2009-09-30 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41
42 namespace
43 {
44
45 using namespace gold;
46
47 class Output_data_plt_x86_64;
48
49 // The x86_64 target class.
50 // See the ABI at
51 // http://www.x86-64.org/documentation/abi.pdf
52 // TLS info comes from
53 // http://people.redhat.com/drepper/tls.pdf
54 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
55
56 class Target_x86_64 : public Target_freebsd<64, false>
57 {
58 public:
59 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
60 // uses only Elf64_Rela relocation entries with explicit addends."
61 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
62
63 Target_x86_64()
64 : Target_freebsd<64, false>(&x86_64_info),
65 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
66 copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
67 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
68 { }
69
70 // Hook for a new output section.
71 void
72 do_new_output_section(Output_section*) const;
73
74 // Scan the relocations to look for symbol adjustments.
75 void
76 gc_process_relocs(const General_options& options,
77 Symbol_table* symtab,
78 Layout* layout,
79 Sized_relobj<64, false>* object,
80 unsigned int data_shndx,
81 unsigned int sh_type,
82 const unsigned char* prelocs,
83 size_t reloc_count,
84 Output_section* output_section,
85 bool needs_special_offset_handling,
86 size_t local_symbol_count,
87 const unsigned char* plocal_symbols);
88
89 // Scan the relocations to look for symbol adjustments.
90 void
91 scan_relocs(const General_options& options,
92 Symbol_table* symtab,
93 Layout* layout,
94 Sized_relobj<64, false>* object,
95 unsigned int data_shndx,
96 unsigned int sh_type,
97 const unsigned char* prelocs,
98 size_t reloc_count,
99 Output_section* output_section,
100 bool needs_special_offset_handling,
101 size_t local_symbol_count,
102 const unsigned char* plocal_symbols);
103
104 // Finalize the sections.
105 void
106 do_finalize_sections(Layout*);
107
108 // Return the value to use for a dynamic which requires special
109 // treatment.
110 uint64_t
111 do_dynsym_value(const Symbol*) const;
112
113 // Relocate a section.
114 void
115 relocate_section(const Relocate_info<64, false>*,
116 unsigned int sh_type,
117 const unsigned char* prelocs,
118 size_t reloc_count,
119 Output_section* output_section,
120 bool needs_special_offset_handling,
121 unsigned char* view,
122 elfcpp::Elf_types<64>::Elf_Addr view_address,
123 section_size_type view_size);
124
125 // Scan the relocs during a relocatable link.
126 void
127 scan_relocatable_relocs(const General_options& options,
128 Symbol_table* symtab,
129 Layout* layout,
130 Sized_relobj<64, false>* object,
131 unsigned int data_shndx,
132 unsigned int sh_type,
133 const unsigned char* prelocs,
134 size_t reloc_count,
135 Output_section* output_section,
136 bool needs_special_offset_handling,
137 size_t local_symbol_count,
138 const unsigned char* plocal_symbols,
139 Relocatable_relocs*);
140
141 // Relocate a section during a relocatable link.
142 void
143 relocate_for_relocatable(const Relocate_info<64, false>*,
144 unsigned int sh_type,
145 const unsigned char* prelocs,
146 size_t reloc_count,
147 Output_section* output_section,
148 off_t offset_in_output_section,
149 const Relocatable_relocs*,
150 unsigned char* view,
151 elfcpp::Elf_types<64>::Elf_Addr view_address,
152 section_size_type view_size,
153 unsigned char* reloc_view,
154 section_size_type reloc_view_size);
155
156 // Return a string used to fill a code section with nops.
157 std::string
158 do_code_fill(section_size_type length) const;
159
160 // Return whether SYM is defined by the ABI.
161 bool
162 do_is_defined_by_abi(const Symbol* sym) const
163 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
164
165 // Return the size of the GOT section.
166 section_size_type
167 got_size()
168 {
169 gold_assert(this->got_ != NULL);
170 return this->got_->data_size();
171 }
172
173 private:
174 // The class which scans relocations.
175 class Scan
176 {
177 public:
178 Scan()
179 : issued_non_pic_error_(false)
180 { }
181
182 inline void
183 local(const General_options& options, Symbol_table* symtab,
184 Layout* layout, Target_x86_64* target,
185 Sized_relobj<64, false>* object,
186 unsigned int data_shndx,
187 Output_section* output_section,
188 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
189 const elfcpp::Sym<64, false>& lsym);
190
191 inline void
192 global(const General_options& options, Symbol_table* symtab,
193 Layout* layout, Target_x86_64* target,
194 Sized_relobj<64, false>* object,
195 unsigned int data_shndx,
196 Output_section* output_section,
197 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
198 Symbol* gsym);
199
200 private:
201 static void
202 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
203
204 static void
205 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
206 Symbol*);
207
208 void
209 check_non_pic(Relobj*, unsigned int r_type);
210
211 // Whether we have issued an error about a non-PIC compilation.
212 bool issued_non_pic_error_;
213 };
214
215 // The class which implements relocation.
216 class Relocate
217 {
218 public:
219 Relocate()
220 : skip_call_tls_get_addr_(false), saw_tls_block_reloc_(false)
221 { }
222
223 ~Relocate()
224 {
225 if (this->skip_call_tls_get_addr_)
226 {
227 // FIXME: This needs to specify the location somehow.
228 gold_error(_("missing expected TLS relocation"));
229 }
230 }
231
232 // Do a relocation. Return false if the caller should not issue
233 // any warnings about this relocation.
234 inline bool
235 relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
236 size_t relnum, const elfcpp::Rela<64, false>&,
237 unsigned int r_type, const Sized_symbol<64>*,
238 const Symbol_value<64>*,
239 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
240 section_size_type);
241
242 private:
243 // Do a TLS relocation.
244 inline void
245 relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
246 size_t relnum, const elfcpp::Rela<64, false>&,
247 unsigned int r_type, const Sized_symbol<64>*,
248 const Symbol_value<64>*,
249 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
250 section_size_type);
251
252 // Do a TLS General-Dynamic to Initial-Exec transition.
253 inline void
254 tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
255 Output_segment* tls_segment,
256 const elfcpp::Rela<64, false>&, unsigned int r_type,
257 elfcpp::Elf_types<64>::Elf_Addr value,
258 unsigned char* view,
259 elfcpp::Elf_types<64>::Elf_Addr,
260 section_size_type view_size);
261
262 // Do a TLS General-Dynamic to Local-Exec transition.
263 inline void
264 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
265 Output_segment* tls_segment,
266 const elfcpp::Rela<64, false>&, unsigned int r_type,
267 elfcpp::Elf_types<64>::Elf_Addr value,
268 unsigned char* view,
269 section_size_type view_size);
270
271 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
272 inline void
273 tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
274 Output_segment* tls_segment,
275 const elfcpp::Rela<64, false>&, unsigned int r_type,
276 elfcpp::Elf_types<64>::Elf_Addr value,
277 unsigned char* view,
278 elfcpp::Elf_types<64>::Elf_Addr,
279 section_size_type view_size);
280
281 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
282 inline void
283 tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
284 Output_segment* tls_segment,
285 const elfcpp::Rela<64, false>&, unsigned int r_type,
286 elfcpp::Elf_types<64>::Elf_Addr value,
287 unsigned char* view,
288 section_size_type view_size);
289
290 // Do a TLS Local-Dynamic to Local-Exec transition.
291 inline void
292 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
293 Output_segment* tls_segment,
294 const elfcpp::Rela<64, false>&, unsigned int r_type,
295 elfcpp::Elf_types<64>::Elf_Addr value,
296 unsigned char* view,
297 section_size_type view_size);
298
299 // Do a TLS Initial-Exec to Local-Exec transition.
300 static inline void
301 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
302 Output_segment* tls_segment,
303 const elfcpp::Rela<64, false>&, unsigned int r_type,
304 elfcpp::Elf_types<64>::Elf_Addr value,
305 unsigned char* view,
306 section_size_type view_size);
307
308 // This is set if we should skip the next reloc, which should be a
309 // PLT32 reloc against ___tls_get_addr.
310 bool skip_call_tls_get_addr_;
311
312 // This is set if we see a relocation which could load the address
313 // of the TLS block. Whether we see such a relocation determines
314 // how we handle the R_X86_64_DTPOFF32 relocation, which is used
315 // in debugging sections.
316 bool saw_tls_block_reloc_;
317 };
318
319 // A class which returns the size required for a relocation type,
320 // used while scanning relocs during a relocatable link.
321 class Relocatable_size_for_reloc
322 {
323 public:
324 unsigned int
325 get_size_for_reloc(unsigned int, Relobj*);
326 };
327
328 // Adjust TLS relocation type based on the options and whether this
329 // is a local symbol.
330 static tls::Tls_optimization
331 optimize_tls_reloc(bool is_final, int r_type);
332
333 // Get the GOT section, creating it if necessary.
334 Output_data_got<64, false>*
335 got_section(Symbol_table*, Layout*);
336
337 // Get the GOT PLT section.
338 Output_data_space*
339 got_plt_section() const
340 {
341 gold_assert(this->got_plt_ != NULL);
342 return this->got_plt_;
343 }
344
345 // Create the PLT section.
346 void
347 make_plt_section(Symbol_table* symtab, Layout* layout);
348
349 // Create a PLT entry for a global symbol.
350 void
351 make_plt_entry(Symbol_table*, Layout*, Symbol*);
352
353 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
354 void
355 define_tls_base_symbol(Symbol_table*, Layout*);
356
357 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
358 void
359 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
360
361 // Create a GOT entry for the TLS module index.
362 unsigned int
363 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
364 Sized_relobj<64, false>* object);
365
366 // Get the PLT section.
367 Output_data_plt_x86_64*
368 plt_section() const
369 {
370 gold_assert(this->plt_ != NULL);
371 return this->plt_;
372 }
373
374 // Get the dynamic reloc section, creating it if necessary.
375 Reloc_section*
376 rela_dyn_section(Layout*);
377
378 // Add a potential copy relocation.
379 void
380 copy_reloc(Symbol_table* symtab, Layout* layout,
381 Sized_relobj<64, false>* object,
382 unsigned int shndx, Output_section* output_section,
383 Symbol* sym, const elfcpp::Rela<64, false>& reloc)
384 {
385 this->copy_relocs_.copy_reloc(symtab, layout,
386 symtab->get_sized_symbol<64>(sym),
387 object, shndx, output_section,
388 reloc, this->rela_dyn_section(layout));
389 }
390
391 // Information about this specific target which we pass to the
392 // general Target structure.
393 static const Target::Target_info x86_64_info;
394
395 enum Got_type
396 {
397 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
398 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
399 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
400 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
401 };
402
403 // The GOT section.
404 Output_data_got<64, false>* got_;
405 // The PLT section.
406 Output_data_plt_x86_64* plt_;
407 // The GOT PLT section.
408 Output_data_space* got_plt_;
409 // The dynamic reloc section.
410 Reloc_section* rela_dyn_;
411 // Relocs saved to avoid a COPY reloc.
412 Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
413 // Space for variables copied with a COPY reloc.
414 Output_data_space* dynbss_;
415 // Offset of the GOT entry for the TLS module index.
416 unsigned int got_mod_index_offset_;
417 // True if the _TLS_MODULE_BASE_ symbol has been defined.
418 bool tls_base_symbol_defined_;
419 };
420
421 const Target::Target_info Target_x86_64::x86_64_info =
422 {
423 64, // size
424 false, // is_big_endian
425 elfcpp::EM_X86_64, // machine_code
426 false, // has_make_symbol
427 false, // has_resolve
428 true, // has_code_fill
429 true, // is_default_stack_executable
430 '\0', // wrap_char
431 "/lib/ld64.so.1", // program interpreter
432 0x400000, // default_text_segment_address
433 0x1000, // abi_pagesize (overridable by -z max-page-size)
434 0x1000, // common_pagesize (overridable by -z common-page-size)
435 elfcpp::SHN_UNDEF, // small_common_shndx
436 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
437 0, // small_common_section_flags
438 elfcpp::SHF_X86_64_LARGE // large_common_section_flags
439 };
440
441 // This is called when a new output section is created. This is where
442 // we handle the SHF_X86_64_LARGE.
443
444 void
445 Target_x86_64::do_new_output_section(Output_section *os) const
446 {
447 if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
448 os->set_is_large_section();
449 }
450
451 // Get the GOT section, creating it if necessary.
452
453 Output_data_got<64, false>*
454 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
455 {
456 if (this->got_ == NULL)
457 {
458 gold_assert(symtab != NULL && layout != NULL);
459
460 this->got_ = new Output_data_got<64, false>();
461
462 Output_section* os;
463 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
464 (elfcpp::SHF_ALLOC
465 | elfcpp::SHF_WRITE),
466 this->got_);
467 os->set_is_relro();
468
469 // The old GNU linker creates a .got.plt section. We just
470 // create another set of data in the .got section. Note that we
471 // always create a PLT if we create a GOT, although the PLT
472 // might be empty.
473 this->got_plt_ = new Output_data_space(8, "** GOT PLT");
474 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
475 (elfcpp::SHF_ALLOC
476 | elfcpp::SHF_WRITE),
477 this->got_plt_);
478 os->set_is_relro();
479
480 // The first three entries are reserved.
481 this->got_plt_->set_current_data_size(3 * 8);
482
483 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
484 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
485 this->got_plt_,
486 0, 0, elfcpp::STT_OBJECT,
487 elfcpp::STB_LOCAL,
488 elfcpp::STV_HIDDEN, 0,
489 false, false);
490 }
491
492 return this->got_;
493 }
494
495 // Get the dynamic reloc section, creating it if necessary.
496
497 Target_x86_64::Reloc_section*
498 Target_x86_64::rela_dyn_section(Layout* layout)
499 {
500 if (this->rela_dyn_ == NULL)
501 {
502 gold_assert(layout != NULL);
503 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
504 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
505 elfcpp::SHF_ALLOC, this->rela_dyn_);
506 }
507 return this->rela_dyn_;
508 }
509
510 // A class to handle the PLT data.
511
512 class Output_data_plt_x86_64 : public Output_section_data
513 {
514 public:
515 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
516
517 Output_data_plt_x86_64(Layout*, Output_data_got<64, false>*,
518 Output_data_space*);
519
520 // Add an entry to the PLT.
521 void
522 add_entry(Symbol* gsym);
523
524 // Add the reserved TLSDESC_PLT entry to the PLT.
525 void
526 reserve_tlsdesc_entry(unsigned int got_offset)
527 { this->tlsdesc_got_offset_ = got_offset; }
528
529 // Return true if a TLSDESC_PLT entry has been reserved.
530 bool
531 has_tlsdesc_entry() const
532 { return this->tlsdesc_got_offset_ != -1U; }
533
534 // Return the GOT offset for the reserved TLSDESC_PLT entry.
535 unsigned int
536 get_tlsdesc_got_offset() const
537 { return this->tlsdesc_got_offset_; }
538
539 // Return the offset of the reserved TLSDESC_PLT entry.
540 unsigned int
541 get_tlsdesc_plt_offset() const
542 { return (this->count_ + 1) * plt_entry_size; }
543
544 // Return the .rel.plt section data.
545 const Reloc_section*
546 rel_plt() const
547 { return this->rel_; }
548
549 protected:
550 void
551 do_adjust_output_section(Output_section* os);
552
553 // Write to a map file.
554 void
555 do_print_to_mapfile(Mapfile* mapfile) const
556 { mapfile->print_output_data(this, _("** PLT")); }
557
558 private:
559 // The size of an entry in the PLT.
560 static const int plt_entry_size = 16;
561
562 // The first entry in the PLT.
563 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
564 // procedure linkage table for both programs and shared objects."
565 static unsigned char first_plt_entry[plt_entry_size];
566
567 // Other entries in the PLT for an executable.
568 static unsigned char plt_entry[plt_entry_size];
569
570 // The reserved TLSDESC entry in the PLT for an executable.
571 static unsigned char tlsdesc_plt_entry[plt_entry_size];
572
573 // Set the final size.
574 void
575 set_final_data_size();
576
577 // Write out the PLT data.
578 void
579 do_write(Output_file*);
580
581 // The reloc section.
582 Reloc_section* rel_;
583 // The .got section.
584 Output_data_got<64, false>* got_;
585 // The .got.plt section.
586 Output_data_space* got_plt_;
587 // The number of PLT entries.
588 unsigned int count_;
589 // Offset of the reserved TLSDESC_GOT entry when needed.
590 unsigned int tlsdesc_got_offset_;
591 };
592
593 // Create the PLT section. The ordinary .got section is an argument,
594 // since we need to refer to the start. We also create our own .got
595 // section just for PLT entries.
596
597 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
598 Output_data_got<64, false>* got,
599 Output_data_space* got_plt)
600 : Output_section_data(8), got_(got), got_plt_(got_plt), count_(0),
601 tlsdesc_got_offset_(-1U)
602 {
603 this->rel_ = new Reloc_section(false);
604 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
605 elfcpp::SHF_ALLOC, this->rel_);
606 }
607
608 void
609 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
610 {
611 os->set_entsize(plt_entry_size);
612 }
613
614 // Add an entry to the PLT.
615
616 void
617 Output_data_plt_x86_64::add_entry(Symbol* gsym)
618 {
619 gold_assert(!gsym->has_plt_offset());
620
621 // Note that when setting the PLT offset we skip the initial
622 // reserved PLT entry.
623 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
624
625 ++this->count_;
626
627 section_offset_type got_offset = this->got_plt_->current_data_size();
628
629 // Every PLT entry needs a GOT entry which points back to the PLT
630 // entry (this will be changed by the dynamic linker, normally
631 // lazily when the function is called).
632 this->got_plt_->set_current_data_size(got_offset + 8);
633
634 // Every PLT entry needs a reloc.
635 gsym->set_needs_dynsym_entry();
636 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
637 got_offset, 0);
638
639 // Note that we don't need to save the symbol. The contents of the
640 // PLT are independent of which symbols are used. The symbols only
641 // appear in the relocations.
642 }
643
644 // Set the final size.
645 void
646 Output_data_plt_x86_64::set_final_data_size()
647 {
648 unsigned int count = this->count_;
649 if (this->has_tlsdesc_entry())
650 ++count;
651 this->set_data_size((count + 1) * plt_entry_size);
652 }
653
654 // The first entry in the PLT for an executable.
655
656 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
657 {
658 // From AMD64 ABI Draft 0.98, page 76
659 0xff, 0x35, // pushq contents of memory address
660 0, 0, 0, 0, // replaced with address of .got + 8
661 0xff, 0x25, // jmp indirect
662 0, 0, 0, 0, // replaced with address of .got + 16
663 0x90, 0x90, 0x90, 0x90 // noop (x4)
664 };
665
666 // Subsequent entries in the PLT for an executable.
667
668 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
669 {
670 // From AMD64 ABI Draft 0.98, page 76
671 0xff, 0x25, // jmpq indirect
672 0, 0, 0, 0, // replaced with address of symbol in .got
673 0x68, // pushq immediate
674 0, 0, 0, 0, // replaced with offset into relocation table
675 0xe9, // jmpq relative
676 0, 0, 0, 0 // replaced with offset to start of .plt
677 };
678
679 // The reserved TLSDESC entry in the PLT for an executable.
680
681 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
682 {
683 // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
684 // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
685 0xff, 0x35, // pushq x(%rip)
686 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
687 0xff, 0x25, // jmpq *y(%rip)
688 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
689 0x0f, 0x1f, // nop
690 0x40, 0
691 };
692
693 // Write out the PLT. This uses the hand-coded instructions above,
694 // and adjusts them as needed. This is specified by the AMD64 ABI.
695
696 void
697 Output_data_plt_x86_64::do_write(Output_file* of)
698 {
699 const off_t offset = this->offset();
700 const section_size_type oview_size =
701 convert_to_section_size_type(this->data_size());
702 unsigned char* const oview = of->get_output_view(offset, oview_size);
703
704 const off_t got_file_offset = this->got_plt_->offset();
705 const section_size_type got_size =
706 convert_to_section_size_type(this->got_plt_->data_size());
707 unsigned char* const got_view = of->get_output_view(got_file_offset,
708 got_size);
709
710 unsigned char* pov = oview;
711
712 // The base address of the .plt section.
713 elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
714 // The base address of the .got section.
715 elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
716 // The base address of the PLT portion of the .got section,
717 // which is where the GOT pointer will point, and where the
718 // three reserved GOT entries are located.
719 elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
720
721 memcpy(pov, first_plt_entry, plt_entry_size);
722 // We do a jmp relative to the PC at the end of this instruction.
723 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
724 (got_address + 8
725 - (plt_address + 6)));
726 elfcpp::Swap<32, false>::writeval(pov + 8,
727 (got_address + 16
728 - (plt_address + 12)));
729 pov += plt_entry_size;
730
731 unsigned char* got_pov = got_view;
732
733 memset(got_pov, 0, 24);
734 got_pov += 24;
735
736 unsigned int plt_offset = plt_entry_size;
737 unsigned int got_offset = 24;
738 const unsigned int count = this->count_;
739 for (unsigned int plt_index = 0;
740 plt_index < count;
741 ++plt_index,
742 pov += plt_entry_size,
743 got_pov += 8,
744 plt_offset += plt_entry_size,
745 got_offset += 8)
746 {
747 // Set and adjust the PLT entry itself.
748 memcpy(pov, plt_entry, plt_entry_size);
749 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
750 (got_address + got_offset
751 - (plt_address + plt_offset
752 + 6)));
753
754 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
755 elfcpp::Swap<32, false>::writeval(pov + 12,
756 - (plt_offset + plt_entry_size));
757
758 // Set the entry in the GOT.
759 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
760 }
761
762 if (this->has_tlsdesc_entry())
763 {
764 // Set and adjust the reserved TLSDESC PLT entry.
765 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
766 memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
767 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
768 (got_address + 8
769 - (plt_address + plt_offset
770 + 6)));
771 elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
772 (got_base
773 + tlsdesc_got_offset
774 - (plt_address + plt_offset
775 + 12)));
776 pov += plt_entry_size;
777 }
778
779 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
780 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
781
782 of->write_output_view(offset, oview_size, oview);
783 of->write_output_view(got_file_offset, got_size, got_view);
784 }
785
786 // Create the PLT section.
787
788 void
789 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
790 {
791 if (this->plt_ == NULL)
792 {
793 // Create the GOT sections first.
794 this->got_section(symtab, layout);
795
796 this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
797 this->got_plt_);
798 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
799 (elfcpp::SHF_ALLOC
800 | elfcpp::SHF_EXECINSTR),
801 this->plt_);
802 }
803 }
804
805 // Create a PLT entry for a global symbol.
806
807 void
808 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
809 Symbol* gsym)
810 {
811 if (gsym->has_plt_offset())
812 return;
813
814 if (this->plt_ == NULL)
815 this->make_plt_section(symtab, layout);
816
817 this->plt_->add_entry(gsym);
818 }
819
820 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
821
822 void
823 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
824 {
825 if (this->tls_base_symbol_defined_)
826 return;
827
828 Output_segment* tls_segment = layout->tls_segment();
829 if (tls_segment != NULL)
830 {
831 bool is_exec = parameters->options().output_is_executable();
832 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
833 tls_segment, 0, 0,
834 elfcpp::STT_TLS,
835 elfcpp::STB_LOCAL,
836 elfcpp::STV_HIDDEN, 0,
837 (is_exec
838 ? Symbol::SEGMENT_END
839 : Symbol::SEGMENT_START),
840 true);
841 }
842 this->tls_base_symbol_defined_ = true;
843 }
844
845 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
846
847 void
848 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
849 Layout* layout)
850 {
851 if (this->plt_ == NULL)
852 this->make_plt_section(symtab, layout);
853
854 if (!this->plt_->has_tlsdesc_entry())
855 {
856 // Allocate the TLSDESC_GOT entry.
857 Output_data_got<64, false>* got = this->got_section(symtab, layout);
858 unsigned int got_offset = got->add_constant(0);
859
860 // Allocate the TLSDESC_PLT entry.
861 this->plt_->reserve_tlsdesc_entry(got_offset);
862 }
863 }
864
865 // Create a GOT entry for the TLS module index.
866
867 unsigned int
868 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
869 Sized_relobj<64, false>* object)
870 {
871 if (this->got_mod_index_offset_ == -1U)
872 {
873 gold_assert(symtab != NULL && layout != NULL && object != NULL);
874 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
875 Output_data_got<64, false>* got = this->got_section(symtab, layout);
876 unsigned int got_offset = got->add_constant(0);
877 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
878 got_offset, 0);
879 got->add_constant(0);
880 this->got_mod_index_offset_ = got_offset;
881 }
882 return this->got_mod_index_offset_;
883 }
884
885 // Optimize the TLS relocation type based on what we know about the
886 // symbol. IS_FINAL is true if the final address of this symbol is
887 // known at link time.
888
889 tls::Tls_optimization
890 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
891 {
892 // If we are generating a shared library, then we can't do anything
893 // in the linker.
894 if (parameters->options().shared())
895 return tls::TLSOPT_NONE;
896
897 switch (r_type)
898 {
899 case elfcpp::R_X86_64_TLSGD:
900 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
901 case elfcpp::R_X86_64_TLSDESC_CALL:
902 // These are General-Dynamic which permits fully general TLS
903 // access. Since we know that we are generating an executable,
904 // we can convert this to Initial-Exec. If we also know that
905 // this is a local symbol, we can further switch to Local-Exec.
906 if (is_final)
907 return tls::TLSOPT_TO_LE;
908 return tls::TLSOPT_TO_IE;
909
910 case elfcpp::R_X86_64_TLSLD:
911 // This is Local-Dynamic, which refers to a local symbol in the
912 // dynamic TLS block. Since we know that we generating an
913 // executable, we can switch to Local-Exec.
914 return tls::TLSOPT_TO_LE;
915
916 case elfcpp::R_X86_64_DTPOFF32:
917 case elfcpp::R_X86_64_DTPOFF64:
918 // Another Local-Dynamic reloc.
919 return tls::TLSOPT_TO_LE;
920
921 case elfcpp::R_X86_64_GOTTPOFF:
922 // These are Initial-Exec relocs which get the thread offset
923 // from the GOT. If we know that we are linking against the
924 // local symbol, we can switch to Local-Exec, which links the
925 // thread offset into the instruction.
926 if (is_final)
927 return tls::TLSOPT_TO_LE;
928 return tls::TLSOPT_NONE;
929
930 case elfcpp::R_X86_64_TPOFF32:
931 // When we already have Local-Exec, there is nothing further we
932 // can do.
933 return tls::TLSOPT_NONE;
934
935 default:
936 gold_unreachable();
937 }
938 }
939
940 // Report an unsupported relocation against a local symbol.
941
942 void
943 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
944 unsigned int r_type)
945 {
946 gold_error(_("%s: unsupported reloc %u against local symbol"),
947 object->name().c_str(), r_type);
948 }
949
950 // We are about to emit a dynamic relocation of type R_TYPE. If the
951 // dynamic linker does not support it, issue an error. The GNU linker
952 // only issues a non-PIC error for an allocated read-only section.
953 // Here we know the section is allocated, but we don't know that it is
954 // read-only. But we check for all the relocation types which the
955 // glibc dynamic linker supports, so it seems appropriate to issue an
956 // error even if the section is not read-only.
957
958 void
959 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
960 {
961 switch (r_type)
962 {
963 // These are the relocation types supported by glibc for x86_64.
964 case elfcpp::R_X86_64_RELATIVE:
965 case elfcpp::R_X86_64_GLOB_DAT:
966 case elfcpp::R_X86_64_JUMP_SLOT:
967 case elfcpp::R_X86_64_DTPMOD64:
968 case elfcpp::R_X86_64_DTPOFF64:
969 case elfcpp::R_X86_64_TPOFF64:
970 case elfcpp::R_X86_64_64:
971 case elfcpp::R_X86_64_32:
972 case elfcpp::R_X86_64_PC32:
973 case elfcpp::R_X86_64_COPY:
974 return;
975
976 default:
977 // This prevents us from issuing more than one error per reloc
978 // section. But we can still wind up issuing more than one
979 // error per object file.
980 if (this->issued_non_pic_error_)
981 return;
982 gold_assert(parameters->options().output_is_position_independent());
983 object->error(_("requires unsupported dynamic reloc; "
984 "recompile with -fPIC"));
985 this->issued_non_pic_error_ = true;
986 return;
987
988 case elfcpp::R_X86_64_NONE:
989 gold_unreachable();
990 }
991 }
992
993 // Scan a relocation for a local symbol.
994
995 inline void
996 Target_x86_64::Scan::local(const General_options&,
997 Symbol_table* symtab,
998 Layout* layout,
999 Target_x86_64* target,
1000 Sized_relobj<64, false>* object,
1001 unsigned int data_shndx,
1002 Output_section* output_section,
1003 const elfcpp::Rela<64, false>& reloc,
1004 unsigned int r_type,
1005 const elfcpp::Sym<64, false>& lsym)
1006 {
1007 switch (r_type)
1008 {
1009 case elfcpp::R_X86_64_NONE:
1010 case elfcpp::R_386_GNU_VTINHERIT:
1011 case elfcpp::R_386_GNU_VTENTRY:
1012 break;
1013
1014 case elfcpp::R_X86_64_64:
1015 // If building a shared library (or a position-independent
1016 // executable), we need to create a dynamic relocation for this
1017 // location. The relocation applied at link time will apply the
1018 // link-time value, so we flag the location with an
1019 // R_X86_64_RELATIVE relocation so the dynamic loader can
1020 // relocate it easily.
1021 if (parameters->options().output_is_position_independent())
1022 {
1023 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1024 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1025 rela_dyn->add_local_relative(object, r_sym,
1026 elfcpp::R_X86_64_RELATIVE,
1027 output_section, data_shndx,
1028 reloc.get_r_offset(),
1029 reloc.get_r_addend());
1030 }
1031 break;
1032
1033 case elfcpp::R_X86_64_32:
1034 case elfcpp::R_X86_64_32S:
1035 case elfcpp::R_X86_64_16:
1036 case elfcpp::R_X86_64_8:
1037 // If building a shared library (or a position-independent
1038 // executable), we need to create a dynamic relocation for this
1039 // location. We can't use an R_X86_64_RELATIVE relocation
1040 // because that is always a 64-bit relocation.
1041 if (parameters->options().output_is_position_independent())
1042 {
1043 this->check_non_pic(object, r_type);
1044
1045 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1046 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1047 if (lsym.get_st_type() != elfcpp::STT_SECTION)
1048 rela_dyn->add_local(object, r_sym, r_type, output_section,
1049 data_shndx, reloc.get_r_offset(),
1050 reloc.get_r_addend());
1051 else
1052 {
1053 gold_assert(lsym.get_st_value() == 0);
1054 unsigned int shndx = lsym.get_st_shndx();
1055 bool is_ordinary;
1056 shndx = object->adjust_sym_shndx(r_sym, shndx,
1057 &is_ordinary);
1058 if (!is_ordinary)
1059 object->error(_("section symbol %u has bad shndx %u"),
1060 r_sym, shndx);
1061 else
1062 rela_dyn->add_local_section(object, shndx,
1063 r_type, output_section,
1064 data_shndx, reloc.get_r_offset(),
1065 reloc.get_r_addend());
1066 }
1067 }
1068 break;
1069
1070 case elfcpp::R_X86_64_PC64:
1071 case elfcpp::R_X86_64_PC32:
1072 case elfcpp::R_X86_64_PC16:
1073 case elfcpp::R_X86_64_PC8:
1074 break;
1075
1076 case elfcpp::R_X86_64_PLT32:
1077 // Since we know this is a local symbol, we can handle this as a
1078 // PC32 reloc.
1079 break;
1080
1081 case elfcpp::R_X86_64_GOTPC32:
1082 case elfcpp::R_X86_64_GOTOFF64:
1083 case elfcpp::R_X86_64_GOTPC64:
1084 case elfcpp::R_X86_64_PLTOFF64:
1085 // We need a GOT section.
1086 target->got_section(symtab, layout);
1087 // For PLTOFF64, we'd normally want a PLT section, but since we
1088 // know this is a local symbol, no PLT is needed.
1089 break;
1090
1091 case elfcpp::R_X86_64_GOT64:
1092 case elfcpp::R_X86_64_GOT32:
1093 case elfcpp::R_X86_64_GOTPCREL64:
1094 case elfcpp::R_X86_64_GOTPCREL:
1095 case elfcpp::R_X86_64_GOTPLT64:
1096 {
1097 // The symbol requires a GOT entry.
1098 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1099 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1100 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
1101 {
1102 // If we are generating a shared object, we need to add a
1103 // dynamic relocation for this symbol's GOT entry.
1104 if (parameters->options().output_is_position_independent())
1105 {
1106 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1107 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1108 if (r_type != elfcpp::R_X86_64_GOT32)
1109 rela_dyn->add_local_relative(
1110 object, r_sym, elfcpp::R_X86_64_RELATIVE, got,
1111 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1112 else
1113 {
1114 this->check_non_pic(object, r_type);
1115
1116 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1117 rela_dyn->add_local(
1118 object, r_sym, r_type, got,
1119 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1120 }
1121 }
1122 }
1123 // For GOTPLT64, we'd normally want a PLT section, but since
1124 // we know this is a local symbol, no PLT is needed.
1125 }
1126 break;
1127
1128 case elfcpp::R_X86_64_COPY:
1129 case elfcpp::R_X86_64_GLOB_DAT:
1130 case elfcpp::R_X86_64_JUMP_SLOT:
1131 case elfcpp::R_X86_64_RELATIVE:
1132 // These are outstanding tls relocs, which are unexpected when linking
1133 case elfcpp::R_X86_64_TPOFF64:
1134 case elfcpp::R_X86_64_DTPMOD64:
1135 case elfcpp::R_X86_64_TLSDESC:
1136 gold_error(_("%s: unexpected reloc %u in object file"),
1137 object->name().c_str(), r_type);
1138 break;
1139
1140 // These are initial tls relocs, which are expected when linking
1141 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1142 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1143 case elfcpp::R_X86_64_TLSDESC_CALL:
1144 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1145 case elfcpp::R_X86_64_DTPOFF32:
1146 case elfcpp::R_X86_64_DTPOFF64:
1147 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1148 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1149 {
1150 bool output_is_shared = parameters->options().shared();
1151 const tls::Tls_optimization optimized_type
1152 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1153 switch (r_type)
1154 {
1155 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1156 if (optimized_type == tls::TLSOPT_NONE)
1157 {
1158 // Create a pair of GOT entries for the module index and
1159 // dtv-relative offset.
1160 Output_data_got<64, false>* got
1161 = target->got_section(symtab, layout);
1162 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1163 unsigned int shndx = lsym.get_st_shndx();
1164 bool is_ordinary;
1165 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1166 if (!is_ordinary)
1167 object->error(_("local symbol %u has bad shndx %u"),
1168 r_sym, shndx);
1169 else
1170 got->add_local_pair_with_rela(object, r_sym,
1171 shndx,
1172 GOT_TYPE_TLS_PAIR,
1173 target->rela_dyn_section(layout),
1174 elfcpp::R_X86_64_DTPMOD64, 0);
1175 }
1176 else if (optimized_type != tls::TLSOPT_TO_LE)
1177 unsupported_reloc_local(object, r_type);
1178 break;
1179
1180 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1181 target->define_tls_base_symbol(symtab, layout);
1182 if (optimized_type == tls::TLSOPT_NONE)
1183 {
1184 // Create reserved PLT and GOT entries for the resolver.
1185 target->reserve_tlsdesc_entries(symtab, layout);
1186
1187 // Generate a double GOT entry with an R_X86_64_TLSDESC reloc.
1188 Output_data_got<64, false>* got
1189 = target->got_section(symtab, layout);
1190 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1191 unsigned int shndx = lsym.get_st_shndx();
1192 bool is_ordinary;
1193 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1194 if (!is_ordinary)
1195 object->error(_("local symbol %u has bad shndx %u"),
1196 r_sym, shndx);
1197 else
1198 got->add_local_pair_with_rela(object, r_sym,
1199 shndx,
1200 GOT_TYPE_TLS_DESC,
1201 target->rela_dyn_section(layout),
1202 elfcpp::R_X86_64_TLSDESC, 0);
1203 }
1204 else if (optimized_type != tls::TLSOPT_TO_LE)
1205 unsupported_reloc_local(object, r_type);
1206 break;
1207
1208 case elfcpp::R_X86_64_TLSDESC_CALL:
1209 break;
1210
1211 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1212 if (optimized_type == tls::TLSOPT_NONE)
1213 {
1214 // Create a GOT entry for the module index.
1215 target->got_mod_index_entry(symtab, layout, object);
1216 }
1217 else if (optimized_type != tls::TLSOPT_TO_LE)
1218 unsupported_reloc_local(object, r_type);
1219 break;
1220
1221 case elfcpp::R_X86_64_DTPOFF32:
1222 case elfcpp::R_X86_64_DTPOFF64:
1223 break;
1224
1225 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1226 layout->set_has_static_tls();
1227 if (optimized_type == tls::TLSOPT_NONE)
1228 {
1229 // Create a GOT entry for the tp-relative offset.
1230 Output_data_got<64, false>* got
1231 = target->got_section(symtab, layout);
1232 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1233 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1234 target->rela_dyn_section(layout),
1235 elfcpp::R_X86_64_TPOFF64);
1236 }
1237 else if (optimized_type != tls::TLSOPT_TO_LE)
1238 unsupported_reloc_local(object, r_type);
1239 break;
1240
1241 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1242 layout->set_has_static_tls();
1243 if (output_is_shared)
1244 unsupported_reloc_local(object, r_type);
1245 break;
1246
1247 default:
1248 gold_unreachable();
1249 }
1250 }
1251 break;
1252
1253 case elfcpp::R_X86_64_SIZE32:
1254 case elfcpp::R_X86_64_SIZE64:
1255 default:
1256 gold_error(_("%s: unsupported reloc %u against local symbol"),
1257 object->name().c_str(), r_type);
1258 break;
1259 }
1260 }
1261
1262
1263 // Report an unsupported relocation against a global symbol.
1264
1265 void
1266 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1267 unsigned int r_type,
1268 Symbol* gsym)
1269 {
1270 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1271 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1272 }
1273
1274 // Scan a relocation for a global symbol.
1275
1276 inline void
1277 Target_x86_64::Scan::global(const General_options&,
1278 Symbol_table* symtab,
1279 Layout* layout,
1280 Target_x86_64* target,
1281 Sized_relobj<64, false>* object,
1282 unsigned int data_shndx,
1283 Output_section* output_section,
1284 const elfcpp::Rela<64, false>& reloc,
1285 unsigned int r_type,
1286 Symbol* gsym)
1287 {
1288 switch (r_type)
1289 {
1290 case elfcpp::R_X86_64_NONE:
1291 case elfcpp::R_386_GNU_VTINHERIT:
1292 case elfcpp::R_386_GNU_VTENTRY:
1293 break;
1294
1295 case elfcpp::R_X86_64_64:
1296 case elfcpp::R_X86_64_32:
1297 case elfcpp::R_X86_64_32S:
1298 case elfcpp::R_X86_64_16:
1299 case elfcpp::R_X86_64_8:
1300 {
1301 // Make a PLT entry if necessary.
1302 if (gsym->needs_plt_entry())
1303 {
1304 target->make_plt_entry(symtab, layout, gsym);
1305 // Since this is not a PC-relative relocation, we may be
1306 // taking the address of a function. In that case we need to
1307 // set the entry in the dynamic symbol table to the address of
1308 // the PLT entry.
1309 if (gsym->is_from_dynobj() && !parameters->options().shared())
1310 gsym->set_needs_dynsym_value();
1311 }
1312 // Make a dynamic relocation if necessary.
1313 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1314 {
1315 if (gsym->may_need_copy_reloc())
1316 {
1317 target->copy_reloc(symtab, layout, object,
1318 data_shndx, output_section, gsym, reloc);
1319 }
1320 else if (r_type == elfcpp::R_X86_64_64
1321 && gsym->can_use_relative_reloc(false))
1322 {
1323 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1324 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1325 output_section, object,
1326 data_shndx, reloc.get_r_offset(),
1327 reloc.get_r_addend());
1328 }
1329 else
1330 {
1331 this->check_non_pic(object, r_type);
1332 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1333 rela_dyn->add_global(gsym, r_type, output_section, object,
1334 data_shndx, reloc.get_r_offset(),
1335 reloc.get_r_addend());
1336 }
1337 }
1338 }
1339 break;
1340
1341 case elfcpp::R_X86_64_PC64:
1342 case elfcpp::R_X86_64_PC32:
1343 case elfcpp::R_X86_64_PC16:
1344 case elfcpp::R_X86_64_PC8:
1345 {
1346 // Make a PLT entry if necessary.
1347 if (gsym->needs_plt_entry())
1348 target->make_plt_entry(symtab, layout, gsym);
1349 // Make a dynamic relocation if necessary.
1350 int flags = Symbol::NON_PIC_REF;
1351 if (gsym->type() == elfcpp::STT_FUNC)
1352 flags |= Symbol::FUNCTION_CALL;
1353 if (gsym->needs_dynamic_reloc(flags))
1354 {
1355 if (gsym->may_need_copy_reloc())
1356 {
1357 target->copy_reloc(symtab, layout, object,
1358 data_shndx, output_section, gsym, reloc);
1359 }
1360 else
1361 {
1362 this->check_non_pic(object, r_type);
1363 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1364 rela_dyn->add_global(gsym, r_type, output_section, object,
1365 data_shndx, reloc.get_r_offset(),
1366 reloc.get_r_addend());
1367 }
1368 }
1369 }
1370 break;
1371
1372 case elfcpp::R_X86_64_GOT64:
1373 case elfcpp::R_X86_64_GOT32:
1374 case elfcpp::R_X86_64_GOTPCREL64:
1375 case elfcpp::R_X86_64_GOTPCREL:
1376 case elfcpp::R_X86_64_GOTPLT64:
1377 {
1378 // The symbol requires a GOT entry.
1379 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1380 if (gsym->final_value_is_known())
1381 got->add_global(gsym, GOT_TYPE_STANDARD);
1382 else
1383 {
1384 // If this symbol is not fully resolved, we need to add a
1385 // dynamic relocation for it.
1386 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1387 if (gsym->is_from_dynobj()
1388 || gsym->is_undefined()
1389 || gsym->is_preemptible())
1390 got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
1391 elfcpp::R_X86_64_GLOB_DAT);
1392 else
1393 {
1394 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1395 rela_dyn->add_global_relative(
1396 gsym, elfcpp::R_X86_64_RELATIVE, got,
1397 gsym->got_offset(GOT_TYPE_STANDARD), 0);
1398 }
1399 }
1400 // For GOTPLT64, we also need a PLT entry (but only if the
1401 // symbol is not fully resolved).
1402 if (r_type == elfcpp::R_X86_64_GOTPLT64
1403 && !gsym->final_value_is_known())
1404 target->make_plt_entry(symtab, layout, gsym);
1405 }
1406 break;
1407
1408 case elfcpp::R_X86_64_PLT32:
1409 // If the symbol is fully resolved, this is just a PC32 reloc.
1410 // Otherwise we need a PLT entry.
1411 if (gsym->final_value_is_known())
1412 break;
1413 // If building a shared library, we can also skip the PLT entry
1414 // if the symbol is defined in the output file and is protected
1415 // or hidden.
1416 if (gsym->is_defined()
1417 && !gsym->is_from_dynobj()
1418 && !gsym->is_preemptible())
1419 break;
1420 target->make_plt_entry(symtab, layout, gsym);
1421 break;
1422
1423 case elfcpp::R_X86_64_GOTPC32:
1424 case elfcpp::R_X86_64_GOTOFF64:
1425 case elfcpp::R_X86_64_GOTPC64:
1426 case elfcpp::R_X86_64_PLTOFF64:
1427 // We need a GOT section.
1428 target->got_section(symtab, layout);
1429 // For PLTOFF64, we also need a PLT entry (but only if the
1430 // symbol is not fully resolved).
1431 if (r_type == elfcpp::R_X86_64_PLTOFF64
1432 && !gsym->final_value_is_known())
1433 target->make_plt_entry(symtab, layout, gsym);
1434 break;
1435
1436 case elfcpp::R_X86_64_COPY:
1437 case elfcpp::R_X86_64_GLOB_DAT:
1438 case elfcpp::R_X86_64_JUMP_SLOT:
1439 case elfcpp::R_X86_64_RELATIVE:
1440 // These are outstanding tls relocs, which are unexpected when linking
1441 case elfcpp::R_X86_64_TPOFF64:
1442 case elfcpp::R_X86_64_DTPMOD64:
1443 case elfcpp::R_X86_64_TLSDESC:
1444 gold_error(_("%s: unexpected reloc %u in object file"),
1445 object->name().c_str(), r_type);
1446 break;
1447
1448 // These are initial tls relocs, which are expected for global()
1449 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1450 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1451 case elfcpp::R_X86_64_TLSDESC_CALL:
1452 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1453 case elfcpp::R_X86_64_DTPOFF32:
1454 case elfcpp::R_X86_64_DTPOFF64:
1455 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1456 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1457 {
1458 const bool is_final = gsym->final_value_is_known();
1459 const tls::Tls_optimization optimized_type
1460 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1461 switch (r_type)
1462 {
1463 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1464 if (optimized_type == tls::TLSOPT_NONE)
1465 {
1466 // Create a pair of GOT entries for the module index and
1467 // dtv-relative offset.
1468 Output_data_got<64, false>* got
1469 = target->got_section(symtab, layout);
1470 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
1471 target->rela_dyn_section(layout),
1472 elfcpp::R_X86_64_DTPMOD64,
1473 elfcpp::R_X86_64_DTPOFF64);
1474 }
1475 else if (optimized_type == tls::TLSOPT_TO_IE)
1476 {
1477 // Create a GOT entry for the tp-relative offset.
1478 Output_data_got<64, false>* got
1479 = target->got_section(symtab, layout);
1480 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1481 target->rela_dyn_section(layout),
1482 elfcpp::R_X86_64_TPOFF64);
1483 }
1484 else if (optimized_type != tls::TLSOPT_TO_LE)
1485 unsupported_reloc_global(object, r_type, gsym);
1486 break;
1487
1488 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1489 target->define_tls_base_symbol(symtab, layout);
1490 if (optimized_type == tls::TLSOPT_NONE)
1491 {
1492 // Create reserved PLT and GOT entries for the resolver.
1493 target->reserve_tlsdesc_entries(symtab, layout);
1494
1495 // Create a double GOT entry with an R_X86_64_TLSDESC reloc.
1496 Output_data_got<64, false>* got
1497 = target->got_section(symtab, layout);
1498 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC,
1499 target->rela_dyn_section(layout),
1500 elfcpp::R_X86_64_TLSDESC, 0);
1501 }
1502 else if (optimized_type == tls::TLSOPT_TO_IE)
1503 {
1504 // Create a GOT entry for the tp-relative offset.
1505 Output_data_got<64, false>* got
1506 = target->got_section(symtab, layout);
1507 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1508 target->rela_dyn_section(layout),
1509 elfcpp::R_X86_64_TPOFF64);
1510 }
1511 else if (optimized_type != tls::TLSOPT_TO_LE)
1512 unsupported_reloc_global(object, r_type, gsym);
1513 break;
1514
1515 case elfcpp::R_X86_64_TLSDESC_CALL:
1516 break;
1517
1518 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1519 if (optimized_type == tls::TLSOPT_NONE)
1520 {
1521 // Create a GOT entry for the module index.
1522 target->got_mod_index_entry(symtab, layout, object);
1523 }
1524 else if (optimized_type != tls::TLSOPT_TO_LE)
1525 unsupported_reloc_global(object, r_type, gsym);
1526 break;
1527
1528 case elfcpp::R_X86_64_DTPOFF32:
1529 case elfcpp::R_X86_64_DTPOFF64:
1530 break;
1531
1532 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1533 layout->set_has_static_tls();
1534 if (optimized_type == tls::TLSOPT_NONE)
1535 {
1536 // Create a GOT entry for the tp-relative offset.
1537 Output_data_got<64, false>* got
1538 = target->got_section(symtab, layout);
1539 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1540 target->rela_dyn_section(layout),
1541 elfcpp::R_X86_64_TPOFF64);
1542 }
1543 else if (optimized_type != tls::TLSOPT_TO_LE)
1544 unsupported_reloc_global(object, r_type, gsym);
1545 break;
1546
1547 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1548 layout->set_has_static_tls();
1549 if (parameters->options().shared())
1550 unsupported_reloc_local(object, r_type);
1551 break;
1552
1553 default:
1554 gold_unreachable();
1555 }
1556 }
1557 break;
1558
1559 case elfcpp::R_X86_64_SIZE32:
1560 case elfcpp::R_X86_64_SIZE64:
1561 default:
1562 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1563 object->name().c_str(), r_type,
1564 gsym->demangled_name().c_str());
1565 break;
1566 }
1567 }
1568
1569 void
1570 Target_x86_64::gc_process_relocs(const General_options& options,
1571 Symbol_table* symtab,
1572 Layout* layout,
1573 Sized_relobj<64, false>* object,
1574 unsigned int data_shndx,
1575 unsigned int sh_type,
1576 const unsigned char* prelocs,
1577 size_t reloc_count,
1578 Output_section* output_section,
1579 bool needs_special_offset_handling,
1580 size_t local_symbol_count,
1581 const unsigned char* plocal_symbols)
1582 {
1583
1584 if (sh_type == elfcpp::SHT_REL)
1585 {
1586 return;
1587 }
1588
1589 gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1590 Target_x86_64::Scan>(
1591 options,
1592 symtab,
1593 layout,
1594 this,
1595 object,
1596 data_shndx,
1597 prelocs,
1598 reloc_count,
1599 output_section,
1600 needs_special_offset_handling,
1601 local_symbol_count,
1602 plocal_symbols);
1603
1604 }
1605 // Scan relocations for a section.
1606
1607 void
1608 Target_x86_64::scan_relocs(const General_options& options,
1609 Symbol_table* symtab,
1610 Layout* layout,
1611 Sized_relobj<64, false>* object,
1612 unsigned int data_shndx,
1613 unsigned int sh_type,
1614 const unsigned char* prelocs,
1615 size_t reloc_count,
1616 Output_section* output_section,
1617 bool needs_special_offset_handling,
1618 size_t local_symbol_count,
1619 const unsigned char* plocal_symbols)
1620 {
1621 if (sh_type == elfcpp::SHT_REL)
1622 {
1623 gold_error(_("%s: unsupported REL reloc section"),
1624 object->name().c_str());
1625 return;
1626 }
1627
1628 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1629 Target_x86_64::Scan>(
1630 options,
1631 symtab,
1632 layout,
1633 this,
1634 object,
1635 data_shndx,
1636 prelocs,
1637 reloc_count,
1638 output_section,
1639 needs_special_offset_handling,
1640 local_symbol_count,
1641 plocal_symbols);
1642 }
1643
1644 // Finalize the sections.
1645
1646 void
1647 Target_x86_64::do_finalize_sections(Layout* layout)
1648 {
1649 // Fill in some more dynamic tags.
1650 Output_data_dynamic* const odyn = layout->dynamic_data();
1651 if (odyn != NULL)
1652 {
1653 if (this->got_plt_ != NULL)
1654 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1655
1656 if (this->plt_ != NULL)
1657 {
1658 const Output_data* od = this->plt_->rel_plt();
1659 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1660 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1661 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1662 if (this->plt_->has_tlsdesc_entry())
1663 {
1664 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
1665 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
1666 this->got_->finalize_data_size();
1667 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
1668 this->plt_, plt_offset);
1669 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
1670 this->got_, got_offset);
1671 }
1672 }
1673
1674 if (this->rela_dyn_ != NULL)
1675 {
1676 const Output_data* od = this->rela_dyn_;
1677 odyn->add_section_address(elfcpp::DT_RELA, od);
1678 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1679 odyn->add_constant(elfcpp::DT_RELAENT,
1680 elfcpp::Elf_sizes<64>::rela_size);
1681 }
1682
1683 if (!parameters->options().shared())
1684 {
1685 // The value of the DT_DEBUG tag is filled in by the dynamic
1686 // linker at run time, and used by the debugger.
1687 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1688 }
1689 }
1690
1691 // Emit any relocs we saved in an attempt to avoid generating COPY
1692 // relocs.
1693 if (this->copy_relocs_.any_saved_relocs())
1694 this->copy_relocs_.emit(this->rela_dyn_section(layout));
1695 }
1696
1697 // Perform a relocation.
1698
1699 inline bool
1700 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1701 Target_x86_64* target,
1702 Output_section*,
1703 size_t relnum,
1704 const elfcpp::Rela<64, false>& rela,
1705 unsigned int r_type,
1706 const Sized_symbol<64>* gsym,
1707 const Symbol_value<64>* psymval,
1708 unsigned char* view,
1709 elfcpp::Elf_types<64>::Elf_Addr address,
1710 section_size_type view_size)
1711 {
1712 if (this->skip_call_tls_get_addr_)
1713 {
1714 if ((r_type != elfcpp::R_X86_64_PLT32
1715 && r_type != elfcpp::R_X86_64_PC32)
1716 || gsym == NULL
1717 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1718 {
1719 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1720 _("missing expected TLS relocation"));
1721 }
1722 else
1723 {
1724 this->skip_call_tls_get_addr_ = false;
1725 return false;
1726 }
1727 }
1728
1729 // Pick the value to use for symbols defined in shared objects.
1730 Symbol_value<64> symval;
1731 if (gsym != NULL
1732 && gsym->use_plt_offset(r_type == elfcpp::R_X86_64_PC64
1733 || r_type == elfcpp::R_X86_64_PC32
1734 || r_type == elfcpp::R_X86_64_PC16
1735 || r_type == elfcpp::R_X86_64_PC8))
1736 {
1737 symval.set_output_value(target->plt_section()->address()
1738 + gsym->plt_offset());
1739 psymval = &symval;
1740 }
1741
1742 const Sized_relobj<64, false>* object = relinfo->object;
1743 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1744
1745 // Get the GOT offset if needed.
1746 // The GOT pointer points to the end of the GOT section.
1747 // We need to subtract the size of the GOT section to get
1748 // the actual offset to use in the relocation.
1749 bool have_got_offset = false;
1750 unsigned int got_offset = 0;
1751 switch (r_type)
1752 {
1753 case elfcpp::R_X86_64_GOT32:
1754 case elfcpp::R_X86_64_GOT64:
1755 case elfcpp::R_X86_64_GOTPLT64:
1756 case elfcpp::R_X86_64_GOTPCREL:
1757 case elfcpp::R_X86_64_GOTPCREL64:
1758 if (gsym != NULL)
1759 {
1760 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1761 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
1762 }
1763 else
1764 {
1765 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1766 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1767 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1768 - target->got_size());
1769 }
1770 have_got_offset = true;
1771 break;
1772
1773 default:
1774 break;
1775 }
1776
1777 switch (r_type)
1778 {
1779 case elfcpp::R_X86_64_NONE:
1780 case elfcpp::R_386_GNU_VTINHERIT:
1781 case elfcpp::R_386_GNU_VTENTRY:
1782 break;
1783
1784 case elfcpp::R_X86_64_64:
1785 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1786 break;
1787
1788 case elfcpp::R_X86_64_PC64:
1789 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1790 address);
1791 break;
1792
1793 case elfcpp::R_X86_64_32:
1794 // FIXME: we need to verify that value + addend fits into 32 bits:
1795 // uint64_t x = value + addend;
1796 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1797 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1798 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1799 break;
1800
1801 case elfcpp::R_X86_64_32S:
1802 // FIXME: we need to verify that value + addend fits into 32 bits:
1803 // int64_t x = value + addend; // note this quantity is signed!
1804 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1805 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1806 break;
1807
1808 case elfcpp::R_X86_64_PC32:
1809 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1810 address);
1811 break;
1812
1813 case elfcpp::R_X86_64_16:
1814 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1815 break;
1816
1817 case elfcpp::R_X86_64_PC16:
1818 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1819 address);
1820 break;
1821
1822 case elfcpp::R_X86_64_8:
1823 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1824 break;
1825
1826 case elfcpp::R_X86_64_PC8:
1827 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1828 address);
1829 break;
1830
1831 case elfcpp::R_X86_64_PLT32:
1832 gold_assert(gsym == NULL
1833 || gsym->has_plt_offset()
1834 || gsym->final_value_is_known()
1835 || (gsym->is_defined()
1836 && !gsym->is_from_dynobj()
1837 && !gsym->is_preemptible()));
1838 // Note: while this code looks the same as for R_X86_64_PC32, it
1839 // behaves differently because psymval was set to point to
1840 // the PLT entry, rather than the symbol, in Scan::global().
1841 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1842 address);
1843 break;
1844
1845 case elfcpp::R_X86_64_PLTOFF64:
1846 {
1847 gold_assert(gsym);
1848 gold_assert(gsym->has_plt_offset()
1849 || gsym->final_value_is_known());
1850 elfcpp::Elf_types<64>::Elf_Addr got_address;
1851 got_address = target->got_section(NULL, NULL)->address();
1852 Relocate_functions<64, false>::rela64(view, object, psymval,
1853 addend - got_address);
1854 }
1855
1856 case elfcpp::R_X86_64_GOT32:
1857 gold_assert(have_got_offset);
1858 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1859 break;
1860
1861 case elfcpp::R_X86_64_GOTPC32:
1862 {
1863 gold_assert(gsym);
1864 elfcpp::Elf_types<64>::Elf_Addr value;
1865 value = target->got_plt_section()->address();
1866 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1867 }
1868 break;
1869
1870 case elfcpp::R_X86_64_GOT64:
1871 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1872 // Since we always add a PLT entry, this is equivalent.
1873 case elfcpp::R_X86_64_GOTPLT64:
1874 gold_assert(have_got_offset);
1875 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1876 break;
1877
1878 case elfcpp::R_X86_64_GOTPC64:
1879 {
1880 gold_assert(gsym);
1881 elfcpp::Elf_types<64>::Elf_Addr value;
1882 value = target->got_plt_section()->address();
1883 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1884 }
1885 break;
1886
1887 case elfcpp::R_X86_64_GOTOFF64:
1888 {
1889 elfcpp::Elf_types<64>::Elf_Addr value;
1890 value = (psymval->value(object, 0)
1891 - target->got_plt_section()->address());
1892 Relocate_functions<64, false>::rela64(view, value, addend);
1893 }
1894 break;
1895
1896 case elfcpp::R_X86_64_GOTPCREL:
1897 {
1898 gold_assert(have_got_offset);
1899 elfcpp::Elf_types<64>::Elf_Addr value;
1900 value = target->got_plt_section()->address() + got_offset;
1901 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1902 }
1903 break;
1904
1905 case elfcpp::R_X86_64_GOTPCREL64:
1906 {
1907 gold_assert(have_got_offset);
1908 elfcpp::Elf_types<64>::Elf_Addr value;
1909 value = target->got_plt_section()->address() + got_offset;
1910 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1911 }
1912 break;
1913
1914 case elfcpp::R_X86_64_COPY:
1915 case elfcpp::R_X86_64_GLOB_DAT:
1916 case elfcpp::R_X86_64_JUMP_SLOT:
1917 case elfcpp::R_X86_64_RELATIVE:
1918 // These are outstanding tls relocs, which are unexpected when linking
1919 case elfcpp::R_X86_64_TPOFF64:
1920 case elfcpp::R_X86_64_DTPMOD64:
1921 case elfcpp::R_X86_64_TLSDESC:
1922 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1923 _("unexpected reloc %u in object file"),
1924 r_type);
1925 break;
1926
1927 // These are initial tls relocs, which are expected when linking
1928 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1929 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1930 case elfcpp::R_X86_64_TLSDESC_CALL:
1931 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1932 case elfcpp::R_X86_64_DTPOFF32:
1933 case elfcpp::R_X86_64_DTPOFF64:
1934 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1935 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1936 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1937 view, address, view_size);
1938 break;
1939
1940 case elfcpp::R_X86_64_SIZE32:
1941 case elfcpp::R_X86_64_SIZE64:
1942 default:
1943 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1944 _("unsupported reloc %u"),
1945 r_type);
1946 break;
1947 }
1948
1949 return true;
1950 }
1951
1952 // Perform a TLS relocation.
1953
1954 inline void
1955 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1956 Target_x86_64* target,
1957 size_t relnum,
1958 const elfcpp::Rela<64, false>& rela,
1959 unsigned int r_type,
1960 const Sized_symbol<64>* gsym,
1961 const Symbol_value<64>* psymval,
1962 unsigned char* view,
1963 elfcpp::Elf_types<64>::Elf_Addr address,
1964 section_size_type view_size)
1965 {
1966 Output_segment* tls_segment = relinfo->layout->tls_segment();
1967
1968 const Sized_relobj<64, false>* object = relinfo->object;
1969 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1970
1971 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1972
1973 const bool is_final = (gsym == NULL
1974 ? !parameters->options().output_is_position_independent()
1975 : gsym->final_value_is_known());
1976 const tls::Tls_optimization optimized_type
1977 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1978 switch (r_type)
1979 {
1980 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1981 this->saw_tls_block_reloc_ = true;
1982 if (optimized_type == tls::TLSOPT_TO_LE)
1983 {
1984 gold_assert(tls_segment != NULL);
1985 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1986 rela, r_type, value, view,
1987 view_size);
1988 break;
1989 }
1990 else
1991 {
1992 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1993 ? GOT_TYPE_TLS_OFFSET
1994 : GOT_TYPE_TLS_PAIR);
1995 unsigned int got_offset;
1996 if (gsym != NULL)
1997 {
1998 gold_assert(gsym->has_got_offset(got_type));
1999 got_offset = gsym->got_offset(got_type) - target->got_size();
2000 }
2001 else
2002 {
2003 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2004 gold_assert(object->local_has_got_offset(r_sym, got_type));
2005 got_offset = (object->local_got_offset(r_sym, got_type)
2006 - target->got_size());
2007 }
2008 if (optimized_type == tls::TLSOPT_TO_IE)
2009 {
2010 gold_assert(tls_segment != NULL);
2011 value = target->got_plt_section()->address() + got_offset;
2012 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2013 value, view, address, view_size);
2014 break;
2015 }
2016 else if (optimized_type == tls::TLSOPT_NONE)
2017 {
2018 // Relocate the field with the offset of the pair of GOT
2019 // entries.
2020 value = target->got_plt_section()->address() + got_offset;
2021 Relocate_functions<64, false>::pcrela32(view, value, addend,
2022 address);
2023 break;
2024 }
2025 }
2026 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2027 _("unsupported reloc %u"), r_type);
2028 break;
2029
2030 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2031 case elfcpp::R_X86_64_TLSDESC_CALL:
2032 this->saw_tls_block_reloc_ = true;
2033 if (optimized_type == tls::TLSOPT_TO_LE)
2034 {
2035 gold_assert(tls_segment != NULL);
2036 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2037 rela, r_type, value, view,
2038 view_size);
2039 break;
2040 }
2041 else
2042 {
2043 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2044 ? GOT_TYPE_TLS_OFFSET
2045 : GOT_TYPE_TLS_DESC);
2046 unsigned int got_offset;
2047 if (gsym != NULL)
2048 {
2049 gold_assert(gsym->has_got_offset(got_type));
2050 got_offset = gsym->got_offset(got_type) - target->got_size();
2051 }
2052 else
2053 {
2054 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2055 gold_assert(object->local_has_got_offset(r_sym, got_type));
2056 got_offset = (object->local_got_offset(r_sym, got_type)
2057 - target->got_size());
2058 }
2059 if (optimized_type == tls::TLSOPT_TO_IE)
2060 {
2061 gold_assert(tls_segment != NULL);
2062 value = target->got_plt_section()->address() + got_offset;
2063 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2064 rela, r_type, value, view, address,
2065 view_size);
2066 break;
2067 }
2068 else if (optimized_type == tls::TLSOPT_NONE)
2069 {
2070 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2071 {
2072 // Relocate the field with the offset of the pair of GOT
2073 // entries.
2074 value = target->got_plt_section()->address() + got_offset;
2075 Relocate_functions<64, false>::pcrela32(view, value, addend,
2076 address);
2077 }
2078 break;
2079 }
2080 }
2081 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2082 _("unsupported reloc %u"), r_type);
2083 break;
2084
2085 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2086 this->saw_tls_block_reloc_ = true;
2087 if (optimized_type == tls::TLSOPT_TO_LE)
2088 {
2089 gold_assert(tls_segment != NULL);
2090 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2091 value, view, view_size);
2092 break;
2093 }
2094 else if (optimized_type == tls::TLSOPT_NONE)
2095 {
2096 // Relocate the field with the offset of the GOT entry for
2097 // the module index.
2098 unsigned int got_offset;
2099 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2100 - target->got_size());
2101 value = target->got_plt_section()->address() + got_offset;
2102 Relocate_functions<64, false>::pcrela32(view, value, addend,
2103 address);
2104 break;
2105 }
2106 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2107 _("unsupported reloc %u"), r_type);
2108 break;
2109
2110 case elfcpp::R_X86_64_DTPOFF32:
2111 if (optimized_type == tls::TLSOPT_TO_LE)
2112 {
2113 // This relocation type is used in debugging information.
2114 // In that case we need to not optimize the value. If we
2115 // haven't seen a TLSLD reloc, then we assume we should not
2116 // optimize this reloc.
2117 if (this->saw_tls_block_reloc_)
2118 {
2119 gold_assert(tls_segment != NULL);
2120 value -= tls_segment->memsz();
2121 }
2122 }
2123 Relocate_functions<64, false>::rela32(view, value, addend);
2124 break;
2125
2126 case elfcpp::R_X86_64_DTPOFF64:
2127 if (optimized_type == tls::TLSOPT_TO_LE)
2128 {
2129 // See R_X86_64_DTPOFF32, just above, for why we test this.
2130 if (this->saw_tls_block_reloc_)
2131 {
2132 gold_assert(tls_segment != NULL);
2133 value -= tls_segment->memsz();
2134 }
2135 }
2136 Relocate_functions<64, false>::rela64(view, value, addend);
2137 break;
2138
2139 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2140 if (optimized_type == tls::TLSOPT_TO_LE)
2141 {
2142 gold_assert(tls_segment != NULL);
2143 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2144 rela, r_type, value, view,
2145 view_size);
2146 break;
2147 }
2148 else if (optimized_type == tls::TLSOPT_NONE)
2149 {
2150 // Relocate the field with the offset of the GOT entry for
2151 // the tp-relative offset of the symbol.
2152 unsigned int got_offset;
2153 if (gsym != NULL)
2154 {
2155 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
2156 got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
2157 - target->got_size());
2158 }
2159 else
2160 {
2161 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2162 gold_assert(object->local_has_got_offset(r_sym,
2163 GOT_TYPE_TLS_OFFSET));
2164 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
2165 - target->got_size());
2166 }
2167 value = target->got_plt_section()->address() + got_offset;
2168 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2169 break;
2170 }
2171 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2172 _("unsupported reloc type %u"),
2173 r_type);
2174 break;
2175
2176 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2177 value -= tls_segment->memsz();
2178 Relocate_functions<64, false>::rela32(view, value, addend);
2179 break;
2180 }
2181 }
2182
2183 // Do a relocation in which we convert a TLS General-Dynamic to an
2184 // Initial-Exec.
2185
2186 inline void
2187 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
2188 size_t relnum,
2189 Output_segment*,
2190 const elfcpp::Rela<64, false>& rela,
2191 unsigned int,
2192 elfcpp::Elf_types<64>::Elf_Addr value,
2193 unsigned char* view,
2194 elfcpp::Elf_types<64>::Elf_Addr address,
2195 section_size_type view_size)
2196 {
2197 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2198 // .word 0x6666; rex64; call __tls_get_addr
2199 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
2200
2201 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2202 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2203
2204 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2205 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2206 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2207 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2208
2209 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
2210
2211 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2212 Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
2213
2214 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2215 // We can skip it.
2216 this->skip_call_tls_get_addr_ = true;
2217 }
2218
2219 // Do a relocation in which we convert a TLS General-Dynamic to a
2220 // Local-Exec.
2221
2222 inline void
2223 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
2224 size_t relnum,
2225 Output_segment* tls_segment,
2226 const elfcpp::Rela<64, false>& rela,
2227 unsigned int,
2228 elfcpp::Elf_types<64>::Elf_Addr value,
2229 unsigned char* view,
2230 section_size_type view_size)
2231 {
2232 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2233 // .word 0x6666; rex64; call __tls_get_addr
2234 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2235
2236 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2237 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2238
2239 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2240 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2241 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2242 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2243
2244 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2245
2246 value -= tls_segment->memsz();
2247 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2248
2249 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2250 // We can skip it.
2251 this->skip_call_tls_get_addr_ = true;
2252 }
2253
2254 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
2255
2256 inline void
2257 Target_x86_64::Relocate::tls_desc_gd_to_ie(
2258 const Relocate_info<64, false>* relinfo,
2259 size_t relnum,
2260 Output_segment*,
2261 const elfcpp::Rela<64, false>& rela,
2262 unsigned int r_type,
2263 elfcpp::Elf_types<64>::Elf_Addr value,
2264 unsigned char* view,
2265 elfcpp::Elf_types<64>::Elf_Addr address,
2266 section_size_type view_size)
2267 {
2268 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2269 {
2270 // leaq foo@tlsdesc(%rip), %rax
2271 // ==> movq foo@gottpoff(%rip), %rax
2272 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2273 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2274 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2275 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2276 view[-2] = 0x8b;
2277 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2278 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2279 }
2280 else
2281 {
2282 // call *foo@tlscall(%rax)
2283 // ==> nop; nop
2284 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2285 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2286 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2287 view[0] == 0xff && view[1] == 0x10);
2288 view[0] = 0x66;
2289 view[1] = 0x90;
2290 }
2291 }
2292
2293 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
2294
2295 inline void
2296 Target_x86_64::Relocate::tls_desc_gd_to_le(
2297 const Relocate_info<64, false>* relinfo,
2298 size_t relnum,
2299 Output_segment* tls_segment,
2300 const elfcpp::Rela<64, false>& rela,
2301 unsigned int r_type,
2302 elfcpp::Elf_types<64>::Elf_Addr value,
2303 unsigned char* view,
2304 section_size_type view_size)
2305 {
2306 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2307 {
2308 // leaq foo@tlsdesc(%rip), %rax
2309 // ==> movq foo@tpoff, %rax
2310 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2311 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2312 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2313 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2314 view[-2] = 0xc7;
2315 view[-1] = 0xc0;
2316 value -= tls_segment->memsz();
2317 Relocate_functions<64, false>::rela32(view, value, 0);
2318 }
2319 else
2320 {
2321 // call *foo@tlscall(%rax)
2322 // ==> nop; nop
2323 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2324 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2325 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2326 view[0] == 0xff && view[1] == 0x10);
2327 view[0] = 0x66;
2328 view[1] = 0x90;
2329 }
2330 }
2331
2332 inline void
2333 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
2334 size_t relnum,
2335 Output_segment*,
2336 const elfcpp::Rela<64, false>& rela,
2337 unsigned int,
2338 elfcpp::Elf_types<64>::Elf_Addr,
2339 unsigned char* view,
2340 section_size_type view_size)
2341 {
2342 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
2343 // ... leq foo@dtpoff(%rax),%reg
2344 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2345
2346 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2347 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2348
2349 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2350 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
2351
2352 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
2353
2354 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
2355
2356 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2357 // We can skip it.
2358 this->skip_call_tls_get_addr_ = true;
2359 }
2360
2361 // Do a relocation in which we convert a TLS Initial-Exec to a
2362 // Local-Exec.
2363
2364 inline void
2365 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
2366 size_t relnum,
2367 Output_segment* tls_segment,
2368 const elfcpp::Rela<64, false>& rela,
2369 unsigned int,
2370 elfcpp::Elf_types<64>::Elf_Addr value,
2371 unsigned char* view,
2372 section_size_type view_size)
2373 {
2374 // We need to examine the opcodes to figure out which instruction we
2375 // are looking at.
2376
2377 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
2378 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
2379
2380 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2381 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2382
2383 unsigned char op1 = view[-3];
2384 unsigned char op2 = view[-2];
2385 unsigned char op3 = view[-1];
2386 unsigned char reg = op3 >> 3;
2387
2388 if (op2 == 0x8b)
2389 {
2390 // movq
2391 if (op1 == 0x4c)
2392 view[-3] = 0x49;
2393 view[-2] = 0xc7;
2394 view[-1] = 0xc0 | reg;
2395 }
2396 else if (reg == 4)
2397 {
2398 // Special handling for %rsp.
2399 if (op1 == 0x4c)
2400 view[-3] = 0x49;
2401 view[-2] = 0x81;
2402 view[-1] = 0xc0 | reg;
2403 }
2404 else
2405 {
2406 // addq
2407 if (op1 == 0x4c)
2408 view[-3] = 0x4d;
2409 view[-2] = 0x8d;
2410 view[-1] = 0x80 | reg | (reg << 3);
2411 }
2412
2413 value -= tls_segment->memsz();
2414 Relocate_functions<64, false>::rela32(view, value, 0);
2415 }
2416
2417 // Relocate section data.
2418
2419 void
2420 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
2421 unsigned int sh_type,
2422 const unsigned char* prelocs,
2423 size_t reloc_count,
2424 Output_section* output_section,
2425 bool needs_special_offset_handling,
2426 unsigned char* view,
2427 elfcpp::Elf_types<64>::Elf_Addr address,
2428 section_size_type view_size)
2429 {
2430 gold_assert(sh_type == elfcpp::SHT_RELA);
2431
2432 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
2433 Target_x86_64::Relocate>(
2434 relinfo,
2435 this,
2436 prelocs,
2437 reloc_count,
2438 output_section,
2439 needs_special_offset_handling,
2440 view,
2441 address,
2442 view_size);
2443 }
2444
2445 // Return the size of a relocation while scanning during a relocatable
2446 // link.
2447
2448 unsigned int
2449 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2450 unsigned int r_type,
2451 Relobj* object)
2452 {
2453 switch (r_type)
2454 {
2455 case elfcpp::R_X86_64_NONE:
2456 case elfcpp::R_386_GNU_VTINHERIT:
2457 case elfcpp::R_386_GNU_VTENTRY:
2458 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2459 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2460 case elfcpp::R_X86_64_TLSDESC_CALL:
2461 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2462 case elfcpp::R_X86_64_DTPOFF32:
2463 case elfcpp::R_X86_64_DTPOFF64:
2464 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2465 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2466 return 0;
2467
2468 case elfcpp::R_X86_64_64:
2469 case elfcpp::R_X86_64_PC64:
2470 case elfcpp::R_X86_64_GOTOFF64:
2471 case elfcpp::R_X86_64_GOTPC64:
2472 case elfcpp::R_X86_64_PLTOFF64:
2473 case elfcpp::R_X86_64_GOT64:
2474 case elfcpp::R_X86_64_GOTPCREL64:
2475 case elfcpp::R_X86_64_GOTPCREL:
2476 case elfcpp::R_X86_64_GOTPLT64:
2477 return 8;
2478
2479 case elfcpp::R_X86_64_32:
2480 case elfcpp::R_X86_64_32S:
2481 case elfcpp::R_X86_64_PC32:
2482 case elfcpp::R_X86_64_PLT32:
2483 case elfcpp::R_X86_64_GOTPC32:
2484 case elfcpp::R_X86_64_GOT32:
2485 return 4;
2486
2487 case elfcpp::R_X86_64_16:
2488 case elfcpp::R_X86_64_PC16:
2489 return 2;
2490
2491 case elfcpp::R_X86_64_8:
2492 case elfcpp::R_X86_64_PC8:
2493 return 1;
2494
2495 case elfcpp::R_X86_64_COPY:
2496 case elfcpp::R_X86_64_GLOB_DAT:
2497 case elfcpp::R_X86_64_JUMP_SLOT:
2498 case elfcpp::R_X86_64_RELATIVE:
2499 // These are outstanding tls relocs, which are unexpected when linking
2500 case elfcpp::R_X86_64_TPOFF64:
2501 case elfcpp::R_X86_64_DTPMOD64:
2502 case elfcpp::R_X86_64_TLSDESC:
2503 object->error(_("unexpected reloc %u in object file"), r_type);
2504 return 0;
2505
2506 case elfcpp::R_X86_64_SIZE32:
2507 case elfcpp::R_X86_64_SIZE64:
2508 default:
2509 object->error(_("unsupported reloc %u against local symbol"), r_type);
2510 return 0;
2511 }
2512 }
2513
2514 // Scan the relocs during a relocatable link.
2515
2516 void
2517 Target_x86_64::scan_relocatable_relocs(const General_options& options,
2518 Symbol_table* symtab,
2519 Layout* layout,
2520 Sized_relobj<64, false>* object,
2521 unsigned int data_shndx,
2522 unsigned int sh_type,
2523 const unsigned char* prelocs,
2524 size_t reloc_count,
2525 Output_section* output_section,
2526 bool needs_special_offset_handling,
2527 size_t local_symbol_count,
2528 const unsigned char* plocal_symbols,
2529 Relocatable_relocs* rr)
2530 {
2531 gold_assert(sh_type == elfcpp::SHT_RELA);
2532
2533 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2534 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2535
2536 gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
2537 Scan_relocatable_relocs>(
2538 options,
2539 symtab,
2540 layout,
2541 object,
2542 data_shndx,
2543 prelocs,
2544 reloc_count,
2545 output_section,
2546 needs_special_offset_handling,
2547 local_symbol_count,
2548 plocal_symbols,
2549 rr);
2550 }
2551
2552 // Relocate a section during a relocatable link.
2553
2554 void
2555 Target_x86_64::relocate_for_relocatable(
2556 const Relocate_info<64, false>* relinfo,
2557 unsigned int sh_type,
2558 const unsigned char* prelocs,
2559 size_t reloc_count,
2560 Output_section* output_section,
2561 off_t offset_in_output_section,
2562 const Relocatable_relocs* rr,
2563 unsigned char* view,
2564 elfcpp::Elf_types<64>::Elf_Addr view_address,
2565 section_size_type view_size,
2566 unsigned char* reloc_view,
2567 section_size_type reloc_view_size)
2568 {
2569 gold_assert(sh_type == elfcpp::SHT_RELA);
2570
2571 gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
2572 relinfo,
2573 prelocs,
2574 reloc_count,
2575 output_section,
2576 offset_in_output_section,
2577 rr,
2578 view,
2579 view_address,
2580 view_size,
2581 reloc_view,
2582 reloc_view_size);
2583 }
2584
2585 // Return the value to use for a dynamic which requires special
2586 // treatment. This is how we support equality comparisons of function
2587 // pointers across shared library boundaries, as described in the
2588 // processor specific ABI supplement.
2589
2590 uint64_t
2591 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2592 {
2593 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2594 return this->plt_section()->address() + gsym->plt_offset();
2595 }
2596
2597 // Return a string used to fill a code section with nops to take up
2598 // the specified length.
2599
2600 std::string
2601 Target_x86_64::do_code_fill(section_size_type length) const
2602 {
2603 if (length >= 16)
2604 {
2605 // Build a jmpq instruction to skip over the bytes.
2606 unsigned char jmp[5];
2607 jmp[0] = 0xe9;
2608 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2609 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2610 + std::string(length - 5, '\0'));
2611 }
2612
2613 // Nop sequences of various lengths.
2614 const char nop1[1] = { 0x90 }; // nop
2615 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2616 const char nop3[3] = { 0x0f, 0x1f, 0x00 }; // nop (%rax)
2617 const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00}; // nop 0(%rax)
2618 const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00, // nop 0(%rax,%rax,1)
2619 0x00 };
2620 const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44, // nopw 0(%rax,%rax,1)
2621 0x00, 0x00 };
2622 const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00, // nopl 0L(%rax)
2623 0x00, 0x00, 0x00 };
2624 const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00, // nopl 0L(%rax,%rax,1)
2625 0x00, 0x00, 0x00, 0x00 };
2626 const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84, // nopw 0L(%rax,%rax,1)
2627 0x00, 0x00, 0x00, 0x00,
2628 0x00 };
2629 const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
2630 0x84, 0x00, 0x00, 0x00,
2631 0x00, 0x00 };
2632 const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
2633 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2634 0x00, 0x00, 0x00 };
2635 const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
2636 0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
2637 0x00, 0x00, 0x00, 0x00 };
2638 const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2639 0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
2640 0x00, 0x00, 0x00, 0x00,
2641 0x00 };
2642 const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2643 0x66, 0x2e, 0x0f, 0x1f, // data16
2644 0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2645 0x00, 0x00 };
2646 const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2647 0x66, 0x66, 0x2e, 0x0f, // data16; data16
2648 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2649 0x00, 0x00, 0x00 };
2650
2651 const char* nops[16] = {
2652 NULL,
2653 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2654 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2655 };
2656
2657 return std::string(nops[length], length);
2658 }
2659
2660 // The selector for x86_64 object files.
2661
2662 class Target_selector_x86_64 : public Target_selector_freebsd
2663 {
2664 public:
2665 Target_selector_x86_64()
2666 : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
2667 "elf64-x86-64-freebsd")
2668 { }
2669
2670 Target*
2671 do_instantiate_target()
2672 { return new Target_x86_64(); }
2673
2674 };
2675
2676 Target_selector_x86_64 target_selector_x86_64;
2677
2678 } // End anonymous namespace.
This page took 0.087379 seconds and 4 git commands to generate.