51a8d84a5b1ecd09c1d05ce966d80f339cbd6013
[deliverable/binutils-gdb.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
12
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file. (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
21
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 // Library General Public License for more details.
26
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
31
32 #include "gold.h"
33
34 #include <cstring>
35
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
48
49 namespace
50 {
51
52 using namespace gold;
53
54 class Output_data_plt_x86_64;
55
56 // The x86_64 target class.
57 // See the ABI at
58 // http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 // http://people.redhat.com/drepper/tls.pdf
61 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
62
63 class Target_x86_64 : public Sized_target<64, false>
64 {
65 public:
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73 copy_relocs_(NULL), dynbss_(NULL), got_mod_index_offset_(-1U)
74 { }
75
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
86 Output_section* output_section,
87 bool needs_special_offset_handling,
88 size_t local_symbol_count,
89 const unsigned char* plocal_symbols);
90
91 // Finalize the sections.
92 void
93 do_finalize_sections(Layout*);
94
95 // Return the value to use for a dynamic which requires special
96 // treatment.
97 uint64_t
98 do_dynsym_value(const Symbol*) const;
99
100 // Relocate a section.
101 void
102 relocate_section(const Relocate_info<64, false>*,
103 unsigned int sh_type,
104 const unsigned char* prelocs,
105 size_t reloc_count,
106 Output_section* output_section,
107 bool needs_special_offset_handling,
108 unsigned char* view,
109 elfcpp::Elf_types<64>::Elf_Addr view_address,
110 section_size_type view_size);
111
112 // Scan the relocs during a relocatable link.
113 void
114 scan_relocatable_relocs(const General_options& options,
115 Symbol_table* symtab,
116 Layout* layout,
117 Sized_relobj<64, false>* object,
118 unsigned int data_shndx,
119 unsigned int sh_type,
120 const unsigned char* prelocs,
121 size_t reloc_count,
122 Output_section* output_section,
123 bool needs_special_offset_handling,
124 size_t local_symbol_count,
125 const unsigned char* plocal_symbols,
126 Relocatable_relocs*);
127
128 // Relocate a section during a relocatable link.
129 void
130 relocate_for_relocatable(const Relocate_info<64, false>*,
131 unsigned int sh_type,
132 const unsigned char* prelocs,
133 size_t reloc_count,
134 Output_section* output_section,
135 off_t offset_in_output_section,
136 const Relocatable_relocs*,
137 unsigned char* view,
138 elfcpp::Elf_types<64>::Elf_Addr view_address,
139 section_size_type view_size,
140 unsigned char* reloc_view,
141 section_size_type reloc_view_size);
142
143 // Return a string used to fill a code section with nops.
144 std::string
145 do_code_fill(section_size_type length);
146
147 // Return whether SYM is defined by the ABI.
148 bool
149 do_is_defined_by_abi(Symbol* sym) const
150 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
151
152 // Return the size of the GOT section.
153 section_size_type
154 got_size()
155 {
156 gold_assert(this->got_ != NULL);
157 return this->got_->data_size();
158 }
159
160 private:
161 // The class which scans relocations.
162 struct Scan
163 {
164 inline void
165 local(const General_options& options, Symbol_table* symtab,
166 Layout* layout, Target_x86_64* target,
167 Sized_relobj<64, false>* object,
168 unsigned int data_shndx,
169 Output_section* output_section,
170 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
171 const elfcpp::Sym<64, false>& lsym);
172
173 inline void
174 global(const General_options& options, Symbol_table* symtab,
175 Layout* layout, Target_x86_64* target,
176 Sized_relobj<64, false>* object,
177 unsigned int data_shndx,
178 Output_section* output_section,
179 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
180 Symbol* gsym);
181
182 static void
183 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
184
185 static void
186 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
187 Symbol*);
188 };
189
190 // The class which implements relocation.
191 class Relocate
192 {
193 public:
194 Relocate()
195 : skip_call_tls_get_addr_(false)
196 { }
197
198 ~Relocate()
199 {
200 if (this->skip_call_tls_get_addr_)
201 {
202 // FIXME: This needs to specify the location somehow.
203 gold_error(_("missing expected TLS relocation"));
204 }
205 }
206
207 // Do a relocation. Return false if the caller should not issue
208 // any warnings about this relocation.
209 inline bool
210 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
211 const elfcpp::Rela<64, false>&,
212 unsigned int r_type, const Sized_symbol<64>*,
213 const Symbol_value<64>*,
214 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
215 section_size_type);
216
217 private:
218 // Do a TLS relocation.
219 inline void
220 relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
221 size_t relnum, const elfcpp::Rela<64, false>&,
222 unsigned int r_type, const Sized_symbol<64>*,
223 const Symbol_value<64>*,
224 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
225 section_size_type);
226
227 // Do a TLS General-Dynamic to Local-Exec transition.
228 inline void
229 tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
230 Output_segment* tls_segment,
231 const elfcpp::Rela<64, false>&, unsigned int r_type,
232 elfcpp::Elf_types<64>::Elf_Addr value,
233 unsigned char* view,
234 section_size_type view_size);
235
236 // Do a TLS General-Dynamic to Local-Exec transition.
237 inline void
238 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
239 Output_segment* tls_segment,
240 const elfcpp::Rela<64, false>&, unsigned int r_type,
241 elfcpp::Elf_types<64>::Elf_Addr value,
242 unsigned char* view,
243 section_size_type view_size);
244
245 // Do a TLS Local-Dynamic to Local-Exec transition.
246 inline void
247 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
248 Output_segment* tls_segment,
249 const elfcpp::Rela<64, false>&, unsigned int r_type,
250 elfcpp::Elf_types<64>::Elf_Addr value,
251 unsigned char* view,
252 section_size_type view_size);
253
254 // Do a TLS Initial-Exec to Local-Exec transition.
255 static inline void
256 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
257 Output_segment* tls_segment,
258 const elfcpp::Rela<64, false>&, unsigned int r_type,
259 elfcpp::Elf_types<64>::Elf_Addr value,
260 unsigned char* view,
261 section_size_type view_size);
262
263 // This is set if we should skip the next reloc, which should be a
264 // PLT32 reloc against ___tls_get_addr.
265 bool skip_call_tls_get_addr_;
266 };
267
268 // A class which returns the size required for a relocation type,
269 // used while scanning relocs during a relocatable link.
270 class Relocatable_size_for_reloc
271 {
272 public:
273 unsigned int
274 get_size_for_reloc(unsigned int, Relobj*);
275 };
276
277 // Adjust TLS relocation type based on the options and whether this
278 // is a local symbol.
279 static tls::Tls_optimization
280 optimize_tls_reloc(bool is_final, int r_type);
281
282 // Get the GOT section, creating it if necessary.
283 Output_data_got<64, false>*
284 got_section(Symbol_table*, Layout*);
285
286 // Get the GOT PLT section.
287 Output_data_space*
288 got_plt_section() const
289 {
290 gold_assert(this->got_plt_ != NULL);
291 return this->got_plt_;
292 }
293
294 // Create a PLT entry for a global symbol.
295 void
296 make_plt_entry(Symbol_table*, Layout*, Symbol*);
297
298 // Create a GOT entry for the TLS module index.
299 unsigned int
300 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
301 Sized_relobj<64, false>* object);
302
303 // Get the PLT section.
304 Output_data_plt_x86_64*
305 plt_section() const
306 {
307 gold_assert(this->plt_ != NULL);
308 return this->plt_;
309 }
310
311 // Get the dynamic reloc section, creating it if necessary.
312 Reloc_section*
313 rela_dyn_section(Layout*);
314
315 // Return true if the symbol may need a COPY relocation.
316 // References from an executable object to non-function symbols
317 // defined in a dynamic object may need a COPY relocation.
318 bool
319 may_need_copy_reloc(Symbol* gsym)
320 {
321 return (!parameters->output_is_shared()
322 && gsym->is_from_dynobj()
323 && gsym->type() != elfcpp::STT_FUNC);
324 }
325
326 // Copy a relocation against a global symbol.
327 void
328 copy_reloc(const General_options*, Symbol_table*, Layout*,
329 Sized_relobj<64, false>*, unsigned int,
330 Output_section*, Symbol*, const elfcpp::Rela<64, false>&);
331
332 // Information about this specific target which we pass to the
333 // general Target structure.
334 static const Target::Target_info x86_64_info;
335
336 // The GOT section.
337 Output_data_got<64, false>* got_;
338 // The PLT section.
339 Output_data_plt_x86_64* plt_;
340 // The GOT PLT section.
341 Output_data_space* got_plt_;
342 // The dynamic reloc section.
343 Reloc_section* rela_dyn_;
344 // Relocs saved to avoid a COPY reloc.
345 Copy_relocs<64, false>* copy_relocs_;
346 // Space for variables copied with a COPY reloc.
347 Output_data_space* dynbss_;
348 // Offset of the GOT entry for the TLS module index;
349 unsigned int got_mod_index_offset_;
350 };
351
352 const Target::Target_info Target_x86_64::x86_64_info =
353 {
354 64, // size
355 false, // is_big_endian
356 elfcpp::EM_X86_64, // machine_code
357 false, // has_make_symbol
358 false, // has_resolve
359 true, // has_code_fill
360 true, // is_default_stack_executable
361 "/lib/ld64.so.1", // program interpreter
362 0x400000, // default_text_segment_address
363 0x1000, // abi_pagesize
364 0x1000 // common_pagesize
365 };
366
367 // Get the GOT section, creating it if necessary.
368
369 Output_data_got<64, false>*
370 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
371 {
372 if (this->got_ == NULL)
373 {
374 gold_assert(symtab != NULL && layout != NULL);
375
376 this->got_ = new Output_data_got<64, false>();
377
378 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
379 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
380 this->got_);
381
382 // The old GNU linker creates a .got.plt section. We just
383 // create another set of data in the .got section. Note that we
384 // always create a PLT if we create a GOT, although the PLT
385 // might be empty.
386 this->got_plt_ = new Output_data_space(8);
387 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
388 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
389 this->got_plt_);
390
391 // The first three entries are reserved.
392 this->got_plt_->set_current_data_size(3 * 8);
393
394 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
395 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
396 this->got_plt_,
397 0, 0, elfcpp::STT_OBJECT,
398 elfcpp::STB_LOCAL,
399 elfcpp::STV_HIDDEN, 0,
400 false, false);
401 }
402
403 return this->got_;
404 }
405
406 // Get the dynamic reloc section, creating it if necessary.
407
408 Target_x86_64::Reloc_section*
409 Target_x86_64::rela_dyn_section(Layout* layout)
410 {
411 if (this->rela_dyn_ == NULL)
412 {
413 gold_assert(layout != NULL);
414 this->rela_dyn_ = new Reloc_section();
415 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
416 elfcpp::SHF_ALLOC, this->rela_dyn_);
417 }
418 return this->rela_dyn_;
419 }
420
421 // A class to handle the PLT data.
422
423 class Output_data_plt_x86_64 : public Output_section_data
424 {
425 public:
426 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
427
428 Output_data_plt_x86_64(Layout*, Output_data_space*);
429
430 // Add an entry to the PLT.
431 void
432 add_entry(Symbol* gsym);
433
434 // Return the .rel.plt section data.
435 const Reloc_section*
436 rel_plt() const
437 { return this->rel_; }
438
439 protected:
440 void
441 do_adjust_output_section(Output_section* os);
442
443 private:
444 // The size of an entry in the PLT.
445 static const int plt_entry_size = 16;
446
447 // The first entry in the PLT.
448 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
449 // procedure linkage table for both programs and shared objects."
450 static unsigned char first_plt_entry[plt_entry_size];
451
452 // Other entries in the PLT for an executable.
453 static unsigned char plt_entry[plt_entry_size];
454
455 // Set the final size.
456 void
457 set_final_data_size()
458 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
459
460 // Write out the PLT data.
461 void
462 do_write(Output_file*);
463
464 // The reloc section.
465 Reloc_section* rel_;
466 // The .got.plt section.
467 Output_data_space* got_plt_;
468 // The number of PLT entries.
469 unsigned int count_;
470 };
471
472 // Create the PLT section. The ordinary .got section is an argument,
473 // since we need to refer to the start. We also create our own .got
474 // section just for PLT entries.
475
476 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
477 Output_data_space* got_plt)
478 : Output_section_data(8), got_plt_(got_plt), count_(0)
479 {
480 this->rel_ = new Reloc_section();
481 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
482 elfcpp::SHF_ALLOC, this->rel_);
483 }
484
485 void
486 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
487 {
488 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
489 // linker, and so do we.
490 os->set_entsize(4);
491 }
492
493 // Add an entry to the PLT.
494
495 void
496 Output_data_plt_x86_64::add_entry(Symbol* gsym)
497 {
498 gold_assert(!gsym->has_plt_offset());
499
500 // Note that when setting the PLT offset we skip the initial
501 // reserved PLT entry.
502 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
503
504 ++this->count_;
505
506 section_offset_type got_offset = this->got_plt_->current_data_size();
507
508 // Every PLT entry needs a GOT entry which points back to the PLT
509 // entry (this will be changed by the dynamic linker, normally
510 // lazily when the function is called).
511 this->got_plt_->set_current_data_size(got_offset + 8);
512
513 // Every PLT entry needs a reloc.
514 gsym->set_needs_dynsym_entry();
515 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
516 got_offset, 0);
517
518 // Note that we don't need to save the symbol. The contents of the
519 // PLT are independent of which symbols are used. The symbols only
520 // appear in the relocations.
521 }
522
523 // The first entry in the PLT for an executable.
524
525 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
526 {
527 // From AMD64 ABI Draft 0.98, page 76
528 0xff, 0x35, // pushq contents of memory address
529 0, 0, 0, 0, // replaced with address of .got + 8
530 0xff, 0x25, // jmp indirect
531 0, 0, 0, 0, // replaced with address of .got + 16
532 0x90, 0x90, 0x90, 0x90 // noop (x4)
533 };
534
535 // Subsequent entries in the PLT for an executable.
536
537 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
538 {
539 // From AMD64 ABI Draft 0.98, page 76
540 0xff, 0x25, // jmpq indirect
541 0, 0, 0, 0, // replaced with address of symbol in .got
542 0x68, // pushq immediate
543 0, 0, 0, 0, // replaced with offset into relocation table
544 0xe9, // jmpq relative
545 0, 0, 0, 0 // replaced with offset to start of .plt
546 };
547
548 // Write out the PLT. This uses the hand-coded instructions above,
549 // and adjusts them as needed. This is specified by the AMD64 ABI.
550
551 void
552 Output_data_plt_x86_64::do_write(Output_file* of)
553 {
554 const off_t offset = this->offset();
555 const section_size_type oview_size =
556 convert_to_section_size_type(this->data_size());
557 unsigned char* const oview = of->get_output_view(offset, oview_size);
558
559 const off_t got_file_offset = this->got_plt_->offset();
560 const section_size_type got_size =
561 convert_to_section_size_type(this->got_plt_->data_size());
562 unsigned char* const got_view = of->get_output_view(got_file_offset,
563 got_size);
564
565 unsigned char* pov = oview;
566
567 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
568 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
569
570 memcpy(pov, first_plt_entry, plt_entry_size);
571 // We do a jmp relative to the PC at the end of this instruction.
572 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
573 - (plt_address + 6));
574 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
575 - (plt_address + 12));
576 pov += plt_entry_size;
577
578 unsigned char* got_pov = got_view;
579
580 memset(got_pov, 0, 24);
581 got_pov += 24;
582
583 unsigned int plt_offset = plt_entry_size;
584 unsigned int got_offset = 24;
585 const unsigned int count = this->count_;
586 for (unsigned int plt_index = 0;
587 plt_index < count;
588 ++plt_index,
589 pov += plt_entry_size,
590 got_pov += 8,
591 plt_offset += plt_entry_size,
592 got_offset += 8)
593 {
594 // Set and adjust the PLT entry itself.
595 memcpy(pov, plt_entry, plt_entry_size);
596 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
597 (got_address + got_offset
598 - (plt_address + plt_offset
599 + 6)));
600
601 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
602 elfcpp::Swap<32, false>::writeval(pov + 12,
603 - (plt_offset + plt_entry_size));
604
605 // Set the entry in the GOT.
606 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
607 }
608
609 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
610 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
611
612 of->write_output_view(offset, oview_size, oview);
613 of->write_output_view(got_file_offset, got_size, got_view);
614 }
615
616 // Create a PLT entry for a global symbol.
617
618 void
619 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
620 Symbol* gsym)
621 {
622 if (gsym->has_plt_offset())
623 return;
624
625 if (this->plt_ == NULL)
626 {
627 // Create the GOT sections first.
628 this->got_section(symtab, layout);
629
630 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
631 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
632 (elfcpp::SHF_ALLOC
633 | elfcpp::SHF_EXECINSTR),
634 this->plt_);
635 }
636
637 this->plt_->add_entry(gsym);
638 }
639
640 // Create a GOT entry for the TLS module index.
641
642 unsigned int
643 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
644 Sized_relobj<64, false>* object)
645 {
646 if (this->got_mod_index_offset_ == -1U)
647 {
648 gold_assert(symtab != NULL && layout != NULL && object != NULL);
649 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
650 Output_data_got<64, false>* got = this->got_section(symtab, layout);
651 unsigned int got_offset = got->add_constant(0);
652 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
653 got_offset, 0);
654 got->add_constant(0);
655 this->got_mod_index_offset_ = got_offset;
656 }
657 return this->got_mod_index_offset_;
658 }
659
660 // Handle a relocation against a non-function symbol defined in a
661 // dynamic object. The traditional way to handle this is to generate
662 // a COPY relocation to copy the variable at runtime from the shared
663 // object into the executable's data segment. However, this is
664 // undesirable in general, as if the size of the object changes in the
665 // dynamic object, the executable will no longer work correctly. If
666 // this relocation is in a writable section, then we can create a
667 // dynamic reloc and the dynamic linker will resolve it to the correct
668 // address at runtime. However, we do not want do that if the
669 // relocation is in a read-only section, as it would prevent the
670 // readonly segment from being shared. And if we have to eventually
671 // generate a COPY reloc, then any dynamic relocations will be
672 // useless. So this means that if this is a writable section, we need
673 // to save the relocation until we see whether we have to create a
674 // COPY relocation for this symbol for any other relocation.
675
676 void
677 Target_x86_64::copy_reloc(const General_options* options,
678 Symbol_table* symtab,
679 Layout* layout,
680 Sized_relobj<64, false>* object,
681 unsigned int data_shndx,
682 Output_section* output_section,
683 Symbol* gsym,
684 const elfcpp::Rela<64, false>& rela)
685 {
686 Sized_symbol<64>* ssym;
687 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
688 SELECT_SIZE(64));
689
690 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
691 data_shndx, ssym))
692 {
693 // So far we do not need a COPY reloc. Save this relocation.
694 // If it turns out that we never need a COPY reloc for this
695 // symbol, then we will emit the relocation.
696 if (this->copy_relocs_ == NULL)
697 this->copy_relocs_ = new Copy_relocs<64, false>();
698 this->copy_relocs_->save(ssym, object, data_shndx, output_section, rela);
699 }
700 else
701 {
702 // Allocate space for this symbol in the .bss section.
703
704 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
705
706 // There is no defined way to determine the required alignment
707 // of the symbol. We pick the alignment based on the size. We
708 // set an arbitrary maximum of 256.
709 unsigned int align;
710 for (align = 1; align < 512; align <<= 1)
711 if ((symsize & align) != 0)
712 break;
713
714 if (this->dynbss_ == NULL)
715 {
716 this->dynbss_ = new Output_data_space(align);
717 layout->add_output_section_data(".bss",
718 elfcpp::SHT_NOBITS,
719 (elfcpp::SHF_ALLOC
720 | elfcpp::SHF_WRITE),
721 this->dynbss_);
722 }
723
724 Output_data_space* dynbss = this->dynbss_;
725
726 if (align > dynbss->addralign())
727 dynbss->set_space_alignment(align);
728
729 section_size_type dynbss_size = dynbss->current_data_size();
730 dynbss_size = align_address(dynbss_size, align);
731 section_size_type offset = dynbss_size;
732 dynbss->set_current_data_size(dynbss_size + symsize);
733
734 symtab->define_with_copy_reloc(ssym, dynbss, offset);
735
736 // Add the COPY reloc.
737 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
738 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
739 }
740 }
741
742
743 // Optimize the TLS relocation type based on what we know about the
744 // symbol. IS_FINAL is true if the final address of this symbol is
745 // known at link time.
746
747 tls::Tls_optimization
748 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
749 {
750 // If we are generating a shared library, then we can't do anything
751 // in the linker.
752 if (parameters->output_is_shared())
753 return tls::TLSOPT_NONE;
754
755 switch (r_type)
756 {
757 case elfcpp::R_X86_64_TLSGD:
758 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
759 case elfcpp::R_X86_64_TLSDESC_CALL:
760 // These are General-Dynamic which permits fully general TLS
761 // access. Since we know that we are generating an executable,
762 // we can convert this to Initial-Exec. If we also know that
763 // this is a local symbol, we can further switch to Local-Exec.
764 if (is_final)
765 return tls::TLSOPT_TO_LE;
766 return tls::TLSOPT_TO_IE;
767
768 case elfcpp::R_X86_64_TLSLD:
769 // This is Local-Dynamic, which refers to a local symbol in the
770 // dynamic TLS block. Since we know that we generating an
771 // executable, we can switch to Local-Exec.
772 return tls::TLSOPT_TO_LE;
773
774 case elfcpp::R_X86_64_DTPOFF32:
775 case elfcpp::R_X86_64_DTPOFF64:
776 // Another Local-Dynamic reloc.
777 return tls::TLSOPT_TO_LE;
778
779 case elfcpp::R_X86_64_GOTTPOFF:
780 // These are Initial-Exec relocs which get the thread offset
781 // from the GOT. If we know that we are linking against the
782 // local symbol, we can switch to Local-Exec, which links the
783 // thread offset into the instruction.
784 if (is_final)
785 return tls::TLSOPT_TO_LE;
786 return tls::TLSOPT_NONE;
787
788 case elfcpp::R_X86_64_TPOFF32:
789 // When we already have Local-Exec, there is nothing further we
790 // can do.
791 return tls::TLSOPT_NONE;
792
793 default:
794 gold_unreachable();
795 }
796 }
797
798 // Report an unsupported relocation against a local symbol.
799
800 void
801 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
802 unsigned int r_type)
803 {
804 gold_error(_("%s: unsupported reloc %u against local symbol"),
805 object->name().c_str(), r_type);
806 }
807
808 // Scan a relocation for a local symbol.
809
810 inline void
811 Target_x86_64::Scan::local(const General_options&,
812 Symbol_table* symtab,
813 Layout* layout,
814 Target_x86_64* target,
815 Sized_relobj<64, false>* object,
816 unsigned int data_shndx,
817 Output_section* output_section,
818 const elfcpp::Rela<64, false>& reloc,
819 unsigned int r_type,
820 const elfcpp::Sym<64, false>& lsym)
821 {
822 switch (r_type)
823 {
824 case elfcpp::R_X86_64_NONE:
825 case elfcpp::R_386_GNU_VTINHERIT:
826 case elfcpp::R_386_GNU_VTENTRY:
827 break;
828
829 case elfcpp::R_X86_64_64:
830 // If building a shared library (or a position-independent
831 // executable), we need to create a dynamic relocation for
832 // this location. The relocation applied at link time will
833 // apply the link-time value, so we flag the location with
834 // an R_386_RELATIVE relocation so the dynamic loader can
835 // relocate it easily.
836 if (parameters->output_is_position_independent())
837 {
838 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
839 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
840 rela_dyn->add_local_relative(object, r_sym,
841 elfcpp::R_X86_64_RELATIVE,
842 output_section, data_shndx,
843 reloc.get_r_offset(),
844 reloc.get_r_addend());
845 }
846 break;
847
848 case elfcpp::R_X86_64_32:
849 case elfcpp::R_X86_64_32S:
850 case elfcpp::R_X86_64_16:
851 case elfcpp::R_X86_64_8:
852 // If building a shared library (or a position-independent
853 // executable), we need to create a dynamic relocation for
854 // this location. The relocation applied at link time will
855 // apply the link-time value, so we flag the location with
856 // an R_386_RELATIVE relocation so the dynamic loader can
857 // relocate it easily.
858 if (parameters->output_is_position_independent())
859 {
860 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
861 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
862 rela_dyn->add_local(object, r_sym, r_type, output_section,
863 data_shndx, reloc.get_r_offset(),
864 reloc.get_r_addend());
865 }
866 break;
867
868 case elfcpp::R_X86_64_PC64:
869 case elfcpp::R_X86_64_PC32:
870 case elfcpp::R_X86_64_PC16:
871 case elfcpp::R_X86_64_PC8:
872 break;
873
874 case elfcpp::R_X86_64_PLT32:
875 // Since we know this is a local symbol, we can handle this as a
876 // PC32 reloc.
877 break;
878
879 case elfcpp::R_X86_64_GOTPC32:
880 case elfcpp::R_X86_64_GOTOFF64:
881 case elfcpp::R_X86_64_GOTPC64:
882 case elfcpp::R_X86_64_PLTOFF64:
883 // We need a GOT section.
884 target->got_section(symtab, layout);
885 // For PLTOFF64, we'd normally want a PLT section, but since we
886 // know this is a local symbol, no PLT is needed.
887 break;
888
889 case elfcpp::R_X86_64_GOT64:
890 case elfcpp::R_X86_64_GOT32:
891 case elfcpp::R_X86_64_GOTPCREL64:
892 case elfcpp::R_X86_64_GOTPCREL:
893 case elfcpp::R_X86_64_GOTPLT64:
894 {
895 // The symbol requires a GOT entry.
896 Output_data_got<64, false>* got = target->got_section(symtab, layout);
897 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
898 if (got->add_local(object, r_sym))
899 {
900 // If we are generating a shared object, we need to add a
901 // dynamic relocation for this symbol's GOT entry.
902 if (parameters->output_is_position_independent())
903 {
904 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
905 // R_X86_64_RELATIVE assumes a 64-bit relocation.
906 if (r_type != elfcpp::R_X86_64_GOT32)
907 rela_dyn->add_local_relative(object, r_sym,
908 elfcpp::R_X86_64_RELATIVE, got,
909 object->local_got_offset(r_sym),
910 0);
911 else
912 rela_dyn->add_local(object, r_sym, r_type,
913 got, object->local_got_offset(r_sym), 0);
914 }
915 }
916 // For GOTPLT64, we'd normally want a PLT section, but since
917 // we know this is a local symbol, no PLT is needed.
918 }
919 break;
920
921 case elfcpp::R_X86_64_COPY:
922 case elfcpp::R_X86_64_GLOB_DAT:
923 case elfcpp::R_X86_64_JUMP_SLOT:
924 case elfcpp::R_X86_64_RELATIVE:
925 // These are outstanding tls relocs, which are unexpected when linking
926 case elfcpp::R_X86_64_TPOFF64:
927 case elfcpp::R_X86_64_DTPMOD64:
928 case elfcpp::R_X86_64_TLSDESC:
929 gold_error(_("%s: unexpected reloc %u in object file"),
930 object->name().c_str(), r_type);
931 break;
932
933 // These are initial tls relocs, which are expected when linking
934 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
935 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
936 case elfcpp::R_X86_64_TLSDESC_CALL:
937 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
938 case elfcpp::R_X86_64_DTPOFF32:
939 case elfcpp::R_X86_64_DTPOFF64:
940 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
941 case elfcpp::R_X86_64_TPOFF32: // Local-exec
942 {
943 bool output_is_shared = parameters->output_is_shared();
944 const tls::Tls_optimization optimized_type
945 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
946 switch (r_type)
947 {
948 case elfcpp::R_X86_64_TLSGD: // General-dynamic
949 if (optimized_type == tls::TLSOPT_NONE)
950 {
951 // Create a pair of GOT entries for the module index and
952 // dtv-relative offset.
953 Output_data_got<64, false>* got
954 = target->got_section(symtab, layout);
955 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
956 got->add_local_tls_with_rela(object, r_sym,
957 lsym.get_st_shndx(), true,
958 target->rela_dyn_section(layout),
959 elfcpp::R_X86_64_DTPMOD64);
960 }
961 else if (optimized_type != tls::TLSOPT_TO_LE)
962 unsupported_reloc_local(object, r_type);
963 break;
964
965 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
966 case elfcpp::R_X86_64_TLSDESC_CALL:
967 // FIXME: If not relaxing to LE, we need to generate
968 // a GOT entry with a R_x86_64_TLSDESC reloc.
969 if (optimized_type != tls::TLSOPT_TO_LE)
970 unsupported_reloc_local(object, r_type);
971 break;
972
973 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
974 if (optimized_type == tls::TLSOPT_NONE)
975 {
976 // Create a GOT entry for the module index.
977 target->got_mod_index_entry(symtab, layout, object);
978 }
979 else if (optimized_type != tls::TLSOPT_TO_LE)
980 unsupported_reloc_local(object, r_type);
981 break;
982
983 case elfcpp::R_X86_64_DTPOFF32:
984 case elfcpp::R_X86_64_DTPOFF64:
985 break;
986
987 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
988 layout->set_has_static_tls();
989 if (optimized_type == tls::TLSOPT_NONE)
990 {
991 // Create a GOT entry for the tp-relative offset.
992 Output_data_got<64, false>* got
993 = target->got_section(symtab, layout);
994 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
995 got->add_local_with_rela(object, r_sym,
996 target->rela_dyn_section(layout),
997 elfcpp::R_X86_64_TPOFF64);
998 }
999 else if (optimized_type != tls::TLSOPT_TO_LE)
1000 unsupported_reloc_local(object, r_type);
1001 break;
1002
1003 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1004 layout->set_has_static_tls();
1005 if (output_is_shared)
1006 unsupported_reloc_local(object, r_type);
1007 break;
1008
1009 default:
1010 gold_unreachable();
1011 }
1012 }
1013 break;
1014
1015 case elfcpp::R_X86_64_SIZE32:
1016 case elfcpp::R_X86_64_SIZE64:
1017 default:
1018 gold_error(_("%s: unsupported reloc %u against local symbol"),
1019 object->name().c_str(), r_type);
1020 break;
1021 }
1022 }
1023
1024
1025 // Report an unsupported relocation against a global symbol.
1026
1027 void
1028 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1029 unsigned int r_type,
1030 Symbol* gsym)
1031 {
1032 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1033 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1034 }
1035
1036 // Scan a relocation for a global symbol.
1037
1038 inline void
1039 Target_x86_64::Scan::global(const General_options& options,
1040 Symbol_table* symtab,
1041 Layout* layout,
1042 Target_x86_64* target,
1043 Sized_relobj<64, false>* object,
1044 unsigned int data_shndx,
1045 Output_section* output_section,
1046 const elfcpp::Rela<64, false>& reloc,
1047 unsigned int r_type,
1048 Symbol* gsym)
1049 {
1050 switch (r_type)
1051 {
1052 case elfcpp::R_X86_64_NONE:
1053 case elfcpp::R_386_GNU_VTINHERIT:
1054 case elfcpp::R_386_GNU_VTENTRY:
1055 break;
1056
1057 case elfcpp::R_X86_64_64:
1058 case elfcpp::R_X86_64_32:
1059 case elfcpp::R_X86_64_32S:
1060 case elfcpp::R_X86_64_16:
1061 case elfcpp::R_X86_64_8:
1062 {
1063 // Make a PLT entry if necessary.
1064 if (gsym->needs_plt_entry())
1065 {
1066 target->make_plt_entry(symtab, layout, gsym);
1067 // Since this is not a PC-relative relocation, we may be
1068 // taking the address of a function. In that case we need to
1069 // set the entry in the dynamic symbol table to the address of
1070 // the PLT entry.
1071 if (gsym->is_from_dynobj() && !parameters->output_is_shared())
1072 gsym->set_needs_dynsym_value();
1073 }
1074 // Make a dynamic relocation if necessary.
1075 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1076 {
1077 if (target->may_need_copy_reloc(gsym))
1078 {
1079 target->copy_reloc(&options, symtab, layout, object,
1080 data_shndx, output_section, gsym, reloc);
1081 }
1082 else if (r_type == elfcpp::R_X86_64_64
1083 && gsym->can_use_relative_reloc(false))
1084 {
1085 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1086 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1087 output_section, object,
1088 data_shndx, reloc.get_r_offset(),
1089 reloc.get_r_addend());
1090 }
1091 else
1092 {
1093 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1094 rela_dyn->add_global(gsym, r_type, output_section, object,
1095 data_shndx, reloc.get_r_offset(),
1096 reloc.get_r_addend());
1097 }
1098 }
1099 }
1100 break;
1101
1102 case elfcpp::R_X86_64_PC64:
1103 case elfcpp::R_X86_64_PC32:
1104 case elfcpp::R_X86_64_PC16:
1105 case elfcpp::R_X86_64_PC8:
1106 {
1107 // Make a PLT entry if necessary.
1108 if (gsym->needs_plt_entry())
1109 target->make_plt_entry(symtab, layout, gsym);
1110 // Make a dynamic relocation if necessary.
1111 int flags = Symbol::NON_PIC_REF;
1112 if (gsym->type() == elfcpp::STT_FUNC)
1113 flags |= Symbol::FUNCTION_CALL;
1114 if (gsym->needs_dynamic_reloc(flags))
1115 {
1116 if (target->may_need_copy_reloc(gsym))
1117 {
1118 target->copy_reloc(&options, symtab, layout, object,
1119 data_shndx, output_section, gsym, reloc);
1120 }
1121 else
1122 {
1123 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1124 rela_dyn->add_global(gsym, r_type, output_section, object,
1125 data_shndx, reloc.get_r_offset(),
1126 reloc.get_r_addend());
1127 }
1128 }
1129 }
1130 break;
1131
1132 case elfcpp::R_X86_64_GOT64:
1133 case elfcpp::R_X86_64_GOT32:
1134 case elfcpp::R_X86_64_GOTPCREL64:
1135 case elfcpp::R_X86_64_GOTPCREL:
1136 case elfcpp::R_X86_64_GOTPLT64:
1137 {
1138 // The symbol requires a GOT entry.
1139 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1140 if (gsym->final_value_is_known())
1141 got->add_global(gsym);
1142 else
1143 {
1144 // If this symbol is not fully resolved, we need to add a
1145 // dynamic relocation for it.
1146 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1147 if (gsym->is_from_dynobj() || gsym->is_preemptible())
1148 got->add_global_with_rela(gsym, rela_dyn,
1149 elfcpp::R_X86_64_GLOB_DAT);
1150 else
1151 {
1152 if (got->add_global(gsym))
1153 rela_dyn->add_global_relative(gsym,
1154 elfcpp::R_X86_64_RELATIVE,
1155 got, gsym->got_offset(), 0);
1156 }
1157 }
1158 // For GOTPLT64, we also need a PLT entry (but only if the
1159 // symbol is not fully resolved).
1160 if (r_type == elfcpp::R_X86_64_GOTPLT64
1161 && !gsym->final_value_is_known())
1162 target->make_plt_entry(symtab, layout, gsym);
1163 }
1164 break;
1165
1166 case elfcpp::R_X86_64_PLT32:
1167 // If the symbol is fully resolved, this is just a PC32 reloc.
1168 // Otherwise we need a PLT entry.
1169 if (gsym->final_value_is_known())
1170 break;
1171 // If building a shared library, we can also skip the PLT entry
1172 // if the symbol is defined in the output file and is protected
1173 // or hidden.
1174 if (gsym->is_defined()
1175 && !gsym->is_from_dynobj()
1176 && !gsym->is_preemptible())
1177 break;
1178 target->make_plt_entry(symtab, layout, gsym);
1179 break;
1180
1181 case elfcpp::R_X86_64_GOTPC32:
1182 case elfcpp::R_X86_64_GOTOFF64:
1183 case elfcpp::R_X86_64_GOTPC64:
1184 case elfcpp::R_X86_64_PLTOFF64:
1185 // We need a GOT section.
1186 target->got_section(symtab, layout);
1187 // For PLTOFF64, we also need a PLT entry (but only if the
1188 // symbol is not fully resolved).
1189 if (r_type == elfcpp::R_X86_64_PLTOFF64
1190 && !gsym->final_value_is_known())
1191 target->make_plt_entry(symtab, layout, gsym);
1192 break;
1193
1194 case elfcpp::R_X86_64_COPY:
1195 case elfcpp::R_X86_64_GLOB_DAT:
1196 case elfcpp::R_X86_64_JUMP_SLOT:
1197 case elfcpp::R_X86_64_RELATIVE:
1198 // These are outstanding tls relocs, which are unexpected when linking
1199 case elfcpp::R_X86_64_TPOFF64:
1200 case elfcpp::R_X86_64_DTPMOD64:
1201 case elfcpp::R_X86_64_TLSDESC:
1202 gold_error(_("%s: unexpected reloc %u in object file"),
1203 object->name().c_str(), r_type);
1204 break;
1205
1206 // These are initial tls relocs, which are expected for global()
1207 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1208 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1209 case elfcpp::R_X86_64_TLSDESC_CALL:
1210 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1211 case elfcpp::R_X86_64_DTPOFF32:
1212 case elfcpp::R_X86_64_DTPOFF64:
1213 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1214 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1215 {
1216 const bool is_final = gsym->final_value_is_known();
1217 const tls::Tls_optimization optimized_type
1218 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1219 switch (r_type)
1220 {
1221 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1222 if (optimized_type == tls::TLSOPT_NONE)
1223 {
1224 // Create a pair of GOT entries for the module index and
1225 // dtv-relative offset.
1226 Output_data_got<64, false>* got
1227 = target->got_section(symtab, layout);
1228 got->add_global_tls_with_rela(gsym,
1229 target->rela_dyn_section(layout),
1230 elfcpp::R_X86_64_DTPMOD64,
1231 elfcpp::R_X86_64_DTPOFF64);
1232 }
1233 else if (optimized_type == tls::TLSOPT_TO_IE)
1234 {
1235 // Create a GOT entry for the tp-relative offset.
1236 Output_data_got<64, false>* got
1237 = target->got_section(symtab, layout);
1238 got->add_global_with_rela(gsym,
1239 target->rela_dyn_section(layout),
1240 elfcpp::R_X86_64_TPOFF64);
1241 }
1242 else if (optimized_type != tls::TLSOPT_TO_LE)
1243 unsupported_reloc_global(object, r_type, gsym);
1244 break;
1245
1246 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1247 case elfcpp::R_X86_64_TLSDESC_CALL:
1248 // FIXME: If not relaxing to LE, we need to generate
1249 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1250 if (optimized_type != tls::TLSOPT_TO_LE)
1251 unsupported_reloc_global(object, r_type, gsym);
1252 break;
1253
1254 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1255 if (optimized_type == tls::TLSOPT_NONE)
1256 {
1257 // Create a GOT entry for the module index.
1258 target->got_mod_index_entry(symtab, layout, object);
1259 }
1260 else if (optimized_type != tls::TLSOPT_TO_LE)
1261 unsupported_reloc_global(object, r_type, gsym);
1262 break;
1263
1264 case elfcpp::R_X86_64_DTPOFF32:
1265 case elfcpp::R_X86_64_DTPOFF64:
1266 break;
1267
1268 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1269 layout->set_has_static_tls();
1270 if (optimized_type == tls::TLSOPT_NONE)
1271 {
1272 // Create a GOT entry for the tp-relative offset.
1273 Output_data_got<64, false>* got
1274 = target->got_section(symtab, layout);
1275 got->add_global_with_rela(gsym,
1276 target->rela_dyn_section(layout),
1277 elfcpp::R_X86_64_TPOFF64);
1278 }
1279 else if (optimized_type != tls::TLSOPT_TO_LE)
1280 unsupported_reloc_global(object, r_type, gsym);
1281 break;
1282
1283 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1284 layout->set_has_static_tls();
1285 if (parameters->output_is_shared())
1286 unsupported_reloc_local(object, r_type);
1287 break;
1288
1289 default:
1290 gold_unreachable();
1291 }
1292 }
1293 break;
1294
1295 case elfcpp::R_X86_64_SIZE32:
1296 case elfcpp::R_X86_64_SIZE64:
1297 default:
1298 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1299 object->name().c_str(), r_type,
1300 gsym->demangled_name().c_str());
1301 break;
1302 }
1303 }
1304
1305 // Scan relocations for a section.
1306
1307 void
1308 Target_x86_64::scan_relocs(const General_options& options,
1309 Symbol_table* symtab,
1310 Layout* layout,
1311 Sized_relobj<64, false>* object,
1312 unsigned int data_shndx,
1313 unsigned int sh_type,
1314 const unsigned char* prelocs,
1315 size_t reloc_count,
1316 Output_section* output_section,
1317 bool needs_special_offset_handling,
1318 size_t local_symbol_count,
1319 const unsigned char* plocal_symbols)
1320 {
1321 if (sh_type == elfcpp::SHT_REL)
1322 {
1323 gold_error(_("%s: unsupported REL reloc section"),
1324 object->name().c_str());
1325 return;
1326 }
1327
1328 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1329 Target_x86_64::Scan>(
1330 options,
1331 symtab,
1332 layout,
1333 this,
1334 object,
1335 data_shndx,
1336 prelocs,
1337 reloc_count,
1338 output_section,
1339 needs_special_offset_handling,
1340 local_symbol_count,
1341 plocal_symbols);
1342 }
1343
1344 // Finalize the sections.
1345
1346 void
1347 Target_x86_64::do_finalize_sections(Layout* layout)
1348 {
1349 // Fill in some more dynamic tags.
1350 Output_data_dynamic* const odyn = layout->dynamic_data();
1351 if (odyn != NULL)
1352 {
1353 if (this->got_plt_ != NULL)
1354 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1355
1356 if (this->plt_ != NULL)
1357 {
1358 const Output_data* od = this->plt_->rel_plt();
1359 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1360 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1361 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1362 }
1363
1364 if (this->rela_dyn_ != NULL)
1365 {
1366 const Output_data* od = this->rela_dyn_;
1367 odyn->add_section_address(elfcpp::DT_RELA, od);
1368 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1369 odyn->add_constant(elfcpp::DT_RELAENT,
1370 elfcpp::Elf_sizes<64>::rela_size);
1371 }
1372
1373 if (!parameters->output_is_shared())
1374 {
1375 // The value of the DT_DEBUG tag is filled in by the dynamic
1376 // linker at run time, and used by the debugger.
1377 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1378 }
1379 }
1380
1381 // Emit any relocs we saved in an attempt to avoid generating COPY
1382 // relocs.
1383 if (this->copy_relocs_ == NULL)
1384 return;
1385 if (this->copy_relocs_->any_to_emit())
1386 {
1387 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1388 this->copy_relocs_->emit(rela_dyn);
1389 }
1390 delete this->copy_relocs_;
1391 this->copy_relocs_ = NULL;
1392 }
1393
1394 // Perform a relocation.
1395
1396 inline bool
1397 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1398 Target_x86_64* target,
1399 size_t relnum,
1400 const elfcpp::Rela<64, false>& rela,
1401 unsigned int r_type,
1402 const Sized_symbol<64>* gsym,
1403 const Symbol_value<64>* psymval,
1404 unsigned char* view,
1405 elfcpp::Elf_types<64>::Elf_Addr address,
1406 section_size_type view_size)
1407 {
1408 if (this->skip_call_tls_get_addr_)
1409 {
1410 if (r_type != elfcpp::R_X86_64_PLT32
1411 || gsym == NULL
1412 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1413 {
1414 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1415 _("missing expected TLS relocation"));
1416 }
1417 else
1418 {
1419 this->skip_call_tls_get_addr_ = false;
1420 return false;
1421 }
1422 }
1423
1424 // Pick the value to use for symbols defined in shared objects.
1425 Symbol_value<64> symval;
1426 if (gsym != NULL
1427 && (gsym->is_from_dynobj()
1428 || (parameters->output_is_shared()
1429 && gsym->is_preemptible()))
1430 && gsym->has_plt_offset())
1431 {
1432 symval.set_output_value(target->plt_section()->address()
1433 + gsym->plt_offset());
1434 psymval = &symval;
1435 }
1436
1437 const Sized_relobj<64, false>* object = relinfo->object;
1438 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1439
1440 // Get the GOT offset if needed.
1441 // The GOT pointer points to the end of the GOT section.
1442 // We need to subtract the size of the GOT section to get
1443 // the actual offset to use in the relocation.
1444 bool have_got_offset = false;
1445 unsigned int got_offset = 0;
1446 switch (r_type)
1447 {
1448 case elfcpp::R_X86_64_GOT32:
1449 case elfcpp::R_X86_64_GOT64:
1450 case elfcpp::R_X86_64_GOTPLT64:
1451 case elfcpp::R_X86_64_GOTPCREL:
1452 case elfcpp::R_X86_64_GOTPCREL64:
1453 if (gsym != NULL)
1454 {
1455 gold_assert(gsym->has_got_offset());
1456 got_offset = gsym->got_offset() - target->got_size();
1457 }
1458 else
1459 {
1460 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1461 gold_assert(object->local_has_got_offset(r_sym));
1462 got_offset = object->local_got_offset(r_sym) - target->got_size();
1463 }
1464 have_got_offset = true;
1465 break;
1466
1467 default:
1468 break;
1469 }
1470
1471 switch (r_type)
1472 {
1473 case elfcpp::R_X86_64_NONE:
1474 case elfcpp::R_386_GNU_VTINHERIT:
1475 case elfcpp::R_386_GNU_VTENTRY:
1476 break;
1477
1478 case elfcpp::R_X86_64_64:
1479 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1480 break;
1481
1482 case elfcpp::R_X86_64_PC64:
1483 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1484 address);
1485 break;
1486
1487 case elfcpp::R_X86_64_32:
1488 // FIXME: we need to verify that value + addend fits into 32 bits:
1489 // uint64_t x = value + addend;
1490 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1491 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1492 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1493 break;
1494
1495 case elfcpp::R_X86_64_32S:
1496 // FIXME: we need to verify that value + addend fits into 32 bits:
1497 // int64_t x = value + addend; // note this quantity is signed!
1498 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1499 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1500 break;
1501
1502 case elfcpp::R_X86_64_PC32:
1503 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1504 address);
1505 break;
1506
1507 case elfcpp::R_X86_64_16:
1508 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1509 break;
1510
1511 case elfcpp::R_X86_64_PC16:
1512 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1513 address);
1514 break;
1515
1516 case elfcpp::R_X86_64_8:
1517 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1518 break;
1519
1520 case elfcpp::R_X86_64_PC8:
1521 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1522 address);
1523 break;
1524
1525 case elfcpp::R_X86_64_PLT32:
1526 gold_assert(gsym == NULL
1527 || gsym->has_plt_offset()
1528 || gsym->final_value_is_known()
1529 || (gsym->is_defined()
1530 && !gsym->is_from_dynobj()
1531 && !gsym->is_preemptible()));
1532 // Note: while this code looks the same as for R_X86_64_PC32, it
1533 // behaves differently because psymval was set to point to
1534 // the PLT entry, rather than the symbol, in Scan::global().
1535 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1536 address);
1537 break;
1538
1539 case elfcpp::R_X86_64_PLTOFF64:
1540 {
1541 gold_assert(gsym);
1542 gold_assert(gsym->has_plt_offset()
1543 || gsym->final_value_is_known());
1544 elfcpp::Elf_types<64>::Elf_Addr got_address;
1545 got_address = target->got_section(NULL, NULL)->address();
1546 Relocate_functions<64, false>::rela64(view, object, psymval,
1547 addend - got_address);
1548 }
1549
1550 case elfcpp::R_X86_64_GOT32:
1551 gold_assert(have_got_offset);
1552 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1553 break;
1554
1555 case elfcpp::R_X86_64_GOTPC32:
1556 {
1557 gold_assert(gsym);
1558 elfcpp::Elf_types<64>::Elf_Addr value;
1559 value = target->got_plt_section()->address();
1560 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1561 }
1562 break;
1563
1564 case elfcpp::R_X86_64_GOT64:
1565 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1566 // Since we always add a PLT entry, this is equivalent.
1567 case elfcpp::R_X86_64_GOTPLT64:
1568 gold_assert(have_got_offset);
1569 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1570 break;
1571
1572 case elfcpp::R_X86_64_GOTPC64:
1573 {
1574 gold_assert(gsym);
1575 elfcpp::Elf_types<64>::Elf_Addr value;
1576 value = target->got_plt_section()->address();
1577 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1578 }
1579 break;
1580
1581 case elfcpp::R_X86_64_GOTOFF64:
1582 {
1583 elfcpp::Elf_types<64>::Elf_Addr value;
1584 value = (psymval->value(object, 0)
1585 - target->got_plt_section()->address());
1586 Relocate_functions<64, false>::rela64(view, value, addend);
1587 }
1588 break;
1589
1590 case elfcpp::R_X86_64_GOTPCREL:
1591 {
1592 gold_assert(have_got_offset);
1593 elfcpp::Elf_types<64>::Elf_Addr value;
1594 value = target->got_plt_section()->address() + got_offset;
1595 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1596 }
1597 break;
1598
1599 case elfcpp::R_X86_64_GOTPCREL64:
1600 {
1601 gold_assert(have_got_offset);
1602 elfcpp::Elf_types<64>::Elf_Addr value;
1603 value = target->got_plt_section()->address() + got_offset;
1604 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1605 }
1606 break;
1607
1608 case elfcpp::R_X86_64_COPY:
1609 case elfcpp::R_X86_64_GLOB_DAT:
1610 case elfcpp::R_X86_64_JUMP_SLOT:
1611 case elfcpp::R_X86_64_RELATIVE:
1612 // These are outstanding tls relocs, which are unexpected when linking
1613 case elfcpp::R_X86_64_TPOFF64:
1614 case elfcpp::R_X86_64_DTPMOD64:
1615 case elfcpp::R_X86_64_TLSDESC:
1616 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1617 _("unexpected reloc %u in object file"),
1618 r_type);
1619 break;
1620
1621 // These are initial tls relocs, which are expected when linking
1622 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1623 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1624 case elfcpp::R_X86_64_TLSDESC_CALL:
1625 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1626 case elfcpp::R_X86_64_DTPOFF32:
1627 case elfcpp::R_X86_64_DTPOFF64:
1628 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1629 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1630 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1631 view, address, view_size);
1632 break;
1633
1634 case elfcpp::R_X86_64_SIZE32:
1635 case elfcpp::R_X86_64_SIZE64:
1636 default:
1637 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1638 _("unsupported reloc %u"),
1639 r_type);
1640 break;
1641 }
1642
1643 return true;
1644 }
1645
1646 // Perform a TLS relocation.
1647
1648 inline void
1649 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1650 Target_x86_64* target,
1651 size_t relnum,
1652 const elfcpp::Rela<64, false>& rela,
1653 unsigned int r_type,
1654 const Sized_symbol<64>* gsym,
1655 const Symbol_value<64>* psymval,
1656 unsigned char* view,
1657 elfcpp::Elf_types<64>::Elf_Addr address,
1658 section_size_type view_size)
1659 {
1660 Output_segment* tls_segment = relinfo->layout->tls_segment();
1661
1662 const Sized_relobj<64, false>* object = relinfo->object;
1663 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1664
1665 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1666
1667 const bool is_final = (gsym == NULL
1668 ? !parameters->output_is_position_independent()
1669 : gsym->final_value_is_known());
1670 const tls::Tls_optimization optimized_type
1671 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1672 switch (r_type)
1673 {
1674 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1675 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1676 case elfcpp::R_X86_64_TLSDESC_CALL:
1677 if (optimized_type == tls::TLSOPT_TO_LE)
1678 {
1679 gold_assert(tls_segment != NULL);
1680 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1681 rela, r_type, value, view,
1682 view_size);
1683 break;
1684 }
1685 else
1686 {
1687 unsigned int got_offset;
1688 if (gsym != NULL)
1689 {
1690 gold_assert(gsym->has_tls_got_offset(true));
1691 got_offset = gsym->tls_got_offset(true) - target->got_size();
1692 }
1693 else
1694 {
1695 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1696 gold_assert(object->local_has_tls_got_offset(r_sym, true));
1697 got_offset = (object->local_tls_got_offset(r_sym, true)
1698 - target->got_size());
1699 }
1700 if (optimized_type == tls::TLSOPT_TO_IE)
1701 {
1702 gold_assert(tls_segment != NULL);
1703 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
1704 got_offset, view, view_size);
1705 break;
1706 }
1707 else if (optimized_type == tls::TLSOPT_NONE)
1708 {
1709 // Relocate the field with the offset of the pair of GOT
1710 // entries.
1711 value = target->got_plt_section()->address() + got_offset;
1712 Relocate_functions<64, false>::pcrela32(view, value, addend,
1713 address);
1714 break;
1715 }
1716 }
1717 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1718 _("unsupported reloc %u"), r_type);
1719 break;
1720
1721 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1722 if (optimized_type == tls::TLSOPT_TO_LE)
1723 {
1724 gold_assert(tls_segment != NULL);
1725 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1726 value, view, view_size);
1727 break;
1728 }
1729 else if (optimized_type == tls::TLSOPT_NONE)
1730 {
1731 // Relocate the field with the offset of the GOT entry for
1732 // the module index.
1733 unsigned int got_offset;
1734 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1735 - target->got_size());
1736 value = target->got_plt_section()->address() + got_offset;
1737 Relocate_functions<64, false>::pcrela32(view, value, addend,
1738 address);
1739 break;
1740 }
1741 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1742 _("unsupported reloc %u"), r_type);
1743 break;
1744
1745 case elfcpp::R_X86_64_DTPOFF32:
1746 gold_assert(tls_segment != NULL);
1747 if (optimized_type == tls::TLSOPT_TO_LE)
1748 value -= tls_segment->memsz();
1749 Relocate_functions<64, false>::rela32(view, value, 0);
1750 break;
1751
1752 case elfcpp::R_X86_64_DTPOFF64:
1753 gold_assert(tls_segment != NULL);
1754 if (optimized_type == tls::TLSOPT_TO_LE)
1755 value -= tls_segment->memsz();
1756 Relocate_functions<64, false>::rela64(view, value, 0);
1757 break;
1758
1759 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1760 if (optimized_type == tls::TLSOPT_TO_LE)
1761 {
1762 gold_assert(tls_segment != NULL);
1763 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1764 rela, r_type, value, view,
1765 view_size);
1766 break;
1767 }
1768 else if (optimized_type == tls::TLSOPT_NONE)
1769 {
1770 // Relocate the field with the offset of the GOT entry for
1771 // the tp-relative offset of the symbol.
1772 unsigned int got_offset;
1773 if (gsym != NULL)
1774 {
1775 gold_assert(gsym->has_got_offset());
1776 got_offset = gsym->got_offset() - target->got_size();
1777 }
1778 else
1779 {
1780 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1781 gold_assert(object->local_has_got_offset(r_sym));
1782 got_offset = (object->local_got_offset(r_sym)
1783 - target->got_size());
1784 }
1785 value = target->got_plt_section()->address() + got_offset;
1786 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1787 break;
1788 }
1789 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1790 _("unsupported reloc type %u"),
1791 r_type);
1792 break;
1793
1794 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1795 value -= tls_segment->memsz();
1796 Relocate_functions<64, false>::rela32(view, value, 0);
1797 break;
1798 }
1799 }
1800
1801 // Do a relocation in which we convert a TLS General-Dynamic to an
1802 // Initial-Exec.
1803
1804 inline void
1805 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
1806 size_t relnum,
1807 Output_segment* tls_segment,
1808 const elfcpp::Rela<64, false>& rela,
1809 unsigned int,
1810 elfcpp::Elf_types<64>::Elf_Addr value,
1811 unsigned char* view,
1812 section_size_type view_size)
1813 {
1814 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1815 // .word 0x6666; rex64; call __tls_get_addr
1816 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
1817
1818 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1819 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1820
1821 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1822 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1823 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1824 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1825
1826 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
1827
1828 value -= tls_segment->memsz();
1829 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1830
1831 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1832 // We can skip it.
1833 this->skip_call_tls_get_addr_ = true;
1834 }
1835
1836 // Do a relocation in which we convert a TLS General-Dynamic to a
1837 // Local-Exec.
1838
1839 inline void
1840 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1841 size_t relnum,
1842 Output_segment* tls_segment,
1843 const elfcpp::Rela<64, false>& rela,
1844 unsigned int,
1845 elfcpp::Elf_types<64>::Elf_Addr value,
1846 unsigned char* view,
1847 section_size_type view_size)
1848 {
1849 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1850 // .word 0x6666; rex64; call __tls_get_addr
1851 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1852
1853 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1854 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1855
1856 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1857 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1858 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1859 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1860
1861 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1862
1863 value -= tls_segment->memsz();
1864 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1865
1866 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1867 // We can skip it.
1868 this->skip_call_tls_get_addr_ = true;
1869 }
1870
1871 inline void
1872 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1873 size_t relnum,
1874 Output_segment*,
1875 const elfcpp::Rela<64, false>& rela,
1876 unsigned int,
1877 elfcpp::Elf_types<64>::Elf_Addr,
1878 unsigned char* view,
1879 section_size_type view_size)
1880 {
1881 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1882 // ... leq foo@dtpoff(%rax),%reg
1883 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1884
1885 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1886 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1887
1888 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1889 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1890
1891 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1892
1893 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1894
1895 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1896 // We can skip it.
1897 this->skip_call_tls_get_addr_ = true;
1898 }
1899
1900 // Do a relocation in which we convert a TLS Initial-Exec to a
1901 // Local-Exec.
1902
1903 inline void
1904 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1905 size_t relnum,
1906 Output_segment* tls_segment,
1907 const elfcpp::Rela<64, false>& rela,
1908 unsigned int,
1909 elfcpp::Elf_types<64>::Elf_Addr value,
1910 unsigned char* view,
1911 section_size_type view_size)
1912 {
1913 // We need to examine the opcodes to figure out which instruction we
1914 // are looking at.
1915
1916 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1917 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1918
1919 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1920 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1921
1922 unsigned char op1 = view[-3];
1923 unsigned char op2 = view[-2];
1924 unsigned char op3 = view[-1];
1925 unsigned char reg = op3 >> 3;
1926
1927 if (op2 == 0x8b)
1928 {
1929 // movq
1930 if (op1 == 0x4c)
1931 view[-3] = 0x49;
1932 view[-2] = 0xc7;
1933 view[-1] = 0xc0 | reg;
1934 }
1935 else if (reg == 4)
1936 {
1937 // Special handling for %rsp.
1938 if (op1 == 0x4c)
1939 view[-3] = 0x49;
1940 view[-2] = 0x81;
1941 view[-1] = 0xc0 | reg;
1942 }
1943 else
1944 {
1945 // addq
1946 if (op1 == 0x4c)
1947 view[-3] = 0x4d;
1948 view[-2] = 0x8d;
1949 view[-1] = 0x80 | reg | (reg << 3);
1950 }
1951
1952 value -= tls_segment->memsz();
1953 Relocate_functions<64, false>::rela32(view, value, 0);
1954 }
1955
1956 // Relocate section data.
1957
1958 void
1959 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1960 unsigned int sh_type,
1961 const unsigned char* prelocs,
1962 size_t reloc_count,
1963 Output_section* output_section,
1964 bool needs_special_offset_handling,
1965 unsigned char* view,
1966 elfcpp::Elf_types<64>::Elf_Addr address,
1967 section_size_type view_size)
1968 {
1969 gold_assert(sh_type == elfcpp::SHT_RELA);
1970
1971 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1972 Target_x86_64::Relocate>(
1973 relinfo,
1974 this,
1975 prelocs,
1976 reloc_count,
1977 output_section,
1978 needs_special_offset_handling,
1979 view,
1980 address,
1981 view_size);
1982 }
1983
1984 // Return the size of a relocation while scanning during a relocatable
1985 // link.
1986
1987 unsigned int
1988 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
1989 unsigned int r_type,
1990 Relobj* object)
1991 {
1992 switch (r_type)
1993 {
1994 case elfcpp::R_X86_64_NONE:
1995 case elfcpp::R_386_GNU_VTINHERIT:
1996 case elfcpp::R_386_GNU_VTENTRY:
1997 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1998 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1999 case elfcpp::R_X86_64_TLSDESC_CALL:
2000 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2001 case elfcpp::R_X86_64_DTPOFF32:
2002 case elfcpp::R_X86_64_DTPOFF64:
2003 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2004 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2005 return 0;
2006
2007 case elfcpp::R_X86_64_64:
2008 case elfcpp::R_X86_64_PC64:
2009 case elfcpp::R_X86_64_GOTOFF64:
2010 case elfcpp::R_X86_64_GOTPC64:
2011 case elfcpp::R_X86_64_PLTOFF64:
2012 case elfcpp::R_X86_64_GOT64:
2013 case elfcpp::R_X86_64_GOTPCREL64:
2014 case elfcpp::R_X86_64_GOTPCREL:
2015 case elfcpp::R_X86_64_GOTPLT64:
2016 return 8;
2017
2018 case elfcpp::R_X86_64_32:
2019 case elfcpp::R_X86_64_32S:
2020 case elfcpp::R_X86_64_PC32:
2021 case elfcpp::R_X86_64_PLT32:
2022 case elfcpp::R_X86_64_GOTPC32:
2023 case elfcpp::R_X86_64_GOT32:
2024 return 4;
2025
2026 case elfcpp::R_X86_64_16:
2027 case elfcpp::R_X86_64_PC16:
2028 return 2;
2029
2030 case elfcpp::R_X86_64_8:
2031 case elfcpp::R_X86_64_PC8:
2032 return 1;
2033
2034 case elfcpp::R_X86_64_COPY:
2035 case elfcpp::R_X86_64_GLOB_DAT:
2036 case elfcpp::R_X86_64_JUMP_SLOT:
2037 case elfcpp::R_X86_64_RELATIVE:
2038 // These are outstanding tls relocs, which are unexpected when linking
2039 case elfcpp::R_X86_64_TPOFF64:
2040 case elfcpp::R_X86_64_DTPMOD64:
2041 case elfcpp::R_X86_64_TLSDESC:
2042 object->error(_("unexpected reloc %u in object file"), r_type);
2043 return 0;
2044
2045 case elfcpp::R_X86_64_SIZE32:
2046 case elfcpp::R_X86_64_SIZE64:
2047 default:
2048 object->error(_("unsupported reloc %u against local symbol"), r_type);
2049 return 0;
2050 }
2051 }
2052
2053 // Scan the relocs during a relocatable link.
2054
2055 void
2056 Target_x86_64::scan_relocatable_relocs(const General_options& options,
2057 Symbol_table* symtab,
2058 Layout* layout,
2059 Sized_relobj<64, false>* object,
2060 unsigned int data_shndx,
2061 unsigned int sh_type,
2062 const unsigned char* prelocs,
2063 size_t reloc_count,
2064 Output_section* output_section,
2065 bool needs_special_offset_handling,
2066 size_t local_symbol_count,
2067 const unsigned char* plocal_symbols,
2068 Relocatable_relocs* rr)
2069 {
2070 gold_assert(sh_type == elfcpp::SHT_RELA);
2071
2072 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2073 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2074
2075 gold::scan_relocatable_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2076 Scan_relocatable_relocs>(
2077 options,
2078 symtab,
2079 layout,
2080 object,
2081 data_shndx,
2082 prelocs,
2083 reloc_count,
2084 output_section,
2085 needs_special_offset_handling,
2086 local_symbol_count,
2087 plocal_symbols,
2088 rr);
2089 }
2090
2091 // Relocate a section during a relocatable link.
2092
2093 void
2094 Target_x86_64::relocate_for_relocatable(
2095 const Relocate_info<64, false>* relinfo,
2096 unsigned int sh_type,
2097 const unsigned char* prelocs,
2098 size_t reloc_count,
2099 Output_section* output_section,
2100 off_t offset_in_output_section,
2101 const Relocatable_relocs* rr,
2102 unsigned char* view,
2103 elfcpp::Elf_types<64>::Elf_Addr view_address,
2104 section_size_type view_size,
2105 unsigned char* reloc_view,
2106 section_size_type reloc_view_size)
2107 {
2108 gold_assert(sh_type == elfcpp::SHT_RELA);
2109
2110 gold::relocate_for_relocatable<64, false, Target_x86_64, elfcpp::SHT_RELA>(
2111 relinfo,
2112 prelocs,
2113 reloc_count,
2114 output_section,
2115 offset_in_output_section,
2116 rr,
2117 view,
2118 view_address,
2119 view_size,
2120 reloc_view,
2121 reloc_view_size);
2122 }
2123
2124 // Return the value to use for a dynamic which requires special
2125 // treatment. This is how we support equality comparisons of function
2126 // pointers across shared library boundaries, as described in the
2127 // processor specific ABI supplement.
2128
2129 uint64_t
2130 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2131 {
2132 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2133 return this->plt_section()->address() + gsym->plt_offset();
2134 }
2135
2136 // Return a string used to fill a code section with nops to take up
2137 // the specified length.
2138
2139 std::string
2140 Target_x86_64::do_code_fill(section_size_type length)
2141 {
2142 if (length >= 16)
2143 {
2144 // Build a jmpq instruction to skip over the bytes.
2145 unsigned char jmp[5];
2146 jmp[0] = 0xe9;
2147 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
2148 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2149 + std::string(length - 5, '\0'));
2150 }
2151
2152 // Nop sequences of various lengths.
2153 const char nop1[1] = { 0x90 }; // nop
2154 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2155 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
2156 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
2157 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
2158 0x00 }; // leal 0(%esi,1),%esi
2159 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2160 0x00, 0x00 };
2161 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2162 0x00, 0x00, 0x00 };
2163 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
2164 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2165 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
2166 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
2167 0x00 };
2168 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2169 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2170 0x00, 0x00 };
2171 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2172 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2173 0x00, 0x00, 0x00 };
2174 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2175 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2176 0x00, 0x00, 0x00, 0x00 };
2177 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2178 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2179 0x27, 0x00, 0x00, 0x00,
2180 0x00 };
2181 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2182 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2183 0xbc, 0x27, 0x00, 0x00,
2184 0x00, 0x00 };
2185 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2186 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2187 0x90, 0x90, 0x90, 0x90,
2188 0x90, 0x90, 0x90 };
2189
2190 const char* nops[16] = {
2191 NULL,
2192 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2193 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2194 };
2195
2196 return std::string(nops[length], length);
2197 }
2198
2199 // The selector for x86_64 object files.
2200
2201 class Target_selector_x86_64 : public Target_selector
2202 {
2203 public:
2204 Target_selector_x86_64()
2205 : Target_selector(elfcpp::EM_X86_64, 64, false)
2206 { }
2207
2208 Target*
2209 recognize(int machine, int osabi, int abiversion);
2210
2211 private:
2212 Target_x86_64* target_;
2213 };
2214
2215 // Recognize an x86_64 object file when we already know that the machine
2216 // number is EM_X86_64.
2217
2218 Target*
2219 Target_selector_x86_64::recognize(int, int, int)
2220 {
2221 if (this->target_ == NULL)
2222 this->target_ = new Target_x86_64();
2223 return this->target_;
2224 }
2225
2226 Target_selector_x86_64 target_selector_x86_64;
2227
2228 } // End anonymous namespace.
This page took 0.075198 seconds and 4 git commands to generate.