Support 64-bit entry size in SHT_HASH (for s390).
[deliverable/binutils-gdb.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 // A class to handle the .got.plt section.
52
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55 public:
56 Output_data_got_plt_x86_64(Layout* layout)
57 : Output_section_data_build(8),
58 layout_(layout)
59 { }
60
61 Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62 : Output_section_data_build(data_size, 8),
63 layout_(layout)
64 { }
65
66 protected:
67 // Write out the PLT data.
68 void
69 do_write(Output_file*);
70
71 // Write to a map file.
72 void
73 do_print_to_mapfile(Mapfile* mapfile) const
74 { mapfile->print_output_data(this, "** GOT PLT"); }
75
76 private:
77 // A pointer to the Layout class, so that we can find the .dynamic
78 // section when we write out the GOT PLT section.
79 Layout* layout_;
80 };
81
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries. The derived
85 // classes below fill in those details.
86
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90 public:
91 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93 Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94 Output_data_got<64, false>* got,
95 Output_data_got_plt_x86_64* got_plt,
96 Output_data_space* got_irelative)
97 : Output_section_data(addralign), tlsdesc_rel_(NULL),
98 irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99 got_irelative_(got_irelative), count_(0), irelative_count_(0),
100 tlsdesc_got_offset_(-1U), free_list_()
101 { this->init(layout); }
102
103 Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104 Output_data_got<64, false>* got,
105 Output_data_got_plt_x86_64* got_plt,
106 Output_data_space* got_irelative,
107 unsigned int plt_count)
108 : Output_section_data((plt_count + 1) * plt_entry_size,
109 plt_entry_size, false),
110 tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111 got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112 irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113 {
114 this->init(layout);
115
116 // Initialize the free list and reserve the first entry.
117 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118 this->free_list_.remove(0, plt_entry_size);
119 }
120
121 // Initialize the PLT section.
122 void
123 init(Layout* layout);
124
125 // Add an entry to the PLT.
126 void
127 add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130 unsigned int
131 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132 Sized_relobj_file<size, false>* relobj,
133 unsigned int local_sym_index);
134
135 // Add the relocation for a PLT entry.
136 void
137 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138 unsigned int got_offset);
139
140 // Add the reserved TLSDESC_PLT entry to the PLT.
141 void
142 reserve_tlsdesc_entry(unsigned int got_offset)
143 { this->tlsdesc_got_offset_ = got_offset; }
144
145 // Return true if a TLSDESC_PLT entry has been reserved.
146 bool
147 has_tlsdesc_entry() const
148 { return this->tlsdesc_got_offset_ != -1U; }
149
150 // Return the GOT offset for the reserved TLSDESC_PLT entry.
151 unsigned int
152 get_tlsdesc_got_offset() const
153 { return this->tlsdesc_got_offset_; }
154
155 // Return the offset of the reserved TLSDESC_PLT entry.
156 unsigned int
157 get_tlsdesc_plt_offset() const
158 {
159 return ((this->count_ + this->irelative_count_ + 1)
160 * this->get_plt_entry_size());
161 }
162
163 // Return the .rela.plt section data.
164 Reloc_section*
165 rela_plt()
166 { return this->rel_; }
167
168 // Return where the TLSDESC relocations should go.
169 Reloc_section*
170 rela_tlsdesc(Layout*);
171
172 // Return where the IRELATIVE relocations should go in the PLT
173 // relocations.
174 Reloc_section*
175 rela_irelative(Symbol_table*, Layout*);
176
177 // Return whether we created a section for IRELATIVE relocations.
178 bool
179 has_irelative_section() const
180 { return this->irelative_rel_ != NULL; }
181
182 // Return the number of PLT entries.
183 unsigned int
184 entry_count() const
185 { return this->count_ + this->irelative_count_; }
186
187 // Return the offset of the first non-reserved PLT entry.
188 unsigned int
189 first_plt_entry_offset()
190 { return this->get_plt_entry_size(); }
191
192 // Return the size of a PLT entry.
193 unsigned int
194 get_plt_entry_size() const
195 { return this->do_get_plt_entry_size(); }
196
197 // Reserve a slot in the PLT for an existing symbol in an incremental update.
198 void
199 reserve_slot(unsigned int plt_index)
200 {
201 this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
202 (plt_index + 2) * this->get_plt_entry_size());
203 }
204
205 // Return the PLT address to use for a global symbol.
206 uint64_t
207 address_for_global(const Symbol*);
208
209 // Return the PLT address to use for a local symbol.
210 uint64_t
211 address_for_local(const Relobj*, unsigned int symndx);
212
213 // Add .eh_frame information for the PLT.
214 void
215 add_eh_frame(Layout* layout)
216 { this->do_add_eh_frame(layout); }
217
218 protected:
219 // Fill in the first PLT entry.
220 void
221 fill_first_plt_entry(unsigned char* pov,
222 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
223 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
224 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
225
226 // Fill in a normal PLT entry. Returns the offset into the entry that
227 // should be the initial GOT slot value.
228 unsigned int
229 fill_plt_entry(unsigned char* pov,
230 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
231 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
232 unsigned int got_offset,
233 unsigned int plt_offset,
234 unsigned int plt_index)
235 {
236 return this->do_fill_plt_entry(pov, got_address, plt_address,
237 got_offset, plt_offset, plt_index);
238 }
239
240 // Fill in the reserved TLSDESC PLT entry.
241 void
242 fill_tlsdesc_entry(unsigned char* pov,
243 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
244 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
245 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
246 unsigned int tlsdesc_got_offset,
247 unsigned int plt_offset)
248 {
249 this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
250 tlsdesc_got_offset, plt_offset);
251 }
252
253 virtual unsigned int
254 do_get_plt_entry_size() const = 0;
255
256 virtual void
257 do_fill_first_plt_entry(unsigned char* pov,
258 typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
259 typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
260 = 0;
261
262 virtual unsigned int
263 do_fill_plt_entry(unsigned char* pov,
264 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
265 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
266 unsigned int got_offset,
267 unsigned int plt_offset,
268 unsigned int plt_index) = 0;
269
270 virtual void
271 do_fill_tlsdesc_entry(unsigned char* pov,
272 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
273 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
274 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
275 unsigned int tlsdesc_got_offset,
276 unsigned int plt_offset) = 0;
277
278 virtual void
279 do_add_eh_frame(Layout* layout) = 0;
280
281 void
282 do_adjust_output_section(Output_section* os);
283
284 // Write to a map file.
285 void
286 do_print_to_mapfile(Mapfile* mapfile) const
287 { mapfile->print_output_data(this, _("** PLT")); }
288
289 // The CIE of the .eh_frame unwind information for the PLT.
290 static const int plt_eh_frame_cie_size = 16;
291 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
292
293 private:
294 // Set the final size.
295 void
296 set_final_data_size();
297
298 // Write out the PLT data.
299 void
300 do_write(Output_file*);
301
302 // The reloc section.
303 Reloc_section* rel_;
304 // The TLSDESC relocs, if necessary. These must follow the regular
305 // PLT relocs.
306 Reloc_section* tlsdesc_rel_;
307 // The IRELATIVE relocs, if necessary. These must follow the
308 // regular PLT relocations and the TLSDESC relocations.
309 Reloc_section* irelative_rel_;
310 // The .got section.
311 Output_data_got<64, false>* got_;
312 // The .got.plt section.
313 Output_data_got_plt_x86_64* got_plt_;
314 // The part of the .got.plt section used for IRELATIVE relocs.
315 Output_data_space* got_irelative_;
316 // The number of PLT entries.
317 unsigned int count_;
318 // Number of PLT entries with R_X86_64_IRELATIVE relocs. These
319 // follow the regular PLT entries.
320 unsigned int irelative_count_;
321 // Offset of the reserved TLSDESC_GOT entry when needed.
322 unsigned int tlsdesc_got_offset_;
323 // List of available regions within the section, for incremental
324 // update links.
325 Free_list free_list_;
326 };
327
328 template<int size>
329 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
330 {
331 public:
332 Output_data_plt_x86_64_standard(Layout* layout,
333 Output_data_got<64, false>* got,
334 Output_data_got_plt_x86_64* got_plt,
335 Output_data_space* got_irelative)
336 : Output_data_plt_x86_64<size>(layout, plt_entry_size,
337 got, got_plt, got_irelative)
338 { }
339
340 Output_data_plt_x86_64_standard(Layout* layout,
341 Output_data_got<64, false>* got,
342 Output_data_got_plt_x86_64* got_plt,
343 Output_data_space* got_irelative,
344 unsigned int plt_count)
345 : Output_data_plt_x86_64<size>(layout, plt_entry_size,
346 got, got_plt, got_irelative,
347 plt_count)
348 { }
349
350 protected:
351 virtual unsigned int
352 do_get_plt_entry_size() const
353 { return plt_entry_size; }
354
355 virtual void
356 do_add_eh_frame(Layout* layout)
357 {
358 layout->add_eh_frame_for_plt(this,
359 this->plt_eh_frame_cie,
360 this->plt_eh_frame_cie_size,
361 plt_eh_frame_fde,
362 plt_eh_frame_fde_size);
363 }
364
365 virtual void
366 do_fill_first_plt_entry(unsigned char* pov,
367 typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
368 typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
369
370 virtual unsigned int
371 do_fill_plt_entry(unsigned char* pov,
372 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
373 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
374 unsigned int got_offset,
375 unsigned int plt_offset,
376 unsigned int plt_index);
377
378 virtual void
379 do_fill_tlsdesc_entry(unsigned char* pov,
380 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
381 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
382 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
383 unsigned int tlsdesc_got_offset,
384 unsigned int plt_offset);
385
386 private:
387 // The size of an entry in the PLT.
388 static const int plt_entry_size = 16;
389
390 // The first entry in the PLT.
391 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
392 // procedure linkage table for both programs and shared objects."
393 static const unsigned char first_plt_entry[plt_entry_size];
394
395 // Other entries in the PLT for an executable.
396 static const unsigned char plt_entry[plt_entry_size];
397
398 // The reserved TLSDESC entry in the PLT for an executable.
399 static const unsigned char tlsdesc_plt_entry[plt_entry_size];
400
401 // The .eh_frame unwind information for the PLT.
402 static const int plt_eh_frame_fde_size = 32;
403 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
404 };
405
406 // The x86_64 target class.
407 // See the ABI at
408 // http://www.x86-64.org/documentation/abi.pdf
409 // TLS info comes from
410 // http://people.redhat.com/drepper/tls.pdf
411 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
412
413 template<int size>
414 class Target_x86_64 : public Sized_target<size, false>
415 {
416 public:
417 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
418 // uses only Elf64_Rela relocation entries with explicit addends."
419 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
420
421 Target_x86_64(const Target::Target_info* info = &x86_64_info)
422 : Sized_target<size, false>(info),
423 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
424 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
425 rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
426 got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
427 tls_base_symbol_defined_(false)
428 { }
429
430 // Hook for a new output section.
431 void
432 do_new_output_section(Output_section*) const;
433
434 // Scan the relocations to look for symbol adjustments.
435 void
436 gc_process_relocs(Symbol_table* symtab,
437 Layout* layout,
438 Sized_relobj_file<size, false>* object,
439 unsigned int data_shndx,
440 unsigned int sh_type,
441 const unsigned char* prelocs,
442 size_t reloc_count,
443 Output_section* output_section,
444 bool needs_special_offset_handling,
445 size_t local_symbol_count,
446 const unsigned char* plocal_symbols);
447
448 // Scan the relocations to look for symbol adjustments.
449 void
450 scan_relocs(Symbol_table* symtab,
451 Layout* layout,
452 Sized_relobj_file<size, false>* object,
453 unsigned int data_shndx,
454 unsigned int sh_type,
455 const unsigned char* prelocs,
456 size_t reloc_count,
457 Output_section* output_section,
458 bool needs_special_offset_handling,
459 size_t local_symbol_count,
460 const unsigned char* plocal_symbols);
461
462 // Finalize the sections.
463 void
464 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
465
466 // Return the value to use for a dynamic which requires special
467 // treatment.
468 uint64_t
469 do_dynsym_value(const Symbol*) const;
470
471 // Relocate a section.
472 void
473 relocate_section(const Relocate_info<size, false>*,
474 unsigned int sh_type,
475 const unsigned char* prelocs,
476 size_t reloc_count,
477 Output_section* output_section,
478 bool needs_special_offset_handling,
479 unsigned char* view,
480 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
481 section_size_type view_size,
482 const Reloc_symbol_changes*);
483
484 // Scan the relocs during a relocatable link.
485 void
486 scan_relocatable_relocs(Symbol_table* symtab,
487 Layout* layout,
488 Sized_relobj_file<size, false>* object,
489 unsigned int data_shndx,
490 unsigned int sh_type,
491 const unsigned char* prelocs,
492 size_t reloc_count,
493 Output_section* output_section,
494 bool needs_special_offset_handling,
495 size_t local_symbol_count,
496 const unsigned char* plocal_symbols,
497 Relocatable_relocs*);
498
499 // Emit relocations for a section.
500 void
501 relocate_relocs(
502 const Relocate_info<size, false>*,
503 unsigned int sh_type,
504 const unsigned char* prelocs,
505 size_t reloc_count,
506 Output_section* output_section,
507 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
508 const Relocatable_relocs*,
509 unsigned char* view,
510 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
511 section_size_type view_size,
512 unsigned char* reloc_view,
513 section_size_type reloc_view_size);
514
515 // Return a string used to fill a code section with nops.
516 std::string
517 do_code_fill(section_size_type length) const;
518
519 // Return whether SYM is defined by the ABI.
520 bool
521 do_is_defined_by_abi(const Symbol* sym) const
522 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
523
524 // Return the symbol index to use for a target specific relocation.
525 // The only target specific relocation is R_X86_64_TLSDESC for a
526 // local symbol, which is an absolute reloc.
527 unsigned int
528 do_reloc_symbol_index(void*, unsigned int r_type) const
529 {
530 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
531 return 0;
532 }
533
534 // Return the addend to use for a target specific relocation.
535 uint64_t
536 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
537
538 // Return the PLT section.
539 uint64_t
540 do_plt_address_for_global(const Symbol* gsym) const
541 { return this->plt_section()->address_for_global(gsym); }
542
543 uint64_t
544 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
545 { return this->plt_section()->address_for_local(relobj, symndx); }
546
547 // This function should be defined in targets that can use relocation
548 // types to determine (implemented in local_reloc_may_be_function_pointer
549 // and global_reloc_may_be_function_pointer)
550 // if a function's pointer is taken. ICF uses this in safe mode to only
551 // fold those functions whose pointer is defintely not taken. For x86_64
552 // pie binaries, safe ICF cannot be done by looking at relocation types.
553 bool
554 do_can_check_for_function_pointers() const
555 { return !parameters->options().pie(); }
556
557 // Return the base for a DW_EH_PE_datarel encoding.
558 uint64_t
559 do_ehframe_datarel_base() const;
560
561 // Adjust -fsplit-stack code which calls non-split-stack code.
562 void
563 do_calls_non_split(Relobj* object, unsigned int shndx,
564 section_offset_type fnoffset, section_size_type fnsize,
565 unsigned char* view, section_size_type view_size,
566 std::string* from, std::string* to) const;
567
568 // Return the size of the GOT section.
569 section_size_type
570 got_size() const
571 {
572 gold_assert(this->got_ != NULL);
573 return this->got_->data_size();
574 }
575
576 // Return the number of entries in the GOT.
577 unsigned int
578 got_entry_count() const
579 {
580 if (this->got_ == NULL)
581 return 0;
582 return this->got_size() / 8;
583 }
584
585 // Return the number of entries in the PLT.
586 unsigned int
587 plt_entry_count() const;
588
589 // Return the offset of the first non-reserved PLT entry.
590 unsigned int
591 first_plt_entry_offset() const;
592
593 // Return the size of each PLT entry.
594 unsigned int
595 plt_entry_size() const;
596
597 // Create the GOT section for an incremental update.
598 Output_data_got_base*
599 init_got_plt_for_update(Symbol_table* symtab,
600 Layout* layout,
601 unsigned int got_count,
602 unsigned int plt_count);
603
604 // Reserve a GOT entry for a local symbol, and regenerate any
605 // necessary dynamic relocations.
606 void
607 reserve_local_got_entry(unsigned int got_index,
608 Sized_relobj<size, false>* obj,
609 unsigned int r_sym,
610 unsigned int got_type);
611
612 // Reserve a GOT entry for a global symbol, and regenerate any
613 // necessary dynamic relocations.
614 void
615 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
616 unsigned int got_type);
617
618 // Register an existing PLT entry for a global symbol.
619 void
620 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
621 Symbol* gsym);
622
623 // Force a COPY relocation for a given symbol.
624 void
625 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
626
627 // Apply an incremental relocation.
628 void
629 apply_relocation(const Relocate_info<size, false>* relinfo,
630 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
631 unsigned int r_type,
632 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
633 const Symbol* gsym,
634 unsigned char* view,
635 typename elfcpp::Elf_types<size>::Elf_Addr address,
636 section_size_type view_size);
637
638 // Add a new reloc argument, returning the index in the vector.
639 size_t
640 add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
641 {
642 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
643 return this->tlsdesc_reloc_info_.size() - 1;
644 }
645
646 Output_data_plt_x86_64<size>*
647 make_data_plt(Layout* layout,
648 Output_data_got<64, false>* got,
649 Output_data_got_plt_x86_64* got_plt,
650 Output_data_space* got_irelative)
651 {
652 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
653 }
654
655 Output_data_plt_x86_64<size>*
656 make_data_plt(Layout* layout,
657 Output_data_got<64, false>* got,
658 Output_data_got_plt_x86_64* got_plt,
659 Output_data_space* got_irelative,
660 unsigned int plt_count)
661 {
662 return this->do_make_data_plt(layout, got, got_plt, got_irelative,
663 plt_count);
664 }
665
666 virtual Output_data_plt_x86_64<size>*
667 do_make_data_plt(Layout* layout,
668 Output_data_got<64, false>* got,
669 Output_data_got_plt_x86_64* got_plt,
670 Output_data_space* got_irelative)
671 {
672 return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
673 got_irelative);
674 }
675
676 virtual Output_data_plt_x86_64<size>*
677 do_make_data_plt(Layout* layout,
678 Output_data_got<64, false>* got,
679 Output_data_got_plt_x86_64* got_plt,
680 Output_data_space* got_irelative,
681 unsigned int plt_count)
682 {
683 return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
684 got_irelative,
685 plt_count);
686 }
687
688 private:
689 // The class which scans relocations.
690 class Scan
691 {
692 public:
693 Scan()
694 : issued_non_pic_error_(false)
695 { }
696
697 static inline int
698 get_reference_flags(unsigned int r_type);
699
700 inline void
701 local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
702 Sized_relobj_file<size, false>* object,
703 unsigned int data_shndx,
704 Output_section* output_section,
705 const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
706 const elfcpp::Sym<size, false>& lsym,
707 bool is_discarded);
708
709 inline void
710 global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
711 Sized_relobj_file<size, false>* object,
712 unsigned int data_shndx,
713 Output_section* output_section,
714 const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
715 Symbol* gsym);
716
717 inline bool
718 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
719 Target_x86_64* target,
720 Sized_relobj_file<size, false>* object,
721 unsigned int data_shndx,
722 Output_section* output_section,
723 const elfcpp::Rela<size, false>& reloc,
724 unsigned int r_type,
725 const elfcpp::Sym<size, false>& lsym);
726
727 inline bool
728 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
729 Target_x86_64* target,
730 Sized_relobj_file<size, false>* object,
731 unsigned int data_shndx,
732 Output_section* output_section,
733 const elfcpp::Rela<size, false>& reloc,
734 unsigned int r_type,
735 Symbol* gsym);
736
737 private:
738 static void
739 unsupported_reloc_local(Sized_relobj_file<size, false>*,
740 unsigned int r_type);
741
742 static void
743 unsupported_reloc_global(Sized_relobj_file<size, false>*,
744 unsigned int r_type, Symbol*);
745
746 void
747 check_non_pic(Relobj*, unsigned int r_type, Symbol*);
748
749 inline bool
750 possible_function_pointer_reloc(unsigned int r_type);
751
752 bool
753 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
754 unsigned int r_type);
755
756 // Whether we have issued an error about a non-PIC compilation.
757 bool issued_non_pic_error_;
758 };
759
760 // The class which implements relocation.
761 class Relocate
762 {
763 public:
764 Relocate()
765 : skip_call_tls_get_addr_(false)
766 { }
767
768 ~Relocate()
769 {
770 if (this->skip_call_tls_get_addr_)
771 {
772 // FIXME: This needs to specify the location somehow.
773 gold_error(_("missing expected TLS relocation"));
774 }
775 }
776
777 // Do a relocation. Return false if the caller should not issue
778 // any warnings about this relocation.
779 inline bool
780 relocate(const Relocate_info<size, false>*, Target_x86_64*,
781 Output_section*,
782 size_t relnum, const elfcpp::Rela<size, false>&,
783 unsigned int r_type, const Sized_symbol<size>*,
784 const Symbol_value<size>*,
785 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
786 section_size_type);
787
788 private:
789 // Do a TLS relocation.
790 inline void
791 relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
792 size_t relnum, const elfcpp::Rela<size, false>&,
793 unsigned int r_type, const Sized_symbol<size>*,
794 const Symbol_value<size>*,
795 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
796 section_size_type);
797
798 // Do a TLS General-Dynamic to Initial-Exec transition.
799 inline void
800 tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
801 Output_segment* tls_segment,
802 const elfcpp::Rela<size, false>&, unsigned int r_type,
803 typename elfcpp::Elf_types<size>::Elf_Addr value,
804 unsigned char* view,
805 typename elfcpp::Elf_types<size>::Elf_Addr,
806 section_size_type view_size);
807
808 // Do a TLS General-Dynamic to Local-Exec transition.
809 inline void
810 tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
811 Output_segment* tls_segment,
812 const elfcpp::Rela<size, false>&, unsigned int r_type,
813 typename elfcpp::Elf_types<size>::Elf_Addr value,
814 unsigned char* view,
815 section_size_type view_size);
816
817 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
818 inline void
819 tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
820 Output_segment* tls_segment,
821 const elfcpp::Rela<size, false>&, unsigned int r_type,
822 typename elfcpp::Elf_types<size>::Elf_Addr value,
823 unsigned char* view,
824 typename elfcpp::Elf_types<size>::Elf_Addr,
825 section_size_type view_size);
826
827 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
828 inline void
829 tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
830 Output_segment* tls_segment,
831 const elfcpp::Rela<size, false>&, unsigned int r_type,
832 typename elfcpp::Elf_types<size>::Elf_Addr value,
833 unsigned char* view,
834 section_size_type view_size);
835
836 // Do a TLS Local-Dynamic to Local-Exec transition.
837 inline void
838 tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
839 Output_segment* tls_segment,
840 const elfcpp::Rela<size, false>&, unsigned int r_type,
841 typename elfcpp::Elf_types<size>::Elf_Addr value,
842 unsigned char* view,
843 section_size_type view_size);
844
845 // Do a TLS Initial-Exec to Local-Exec transition.
846 static inline void
847 tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
848 Output_segment* tls_segment,
849 const elfcpp::Rela<size, false>&, unsigned int r_type,
850 typename elfcpp::Elf_types<size>::Elf_Addr value,
851 unsigned char* view,
852 section_size_type view_size);
853
854 // This is set if we should skip the next reloc, which should be a
855 // PLT32 reloc against ___tls_get_addr.
856 bool skip_call_tls_get_addr_;
857 };
858
859 // A class which returns the size required for a relocation type,
860 // used while scanning relocs during a relocatable link.
861 class Relocatable_size_for_reloc
862 {
863 public:
864 unsigned int
865 get_size_for_reloc(unsigned int, Relobj*);
866 };
867
868 // Check if relocation against this symbol is a candidate for
869 // conversion from
870 // mov foo@GOTPCREL(%rip), %reg
871 // to lea foo(%rip), %reg.
872 static bool
873 can_convert_mov_to_lea(const Symbol* gsym)
874 {
875 gold_assert(gsym != NULL);
876 return (gsym->type() != elfcpp::STT_GNU_IFUNC
877 && !gsym->is_undefined ()
878 && !gsym->is_from_dynobj()
879 && !gsym->is_preemptible()
880 && (!parameters->options().shared()
881 || (gsym->visibility() != elfcpp::STV_DEFAULT
882 && gsym->visibility() != elfcpp::STV_PROTECTED)
883 || parameters->options().Bsymbolic())
884 && strcmp(gsym->name(), "_DYNAMIC") != 0);
885 }
886
887 // Adjust TLS relocation type based on the options and whether this
888 // is a local symbol.
889 static tls::Tls_optimization
890 optimize_tls_reloc(bool is_final, int r_type);
891
892 // Get the GOT section, creating it if necessary.
893 Output_data_got<64, false>*
894 got_section(Symbol_table*, Layout*);
895
896 // Get the GOT PLT section.
897 Output_data_got_plt_x86_64*
898 got_plt_section() const
899 {
900 gold_assert(this->got_plt_ != NULL);
901 return this->got_plt_;
902 }
903
904 // Get the GOT section for TLSDESC entries.
905 Output_data_got<64, false>*
906 got_tlsdesc_section() const
907 {
908 gold_assert(this->got_tlsdesc_ != NULL);
909 return this->got_tlsdesc_;
910 }
911
912 // Create the PLT section.
913 void
914 make_plt_section(Symbol_table* symtab, Layout* layout);
915
916 // Create a PLT entry for a global symbol.
917 void
918 make_plt_entry(Symbol_table*, Layout*, Symbol*);
919
920 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
921 void
922 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
923 Sized_relobj_file<size, false>* relobj,
924 unsigned int local_sym_index);
925
926 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
927 void
928 define_tls_base_symbol(Symbol_table*, Layout*);
929
930 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
931 void
932 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
933
934 // Create a GOT entry for the TLS module index.
935 unsigned int
936 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
937 Sized_relobj_file<size, false>* object);
938
939 // Get the PLT section.
940 Output_data_plt_x86_64<size>*
941 plt_section() const
942 {
943 gold_assert(this->plt_ != NULL);
944 return this->plt_;
945 }
946
947 // Get the dynamic reloc section, creating it if necessary.
948 Reloc_section*
949 rela_dyn_section(Layout*);
950
951 // Get the section to use for TLSDESC relocations.
952 Reloc_section*
953 rela_tlsdesc_section(Layout*) const;
954
955 // Get the section to use for IRELATIVE relocations.
956 Reloc_section*
957 rela_irelative_section(Layout*);
958
959 // Add a potential copy relocation.
960 void
961 copy_reloc(Symbol_table* symtab, Layout* layout,
962 Sized_relobj_file<size, false>* object,
963 unsigned int shndx, Output_section* output_section,
964 Symbol* sym, const elfcpp::Rela<size, false>& reloc)
965 {
966 this->copy_relocs_.copy_reloc(symtab, layout,
967 symtab->get_sized_symbol<size>(sym),
968 object, shndx, output_section,
969 reloc, this->rela_dyn_section(layout));
970 }
971
972 // Information about this specific target which we pass to the
973 // general Target structure.
974 static const Target::Target_info x86_64_info;
975
976 // The types of GOT entries needed for this platform.
977 // These values are exposed to the ABI in an incremental link.
978 // Do not renumber existing values without changing the version
979 // number of the .gnu_incremental_inputs section.
980 enum Got_type
981 {
982 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
983 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
984 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
985 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
986 };
987
988 // This type is used as the argument to the target specific
989 // relocation routines. The only target specific reloc is
990 // R_X86_64_TLSDESC against a local symbol.
991 struct Tlsdesc_info
992 {
993 Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
994 : object(a_object), r_sym(a_r_sym)
995 { }
996
997 // The object in which the local symbol is defined.
998 Sized_relobj_file<size, false>* object;
999 // The local symbol index in the object.
1000 unsigned int r_sym;
1001 };
1002
1003 // The GOT section.
1004 Output_data_got<64, false>* got_;
1005 // The PLT section.
1006 Output_data_plt_x86_64<size>* plt_;
1007 // The GOT PLT section.
1008 Output_data_got_plt_x86_64* got_plt_;
1009 // The GOT section for IRELATIVE relocations.
1010 Output_data_space* got_irelative_;
1011 // The GOT section for TLSDESC relocations.
1012 Output_data_got<64, false>* got_tlsdesc_;
1013 // The _GLOBAL_OFFSET_TABLE_ symbol.
1014 Symbol* global_offset_table_;
1015 // The dynamic reloc section.
1016 Reloc_section* rela_dyn_;
1017 // The section to use for IRELATIVE relocs.
1018 Reloc_section* rela_irelative_;
1019 // Relocs saved to avoid a COPY reloc.
1020 Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1021 // Offset of the GOT entry for the TLS module index.
1022 unsigned int got_mod_index_offset_;
1023 // We handle R_X86_64_TLSDESC against a local symbol as a target
1024 // specific relocation. Here we store the object and local symbol
1025 // index for the relocation.
1026 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1027 // True if the _TLS_MODULE_BASE_ symbol has been defined.
1028 bool tls_base_symbol_defined_;
1029 };
1030
1031 template<>
1032 const Target::Target_info Target_x86_64<64>::x86_64_info =
1033 {
1034 64, // size
1035 false, // is_big_endian
1036 elfcpp::EM_X86_64, // machine_code
1037 false, // has_make_symbol
1038 false, // has_resolve
1039 true, // has_code_fill
1040 true, // is_default_stack_executable
1041 true, // can_icf_inline_merge_sections
1042 '\0', // wrap_char
1043 "/lib/ld64.so.1", // program interpreter
1044 0x400000, // default_text_segment_address
1045 0x1000, // abi_pagesize (overridable by -z max-page-size)
1046 0x1000, // common_pagesize (overridable by -z common-page-size)
1047 false, // isolate_execinstr
1048 0, // rosegment_gap
1049 elfcpp::SHN_UNDEF, // small_common_shndx
1050 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
1051 0, // small_common_section_flags
1052 elfcpp::SHF_X86_64_LARGE, // large_common_section_flags
1053 NULL, // attributes_section
1054 NULL, // attributes_vendor
1055 "_start", // entry_symbol_name
1056 32, // hash_entry_size
1057 };
1058
1059 template<>
1060 const Target::Target_info Target_x86_64<32>::x86_64_info =
1061 {
1062 32, // size
1063 false, // is_big_endian
1064 elfcpp::EM_X86_64, // machine_code
1065 false, // has_make_symbol
1066 false, // has_resolve
1067 true, // has_code_fill
1068 true, // is_default_stack_executable
1069 true, // can_icf_inline_merge_sections
1070 '\0', // wrap_char
1071 "/libx32/ldx32.so.1", // program interpreter
1072 0x400000, // default_text_segment_address
1073 0x1000, // abi_pagesize (overridable by -z max-page-size)
1074 0x1000, // common_pagesize (overridable by -z common-page-size)
1075 false, // isolate_execinstr
1076 0, // rosegment_gap
1077 elfcpp::SHN_UNDEF, // small_common_shndx
1078 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
1079 0, // small_common_section_flags
1080 elfcpp::SHF_X86_64_LARGE, // large_common_section_flags
1081 NULL, // attributes_section
1082 NULL, // attributes_vendor
1083 "_start", // entry_symbol_name
1084 32, // hash_entry_size
1085 };
1086
1087 // This is called when a new output section is created. This is where
1088 // we handle the SHF_X86_64_LARGE.
1089
1090 template<int size>
1091 void
1092 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1093 {
1094 if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1095 os->set_is_large_section();
1096 }
1097
1098 // Get the GOT section, creating it if necessary.
1099
1100 template<int size>
1101 Output_data_got<64, false>*
1102 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1103 {
1104 if (this->got_ == NULL)
1105 {
1106 gold_assert(symtab != NULL && layout != NULL);
1107
1108 // When using -z now, we can treat .got.plt as a relro section.
1109 // Without -z now, it is modified after program startup by lazy
1110 // PLT relocations.
1111 bool is_got_plt_relro = parameters->options().now();
1112 Output_section_order got_order = (is_got_plt_relro
1113 ? ORDER_RELRO
1114 : ORDER_RELRO_LAST);
1115 Output_section_order got_plt_order = (is_got_plt_relro
1116 ? ORDER_RELRO
1117 : ORDER_NON_RELRO_FIRST);
1118
1119 this->got_ = new Output_data_got<64, false>();
1120
1121 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1122 (elfcpp::SHF_ALLOC
1123 | elfcpp::SHF_WRITE),
1124 this->got_, got_order, true);
1125
1126 this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1127 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1128 (elfcpp::SHF_ALLOC
1129 | elfcpp::SHF_WRITE),
1130 this->got_plt_, got_plt_order,
1131 is_got_plt_relro);
1132
1133 // The first three entries are reserved.
1134 this->got_plt_->set_current_data_size(3 * 8);
1135
1136 if (!is_got_plt_relro)
1137 {
1138 // Those bytes can go into the relro segment.
1139 layout->increase_relro(3 * 8);
1140 }
1141
1142 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1143 this->global_offset_table_ =
1144 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1145 Symbol_table::PREDEFINED,
1146 this->got_plt_,
1147 0, 0, elfcpp::STT_OBJECT,
1148 elfcpp::STB_LOCAL,
1149 elfcpp::STV_HIDDEN, 0,
1150 false, false);
1151
1152 // If there are any IRELATIVE relocations, they get GOT entries
1153 // in .got.plt after the jump slot entries.
1154 this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1155 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1156 (elfcpp::SHF_ALLOC
1157 | elfcpp::SHF_WRITE),
1158 this->got_irelative_,
1159 got_plt_order, is_got_plt_relro);
1160
1161 // If there are any TLSDESC relocations, they get GOT entries in
1162 // .got.plt after the jump slot and IRELATIVE entries.
1163 this->got_tlsdesc_ = new Output_data_got<64, false>();
1164 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1165 (elfcpp::SHF_ALLOC
1166 | elfcpp::SHF_WRITE),
1167 this->got_tlsdesc_,
1168 got_plt_order, is_got_plt_relro);
1169 }
1170
1171 return this->got_;
1172 }
1173
1174 // Get the dynamic reloc section, creating it if necessary.
1175
1176 template<int size>
1177 typename Target_x86_64<size>::Reloc_section*
1178 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1179 {
1180 if (this->rela_dyn_ == NULL)
1181 {
1182 gold_assert(layout != NULL);
1183 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1184 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1185 elfcpp::SHF_ALLOC, this->rela_dyn_,
1186 ORDER_DYNAMIC_RELOCS, false);
1187 }
1188 return this->rela_dyn_;
1189 }
1190
1191 // Get the section to use for IRELATIVE relocs, creating it if
1192 // necessary. These go in .rela.dyn, but only after all other dynamic
1193 // relocations. They need to follow the other dynamic relocations so
1194 // that they can refer to global variables initialized by those
1195 // relocs.
1196
1197 template<int size>
1198 typename Target_x86_64<size>::Reloc_section*
1199 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1200 {
1201 if (this->rela_irelative_ == NULL)
1202 {
1203 // Make sure we have already created the dynamic reloc section.
1204 this->rela_dyn_section(layout);
1205 this->rela_irelative_ = new Reloc_section(false);
1206 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1207 elfcpp::SHF_ALLOC, this->rela_irelative_,
1208 ORDER_DYNAMIC_RELOCS, false);
1209 gold_assert(this->rela_dyn_->output_section()
1210 == this->rela_irelative_->output_section());
1211 }
1212 return this->rela_irelative_;
1213 }
1214
1215 // Write the first three reserved words of the .got.plt section.
1216 // The remainder of the section is written while writing the PLT
1217 // in Output_data_plt_i386::do_write.
1218
1219 void
1220 Output_data_got_plt_x86_64::do_write(Output_file* of)
1221 {
1222 // The first entry in the GOT is the address of the .dynamic section
1223 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1224 // We saved space for them when we created the section in
1225 // Target_x86_64::got_section.
1226 const off_t got_file_offset = this->offset();
1227 gold_assert(this->data_size() >= 24);
1228 unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1229 Output_section* dynamic = this->layout_->dynamic_section();
1230 uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1231 elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1232 memset(got_view + 8, 0, 16);
1233 of->write_output_view(got_file_offset, 24, got_view);
1234 }
1235
1236 // Initialize the PLT section.
1237
1238 template<int size>
1239 void
1240 Output_data_plt_x86_64<size>::init(Layout* layout)
1241 {
1242 this->rel_ = new Reloc_section(false);
1243 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1244 elfcpp::SHF_ALLOC, this->rel_,
1245 ORDER_DYNAMIC_PLT_RELOCS, false);
1246 }
1247
1248 template<int size>
1249 void
1250 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1251 {
1252 os->set_entsize(this->get_plt_entry_size());
1253 }
1254
1255 // Add an entry to the PLT.
1256
1257 template<int size>
1258 void
1259 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1260 Symbol* gsym)
1261 {
1262 gold_assert(!gsym->has_plt_offset());
1263
1264 unsigned int plt_index;
1265 off_t plt_offset;
1266 section_offset_type got_offset;
1267
1268 unsigned int* pcount;
1269 unsigned int offset;
1270 unsigned int reserved;
1271 Output_section_data_build* got;
1272 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1273 && gsym->can_use_relative_reloc(false))
1274 {
1275 pcount = &this->irelative_count_;
1276 offset = 0;
1277 reserved = 0;
1278 got = this->got_irelative_;
1279 }
1280 else
1281 {
1282 pcount = &this->count_;
1283 offset = 1;
1284 reserved = 3;
1285 got = this->got_plt_;
1286 }
1287
1288 if (!this->is_data_size_valid())
1289 {
1290 // Note that when setting the PLT offset for a non-IRELATIVE
1291 // entry we skip the initial reserved PLT entry.
1292 plt_index = *pcount + offset;
1293 plt_offset = plt_index * this->get_plt_entry_size();
1294
1295 ++*pcount;
1296
1297 got_offset = (plt_index - offset + reserved) * 8;
1298 gold_assert(got_offset == got->current_data_size());
1299
1300 // Every PLT entry needs a GOT entry which points back to the PLT
1301 // entry (this will be changed by the dynamic linker, normally
1302 // lazily when the function is called).
1303 got->set_current_data_size(got_offset + 8);
1304 }
1305 else
1306 {
1307 // FIXME: This is probably not correct for IRELATIVE relocs.
1308
1309 // For incremental updates, find an available slot.
1310 plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1311 this->get_plt_entry_size(), 0);
1312 if (plt_offset == -1)
1313 gold_fallback(_("out of patch space (PLT);"
1314 " relink with --incremental-full"));
1315
1316 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1317 // can be calculated from the PLT index, adjusting for the three
1318 // reserved entries at the beginning of the GOT.
1319 plt_index = plt_offset / this->get_plt_entry_size() - 1;
1320 got_offset = (plt_index - offset + reserved) * 8;
1321 }
1322
1323 gsym->set_plt_offset(plt_offset);
1324
1325 // Every PLT entry needs a reloc.
1326 this->add_relocation(symtab, layout, gsym, got_offset);
1327
1328 // Note that we don't need to save the symbol. The contents of the
1329 // PLT are independent of which symbols are used. The symbols only
1330 // appear in the relocations.
1331 }
1332
1333 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1334 // the PLT offset.
1335
1336 template<int size>
1337 unsigned int
1338 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1339 Symbol_table* symtab,
1340 Layout* layout,
1341 Sized_relobj_file<size, false>* relobj,
1342 unsigned int local_sym_index)
1343 {
1344 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1345 ++this->irelative_count_;
1346
1347 section_offset_type got_offset = this->got_irelative_->current_data_size();
1348
1349 // Every PLT entry needs a GOT entry which points back to the PLT
1350 // entry.
1351 this->got_irelative_->set_current_data_size(got_offset + 8);
1352
1353 // Every PLT entry needs a reloc.
1354 Reloc_section* rela = this->rela_irelative(symtab, layout);
1355 rela->add_symbolless_local_addend(relobj, local_sym_index,
1356 elfcpp::R_X86_64_IRELATIVE,
1357 this->got_irelative_, got_offset, 0);
1358
1359 return plt_offset;
1360 }
1361
1362 // Add the relocation for a PLT entry.
1363
1364 template<int size>
1365 void
1366 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1367 Layout* layout,
1368 Symbol* gsym,
1369 unsigned int got_offset)
1370 {
1371 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1372 && gsym->can_use_relative_reloc(false))
1373 {
1374 Reloc_section* rela = this->rela_irelative(symtab, layout);
1375 rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1376 this->got_irelative_, got_offset, 0);
1377 }
1378 else
1379 {
1380 gsym->set_needs_dynsym_entry();
1381 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1382 got_offset, 0);
1383 }
1384 }
1385
1386 // Return where the TLSDESC relocations should go, creating it if
1387 // necessary. These follow the JUMP_SLOT relocations.
1388
1389 template<int size>
1390 typename Output_data_plt_x86_64<size>::Reloc_section*
1391 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1392 {
1393 if (this->tlsdesc_rel_ == NULL)
1394 {
1395 this->tlsdesc_rel_ = new Reloc_section(false);
1396 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1397 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1398 ORDER_DYNAMIC_PLT_RELOCS, false);
1399 gold_assert(this->tlsdesc_rel_->output_section()
1400 == this->rel_->output_section());
1401 }
1402 return this->tlsdesc_rel_;
1403 }
1404
1405 // Return where the IRELATIVE relocations should go in the PLT. These
1406 // follow the JUMP_SLOT and the TLSDESC relocations.
1407
1408 template<int size>
1409 typename Output_data_plt_x86_64<size>::Reloc_section*
1410 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1411 Layout* layout)
1412 {
1413 if (this->irelative_rel_ == NULL)
1414 {
1415 // Make sure we have a place for the TLSDESC relocations, in
1416 // case we see any later on.
1417 this->rela_tlsdesc(layout);
1418 this->irelative_rel_ = new Reloc_section(false);
1419 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1420 elfcpp::SHF_ALLOC, this->irelative_rel_,
1421 ORDER_DYNAMIC_PLT_RELOCS, false);
1422 gold_assert(this->irelative_rel_->output_section()
1423 == this->rel_->output_section());
1424
1425 if (parameters->doing_static_link())
1426 {
1427 // A statically linked executable will only have a .rela.plt
1428 // section to hold R_X86_64_IRELATIVE relocs for
1429 // STT_GNU_IFUNC symbols. The library will use these
1430 // symbols to locate the IRELATIVE relocs at program startup
1431 // time.
1432 symtab->define_in_output_data("__rela_iplt_start", NULL,
1433 Symbol_table::PREDEFINED,
1434 this->irelative_rel_, 0, 0,
1435 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1436 elfcpp::STV_HIDDEN, 0, false, true);
1437 symtab->define_in_output_data("__rela_iplt_end", NULL,
1438 Symbol_table::PREDEFINED,
1439 this->irelative_rel_, 0, 0,
1440 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1441 elfcpp::STV_HIDDEN, 0, true, true);
1442 }
1443 }
1444 return this->irelative_rel_;
1445 }
1446
1447 // Return the PLT address to use for a global symbol.
1448
1449 template<int size>
1450 uint64_t
1451 Output_data_plt_x86_64<size>::address_for_global(const Symbol* gsym)
1452 {
1453 uint64_t offset = 0;
1454 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1455 && gsym->can_use_relative_reloc(false))
1456 offset = (this->count_ + 1) * this->get_plt_entry_size();
1457 return this->address() + offset + gsym->plt_offset();
1458 }
1459
1460 // Return the PLT address to use for a local symbol. These are always
1461 // IRELATIVE relocs.
1462
1463 template<int size>
1464 uint64_t
1465 Output_data_plt_x86_64<size>::address_for_local(const Relobj* object,
1466 unsigned int r_sym)
1467 {
1468 return (this->address()
1469 + (this->count_ + 1) * this->get_plt_entry_size()
1470 + object->local_plt_offset(r_sym));
1471 }
1472
1473 // Set the final size.
1474 template<int size>
1475 void
1476 Output_data_plt_x86_64<size>::set_final_data_size()
1477 {
1478 unsigned int count = this->count_ + this->irelative_count_;
1479 if (this->has_tlsdesc_entry())
1480 ++count;
1481 this->set_data_size((count + 1) * this->get_plt_entry_size());
1482 }
1483
1484 // The first entry in the PLT for an executable.
1485
1486 template<int size>
1487 const unsigned char
1488 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1489 {
1490 // From AMD64 ABI Draft 0.98, page 76
1491 0xff, 0x35, // pushq contents of memory address
1492 0, 0, 0, 0, // replaced with address of .got + 8
1493 0xff, 0x25, // jmp indirect
1494 0, 0, 0, 0, // replaced with address of .got + 16
1495 0x90, 0x90, 0x90, 0x90 // noop (x4)
1496 };
1497
1498 template<int size>
1499 void
1500 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1501 unsigned char* pov,
1502 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1503 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1504 {
1505 memcpy(pov, first_plt_entry, plt_entry_size);
1506 // We do a jmp relative to the PC at the end of this instruction.
1507 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1508 (got_address + 8
1509 - (plt_address + 6)));
1510 elfcpp::Swap<32, false>::writeval(pov + 8,
1511 (got_address + 16
1512 - (plt_address + 12)));
1513 }
1514
1515 // Subsequent entries in the PLT for an executable.
1516
1517 template<int size>
1518 const unsigned char
1519 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1520 {
1521 // From AMD64 ABI Draft 0.98, page 76
1522 0xff, 0x25, // jmpq indirect
1523 0, 0, 0, 0, // replaced with address of symbol in .got
1524 0x68, // pushq immediate
1525 0, 0, 0, 0, // replaced with offset into relocation table
1526 0xe9, // jmpq relative
1527 0, 0, 0, 0 // replaced with offset to start of .plt
1528 };
1529
1530 template<int size>
1531 unsigned int
1532 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1533 unsigned char* pov,
1534 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1535 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1536 unsigned int got_offset,
1537 unsigned int plt_offset,
1538 unsigned int plt_index)
1539 {
1540 // Check PC-relative offset overflow in PLT entry.
1541 uint64_t plt_got_pcrel_offset = (got_address + got_offset
1542 - (plt_address + plt_offset + 6));
1543 if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1544 gold_error(_("PC-relative offset overflow in PLT entry %d"),
1545 plt_index + 1);
1546
1547 memcpy(pov, plt_entry, plt_entry_size);
1548 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1549 plt_got_pcrel_offset);
1550
1551 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1552 elfcpp::Swap<32, false>::writeval(pov + 12,
1553 - (plt_offset + plt_entry_size));
1554
1555 return 6;
1556 }
1557
1558 // The reserved TLSDESC entry in the PLT for an executable.
1559
1560 template<int size>
1561 const unsigned char
1562 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
1563 {
1564 // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1565 // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1566 0xff, 0x35, // pushq x(%rip)
1567 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1568 0xff, 0x25, // jmpq *y(%rip)
1569 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
1570 0x0f, 0x1f, // nop
1571 0x40, 0
1572 };
1573
1574 template<int size>
1575 void
1576 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
1577 unsigned char* pov,
1578 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1579 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1580 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
1581 unsigned int tlsdesc_got_offset,
1582 unsigned int plt_offset)
1583 {
1584 memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1585 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1586 (got_address + 8
1587 - (plt_address + plt_offset
1588 + 6)));
1589 elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1590 (got_base
1591 + tlsdesc_got_offset
1592 - (plt_address + plt_offset
1593 + 12)));
1594 }
1595
1596 // The .eh_frame unwind information for the PLT.
1597
1598 template<int size>
1599 const unsigned char
1600 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1601 {
1602 1, // CIE version.
1603 'z', // Augmentation: augmentation size included.
1604 'R', // Augmentation: FDE encoding included.
1605 '\0', // End of augmentation string.
1606 1, // Code alignment factor.
1607 0x78, // Data alignment factor.
1608 16, // Return address column.
1609 1, // Augmentation size.
1610 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1611 | elfcpp::DW_EH_PE_sdata4),
1612 elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1613 elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1614 elfcpp::DW_CFA_nop, // Align to 16 bytes.
1615 elfcpp::DW_CFA_nop
1616 };
1617
1618 template<int size>
1619 const unsigned char
1620 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1621 {
1622 0, 0, 0, 0, // Replaced with offset to .plt.
1623 0, 0, 0, 0, // Replaced with size of .plt.
1624 0, // Augmentation size.
1625 elfcpp::DW_CFA_def_cfa_offset, 16, // DW_CFA_def_cfa_offset: 16.
1626 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
1627 elfcpp::DW_CFA_def_cfa_offset, 24, // DW_CFA_def_cfa_offset: 24.
1628 elfcpp::DW_CFA_advance_loc + 10, // Advance 10 to __PLT__ + 16.
1629 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
1630 11, // Block length.
1631 elfcpp::DW_OP_breg7, 8, // Push %rsp + 8.
1632 elfcpp::DW_OP_breg16, 0, // Push %rip.
1633 elfcpp::DW_OP_lit15, // Push 0xf.
1634 elfcpp::DW_OP_and, // & (%rip & 0xf).
1635 elfcpp::DW_OP_lit11, // Push 0xb.
1636 elfcpp::DW_OP_ge, // >= ((%rip & 0xf) >= 0xb)
1637 elfcpp::DW_OP_lit3, // Push 3.
1638 elfcpp::DW_OP_shl, // << (((%rip & 0xf) >= 0xb) << 3)
1639 elfcpp::DW_OP_plus, // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1640 elfcpp::DW_CFA_nop, // Align to 32 bytes.
1641 elfcpp::DW_CFA_nop,
1642 elfcpp::DW_CFA_nop,
1643 elfcpp::DW_CFA_nop
1644 };
1645
1646 // Write out the PLT. This uses the hand-coded instructions above,
1647 // and adjusts them as needed. This is specified by the AMD64 ABI.
1648
1649 template<int size>
1650 void
1651 Output_data_plt_x86_64<size>::do_write(Output_file* of)
1652 {
1653 const off_t offset = this->offset();
1654 const section_size_type oview_size =
1655 convert_to_section_size_type(this->data_size());
1656 unsigned char* const oview = of->get_output_view(offset, oview_size);
1657
1658 const off_t got_file_offset = this->got_plt_->offset();
1659 gold_assert(parameters->incremental_update()
1660 || (got_file_offset + this->got_plt_->data_size()
1661 == this->got_irelative_->offset()));
1662 const section_size_type got_size =
1663 convert_to_section_size_type(this->got_plt_->data_size()
1664 + this->got_irelative_->data_size());
1665 unsigned char* const got_view = of->get_output_view(got_file_offset,
1666 got_size);
1667
1668 unsigned char* pov = oview;
1669
1670 // The base address of the .plt section.
1671 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1672 // The base address of the .got section.
1673 typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
1674 // The base address of the PLT portion of the .got section,
1675 // which is where the GOT pointer will point, and where the
1676 // three reserved GOT entries are located.
1677 typename elfcpp::Elf_types<size>::Elf_Addr got_address
1678 = this->got_plt_->address();
1679
1680 this->fill_first_plt_entry(pov, got_address, plt_address);
1681 pov += this->get_plt_entry_size();
1682
1683 // The first three entries in the GOT are reserved, and are written
1684 // by Output_data_got_plt_x86_64::do_write.
1685 unsigned char* got_pov = got_view + 24;
1686
1687 unsigned int plt_offset = this->get_plt_entry_size();
1688 unsigned int got_offset = 24;
1689 const unsigned int count = this->count_ + this->irelative_count_;
1690 for (unsigned int plt_index = 0;
1691 plt_index < count;
1692 ++plt_index,
1693 pov += this->get_plt_entry_size(),
1694 got_pov += 8,
1695 plt_offset += this->get_plt_entry_size(),
1696 got_offset += 8)
1697 {
1698 // Set and adjust the PLT entry itself.
1699 unsigned int lazy_offset = this->fill_plt_entry(pov,
1700 got_address, plt_address,
1701 got_offset, plt_offset,
1702 plt_index);
1703
1704 // Set the entry in the GOT.
1705 elfcpp::Swap<64, false>::writeval(got_pov,
1706 plt_address + plt_offset + lazy_offset);
1707 }
1708
1709 if (this->has_tlsdesc_entry())
1710 {
1711 // Set and adjust the reserved TLSDESC PLT entry.
1712 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1713 this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
1714 tlsdesc_got_offset, plt_offset);
1715 pov += this->get_plt_entry_size();
1716 }
1717
1718 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1719 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1720
1721 of->write_output_view(offset, oview_size, oview);
1722 of->write_output_view(got_file_offset, got_size, got_view);
1723 }
1724
1725 // Create the PLT section.
1726
1727 template<int size>
1728 void
1729 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1730 {
1731 if (this->plt_ == NULL)
1732 {
1733 // Create the GOT sections first.
1734 this->got_section(symtab, layout);
1735
1736 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
1737 this->got_irelative_);
1738
1739 // Add unwind information if requested.
1740 if (parameters->options().ld_generated_unwind_info())
1741 this->plt_->add_eh_frame(layout);
1742
1743 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1744 (elfcpp::SHF_ALLOC
1745 | elfcpp::SHF_EXECINSTR),
1746 this->plt_, ORDER_PLT, false);
1747
1748 // Make the sh_info field of .rela.plt point to .plt.
1749 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1750 rela_plt_os->set_info_section(this->plt_->output_section());
1751 }
1752 }
1753
1754 // Return the section for TLSDESC relocations.
1755
1756 template<int size>
1757 typename Target_x86_64<size>::Reloc_section*
1758 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
1759 {
1760 return this->plt_section()->rela_tlsdesc(layout);
1761 }
1762
1763 // Create a PLT entry for a global symbol.
1764
1765 template<int size>
1766 void
1767 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1768 Symbol* gsym)
1769 {
1770 if (gsym->has_plt_offset())
1771 return;
1772
1773 if (this->plt_ == NULL)
1774 this->make_plt_section(symtab, layout);
1775
1776 this->plt_->add_entry(symtab, layout, gsym);
1777 }
1778
1779 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1780
1781 template<int size>
1782 void
1783 Target_x86_64<size>::make_local_ifunc_plt_entry(
1784 Symbol_table* symtab, Layout* layout,
1785 Sized_relobj_file<size, false>* relobj,
1786 unsigned int local_sym_index)
1787 {
1788 if (relobj->local_has_plt_offset(local_sym_index))
1789 return;
1790 if (this->plt_ == NULL)
1791 this->make_plt_section(symtab, layout);
1792 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1793 relobj,
1794 local_sym_index);
1795 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1796 }
1797
1798 // Return the number of entries in the PLT.
1799
1800 template<int size>
1801 unsigned int
1802 Target_x86_64<size>::plt_entry_count() const
1803 {
1804 if (this->plt_ == NULL)
1805 return 0;
1806 return this->plt_->entry_count();
1807 }
1808
1809 // Return the offset of the first non-reserved PLT entry.
1810
1811 template<int size>
1812 unsigned int
1813 Target_x86_64<size>::first_plt_entry_offset() const
1814 {
1815 return this->plt_->first_plt_entry_offset();
1816 }
1817
1818 // Return the size of each PLT entry.
1819
1820 template<int size>
1821 unsigned int
1822 Target_x86_64<size>::plt_entry_size() const
1823 {
1824 return this->plt_->get_plt_entry_size();
1825 }
1826
1827 // Create the GOT and PLT sections for an incremental update.
1828
1829 template<int size>
1830 Output_data_got_base*
1831 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
1832 Layout* layout,
1833 unsigned int got_count,
1834 unsigned int plt_count)
1835 {
1836 gold_assert(this->got_ == NULL);
1837
1838 this->got_ = new Output_data_got<64, false>(got_count * 8);
1839 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1840 (elfcpp::SHF_ALLOC
1841 | elfcpp::SHF_WRITE),
1842 this->got_, ORDER_RELRO_LAST,
1843 true);
1844
1845 // Add the three reserved entries.
1846 this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
1847 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1848 (elfcpp::SHF_ALLOC
1849 | elfcpp::SHF_WRITE),
1850 this->got_plt_, ORDER_NON_RELRO_FIRST,
1851 false);
1852
1853 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1854 this->global_offset_table_ =
1855 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1856 Symbol_table::PREDEFINED,
1857 this->got_plt_,
1858 0, 0, elfcpp::STT_OBJECT,
1859 elfcpp::STB_LOCAL,
1860 elfcpp::STV_HIDDEN, 0,
1861 false, false);
1862
1863 // If there are any TLSDESC relocations, they get GOT entries in
1864 // .got.plt after the jump slot entries.
1865 // FIXME: Get the count for TLSDESC entries.
1866 this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1867 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1868 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1869 this->got_tlsdesc_,
1870 ORDER_NON_RELRO_FIRST, false);
1871
1872 // If there are any IRELATIVE relocations, they get GOT entries in
1873 // .got.plt after the jump slot and TLSDESC entries.
1874 this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1875 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1876 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1877 this->got_irelative_,
1878 ORDER_NON_RELRO_FIRST, false);
1879
1880 // Create the PLT section.
1881 this->plt_ = this->make_data_plt(layout, this->got_,
1882 this->got_plt_,
1883 this->got_irelative_,
1884 plt_count);
1885
1886 // Add unwind information if requested.
1887 if (parameters->options().ld_generated_unwind_info())
1888 this->plt_->add_eh_frame(layout);
1889
1890 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1891 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1892 this->plt_, ORDER_PLT, false);
1893
1894 // Make the sh_info field of .rela.plt point to .plt.
1895 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1896 rela_plt_os->set_info_section(this->plt_->output_section());
1897
1898 // Create the rela_dyn section.
1899 this->rela_dyn_section(layout);
1900
1901 return this->got_;
1902 }
1903
1904 // Reserve a GOT entry for a local symbol, and regenerate any
1905 // necessary dynamic relocations.
1906
1907 template<int size>
1908 void
1909 Target_x86_64<size>::reserve_local_got_entry(
1910 unsigned int got_index,
1911 Sized_relobj<size, false>* obj,
1912 unsigned int r_sym,
1913 unsigned int got_type)
1914 {
1915 unsigned int got_offset = got_index * 8;
1916 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1917
1918 this->got_->reserve_local(got_index, obj, r_sym, got_type);
1919 switch (got_type)
1920 {
1921 case GOT_TYPE_STANDARD:
1922 if (parameters->options().output_is_position_independent())
1923 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1924 this->got_, got_offset, 0, false);
1925 break;
1926 case GOT_TYPE_TLS_OFFSET:
1927 rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1928 this->got_, got_offset, 0);
1929 break;
1930 case GOT_TYPE_TLS_PAIR:
1931 this->got_->reserve_slot(got_index + 1);
1932 rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1933 this->got_, got_offset, 0);
1934 break;
1935 case GOT_TYPE_TLS_DESC:
1936 gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1937 // this->got_->reserve_slot(got_index + 1);
1938 // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1939 // this->got_, got_offset, 0);
1940 break;
1941 default:
1942 gold_unreachable();
1943 }
1944 }
1945
1946 // Reserve a GOT entry for a global symbol, and regenerate any
1947 // necessary dynamic relocations.
1948
1949 template<int size>
1950 void
1951 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
1952 Symbol* gsym,
1953 unsigned int got_type)
1954 {
1955 unsigned int got_offset = got_index * 8;
1956 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1957
1958 this->got_->reserve_global(got_index, gsym, got_type);
1959 switch (got_type)
1960 {
1961 case GOT_TYPE_STANDARD:
1962 if (!gsym->final_value_is_known())
1963 {
1964 if (gsym->is_from_dynobj()
1965 || gsym->is_undefined()
1966 || gsym->is_preemptible()
1967 || gsym->type() == elfcpp::STT_GNU_IFUNC)
1968 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1969 this->got_, got_offset, 0);
1970 else
1971 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1972 this->got_, got_offset, 0, false);
1973 }
1974 break;
1975 case GOT_TYPE_TLS_OFFSET:
1976 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1977 this->got_, got_offset, 0, false);
1978 break;
1979 case GOT_TYPE_TLS_PAIR:
1980 this->got_->reserve_slot(got_index + 1);
1981 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1982 this->got_, got_offset, 0, false);
1983 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1984 this->got_, got_offset + 8, 0, false);
1985 break;
1986 case GOT_TYPE_TLS_DESC:
1987 this->got_->reserve_slot(got_index + 1);
1988 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1989 this->got_, got_offset, 0, false);
1990 break;
1991 default:
1992 gold_unreachable();
1993 }
1994 }
1995
1996 // Register an existing PLT entry for a global symbol.
1997
1998 template<int size>
1999 void
2000 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
2001 Layout* layout,
2002 unsigned int plt_index,
2003 Symbol* gsym)
2004 {
2005 gold_assert(this->plt_ != NULL);
2006 gold_assert(!gsym->has_plt_offset());
2007
2008 this->plt_->reserve_slot(plt_index);
2009
2010 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
2011
2012 unsigned int got_offset = (plt_index + 3) * 8;
2013 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
2014 }
2015
2016 // Force a COPY relocation for a given symbol.
2017
2018 template<int size>
2019 void
2020 Target_x86_64<size>::emit_copy_reloc(
2021 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2022 {
2023 this->copy_relocs_.emit_copy_reloc(symtab,
2024 symtab->get_sized_symbol<size>(sym),
2025 os,
2026 offset,
2027 this->rela_dyn_section(NULL));
2028 }
2029
2030 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2031
2032 template<int size>
2033 void
2034 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
2035 Layout* layout)
2036 {
2037 if (this->tls_base_symbol_defined_)
2038 return;
2039
2040 Output_segment* tls_segment = layout->tls_segment();
2041 if (tls_segment != NULL)
2042 {
2043 bool is_exec = parameters->options().output_is_executable();
2044 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
2045 Symbol_table::PREDEFINED,
2046 tls_segment, 0, 0,
2047 elfcpp::STT_TLS,
2048 elfcpp::STB_LOCAL,
2049 elfcpp::STV_HIDDEN, 0,
2050 (is_exec
2051 ? Symbol::SEGMENT_END
2052 : Symbol::SEGMENT_START),
2053 true);
2054 }
2055 this->tls_base_symbol_defined_ = true;
2056 }
2057
2058 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2059
2060 template<int size>
2061 void
2062 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
2063 Layout* layout)
2064 {
2065 if (this->plt_ == NULL)
2066 this->make_plt_section(symtab, layout);
2067
2068 if (!this->plt_->has_tlsdesc_entry())
2069 {
2070 // Allocate the TLSDESC_GOT entry.
2071 Output_data_got<64, false>* got = this->got_section(symtab, layout);
2072 unsigned int got_offset = got->add_constant(0);
2073
2074 // Allocate the TLSDESC_PLT entry.
2075 this->plt_->reserve_tlsdesc_entry(got_offset);
2076 }
2077 }
2078
2079 // Create a GOT entry for the TLS module index.
2080
2081 template<int size>
2082 unsigned int
2083 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2084 Sized_relobj_file<size, false>* object)
2085 {
2086 if (this->got_mod_index_offset_ == -1U)
2087 {
2088 gold_assert(symtab != NULL && layout != NULL && object != NULL);
2089 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2090 Output_data_got<64, false>* got = this->got_section(symtab, layout);
2091 unsigned int got_offset = got->add_constant(0);
2092 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
2093 got_offset, 0);
2094 got->add_constant(0);
2095 this->got_mod_index_offset_ = got_offset;
2096 }
2097 return this->got_mod_index_offset_;
2098 }
2099
2100 // Optimize the TLS relocation type based on what we know about the
2101 // symbol. IS_FINAL is true if the final address of this symbol is
2102 // known at link time.
2103
2104 template<int size>
2105 tls::Tls_optimization
2106 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
2107 {
2108 // If we are generating a shared library, then we can't do anything
2109 // in the linker.
2110 if (parameters->options().shared())
2111 return tls::TLSOPT_NONE;
2112
2113 switch (r_type)
2114 {
2115 case elfcpp::R_X86_64_TLSGD:
2116 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2117 case elfcpp::R_X86_64_TLSDESC_CALL:
2118 // These are General-Dynamic which permits fully general TLS
2119 // access. Since we know that we are generating an executable,
2120 // we can convert this to Initial-Exec. If we also know that
2121 // this is a local symbol, we can further switch to Local-Exec.
2122 if (is_final)
2123 return tls::TLSOPT_TO_LE;
2124 return tls::TLSOPT_TO_IE;
2125
2126 case elfcpp::R_X86_64_TLSLD:
2127 // This is Local-Dynamic, which refers to a local symbol in the
2128 // dynamic TLS block. Since we know that we generating an
2129 // executable, we can switch to Local-Exec.
2130 return tls::TLSOPT_TO_LE;
2131
2132 case elfcpp::R_X86_64_DTPOFF32:
2133 case elfcpp::R_X86_64_DTPOFF64:
2134 // Another Local-Dynamic reloc.
2135 return tls::TLSOPT_TO_LE;
2136
2137 case elfcpp::R_X86_64_GOTTPOFF:
2138 // These are Initial-Exec relocs which get the thread offset
2139 // from the GOT. If we know that we are linking against the
2140 // local symbol, we can switch to Local-Exec, which links the
2141 // thread offset into the instruction.
2142 if (is_final)
2143 return tls::TLSOPT_TO_LE;
2144 return tls::TLSOPT_NONE;
2145
2146 case elfcpp::R_X86_64_TPOFF32:
2147 // When we already have Local-Exec, there is nothing further we
2148 // can do.
2149 return tls::TLSOPT_NONE;
2150
2151 default:
2152 gold_unreachable();
2153 }
2154 }
2155
2156 // Get the Reference_flags for a particular relocation.
2157
2158 template<int size>
2159 int
2160 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
2161 {
2162 switch (r_type)
2163 {
2164 case elfcpp::R_X86_64_NONE:
2165 case elfcpp::R_X86_64_GNU_VTINHERIT:
2166 case elfcpp::R_X86_64_GNU_VTENTRY:
2167 case elfcpp::R_X86_64_GOTPC32:
2168 case elfcpp::R_X86_64_GOTPC64:
2169 // No symbol reference.
2170 return 0;
2171
2172 case elfcpp::R_X86_64_64:
2173 case elfcpp::R_X86_64_32:
2174 case elfcpp::R_X86_64_32S:
2175 case elfcpp::R_X86_64_16:
2176 case elfcpp::R_X86_64_8:
2177 return Symbol::ABSOLUTE_REF;
2178
2179 case elfcpp::R_X86_64_PC64:
2180 case elfcpp::R_X86_64_PC32:
2181 case elfcpp::R_X86_64_PC32_BND:
2182 case elfcpp::R_X86_64_PC16:
2183 case elfcpp::R_X86_64_PC8:
2184 case elfcpp::R_X86_64_GOTOFF64:
2185 return Symbol::RELATIVE_REF;
2186
2187 case elfcpp::R_X86_64_PLT32:
2188 case elfcpp::R_X86_64_PLT32_BND:
2189 case elfcpp::R_X86_64_PLTOFF64:
2190 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2191
2192 case elfcpp::R_X86_64_GOT64:
2193 case elfcpp::R_X86_64_GOT32:
2194 case elfcpp::R_X86_64_GOTPCREL64:
2195 case elfcpp::R_X86_64_GOTPCREL:
2196 case elfcpp::R_X86_64_GOTPCRELX:
2197 case elfcpp::R_X86_64_REX_GOTPCRELX:
2198 case elfcpp::R_X86_64_GOTPLT64:
2199 // Absolute in GOT.
2200 return Symbol::ABSOLUTE_REF;
2201
2202 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2203 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2204 case elfcpp::R_X86_64_TLSDESC_CALL:
2205 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2206 case elfcpp::R_X86_64_DTPOFF32:
2207 case elfcpp::R_X86_64_DTPOFF64:
2208 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2209 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2210 return Symbol::TLS_REF;
2211
2212 case elfcpp::R_X86_64_COPY:
2213 case elfcpp::R_X86_64_GLOB_DAT:
2214 case elfcpp::R_X86_64_JUMP_SLOT:
2215 case elfcpp::R_X86_64_RELATIVE:
2216 case elfcpp::R_X86_64_IRELATIVE:
2217 case elfcpp::R_X86_64_TPOFF64:
2218 case elfcpp::R_X86_64_DTPMOD64:
2219 case elfcpp::R_X86_64_TLSDESC:
2220 case elfcpp::R_X86_64_SIZE32:
2221 case elfcpp::R_X86_64_SIZE64:
2222 default:
2223 // Not expected. We will give an error later.
2224 return 0;
2225 }
2226 }
2227
2228 // Report an unsupported relocation against a local symbol.
2229
2230 template<int size>
2231 void
2232 Target_x86_64<size>::Scan::unsupported_reloc_local(
2233 Sized_relobj_file<size, false>* object,
2234 unsigned int r_type)
2235 {
2236 gold_error(_("%s: unsupported reloc %u against local symbol"),
2237 object->name().c_str(), r_type);
2238 }
2239
2240 // We are about to emit a dynamic relocation of type R_TYPE. If the
2241 // dynamic linker does not support it, issue an error. The GNU linker
2242 // only issues a non-PIC error for an allocated read-only section.
2243 // Here we know the section is allocated, but we don't know that it is
2244 // read-only. But we check for all the relocation types which the
2245 // glibc dynamic linker supports, so it seems appropriate to issue an
2246 // error even if the section is not read-only. If GSYM is not NULL,
2247 // it is the symbol the relocation is against; if it is NULL, the
2248 // relocation is against a local symbol.
2249
2250 template<int size>
2251 void
2252 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
2253 Symbol* gsym)
2254 {
2255 switch (r_type)
2256 {
2257 // These are the relocation types supported by glibc for x86_64
2258 // which should always work.
2259 case elfcpp::R_X86_64_RELATIVE:
2260 case elfcpp::R_X86_64_IRELATIVE:
2261 case elfcpp::R_X86_64_GLOB_DAT:
2262 case elfcpp::R_X86_64_JUMP_SLOT:
2263 case elfcpp::R_X86_64_DTPMOD64:
2264 case elfcpp::R_X86_64_DTPOFF64:
2265 case elfcpp::R_X86_64_TPOFF64:
2266 case elfcpp::R_X86_64_64:
2267 case elfcpp::R_X86_64_COPY:
2268 return;
2269
2270 // glibc supports these reloc types, but they can overflow.
2271 case elfcpp::R_X86_64_PC32:
2272 case elfcpp::R_X86_64_PC32_BND:
2273 // A PC relative reference is OK against a local symbol or if
2274 // the symbol is defined locally.
2275 if (gsym == NULL
2276 || (!gsym->is_from_dynobj()
2277 && !gsym->is_undefined()
2278 && !gsym->is_preemptible()))
2279 return;
2280 /* Fall through. */
2281 case elfcpp::R_X86_64_32:
2282 // R_X86_64_32 is OK for x32.
2283 if (size == 32 && r_type == elfcpp::R_X86_64_32)
2284 return;
2285 if (this->issued_non_pic_error_)
2286 return;
2287 gold_assert(parameters->options().output_is_position_independent());
2288 if (gsym == NULL)
2289 object->error(_("requires dynamic R_X86_64_32 reloc which may "
2290 "overflow at runtime; recompile with -fPIC"));
2291 else
2292 {
2293 const char *r_name;
2294 switch (r_type)
2295 {
2296 case elfcpp::R_X86_64_32:
2297 r_name = "R_X86_64_32";
2298 break;
2299 case elfcpp::R_X86_64_PC32:
2300 r_name = "R_X86_64_PC32";
2301 break;
2302 case elfcpp::R_X86_64_PC32_BND:
2303 r_name = "R_X86_64_PC32_BND";
2304 break;
2305 default:
2306 gold_unreachable();
2307 break;
2308 }
2309 object->error(_("requires dynamic %s reloc against '%s' "
2310 "which may overflow at runtime; recompile "
2311 "with -fPIC"),
2312 r_name, gsym->name());
2313 }
2314 this->issued_non_pic_error_ = true;
2315 return;
2316
2317 default:
2318 // This prevents us from issuing more than one error per reloc
2319 // section. But we can still wind up issuing more than one
2320 // error per object file.
2321 if (this->issued_non_pic_error_)
2322 return;
2323 gold_assert(parameters->options().output_is_position_independent());
2324 object->error(_("requires unsupported dynamic reloc %u; "
2325 "recompile with -fPIC"),
2326 r_type);
2327 this->issued_non_pic_error_ = true;
2328 return;
2329
2330 case elfcpp::R_X86_64_NONE:
2331 gold_unreachable();
2332 }
2333 }
2334
2335 // Return whether we need to make a PLT entry for a relocation of the
2336 // given type against a STT_GNU_IFUNC symbol.
2337
2338 template<int size>
2339 bool
2340 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2341 Sized_relobj_file<size, false>* object,
2342 unsigned int r_type)
2343 {
2344 int flags = Scan::get_reference_flags(r_type);
2345 if (flags & Symbol::TLS_REF)
2346 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2347 object->name().c_str(), r_type);
2348 return flags != 0;
2349 }
2350
2351 // Scan a relocation for a local symbol.
2352
2353 template<int size>
2354 inline void
2355 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2356 Layout* layout,
2357 Target_x86_64<size>* target,
2358 Sized_relobj_file<size, false>* object,
2359 unsigned int data_shndx,
2360 Output_section* output_section,
2361 const elfcpp::Rela<size, false>& reloc,
2362 unsigned int r_type,
2363 const elfcpp::Sym<size, false>& lsym,
2364 bool is_discarded)
2365 {
2366 if (is_discarded)
2367 return;
2368
2369 // A local STT_GNU_IFUNC symbol may require a PLT entry.
2370 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2371 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2372 {
2373 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2374 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2375 }
2376
2377 switch (r_type)
2378 {
2379 case elfcpp::R_X86_64_NONE:
2380 case elfcpp::R_X86_64_GNU_VTINHERIT:
2381 case elfcpp::R_X86_64_GNU_VTENTRY:
2382 break;
2383
2384 case elfcpp::R_X86_64_64:
2385 // If building a shared library (or a position-independent
2386 // executable), we need to create a dynamic relocation for this
2387 // location. The relocation applied at link time will apply the
2388 // link-time value, so we flag the location with an
2389 // R_X86_64_RELATIVE relocation so the dynamic loader can
2390 // relocate it easily.
2391 if (parameters->options().output_is_position_independent())
2392 {
2393 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2394 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2395 rela_dyn->add_local_relative(object, r_sym,
2396 (size == 32
2397 ? elfcpp::R_X86_64_RELATIVE64
2398 : elfcpp::R_X86_64_RELATIVE),
2399 output_section, data_shndx,
2400 reloc.get_r_offset(),
2401 reloc.get_r_addend(), is_ifunc);
2402 }
2403 break;
2404
2405 case elfcpp::R_X86_64_32:
2406 case elfcpp::R_X86_64_32S:
2407 case elfcpp::R_X86_64_16:
2408 case elfcpp::R_X86_64_8:
2409 // If building a shared library (or a position-independent
2410 // executable), we need to create a dynamic relocation for this
2411 // location. We can't use an R_X86_64_RELATIVE relocation
2412 // because that is always a 64-bit relocation.
2413 if (parameters->options().output_is_position_independent())
2414 {
2415 // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2416 if (size == 32 && r_type == elfcpp::R_X86_64_32)
2417 {
2418 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2419 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2420 rela_dyn->add_local_relative(object, r_sym,
2421 elfcpp::R_X86_64_RELATIVE,
2422 output_section, data_shndx,
2423 reloc.get_r_offset(),
2424 reloc.get_r_addend(), is_ifunc);
2425 break;
2426 }
2427
2428 this->check_non_pic(object, r_type, NULL);
2429
2430 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2431 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2432 if (lsym.get_st_type() != elfcpp::STT_SECTION)
2433 rela_dyn->add_local(object, r_sym, r_type, output_section,
2434 data_shndx, reloc.get_r_offset(),
2435 reloc.get_r_addend());
2436 else
2437 {
2438 gold_assert(lsym.get_st_value() == 0);
2439 unsigned int shndx = lsym.get_st_shndx();
2440 bool is_ordinary;
2441 shndx = object->adjust_sym_shndx(r_sym, shndx,
2442 &is_ordinary);
2443 if (!is_ordinary)
2444 object->error(_("section symbol %u has bad shndx %u"),
2445 r_sym, shndx);
2446 else
2447 rela_dyn->add_local_section(object, shndx,
2448 r_type, output_section,
2449 data_shndx, reloc.get_r_offset(),
2450 reloc.get_r_addend());
2451 }
2452 }
2453 break;
2454
2455 case elfcpp::R_X86_64_PC64:
2456 case elfcpp::R_X86_64_PC32:
2457 case elfcpp::R_X86_64_PC32_BND:
2458 case elfcpp::R_X86_64_PC16:
2459 case elfcpp::R_X86_64_PC8:
2460 break;
2461
2462 case elfcpp::R_X86_64_PLT32:
2463 case elfcpp::R_X86_64_PLT32_BND:
2464 // Since we know this is a local symbol, we can handle this as a
2465 // PC32 reloc.
2466 break;
2467
2468 case elfcpp::R_X86_64_GOTPC32:
2469 case elfcpp::R_X86_64_GOTOFF64:
2470 case elfcpp::R_X86_64_GOTPC64:
2471 case elfcpp::R_X86_64_PLTOFF64:
2472 // We need a GOT section.
2473 target->got_section(symtab, layout);
2474 // For PLTOFF64, we'd normally want a PLT section, but since we
2475 // know this is a local symbol, no PLT is needed.
2476 break;
2477
2478 case elfcpp::R_X86_64_GOT64:
2479 case elfcpp::R_X86_64_GOT32:
2480 case elfcpp::R_X86_64_GOTPCREL64:
2481 case elfcpp::R_X86_64_GOTPCREL:
2482 case elfcpp::R_X86_64_GOTPCRELX:
2483 case elfcpp::R_X86_64_REX_GOTPCRELX:
2484 case elfcpp::R_X86_64_GOTPLT64:
2485 {
2486 // The symbol requires a GOT section.
2487 Output_data_got<64, false>* got = target->got_section(symtab, layout);
2488
2489 // If the relocation symbol isn't IFUNC,
2490 // and is local, then we will convert
2491 // mov foo@GOTPCREL(%rip), %reg
2492 // to lea foo(%rip), %reg.
2493 // in Relocate::relocate.
2494 if ((r_type == elfcpp::R_X86_64_GOTPCREL
2495 || r_type == elfcpp::R_X86_64_GOTPCRELX
2496 || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
2497 && reloc.get_r_offset() >= 2
2498 && !is_ifunc)
2499 {
2500 section_size_type stype;
2501 const unsigned char* view = object->section_contents(data_shndx,
2502 &stype, true);
2503 if (view[reloc.get_r_offset() - 2] == 0x8b)
2504 break;
2505 }
2506
2507
2508 // The symbol requires a GOT entry.
2509 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2510
2511 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
2512 // lets function pointers compare correctly with shared
2513 // libraries. Otherwise we would need an IRELATIVE reloc.
2514 bool is_new;
2515 if (is_ifunc)
2516 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2517 else
2518 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2519 if (is_new)
2520 {
2521 // If we are generating a shared object, we need to add a
2522 // dynamic relocation for this symbol's GOT entry.
2523 if (parameters->options().output_is_position_independent())
2524 {
2525 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2526 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2527 if (r_type != elfcpp::R_X86_64_GOT32)
2528 {
2529 unsigned int got_offset =
2530 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2531 rela_dyn->add_local_relative(object, r_sym,
2532 elfcpp::R_X86_64_RELATIVE,
2533 got, got_offset, 0, is_ifunc);
2534 }
2535 else
2536 {
2537 this->check_non_pic(object, r_type, NULL);
2538
2539 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2540 rela_dyn->add_local(
2541 object, r_sym, r_type, got,
2542 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
2543 }
2544 }
2545 }
2546 // For GOTPLT64, we'd normally want a PLT section, but since
2547 // we know this is a local symbol, no PLT is needed.
2548 }
2549 break;
2550
2551 case elfcpp::R_X86_64_COPY:
2552 case elfcpp::R_X86_64_GLOB_DAT:
2553 case elfcpp::R_X86_64_JUMP_SLOT:
2554 case elfcpp::R_X86_64_RELATIVE:
2555 case elfcpp::R_X86_64_IRELATIVE:
2556 // These are outstanding tls relocs, which are unexpected when linking
2557 case elfcpp::R_X86_64_TPOFF64:
2558 case elfcpp::R_X86_64_DTPMOD64:
2559 case elfcpp::R_X86_64_TLSDESC:
2560 gold_error(_("%s: unexpected reloc %u in object file"),
2561 object->name().c_str(), r_type);
2562 break;
2563
2564 // These are initial tls relocs, which are expected when linking
2565 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2566 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2567 case elfcpp::R_X86_64_TLSDESC_CALL:
2568 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2569 case elfcpp::R_X86_64_DTPOFF32:
2570 case elfcpp::R_X86_64_DTPOFF64:
2571 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2572 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2573 {
2574 bool output_is_shared = parameters->options().shared();
2575 const tls::Tls_optimization optimized_type
2576 = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
2577 r_type);
2578 switch (r_type)
2579 {
2580 case elfcpp::R_X86_64_TLSGD: // General-dynamic
2581 if (optimized_type == tls::TLSOPT_NONE)
2582 {
2583 // Create a pair of GOT entries for the module index and
2584 // dtv-relative offset.
2585 Output_data_got<64, false>* got
2586 = target->got_section(symtab, layout);
2587 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2588 unsigned int shndx = lsym.get_st_shndx();
2589 bool is_ordinary;
2590 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2591 if (!is_ordinary)
2592 object->error(_("local symbol %u has bad shndx %u"),
2593 r_sym, shndx);
2594 else
2595 got->add_local_pair_with_rel(object, r_sym,
2596 shndx,
2597 GOT_TYPE_TLS_PAIR,
2598 target->rela_dyn_section(layout),
2599 elfcpp::R_X86_64_DTPMOD64);
2600 }
2601 else if (optimized_type != tls::TLSOPT_TO_LE)
2602 unsupported_reloc_local(object, r_type);
2603 break;
2604
2605 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2606 target->define_tls_base_symbol(symtab, layout);
2607 if (optimized_type == tls::TLSOPT_NONE)
2608 {
2609 // Create reserved PLT and GOT entries for the resolver.
2610 target->reserve_tlsdesc_entries(symtab, layout);
2611
2612 // Generate a double GOT entry with an
2613 // R_X86_64_TLSDESC reloc. The R_X86_64_TLSDESC reloc
2614 // is resolved lazily, so the GOT entry needs to be in
2615 // an area in .got.plt, not .got. Call got_section to
2616 // make sure the section has been created.
2617 target->got_section(symtab, layout);
2618 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2619 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2620 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2621 {
2622 unsigned int got_offset = got->add_constant(0);
2623 got->add_constant(0);
2624 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2625 got_offset);
2626 Reloc_section* rt = target->rela_tlsdesc_section(layout);
2627 // We store the arguments we need in a vector, and
2628 // use the index into the vector as the parameter
2629 // to pass to the target specific routines.
2630 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
2631 void* arg = reinterpret_cast<void*>(intarg);
2632 rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2633 got, got_offset, 0);
2634 }
2635 }
2636 else if (optimized_type != tls::TLSOPT_TO_LE)
2637 unsupported_reloc_local(object, r_type);
2638 break;
2639
2640 case elfcpp::R_X86_64_TLSDESC_CALL:
2641 break;
2642
2643 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2644 if (optimized_type == tls::TLSOPT_NONE)
2645 {
2646 // Create a GOT entry for the module index.
2647 target->got_mod_index_entry(symtab, layout, object);
2648 }
2649 else if (optimized_type != tls::TLSOPT_TO_LE)
2650 unsupported_reloc_local(object, r_type);
2651 break;
2652
2653 case elfcpp::R_X86_64_DTPOFF32:
2654 case elfcpp::R_X86_64_DTPOFF64:
2655 break;
2656
2657 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2658 layout->set_has_static_tls();
2659 if (optimized_type == tls::TLSOPT_NONE)
2660 {
2661 // Create a GOT entry for the tp-relative offset.
2662 Output_data_got<64, false>* got
2663 = target->got_section(symtab, layout);
2664 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2665 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2666 target->rela_dyn_section(layout),
2667 elfcpp::R_X86_64_TPOFF64);
2668 }
2669 else if (optimized_type != tls::TLSOPT_TO_LE)
2670 unsupported_reloc_local(object, r_type);
2671 break;
2672
2673 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2674 layout->set_has_static_tls();
2675 if (output_is_shared)
2676 unsupported_reloc_local(object, r_type);
2677 break;
2678
2679 default:
2680 gold_unreachable();
2681 }
2682 }
2683 break;
2684
2685 case elfcpp::R_X86_64_SIZE32:
2686 case elfcpp::R_X86_64_SIZE64:
2687 default:
2688 gold_error(_("%s: unsupported reloc %u against local symbol"),
2689 object->name().c_str(), r_type);
2690 break;
2691 }
2692 }
2693
2694
2695 // Report an unsupported relocation against a global symbol.
2696
2697 template<int size>
2698 void
2699 Target_x86_64<size>::Scan::unsupported_reloc_global(
2700 Sized_relobj_file<size, false>* object,
2701 unsigned int r_type,
2702 Symbol* gsym)
2703 {
2704 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2705 object->name().c_str(), r_type, gsym->demangled_name().c_str());
2706 }
2707
2708 // Returns true if this relocation type could be that of a function pointer.
2709 template<int size>
2710 inline bool
2711 Target_x86_64<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
2712 {
2713 switch (r_type)
2714 {
2715 case elfcpp::R_X86_64_64:
2716 case elfcpp::R_X86_64_32:
2717 case elfcpp::R_X86_64_32S:
2718 case elfcpp::R_X86_64_16:
2719 case elfcpp::R_X86_64_8:
2720 case elfcpp::R_X86_64_GOT64:
2721 case elfcpp::R_X86_64_GOT32:
2722 case elfcpp::R_X86_64_GOTPCREL64:
2723 case elfcpp::R_X86_64_GOTPCREL:
2724 case elfcpp::R_X86_64_GOTPCRELX:
2725 case elfcpp::R_X86_64_REX_GOTPCRELX:
2726 case elfcpp::R_X86_64_GOTPLT64:
2727 {
2728 return true;
2729 }
2730 }
2731 return false;
2732 }
2733
2734 // For safe ICF, scan a relocation for a local symbol to check if it
2735 // corresponds to a function pointer being taken. In that case mark
2736 // the function whose pointer was taken as not foldable.
2737
2738 template<int size>
2739 inline bool
2740 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
2741 Symbol_table* ,
2742 Layout* ,
2743 Target_x86_64<size>* ,
2744 Sized_relobj_file<size, false>* ,
2745 unsigned int ,
2746 Output_section* ,
2747 const elfcpp::Rela<size, false>& ,
2748 unsigned int r_type,
2749 const elfcpp::Sym<size, false>&)
2750 {
2751 // When building a shared library, do not fold any local symbols as it is
2752 // not possible to distinguish pointer taken versus a call by looking at
2753 // the relocation types.
2754 return (parameters->options().shared()
2755 || possible_function_pointer_reloc(r_type));
2756 }
2757
2758 // For safe ICF, scan a relocation for a global symbol to check if it
2759 // corresponds to a function pointer being taken. In that case mark
2760 // the function whose pointer was taken as not foldable.
2761
2762 template<int size>
2763 inline bool
2764 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
2765 Symbol_table*,
2766 Layout* ,
2767 Target_x86_64<size>* ,
2768 Sized_relobj_file<size, false>* ,
2769 unsigned int ,
2770 Output_section* ,
2771 const elfcpp::Rela<size, false>& ,
2772 unsigned int r_type,
2773 Symbol* gsym)
2774 {
2775 // When building a shared library, do not fold symbols whose visibility
2776 // is hidden, internal or protected.
2777 return ((parameters->options().shared()
2778 && (gsym->visibility() == elfcpp::STV_INTERNAL
2779 || gsym->visibility() == elfcpp::STV_PROTECTED
2780 || gsym->visibility() == elfcpp::STV_HIDDEN))
2781 || possible_function_pointer_reloc(r_type));
2782 }
2783
2784 // Scan a relocation for a global symbol.
2785
2786 template<int size>
2787 inline void
2788 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
2789 Layout* layout,
2790 Target_x86_64<size>* target,
2791 Sized_relobj_file<size, false>* object,
2792 unsigned int data_shndx,
2793 Output_section* output_section,
2794 const elfcpp::Rela<size, false>& reloc,
2795 unsigned int r_type,
2796 Symbol* gsym)
2797 {
2798 // A STT_GNU_IFUNC symbol may require a PLT entry.
2799 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2800 && this->reloc_needs_plt_for_ifunc(object, r_type))
2801 target->make_plt_entry(symtab, layout, gsym);
2802
2803 switch (r_type)
2804 {
2805 case elfcpp::R_X86_64_NONE:
2806 case elfcpp::R_X86_64_GNU_VTINHERIT:
2807 case elfcpp::R_X86_64_GNU_VTENTRY:
2808 break;
2809
2810 case elfcpp::R_X86_64_64:
2811 case elfcpp::R_X86_64_32:
2812 case elfcpp::R_X86_64_32S:
2813 case elfcpp::R_X86_64_16:
2814 case elfcpp::R_X86_64_8:
2815 {
2816 // Make a PLT entry if necessary.
2817 if (gsym->needs_plt_entry())
2818 {
2819 target->make_plt_entry(symtab, layout, gsym);
2820 // Since this is not a PC-relative relocation, we may be
2821 // taking the address of a function. In that case we need to
2822 // set the entry in the dynamic symbol table to the address of
2823 // the PLT entry.
2824 if (gsym->is_from_dynobj() && !parameters->options().shared())
2825 gsym->set_needs_dynsym_value();
2826 }
2827 // Make a dynamic relocation if necessary.
2828 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2829 {
2830 if (!parameters->options().output_is_position_independent()
2831 && gsym->may_need_copy_reloc())
2832 {
2833 target->copy_reloc(symtab, layout, object,
2834 data_shndx, output_section, gsym, reloc);
2835 }
2836 else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2837 || (size == 32 && r_type == elfcpp::R_X86_64_32))
2838 && gsym->type() == elfcpp::STT_GNU_IFUNC
2839 && gsym->can_use_relative_reloc(false)
2840 && !gsym->is_from_dynobj()
2841 && !gsym->is_undefined()
2842 && !gsym->is_preemptible())
2843 {
2844 // Use an IRELATIVE reloc for a locally defined
2845 // STT_GNU_IFUNC symbol. This makes a function
2846 // address in a PIE executable match the address in a
2847 // shared library that it links against.
2848 Reloc_section* rela_dyn =
2849 target->rela_irelative_section(layout);
2850 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2851 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2852 output_section, object,
2853 data_shndx,
2854 reloc.get_r_offset(),
2855 reloc.get_r_addend());
2856 }
2857 else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2858 || (size == 32 && r_type == elfcpp::R_X86_64_32))
2859 && gsym->can_use_relative_reloc(false))
2860 {
2861 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2862 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2863 output_section, object,
2864 data_shndx,
2865 reloc.get_r_offset(),
2866 reloc.get_r_addend(), false);
2867 }
2868 else
2869 {
2870 this->check_non_pic(object, r_type, gsym);
2871 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2872 rela_dyn->add_global(gsym, r_type, output_section, object,
2873 data_shndx, reloc.get_r_offset(),
2874 reloc.get_r_addend());
2875 }
2876 }
2877 }
2878 break;
2879
2880 case elfcpp::R_X86_64_PC64:
2881 case elfcpp::R_X86_64_PC32:
2882 case elfcpp::R_X86_64_PC32_BND:
2883 case elfcpp::R_X86_64_PC16:
2884 case elfcpp::R_X86_64_PC8:
2885 {
2886 // Make a PLT entry if necessary.
2887 if (gsym->needs_plt_entry())
2888 target->make_plt_entry(symtab, layout, gsym);
2889 // Make a dynamic relocation if necessary.
2890 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2891 {
2892 if (parameters->options().output_is_executable()
2893 && gsym->may_need_copy_reloc())
2894 {
2895 target->copy_reloc(symtab, layout, object,
2896 data_shndx, output_section, gsym, reloc);
2897 }
2898 else
2899 {
2900 this->check_non_pic(object, r_type, gsym);
2901 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2902 rela_dyn->add_global(gsym, r_type, output_section, object,
2903 data_shndx, reloc.get_r_offset(),
2904 reloc.get_r_addend());
2905 }
2906 }
2907 }
2908 break;
2909
2910 case elfcpp::R_X86_64_GOT64:
2911 case elfcpp::R_X86_64_GOT32:
2912 case elfcpp::R_X86_64_GOTPCREL64:
2913 case elfcpp::R_X86_64_GOTPCREL:
2914 case elfcpp::R_X86_64_GOTPCRELX:
2915 case elfcpp::R_X86_64_REX_GOTPCRELX:
2916 case elfcpp::R_X86_64_GOTPLT64:
2917 {
2918 // The symbol requires a GOT entry.
2919 Output_data_got<64, false>* got = target->got_section(symtab, layout);
2920
2921 // If we convert this from
2922 // mov foo@GOTPCREL(%rip), %reg
2923 // to lea foo(%rip), %reg.
2924 // in Relocate::relocate, then there is nothing to do here.
2925 if ((r_type == elfcpp::R_X86_64_GOTPCREL
2926 || r_type == elfcpp::R_X86_64_GOTPCRELX
2927 || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
2928 && reloc.get_r_offset() >= 2
2929 && Target_x86_64<size>::can_convert_mov_to_lea(gsym))
2930 {
2931 section_size_type stype;
2932 const unsigned char* view = object->section_contents(data_shndx,
2933 &stype, true);
2934 if (view[reloc.get_r_offset() - 2] == 0x8b)
2935 break;
2936 }
2937
2938 if (gsym->final_value_is_known())
2939 {
2940 // For a STT_GNU_IFUNC symbol we want the PLT address.
2941 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2942 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2943 else
2944 got->add_global(gsym, GOT_TYPE_STANDARD);
2945 }
2946 else
2947 {
2948 // If this symbol is not fully resolved, we need to add a
2949 // dynamic relocation for it.
2950 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2951
2952 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2953 //
2954 // 1) The symbol may be defined in some other module.
2955 //
2956 // 2) We are building a shared library and this is a
2957 // protected symbol; using GLOB_DAT means that the dynamic
2958 // linker can use the address of the PLT in the main
2959 // executable when appropriate so that function address
2960 // comparisons work.
2961 //
2962 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2963 // code, again so that function address comparisons work.
2964 if (gsym->is_from_dynobj()
2965 || gsym->is_undefined()
2966 || gsym->is_preemptible()
2967 || (gsym->visibility() == elfcpp::STV_PROTECTED
2968 && parameters->options().shared())
2969 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2970 && parameters->options().output_is_position_independent()))
2971 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2972 elfcpp::R_X86_64_GLOB_DAT);
2973 else
2974 {
2975 // For a STT_GNU_IFUNC symbol we want to write the PLT
2976 // offset into the GOT, so that function pointer
2977 // comparisons work correctly.
2978 bool is_new;
2979 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2980 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2981 else
2982 {
2983 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2984 // Tell the dynamic linker to use the PLT address
2985 // when resolving relocations.
2986 if (gsym->is_from_dynobj()
2987 && !parameters->options().shared())
2988 gsym->set_needs_dynsym_value();
2989 }
2990 if (is_new)
2991 {
2992 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2993 rela_dyn->add_global_relative(gsym,
2994 elfcpp::R_X86_64_RELATIVE,
2995 got, got_off, 0, false);
2996 }
2997 }
2998 }
2999 }
3000 break;
3001
3002 case elfcpp::R_X86_64_PLT32:
3003 case elfcpp::R_X86_64_PLT32_BND:
3004 // If the symbol is fully resolved, this is just a PC32 reloc.
3005 // Otherwise we need a PLT entry.
3006 if (gsym->final_value_is_known())
3007 break;
3008 // If building a shared library, we can also skip the PLT entry
3009 // if the symbol is defined in the output file and is protected
3010 // or hidden.
3011 if (gsym->is_defined()
3012 && !gsym->is_from_dynobj()
3013 && !gsym->is_preemptible())
3014 break;
3015 target->make_plt_entry(symtab, layout, gsym);
3016 break;
3017
3018 case elfcpp::R_X86_64_GOTPC32:
3019 case elfcpp::R_X86_64_GOTOFF64:
3020 case elfcpp::R_X86_64_GOTPC64:
3021 case elfcpp::R_X86_64_PLTOFF64:
3022 // We need a GOT section.
3023 target->got_section(symtab, layout);
3024 // For PLTOFF64, we also need a PLT entry (but only if the
3025 // symbol is not fully resolved).
3026 if (r_type == elfcpp::R_X86_64_PLTOFF64
3027 && !gsym->final_value_is_known())
3028 target->make_plt_entry(symtab, layout, gsym);
3029 break;
3030
3031 case elfcpp::R_X86_64_COPY:
3032 case elfcpp::R_X86_64_GLOB_DAT:
3033 case elfcpp::R_X86_64_JUMP_SLOT:
3034 case elfcpp::R_X86_64_RELATIVE:
3035 case elfcpp::R_X86_64_IRELATIVE:
3036 // These are outstanding tls relocs, which are unexpected when linking
3037 case elfcpp::R_X86_64_TPOFF64:
3038 case elfcpp::R_X86_64_DTPMOD64:
3039 case elfcpp::R_X86_64_TLSDESC:
3040 gold_error(_("%s: unexpected reloc %u in object file"),
3041 object->name().c_str(), r_type);
3042 break;
3043
3044 // These are initial tls relocs, which are expected for global()
3045 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
3046 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
3047 case elfcpp::R_X86_64_TLSDESC_CALL:
3048 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
3049 case elfcpp::R_X86_64_DTPOFF32:
3050 case elfcpp::R_X86_64_DTPOFF64:
3051 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
3052 case elfcpp::R_X86_64_TPOFF32: // Local-exec
3053 {
3054 // For the Initial-Exec model, we can treat undef symbols as final
3055 // when building an executable.
3056 const bool is_final = (gsym->final_value_is_known() ||
3057 (r_type == elfcpp::R_X86_64_GOTTPOFF &&
3058 gsym->is_undefined() &&
3059 parameters->options().output_is_executable()));
3060 const tls::Tls_optimization optimized_type
3061 = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3062 switch (r_type)
3063 {
3064 case elfcpp::R_X86_64_TLSGD: // General-dynamic
3065 if (optimized_type == tls::TLSOPT_NONE)
3066 {
3067 // Create a pair of GOT entries for the module index and
3068 // dtv-relative offset.
3069 Output_data_got<64, false>* got
3070 = target->got_section(symtab, layout);
3071 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
3072 target->rela_dyn_section(layout),
3073 elfcpp::R_X86_64_DTPMOD64,
3074 elfcpp::R_X86_64_DTPOFF64);
3075 }
3076 else if (optimized_type == tls::TLSOPT_TO_IE)
3077 {
3078 // Create a GOT entry for the tp-relative offset.
3079 Output_data_got<64, false>* got
3080 = target->got_section(symtab, layout);
3081 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3082 target->rela_dyn_section(layout),
3083 elfcpp::R_X86_64_TPOFF64);
3084 }
3085 else if (optimized_type != tls::TLSOPT_TO_LE)
3086 unsupported_reloc_global(object, r_type, gsym);
3087 break;
3088
3089 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3090 target->define_tls_base_symbol(symtab, layout);
3091 if (optimized_type == tls::TLSOPT_NONE)
3092 {
3093 // Create reserved PLT and GOT entries for the resolver.
3094 target->reserve_tlsdesc_entries(symtab, layout);
3095
3096 // Create a double GOT entry with an R_X86_64_TLSDESC
3097 // reloc. The R_X86_64_TLSDESC reloc is resolved
3098 // lazily, so the GOT entry needs to be in an area in
3099 // .got.plt, not .got. Call got_section to make sure
3100 // the section has been created.
3101 target->got_section(symtab, layout);
3102 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3103 Reloc_section* rt = target->rela_tlsdesc_section(layout);
3104 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
3105 elfcpp::R_X86_64_TLSDESC, 0);
3106 }
3107 else if (optimized_type == tls::TLSOPT_TO_IE)
3108 {
3109 // Create a GOT entry for the tp-relative offset.
3110 Output_data_got<64, false>* got
3111 = target->got_section(symtab, layout);
3112 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3113 target->rela_dyn_section(layout),
3114 elfcpp::R_X86_64_TPOFF64);
3115 }
3116 else if (optimized_type != tls::TLSOPT_TO_LE)
3117 unsupported_reloc_global(object, r_type, gsym);
3118 break;
3119
3120 case elfcpp::R_X86_64_TLSDESC_CALL:
3121 break;
3122
3123 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
3124 if (optimized_type == tls::TLSOPT_NONE)
3125 {
3126 // Create a GOT entry for the module index.
3127 target->got_mod_index_entry(symtab, layout, object);
3128 }
3129 else if (optimized_type != tls::TLSOPT_TO_LE)
3130 unsupported_reloc_global(object, r_type, gsym);
3131 break;
3132
3133 case elfcpp::R_X86_64_DTPOFF32:
3134 case elfcpp::R_X86_64_DTPOFF64:
3135 break;
3136
3137 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
3138 layout->set_has_static_tls();
3139 if (optimized_type == tls::TLSOPT_NONE)
3140 {
3141 // Create a GOT entry for the tp-relative offset.
3142 Output_data_got<64, false>* got
3143 = target->got_section(symtab, layout);
3144 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3145 target->rela_dyn_section(layout),
3146 elfcpp::R_X86_64_TPOFF64);
3147 }
3148 else if (optimized_type != tls::TLSOPT_TO_LE)
3149 unsupported_reloc_global(object, r_type, gsym);
3150 break;
3151
3152 case elfcpp::R_X86_64_TPOFF32: // Local-exec
3153 layout->set_has_static_tls();
3154 if (parameters->options().shared())
3155 unsupported_reloc_global(object, r_type, gsym);
3156 break;
3157
3158 default:
3159 gold_unreachable();
3160 }
3161 }
3162 break;
3163
3164 case elfcpp::R_X86_64_SIZE32:
3165 case elfcpp::R_X86_64_SIZE64:
3166 default:
3167 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3168 object->name().c_str(), r_type,
3169 gsym->demangled_name().c_str());
3170 break;
3171 }
3172 }
3173
3174 template<int size>
3175 void
3176 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
3177 Layout* layout,
3178 Sized_relobj_file<size, false>* object,
3179 unsigned int data_shndx,
3180 unsigned int sh_type,
3181 const unsigned char* prelocs,
3182 size_t reloc_count,
3183 Output_section* output_section,
3184 bool needs_special_offset_handling,
3185 size_t local_symbol_count,
3186 const unsigned char* plocal_symbols)
3187 {
3188
3189 if (sh_type == elfcpp::SHT_REL)
3190 {
3191 return;
3192 }
3193
3194 gold::gc_process_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3195 typename Target_x86_64<size>::Scan,
3196 typename Target_x86_64<size>::Relocatable_size_for_reloc>(
3197 symtab,
3198 layout,
3199 this,
3200 object,
3201 data_shndx,
3202 prelocs,
3203 reloc_count,
3204 output_section,
3205 needs_special_offset_handling,
3206 local_symbol_count,
3207 plocal_symbols);
3208
3209 }
3210 // Scan relocations for a section.
3211
3212 template<int size>
3213 void
3214 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
3215 Layout* layout,
3216 Sized_relobj_file<size, false>* object,
3217 unsigned int data_shndx,
3218 unsigned int sh_type,
3219 const unsigned char* prelocs,
3220 size_t reloc_count,
3221 Output_section* output_section,
3222 bool needs_special_offset_handling,
3223 size_t local_symbol_count,
3224 const unsigned char* plocal_symbols)
3225 {
3226 if (sh_type == elfcpp::SHT_REL)
3227 {
3228 gold_error(_("%s: unsupported REL reloc section"),
3229 object->name().c_str());
3230 return;
3231 }
3232
3233 gold::scan_relocs<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
3234 typename Target_x86_64<size>::Scan>(
3235 symtab,
3236 layout,
3237 this,
3238 object,
3239 data_shndx,
3240 prelocs,
3241 reloc_count,
3242 output_section,
3243 needs_special_offset_handling,
3244 local_symbol_count,
3245 plocal_symbols);
3246 }
3247
3248 // Finalize the sections.
3249
3250 template<int size>
3251 void
3252 Target_x86_64<size>::do_finalize_sections(
3253 Layout* layout,
3254 const Input_objects*,
3255 Symbol_table* symtab)
3256 {
3257 const Reloc_section* rel_plt = (this->plt_ == NULL
3258 ? NULL
3259 : this->plt_->rela_plt());
3260 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3261 this->rela_dyn_, true, false);
3262
3263 // Fill in some more dynamic tags.
3264 Output_data_dynamic* const odyn = layout->dynamic_data();
3265 if (odyn != NULL)
3266 {
3267 if (this->plt_ != NULL
3268 && this->plt_->output_section() != NULL
3269 && this->plt_->has_tlsdesc_entry())
3270 {
3271 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
3272 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
3273 this->got_->finalize_data_size();
3274 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
3275 this->plt_, plt_offset);
3276 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
3277 this->got_, got_offset);
3278 }
3279 }
3280
3281 // Emit any relocs we saved in an attempt to avoid generating COPY
3282 // relocs.
3283 if (this->copy_relocs_.any_saved_relocs())
3284 this->copy_relocs_.emit(this->rela_dyn_section(layout));
3285
3286 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3287 // the .got.plt section.
3288 Symbol* sym = this->global_offset_table_;
3289 if (sym != NULL)
3290 {
3291 uint64_t data_size = this->got_plt_->current_data_size();
3292 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3293 }
3294
3295 if (parameters->doing_static_link()
3296 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3297 {
3298 // If linking statically, make sure that the __rela_iplt symbols
3299 // were defined if necessary, even if we didn't create a PLT.
3300 static const Define_symbol_in_segment syms[] =
3301 {
3302 {
3303 "__rela_iplt_start", // name
3304 elfcpp::PT_LOAD, // segment_type
3305 elfcpp::PF_W, // segment_flags_set
3306 elfcpp::PF(0), // segment_flags_clear
3307 0, // value
3308 0, // size
3309 elfcpp::STT_NOTYPE, // type
3310 elfcpp::STB_GLOBAL, // binding
3311 elfcpp::STV_HIDDEN, // visibility
3312 0, // nonvis
3313 Symbol::SEGMENT_START, // offset_from_base
3314 true // only_if_ref
3315 },
3316 {
3317 "__rela_iplt_end", // name
3318 elfcpp::PT_LOAD, // segment_type
3319 elfcpp::PF_W, // segment_flags_set
3320 elfcpp::PF(0), // segment_flags_clear
3321 0, // value
3322 0, // size
3323 elfcpp::STT_NOTYPE, // type
3324 elfcpp::STB_GLOBAL, // binding
3325 elfcpp::STV_HIDDEN, // visibility
3326 0, // nonvis
3327 Symbol::SEGMENT_START, // offset_from_base
3328 true // only_if_ref
3329 }
3330 };
3331
3332 symtab->define_symbols(layout, 2, syms,
3333 layout->script_options()->saw_sections_clause());
3334 }
3335 }
3336
3337 // Perform a relocation.
3338
3339 template<int size>
3340 inline bool
3341 Target_x86_64<size>::Relocate::relocate(
3342 const Relocate_info<size, false>* relinfo,
3343 Target_x86_64<size>* target,
3344 Output_section*,
3345 size_t relnum,
3346 const elfcpp::Rela<size, false>& rela,
3347 unsigned int r_type,
3348 const Sized_symbol<size>* gsym,
3349 const Symbol_value<size>* psymval,
3350 unsigned char* view,
3351 typename elfcpp::Elf_types<size>::Elf_Addr address,
3352 section_size_type view_size)
3353 {
3354 if (this->skip_call_tls_get_addr_)
3355 {
3356 if ((r_type != elfcpp::R_X86_64_PLT32
3357 && r_type != elfcpp::R_X86_64_PLT32_BND
3358 && r_type != elfcpp::R_X86_64_PC32_BND
3359 && r_type != elfcpp::R_X86_64_PC32)
3360 || gsym == NULL
3361 || strcmp(gsym->name(), "__tls_get_addr") != 0)
3362 {
3363 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3364 _("missing expected TLS relocation"));
3365 }
3366 else
3367 {
3368 this->skip_call_tls_get_addr_ = false;
3369 return false;
3370 }
3371 }
3372
3373 if (view == NULL)
3374 return true;
3375
3376 const Sized_relobj_file<size, false>* object = relinfo->object;
3377
3378 // Pick the value to use for symbols defined in the PLT.
3379 Symbol_value<size> symval;
3380 if (gsym != NULL
3381 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3382 {
3383 symval.set_output_value(target->plt_address_for_global(gsym));
3384 psymval = &symval;
3385 }
3386 else if (gsym == NULL && psymval->is_ifunc_symbol())
3387 {
3388 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3389 if (object->local_has_plt_offset(r_sym))
3390 {
3391 symval.set_output_value(target->plt_address_for_local(object, r_sym));
3392 psymval = &symval;
3393 }
3394 }
3395
3396 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3397
3398 // Get the GOT offset if needed.
3399 // The GOT pointer points to the end of the GOT section.
3400 // We need to subtract the size of the GOT section to get
3401 // the actual offset to use in the relocation.
3402 bool have_got_offset = false;
3403 // Since the actual offset is always negative, we use signed int to
3404 // support 64-bit GOT relocations.
3405 int got_offset = 0;
3406 switch (r_type)
3407 {
3408 case elfcpp::R_X86_64_GOT32:
3409 case elfcpp::R_X86_64_GOT64:
3410 case elfcpp::R_X86_64_GOTPLT64:
3411 case elfcpp::R_X86_64_GOTPCREL64:
3412 if (gsym != NULL)
3413 {
3414 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3415 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3416 }
3417 else
3418 {
3419 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3420 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3421 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3422 - target->got_size());
3423 }
3424 have_got_offset = true;
3425 break;
3426
3427 default:
3428 break;
3429 }
3430
3431 switch (r_type)
3432 {
3433 case elfcpp::R_X86_64_NONE:
3434 case elfcpp::R_X86_64_GNU_VTINHERIT:
3435 case elfcpp::R_X86_64_GNU_VTENTRY:
3436 break;
3437
3438 case elfcpp::R_X86_64_64:
3439 Relocate_functions<size, false>::rela64(view, object, psymval, addend);
3440 break;
3441
3442 case elfcpp::R_X86_64_PC64:
3443 Relocate_functions<size, false>::pcrela64(view, object, psymval, addend,
3444 address);
3445 break;
3446
3447 case elfcpp::R_X86_64_32:
3448 // FIXME: we need to verify that value + addend fits into 32 bits:
3449 // uint64_t x = value + addend;
3450 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
3451 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
3452 Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3453 break;
3454
3455 case elfcpp::R_X86_64_32S:
3456 // FIXME: we need to verify that value + addend fits into 32 bits:
3457 // int64_t x = value + addend; // note this quantity is signed!
3458 // x == static_cast<int64_t>(static_cast<int32_t>(x))
3459 Relocate_functions<size, false>::rela32(view, object, psymval, addend);
3460 break;
3461
3462 case elfcpp::R_X86_64_PC32:
3463 case elfcpp::R_X86_64_PC32_BND:
3464 Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3465 address);
3466 break;
3467
3468 case elfcpp::R_X86_64_16:
3469 Relocate_functions<size, false>::rela16(view, object, psymval, addend);
3470 break;
3471
3472 case elfcpp::R_X86_64_PC16:
3473 Relocate_functions<size, false>::pcrela16(view, object, psymval, addend,
3474 address);
3475 break;
3476
3477 case elfcpp::R_X86_64_8:
3478 Relocate_functions<size, false>::rela8(view, object, psymval, addend);
3479 break;
3480
3481 case elfcpp::R_X86_64_PC8:
3482 Relocate_functions<size, false>::pcrela8(view, object, psymval, addend,
3483 address);
3484 break;
3485
3486 case elfcpp::R_X86_64_PLT32:
3487 case elfcpp::R_X86_64_PLT32_BND:
3488 gold_assert(gsym == NULL
3489 || gsym->has_plt_offset()
3490 || gsym->final_value_is_known()
3491 || (gsym->is_defined()
3492 && !gsym->is_from_dynobj()
3493 && !gsym->is_preemptible()));
3494 // Note: while this code looks the same as for R_X86_64_PC32, it
3495 // behaves differently because psymval was set to point to
3496 // the PLT entry, rather than the symbol, in Scan::global().
3497 Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3498 address);
3499 break;
3500
3501 case elfcpp::R_X86_64_PLTOFF64:
3502 {
3503 gold_assert(gsym);
3504 gold_assert(gsym->has_plt_offset()
3505 || gsym->final_value_is_known());
3506 typename elfcpp::Elf_types<size>::Elf_Addr got_address;
3507 // This is the address of GLOBAL_OFFSET_TABLE.
3508 got_address = target->got_plt_section()->address();
3509 Relocate_functions<size, false>::rela64(view, object, psymval,
3510 addend - got_address);
3511 }
3512 break;
3513
3514 case elfcpp::R_X86_64_GOT32:
3515 gold_assert(have_got_offset);
3516 Relocate_functions<size, false>::rela32(view, got_offset, addend);
3517 break;
3518
3519 case elfcpp::R_X86_64_GOTPC32:
3520 {
3521 gold_assert(gsym);
3522 typename elfcpp::Elf_types<size>::Elf_Addr value;
3523 value = target->got_plt_section()->address();
3524 Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3525 }
3526 break;
3527
3528 case elfcpp::R_X86_64_GOT64:
3529 case elfcpp::R_X86_64_GOTPLT64:
3530 // R_X86_64_GOTPLT64 is obsolete and treated the the same as
3531 // GOT64.
3532 gold_assert(have_got_offset);
3533 Relocate_functions<size, false>::rela64(view, got_offset, addend);
3534 break;
3535
3536 case elfcpp::R_X86_64_GOTPC64:
3537 {
3538 gold_assert(gsym);
3539 typename elfcpp::Elf_types<size>::Elf_Addr value;
3540 value = target->got_plt_section()->address();
3541 Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3542 }
3543 break;
3544
3545 case elfcpp::R_X86_64_GOTOFF64:
3546 {
3547 typename elfcpp::Elf_types<size>::Elf_Addr value;
3548 value = (psymval->value(object, 0)
3549 - target->got_plt_section()->address());
3550 Relocate_functions<size, false>::rela64(view, value, addend);
3551 }
3552 break;
3553
3554 case elfcpp::R_X86_64_GOTPCREL:
3555 case elfcpp::R_X86_64_GOTPCRELX:
3556 case elfcpp::R_X86_64_REX_GOTPCRELX:
3557 {
3558 // Convert
3559 // mov foo@GOTPCREL(%rip), %reg
3560 // to lea foo(%rip), %reg.
3561 // if possible.
3562 if (rela.get_r_offset() >= 2
3563 && view[-2] == 0x8b
3564 && ((gsym == NULL && !psymval->is_ifunc_symbol())
3565 || (gsym != NULL
3566 && Target_x86_64<size>::can_convert_mov_to_lea(gsym))))
3567 {
3568 view[-2] = 0x8d;
3569 Relocate_functions<size, false>::pcrela32(view, object, psymval, addend,
3570 address);
3571 }
3572 else
3573 {
3574 if (gsym != NULL)
3575 {
3576 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3577 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3578 }
3579 else
3580 {
3581 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3582 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3583 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3584 - target->got_size());
3585 }
3586 typename elfcpp::Elf_types<size>::Elf_Addr value;
3587 value = target->got_plt_section()->address() + got_offset;
3588 Relocate_functions<size, false>::pcrela32(view, value, addend, address);
3589 }
3590 }
3591 break;
3592
3593 case elfcpp::R_X86_64_GOTPCREL64:
3594 {
3595 gold_assert(have_got_offset);
3596 typename elfcpp::Elf_types<size>::Elf_Addr value;
3597 value = target->got_plt_section()->address() + got_offset;
3598 Relocate_functions<size, false>::pcrela64(view, value, addend, address);
3599 }
3600 break;
3601
3602 case elfcpp::R_X86_64_COPY:
3603 case elfcpp::R_X86_64_GLOB_DAT:
3604 case elfcpp::R_X86_64_JUMP_SLOT:
3605 case elfcpp::R_X86_64_RELATIVE:
3606 case elfcpp::R_X86_64_IRELATIVE:
3607 // These are outstanding tls relocs, which are unexpected when linking
3608 case elfcpp::R_X86_64_TPOFF64:
3609 case elfcpp::R_X86_64_DTPMOD64:
3610 case elfcpp::R_X86_64_TLSDESC:
3611 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3612 _("unexpected reloc %u in object file"),
3613 r_type);
3614 break;
3615
3616 // These are initial tls relocs, which are expected when linking
3617 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
3618 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
3619 case elfcpp::R_X86_64_TLSDESC_CALL:
3620 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
3621 case elfcpp::R_X86_64_DTPOFF32:
3622 case elfcpp::R_X86_64_DTPOFF64:
3623 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
3624 case elfcpp::R_X86_64_TPOFF32: // Local-exec
3625 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3626 view, address, view_size);
3627 break;
3628
3629 case elfcpp::R_X86_64_SIZE32:
3630 case elfcpp::R_X86_64_SIZE64:
3631 default:
3632 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3633 _("unsupported reloc %u"),
3634 r_type);
3635 break;
3636 }
3637
3638 return true;
3639 }
3640
3641 // Perform a TLS relocation.
3642
3643 template<int size>
3644 inline void
3645 Target_x86_64<size>::Relocate::relocate_tls(
3646 const Relocate_info<size, false>* relinfo,
3647 Target_x86_64<size>* target,
3648 size_t relnum,
3649 const elfcpp::Rela<size, false>& rela,
3650 unsigned int r_type,
3651 const Sized_symbol<size>* gsym,
3652 const Symbol_value<size>* psymval,
3653 unsigned char* view,
3654 typename elfcpp::Elf_types<size>::Elf_Addr address,
3655 section_size_type view_size)
3656 {
3657 Output_segment* tls_segment = relinfo->layout->tls_segment();
3658
3659 const Sized_relobj_file<size, false>* object = relinfo->object;
3660 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3661 elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
3662 bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
3663
3664 typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
3665
3666 const bool is_final = (gsym == NULL
3667 ? !parameters->options().shared()
3668 : gsym->final_value_is_known());
3669 tls::Tls_optimization optimized_type
3670 = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3671 switch (r_type)
3672 {
3673 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
3674 if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3675 {
3676 // If this code sequence is used in a non-executable section,
3677 // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3678 // on the assumption that it's being used by itself in a debug
3679 // section. Therefore, in the unlikely event that the code
3680 // sequence appears in a non-executable section, we simply
3681 // leave it unoptimized.
3682 optimized_type = tls::TLSOPT_NONE;
3683 }
3684 if (optimized_type == tls::TLSOPT_TO_LE)
3685 {
3686 if (tls_segment == NULL)
3687 {
3688 gold_assert(parameters->errors()->error_count() > 0
3689 || issue_undefined_symbol_error(gsym));
3690 return;
3691 }
3692 this->tls_gd_to_le(relinfo, relnum, tls_segment,
3693 rela, r_type, value, view,
3694 view_size);
3695 break;
3696 }
3697 else
3698 {
3699 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3700 ? GOT_TYPE_TLS_OFFSET
3701 : GOT_TYPE_TLS_PAIR);
3702 unsigned int got_offset;
3703 if (gsym != NULL)
3704 {
3705 gold_assert(gsym->has_got_offset(got_type));
3706 got_offset = gsym->got_offset(got_type) - target->got_size();
3707 }
3708 else
3709 {
3710 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3711 gold_assert(object->local_has_got_offset(r_sym, got_type));
3712 got_offset = (object->local_got_offset(r_sym, got_type)
3713 - target->got_size());
3714 }
3715 if (optimized_type == tls::TLSOPT_TO_IE)
3716 {
3717 value = target->got_plt_section()->address() + got_offset;
3718 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
3719 value, view, address, view_size);
3720 break;
3721 }
3722 else if (optimized_type == tls::TLSOPT_NONE)
3723 {
3724 // Relocate the field with the offset of the pair of GOT
3725 // entries.
3726 value = target->got_plt_section()->address() + got_offset;
3727 Relocate_functions<size, false>::pcrela32(view, value, addend,
3728 address);
3729 break;
3730 }
3731 }
3732 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3733 _("unsupported reloc %u"), r_type);
3734 break;
3735
3736 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
3737 case elfcpp::R_X86_64_TLSDESC_CALL:
3738 if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3739 {
3740 // See above comment for R_X86_64_TLSGD.
3741 optimized_type = tls::TLSOPT_NONE;
3742 }
3743 if (optimized_type == tls::TLSOPT_TO_LE)
3744 {
3745 if (tls_segment == NULL)
3746 {
3747 gold_assert(parameters->errors()->error_count() > 0
3748 || issue_undefined_symbol_error(gsym));
3749 return;
3750 }
3751 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3752 rela, r_type, value, view,
3753 view_size);
3754 break;
3755 }
3756 else
3757 {
3758 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3759 ? GOT_TYPE_TLS_OFFSET
3760 : GOT_TYPE_TLS_DESC);
3761 unsigned int got_offset = 0;
3762 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
3763 && optimized_type == tls::TLSOPT_NONE)
3764 {
3765 // We created GOT entries in the .got.tlsdesc portion of
3766 // the .got.plt section, but the offset stored in the
3767 // symbol is the offset within .got.tlsdesc.
3768 got_offset = (target->got_size()
3769 + target->got_plt_section()->data_size());
3770 }
3771 if (gsym != NULL)
3772 {
3773 gold_assert(gsym->has_got_offset(got_type));
3774 got_offset += gsym->got_offset(got_type) - target->got_size();
3775 }
3776 else
3777 {
3778 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3779 gold_assert(object->local_has_got_offset(r_sym, got_type));
3780 got_offset += (object->local_got_offset(r_sym, got_type)
3781 - target->got_size());
3782 }
3783 if (optimized_type == tls::TLSOPT_TO_IE)
3784 {
3785 if (tls_segment == NULL)
3786 {
3787 gold_assert(parameters->errors()->error_count() > 0
3788 || issue_undefined_symbol_error(gsym));
3789 return;
3790 }
3791 value = target->got_plt_section()->address() + got_offset;
3792 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
3793 rela, r_type, value, view, address,
3794 view_size);
3795 break;
3796 }
3797 else if (optimized_type == tls::TLSOPT_NONE)
3798 {
3799 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3800 {
3801 // Relocate the field with the offset of the pair of GOT
3802 // entries.
3803 value = target->got_plt_section()->address() + got_offset;
3804 Relocate_functions<size, false>::pcrela32(view, value, addend,
3805 address);
3806 }
3807 break;
3808 }
3809 }
3810 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3811 _("unsupported reloc %u"), r_type);
3812 break;
3813
3814 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
3815 if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3816 {
3817 // See above comment for R_X86_64_TLSGD.
3818 optimized_type = tls::TLSOPT_NONE;
3819 }
3820 if (optimized_type == tls::TLSOPT_TO_LE)
3821 {
3822 if (tls_segment == NULL)
3823 {
3824 gold_assert(parameters->errors()->error_count() > 0
3825 || issue_undefined_symbol_error(gsym));
3826 return;
3827 }
3828 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
3829 value, view, view_size);
3830 break;
3831 }
3832 else if (optimized_type == tls::TLSOPT_NONE)
3833 {
3834 // Relocate the field with the offset of the GOT entry for
3835 // the module index.
3836 unsigned int got_offset;
3837 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3838 - target->got_size());
3839 value = target->got_plt_section()->address() + got_offset;
3840 Relocate_functions<size, false>::pcrela32(view, value, addend,
3841 address);
3842 break;
3843 }
3844 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3845 _("unsupported reloc %u"), r_type);
3846 break;
3847
3848 case elfcpp::R_X86_64_DTPOFF32:
3849 // This relocation type is used in debugging information.
3850 // In that case we need to not optimize the value. If the
3851 // section is not executable, then we assume we should not
3852 // optimize this reloc. See comments above for R_X86_64_TLSGD,
3853 // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3854 // R_X86_64_TLSLD.
3855 if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3856 {
3857 if (tls_segment == NULL)
3858 {
3859 gold_assert(parameters->errors()->error_count() > 0
3860 || issue_undefined_symbol_error(gsym));
3861 return;
3862 }
3863 value -= tls_segment->memsz();
3864 }
3865 Relocate_functions<size, false>::rela32(view, value, addend);
3866 break;
3867
3868 case elfcpp::R_X86_64_DTPOFF64:
3869 // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3870 if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3871 {
3872 if (tls_segment == NULL)
3873 {
3874 gold_assert(parameters->errors()->error_count() > 0
3875 || issue_undefined_symbol_error(gsym));
3876 return;
3877 }
3878 value -= tls_segment->memsz();
3879 }
3880 Relocate_functions<size, false>::rela64(view, value, addend);
3881 break;
3882
3883 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
3884 if (gsym != NULL
3885 && gsym->is_undefined()
3886 && parameters->options().output_is_executable())
3887 {
3888 Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3889 NULL, rela,
3890 r_type, value, view,
3891 view_size);
3892 break;
3893 }
3894 else if (optimized_type == tls::TLSOPT_TO_LE)
3895 {
3896 if (tls_segment == NULL)
3897 {
3898 gold_assert(parameters->errors()->error_count() > 0
3899 || issue_undefined_symbol_error(gsym));
3900 return;
3901 }
3902 Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3903 tls_segment, rela,
3904 r_type, value, view,
3905 view_size);
3906 break;
3907 }
3908 else if (optimized_type == tls::TLSOPT_NONE)
3909 {
3910 // Relocate the field with the offset of the GOT entry for
3911 // the tp-relative offset of the symbol.
3912 unsigned int got_offset;
3913 if (gsym != NULL)
3914 {
3915 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3916 got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3917 - target->got_size());
3918 }
3919 else
3920 {
3921 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3922 gold_assert(object->local_has_got_offset(r_sym,
3923 GOT_TYPE_TLS_OFFSET));
3924 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3925 - target->got_size());
3926 }
3927 value = target->got_plt_section()->address() + got_offset;
3928 Relocate_functions<size, false>::pcrela32(view, value, addend,
3929 address);
3930 break;
3931 }
3932 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3933 _("unsupported reloc type %u"),
3934 r_type);
3935 break;
3936
3937 case elfcpp::R_X86_64_TPOFF32: // Local-exec
3938 if (tls_segment == NULL)
3939 {
3940 gold_assert(parameters->errors()->error_count() > 0
3941 || issue_undefined_symbol_error(gsym));
3942 return;
3943 }
3944 value -= tls_segment->memsz();
3945 Relocate_functions<size, false>::rela32(view, value, addend);
3946 break;
3947 }
3948 }
3949
3950 // Do a relocation in which we convert a TLS General-Dynamic to an
3951 // Initial-Exec.
3952
3953 template<int size>
3954 inline void
3955 Target_x86_64<size>::Relocate::tls_gd_to_ie(
3956 const Relocate_info<size, false>* relinfo,
3957 size_t relnum,
3958 Output_segment*,
3959 const elfcpp::Rela<size, false>& rela,
3960 unsigned int,
3961 typename elfcpp::Elf_types<size>::Elf_Addr value,
3962 unsigned char* view,
3963 typename elfcpp::Elf_types<size>::Elf_Addr address,
3964 section_size_type view_size)
3965 {
3966 // For SIZE == 64:
3967 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3968 // .word 0x6666; rex64; call __tls_get_addr
3969 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3970 // For SIZE == 32:
3971 // leaq foo@tlsgd(%rip),%rdi;
3972 // .word 0x6666; rex64; call __tls_get_addr
3973 // ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
3974
3975 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3976 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3977 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3978
3979 if (size == 64)
3980 {
3981 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3982 -4);
3983 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3984 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3985 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3986 16);
3987 }
3988 else
3989 {
3990 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
3991 -3);
3992 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3993 (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
3994 memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
3995 15);
3996 }
3997
3998 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3999 Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
4000 address);
4001
4002 // The next reloc should be a PLT32 reloc against __tls_get_addr.
4003 // We can skip it.
4004 this->skip_call_tls_get_addr_ = true;
4005 }
4006
4007 // Do a relocation in which we convert a TLS General-Dynamic to a
4008 // Local-Exec.
4009
4010 template<int size>
4011 inline void
4012 Target_x86_64<size>::Relocate::tls_gd_to_le(
4013 const Relocate_info<size, false>* relinfo,
4014 size_t relnum,
4015 Output_segment* tls_segment,
4016 const elfcpp::Rela<size, false>& rela,
4017 unsigned int,
4018 typename elfcpp::Elf_types<size>::Elf_Addr value,
4019 unsigned char* view,
4020 section_size_type view_size)
4021 {
4022 // For SIZE == 64:
4023 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4024 // .word 0x6666; rex64; call __tls_get_addr
4025 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
4026 // For SIZE == 32:
4027 // leaq foo@tlsgd(%rip),%rdi;
4028 // .word 0x6666; rex64; call __tls_get_addr
4029 // ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
4030
4031 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4032 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4033 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
4034
4035 if (size == 64)
4036 {
4037 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4038 -4);
4039 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4040 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4041 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4042 16);
4043 }
4044 else
4045 {
4046 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4047 -3);
4048 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4049 (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4050
4051 memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4052 15);
4053 }
4054
4055 value -= tls_segment->memsz();
4056 Relocate_functions<size, false>::rela32(view + 8, value, 0);
4057
4058 // The next reloc should be a PLT32 reloc against __tls_get_addr.
4059 // We can skip it.
4060 this->skip_call_tls_get_addr_ = true;
4061 }
4062
4063 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
4064
4065 template<int size>
4066 inline void
4067 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
4068 const Relocate_info<size, false>* relinfo,
4069 size_t relnum,
4070 Output_segment*,
4071 const elfcpp::Rela<size, false>& rela,
4072 unsigned int r_type,
4073 typename elfcpp::Elf_types<size>::Elf_Addr value,
4074 unsigned char* view,
4075 typename elfcpp::Elf_types<size>::Elf_Addr address,
4076 section_size_type view_size)
4077 {
4078 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4079 {
4080 // leaq foo@tlsdesc(%rip), %rax
4081 // ==> movq foo@gottpoff(%rip), %rax
4082 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4083 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4084 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4085 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4086 view[-2] = 0x8b;
4087 const elfcpp::Elf_Xword addend = rela.get_r_addend();
4088 Relocate_functions<size, false>::pcrela32(view, value, addend, address);
4089 }
4090 else
4091 {
4092 // call *foo@tlscall(%rax)
4093 // ==> nop; nop
4094 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4095 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4096 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4097 view[0] == 0xff && view[1] == 0x10);
4098 view[0] = 0x66;
4099 view[1] = 0x90;
4100 }
4101 }
4102
4103 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
4104
4105 template<int size>
4106 inline void
4107 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
4108 const Relocate_info<size, false>* relinfo,
4109 size_t relnum,
4110 Output_segment* tls_segment,
4111 const elfcpp::Rela<size, false>& rela,
4112 unsigned int r_type,
4113 typename elfcpp::Elf_types<size>::Elf_Addr value,
4114 unsigned char* view,
4115 section_size_type view_size)
4116 {
4117 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4118 {
4119 // leaq foo@tlsdesc(%rip), %rax
4120 // ==> movq foo@tpoff, %rax
4121 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4122 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4123 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4124 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4125 view[-2] = 0xc7;
4126 view[-1] = 0xc0;
4127 value -= tls_segment->memsz();
4128 Relocate_functions<size, false>::rela32(view, value, 0);
4129 }
4130 else
4131 {
4132 // call *foo@tlscall(%rax)
4133 // ==> nop; nop
4134 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4135 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4136 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4137 view[0] == 0xff && view[1] == 0x10);
4138 view[0] = 0x66;
4139 view[1] = 0x90;
4140 }
4141 }
4142
4143 template<int size>
4144 inline void
4145 Target_x86_64<size>::Relocate::tls_ld_to_le(
4146 const Relocate_info<size, false>* relinfo,
4147 size_t relnum,
4148 Output_segment*,
4149 const elfcpp::Rela<size, false>& rela,
4150 unsigned int,
4151 typename elfcpp::Elf_types<size>::Elf_Addr,
4152 unsigned char* view,
4153 section_size_type view_size)
4154 {
4155 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
4156 // For SIZE == 64:
4157 // ... leq foo@dtpoff(%rax),%reg
4158 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4159 // For SIZE == 32:
4160 // ... leq foo@dtpoff(%rax),%reg
4161 // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4162
4163 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4164 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
4165
4166 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4167 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
4168
4169 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
4170
4171 if (size == 64)
4172 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
4173 else
4174 memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
4175
4176 // The next reloc should be a PLT32 reloc against __tls_get_addr.
4177 // We can skip it.
4178 this->skip_call_tls_get_addr_ = true;
4179 }
4180
4181 // Do a relocation in which we convert a TLS Initial-Exec to a
4182 // Local-Exec.
4183
4184 template<int size>
4185 inline void
4186 Target_x86_64<size>::Relocate::tls_ie_to_le(
4187 const Relocate_info<size, false>* relinfo,
4188 size_t relnum,
4189 Output_segment* tls_segment,
4190 const elfcpp::Rela<size, false>& rela,
4191 unsigned int,
4192 typename elfcpp::Elf_types<size>::Elf_Addr value,
4193 unsigned char* view,
4194 section_size_type view_size)
4195 {
4196 // We need to examine the opcodes to figure out which instruction we
4197 // are looking at.
4198
4199 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
4200 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
4201
4202 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4203 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4204
4205 unsigned char op1 = view[-3];
4206 unsigned char op2 = view[-2];
4207 unsigned char op3 = view[-1];
4208 unsigned char reg = op3 >> 3;
4209
4210 if (op2 == 0x8b)
4211 {
4212 // movq
4213 if (op1 == 0x4c)
4214 view[-3] = 0x49;
4215 else if (size == 32 && op1 == 0x44)
4216 view[-3] = 0x41;
4217 view[-2] = 0xc7;
4218 view[-1] = 0xc0 | reg;
4219 }
4220 else if (reg == 4)
4221 {
4222 // Special handling for %rsp.
4223 if (op1 == 0x4c)
4224 view[-3] = 0x49;
4225 else if (size == 32 && op1 == 0x44)
4226 view[-3] = 0x41;
4227 view[-2] = 0x81;
4228 view[-1] = 0xc0 | reg;
4229 }
4230 else
4231 {
4232 // addq
4233 if (op1 == 0x4c)
4234 view[-3] = 0x4d;
4235 else if (size == 32 && op1 == 0x44)
4236 view[-3] = 0x45;
4237 view[-2] = 0x8d;
4238 view[-1] = 0x80 | reg | (reg << 3);
4239 }
4240
4241 if (tls_segment != NULL)
4242 value -= tls_segment->memsz();
4243 Relocate_functions<size, false>::rela32(view, value, 0);
4244 }
4245
4246 // Relocate section data.
4247
4248 template<int size>
4249 void
4250 Target_x86_64<size>::relocate_section(
4251 const Relocate_info<size, false>* relinfo,
4252 unsigned int sh_type,
4253 const unsigned char* prelocs,
4254 size_t reloc_count,
4255 Output_section* output_section,
4256 bool needs_special_offset_handling,
4257 unsigned char* view,
4258 typename elfcpp::Elf_types<size>::Elf_Addr address,
4259 section_size_type view_size,
4260 const Reloc_symbol_changes* reloc_symbol_changes)
4261 {
4262 gold_assert(sh_type == elfcpp::SHT_RELA);
4263
4264 gold::relocate_section<size, false, Target_x86_64<size>, elfcpp::SHT_RELA,
4265 typename Target_x86_64<size>::Relocate,
4266 gold::Default_comdat_behavior>(
4267 relinfo,
4268 this,
4269 prelocs,
4270 reloc_count,
4271 output_section,
4272 needs_special_offset_handling,
4273 view,
4274 address,
4275 view_size,
4276 reloc_symbol_changes);
4277 }
4278
4279 // Apply an incremental relocation. Incremental relocations always refer
4280 // to global symbols.
4281
4282 template<int size>
4283 void
4284 Target_x86_64<size>::apply_relocation(
4285 const Relocate_info<size, false>* relinfo,
4286 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4287 unsigned int r_type,
4288 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4289 const Symbol* gsym,
4290 unsigned char* view,
4291 typename elfcpp::Elf_types<size>::Elf_Addr address,
4292 section_size_type view_size)
4293 {
4294 gold::apply_relocation<size, false, Target_x86_64<size>,
4295 typename Target_x86_64<size>::Relocate>(
4296 relinfo,
4297 this,
4298 r_offset,
4299 r_type,
4300 r_addend,
4301 gsym,
4302 view,
4303 address,
4304 view_size);
4305 }
4306
4307 // Return the size of a relocation while scanning during a relocatable
4308 // link.
4309
4310 template<int size>
4311 unsigned int
4312 Target_x86_64<size>::Relocatable_size_for_reloc::get_size_for_reloc(
4313 unsigned int r_type,
4314 Relobj* object)
4315 {
4316 switch (r_type)
4317 {
4318 case elfcpp::R_X86_64_NONE:
4319 case elfcpp::R_X86_64_GNU_VTINHERIT:
4320 case elfcpp::R_X86_64_GNU_VTENTRY:
4321 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
4322 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
4323 case elfcpp::R_X86_64_TLSDESC_CALL:
4324 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
4325 case elfcpp::R_X86_64_DTPOFF32:
4326 case elfcpp::R_X86_64_DTPOFF64:
4327 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
4328 case elfcpp::R_X86_64_TPOFF32: // Local-exec
4329 return 0;
4330
4331 case elfcpp::R_X86_64_64:
4332 case elfcpp::R_X86_64_PC64:
4333 case elfcpp::R_X86_64_GOTOFF64:
4334 case elfcpp::R_X86_64_GOTPC64:
4335 case elfcpp::R_X86_64_PLTOFF64:
4336 case elfcpp::R_X86_64_GOT64:
4337 case elfcpp::R_X86_64_GOTPCREL64:
4338 case elfcpp::R_X86_64_GOTPCREL:
4339 case elfcpp::R_X86_64_GOTPCRELX:
4340 case elfcpp::R_X86_64_REX_GOTPCRELX:
4341 case elfcpp::R_X86_64_GOTPLT64:
4342 return 8;
4343
4344 case elfcpp::R_X86_64_32:
4345 case elfcpp::R_X86_64_32S:
4346 case elfcpp::R_X86_64_PC32:
4347 case elfcpp::R_X86_64_PC32_BND:
4348 case elfcpp::R_X86_64_PLT32:
4349 case elfcpp::R_X86_64_PLT32_BND:
4350 case elfcpp::R_X86_64_GOTPC32:
4351 case elfcpp::R_X86_64_GOT32:
4352 return 4;
4353
4354 case elfcpp::R_X86_64_16:
4355 case elfcpp::R_X86_64_PC16:
4356 return 2;
4357
4358 case elfcpp::R_X86_64_8:
4359 case elfcpp::R_X86_64_PC8:
4360 return 1;
4361
4362 case elfcpp::R_X86_64_COPY:
4363 case elfcpp::R_X86_64_GLOB_DAT:
4364 case elfcpp::R_X86_64_JUMP_SLOT:
4365 case elfcpp::R_X86_64_RELATIVE:
4366 case elfcpp::R_X86_64_IRELATIVE:
4367 // These are outstanding tls relocs, which are unexpected when linking
4368 case elfcpp::R_X86_64_TPOFF64:
4369 case elfcpp::R_X86_64_DTPMOD64:
4370 case elfcpp::R_X86_64_TLSDESC:
4371 object->error(_("unexpected reloc %u in object file"), r_type);
4372 return 0;
4373
4374 case elfcpp::R_X86_64_SIZE32:
4375 case elfcpp::R_X86_64_SIZE64:
4376 default:
4377 object->error(_("unsupported reloc %u against local symbol"), r_type);
4378 return 0;
4379 }
4380 }
4381
4382 // Scan the relocs during a relocatable link.
4383
4384 template<int size>
4385 void
4386 Target_x86_64<size>::scan_relocatable_relocs(
4387 Symbol_table* symtab,
4388 Layout* layout,
4389 Sized_relobj_file<size, false>* object,
4390 unsigned int data_shndx,
4391 unsigned int sh_type,
4392 const unsigned char* prelocs,
4393 size_t reloc_count,
4394 Output_section* output_section,
4395 bool needs_special_offset_handling,
4396 size_t local_symbol_count,
4397 const unsigned char* plocal_symbols,
4398 Relocatable_relocs* rr)
4399 {
4400 gold_assert(sh_type == elfcpp::SHT_RELA);
4401
4402 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
4403 Relocatable_size_for_reloc> Scan_relocatable_relocs;
4404
4405 gold::scan_relocatable_relocs<size, false, elfcpp::SHT_RELA,
4406 Scan_relocatable_relocs>(
4407 symtab,
4408 layout,
4409 object,
4410 data_shndx,
4411 prelocs,
4412 reloc_count,
4413 output_section,
4414 needs_special_offset_handling,
4415 local_symbol_count,
4416 plocal_symbols,
4417 rr);
4418 }
4419
4420 // Relocate a section during a relocatable link.
4421
4422 template<int size>
4423 void
4424 Target_x86_64<size>::relocate_relocs(
4425 const Relocate_info<size, false>* relinfo,
4426 unsigned int sh_type,
4427 const unsigned char* prelocs,
4428 size_t reloc_count,
4429 Output_section* output_section,
4430 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4431 const Relocatable_relocs* rr,
4432 unsigned char* view,
4433 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4434 section_size_type view_size,
4435 unsigned char* reloc_view,
4436 section_size_type reloc_view_size)
4437 {
4438 gold_assert(sh_type == elfcpp::SHT_RELA);
4439
4440 gold::relocate_relocs<size, false, elfcpp::SHT_RELA>(
4441 relinfo,
4442 prelocs,
4443 reloc_count,
4444 output_section,
4445 offset_in_output_section,
4446 rr,
4447 view,
4448 view_address,
4449 view_size,
4450 reloc_view,
4451 reloc_view_size);
4452 }
4453
4454 // Return the value to use for a dynamic which requires special
4455 // treatment. This is how we support equality comparisons of function
4456 // pointers across shared library boundaries, as described in the
4457 // processor specific ABI supplement.
4458
4459 template<int size>
4460 uint64_t
4461 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
4462 {
4463 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4464 return this->plt_address_for_global(gsym);
4465 }
4466
4467 // Return a string used to fill a code section with nops to take up
4468 // the specified length.
4469
4470 template<int size>
4471 std::string
4472 Target_x86_64<size>::do_code_fill(section_size_type length) const
4473 {
4474 if (length >= 16)
4475 {
4476 // Build a jmpq instruction to skip over the bytes.
4477 unsigned char jmp[5];
4478 jmp[0] = 0xe9;
4479 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
4480 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
4481 + std::string(length - 5, static_cast<char>(0x90)));
4482 }
4483
4484 // Nop sequences of various lengths.
4485 const char nop1[1] = { '\x90' }; // nop
4486 const char nop2[2] = { '\x66', '\x90' }; // xchg %ax %ax
4487 const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
4488 const char nop4[4] = { '\x0f', '\x1f', '\x40', // nop 0(%rax)
4489 '\x00'};
4490 const char nop5[5] = { '\x0f', '\x1f', '\x44', // nop 0(%rax,%rax,1)
4491 '\x00', '\x00' };
4492 const char nop6[6] = { '\x66', '\x0f', '\x1f', // nopw 0(%rax,%rax,1)
4493 '\x44', '\x00', '\x00' };
4494 const char nop7[7] = { '\x0f', '\x1f', '\x80', // nopl 0L(%rax)
4495 '\x00', '\x00', '\x00',
4496 '\x00' };
4497 const char nop8[8] = { '\x0f', '\x1f', '\x84', // nopl 0L(%rax,%rax,1)
4498 '\x00', '\x00', '\x00',
4499 '\x00', '\x00' };
4500 const char nop9[9] = { '\x66', '\x0f', '\x1f', // nopw 0L(%rax,%rax,1)
4501 '\x84', '\x00', '\x00',
4502 '\x00', '\x00', '\x00' };
4503 const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4504 '\x1f', '\x84', '\x00',
4505 '\x00', '\x00', '\x00',
4506 '\x00' };
4507 const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
4508 '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4509 '\x00', '\x00', '\x00',
4510 '\x00', '\x00' };
4511 const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
4512 '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4513 '\x84', '\x00', '\x00',
4514 '\x00', '\x00', '\x00' };
4515 const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
4516 '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4517 '\x1f', '\x84', '\x00',
4518 '\x00', '\x00', '\x00',
4519 '\x00' };
4520 const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
4521 '\x66', '\x66', '\x2e', // data16
4522 '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4523 '\x00', '\x00', '\x00',
4524 '\x00', '\x00' };
4525 const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
4526 '\x66', '\x66', '\x66', // data16; data16
4527 '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4528 '\x84', '\x00', '\x00',
4529 '\x00', '\x00', '\x00' };
4530
4531 const char* nops[16] = {
4532 NULL,
4533 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
4534 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
4535 };
4536
4537 return std::string(nops[length], length);
4538 }
4539
4540 // Return the addend to use for a target specific relocation. The
4541 // only target specific relocation is R_X86_64_TLSDESC for a local
4542 // symbol. We want to set the addend is the offset of the local
4543 // symbol in the TLS segment.
4544
4545 template<int size>
4546 uint64_t
4547 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
4548 uint64_t) const
4549 {
4550 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
4551 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4552 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4553 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4554 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4555 gold_assert(psymval->is_tls_symbol());
4556 // The value of a TLS symbol is the offset in the TLS segment.
4557 return psymval->value(ti.object, 0);
4558 }
4559
4560 // Return the value to use for the base of a DW_EH_PE_datarel offset
4561 // in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
4562 // assembler can not write out the difference between two labels in
4563 // different sections, so instead of using a pc-relative value they
4564 // use an offset from the GOT.
4565
4566 template<int size>
4567 uint64_t
4568 Target_x86_64<size>::do_ehframe_datarel_base() const
4569 {
4570 gold_assert(this->global_offset_table_ != NULL);
4571 Symbol* sym = this->global_offset_table_;
4572 Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4573 return ssym->value();
4574 }
4575
4576 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4577 // compiled with -fsplit-stack. The function calls non-split-stack
4578 // code. We have to change the function so that it always ensures
4579 // that it has enough stack space to run some random function.
4580
4581 static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
4582 static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
4583 static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
4584
4585 static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
4586 static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
4587 static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
4588
4589 template<int size>
4590 void
4591 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4592 section_offset_type fnoffset,
4593 section_size_type fnsize,
4594 unsigned char* view,
4595 section_size_type view_size,
4596 std::string* from,
4597 std::string* to) const
4598 {
4599 const char* const cmp_insn = reinterpret_cast<const char*>
4600 (size == 32 ? cmp_insn_32 : cmp_insn_64);
4601 const char* const lea_r10_insn = reinterpret_cast<const char*>
4602 (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
4603 const char* const lea_r11_insn = reinterpret_cast<const char*>
4604 (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
4605
4606 const size_t cmp_insn_len =
4607 (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
4608 const size_t lea_r10_insn_len =
4609 (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
4610 const size_t lea_r11_insn_len =
4611 (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
4612 const size_t nop_len = (size == 32 ? 7 : 8);
4613
4614 // The function starts with a comparison of the stack pointer and a
4615 // field in the TCB. This is followed by a jump.
4616
4617 // cmp %fs:NN,%rsp
4618 if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
4619 && fnsize > nop_len + 1)
4620 {
4621 // We will call __morestack if the carry flag is set after this
4622 // comparison. We turn the comparison into an stc instruction
4623 // and some nops.
4624 view[fnoffset] = '\xf9';
4625 this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
4626 }
4627 // lea NN(%rsp),%r10
4628 // lea NN(%rsp),%r11
4629 else if ((this->match_view(view, view_size, fnoffset,
4630 lea_r10_insn, lea_r10_insn_len)
4631 || this->match_view(view, view_size, fnoffset,
4632 lea_r11_insn, lea_r11_insn_len))
4633 && fnsize > 8)
4634 {
4635 // This is loading an offset from the stack pointer for a
4636 // comparison. The offset is negative, so we decrease the
4637 // offset by the amount of space we need for the stack. This
4638 // means we will avoid calling __morestack if there happens to
4639 // be plenty of space on the stack already.
4640 unsigned char* pval = view + fnoffset + 4;
4641 uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
4642 val -= parameters->options().split_stack_adjust_size();
4643 elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
4644 }
4645 else
4646 {
4647 if (!object->has_no_split_stack())
4648 object->error(_("failed to match split-stack sequence at "
4649 "section %u offset %0zx"),
4650 shndx, static_cast<size_t>(fnoffset));
4651 return;
4652 }
4653
4654 // We have to change the function so that it calls
4655 // __morestack_non_split instead of __morestack. The former will
4656 // allocate additional stack space.
4657 *from = "__morestack";
4658 *to = "__morestack_non_split";
4659 }
4660
4661 // The selector for x86_64 object files. Note this is never instantiated
4662 // directly. It's only used in Target_selector_x86_64_nacl, below.
4663
4664 template<int size>
4665 class Target_selector_x86_64 : public Target_selector_freebsd
4666 {
4667 public:
4668 Target_selector_x86_64()
4669 : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
4670 (size == 64
4671 ? "elf64-x86-64" : "elf32-x86-64"),
4672 (size == 64
4673 ? "elf64-x86-64-freebsd"
4674 : "elf32-x86-64-freebsd"),
4675 (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
4676 { }
4677
4678 Target*
4679 do_instantiate_target()
4680 { return new Target_x86_64<size>(); }
4681
4682 };
4683
4684 // NaCl variant. It uses different PLT contents.
4685
4686 template<int size>
4687 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
4688 {
4689 public:
4690 Output_data_plt_x86_64_nacl(Layout* layout,
4691 Output_data_got<64, false>* got,
4692 Output_data_got_plt_x86_64* got_plt,
4693 Output_data_space* got_irelative)
4694 : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4695 got, got_plt, got_irelative)
4696 { }
4697
4698 Output_data_plt_x86_64_nacl(Layout* layout,
4699 Output_data_got<64, false>* got,
4700 Output_data_got_plt_x86_64* got_plt,
4701 Output_data_space* got_irelative,
4702 unsigned int plt_count)
4703 : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4704 got, got_plt, got_irelative,
4705 plt_count)
4706 { }
4707
4708 protected:
4709 virtual unsigned int
4710 do_get_plt_entry_size() const
4711 { return plt_entry_size; }
4712
4713 virtual void
4714 do_add_eh_frame(Layout* layout)
4715 {
4716 layout->add_eh_frame_for_plt(this,
4717 this->plt_eh_frame_cie,
4718 this->plt_eh_frame_cie_size,
4719 plt_eh_frame_fde,
4720 plt_eh_frame_fde_size);
4721 }
4722
4723 virtual void
4724 do_fill_first_plt_entry(unsigned char* pov,
4725 typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
4726 typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
4727
4728 virtual unsigned int
4729 do_fill_plt_entry(unsigned char* pov,
4730 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4731 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4732 unsigned int got_offset,
4733 unsigned int plt_offset,
4734 unsigned int plt_index);
4735
4736 virtual void
4737 do_fill_tlsdesc_entry(unsigned char* pov,
4738 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4739 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4740 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4741 unsigned int tlsdesc_got_offset,
4742 unsigned int plt_offset);
4743
4744 private:
4745 // The size of an entry in the PLT.
4746 static const int plt_entry_size = 64;
4747
4748 // The first entry in the PLT.
4749 static const unsigned char first_plt_entry[plt_entry_size];
4750
4751 // Other entries in the PLT for an executable.
4752 static const unsigned char plt_entry[plt_entry_size];
4753
4754 // The reserved TLSDESC entry in the PLT for an executable.
4755 static const unsigned char tlsdesc_plt_entry[plt_entry_size];
4756
4757 // The .eh_frame unwind information for the PLT.
4758 static const int plt_eh_frame_fde_size = 32;
4759 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4760 };
4761
4762 template<int size>
4763 class Target_x86_64_nacl : public Target_x86_64<size>
4764 {
4765 public:
4766 Target_x86_64_nacl()
4767 : Target_x86_64<size>(&x86_64_nacl_info)
4768 { }
4769
4770 virtual Output_data_plt_x86_64<size>*
4771 do_make_data_plt(Layout* layout,
4772 Output_data_got<64, false>* got,
4773 Output_data_got_plt_x86_64* got_plt,
4774 Output_data_space* got_irelative)
4775 {
4776 return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4777 got_irelative);
4778 }
4779
4780 virtual Output_data_plt_x86_64<size>*
4781 do_make_data_plt(Layout* layout,
4782 Output_data_got<64, false>* got,
4783 Output_data_got_plt_x86_64* got_plt,
4784 Output_data_space* got_irelative,
4785 unsigned int plt_count)
4786 {
4787 return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4788 got_irelative,
4789 plt_count);
4790 }
4791
4792 virtual std::string
4793 do_code_fill(section_size_type length) const;
4794
4795 private:
4796 static const Target::Target_info x86_64_nacl_info;
4797 };
4798
4799 template<>
4800 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
4801 {
4802 64, // size
4803 false, // is_big_endian
4804 elfcpp::EM_X86_64, // machine_code
4805 false, // has_make_symbol
4806 false, // has_resolve
4807 true, // has_code_fill
4808 true, // is_default_stack_executable
4809 true, // can_icf_inline_merge_sections
4810 '\0', // wrap_char
4811 "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
4812 0x20000, // default_text_segment_address
4813 0x10000, // abi_pagesize (overridable by -z max-page-size)
4814 0x10000, // common_pagesize (overridable by -z common-page-size)
4815 true, // isolate_execinstr
4816 0x10000000, // rosegment_gap
4817 elfcpp::SHN_UNDEF, // small_common_shndx
4818 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
4819 0, // small_common_section_flags
4820 elfcpp::SHF_X86_64_LARGE, // large_common_section_flags
4821 NULL, // attributes_section
4822 NULL, // attributes_vendor
4823 "_start", // entry_symbol_name
4824 32, // hash_entry_size
4825 };
4826
4827 template<>
4828 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
4829 {
4830 32, // size
4831 false, // is_big_endian
4832 elfcpp::EM_X86_64, // machine_code
4833 false, // has_make_symbol
4834 false, // has_resolve
4835 true, // has_code_fill
4836 true, // is_default_stack_executable
4837 true, // can_icf_inline_merge_sections
4838 '\0', // wrap_char
4839 "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
4840 0x20000, // default_text_segment_address
4841 0x10000, // abi_pagesize (overridable by -z max-page-size)
4842 0x10000, // common_pagesize (overridable by -z common-page-size)
4843 true, // isolate_execinstr
4844 0x10000000, // rosegment_gap
4845 elfcpp::SHN_UNDEF, // small_common_shndx
4846 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
4847 0, // small_common_section_flags
4848 elfcpp::SHF_X86_64_LARGE, // large_common_section_flags
4849 NULL, // attributes_section
4850 NULL, // attributes_vendor
4851 "_start", // entry_symbol_name
4852 32, // hash_entry_size
4853 };
4854
4855 #define NACLMASK 0xe0 // 32-byte alignment mask.
4856
4857 // The first entry in the PLT.
4858
4859 template<int size>
4860 const unsigned char
4861 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
4862 {
4863 0xff, 0x35, // pushq contents of memory address
4864 0, 0, 0, 0, // replaced with address of .got + 8
4865 0x4c, 0x8b, 0x1d, // mov GOT+16(%rip), %r11
4866 0, 0, 0, 0, // replaced with address of .got + 16
4867 0x41, 0x83, 0xe3, NACLMASK, // and $-32, %r11d
4868 0x4d, 0x01, 0xfb, // add %r15, %r11
4869 0x41, 0xff, 0xe3, // jmpq *%r11
4870
4871 // 9-byte nop sequence to pad out to the next 32-byte boundary.
4872 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
4873
4874 // 32 bytes of nop to pad out to the standard size
4875 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
4876 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4877 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
4878 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4879 0x66, // excess data32 prefix
4880 0x90 // nop
4881 };
4882
4883 template<int size>
4884 void
4885 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
4886 unsigned char* pov,
4887 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4888 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
4889 {
4890 memcpy(pov, first_plt_entry, plt_entry_size);
4891 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4892 (got_address + 8
4893 - (plt_address + 2 + 4)));
4894 elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4895 (got_address + 16
4896 - (plt_address + 9 + 4)));
4897 }
4898
4899 // Subsequent entries in the PLT.
4900
4901 template<int size>
4902 const unsigned char
4903 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
4904 {
4905 0x4c, 0x8b, 0x1d, // mov name@GOTPCREL(%rip),%r11
4906 0, 0, 0, 0, // replaced with address of symbol in .got
4907 0x41, 0x83, 0xe3, NACLMASK, // and $-32, %r11d
4908 0x4d, 0x01, 0xfb, // add %r15, %r11
4909 0x41, 0xff, 0xe3, // jmpq *%r11
4910
4911 // 15-byte nop sequence to pad out to the next 32-byte boundary.
4912 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
4913 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4914
4915 // Lazy GOT entries point here (32-byte aligned).
4916 0x68, // pushq immediate
4917 0, 0, 0, 0, // replaced with index into relocation table
4918 0xe9, // jmp relative
4919 0, 0, 0, 0, // replaced with offset to start of .plt0
4920
4921 // 22 bytes of nop to pad out to the standard size.
4922 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
4923 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4924 0x0f, 0x1f, 0x80, 0, 0, 0, 0, // nopl 0x0(%rax)
4925 };
4926
4927 template<int size>
4928 unsigned int
4929 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
4930 unsigned char* pov,
4931 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4932 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4933 unsigned int got_offset,
4934 unsigned int plt_offset,
4935 unsigned int plt_index)
4936 {
4937 memcpy(pov, plt_entry, plt_entry_size);
4938 elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
4939 (got_address + got_offset
4940 - (plt_address + plt_offset
4941 + 3 + 4)));
4942
4943 elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
4944 elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
4945 - (plt_offset + 38 + 4));
4946
4947 return 32;
4948 }
4949
4950 // The reserved TLSDESC entry in the PLT.
4951
4952 template<int size>
4953 const unsigned char
4954 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
4955 {
4956 0xff, 0x35, // pushq x(%rip)
4957 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
4958 0x4c, 0x8b, 0x1d, // mov y(%rip),%r11
4959 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
4960 0x41, 0x83, 0xe3, NACLMASK, // and $-32, %r11d
4961 0x4d, 0x01, 0xfb, // add %r15, %r11
4962 0x41, 0xff, 0xe3, // jmpq *%r11
4963
4964 // 41 bytes of nop to pad out to the standard size.
4965 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
4966 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4967 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
4968 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4969 0x66, 0x66, // excess data32 prefixes
4970 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
4971 };
4972
4973 template<int size>
4974 void
4975 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
4976 unsigned char* pov,
4977 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4978 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4979 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4980 unsigned int tlsdesc_got_offset,
4981 unsigned int plt_offset)
4982 {
4983 memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
4984 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
4985 (got_address + 8
4986 - (plt_address + plt_offset
4987 + 2 + 4)));
4988 elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
4989 (got_base
4990 + tlsdesc_got_offset
4991 - (plt_address + plt_offset
4992 + 9 + 4)));
4993 }
4994
4995 // The .eh_frame unwind information for the PLT.
4996
4997 template<int size>
4998 const unsigned char
4999 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
5000 {
5001 0, 0, 0, 0, // Replaced with offset to .plt.
5002 0, 0, 0, 0, // Replaced with size of .plt.
5003 0, // Augmentation size.
5004 elfcpp::DW_CFA_def_cfa_offset, 16, // DW_CFA_def_cfa_offset: 16.
5005 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
5006 elfcpp::DW_CFA_def_cfa_offset, 24, // DW_CFA_def_cfa_offset: 24.
5007 elfcpp::DW_CFA_advance_loc + 58, // Advance 58 to __PLT__ + 64.
5008 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
5009 13, // Block length.
5010 elfcpp::DW_OP_breg7, 8, // Push %rsp + 8.
5011 elfcpp::DW_OP_breg16, 0, // Push %rip.
5012 elfcpp::DW_OP_const1u, 63, // Push 0x3f.
5013 elfcpp::DW_OP_and, // & (%rip & 0x3f).
5014 elfcpp::DW_OP_const1u, 37, // Push 0x25.
5015 elfcpp::DW_OP_ge, // >= ((%rip & 0x3f) >= 0x25)
5016 elfcpp::DW_OP_lit3, // Push 3.
5017 elfcpp::DW_OP_shl, // << (((%rip & 0x3f) >= 0x25) << 3)
5018 elfcpp::DW_OP_plus, // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
5019 elfcpp::DW_CFA_nop, // Align to 32 bytes.
5020 elfcpp::DW_CFA_nop
5021 };
5022
5023 // Return a string used to fill a code section with nops.
5024 // For NaCl, long NOPs are only valid if they do not cross
5025 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
5026 template<int size>
5027 std::string
5028 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
5029 {
5030 return std::string(length, static_cast<char>(0x90));
5031 }
5032
5033 // The selector for x86_64-nacl object files.
5034
5035 template<int size>
5036 class Target_selector_x86_64_nacl
5037 : public Target_selector_nacl<Target_selector_x86_64<size>,
5038 Target_x86_64_nacl<size> >
5039 {
5040 public:
5041 Target_selector_x86_64_nacl()
5042 : Target_selector_nacl<Target_selector_x86_64<size>,
5043 Target_x86_64_nacl<size> >("x86-64",
5044 size == 64
5045 ? "elf64-x86-64-nacl"
5046 : "elf32-x86-64-nacl",
5047 size == 64
5048 ? "elf_x86_64_nacl"
5049 : "elf32_x86_64_nacl")
5050 { }
5051 };
5052
5053 Target_selector_x86_64_nacl<64> target_selector_x86_64;
5054 Target_selector_x86_64_nacl<32> target_selector_x32;
5055
5056 } // End anonymous namespace.
This page took 0.138814 seconds and 4 git commands to generate.