* options.cc: Include "demangle.h".
[deliverable/binutils-gdb.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
12
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file. (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
21
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 // Library General Public License for more details.
26
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
31
32 #include "gold.h"
33
34 #include <cstring>
35
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
48
49 namespace
50 {
51
52 using namespace gold;
53
54 class Output_data_plt_x86_64;
55
56 // The x86_64 target class.
57 // See the ABI at
58 // http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 // http://people.redhat.com/drepper/tls.pdf
61 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
62
63 class Target_x86_64 : public Sized_target<64, false>
64 {
65 public:
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73 copy_relocs_(NULL), dynbss_(NULL), got_mod_index_offset_(-1U)
74 { }
75
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
86 Output_section* output_section,
87 bool needs_special_offset_handling,
88 size_t local_symbol_count,
89 const unsigned char* plocal_symbols);
90
91 // Finalize the sections.
92 void
93 do_finalize_sections(Layout*);
94
95 // Return the value to use for a dynamic which requires special
96 // treatment.
97 uint64_t
98 do_dynsym_value(const Symbol*) const;
99
100 // Relocate a section.
101 void
102 relocate_section(const Relocate_info<64, false>*,
103 unsigned int sh_type,
104 const unsigned char* prelocs,
105 size_t reloc_count,
106 Output_section* output_section,
107 bool needs_special_offset_handling,
108 unsigned char* view,
109 elfcpp::Elf_types<64>::Elf_Addr view_address,
110 section_size_type view_size);
111
112 // Scan the relocs during a relocatable link.
113 void
114 scan_relocatable_relocs(const General_options& options,
115 Symbol_table* symtab,
116 Layout* layout,
117 Sized_relobj<64, false>* object,
118 unsigned int data_shndx,
119 unsigned int sh_type,
120 const unsigned char* prelocs,
121 size_t reloc_count,
122 Output_section* output_section,
123 bool needs_special_offset_handling,
124 size_t local_symbol_count,
125 const unsigned char* plocal_symbols,
126 Relocatable_relocs*);
127
128 // Relocate a section during a relocatable link.
129 void
130 relocate_for_relocatable(const Relocate_info<64, false>*,
131 unsigned int sh_type,
132 const unsigned char* prelocs,
133 size_t reloc_count,
134 Output_section* output_section,
135 off_t offset_in_output_section,
136 const Relocatable_relocs*,
137 unsigned char* view,
138 elfcpp::Elf_types<64>::Elf_Addr view_address,
139 section_size_type view_size,
140 unsigned char* reloc_view,
141 section_size_type reloc_view_size);
142
143 // Return a string used to fill a code section with nops.
144 std::string
145 do_code_fill(section_size_type length) const;
146
147 // Return whether SYM is defined by the ABI.
148 bool
149 do_is_defined_by_abi(Symbol* sym) const
150 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
151
152 // Return the size of the GOT section.
153 section_size_type
154 got_size()
155 {
156 gold_assert(this->got_ != NULL);
157 return this->got_->data_size();
158 }
159
160 private:
161 // The class which scans relocations.
162 struct Scan
163 {
164 inline void
165 local(const General_options& options, Symbol_table* symtab,
166 Layout* layout, Target_x86_64* target,
167 Sized_relobj<64, false>* object,
168 unsigned int data_shndx,
169 Output_section* output_section,
170 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
171 const elfcpp::Sym<64, false>& lsym);
172
173 inline void
174 global(const General_options& options, Symbol_table* symtab,
175 Layout* layout, Target_x86_64* target,
176 Sized_relobj<64, false>* object,
177 unsigned int data_shndx,
178 Output_section* output_section,
179 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
180 Symbol* gsym);
181
182 static void
183 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
184
185 static void
186 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
187 Symbol*);
188 };
189
190 // The class which implements relocation.
191 class Relocate
192 {
193 public:
194 Relocate()
195 : skip_call_tls_get_addr_(false)
196 { }
197
198 ~Relocate()
199 {
200 if (this->skip_call_tls_get_addr_)
201 {
202 // FIXME: This needs to specify the location somehow.
203 gold_error(_("missing expected TLS relocation"));
204 }
205 }
206
207 // Do a relocation. Return false if the caller should not issue
208 // any warnings about this relocation.
209 inline bool
210 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
211 const elfcpp::Rela<64, false>&,
212 unsigned int r_type, const Sized_symbol<64>*,
213 const Symbol_value<64>*,
214 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
215 section_size_type);
216
217 private:
218 // Do a TLS relocation.
219 inline void
220 relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
221 size_t relnum, const elfcpp::Rela<64, false>&,
222 unsigned int r_type, const Sized_symbol<64>*,
223 const Symbol_value<64>*,
224 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
225 section_size_type);
226
227 // Do a TLS General-Dynamic to Local-Exec transition.
228 inline void
229 tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
230 Output_segment* tls_segment,
231 const elfcpp::Rela<64, false>&, unsigned int r_type,
232 elfcpp::Elf_types<64>::Elf_Addr value,
233 unsigned char* view,
234 section_size_type view_size);
235
236 // Do a TLS General-Dynamic to Local-Exec transition.
237 inline void
238 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
239 Output_segment* tls_segment,
240 const elfcpp::Rela<64, false>&, unsigned int r_type,
241 elfcpp::Elf_types<64>::Elf_Addr value,
242 unsigned char* view,
243 section_size_type view_size);
244
245 // Do a TLS Local-Dynamic to Local-Exec transition.
246 inline void
247 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
248 Output_segment* tls_segment,
249 const elfcpp::Rela<64, false>&, unsigned int r_type,
250 elfcpp::Elf_types<64>::Elf_Addr value,
251 unsigned char* view,
252 section_size_type view_size);
253
254 // Do a TLS Initial-Exec to Local-Exec transition.
255 static inline void
256 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
257 Output_segment* tls_segment,
258 const elfcpp::Rela<64, false>&, unsigned int r_type,
259 elfcpp::Elf_types<64>::Elf_Addr value,
260 unsigned char* view,
261 section_size_type view_size);
262
263 // This is set if we should skip the next reloc, which should be a
264 // PLT32 reloc against ___tls_get_addr.
265 bool skip_call_tls_get_addr_;
266 };
267
268 // A class which returns the size required for a relocation type,
269 // used while scanning relocs during a relocatable link.
270 class Relocatable_size_for_reloc
271 {
272 public:
273 unsigned int
274 get_size_for_reloc(unsigned int, Relobj*);
275 };
276
277 // Adjust TLS relocation type based on the options and whether this
278 // is a local symbol.
279 static tls::Tls_optimization
280 optimize_tls_reloc(bool is_final, int r_type);
281
282 // Get the GOT section, creating it if necessary.
283 Output_data_got<64, false>*
284 got_section(Symbol_table*, Layout*);
285
286 // Get the GOT PLT section.
287 Output_data_space*
288 got_plt_section() const
289 {
290 gold_assert(this->got_plt_ != NULL);
291 return this->got_plt_;
292 }
293
294 // Create a PLT entry for a global symbol.
295 void
296 make_plt_entry(Symbol_table*, Layout*, Symbol*);
297
298 // Create a GOT entry for the TLS module index.
299 unsigned int
300 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
301 Sized_relobj<64, false>* object);
302
303 // Get the PLT section.
304 Output_data_plt_x86_64*
305 plt_section() const
306 {
307 gold_assert(this->plt_ != NULL);
308 return this->plt_;
309 }
310
311 // Get the dynamic reloc section, creating it if necessary.
312 Reloc_section*
313 rela_dyn_section(Layout*);
314
315 // Return true if the symbol may need a COPY relocation.
316 // References from an executable object to non-function symbols
317 // defined in a dynamic object may need a COPY relocation.
318 bool
319 may_need_copy_reloc(Symbol* gsym)
320 {
321 return (!parameters->options().shared()
322 && gsym->is_from_dynobj()
323 && gsym->type() != elfcpp::STT_FUNC);
324 }
325
326 // Copy a relocation against a global symbol.
327 void
328 copy_reloc(const General_options*, Symbol_table*, Layout*,
329 Sized_relobj<64, false>*, unsigned int,
330 Output_section*, Symbol*, const elfcpp::Rela<64, false>&);
331
332 // Information about this specific target which we pass to the
333 // general Target structure.
334 static const Target::Target_info x86_64_info;
335
336 // The GOT section.
337 Output_data_got<64, false>* got_;
338 // The PLT section.
339 Output_data_plt_x86_64* plt_;
340 // The GOT PLT section.
341 Output_data_space* got_plt_;
342 // The dynamic reloc section.
343 Reloc_section* rela_dyn_;
344 // Relocs saved to avoid a COPY reloc.
345 Copy_relocs<64, false>* copy_relocs_;
346 // Space for variables copied with a COPY reloc.
347 Output_data_space* dynbss_;
348 // Offset of the GOT entry for the TLS module index;
349 unsigned int got_mod_index_offset_;
350 };
351
352 const Target::Target_info Target_x86_64::x86_64_info =
353 {
354 64, // size
355 false, // is_big_endian
356 elfcpp::EM_X86_64, // machine_code
357 false, // has_make_symbol
358 false, // has_resolve
359 true, // has_code_fill
360 true, // is_default_stack_executable
361 "/lib/ld64.so.1", // program interpreter
362 0x400000, // default_text_segment_address
363 0x1000, // abi_pagesize (overridable by -z max-page-size)
364 0x1000 // common_pagesize (overridable by -z common-page-size)
365 };
366
367 // Get the GOT section, creating it if necessary.
368
369 Output_data_got<64, false>*
370 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
371 {
372 if (this->got_ == NULL)
373 {
374 gold_assert(symtab != NULL && layout != NULL);
375
376 this->got_ = new Output_data_got<64, false>();
377
378 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
379 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
380 this->got_);
381
382 // The old GNU linker creates a .got.plt section. We just
383 // create another set of data in the .got section. Note that we
384 // always create a PLT if we create a GOT, although the PLT
385 // might be empty.
386 this->got_plt_ = new Output_data_space(8);
387 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
388 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
389 this->got_plt_);
390
391 // The first three entries are reserved.
392 this->got_plt_->set_current_data_size(3 * 8);
393
394 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
395 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
396 this->got_plt_,
397 0, 0, elfcpp::STT_OBJECT,
398 elfcpp::STB_LOCAL,
399 elfcpp::STV_HIDDEN, 0,
400 false, false);
401 }
402
403 return this->got_;
404 }
405
406 // Get the dynamic reloc section, creating it if necessary.
407
408 Target_x86_64::Reloc_section*
409 Target_x86_64::rela_dyn_section(Layout* layout)
410 {
411 if (this->rela_dyn_ == NULL)
412 {
413 gold_assert(layout != NULL);
414 this->rela_dyn_ = new Reloc_section();
415 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
416 elfcpp::SHF_ALLOC, this->rela_dyn_);
417 }
418 return this->rela_dyn_;
419 }
420
421 // A class to handle the PLT data.
422
423 class Output_data_plt_x86_64 : public Output_section_data
424 {
425 public:
426 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
427
428 Output_data_plt_x86_64(Layout*, Output_data_space*);
429
430 // Add an entry to the PLT.
431 void
432 add_entry(Symbol* gsym);
433
434 // Return the .rel.plt section data.
435 const Reloc_section*
436 rel_plt() const
437 { return this->rel_; }
438
439 protected:
440 void
441 do_adjust_output_section(Output_section* os);
442
443 private:
444 // The size of an entry in the PLT.
445 static const int plt_entry_size = 16;
446
447 // The first entry in the PLT.
448 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
449 // procedure linkage table for both programs and shared objects."
450 static unsigned char first_plt_entry[plt_entry_size];
451
452 // Other entries in the PLT for an executable.
453 static unsigned char plt_entry[plt_entry_size];
454
455 // Set the final size.
456 void
457 set_final_data_size()
458 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
459
460 // Write out the PLT data.
461 void
462 do_write(Output_file*);
463
464 // The reloc section.
465 Reloc_section* rel_;
466 // The .got.plt section.
467 Output_data_space* got_plt_;
468 // The number of PLT entries.
469 unsigned int count_;
470 };
471
472 // Create the PLT section. The ordinary .got section is an argument,
473 // since we need to refer to the start. We also create our own .got
474 // section just for PLT entries.
475
476 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
477 Output_data_space* got_plt)
478 : Output_section_data(8), got_plt_(got_plt), count_(0)
479 {
480 this->rel_ = new Reloc_section();
481 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
482 elfcpp::SHF_ALLOC, this->rel_);
483 }
484
485 void
486 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
487 {
488 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
489 // linker, and so do we.
490 os->set_entsize(4);
491 }
492
493 // Add an entry to the PLT.
494
495 void
496 Output_data_plt_x86_64::add_entry(Symbol* gsym)
497 {
498 gold_assert(!gsym->has_plt_offset());
499
500 // Note that when setting the PLT offset we skip the initial
501 // reserved PLT entry.
502 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
503
504 ++this->count_;
505
506 section_offset_type got_offset = this->got_plt_->current_data_size();
507
508 // Every PLT entry needs a GOT entry which points back to the PLT
509 // entry (this will be changed by the dynamic linker, normally
510 // lazily when the function is called).
511 this->got_plt_->set_current_data_size(got_offset + 8);
512
513 // Every PLT entry needs a reloc.
514 gsym->set_needs_dynsym_entry();
515 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
516 got_offset, 0);
517
518 // Note that we don't need to save the symbol. The contents of the
519 // PLT are independent of which symbols are used. The symbols only
520 // appear in the relocations.
521 }
522
523 // The first entry in the PLT for an executable.
524
525 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
526 {
527 // From AMD64 ABI Draft 0.98, page 76
528 0xff, 0x35, // pushq contents of memory address
529 0, 0, 0, 0, // replaced with address of .got + 8
530 0xff, 0x25, // jmp indirect
531 0, 0, 0, 0, // replaced with address of .got + 16
532 0x90, 0x90, 0x90, 0x90 // noop (x4)
533 };
534
535 // Subsequent entries in the PLT for an executable.
536
537 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
538 {
539 // From AMD64 ABI Draft 0.98, page 76
540 0xff, 0x25, // jmpq indirect
541 0, 0, 0, 0, // replaced with address of symbol in .got
542 0x68, // pushq immediate
543 0, 0, 0, 0, // replaced with offset into relocation table
544 0xe9, // jmpq relative
545 0, 0, 0, 0 // replaced with offset to start of .plt
546 };
547
548 // Write out the PLT. This uses the hand-coded instructions above,
549 // and adjusts them as needed. This is specified by the AMD64 ABI.
550
551 void
552 Output_data_plt_x86_64::do_write(Output_file* of)
553 {
554 const off_t offset = this->offset();
555 const section_size_type oview_size =
556 convert_to_section_size_type(this->data_size());
557 unsigned char* const oview = of->get_output_view(offset, oview_size);
558
559 const off_t got_file_offset = this->got_plt_->offset();
560 const section_size_type got_size =
561 convert_to_section_size_type(this->got_plt_->data_size());
562 unsigned char* const got_view = of->get_output_view(got_file_offset,
563 got_size);
564
565 unsigned char* pov = oview;
566
567 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
568 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
569
570 memcpy(pov, first_plt_entry, plt_entry_size);
571 // We do a jmp relative to the PC at the end of this instruction.
572 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
573 - (plt_address + 6));
574 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
575 - (plt_address + 12));
576 pov += plt_entry_size;
577
578 unsigned char* got_pov = got_view;
579
580 memset(got_pov, 0, 24);
581 got_pov += 24;
582
583 unsigned int plt_offset = plt_entry_size;
584 unsigned int got_offset = 24;
585 const unsigned int count = this->count_;
586 for (unsigned int plt_index = 0;
587 plt_index < count;
588 ++plt_index,
589 pov += plt_entry_size,
590 got_pov += 8,
591 plt_offset += plt_entry_size,
592 got_offset += 8)
593 {
594 // Set and adjust the PLT entry itself.
595 memcpy(pov, plt_entry, plt_entry_size);
596 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
597 (got_address + got_offset
598 - (plt_address + plt_offset
599 + 6)));
600
601 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
602 elfcpp::Swap<32, false>::writeval(pov + 12,
603 - (plt_offset + plt_entry_size));
604
605 // Set the entry in the GOT.
606 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
607 }
608
609 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
610 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
611
612 of->write_output_view(offset, oview_size, oview);
613 of->write_output_view(got_file_offset, got_size, got_view);
614 }
615
616 // Create a PLT entry for a global symbol.
617
618 void
619 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
620 Symbol* gsym)
621 {
622 if (gsym->has_plt_offset())
623 return;
624
625 if (this->plt_ == NULL)
626 {
627 // Create the GOT sections first.
628 this->got_section(symtab, layout);
629
630 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
631 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
632 (elfcpp::SHF_ALLOC
633 | elfcpp::SHF_EXECINSTR),
634 this->plt_);
635 }
636
637 this->plt_->add_entry(gsym);
638 }
639
640 // Create a GOT entry for the TLS module index.
641
642 unsigned int
643 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
644 Sized_relobj<64, false>* object)
645 {
646 if (this->got_mod_index_offset_ == -1U)
647 {
648 gold_assert(symtab != NULL && layout != NULL && object != NULL);
649 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
650 Output_data_got<64, false>* got = this->got_section(symtab, layout);
651 unsigned int got_offset = got->add_constant(0);
652 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
653 got_offset, 0);
654 got->add_constant(0);
655 this->got_mod_index_offset_ = got_offset;
656 }
657 return this->got_mod_index_offset_;
658 }
659
660 // Handle a relocation against a non-function symbol defined in a
661 // dynamic object. The traditional way to handle this is to generate
662 // a COPY relocation to copy the variable at runtime from the shared
663 // object into the executable's data segment. However, this is
664 // undesirable in general, as if the size of the object changes in the
665 // dynamic object, the executable will no longer work correctly. If
666 // this relocation is in a writable section, then we can create a
667 // dynamic reloc and the dynamic linker will resolve it to the correct
668 // address at runtime. However, we do not want do that if the
669 // relocation is in a read-only section, as it would prevent the
670 // readonly segment from being shared. And if we have to eventually
671 // generate a COPY reloc, then any dynamic relocations will be
672 // useless. So this means that if this is a writable section, we need
673 // to save the relocation until we see whether we have to create a
674 // COPY relocation for this symbol for any other relocation.
675
676 void
677 Target_x86_64::copy_reloc(const General_options* options,
678 Symbol_table* symtab,
679 Layout* layout,
680 Sized_relobj<64, false>* object,
681 unsigned int data_shndx,
682 Output_section* output_section,
683 Symbol* gsym,
684 const elfcpp::Rela<64, false>& rela)
685 {
686 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(gsym);
687
688 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
689 data_shndx, ssym))
690 {
691 // So far we do not need a COPY reloc. Save this relocation.
692 // If it turns out that we never need a COPY reloc for this
693 // symbol, then we will emit the relocation.
694 if (this->copy_relocs_ == NULL)
695 this->copy_relocs_ = new Copy_relocs<64, false>();
696 this->copy_relocs_->save(ssym, object, data_shndx, output_section, rela);
697 }
698 else
699 {
700 // Allocate space for this symbol in the .bss section.
701
702 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
703
704 // There is no defined way to determine the required alignment
705 // of the symbol. We pick the alignment based on the size. We
706 // set an arbitrary maximum of 256.
707 unsigned int align;
708 for (align = 1; align < 512; align <<= 1)
709 if ((symsize & align) != 0)
710 break;
711
712 if (this->dynbss_ == NULL)
713 {
714 this->dynbss_ = new Output_data_space(align);
715 layout->add_output_section_data(".bss",
716 elfcpp::SHT_NOBITS,
717 (elfcpp::SHF_ALLOC
718 | elfcpp::SHF_WRITE),
719 this->dynbss_);
720 }
721
722 Output_data_space* dynbss = this->dynbss_;
723
724 if (align > dynbss->addralign())
725 dynbss->set_space_alignment(align);
726
727 section_size_type dynbss_size = dynbss->current_data_size();
728 dynbss_size = align_address(dynbss_size, align);
729 section_size_type offset = dynbss_size;
730 dynbss->set_current_data_size(dynbss_size + symsize);
731
732 symtab->define_with_copy_reloc(ssym, dynbss, offset);
733
734 // Add the COPY reloc.
735 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
736 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
737 }
738 }
739
740
741 // Optimize the TLS relocation type based on what we know about the
742 // symbol. IS_FINAL is true if the final address of this symbol is
743 // known at link time.
744
745 tls::Tls_optimization
746 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
747 {
748 // If we are generating a shared library, then we can't do anything
749 // in the linker.
750 if (parameters->options().shared())
751 return tls::TLSOPT_NONE;
752
753 switch (r_type)
754 {
755 case elfcpp::R_X86_64_TLSGD:
756 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
757 case elfcpp::R_X86_64_TLSDESC_CALL:
758 // These are General-Dynamic which permits fully general TLS
759 // access. Since we know that we are generating an executable,
760 // we can convert this to Initial-Exec. If we also know that
761 // this is a local symbol, we can further switch to Local-Exec.
762 if (is_final)
763 return tls::TLSOPT_TO_LE;
764 return tls::TLSOPT_TO_IE;
765
766 case elfcpp::R_X86_64_TLSLD:
767 // This is Local-Dynamic, which refers to a local symbol in the
768 // dynamic TLS block. Since we know that we generating an
769 // executable, we can switch to Local-Exec.
770 return tls::TLSOPT_TO_LE;
771
772 case elfcpp::R_X86_64_DTPOFF32:
773 case elfcpp::R_X86_64_DTPOFF64:
774 // Another Local-Dynamic reloc.
775 return tls::TLSOPT_TO_LE;
776
777 case elfcpp::R_X86_64_GOTTPOFF:
778 // These are Initial-Exec relocs which get the thread offset
779 // from the GOT. If we know that we are linking against the
780 // local symbol, we can switch to Local-Exec, which links the
781 // thread offset into the instruction.
782 if (is_final)
783 return tls::TLSOPT_TO_LE;
784 return tls::TLSOPT_NONE;
785
786 case elfcpp::R_X86_64_TPOFF32:
787 // When we already have Local-Exec, there is nothing further we
788 // can do.
789 return tls::TLSOPT_NONE;
790
791 default:
792 gold_unreachable();
793 }
794 }
795
796 // Report an unsupported relocation against a local symbol.
797
798 void
799 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
800 unsigned int r_type)
801 {
802 gold_error(_("%s: unsupported reloc %u against local symbol"),
803 object->name().c_str(), r_type);
804 }
805
806 // Scan a relocation for a local symbol.
807
808 inline void
809 Target_x86_64::Scan::local(const General_options&,
810 Symbol_table* symtab,
811 Layout* layout,
812 Target_x86_64* target,
813 Sized_relobj<64, false>* object,
814 unsigned int data_shndx,
815 Output_section* output_section,
816 const elfcpp::Rela<64, false>& reloc,
817 unsigned int r_type,
818 const elfcpp::Sym<64, false>& lsym)
819 {
820 switch (r_type)
821 {
822 case elfcpp::R_X86_64_NONE:
823 case elfcpp::R_386_GNU_VTINHERIT:
824 case elfcpp::R_386_GNU_VTENTRY:
825 break;
826
827 case elfcpp::R_X86_64_64:
828 // If building a shared library (or a position-independent
829 // executable), we need to create a dynamic relocation for this
830 // location. The relocation applied at link time will apply the
831 // link-time value, so we flag the location with an
832 // R_X86_64_RELATIVE relocation so the dynamic loader can
833 // relocate it easily.
834 if (parameters->options().output_is_position_independent())
835 {
836 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
837 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
838 rela_dyn->add_local_relative(object, r_sym,
839 elfcpp::R_X86_64_RELATIVE,
840 output_section, data_shndx,
841 reloc.get_r_offset(),
842 reloc.get_r_addend());
843 }
844 break;
845
846 case elfcpp::R_X86_64_32:
847 case elfcpp::R_X86_64_32S:
848 case elfcpp::R_X86_64_16:
849 case elfcpp::R_X86_64_8:
850 // If building a shared library (or a position-independent
851 // executable), we need to create a dynamic relocation for this
852 // location. We can't use an R_X86_64_RELATIVE relocation
853 // because that is always a 64-bit relocation.
854 if (parameters->options().output_is_position_independent())
855 {
856 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
857 if (lsym.get_st_type() != elfcpp::STT_SECTION)
858 {
859 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
860 rela_dyn->add_local(object, r_sym, r_type, output_section,
861 data_shndx, reloc.get_r_offset(),
862 reloc.get_r_addend());
863 }
864 else
865 {
866 gold_assert(lsym.get_st_value() == 0);
867 rela_dyn->add_local_section(object, lsym.get_st_shndx(),
868 r_type, output_section,
869 data_shndx, reloc.get_r_offset(),
870 reloc.get_r_addend());
871 }
872 }
873 break;
874
875 case elfcpp::R_X86_64_PC64:
876 case elfcpp::R_X86_64_PC32:
877 case elfcpp::R_X86_64_PC16:
878 case elfcpp::R_X86_64_PC8:
879 break;
880
881 case elfcpp::R_X86_64_PLT32:
882 // Since we know this is a local symbol, we can handle this as a
883 // PC32 reloc.
884 break;
885
886 case elfcpp::R_X86_64_GOTPC32:
887 case elfcpp::R_X86_64_GOTOFF64:
888 case elfcpp::R_X86_64_GOTPC64:
889 case elfcpp::R_X86_64_PLTOFF64:
890 // We need a GOT section.
891 target->got_section(symtab, layout);
892 // For PLTOFF64, we'd normally want a PLT section, but since we
893 // know this is a local symbol, no PLT is needed.
894 break;
895
896 case elfcpp::R_X86_64_GOT64:
897 case elfcpp::R_X86_64_GOT32:
898 case elfcpp::R_X86_64_GOTPCREL64:
899 case elfcpp::R_X86_64_GOTPCREL:
900 case elfcpp::R_X86_64_GOTPLT64:
901 {
902 // The symbol requires a GOT entry.
903 Output_data_got<64, false>* got = target->got_section(symtab, layout);
904 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
905 if (got->add_local(object, r_sym))
906 {
907 // If we are generating a shared object, we need to add a
908 // dynamic relocation for this symbol's GOT entry.
909 if (parameters->options().output_is_position_independent())
910 {
911 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
912 // R_X86_64_RELATIVE assumes a 64-bit relocation.
913 if (r_type != elfcpp::R_X86_64_GOT32)
914 rela_dyn->add_local_relative(object, r_sym,
915 elfcpp::R_X86_64_RELATIVE, got,
916 object->local_got_offset(r_sym),
917 0);
918 else
919 {
920 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
921 rela_dyn->add_local(object, r_sym, r_type,
922 got, object->local_got_offset(r_sym),
923 0);
924 }
925 }
926 }
927 // For GOTPLT64, we'd normally want a PLT section, but since
928 // we know this is a local symbol, no PLT is needed.
929 }
930 break;
931
932 case elfcpp::R_X86_64_COPY:
933 case elfcpp::R_X86_64_GLOB_DAT:
934 case elfcpp::R_X86_64_JUMP_SLOT:
935 case elfcpp::R_X86_64_RELATIVE:
936 // These are outstanding tls relocs, which are unexpected when linking
937 case elfcpp::R_X86_64_TPOFF64:
938 case elfcpp::R_X86_64_DTPMOD64:
939 case elfcpp::R_X86_64_TLSDESC:
940 gold_error(_("%s: unexpected reloc %u in object file"),
941 object->name().c_str(), r_type);
942 break;
943
944 // These are initial tls relocs, which are expected when linking
945 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
946 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
947 case elfcpp::R_X86_64_TLSDESC_CALL:
948 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
949 case elfcpp::R_X86_64_DTPOFF32:
950 case elfcpp::R_X86_64_DTPOFF64:
951 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
952 case elfcpp::R_X86_64_TPOFF32: // Local-exec
953 {
954 bool output_is_shared = parameters->options().shared();
955 const tls::Tls_optimization optimized_type
956 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
957 switch (r_type)
958 {
959 case elfcpp::R_X86_64_TLSGD: // General-dynamic
960 if (optimized_type == tls::TLSOPT_NONE)
961 {
962 // Create a pair of GOT entries for the module index and
963 // dtv-relative offset.
964 Output_data_got<64, false>* got
965 = target->got_section(symtab, layout);
966 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
967 got->add_local_tls_with_rela(object, r_sym,
968 lsym.get_st_shndx(), true,
969 target->rela_dyn_section(layout),
970 elfcpp::R_X86_64_DTPMOD64);
971 }
972 else if (optimized_type != tls::TLSOPT_TO_LE)
973 unsupported_reloc_local(object, r_type);
974 break;
975
976 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
977 case elfcpp::R_X86_64_TLSDESC_CALL:
978 // FIXME: If not relaxing to LE, we need to generate
979 // a GOT entry with a R_x86_64_TLSDESC reloc.
980 if (optimized_type != tls::TLSOPT_TO_LE)
981 unsupported_reloc_local(object, r_type);
982 break;
983
984 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
985 if (optimized_type == tls::TLSOPT_NONE)
986 {
987 // Create a GOT entry for the module index.
988 target->got_mod_index_entry(symtab, layout, object);
989 }
990 else if (optimized_type != tls::TLSOPT_TO_LE)
991 unsupported_reloc_local(object, r_type);
992 break;
993
994 case elfcpp::R_X86_64_DTPOFF32:
995 case elfcpp::R_X86_64_DTPOFF64:
996 break;
997
998 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
999 layout->set_has_static_tls();
1000 if (optimized_type == tls::TLSOPT_NONE)
1001 {
1002 // Create a GOT entry for the tp-relative offset.
1003 Output_data_got<64, false>* got
1004 = target->got_section(symtab, layout);
1005 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1006 got->add_local_with_rela(object, r_sym,
1007 target->rela_dyn_section(layout),
1008 elfcpp::R_X86_64_TPOFF64);
1009 }
1010 else if (optimized_type != tls::TLSOPT_TO_LE)
1011 unsupported_reloc_local(object, r_type);
1012 break;
1013
1014 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1015 layout->set_has_static_tls();
1016 if (output_is_shared)
1017 unsupported_reloc_local(object, r_type);
1018 break;
1019
1020 default:
1021 gold_unreachable();
1022 }
1023 }
1024 break;
1025
1026 case elfcpp::R_X86_64_SIZE32:
1027 case elfcpp::R_X86_64_SIZE64:
1028 default:
1029 gold_error(_("%s: unsupported reloc %u against local symbol"),
1030 object->name().c_str(), r_type);
1031 break;
1032 }
1033 }
1034
1035
1036 // Report an unsupported relocation against a global symbol.
1037
1038 void
1039 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1040 unsigned int r_type,
1041 Symbol* gsym)
1042 {
1043 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1044 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1045 }
1046
1047 // Scan a relocation for a global symbol.
1048
1049 inline void
1050 Target_x86_64::Scan::global(const General_options& options,
1051 Symbol_table* symtab,
1052 Layout* layout,
1053 Target_x86_64* target,
1054 Sized_relobj<64, false>* object,
1055 unsigned int data_shndx,
1056 Output_section* output_section,
1057 const elfcpp::Rela<64, false>& reloc,
1058 unsigned int r_type,
1059 Symbol* gsym)
1060 {
1061 switch (r_type)
1062 {
1063 case elfcpp::R_X86_64_NONE:
1064 case elfcpp::R_386_GNU_VTINHERIT:
1065 case elfcpp::R_386_GNU_VTENTRY:
1066 break;
1067
1068 case elfcpp::R_X86_64_64:
1069 case elfcpp::R_X86_64_32:
1070 case elfcpp::R_X86_64_32S:
1071 case elfcpp::R_X86_64_16:
1072 case elfcpp::R_X86_64_8:
1073 {
1074 // Make a PLT entry if necessary.
1075 if (gsym->needs_plt_entry())
1076 {
1077 target->make_plt_entry(symtab, layout, gsym);
1078 // Since this is not a PC-relative relocation, we may be
1079 // taking the address of a function. In that case we need to
1080 // set the entry in the dynamic symbol table to the address of
1081 // the PLT entry.
1082 if (gsym->is_from_dynobj() && !parameters->options().shared())
1083 gsym->set_needs_dynsym_value();
1084 }
1085 // Make a dynamic relocation if necessary.
1086 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1087 {
1088 if (target->may_need_copy_reloc(gsym))
1089 {
1090 target->copy_reloc(&options, symtab, layout, object,
1091 data_shndx, output_section, gsym, reloc);
1092 }
1093 else if (r_type == elfcpp::R_X86_64_64
1094 && gsym->can_use_relative_reloc(false))
1095 {
1096 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1097 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1098 output_section, object,
1099 data_shndx, reloc.get_r_offset(),
1100 reloc.get_r_addend());
1101 }
1102 else
1103 {
1104 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1105 rela_dyn->add_global(gsym, r_type, output_section, object,
1106 data_shndx, reloc.get_r_offset(),
1107 reloc.get_r_addend());
1108 }
1109 }
1110 }
1111 break;
1112
1113 case elfcpp::R_X86_64_PC64:
1114 case elfcpp::R_X86_64_PC32:
1115 case elfcpp::R_X86_64_PC16:
1116 case elfcpp::R_X86_64_PC8:
1117 {
1118 // Make a PLT entry if necessary.
1119 if (gsym->needs_plt_entry())
1120 target->make_plt_entry(symtab, layout, gsym);
1121 // Make a dynamic relocation if necessary.
1122 int flags = Symbol::NON_PIC_REF;
1123 if (gsym->type() == elfcpp::STT_FUNC)
1124 flags |= Symbol::FUNCTION_CALL;
1125 if (gsym->needs_dynamic_reloc(flags))
1126 {
1127 if (target->may_need_copy_reloc(gsym))
1128 {
1129 target->copy_reloc(&options, symtab, layout, object,
1130 data_shndx, output_section, gsym, reloc);
1131 }
1132 else
1133 {
1134 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1135 rela_dyn->add_global(gsym, r_type, output_section, object,
1136 data_shndx, reloc.get_r_offset(),
1137 reloc.get_r_addend());
1138 }
1139 }
1140 }
1141 break;
1142
1143 case elfcpp::R_X86_64_GOT64:
1144 case elfcpp::R_X86_64_GOT32:
1145 case elfcpp::R_X86_64_GOTPCREL64:
1146 case elfcpp::R_X86_64_GOTPCREL:
1147 case elfcpp::R_X86_64_GOTPLT64:
1148 {
1149 // The symbol requires a GOT entry.
1150 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1151 if (gsym->final_value_is_known())
1152 got->add_global(gsym);
1153 else
1154 {
1155 // If this symbol is not fully resolved, we need to add a
1156 // dynamic relocation for it.
1157 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1158 if (gsym->is_from_dynobj()
1159 || gsym->is_undefined()
1160 || gsym->is_preemptible())
1161 got->add_global_with_rela(gsym, rela_dyn,
1162 elfcpp::R_X86_64_GLOB_DAT);
1163 else
1164 {
1165 if (got->add_global(gsym))
1166 rela_dyn->add_global_relative(gsym,
1167 elfcpp::R_X86_64_RELATIVE,
1168 got, gsym->got_offset(), 0);
1169 }
1170 }
1171 // For GOTPLT64, we also need a PLT entry (but only if the
1172 // symbol is not fully resolved).
1173 if (r_type == elfcpp::R_X86_64_GOTPLT64
1174 && !gsym->final_value_is_known())
1175 target->make_plt_entry(symtab, layout, gsym);
1176 }
1177 break;
1178
1179 case elfcpp::R_X86_64_PLT32:
1180 // If the symbol is fully resolved, this is just a PC32 reloc.
1181 // Otherwise we need a PLT entry.
1182 if (gsym->final_value_is_known())
1183 break;
1184 // If building a shared library, we can also skip the PLT entry
1185 // if the symbol is defined in the output file and is protected
1186 // or hidden.
1187 if (gsym->is_defined()
1188 && !gsym->is_from_dynobj()
1189 && !gsym->is_preemptible())
1190 break;
1191 target->make_plt_entry(symtab, layout, gsym);
1192 break;
1193
1194 case elfcpp::R_X86_64_GOTPC32:
1195 case elfcpp::R_X86_64_GOTOFF64:
1196 case elfcpp::R_X86_64_GOTPC64:
1197 case elfcpp::R_X86_64_PLTOFF64:
1198 // We need a GOT section.
1199 target->got_section(symtab, layout);
1200 // For PLTOFF64, we also need a PLT entry (but only if the
1201 // symbol is not fully resolved).
1202 if (r_type == elfcpp::R_X86_64_PLTOFF64
1203 && !gsym->final_value_is_known())
1204 target->make_plt_entry(symtab, layout, gsym);
1205 break;
1206
1207 case elfcpp::R_X86_64_COPY:
1208 case elfcpp::R_X86_64_GLOB_DAT:
1209 case elfcpp::R_X86_64_JUMP_SLOT:
1210 case elfcpp::R_X86_64_RELATIVE:
1211 // These are outstanding tls relocs, which are unexpected when linking
1212 case elfcpp::R_X86_64_TPOFF64:
1213 case elfcpp::R_X86_64_DTPMOD64:
1214 case elfcpp::R_X86_64_TLSDESC:
1215 gold_error(_("%s: unexpected reloc %u in object file"),
1216 object->name().c_str(), r_type);
1217 break;
1218
1219 // These are initial tls relocs, which are expected for global()
1220 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1221 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1222 case elfcpp::R_X86_64_TLSDESC_CALL:
1223 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1224 case elfcpp::R_X86_64_DTPOFF32:
1225 case elfcpp::R_X86_64_DTPOFF64:
1226 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1227 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1228 {
1229 const bool is_final = gsym->final_value_is_known();
1230 const tls::Tls_optimization optimized_type
1231 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1232 switch (r_type)
1233 {
1234 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1235 if (optimized_type == tls::TLSOPT_NONE)
1236 {
1237 // Create a pair of GOT entries for the module index and
1238 // dtv-relative offset.
1239 Output_data_got<64, false>* got
1240 = target->got_section(symtab, layout);
1241 got->add_global_tls_with_rela(gsym,
1242 target->rela_dyn_section(layout),
1243 elfcpp::R_X86_64_DTPMOD64,
1244 elfcpp::R_X86_64_DTPOFF64);
1245 }
1246 else if (optimized_type == tls::TLSOPT_TO_IE)
1247 {
1248 // Create a GOT entry for the tp-relative offset.
1249 Output_data_got<64, false>* got
1250 = target->got_section(symtab, layout);
1251 got->add_global_with_rela(gsym,
1252 target->rela_dyn_section(layout),
1253 elfcpp::R_X86_64_TPOFF64);
1254 }
1255 else if (optimized_type != tls::TLSOPT_TO_LE)
1256 unsupported_reloc_global(object, r_type, gsym);
1257 break;
1258
1259 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1260 case elfcpp::R_X86_64_TLSDESC_CALL:
1261 // FIXME: If not relaxing to LE, we need to generate
1262 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1263 if (optimized_type != tls::TLSOPT_TO_LE)
1264 unsupported_reloc_global(object, r_type, gsym);
1265 break;
1266
1267 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1268 if (optimized_type == tls::TLSOPT_NONE)
1269 {
1270 // Create a GOT entry for the module index.
1271 target->got_mod_index_entry(symtab, layout, object);
1272 }
1273 else if (optimized_type != tls::TLSOPT_TO_LE)
1274 unsupported_reloc_global(object, r_type, gsym);
1275 break;
1276
1277 case elfcpp::R_X86_64_DTPOFF32:
1278 case elfcpp::R_X86_64_DTPOFF64:
1279 break;
1280
1281 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1282 layout->set_has_static_tls();
1283 if (optimized_type == tls::TLSOPT_NONE)
1284 {
1285 // Create a GOT entry for the tp-relative offset.
1286 Output_data_got<64, false>* got
1287 = target->got_section(symtab, layout);
1288 got->add_global_with_rela(gsym,
1289 target->rela_dyn_section(layout),
1290 elfcpp::R_X86_64_TPOFF64);
1291 }
1292 else if (optimized_type != tls::TLSOPT_TO_LE)
1293 unsupported_reloc_global(object, r_type, gsym);
1294 break;
1295
1296 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1297 layout->set_has_static_tls();
1298 if (parameters->options().shared())
1299 unsupported_reloc_local(object, r_type);
1300 break;
1301
1302 default:
1303 gold_unreachable();
1304 }
1305 }
1306 break;
1307
1308 case elfcpp::R_X86_64_SIZE32:
1309 case elfcpp::R_X86_64_SIZE64:
1310 default:
1311 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1312 object->name().c_str(), r_type,
1313 gsym->demangled_name().c_str());
1314 break;
1315 }
1316 }
1317
1318 // Scan relocations for a section.
1319
1320 void
1321 Target_x86_64::scan_relocs(const General_options& options,
1322 Symbol_table* symtab,
1323 Layout* layout,
1324 Sized_relobj<64, false>* object,
1325 unsigned int data_shndx,
1326 unsigned int sh_type,
1327 const unsigned char* prelocs,
1328 size_t reloc_count,
1329 Output_section* output_section,
1330 bool needs_special_offset_handling,
1331 size_t local_symbol_count,
1332 const unsigned char* plocal_symbols)
1333 {
1334 if (sh_type == elfcpp::SHT_REL)
1335 {
1336 gold_error(_("%s: unsupported REL reloc section"),
1337 object->name().c_str());
1338 return;
1339 }
1340
1341 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1342 Target_x86_64::Scan>(
1343 options,
1344 symtab,
1345 layout,
1346 this,
1347 object,
1348 data_shndx,
1349 prelocs,
1350 reloc_count,
1351 output_section,
1352 needs_special_offset_handling,
1353 local_symbol_count,
1354 plocal_symbols);
1355 }
1356
1357 // Finalize the sections.
1358
1359 void
1360 Target_x86_64::do_finalize_sections(Layout* layout)
1361 {
1362 // Fill in some more dynamic tags.
1363 Output_data_dynamic* const odyn = layout->dynamic_data();
1364 if (odyn != NULL)
1365 {
1366 if (this->got_plt_ != NULL)
1367 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1368
1369 if (this->plt_ != NULL)
1370 {
1371 const Output_data* od = this->plt_->rel_plt();
1372 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1373 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1374 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1375 }
1376
1377 if (this->rela_dyn_ != NULL)
1378 {
1379 const Output_data* od = this->rela_dyn_;
1380 odyn->add_section_address(elfcpp::DT_RELA, od);
1381 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1382 odyn->add_constant(elfcpp::DT_RELAENT,
1383 elfcpp::Elf_sizes<64>::rela_size);
1384 }
1385
1386 if (!parameters->options().shared())
1387 {
1388 // The value of the DT_DEBUG tag is filled in by the dynamic
1389 // linker at run time, and used by the debugger.
1390 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1391 }
1392 }
1393
1394 // Emit any relocs we saved in an attempt to avoid generating COPY
1395 // relocs.
1396 if (this->copy_relocs_ == NULL)
1397 return;
1398 if (this->copy_relocs_->any_to_emit())
1399 {
1400 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1401 this->copy_relocs_->emit(rela_dyn);
1402 }
1403 delete this->copy_relocs_;
1404 this->copy_relocs_ = NULL;
1405 }
1406
1407 // Perform a relocation.
1408
1409 inline bool
1410 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1411 Target_x86_64* target,
1412 size_t relnum,
1413 const elfcpp::Rela<64, false>& rela,
1414 unsigned int r_type,
1415 const Sized_symbol<64>* gsym,
1416 const Symbol_value<64>* psymval,
1417 unsigned char* view,
1418 elfcpp::Elf_types<64>::Elf_Addr address,
1419 section_size_type view_size)
1420 {
1421 if (this->skip_call_tls_get_addr_)
1422 {
1423 if (r_type != elfcpp::R_X86_64_PLT32
1424 || gsym == NULL
1425 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1426 {
1427 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1428 _("missing expected TLS relocation"));
1429 }
1430 else
1431 {
1432 this->skip_call_tls_get_addr_ = false;
1433 return false;
1434 }
1435 }
1436
1437 // Pick the value to use for symbols defined in shared objects.
1438 Symbol_value<64> symval;
1439 if (gsym != NULL
1440 && (gsym->is_from_dynobj()
1441 || (parameters->options().shared()
1442 && (gsym->is_undefined() || gsym->is_preemptible())))
1443 && gsym->has_plt_offset())
1444 {
1445 symval.set_output_value(target->plt_section()->address()
1446 + gsym->plt_offset());
1447 psymval = &symval;
1448 }
1449
1450 const Sized_relobj<64, false>* object = relinfo->object;
1451 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1452
1453 // Get the GOT offset if needed.
1454 // The GOT pointer points to the end of the GOT section.
1455 // We need to subtract the size of the GOT section to get
1456 // the actual offset to use in the relocation.
1457 bool have_got_offset = false;
1458 unsigned int got_offset = 0;
1459 switch (r_type)
1460 {
1461 case elfcpp::R_X86_64_GOT32:
1462 case elfcpp::R_X86_64_GOT64:
1463 case elfcpp::R_X86_64_GOTPLT64:
1464 case elfcpp::R_X86_64_GOTPCREL:
1465 case elfcpp::R_X86_64_GOTPCREL64:
1466 if (gsym != NULL)
1467 {
1468 gold_assert(gsym->has_got_offset());
1469 got_offset = gsym->got_offset() - target->got_size();
1470 }
1471 else
1472 {
1473 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1474 gold_assert(object->local_has_got_offset(r_sym));
1475 got_offset = object->local_got_offset(r_sym) - target->got_size();
1476 }
1477 have_got_offset = true;
1478 break;
1479
1480 default:
1481 break;
1482 }
1483
1484 switch (r_type)
1485 {
1486 case elfcpp::R_X86_64_NONE:
1487 case elfcpp::R_386_GNU_VTINHERIT:
1488 case elfcpp::R_386_GNU_VTENTRY:
1489 break;
1490
1491 case elfcpp::R_X86_64_64:
1492 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1493 break;
1494
1495 case elfcpp::R_X86_64_PC64:
1496 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1497 address);
1498 break;
1499
1500 case elfcpp::R_X86_64_32:
1501 // FIXME: we need to verify that value + addend fits into 32 bits:
1502 // uint64_t x = value + addend;
1503 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1504 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1505 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1506 break;
1507
1508 case elfcpp::R_X86_64_32S:
1509 // FIXME: we need to verify that value + addend fits into 32 bits:
1510 // int64_t x = value + addend; // note this quantity is signed!
1511 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1512 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1513 break;
1514
1515 case elfcpp::R_X86_64_PC32:
1516 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1517 address);
1518 break;
1519
1520 case elfcpp::R_X86_64_16:
1521 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1522 break;
1523
1524 case elfcpp::R_X86_64_PC16:
1525 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1526 address);
1527 break;
1528
1529 case elfcpp::R_X86_64_8:
1530 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1531 break;
1532
1533 case elfcpp::R_X86_64_PC8:
1534 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1535 address);
1536 break;
1537
1538 case elfcpp::R_X86_64_PLT32:
1539 gold_assert(gsym == NULL
1540 || gsym->has_plt_offset()
1541 || gsym->final_value_is_known()
1542 || (gsym->is_defined()
1543 && !gsym->is_from_dynobj()
1544 && !gsym->is_preemptible()));
1545 // Note: while this code looks the same as for R_X86_64_PC32, it
1546 // behaves differently because psymval was set to point to
1547 // the PLT entry, rather than the symbol, in Scan::global().
1548 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1549 address);
1550 break;
1551
1552 case elfcpp::R_X86_64_PLTOFF64:
1553 {
1554 gold_assert(gsym);
1555 gold_assert(gsym->has_plt_offset()
1556 || gsym->final_value_is_known());
1557 elfcpp::Elf_types<64>::Elf_Addr got_address;
1558 got_address = target->got_section(NULL, NULL)->address();
1559 Relocate_functions<64, false>::rela64(view, object, psymval,
1560 addend - got_address);
1561 }
1562
1563 case elfcpp::R_X86_64_GOT32:
1564 gold_assert(have_got_offset);
1565 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1566 break;
1567
1568 case elfcpp::R_X86_64_GOTPC32:
1569 {
1570 gold_assert(gsym);
1571 elfcpp::Elf_types<64>::Elf_Addr value;
1572 value = target->got_plt_section()->address();
1573 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1574 }
1575 break;
1576
1577 case elfcpp::R_X86_64_GOT64:
1578 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1579 // Since we always add a PLT entry, this is equivalent.
1580 case elfcpp::R_X86_64_GOTPLT64:
1581 gold_assert(have_got_offset);
1582 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1583 break;
1584
1585 case elfcpp::R_X86_64_GOTPC64:
1586 {
1587 gold_assert(gsym);
1588 elfcpp::Elf_types<64>::Elf_Addr value;
1589 value = target->got_plt_section()->address();
1590 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1591 }
1592 break;
1593
1594 case elfcpp::R_X86_64_GOTOFF64:
1595 {
1596 elfcpp::Elf_types<64>::Elf_Addr value;
1597 value = (psymval->value(object, 0)
1598 - target->got_plt_section()->address());
1599 Relocate_functions<64, false>::rela64(view, value, addend);
1600 }
1601 break;
1602
1603 case elfcpp::R_X86_64_GOTPCREL:
1604 {
1605 gold_assert(have_got_offset);
1606 elfcpp::Elf_types<64>::Elf_Addr value;
1607 value = target->got_plt_section()->address() + got_offset;
1608 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1609 }
1610 break;
1611
1612 case elfcpp::R_X86_64_GOTPCREL64:
1613 {
1614 gold_assert(have_got_offset);
1615 elfcpp::Elf_types<64>::Elf_Addr value;
1616 value = target->got_plt_section()->address() + got_offset;
1617 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1618 }
1619 break;
1620
1621 case elfcpp::R_X86_64_COPY:
1622 case elfcpp::R_X86_64_GLOB_DAT:
1623 case elfcpp::R_X86_64_JUMP_SLOT:
1624 case elfcpp::R_X86_64_RELATIVE:
1625 // These are outstanding tls relocs, which are unexpected when linking
1626 case elfcpp::R_X86_64_TPOFF64:
1627 case elfcpp::R_X86_64_DTPMOD64:
1628 case elfcpp::R_X86_64_TLSDESC:
1629 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1630 _("unexpected reloc %u in object file"),
1631 r_type);
1632 break;
1633
1634 // These are initial tls relocs, which are expected when linking
1635 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1636 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1637 case elfcpp::R_X86_64_TLSDESC_CALL:
1638 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1639 case elfcpp::R_X86_64_DTPOFF32:
1640 case elfcpp::R_X86_64_DTPOFF64:
1641 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1642 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1643 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1644 view, address, view_size);
1645 break;
1646
1647 case elfcpp::R_X86_64_SIZE32:
1648 case elfcpp::R_X86_64_SIZE64:
1649 default:
1650 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1651 _("unsupported reloc %u"),
1652 r_type);
1653 break;
1654 }
1655
1656 return true;
1657 }
1658
1659 // Perform a TLS relocation.
1660
1661 inline void
1662 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1663 Target_x86_64* target,
1664 size_t relnum,
1665 const elfcpp::Rela<64, false>& rela,
1666 unsigned int r_type,
1667 const Sized_symbol<64>* gsym,
1668 const Symbol_value<64>* psymval,
1669 unsigned char* view,
1670 elfcpp::Elf_types<64>::Elf_Addr address,
1671 section_size_type view_size)
1672 {
1673 Output_segment* tls_segment = relinfo->layout->tls_segment();
1674
1675 const Sized_relobj<64, false>* object = relinfo->object;
1676 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1677
1678 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1679
1680 const bool is_final = (gsym == NULL
1681 ? !parameters->options().output_is_position_independent()
1682 : gsym->final_value_is_known());
1683 const tls::Tls_optimization optimized_type
1684 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1685 switch (r_type)
1686 {
1687 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1688 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1689 case elfcpp::R_X86_64_TLSDESC_CALL:
1690 if (optimized_type == tls::TLSOPT_TO_LE)
1691 {
1692 gold_assert(tls_segment != NULL);
1693 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1694 rela, r_type, value, view,
1695 view_size);
1696 break;
1697 }
1698 else
1699 {
1700 unsigned int got_offset;
1701 if (gsym != NULL)
1702 {
1703 gold_assert(gsym->has_tls_got_offset(true));
1704 got_offset = gsym->tls_got_offset(true) - target->got_size();
1705 }
1706 else
1707 {
1708 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1709 gold_assert(object->local_has_tls_got_offset(r_sym, true));
1710 got_offset = (object->local_tls_got_offset(r_sym, true)
1711 - target->got_size());
1712 }
1713 if (optimized_type == tls::TLSOPT_TO_IE)
1714 {
1715 gold_assert(tls_segment != NULL);
1716 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
1717 got_offset, view, view_size);
1718 break;
1719 }
1720 else if (optimized_type == tls::TLSOPT_NONE)
1721 {
1722 // Relocate the field with the offset of the pair of GOT
1723 // entries.
1724 value = target->got_plt_section()->address() + got_offset;
1725 Relocate_functions<64, false>::pcrela32(view, value, addend,
1726 address);
1727 break;
1728 }
1729 }
1730 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1731 _("unsupported reloc %u"), r_type);
1732 break;
1733
1734 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1735 if (optimized_type == tls::TLSOPT_TO_LE)
1736 {
1737 gold_assert(tls_segment != NULL);
1738 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1739 value, view, view_size);
1740 break;
1741 }
1742 else if (optimized_type == tls::TLSOPT_NONE)
1743 {
1744 // Relocate the field with the offset of the GOT entry for
1745 // the module index.
1746 unsigned int got_offset;
1747 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1748 - target->got_size());
1749 value = target->got_plt_section()->address() + got_offset;
1750 Relocate_functions<64, false>::pcrela32(view, value, addend,
1751 address);
1752 break;
1753 }
1754 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1755 _("unsupported reloc %u"), r_type);
1756 break;
1757
1758 case elfcpp::R_X86_64_DTPOFF32:
1759 gold_assert(tls_segment != NULL);
1760 if (optimized_type == tls::TLSOPT_TO_LE)
1761 value -= tls_segment->memsz();
1762 Relocate_functions<64, false>::rela32(view, value, 0);
1763 break;
1764
1765 case elfcpp::R_X86_64_DTPOFF64:
1766 gold_assert(tls_segment != NULL);
1767 if (optimized_type == tls::TLSOPT_TO_LE)
1768 value -= tls_segment->memsz();
1769 Relocate_functions<64, false>::rela64(view, value, 0);
1770 break;
1771
1772 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1773 if (optimized_type == tls::TLSOPT_TO_LE)
1774 {
1775 gold_assert(tls_segment != NULL);
1776 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1777 rela, r_type, value, view,
1778 view_size);
1779 break;
1780 }
1781 else if (optimized_type == tls::TLSOPT_NONE)
1782 {
1783 // Relocate the field with the offset of the GOT entry for
1784 // the tp-relative offset of the symbol.
1785 unsigned int got_offset;
1786 if (gsym != NULL)
1787 {
1788 gold_assert(gsym->has_got_offset());
1789 got_offset = gsym->got_offset() - target->got_size();
1790 }
1791 else
1792 {
1793 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1794 gold_assert(object->local_has_got_offset(r_sym));
1795 got_offset = (object->local_got_offset(r_sym)
1796 - target->got_size());
1797 }
1798 value = target->got_plt_section()->address() + got_offset;
1799 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1800 break;
1801 }
1802 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1803 _("unsupported reloc type %u"),
1804 r_type);
1805 break;
1806
1807 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1808 value -= tls_segment->memsz();
1809 Relocate_functions<64, false>::rela32(view, value, 0);
1810 break;
1811 }
1812 }
1813
1814 // Do a relocation in which we convert a TLS General-Dynamic to an
1815 // Initial-Exec.
1816
1817 inline void
1818 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
1819 size_t relnum,
1820 Output_segment* tls_segment,
1821 const elfcpp::Rela<64, false>& rela,
1822 unsigned int,
1823 elfcpp::Elf_types<64>::Elf_Addr value,
1824 unsigned char* view,
1825 section_size_type view_size)
1826 {
1827 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1828 // .word 0x6666; rex64; call __tls_get_addr
1829 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
1830
1831 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1832 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1833
1834 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1835 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1836 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1837 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1838
1839 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
1840
1841 value -= tls_segment->memsz();
1842 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1843
1844 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1845 // We can skip it.
1846 this->skip_call_tls_get_addr_ = true;
1847 }
1848
1849 // Do a relocation in which we convert a TLS General-Dynamic to a
1850 // Local-Exec.
1851
1852 inline void
1853 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1854 size_t relnum,
1855 Output_segment* tls_segment,
1856 const elfcpp::Rela<64, false>& rela,
1857 unsigned int,
1858 elfcpp::Elf_types<64>::Elf_Addr value,
1859 unsigned char* view,
1860 section_size_type view_size)
1861 {
1862 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1863 // .word 0x6666; rex64; call __tls_get_addr
1864 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1865
1866 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1867 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1868
1869 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1870 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1871 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1872 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1873
1874 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1875
1876 value -= tls_segment->memsz();
1877 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1878
1879 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1880 // We can skip it.
1881 this->skip_call_tls_get_addr_ = true;
1882 }
1883
1884 inline void
1885 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1886 size_t relnum,
1887 Output_segment*,
1888 const elfcpp::Rela<64, false>& rela,
1889 unsigned int,
1890 elfcpp::Elf_types<64>::Elf_Addr,
1891 unsigned char* view,
1892 section_size_type view_size)
1893 {
1894 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1895 // ... leq foo@dtpoff(%rax),%reg
1896 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1897
1898 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1899 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1900
1901 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1902 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1903
1904 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1905
1906 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1907
1908 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1909 // We can skip it.
1910 this->skip_call_tls_get_addr_ = true;
1911 }
1912
1913 // Do a relocation in which we convert a TLS Initial-Exec to a
1914 // Local-Exec.
1915
1916 inline void
1917 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1918 size_t relnum,
1919 Output_segment* tls_segment,
1920 const elfcpp::Rela<64, false>& rela,
1921 unsigned int,
1922 elfcpp::Elf_types<64>::Elf_Addr value,
1923 unsigned char* view,
1924 section_size_type view_size)
1925 {
1926 // We need to examine the opcodes to figure out which instruction we
1927 // are looking at.
1928
1929 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1930 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1931
1932 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1933 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1934
1935 unsigned char op1 = view[-3];
1936 unsigned char op2 = view[-2];
1937 unsigned char op3 = view[-1];
1938 unsigned char reg = op3 >> 3;
1939
1940 if (op2 == 0x8b)
1941 {
1942 // movq
1943 if (op1 == 0x4c)
1944 view[-3] = 0x49;
1945 view[-2] = 0xc7;
1946 view[-1] = 0xc0 | reg;
1947 }
1948 else if (reg == 4)
1949 {
1950 // Special handling for %rsp.
1951 if (op1 == 0x4c)
1952 view[-3] = 0x49;
1953 view[-2] = 0x81;
1954 view[-1] = 0xc0 | reg;
1955 }
1956 else
1957 {
1958 // addq
1959 if (op1 == 0x4c)
1960 view[-3] = 0x4d;
1961 view[-2] = 0x8d;
1962 view[-1] = 0x80 | reg | (reg << 3);
1963 }
1964
1965 value -= tls_segment->memsz();
1966 Relocate_functions<64, false>::rela32(view, value, 0);
1967 }
1968
1969 // Relocate section data.
1970
1971 void
1972 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1973 unsigned int sh_type,
1974 const unsigned char* prelocs,
1975 size_t reloc_count,
1976 Output_section* output_section,
1977 bool needs_special_offset_handling,
1978 unsigned char* view,
1979 elfcpp::Elf_types<64>::Elf_Addr address,
1980 section_size_type view_size)
1981 {
1982 gold_assert(sh_type == elfcpp::SHT_RELA);
1983
1984 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1985 Target_x86_64::Relocate>(
1986 relinfo,
1987 this,
1988 prelocs,
1989 reloc_count,
1990 output_section,
1991 needs_special_offset_handling,
1992 view,
1993 address,
1994 view_size);
1995 }
1996
1997 // Return the size of a relocation while scanning during a relocatable
1998 // link.
1999
2000 unsigned int
2001 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2002 unsigned int r_type,
2003 Relobj* object)
2004 {
2005 switch (r_type)
2006 {
2007 case elfcpp::R_X86_64_NONE:
2008 case elfcpp::R_386_GNU_VTINHERIT:
2009 case elfcpp::R_386_GNU_VTENTRY:
2010 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2011 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2012 case elfcpp::R_X86_64_TLSDESC_CALL:
2013 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2014 case elfcpp::R_X86_64_DTPOFF32:
2015 case elfcpp::R_X86_64_DTPOFF64:
2016 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2017 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2018 return 0;
2019
2020 case elfcpp::R_X86_64_64:
2021 case elfcpp::R_X86_64_PC64:
2022 case elfcpp::R_X86_64_GOTOFF64:
2023 case elfcpp::R_X86_64_GOTPC64:
2024 case elfcpp::R_X86_64_PLTOFF64:
2025 case elfcpp::R_X86_64_GOT64:
2026 case elfcpp::R_X86_64_GOTPCREL64:
2027 case elfcpp::R_X86_64_GOTPCREL:
2028 case elfcpp::R_X86_64_GOTPLT64:
2029 return 8;
2030
2031 case elfcpp::R_X86_64_32:
2032 case elfcpp::R_X86_64_32S:
2033 case elfcpp::R_X86_64_PC32:
2034 case elfcpp::R_X86_64_PLT32:
2035 case elfcpp::R_X86_64_GOTPC32:
2036 case elfcpp::R_X86_64_GOT32:
2037 return 4;
2038
2039 case elfcpp::R_X86_64_16:
2040 case elfcpp::R_X86_64_PC16:
2041 return 2;
2042
2043 case elfcpp::R_X86_64_8:
2044 case elfcpp::R_X86_64_PC8:
2045 return 1;
2046
2047 case elfcpp::R_X86_64_COPY:
2048 case elfcpp::R_X86_64_GLOB_DAT:
2049 case elfcpp::R_X86_64_JUMP_SLOT:
2050 case elfcpp::R_X86_64_RELATIVE:
2051 // These are outstanding tls relocs, which are unexpected when linking
2052 case elfcpp::R_X86_64_TPOFF64:
2053 case elfcpp::R_X86_64_DTPMOD64:
2054 case elfcpp::R_X86_64_TLSDESC:
2055 object->error(_("unexpected reloc %u in object file"), r_type);
2056 return 0;
2057
2058 case elfcpp::R_X86_64_SIZE32:
2059 case elfcpp::R_X86_64_SIZE64:
2060 default:
2061 object->error(_("unsupported reloc %u against local symbol"), r_type);
2062 return 0;
2063 }
2064 }
2065
2066 // Scan the relocs during a relocatable link.
2067
2068 void
2069 Target_x86_64::scan_relocatable_relocs(const General_options& options,
2070 Symbol_table* symtab,
2071 Layout* layout,
2072 Sized_relobj<64, false>* object,
2073 unsigned int data_shndx,
2074 unsigned int sh_type,
2075 const unsigned char* prelocs,
2076 size_t reloc_count,
2077 Output_section* output_section,
2078 bool needs_special_offset_handling,
2079 size_t local_symbol_count,
2080 const unsigned char* plocal_symbols,
2081 Relocatable_relocs* rr)
2082 {
2083 gold_assert(sh_type == elfcpp::SHT_RELA);
2084
2085 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2086 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2087
2088 gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
2089 Scan_relocatable_relocs>(
2090 options,
2091 symtab,
2092 layout,
2093 object,
2094 data_shndx,
2095 prelocs,
2096 reloc_count,
2097 output_section,
2098 needs_special_offset_handling,
2099 local_symbol_count,
2100 plocal_symbols,
2101 rr);
2102 }
2103
2104 // Relocate a section during a relocatable link.
2105
2106 void
2107 Target_x86_64::relocate_for_relocatable(
2108 const Relocate_info<64, false>* relinfo,
2109 unsigned int sh_type,
2110 const unsigned char* prelocs,
2111 size_t reloc_count,
2112 Output_section* output_section,
2113 off_t offset_in_output_section,
2114 const Relocatable_relocs* rr,
2115 unsigned char* view,
2116 elfcpp::Elf_types<64>::Elf_Addr view_address,
2117 section_size_type view_size,
2118 unsigned char* reloc_view,
2119 section_size_type reloc_view_size)
2120 {
2121 gold_assert(sh_type == elfcpp::SHT_RELA);
2122
2123 gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
2124 relinfo,
2125 prelocs,
2126 reloc_count,
2127 output_section,
2128 offset_in_output_section,
2129 rr,
2130 view,
2131 view_address,
2132 view_size,
2133 reloc_view,
2134 reloc_view_size);
2135 }
2136
2137 // Return the value to use for a dynamic which requires special
2138 // treatment. This is how we support equality comparisons of function
2139 // pointers across shared library boundaries, as described in the
2140 // processor specific ABI supplement.
2141
2142 uint64_t
2143 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2144 {
2145 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2146 return this->plt_section()->address() + gsym->plt_offset();
2147 }
2148
2149 // Return a string used to fill a code section with nops to take up
2150 // the specified length.
2151
2152 std::string
2153 Target_x86_64::do_code_fill(section_size_type length) const
2154 {
2155 if (length >= 16)
2156 {
2157 // Build a jmpq instruction to skip over the bytes.
2158 unsigned char jmp[5];
2159 jmp[0] = 0xe9;
2160 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
2161 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2162 + std::string(length - 5, '\0'));
2163 }
2164
2165 // Nop sequences of various lengths.
2166 const char nop1[1] = { 0x90 }; // nop
2167 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2168 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
2169 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
2170 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
2171 0x00 }; // leal 0(%esi,1),%esi
2172 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2173 0x00, 0x00 };
2174 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2175 0x00, 0x00, 0x00 };
2176 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
2177 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2178 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
2179 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
2180 0x00 };
2181 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2182 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2183 0x00, 0x00 };
2184 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2185 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2186 0x00, 0x00, 0x00 };
2187 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2188 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2189 0x00, 0x00, 0x00, 0x00 };
2190 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2191 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2192 0x27, 0x00, 0x00, 0x00,
2193 0x00 };
2194 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2195 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2196 0xbc, 0x27, 0x00, 0x00,
2197 0x00, 0x00 };
2198 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2199 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2200 0x90, 0x90, 0x90, 0x90,
2201 0x90, 0x90, 0x90 };
2202
2203 const char* nops[16] = {
2204 NULL,
2205 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2206 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2207 };
2208
2209 return std::string(nops[length], length);
2210 }
2211
2212 // The selector for x86_64 object files.
2213
2214 class Target_selector_x86_64 : public Target_selector
2215 {
2216 public:
2217 Target_selector_x86_64()
2218 : Target_selector(elfcpp::EM_X86_64, 64, false)
2219 { }
2220
2221 Target*
2222 recognize(int machine, int osabi, int abiversion);
2223
2224 Target*
2225 recognize_by_name(const char*);
2226
2227 private:
2228 Target_x86_64* target_;
2229 };
2230
2231 // Recognize an x86_64 object file when we already know that the machine
2232 // number is EM_X86_64.
2233
2234 Target*
2235 Target_selector_x86_64::recognize(int, int, int)
2236 {
2237 if (this->target_ == NULL)
2238 this->target_ = new Target_x86_64();
2239 return this->target_;
2240 }
2241
2242 Target*
2243 Target_selector_x86_64::recognize_by_name(const char* name)
2244 {
2245 if (strcmp(name, "elf64-x86-64") != 0)
2246 return NULL;
2247 if (this->target_ == NULL)
2248 this->target_ = new Target_x86_64();
2249 return this->target_;
2250 }
2251
2252 Target_selector_x86_64 target_selector_x86_64;
2253
2254 } // End anonymous namespace.
This page took 0.10716 seconds and 4 git commands to generate.