD64, 0);
1184 }
1185 else if (optimized_type != tls::TLSOPT_TO_LE)
1186 unsupported_reloc_local(object, r_type);
1187 break;
1188
1189 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1190 target->define_tls_base_symbol(symtab, layout);
1191 if (optimized_type == tls::TLSOPT_NONE)
1192 {
1193 // Create reserved PLT and GOT entries for the resolver.
1194 target->reserve_tlsdesc_entries(symtab, layout);
1195
1196 // Generate a double GOT entry with an R_X86_64_TLSDESC reloc.
1197 Output_data_got<64, false>* got
1198 = target->got_section(symtab, layout);
1199 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1200 unsigned int shndx = lsym.get_st_shndx();
1201 bool is_ordinary;
1202 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1203 if (!is_ordinary)
1204 object->error(_("local symbol %u has bad shndx %u"),
1205 r_sym, shndx);
1206 else
1207 got->add_local_pair_with_rela(object, r_sym,
1208 shndx,
1209 GOT_TYPE_TLS_DESC,
1210 target->rela_dyn_section(layout),
1211 elfcpp::R_X86_64_TLSDESC, 0);
1212 }
1213 else if (optimized_type != tls::TLSOPT_TO_LE)
1214 unsupported_reloc_local(object, r_type);
1215 break;
1216
1217 case elfcpp::R_X86_64_TLSDESC_CALL:
1218 break;
1219
1220 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1221 if (optimized_type == tls::TLSOPT_NONE)
1222 {
1223 // Create a GOT entry for the module index.
1224 target->got_mod_index_entry(symtab, layout, object);
1225 }
1226 else if (optimized_type != tls::TLSOPT_TO_LE)
1227 unsupported_reloc_local(object, r_type);
1228 break;
1229
1230 case elfcpp::R_X86_64_DTPOFF32:
1231 case elfcpp::R_X86_64_DTPOFF64:
1232 break;
1233
1234 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1235 layout->set_has_static_tls();
1236 if (optimized_type == tls::TLSOPT_NONE)
1237 {
1238 // Create a GOT entry for the tp-relative offset.
1239 Output_data_got<64, false>* got
1240 = target->got_section(symtab, layout);
1241 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1242 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1243 target->rela_dyn_section(layout),
1244 elfcpp::R_X86_64_TPOFF64);
1245 }
1246 else if (optimized_type != tls::TLSOPT_TO_LE)
1247 unsupported_reloc_local(object, r_type);
1248 break;
1249
1250 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1251 layout->set_has_static_tls();
1252 if (output_is_shared)
1253 unsupported_reloc_local(object, r_type);
1254 break;
1255
1256 default:
1257 gold_unreachable();
1258 }
1259 }
1260 break;
1261
1262 case elfcpp::R_X86_64_SIZE32:
1263 case elfcpp::R_X86_64_SIZE64:
1264 default:
1265 gold_error(_("%s: unsupported reloc %u against local symbol"),
1266 object->name().c_str(), r_type);
1267 break;
1268 }
1269 }
1270
1271
1272 // Report an unsupported relocation against a global symbol.
1273
1274 void
1275 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1276 unsigned int r_type,
1277 Symbol* gsym)
1278 {
1279 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1280 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1281 }
1282
1283 // Scan a relocation for a global symbol.
1284
1285 inline void
1286 Target_x86_64::Scan::global(const General_options&,
1287 Symbol_table* symtab,
1288 Layout* layout,
1289 Target_x86_64* target,
1290 Sized_relobj<64, false>* object,
1291 unsigned int data_shndx,
1292 Output_section* output_section,
1293 const elfcpp::Rela<64, false>& reloc,
1294 unsigned int r_type,
1295 Symbol* gsym)
1296 {
1297 switch (r_type)
1298 {
1299 case elfcpp::R_X86_64_NONE:
1300 case elfcpp::R_386_GNU_VTINHERIT:
1301 case elfcpp::R_386_GNU_VTENTRY:
1302 break;
1303
1304 case elfcpp::R_X86_64_64:
1305 case elfcpp::R_X86_64_32:
1306 case elfcpp::R_X86_64_32S:
1307 case elfcpp::R_X86_64_16:
1308 case elfcpp::R_X86_64_8:
1309 {
1310 // Make a PLT entry if necessary.
1311 if (gsym->needs_plt_entry())
1312 {
1313 target->make_plt_entry(symtab, layout, gsym);
1314 // Since this is not a PC-relative relocation, we may be
1315 // taking the address of a function. In that case we need to
1316 // set the entry in the dynamic symbol table to the address of
1317 // the PLT entry.
1318 if (gsym->is_from_dynobj() && !parameters->options().shared())
1319 gsym->set_needs_dynsym_value();
1320 }
1321 // Make a dynamic relocation if necessary.
1322 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1323 {
1324 if (gsym->may_need_copy_reloc())
1325 {
1326 target->copy_reloc(symtab, layout, object,
1327 data_shndx, output_section, gsym, reloc);
1328 }
1329 else if (r_type == elfcpp::R_X86_64_64
1330 && gsym->can_use_relative_reloc(false))
1331 {
1332 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1333 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1334 output_section, object,
1335 data_shndx, reloc.get_r_offset(),
1336 reloc.get_r_addend());
1337 }
1338 else
1339 {
1340 this->check_non_pic(object, r_type);
1341 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1342 rela_dyn->add_global(gsym, r_type, output_section, object,
1343 data_shndx, reloc.get_r_offset(),
1344 reloc.get_r_addend());
1345 }
1346 }
1347 }
1348 break;
1349
1350 case elfcpp::R_X86_64_PC64:
1351 case elfcpp::R_X86_64_PC32:
1352 case elfcpp::R_X86_64_PC16:
1353 case elfcpp::R_X86_64_PC8:
1354 {
1355 // Make a PLT entry if necessary.
1356 if (gsym->needs_plt_entry())
1357 target->make_plt_entry(symtab, layout, gsym);
1358 // Make a dynamic relocation if necessary.
1359 int flags = Symbol::NON_PIC_REF;
1360 if (gsym->type() == elfcpp::STT_FUNC)
1361 flags |= Symbol::FUNCTION_CALL;
1362 if (gsym->needs_dynamic_reloc(flags))
1363 {
1364 if (gsym->may_need_copy_reloc())
1365 {
1366 target->copy_reloc(symtab, layout, object,
1367 data_shndx, output_section, gsym, reloc);
1368 }
1369 else
1370 {
1371 this->check_non_pic(object, r_type);
1372 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1373 rela_dyn->add_global(gsym, r_type, output_section, object,
1374 data_shndx, reloc.get_r_offset(),
1375 reloc.get_r_addend());
1376 }
1377 }
1378 }
1379 break;
1380
1381 case elfcpp::R_X86_64_GOT64:
1382 case elfcpp::R_X86_64_GOT32:
1383 case elfcpp::R_X86_64_GOTPCREL64:
1384 case elfcpp::R_X86_64_GOTPCREL:
1385 case elfcpp::R_X86_64_GOTPLT64:
1386 {
1387 // The symbol requires a GOT entry.
1388 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1389 if (gsym->final_value_is_known())
1390 got->add_global(gsym, GOT_TYPE_STANDARD);
1391 else
1392 {
1393 // If this symbol is not fully resolved, we need to add a
1394 // dynamic relocation for it.
1395 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1396 if (gsym->is_from_dynobj()
1397 || gsym->is_undefined()
1398 || gsym->is_preemptible())
1399 got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
1400 elfcpp::R_X86_64_GLOB_DAT);
1401 else
1402 {
1403 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1404 rela_dyn->add_global_relative(
1405 gsym, elfcpp::R_X86_64_RELATIVE, got,
1406 gsym->got_offset(GOT_TYPE_STANDARD), 0);
1407 }
1408 }
1409 // For GOTPLT64, we also need a PLT entry (but only if the
1410 // symbol is not fully resolved).
1411 if (r_type == elfcpp::R_X86_64_GOTPLT64
1412 && !gsym->final_value_is_known())
1413 target->make_plt_entry(symtab, layout, gsym);
1414 }
1415 break;
1416
1417 case elfcpp::R_X86_64_PLT32:
1418 // If the symbol is fully resolved, this is just a PC32 reloc.
1419 // Otherwise we need a PLT entry.
1420 if (gsym->final_value_is_known())
1421 break;
1422 // If building a shared library, we can also skip the PLT entry
1423 // if the symbol is defined in the output file and is protected
1424 // or hidden.
1425 if (gsym->is_defined()
1426 && !gsym->is_from_dynobj()
1427 && !gsym->is_preemptible())
1428 break;
1429 target->make_plt_entry(symtab, layout, gsym);
1430 break;
1431
1432 case elfcpp::R_X86_64_GOTPC32:
1433 case elfcpp::R_X86_64_GOTOFF64:
1434 case elfcpp::R_X86_64_GOTPC64:
1435 case elfcpp::R_X86_64_PLTOFF64:
1436 // We need a GOT section.
1437 target->got_section(symtab, layout);
1438 // For PLTOFF64, we also need a PLT entry (but only if the
1439 // symbol is not fully resolved).
1440 if (r_type == elfcpp::R_X86_64_PLTOFF64
1441 && !gsym->final_value_is_known())
1442 target->make_plt_entry(symtab, layout, gsym);
1443 break;
1444
1445 case elfcpp::R_X86_64_COPY:
1446 case elfcpp::R_X86_64_GLOB_DAT:
1447 case elfcpp::R_X86_64_JUMP_SLOT:
1448 case elfcpp::R_X86_64_RELATIVE:
1449 // These are outstanding tls relocs, which are unexpected when linking
1450 case elfcpp::R_X86_64_TPOFF64:
1451 case elfcpp::R_X86_64_DTPMOD64:
1452 case elfcpp::R_X86_64_TLSDESC:
1453 gold_error(_("%s: unexpected reloc %u in object file"),
1454 object->name().c_str(), r_type);
1455 break;
1456
1457 // These are initial tls relocs, which are expected for global()
1458 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1459 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1460 case elfcpp::R_X86_64_TLSDESC_CALL:
1461 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1462 case elfcpp::R_X86_64_DTPOFF32:
1463 case elfcpp::R_X86_64_DTPOFF64:
1464 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1465 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1466 {
1467 const bool is_final = gsym->final_value_is_known();
1468 const tls::Tls_optimization optimized_type
1469 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1470 switch (r_type)
1471 {
1472 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1473 if (optimized_type == tls::TLSOPT_NONE)
1474 {
1475 // Create a pair of GOT entries for the module index and
1476 // dtv-relative offset.
1477 Output_data_got<64, false>* got
1478 = target->got_section(symtab, layout);
1479 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
1480 target->rela_dyn_section(layout),
1481 elfcpp::R_X86_64_DTPMOD64,
1482 elfcpp::R_X86_64_DTPOFF64);
1483 }
1484 else if (optimized_type == tls::TLSOPT_TO_IE)
1485 {
1486 // Create a GOT entry for the tp-relative offset.
1487 Output_data_got<64, false>* got
1488 = target->got_section(symtab, layout);
1489 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1490 target->rela_dyn_section(layout),
1491 elfcpp::R_X86_64_TPOFF64);
1492 }
1493 else if (optimized_type != tls::TLSOPT_TO_LE)
1494 unsupported_reloc_global(object, r_type, gsym);
1495 break;
1496
1497 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1498 target->define_tls_base_symbol(symtab, layout);
1499 if (optimized_type == tls::TLSOPT_NONE)
1500 {
1501 // Create reserved PLT and GOT entries for the resolver.
1502 target->reserve_tlsdesc_entries(symtab, layout);
1503
1504 // Create a double GOT entry with an R_X86_64_TLSDESC reloc.
1505 Output_data_got<64, false>* got
1506 = target->got_section(symtab, layout);
1507 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC,
1508 target->rela_dyn_section(layout),
1509 elfcpp::R_X86_64_TLSDESC, 0);
1510 }
1511 else if (optimized_type == tls::TLSOPT_TO_IE)
1512 {
1513 // Create a GOT entry for the tp-relative offset.
1514 Output_data_got<64, false>* got
1515 = target->got_section(symtab, layout);
1516 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1517 target->rela_dyn_section(layout),
1518 elfcpp::R_X86_64_TPOFF64);
1519 }
1520 else if (optimized_type != tls::TLSOPT_TO_LE)
1521 unsupported_reloc_global(object, r_type, gsym);
1522 break;
1523
1524 case elfcpp::R_X86_64_TLSDESC_CALL:
1525 break;
1526
1527 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1528 if (optimized_type == tls::TLSOPT_NONE)
1529 {
1530 // Create a GOT entry for the module index.
1531 target->got_mod_index_entry(symtab, layout, object);
1532 }
1533 else if (optimized_type != tls::TLSOPT_TO_LE)
1534 unsupported_reloc_global(object, r_type, gsym);
1535 break;
1536
1537 case elfcpp::R_X86_64_DTPOFF32:
1538 case elfcpp::R_X86_64_DTPOFF64:
1539 break;
1540
1541 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1542 layout->set_has_static_tls();
1543 if (optimized_type == tls::TLSOPT_NONE)
1544 {
1545 // Create a GOT entry for the tp-relative offset.
1546 Output_data_got<64, false>* got
1547 = target->got_section(symtab, layout);
1548 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1549 target->rela_dyn_section(layout),
1550 elfcpp::R_X86_64_TPOFF64);
1551 }
1552 else if (optimized_type != tls::TLSOPT_TO_LE)
1553 unsupported_reloc_global(object, r_type, gsym);
1554 break;
1555
1556 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1557 layout->set_has_static_tls();
1558 if (parameters->options().shared())
1559 unsupported_reloc_local(object, r_type);
1560 break;
1561
1562 default:
1563 gold_unreachable();
1564 }
1565 }
1566 break;
1567
1568 case elfcpp::R_X86_64_SIZE32:
1569 case elfcpp::R_X86_64_SIZE64:
1570 default:
1571 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1572 object->name().c_str(), r_type,
1573 gsym->demangled_name().c_str());
1574 break;
1575 }
1576 }
1577
1578 void
1579 Target_x86_64::gc_process_relocs(const General_options& options,
1580 Symbol_table* symtab,
1581 Layout* layout,
1582 Sized_relobj<64, false>* object,
1583 unsigned int data_shndx,
1584 unsigned int sh_type,
1585 const unsigned char* prelocs,
1586 size_t reloc_count,
1587 Output_section* output_section,
1588 bool needs_special_offset_handling,
1589 size_t local_symbol_count,
1590 const unsigned char* plocal_symbols)
1591 {
1592
1593 if (sh_type == elfcpp::SHT_REL)
1594 {
1595 return;
1596 }
1597
1598 gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1599 Target_x86_64::Scan>(
1600 options,
1601 symtab,
1602 layout,
1603 this,
1604 object,
1605 data_shndx,
1606 prelocs,
1607 reloc_count,
1608 output_section,
1609 needs_special_offset_handling,
1610 local_symbol_count,
1611 plocal_symbols);
1612
1613 }
1614 // Scan relocations for a section.
1615
1616 void
1617 Target_x86_64::scan_relocs(const General_options& options,
1618 Symbol_table* symtab,
1619 Layout* layout,
1620 Sized_relobj<64, false>* object,
1621 unsigned int data_shndx,
1622 unsigned int sh_type,
1623 const unsigned char* prelocs,
1624 size_t reloc_count,
1625 Output_section* output_section,
1626 bool needs_special_offset_handling,
1627 size_t local_symbol_count,
1628 const unsigned char* plocal_symbols)
1629 {
1630 if (sh_type == elfcpp::SHT_REL)
1631 {
1632 gold_error(_("%s: unsupported REL reloc section"),
1633 object->name().c_str());
1634 return;
1635 }
1636
1637 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1638 Target_x86_64::Scan>(
1639 options,
1640 symtab,
1641 layout,
1642 this,
1643 object,
1644 data_shndx,
1645 prelocs,
1646 reloc_count,
1647 output_section,
1648 needs_special_offset_handling,
1649 local_symbol_count,
1650 plocal_symbols);
1651 }
1652
1653 // Finalize the sections.
1654
1655 void
1656 Target_x86_64::do_finalize_sections(Layout* layout)
1657 {
1658 // Fill in some more dynamic tags.
1659 Output_data_dynamic* const odyn = layout->dynamic_data();
1660 if (odyn != NULL)
1661 {
1662 if (this->got_plt_ != NULL)
1663 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1664
1665 if (this->plt_ != NULL)
1666 {
1667 const Output_data* od = this->plt_->rel_plt();
1668 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1669 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1670 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1671 if (this->plt_->has_tlsdesc_entry())
1672 {
1673 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
1674 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
1675 this->got_->finalize_data_size();
1676 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
1677 this->plt_, plt_offset);
1678 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
1679 this->got_, got_offset);
1680 }
1681 }
1682
1683 if (this->rela_dyn_ != NULL)
1684 {
1685 const Output_data* od = this->rela_dyn_;
1686 odyn->add_section_address(elfcpp::DT_RELA, od);
1687 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1688 odyn->add_constant(elfcpp::DT_RELAENT,
1689 elfcpp::Elf_sizes<64>::rela_size);
1690 }
1691
1692 if (!parameters->options().shared())
1693 {
1694 // The value of the DT_DEBUG tag is filled in by the dynamic
1695 // linker at run time, and used by the debugger.
1696 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1697 }
1698 }
1699
1700 // Emit any relocs we saved in an attempt to avoid generating COPY
1701 // relocs.
1702 if (this->copy_relocs_.any_saved_relocs())
1703 this->copy_relocs_.emit(this->rela_dyn_section(layout));
1704 }
1705
1706 // Perform a relocation.
1707
1708 inline bool
1709 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1710 Target_x86_64* target,
1711 Output_section*,
1712 size_t relnum,
1713 const elfcpp::Rela<64, false>& rela,
1714 unsigned int r_type,
1715 const Sized_symbol<64>* gsym,
1716 const Symbol_value<64>* psymval,
1717 unsigned char* view,
1718 elfcpp::Elf_types<64>::Elf_Addr address,
1719 section_size_type view_size)
1720 {
1721 if (this->skip_call_tls_get_addr_)
1722 {
1723 if ((r_type != elfcpp::R_X86_64_PLT32
1724 && r_type != elfcpp::R_X86_64_PC32)
1725 || gsym == NULL
1726 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1727 {
1728 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1729 _("missing expected TLS relocation"));
1730 }
1731 else
1732 {
1733 this->skip_call_tls_get_addr_ = false;
1734 return false;
1735 }
1736 }
1737
1738 // Pick the value to use for symbols defined in shared objects.
1739 Symbol_value<64> symval;
1740 if (gsym != NULL
1741 && gsym->use_plt_offset(r_type == elfcpp::R_X86_64_PC64
1742 || r_type == elfcpp::R_X86_64_PC32
1743 || r_type == elfcpp::R_X86_64_PC16
1744 || r_type == elfcpp::R_X86_64_PC8))
1745 {
1746 symval.set_output_value(target->plt_section()->address()
1747 + gsym->plt_offset());
1748 psymval = &symval;
1749 }
1750
1751 const Sized_relobj<64, false>* object = relinfo->object;
1752 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1753
1754 // Get the GOT offset if needed.
1755 // The GOT pointer points to the end of the GOT section.
1756 // We need to subtract the size of the GOT section to get
1757 // the actual offset to use in the relocation.
1758 bool have_got_offset = false;
1759 unsigned int got_offset = 0;
1760 switch (r_type)
1761 {
1762 case elfcpp::R_X86_64_GOT32:
1763 case elfcpp::R_X86_64_GOT64:
1764 case elfcpp::R_X86_64_GOTPLT64:
1765 case elfcpp::R_X86_64_GOTPCREL:
1766 case elfcpp::R_X86_64_GOTPCREL64:
1767 if (gsym != NULL)
1768 {
1769 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1770 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
1771 }
1772 else
1773 {
1774 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1775 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1776 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1777 - target->got_size());
1778 }
1779 have_got_offset = true;
1780 break;
1781
1782 default:
1783 break;
1784 }
1785
1786 switch (r_type)
1787 {
1788 case elfcpp::R_X86_64_NONE:
1789 case elfcpp::R_386_GNU_VTINHERIT:
1790 case elfcpp::R_386_GNU_VTENTRY:
1791 break;
1792
1793 case elfcpp::R_X86_64_64:
1794 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1795 break;
1796
1797 case elfcpp::R_X86_64_PC64:
1798 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1799 address);
1800 break;
1801
1802 case elfcpp::R_X86_64_32:
1803 // FIXME: we need to verify that value + addend fits into 32 bits:
1804 // uint64_t x = value + addend;
1805 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1806 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1807 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1808 break;
1809
1810 case elfcpp::R_X86_64_32S:
1811 // FIXME: we need to verify that value + addend fits into 32 bits:
1812 // int64_t x = value + addend; // note this quantity is signed!
1813 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1814 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1815 break;
1816
1817 case elfcpp::R_X86_64_PC32:
1818 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1819 address);
1820 break;
1821
1822 case elfcpp::R_X86_64_16:
1823 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1824 break;
1825
1826 case elfcpp::R_X86_64_PC16:
1827 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1828 address);
1829 break;
1830
1831 case elfcpp::R_X86_64_8:
1832 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1833 break;
1834
1835 case elfcpp::R_X86_64_PC8:
1836 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1837 address);
1838 break;
1839
1840 case elfcpp::R_X86_64_PLT32:
1841 gold_assert(gsym == NULL
1842 || gsym->has_plt_offset()
1843 || gsym->final_value_is_known()
1844 || (gsym->is_defined()
1845 && !gsym->is_from_dynobj()
1846 && !gsym->is_preemptible()));
1847 // Note: while this code looks the same as for R_X86_64_PC32, it
1848 // behaves differently because psymval was set to point to
1849 // the PLT entry, rather than the symbol, in Scan::global().
1850 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1851 address);
1852 break;
1853
1854 case elfcpp::R_X86_64_PLTOFF64:
1855 {
1856 gold_assert(gsym);
1857 gold_assert(gsym->has_plt_offset()
1858 || gsym->final_value_is_known());
1859 elfcpp::Elf_types<64>::Elf_Addr got_address;
1860 got_address = target->got_section(NULL, NULL)->address();
1861 Relocate_functions<64, false>::rela64(view, object, psymval,
1862 addend - got_address);
1863 }
1864
1865 case elfcpp::R_X86_64_GOT32:
1866 gold_assert(have_got_offset);
1867 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1868 break;
1869
1870 case elfcpp::R_X86_64_GOTPC32:
1871 {
1872 gold_assert(gsym);
1873 elfcpp::Elf_types<64>::Elf_Addr value;
1874 value = target->got_plt_section()->address();
1875 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1876 }
1877 break;
1878
1879 case elfcpp::R_X86_64_GOT64:
1880 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1881 // Since we always add a PLT entry, this is equivalent.
1882 case elfcpp::R_X86_64_GOTPLT64:
1883 gold_assert(have_got_offset);
1884 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1885 break;
1886
1887 case elfcpp::R_X86_64_GOTPC64:
1888 {
1889 gold_assert(gsym);
1890 elfcpp::Elf_types<64>::Elf_Addr value;
1891 value = target->got_plt_section()->address();
1892 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1893 }
1894 break;
1895
1896 case elfcpp::R_X86_64_GOTOFF64:
1897 {
1898 elfcpp::Elf_types<64>::Elf_Addr value;
1899 value = (psymval->value(object, 0)
1900 - target->got_plt_section()->address());
1901 Relocate_functions<64, false>::rela64(view, value, addend);
1902 }
1903 break;
1904
1905 case elfcpp::R_X86_64_GOTPCREL:
1906 {
1907 gold_assert(have_got_offset);
1908 elfcpp::Elf_types<64>::Elf_Addr value;
1909 value = target->got_plt_section()->address() + got_offset;
1910 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1911 }
1912 break;
1913
1914 case elfcpp::R_X86_64_GOTPCREL64:
1915 {
1916 gold_assert(have_got_offset);
1917 elfcpp::Elf_types<64>::Elf_Addr value;
1918 value = target->got_plt_section()->address() + got_offset;
1919 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1920 }
1921 break;
1922
1923 case elfcpp::R_X86_64_COPY:
1924 case elfcpp::R_X86_64_GLOB_DAT:
1925 case elfcpp::R_X86_64_JUMP_SLOT:
1926 case elfcpp::R_X86_64_RELATIVE:
1927 // These are outstanding tls relocs, which are unexpected when linking
1928 case elfcpp::R_X86_64_TPOFF64:
1929 case elfcpp::R_X86_64_DTPMOD64:
1930 case elfcpp::R_X86_64_TLSDESC:
1931 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1932 _("unexpected reloc %u in object file"),
1933 r_type);
1934 break;
1935
1936 // These are initial tls relocs, which are expected when linking
1937 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1938 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1939 case elfcpp::R_X86_64_TLSDESC_CALL:
1940 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1941 case elfcpp::R_X86_64_DTPOFF32:
1942 case elfcpp::R_X86_64_DTPOFF64:
1943 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1944 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1945 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1946 view, address, view_size);
1947 break;
1948
1949 case elfcpp::R_X86_64_SIZE32:
1950 case elfcpp::R_X86_64_SIZE64:
1951 default:
1952 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1953 _("unsupported reloc %u"),
1954 r_type);
1955 break;
1956 }
1957
1958 return true;
1959 }
1960
1961 // Perform a TLS relocation.
1962
1963 inline void
1964 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1965 Target_x86_64* target,
1966 size_t relnum,
1967 const elfcpp::Rela<64, false>& rela,
1968 unsigned int r_type,
1969 const Sized_symbol<64>* gsym,
1970 const Symbol_value<64>* psymval,
1971 unsigned char* view,
1972 elfcpp::Elf_types<64>::Elf_Addr address,
1973 section_size_type view_size)
1974 {
1975 Output_segment* tls_segment = relinfo->layout->tls_segment();
1976
1977 const Sized_relobj<64, false>* object = relinfo->object;
1978 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1979
1980 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1981
1982 const bool is_final = (gsym == NULL
1983 ? !parameters->options().output_is_position_independent()
1984 : gsym->final_value_is_known());
1985 const tls::Tls_optimization optimized_type
1986 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1987 switch (r_type)
1988 {
1989 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1990 this->saw_tls_block_reloc_ = true;
1991 if (optimized_type == tls::TLSOPT_TO_LE)
1992 {
1993 gold_assert(tls_segment != NULL);
1994 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1995 rela, r_type, value, view,
1996 view_size);
1997 break;
1998 }
1999 else
2000 {
2001 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2002 ? GOT_TYPE_TLS_OFFSET
2003 : GOT_TYPE_TLS_PAIR);
2004 unsigned int got_offset;
2005 if (gsym != NULL)
2006 {
2007 gold_assert(gsym->has_got_offset(got_type));
2008 got_offset = gsym->got_offset(got_type) - target->got_size();
2009 }
2010 else
2011 {
2012 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2013 gold_assert(object->local_has_got_offset(r_sym, got_type));
2014 got_offset = (object->local_got_offset(r_sym, got_type)
2015 - target->got_size());
2016 }
2017 if (optimized_type == tls::TLSOPT_TO_IE)
2018 {
2019 gold_assert(tls_segment != NULL);
2020 value = target->got_plt_section()->address() + got_offset;
2021 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2022 value, view, address, view_size);
2023 break;
2024 }
2025 else if (optimized_type == tls::TLSOPT_NONE)
2026 {
2027 // Relocate the field with the offset of the pair of GOT
2028 // entries.
2029 value = target->got_plt_section()->address() + got_offset;
2030 Relocate_functions<64, false>::pcrela32(view, value, addend,
2031 address);
2032 break;
2033 }
2034 }
2035 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2036 _("unsupported reloc %u"), r_type);
2037 break;
2038
2039 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2040 case elfcpp::R_X86_64_TLSDESC_CALL:
2041 this->saw_tls_block_reloc_ = true;
2042 if (optimized_type == tls::TLSOPT_TO_LE)
2043 {
2044 gold_assert(tls_segment != NULL);
2045 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2046 rela, r_type, value, view,
2047 view_size);
2048 break;
2049 }
2050 else
2051 {
2052 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2053 ? GOT_TYPE_TLS_OFFSET
2054 : GOT_TYPE_TLS_DESC);
2055 unsigned int got_offset;
2056 if (gsym != NULL)
2057 {
2058 gold_assert(gsym->has_got_offset(got_type));
2059 got_offset = gsym->got_offset(got_type) - target->got_size();
2060 }
2061 else
2062 {
2063 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2064 gold_assert(object->local_has_got_offset(r_sym, got_type));
2065 got_offset = (object->local_got_offset(r_sym, got_type)
2066 - target->got_size());
2067 }
2068 if (optimized_type == tls::TLSOPT_TO_IE)
2069 {
2070 gold_assert(tls_segment != NULL);
2071 value = target->got_plt_section()->address() + got_offset;
2072 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2073 rela, r_type, value, view, address,
2074 view_size);
2075 break;
2076 }
2077 else if (optimized_type == tls::TLSOPT_NONE)
2078 {
2079 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2080 {
2081 // Relocate the field with the offset of the pair of GOT
2082 // entries.
2083 value = target->got_plt_section()->address() + got_offset;
2084 Relocate_functions<64, false>::pcrela32(view, value, addend,
2085 address);
2086 }
2087 break;
2088 }
2089 }
2090 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2091 _("unsupported reloc %u"), r_type);
2092 break;
2093
2094 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2095 this->saw_tls_block_reloc_ = true;
2096 if (optimized_type == tls::TLSOPT_TO_LE)
2097 {
2098 gold_assert(tls_segment != NULL);
2099 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2100 value, view, view_size);
2101 break;
2102 }
2103 else if (optimized_type == tls::TLSOPT_NONE)
2104 {
2105 // Relocate the field with the offset of the GOT entry for
2106 // the module index.
2107 unsigned int got_offset;
2108 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2109 - target->got_size());
2110 value = target->got_plt_section()->address() + got_offset;
2111 Relocate_functions<64, false>::pcrela32(view, value, addend,
2112 address);
2113 break;
2114 }
2115 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2116 _("unsupported reloc %u"), r_type);
2117 break;
2118
2119 case elfcpp::R_X86_64_DTPOFF32:
2120 if (optimized_type == tls::TLSOPT_TO_LE)
2121 {
2122 // This relocation type is used in debugging information.
2123 // In that case we need to not optimize the value. If we
2124 // haven't seen a TLSLD reloc, then we assume we should not
2125 // optimize this reloc.
2126 if (this->saw_tls_block_reloc_)
2127 {
2128 gold_assert(tls_segment != NULL);
2129 value -= tls_segment->memsz();
2130 }
2131 }
2132 Relocate_functions<64, false>::rela32(view, value, addend);
2133 break;
2134
2135 case elfcpp::R_X86_64_DTPOFF64:
2136 if (optimized_type == tls::TLSOPT_TO_LE)
2137 {
2138 // See R_X86_64_DTPOFF32, just above, for why we test this.
2139 if (this->saw_tls_block_reloc_)
2140 {
2141 gold_assert(tls_segment != NULL);
2142 value -= tls_segment->memsz();
2143 }
2144 }
2145 Relocate_functions<64, false>::rela64(view, value, addend);
2146 break;
2147
2148 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2149 if (optimized_type == tls::TLSOPT_TO_LE)
2150 {
2151 gold_assert(tls_segment != NULL);
2152 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2153 rela, r_type, value, view,
2154 view_size);
2155 break;
2156 }
2157 else if (optimized_type == tls::TLSOPT_NONE)
2158 {
2159 // Relocate the field with the offset of the GOT entry for
2160 // the tp-relative offset of the symbol.
2161 unsigned int got_offset;
2162 if (gsym != NULL)
2163 {
2164 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
2165 got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
2166 - target->got_size());
2167 }
2168 else
2169 {
2170 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2171 gold_assert(object->local_has_got_offset(r_sym,
2172 GOT_TYPE_TLS_OFFSET));
2173 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
2174 - target->got_size());
2175 }
2176 value = target->got_plt_section()->address() + got_offset;
2177 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2178 break;
2179 }
2180 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2181 _("unsupported reloc type %u"),
2182 r_type);
2183 break;
2184
2185 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2186 value -= tls_segment->memsz();
2187 Relocate_functions<64, false>::rela32(view, value, addend);
2188 break;
2189 }
2190 }
2191
2192 // Do a relocation in which we convert a TLS General-Dynamic to an
2193 // Initial-Exec.
2194
2195 inline void
2196 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
2197 size_t relnum,
2198 Output_segment*,
2199 const elfcpp::Rela<64, false>& rela,
2200 unsigned int,
2201 elfcpp::Elf_types<64>::Elf_Addr value,
2202 unsigned char* view,
2203 elfcpp::Elf_types<64>::Elf_Addr address,
2204 section_size_type view_size)
2205 {
2206 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2207 // .word 0x6666; rex64; call __tls_get_addr
2208 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
2209
2210 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2211 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2212
2213 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2214 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2215 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2216 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2217
2218 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
2219
2220 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2221 Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
2222
2223 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2224 // We can skip it.
2225 this->skip_call_tls_get_addr_ = true;
2226 }
2227
2228 // Do a relocation in which we convert a TLS General-Dynamic to a
2229 // Local-Exec.
2230
2231 inline void
2232 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
2233 size_t relnum,
2234 Output_segment* tls_segment,
2235 const elfcpp::Rela<64, false>& rela,
2236 unsigned int,
2237 elfcpp::Elf_types<64>::Elf_Addr value,
2238 unsigned char* view,
2239 section_size_type view_size)
2240 {
2241 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2242 // .word 0x6666; rex64; call __tls_get_addr
2243 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2244
2245 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2246 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2247
2248 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2249 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2250 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2251 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2252
2253 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2254
2255 value -= tls_segment->memsz();
2256 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2257
2258 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2259 // We can skip it.
2260 this->skip_call_tls_get_addr_ = true;
2261 }
2262
2263 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
2264
2265 inline void
2266 Target_x86_64::Relocate::tls_desc_gd_to_ie(
2267 const Relocate_info<64, false>* relinfo,
2268 size_t relnum,
2269 Output_segment*,
2270 const elfcpp::Rela<64, false>& rela,
2271 unsigned int r_type,
2272 elfcpp::Elf_types<64>::Elf_Addr value,
2273 unsigned char* view,
2274 elfcpp::Elf_types<64>::Elf_Addr address,
2275 section_size_type view_size)
2276 {
2277 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2278 {
2279 // leaq foo@tlsdesc(%rip), %rax
2280 // ==> movq foo@gottpoff(%rip), %rax
2281 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2282 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2283 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2284 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2285 view[-2] = 0x8b;
2286 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2287 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2288 }
2289 else
2290 {
2291 // call *foo@tlscall(%rax)
2292 // ==> nop; nop
2293 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2294 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2295 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2296 view[0] == 0xff && view[1] == 0x10);
2297 view[0] = 0x66;
2298 view[1] = 0x90;
2299 }
2300 }
2301
2302 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
2303
2304 inline void
2305 Target_x86_64::Relocate::tls_desc_gd_to_le(
2306 const Relocate_info<64, false>* relinfo,
2307 size_t relnum,
2308 Output_segment* tls_segment,
2309 const elfcpp::Rela<64, false>& rela,
2310 unsigned int r_type,
2311 elfcpp::Elf_types<64>::Elf_Addr value,
2312 unsigned char* view,
2313 section_size_type view_size)
2314 {
2315 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2316 {
2317 // leaq foo@tlsdesc(%rip), %rax
2318 // ==> movq foo@tpoff, %rax
2319 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2320 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2321 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2322 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2323 view[-2] = 0xc7;
2324 view[-1] = 0xc0;
2325 value -= tls_segment->memsz();
2326 Relocate_functions<64, false>::rela32(view, value, 0);
2327 }
2328 else
2329 {
2330 // call *foo@tlscall(%rax)
2331 // ==> nop; nop
2332 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2333 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2334 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2335 view[0] == 0xff && view[1] == 0x10);
2336 view[0] = 0x66;
2337 view[1] = 0x90;
2338 }
2339 }
2340
2341 inline void
2342 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
2343 size_t relnum,
2344 Output_segment*,
2345 const elfcpp::Rela<64, false>& rela,
2346 unsigned int,
2347 elfcpp::Elf_types<64>::Elf_Addr,
2348 unsigned char* view,
2349 section_size_type view_size)
2350 {
2351 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
2352 // ... leq foo@dtpoff(%rax),%reg
2353 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2354
2355 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2356 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2357
2358 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2359 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
2360
2361 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
2362
2363 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
2364
2365 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2366 // We can skip it.
2367 this->skip_call_tls_get_addr_ = true;
2368 }
2369
2370 // Do a relocation in which we convert a TLS Initial-Exec to a
2371 // Local-Exec.
2372
2373 inline void
2374 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
2375 size_t relnum,
2376 Output_segment* tls_segment,
2377 const elfcpp::Rela<64, false>& rela,
2378 unsigned int,
2379 elfcpp::Elf_types<64>::Elf_Addr value,
2380 unsigned char* view,
2381 section_size_type view_size)
2382 {
2383 // We need to examine the opcodes to figure out which instruction we
2384 // are looking at.
2385
2386 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
2387 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
2388
2389 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2390 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2391
2392 unsigned char op1 = view[-3];
2393 unsigned char op2 = view[-2];
2394 unsigned char op3 = view[-1];
2395 unsigned char reg = op3 >> 3;
2396
2397 if (op2 == 0x8b)
2398 {
2399 // movq
2400 if (op1 == 0x4c)
2401 view[-3] = 0x49;
2402 view[-2] = 0xc7;
2403 view[-1] = 0xc0 | reg;
2404 }
2405 else if (reg == 4)
2406 {
2407 // Special handling for %rsp.
2408 if (op1 == 0x4c)
2409 view[-3] = 0x49;
2410 view[-2] = 0x81;
2411 view[-1] = 0xc0 | reg;
2412 }
2413 else
2414 {
2415 // addq
2416 if (op1 == 0x4c)
2417 view[-3] = 0x4d;
2418 view[-2] = 0x8d;
2419 view[-1] = 0x80 | reg | (reg << 3);
2420 }
2421
2422 value -= tls_segment->memsz();
2423 Relocate_functions<64, false>::rela32(view, value, 0);
2424 }
2425
2426 // Relocate section data.
2427
2428 void
2429 Target_x86_64::relocate_section(
2430 const Relocate_info<64, false>* relinfo,
2431 unsigned int sh_type,
2432 const unsigned char* prelocs,
2433 size_t reloc_count,
2434 Output_section* output_section,
2435 bool needs_special_offset_handling,
2436 unsigned char* view,
2437 elfcpp::Elf_types<64>::Elf_Addr address,
2438 section_size_type view_size,
2439 const Reloc_symbol_changes* reloc_symbol_changes)
2440 {
2441 gold_assert(sh_type == elfcpp::SHT_RELA);
2442
2443 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
2444 Target_x86_64::Relocate>(
2445 relinfo,
2446 this,
2447 prelocs,
2448 reloc_count,
2449 output_section,
2450 needs_special_offset_handling,
2451 view,
2452 address,
2453 view_size,
2454 reloc_symbol_changes);
2455 }
2456
2457 // Return the size of a relocation while scanning during a relocatable
2458 // link.
2459
2460 unsigned int
2461 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2462 unsigned int r_type,
2463 Relobj* object)
2464 {
2465 switch (r_type)
2466 {
2467 case elfcpp::R_X86_64_NONE:
2468 case elfcpp::R_386_GNU_VTINHERIT:
2469 case elfcpp::R_386_GNU_VTENTRY:
2470 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2471 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2472 case elfcpp::R_X86_64_TLSDESC_CALL:
2473 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2474 case elfcpp::R_X86_64_DTPOFF32:
2475 case elfcpp::R_X86_64_DTPOFF64:
2476 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2477 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2478 return 0;
2479
2480 case elfcpp::R_X86_64_64:
2481 case elfcpp::R_X86_64_PC64:
2482 case elfcpp::R_X86_64_GOTOFF64:
2483 case elfcpp::R_X86_64_GOTPC64:
2484 case elfcpp::R_X86_64_PLTOFF64:
2485 case elfcpp::R_X86_64_GOT64:
2486 case elfcpp::R_X86_64_GOTPCREL64:
2487 case elfcpp::R_X86_64_GOTPCREL:
2488 case elfcpp::R_X86_64_GOTPLT64:
2489 return 8;
2490
2491 case elfcpp::R_X86_64_32:
2492 case elfcpp::R_X86_64_32S:
2493 case elfcpp::R_X86_64_PC32:
2494 case elfcpp::R_X86_64_PLT32:
2495 case elfcpp::R_X86_64_GOTPC32:
2496 case elfcpp::R_X86_64_GOT32:
2497 return 4;
2498
2499 case elfcpp::R_X86_64_16:
2500 case elfcpp::R_X86_64_PC16:
2501 return 2;
2502
2503 case elfcpp::R_X86_64_8:
2504 case elfcpp::R_X86_64_PC8:
2505 return 1;
2506
2507 case elfcpp::R_X86_64_COPY:
2508 case elfcpp::R_X86_64_GLOB_DAT:
2509 case elfcpp::R_X86_64_JUMP_SLOT:
2510 case elfcpp::R_X86_64_RELATIVE:
2511 // These are outstanding tls relocs, which are unexpected when linking
2512 case elfcpp::R_X86_64_TPOFF64:
2513 case elfcpp::R_X86_64_DTPMOD64:
2514 case elfcpp::R_X86_64_TLSDESC:
2515 object->error(_("unexpected reloc %u in object file"), r_type);
2516 return 0;
2517
2518 case elfcpp::R_X86_64_SIZE32:
2519 case elfcpp::R_X86_64_SIZE64:
2520 default:
2521 object->error(_("unsupported reloc %u against local symbol"), r_type);
2522 return 0;
2523 }
2524 }
2525
2526 // Scan the relocs during a relocatable link.
2527
2528 void
2529 Target_x86_64::scan_relocatable_relocs(const General_options& options,
2530 Symbol_table* symtab,
2531 Layout* layout,
2532 Sized_relobj<64, false>* object,
2533 unsigned int data_shndx,
2534 unsigned int sh_type,
2535 const unsigned char* prelocs,
2536 size_t reloc_count,
2537 Output_section* output_section,
2538 bool needs_special_offset_handling,
2539 size_t local_symbol_count,
2540 const unsigned char* plocal_symbols,
2541 Relocatable_relocs* rr)
2542 {
2543 gold_assert(sh_type == elfcpp::SHT_RELA);
2544
2545 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2546 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2547
2548 gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
2549 Scan_relocatable_relocs>(
2550 options,
2551 symtab,
2552 layout,
2553 object,
2554 data_shndx,
2555 prelocs,
2556 reloc_count,
2557 output_section,
2558 needs_special_offset_handling,
2559 local_symbol_count,
2560 plocal_symbols,
2561 rr);
2562 }
2563
2564 // Relocate a section during a relocatable link.
2565
2566 void
2567 Target_x86_64::relocate_for_relocatable(
2568 const Relocate_info<64, false>* relinfo,
2569 unsigned int sh_type,
2570 const unsigned char* prelocs,
2571 size_t reloc_count,
2572 Output_section* output_section,
2573 off_t offset_in_output_section,
2574 const Relocatable_relocs* rr,
2575 unsigned char* view,
2576 elfcpp::Elf_types<64>::Elf_Addr view_address,
2577 section_size_type view_size,
2578 unsigned char* reloc_view,
2579 section_size_type reloc_view_size)
2580 {
2581 gold_assert(sh_type == elfcpp::SHT_RELA);
2582
2583 gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
2584 relinfo,
2585 prelocs,
2586 reloc_count,
2587 output_section,
2588 offset_in_output_section,
2589 rr,
2590 view,
2591 view_address,
2592 view_size,
2593 reloc_view,
2594 reloc_view_size);
2595 }
2596
2597 // Return the value to use for a dynamic which requires special
2598 // treatment. This is how we support equality comparisons of function
2599 // pointers across shared library boundaries, as described in the
2600 // processor specific ABI supplement.
2601
2602 uint64_t
2603 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2604 {
2605 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2606 return this->plt_section()->address() + gsym->plt_offset();
2607 }
2608
2609 // Return a string used to fill a code section with nops to take up
2610 // the specified length.
2611
2612 std::string
2613 Target_x86_64::do_code_fill(section_size_type length) const
2614 {
2615 if (length >= 16)
2616 {
2617 // Build a jmpq instruction to skip over the bytes.
2618 unsigned char jmp[5];
2619 jmp[0] = 0xe9;
2620 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2621 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2622 + std::string(length - 5, '\0'));
2623 }
2624
2625 // Nop sequences of various lengths.
2626 const char nop1[1] = { 0x90 }; // nop
2627 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2628 const char nop3[3] = { 0x0f, 0x1f, 0x00 }; // nop (%rax)
2629 const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00}; // nop 0(%rax)
2630 const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00, // nop 0(%rax,%rax,1)
2631 0x00 };
2632 const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44, // nopw 0(%rax,%rax,1)
2633 0x00, 0x00 };
2634 const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00, // nopl 0L(%rax)
2635 0x00, 0x00, 0x00 };
2636 const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00, // nopl 0L(%rax,%rax,1)
2637 0x00, 0x00, 0x00, 0x00 };
2638 const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84, // nopw 0L(%rax,%rax,1)
2639 0x00, 0x00, 0x00, 0x00,
2640 0x00 };
2641 const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
2642 0x84, 0x00, 0x00, 0x00,
2643 0x00, 0x00 };
2644 const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
2645 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2646 0x00, 0x00, 0x00 };
2647 const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
2648 0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
2649 0x00, 0x00, 0x00, 0x00 };
2650 const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2651 0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
2652 0x00, 0x00, 0x00, 0x00,
2653 0x00 };
2654 const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2655 0x66, 0x2e, 0x0f, 0x1f, // data16
2656 0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2657 0x00, 0x00 };
2658 const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2659 0x66, 0x66, 0x2e, 0x0f, // data16; data16
2660 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2661 0x00, 0x00, 0x00 };
2662
2663 const char* nops[16] = {
2664 NULL,
2665 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2666 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2667 };
2668
2669 return std::string(nops[length], length);
2670 }
2671
2672 // FNOFFSET in section SHNDX in OBJECT is the start of a function
2673 // compiled with -fstack-split. The function calls non-stack-split
2674 // code. We have to change the function so that it always ensures
2675 // that it has enough stack space to run some random function.
2676
2677 void
2678 Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
2679 section_offset_type fnoffset,
2680 section_size_type fnsize,
2681 unsigned char* view,
2682 section_size_type view_size,
2683 std::string* from,
2684 std::string* to) const
2685 {
2686 // The function starts with a comparison of the stack pointer and a
2687 // field in the TCB. This is followed by a jump.
2688
2689 // cmp %fs:NN,%rsp
2690 if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
2691 && fnsize > 9)
2692 {
2693 // We will call __morestack if the carry flag is set after this
2694 // comparison. We turn the comparison into an stc instruction
2695 // and some nops.
2696 view[fnoffset] = '\xf9';
2697 this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
2698 }
2699 // lea NN(%rsp),%r10
2700 else if (this->match_view(view, view_size, fnoffset, "\x4c\x8d\x94\x24", 4)
2701 && fnsize > 8)
2702 {
2703 // This is loading an offset from the stack pointer for a
2704 // comparison. The offset is negative, so we decrease the
2705 // offset by the amount of space we need for the stack. This
2706 // means we will avoid calling __morestack if there happens to
2707 // be plenty of space on the stack already.
2708 unsigned char* pval = view + fnoffset + 4;
2709 uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
2710 val -= parameters->options().split_stack_adjust_size();
2711 elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
2712 }
2713 else
2714 {
2715 if (!object->has_no_split_stack())
2716 object->error(_("failed to match split-stack sequence at "
2717 "section %u offset %0zx"),
2718 shndx, fnoffset);
2719 return;
2720 }
2721
2722 // We have to change the function so that it calls
2723 // __morestack_non_split instead of __morestack. The former will
2724 // allocate additional stack space.
2725 *from = "__morestack";
2726 *to = "__morestack_non_split";
2727 }
2728
2729 // The selector for x86_64 object files.
2730
2731 class Target_selector_x86_64 : public Target_selector_freebsd
2732 {
2733 public:
2734 Target_selector_x86_64()
2735 : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
2736 "elf64-x86-64-freebsd")
2737 { }
2738
2739 Target*
2740 do_instantiate_target()
2741 { return new Target_x86_64(); }
2742
2743 };
2744
2745 Target_selector_x86_64 target_selector_x86_64;
2746
2747 } // End anonymous namespace.
This page took 0.088134 seconds and 4 git commands to generate.