PR gold/12980
[deliverable/binutils-gdb.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "gc.h"
43 #include "icf.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 // A class to handle the PLT data.
51
52 class Output_data_plt_x86_64 : public Output_section_data
53 {
54 public:
55 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
56
57 Output_data_plt_x86_64(Layout* layout, Output_data_got<64, false>* got,
58 Output_data_space* got_plt,
59 Output_data_space* got_irelative)
60 : Output_section_data(16), tlsdesc_rel_(NULL), irelative_rel_(NULL),
61 got_(got), got_plt_(got_plt), got_irelative_(got_irelative), count_(0),
62 irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
63 { this->init(layout); }
64
65 Output_data_plt_x86_64(Layout* layout, Output_data_got<64, false>* got,
66 Output_data_space* got_plt,
67 Output_data_space* got_irelative,
68 unsigned int plt_count)
69 : Output_section_data((plt_count + 1) * plt_entry_size, 16, false),
70 tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got), got_plt_(got_plt),
71 got_irelative_(got_irelative), count_(plt_count), irelative_count_(0),
72 tlsdesc_got_offset_(-1U), free_list_()
73 {
74 this->init(layout);
75
76 // Initialize the free list and reserve the first entry.
77 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
78 this->free_list_.remove(0, plt_entry_size);
79 }
80
81 // Initialize the PLT section.
82 void
83 init(Layout* layout);
84
85 // Add an entry to the PLT.
86 void
87 add_entry(Symbol_table*, Layout*, Symbol* gsym);
88
89 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
90 unsigned int
91 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
92 Sized_relobj_file<64, false>* relobj,
93 unsigned int local_sym_index);
94
95 // Add the relocation for a PLT entry.
96 void
97 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
98 unsigned int got_offset);
99
100 // Add the reserved TLSDESC_PLT entry to the PLT.
101 void
102 reserve_tlsdesc_entry(unsigned int got_offset)
103 { this->tlsdesc_got_offset_ = got_offset; }
104
105 // Return true if a TLSDESC_PLT entry has been reserved.
106 bool
107 has_tlsdesc_entry() const
108 { return this->tlsdesc_got_offset_ != -1U; }
109
110 // Return the GOT offset for the reserved TLSDESC_PLT entry.
111 unsigned int
112 get_tlsdesc_got_offset() const
113 { return this->tlsdesc_got_offset_; }
114
115 // Return the offset of the reserved TLSDESC_PLT entry.
116 unsigned int
117 get_tlsdesc_plt_offset() const
118 { return (this->count_ + this->irelative_count_ + 1) * plt_entry_size; }
119
120 // Return the .rela.plt section data.
121 Reloc_section*
122 rela_plt()
123 { return this->rel_; }
124
125 // Return where the TLSDESC relocations should go.
126 Reloc_section*
127 rela_tlsdesc(Layout*);
128
129 // Return where the IRELATIVE relocations should go in the PLT
130 // relocations.
131 Reloc_section*
132 rela_irelative(Symbol_table*, Layout*);
133
134 // Return whether we created a section for IRELATIVE relocations.
135 bool
136 has_irelative_section() const
137 { return this->irelative_rel_ != NULL; }
138
139 // Return the number of PLT entries.
140 unsigned int
141 entry_count() const
142 { return this->count_ + this->irelative_count_; }
143
144 // Return the offset of the first non-reserved PLT entry.
145 static unsigned int
146 first_plt_entry_offset()
147 { return plt_entry_size; }
148
149 // Return the size of a PLT entry.
150 static unsigned int
151 get_plt_entry_size()
152 { return plt_entry_size; }
153
154 // Reserve a slot in the PLT for an existing symbol in an incremental update.
155 void
156 reserve_slot(unsigned int plt_index)
157 {
158 this->free_list_.remove((plt_index + 1) * plt_entry_size,
159 (plt_index + 2) * plt_entry_size);
160 }
161
162 // Return the PLT address to use for a global symbol.
163 uint64_t
164 address_for_global(const Symbol*);
165
166 // Return the PLT address to use for a local symbol.
167 uint64_t
168 address_for_local(const Relobj*, unsigned int symndx);
169
170 protected:
171 void
172 do_adjust_output_section(Output_section* os);
173
174 // Write to a map file.
175 void
176 do_print_to_mapfile(Mapfile* mapfile) const
177 { mapfile->print_output_data(this, _("** PLT")); }
178
179 private:
180 // The size of an entry in the PLT.
181 static const int plt_entry_size = 16;
182
183 // The first entry in the PLT.
184 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
185 // procedure linkage table for both programs and shared objects."
186 static const unsigned char first_plt_entry[plt_entry_size];
187
188 // Other entries in the PLT for an executable.
189 static const unsigned char plt_entry[plt_entry_size];
190
191 // The reserved TLSDESC entry in the PLT for an executable.
192 static const unsigned char tlsdesc_plt_entry[plt_entry_size];
193
194 // The .eh_frame unwind information for the PLT.
195 static const int plt_eh_frame_cie_size = 16;
196 static const int plt_eh_frame_fde_size = 32;
197 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
198 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
199
200 // Set the final size.
201 void
202 set_final_data_size();
203
204 // Write out the PLT data.
205 void
206 do_write(Output_file*);
207
208 // The reloc section.
209 Reloc_section* rel_;
210 // The TLSDESC relocs, if necessary. These must follow the regular
211 // PLT relocs.
212 Reloc_section* tlsdesc_rel_;
213 // The IRELATIVE relocs, if necessary. These must follow the
214 // regular PLT relocations and the TLSDESC relocations.
215 Reloc_section* irelative_rel_;
216 // The .got section.
217 Output_data_got<64, false>* got_;
218 // The .got.plt section.
219 Output_data_space* got_plt_;
220 // The part of the .got.plt section used for IRELATIVE relocs.
221 Output_data_space* got_irelative_;
222 // The number of PLT entries.
223 unsigned int count_;
224 // Number of PLT entries with R_X86_64_IRELATIVE relocs. These
225 // follow the regular PLT entries.
226 unsigned int irelative_count_;
227 // Offset of the reserved TLSDESC_GOT entry when needed.
228 unsigned int tlsdesc_got_offset_;
229 // List of available regions within the section, for incremental
230 // update links.
231 Free_list free_list_;
232 };
233
234 // The x86_64 target class.
235 // See the ABI at
236 // http://www.x86-64.org/documentation/abi.pdf
237 // TLS info comes from
238 // http://people.redhat.com/drepper/tls.pdf
239 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
240
241 class Target_x86_64 : public Sized_target<64, false>
242 {
243 public:
244 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
245 // uses only Elf64_Rela relocation entries with explicit addends."
246 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
247
248 Target_x86_64()
249 : Sized_target<64, false>(&x86_64_info),
250 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
251 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
252 rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
253 dynbss_(NULL), got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
254 tls_base_symbol_defined_(false)
255 { }
256
257 // Hook for a new output section.
258 void
259 do_new_output_section(Output_section*) const;
260
261 // Scan the relocations to look for symbol adjustments.
262 void
263 gc_process_relocs(Symbol_table* symtab,
264 Layout* layout,
265 Sized_relobj_file<64, false>* object,
266 unsigned int data_shndx,
267 unsigned int sh_type,
268 const unsigned char* prelocs,
269 size_t reloc_count,
270 Output_section* output_section,
271 bool needs_special_offset_handling,
272 size_t local_symbol_count,
273 const unsigned char* plocal_symbols);
274
275 // Scan the relocations to look for symbol adjustments.
276 void
277 scan_relocs(Symbol_table* symtab,
278 Layout* layout,
279 Sized_relobj_file<64, false>* object,
280 unsigned int data_shndx,
281 unsigned int sh_type,
282 const unsigned char* prelocs,
283 size_t reloc_count,
284 Output_section* output_section,
285 bool needs_special_offset_handling,
286 size_t local_symbol_count,
287 const unsigned char* plocal_symbols);
288
289 // Finalize the sections.
290 void
291 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
292
293 // Return the value to use for a dynamic which requires special
294 // treatment.
295 uint64_t
296 do_dynsym_value(const Symbol*) const;
297
298 // Relocate a section.
299 void
300 relocate_section(const Relocate_info<64, false>*,
301 unsigned int sh_type,
302 const unsigned char* prelocs,
303 size_t reloc_count,
304 Output_section* output_section,
305 bool needs_special_offset_handling,
306 unsigned char* view,
307 elfcpp::Elf_types<64>::Elf_Addr view_address,
308 section_size_type view_size,
309 const Reloc_symbol_changes*);
310
311 // Scan the relocs during a relocatable link.
312 void
313 scan_relocatable_relocs(Symbol_table* symtab,
314 Layout* layout,
315 Sized_relobj_file<64, false>* object,
316 unsigned int data_shndx,
317 unsigned int sh_type,
318 const unsigned char* prelocs,
319 size_t reloc_count,
320 Output_section* output_section,
321 bool needs_special_offset_handling,
322 size_t local_symbol_count,
323 const unsigned char* plocal_symbols,
324 Relocatable_relocs*);
325
326 // Relocate a section during a relocatable link.
327 void
328 relocate_for_relocatable(const Relocate_info<64, false>*,
329 unsigned int sh_type,
330 const unsigned char* prelocs,
331 size_t reloc_count,
332 Output_section* output_section,
333 off_t offset_in_output_section,
334 const Relocatable_relocs*,
335 unsigned char* view,
336 elfcpp::Elf_types<64>::Elf_Addr view_address,
337 section_size_type view_size,
338 unsigned char* reloc_view,
339 section_size_type reloc_view_size);
340
341 // Return a string used to fill a code section with nops.
342 std::string
343 do_code_fill(section_size_type length) const;
344
345 // Return whether SYM is defined by the ABI.
346 bool
347 do_is_defined_by_abi(const Symbol* sym) const
348 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
349
350 // Return the symbol index to use for a target specific relocation.
351 // The only target specific relocation is R_X86_64_TLSDESC for a
352 // local symbol, which is an absolute reloc.
353 unsigned int
354 do_reloc_symbol_index(void*, unsigned int r_type) const
355 {
356 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
357 return 0;
358 }
359
360 // Return the addend to use for a target specific relocation.
361 uint64_t
362 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
363
364 // Return the PLT section.
365 uint64_t
366 do_plt_address_for_global(const Symbol* gsym) const
367 { return this->plt_section()->address_for_global(gsym); }
368
369 uint64_t
370 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
371 { return this->plt_section()->address_for_local(relobj, symndx); }
372
373 // This function should be defined in targets that can use relocation
374 // types to determine (implemented in local_reloc_may_be_function_pointer
375 // and global_reloc_may_be_function_pointer)
376 // if a function's pointer is taken. ICF uses this in safe mode to only
377 // fold those functions whose pointer is defintely not taken. For x86_64
378 // pie binaries, safe ICF cannot be done by looking at relocation types.
379 bool
380 do_can_check_for_function_pointers() const
381 { return !parameters->options().pie(); }
382
383 // Return the base for a DW_EH_PE_datarel encoding.
384 uint64_t
385 do_ehframe_datarel_base() const;
386
387 // Adjust -fsplit-stack code which calls non-split-stack code.
388 void
389 do_calls_non_split(Relobj* object, unsigned int shndx,
390 section_offset_type fnoffset, section_size_type fnsize,
391 unsigned char* view, section_size_type view_size,
392 std::string* from, std::string* to) const;
393
394 // Return the size of the GOT section.
395 section_size_type
396 got_size() const
397 {
398 gold_assert(this->got_ != NULL);
399 return this->got_->data_size();
400 }
401
402 // Return the number of entries in the GOT.
403 unsigned int
404 got_entry_count() const
405 {
406 if (this->got_ == NULL)
407 return 0;
408 return this->got_size() / 8;
409 }
410
411 // Return the number of entries in the PLT.
412 unsigned int
413 plt_entry_count() const;
414
415 // Return the offset of the first non-reserved PLT entry.
416 unsigned int
417 first_plt_entry_offset() const;
418
419 // Return the size of each PLT entry.
420 unsigned int
421 plt_entry_size() const;
422
423 // Create the GOT section for an incremental update.
424 Output_data_got<64, false>*
425 init_got_plt_for_update(Symbol_table* symtab,
426 Layout* layout,
427 unsigned int got_count,
428 unsigned int plt_count);
429
430 // Reserve a GOT entry for a local symbol, and regenerate any
431 // necessary dynamic relocations.
432 void
433 reserve_local_got_entry(unsigned int got_index,
434 Sized_relobj<64, false>* obj,
435 unsigned int r_sym,
436 unsigned int got_type);
437
438 // Reserve a GOT entry for a global symbol, and regenerate any
439 // necessary dynamic relocations.
440 void
441 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
442 unsigned int got_type);
443
444 // Register an existing PLT entry for a global symbol.
445 void
446 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
447 Symbol* gsym);
448
449 // Force a COPY relocation for a given symbol.
450 void
451 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
452
453 // Apply an incremental relocation.
454 void
455 apply_relocation(const Relocate_info<64, false>* relinfo,
456 elfcpp::Elf_types<64>::Elf_Addr r_offset,
457 unsigned int r_type,
458 elfcpp::Elf_types<64>::Elf_Swxword r_addend,
459 const Symbol* gsym,
460 unsigned char* view,
461 elfcpp::Elf_types<64>::Elf_Addr address,
462 section_size_type view_size);
463
464 // Add a new reloc argument, returning the index in the vector.
465 size_t
466 add_tlsdesc_info(Sized_relobj_file<64, false>* object, unsigned int r_sym)
467 {
468 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
469 return this->tlsdesc_reloc_info_.size() - 1;
470 }
471
472 private:
473 // The class which scans relocations.
474 class Scan
475 {
476 public:
477 Scan()
478 : issued_non_pic_error_(false)
479 { }
480
481 static inline int
482 get_reference_flags(unsigned int r_type);
483
484 inline void
485 local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
486 Sized_relobj_file<64, false>* object,
487 unsigned int data_shndx,
488 Output_section* output_section,
489 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
490 const elfcpp::Sym<64, false>& lsym);
491
492 inline void
493 global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
494 Sized_relobj_file<64, false>* object,
495 unsigned int data_shndx,
496 Output_section* output_section,
497 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
498 Symbol* gsym);
499
500 inline bool
501 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
502 Target_x86_64* target,
503 Sized_relobj_file<64, false>* object,
504 unsigned int data_shndx,
505 Output_section* output_section,
506 const elfcpp::Rela<64, false>& reloc,
507 unsigned int r_type,
508 const elfcpp::Sym<64, false>& lsym);
509
510 inline bool
511 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
512 Target_x86_64* target,
513 Sized_relobj_file<64, false>* object,
514 unsigned int data_shndx,
515 Output_section* output_section,
516 const elfcpp::Rela<64, false>& reloc,
517 unsigned int r_type,
518 Symbol* gsym);
519
520 private:
521 static void
522 unsupported_reloc_local(Sized_relobj_file<64, false>*, unsigned int r_type);
523
524 static void
525 unsupported_reloc_global(Sized_relobj_file<64, false>*, unsigned int r_type,
526 Symbol*);
527
528 void
529 check_non_pic(Relobj*, unsigned int r_type, Symbol*);
530
531 inline bool
532 possible_function_pointer_reloc(unsigned int r_type);
533
534 bool
535 reloc_needs_plt_for_ifunc(Sized_relobj_file<64, false>*,
536 unsigned int r_type);
537
538 // Whether we have issued an error about a non-PIC compilation.
539 bool issued_non_pic_error_;
540 };
541
542 // The class which implements relocation.
543 class Relocate
544 {
545 public:
546 Relocate()
547 : skip_call_tls_get_addr_(false)
548 { }
549
550 ~Relocate()
551 {
552 if (this->skip_call_tls_get_addr_)
553 {
554 // FIXME: This needs to specify the location somehow.
555 gold_error(_("missing expected TLS relocation"));
556 }
557 }
558
559 // Do a relocation. Return false if the caller should not issue
560 // any warnings about this relocation.
561 inline bool
562 relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
563 size_t relnum, const elfcpp::Rela<64, false>&,
564 unsigned int r_type, const Sized_symbol<64>*,
565 const Symbol_value<64>*,
566 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
567 section_size_type);
568
569 private:
570 // Do a TLS relocation.
571 inline void
572 relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
573 size_t relnum, const elfcpp::Rela<64, false>&,
574 unsigned int r_type, const Sized_symbol<64>*,
575 const Symbol_value<64>*,
576 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
577 section_size_type);
578
579 // Do a TLS General-Dynamic to Initial-Exec transition.
580 inline void
581 tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
582 Output_segment* tls_segment,
583 const elfcpp::Rela<64, false>&, unsigned int r_type,
584 elfcpp::Elf_types<64>::Elf_Addr value,
585 unsigned char* view,
586 elfcpp::Elf_types<64>::Elf_Addr,
587 section_size_type view_size);
588
589 // Do a TLS General-Dynamic to Local-Exec transition.
590 inline void
591 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
592 Output_segment* tls_segment,
593 const elfcpp::Rela<64, false>&, unsigned int r_type,
594 elfcpp::Elf_types<64>::Elf_Addr value,
595 unsigned char* view,
596 section_size_type view_size);
597
598 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
599 inline void
600 tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
601 Output_segment* tls_segment,
602 const elfcpp::Rela<64, false>&, unsigned int r_type,
603 elfcpp::Elf_types<64>::Elf_Addr value,
604 unsigned char* view,
605 elfcpp::Elf_types<64>::Elf_Addr,
606 section_size_type view_size);
607
608 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
609 inline void
610 tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
611 Output_segment* tls_segment,
612 const elfcpp::Rela<64, false>&, unsigned int r_type,
613 elfcpp::Elf_types<64>::Elf_Addr value,
614 unsigned char* view,
615 section_size_type view_size);
616
617 // Do a TLS Local-Dynamic to Local-Exec transition.
618 inline void
619 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
620 Output_segment* tls_segment,
621 const elfcpp::Rela<64, false>&, unsigned int r_type,
622 elfcpp::Elf_types<64>::Elf_Addr value,
623 unsigned char* view,
624 section_size_type view_size);
625
626 // Do a TLS Initial-Exec to Local-Exec transition.
627 static inline void
628 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
629 Output_segment* tls_segment,
630 const elfcpp::Rela<64, false>&, unsigned int r_type,
631 elfcpp::Elf_types<64>::Elf_Addr value,
632 unsigned char* view,
633 section_size_type view_size);
634
635 // This is set if we should skip the next reloc, which should be a
636 // PLT32 reloc against ___tls_get_addr.
637 bool skip_call_tls_get_addr_;
638 };
639
640 // A class which returns the size required for a relocation type,
641 // used while scanning relocs during a relocatable link.
642 class Relocatable_size_for_reloc
643 {
644 public:
645 unsigned int
646 get_size_for_reloc(unsigned int, Relobj*);
647 };
648
649 // Adjust TLS relocation type based on the options and whether this
650 // is a local symbol.
651 static tls::Tls_optimization
652 optimize_tls_reloc(bool is_final, int r_type);
653
654 // Get the GOT section, creating it if necessary.
655 Output_data_got<64, false>*
656 got_section(Symbol_table*, Layout*);
657
658 // Get the GOT PLT section.
659 Output_data_space*
660 got_plt_section() const
661 {
662 gold_assert(this->got_plt_ != NULL);
663 return this->got_plt_;
664 }
665
666 // Get the GOT section for TLSDESC entries.
667 Output_data_got<64, false>*
668 got_tlsdesc_section() const
669 {
670 gold_assert(this->got_tlsdesc_ != NULL);
671 return this->got_tlsdesc_;
672 }
673
674 // Create the PLT section.
675 void
676 make_plt_section(Symbol_table* symtab, Layout* layout);
677
678 // Create a PLT entry for a global symbol.
679 void
680 make_plt_entry(Symbol_table*, Layout*, Symbol*);
681
682 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
683 void
684 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
685 Sized_relobj_file<64, false>* relobj,
686 unsigned int local_sym_index);
687
688 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
689 void
690 define_tls_base_symbol(Symbol_table*, Layout*);
691
692 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
693 void
694 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
695
696 // Create a GOT entry for the TLS module index.
697 unsigned int
698 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
699 Sized_relobj_file<64, false>* object);
700
701 // Get the PLT section.
702 Output_data_plt_x86_64*
703 plt_section() const
704 {
705 gold_assert(this->plt_ != NULL);
706 return this->plt_;
707 }
708
709 // Get the dynamic reloc section, creating it if necessary.
710 Reloc_section*
711 rela_dyn_section(Layout*);
712
713 // Get the section to use for TLSDESC relocations.
714 Reloc_section*
715 rela_tlsdesc_section(Layout*) const;
716
717 // Get the section to use for IRELATIVE relocations.
718 Reloc_section*
719 rela_irelative_section(Layout*);
720
721 // Add a potential copy relocation.
722 void
723 copy_reloc(Symbol_table* symtab, Layout* layout,
724 Sized_relobj_file<64, false>* object,
725 unsigned int shndx, Output_section* output_section,
726 Symbol* sym, const elfcpp::Rela<64, false>& reloc)
727 {
728 this->copy_relocs_.copy_reloc(symtab, layout,
729 symtab->get_sized_symbol<64>(sym),
730 object, shndx, output_section,
731 reloc, this->rela_dyn_section(layout));
732 }
733
734 // Information about this specific target which we pass to the
735 // general Target structure.
736 static const Target::Target_info x86_64_info;
737
738 // The types of GOT entries needed for this platform.
739 // These values are exposed to the ABI in an incremental link.
740 // Do not renumber existing values without changing the version
741 // number of the .gnu_incremental_inputs section.
742 enum Got_type
743 {
744 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
745 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
746 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
747 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
748 };
749
750 // This type is used as the argument to the target specific
751 // relocation routines. The only target specific reloc is
752 // R_X86_64_TLSDESC against a local symbol.
753 struct Tlsdesc_info
754 {
755 Tlsdesc_info(Sized_relobj_file<64, false>* a_object, unsigned int a_r_sym)
756 : object(a_object), r_sym(a_r_sym)
757 { }
758
759 // The object in which the local symbol is defined.
760 Sized_relobj_file<64, false>* object;
761 // The local symbol index in the object.
762 unsigned int r_sym;
763 };
764
765 // The GOT section.
766 Output_data_got<64, false>* got_;
767 // The PLT section.
768 Output_data_plt_x86_64* plt_;
769 // The GOT PLT section.
770 Output_data_space* got_plt_;
771 // The GOT section for IRELATIVE relocations.
772 Output_data_space* got_irelative_;
773 // The GOT section for TLSDESC relocations.
774 Output_data_got<64, false>* got_tlsdesc_;
775 // The _GLOBAL_OFFSET_TABLE_ symbol.
776 Symbol* global_offset_table_;
777 // The dynamic reloc section.
778 Reloc_section* rela_dyn_;
779 // The section to use for IRELATIVE relocs.
780 Reloc_section* rela_irelative_;
781 // Relocs saved to avoid a COPY reloc.
782 Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
783 // Space for variables copied with a COPY reloc.
784 Output_data_space* dynbss_;
785 // Offset of the GOT entry for the TLS module index.
786 unsigned int got_mod_index_offset_;
787 // We handle R_X86_64_TLSDESC against a local symbol as a target
788 // specific relocation. Here we store the object and local symbol
789 // index for the relocation.
790 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
791 // True if the _TLS_MODULE_BASE_ symbol has been defined.
792 bool tls_base_symbol_defined_;
793 };
794
795 const Target::Target_info Target_x86_64::x86_64_info =
796 {
797 64, // size
798 false, // is_big_endian
799 elfcpp::EM_X86_64, // machine_code
800 false, // has_make_symbol
801 false, // has_resolve
802 true, // has_code_fill
803 true, // is_default_stack_executable
804 true, // can_icf_inline_merge_sections
805 '\0', // wrap_char
806 "/lib/ld64.so.1", // program interpreter
807 0x400000, // default_text_segment_address
808 0x1000, // abi_pagesize (overridable by -z max-page-size)
809 0x1000, // common_pagesize (overridable by -z common-page-size)
810 elfcpp::SHN_UNDEF, // small_common_shndx
811 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
812 0, // small_common_section_flags
813 elfcpp::SHF_X86_64_LARGE, // large_common_section_flags
814 NULL, // attributes_section
815 NULL // attributes_vendor
816 };
817
818 // This is called when a new output section is created. This is where
819 // we handle the SHF_X86_64_LARGE.
820
821 void
822 Target_x86_64::do_new_output_section(Output_section* os) const
823 {
824 if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
825 os->set_is_large_section();
826 }
827
828 // Get the GOT section, creating it if necessary.
829
830 Output_data_got<64, false>*
831 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
832 {
833 if (this->got_ == NULL)
834 {
835 gold_assert(symtab != NULL && layout != NULL);
836
837 this->got_ = new Output_data_got<64, false>();
838
839 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
840 (elfcpp::SHF_ALLOC
841 | elfcpp::SHF_WRITE),
842 this->got_, ORDER_RELRO_LAST,
843 true);
844
845 this->got_plt_ = new Output_data_space(8, "** GOT PLT");
846 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
847 (elfcpp::SHF_ALLOC
848 | elfcpp::SHF_WRITE),
849 this->got_plt_, ORDER_NON_RELRO_FIRST,
850 false);
851
852 // The first three entries are reserved.
853 this->got_plt_->set_current_data_size(3 * 8);
854
855 // Those bytes can go into the relro segment.
856 layout->increase_relro(3 * 8);
857
858 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
859 this->global_offset_table_ =
860 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
861 Symbol_table::PREDEFINED,
862 this->got_plt_,
863 0, 0, elfcpp::STT_OBJECT,
864 elfcpp::STB_LOCAL,
865 elfcpp::STV_HIDDEN, 0,
866 false, false);
867
868 // If there are any IRELATIVE relocations, they get GOT entries
869 // in .got.plt after the jump slot entries.
870 this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
871 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
872 (elfcpp::SHF_ALLOC
873 | elfcpp::SHF_WRITE),
874 this->got_irelative_,
875 ORDER_NON_RELRO_FIRST, false);
876
877 // If there are any TLSDESC relocations, they get GOT entries in
878 // .got.plt after the jump slot and IRELATIVE entries.
879 this->got_tlsdesc_ = new Output_data_got<64, false>();
880 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
881 (elfcpp::SHF_ALLOC
882 | elfcpp::SHF_WRITE),
883 this->got_tlsdesc_,
884 ORDER_NON_RELRO_FIRST, false);
885 }
886
887 return this->got_;
888 }
889
890 // Get the dynamic reloc section, creating it if necessary.
891
892 Target_x86_64::Reloc_section*
893 Target_x86_64::rela_dyn_section(Layout* layout)
894 {
895 if (this->rela_dyn_ == NULL)
896 {
897 gold_assert(layout != NULL);
898 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
899 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
900 elfcpp::SHF_ALLOC, this->rela_dyn_,
901 ORDER_DYNAMIC_RELOCS, false);
902 }
903 return this->rela_dyn_;
904 }
905
906 // Get the section to use for IRELATIVE relocs, creating it if
907 // necessary. These go in .rela.dyn, but only after all other dynamic
908 // relocations. They need to follow the other dynamic relocations so
909 // that they can refer to global variables initialized by those
910 // relocs.
911
912 Target_x86_64::Reloc_section*
913 Target_x86_64::rela_irelative_section(Layout* layout)
914 {
915 if (this->rela_irelative_ == NULL)
916 {
917 // Make sure we have already created the dynamic reloc section.
918 this->rela_dyn_section(layout);
919 this->rela_irelative_ = new Reloc_section(false);
920 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
921 elfcpp::SHF_ALLOC, this->rela_irelative_,
922 ORDER_DYNAMIC_RELOCS, false);
923 gold_assert(this->rela_dyn_->output_section()
924 == this->rela_irelative_->output_section());
925 }
926 return this->rela_irelative_;
927 }
928
929 // Initialize the PLT section.
930
931 void
932 Output_data_plt_x86_64::init(Layout* layout)
933 {
934 this->rel_ = new Reloc_section(false);
935 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
936 elfcpp::SHF_ALLOC, this->rel_,
937 ORDER_DYNAMIC_PLT_RELOCS, false);
938
939 // Add unwind information if requested.
940 if (parameters->options().ld_generated_unwind_info())
941 layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
942 plt_eh_frame_fde, plt_eh_frame_fde_size);
943 }
944
945 void
946 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
947 {
948 os->set_entsize(plt_entry_size);
949 }
950
951 // Add an entry to the PLT.
952
953 void
954 Output_data_plt_x86_64::add_entry(Symbol_table* symtab, Layout* layout,
955 Symbol* gsym)
956 {
957 gold_assert(!gsym->has_plt_offset());
958
959 unsigned int plt_index;
960 off_t plt_offset;
961 section_offset_type got_offset;
962
963 unsigned int* pcount;
964 unsigned int offset;
965 unsigned int reserved;
966 Output_data_space* got;
967 if (gsym->type() == elfcpp::STT_GNU_IFUNC
968 && gsym->can_use_relative_reloc(false))
969 {
970 pcount = &this->irelative_count_;
971 offset = 0;
972 reserved = 0;
973 got = this->got_irelative_;
974 }
975 else
976 {
977 pcount = &this->count_;
978 offset = 1;
979 reserved = 3;
980 got = this->got_plt_;
981 }
982
983 if (!this->is_data_size_valid())
984 {
985 // Note that when setting the PLT offset for a non-IRELATIVE
986 // entry we skip the initial reserved PLT entry.
987 plt_index = *pcount + offset;
988 plt_offset = plt_index * plt_entry_size;
989
990 ++*pcount;
991
992 got_offset = (plt_index - offset + reserved) * 8;
993 gold_assert(got_offset == got->current_data_size());
994
995 // Every PLT entry needs a GOT entry which points back to the PLT
996 // entry (this will be changed by the dynamic linker, normally
997 // lazily when the function is called).
998 got->set_current_data_size(got_offset + 8);
999 }
1000 else
1001 {
1002 // FIXME: This is probably not correct for IRELATIVE relocs.
1003
1004 // For incremental updates, find an available slot.
1005 plt_offset = this->free_list_.allocate(plt_entry_size, plt_entry_size, 0);
1006 if (plt_offset == -1)
1007 gold_fallback(_("out of patch space (PLT);"
1008 " relink with --incremental-full"));
1009
1010 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1011 // can be calculated from the PLT index, adjusting for the three
1012 // reserved entries at the beginning of the GOT.
1013 plt_index = plt_offset / plt_entry_size - 1;
1014 got_offset = (plt_index - offset + reserved) * 8;
1015 }
1016
1017 gsym->set_plt_offset(plt_offset);
1018
1019 // Every PLT entry needs a reloc.
1020 this->add_relocation(symtab, layout, gsym, got_offset);
1021
1022 // Note that we don't need to save the symbol. The contents of the
1023 // PLT are independent of which symbols are used. The symbols only
1024 // appear in the relocations.
1025 }
1026
1027 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1028 // the PLT offset.
1029
1030 unsigned int
1031 Output_data_plt_x86_64::add_local_ifunc_entry(
1032 Symbol_table* symtab,
1033 Layout* layout,
1034 Sized_relobj_file<64, false>* relobj,
1035 unsigned int local_sym_index)
1036 {
1037 unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
1038 ++this->irelative_count_;
1039
1040 section_offset_type got_offset = this->got_irelative_->current_data_size();
1041
1042 // Every PLT entry needs a GOT entry which points back to the PLT
1043 // entry.
1044 this->got_irelative_->set_current_data_size(got_offset + 8);
1045
1046 // Every PLT entry needs a reloc.
1047 Reloc_section* rela = this->rela_irelative(symtab, layout);
1048 rela->add_symbolless_local_addend(relobj, local_sym_index,
1049 elfcpp::R_X86_64_IRELATIVE,
1050 this->got_irelative_, got_offset, 0);
1051
1052 return plt_offset;
1053 }
1054
1055 // Add the relocation for a PLT entry.
1056
1057 void
1058 Output_data_plt_x86_64::add_relocation(Symbol_table* symtab, Layout* layout,
1059 Symbol* gsym, unsigned int got_offset)
1060 {
1061 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1062 && gsym->can_use_relative_reloc(false))
1063 {
1064 Reloc_section* rela = this->rela_irelative(symtab, layout);
1065 rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1066 this->got_irelative_, got_offset, 0);
1067 }
1068 else
1069 {
1070 gsym->set_needs_dynsym_entry();
1071 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1072 got_offset, 0);
1073 }
1074 }
1075
1076 // Return where the TLSDESC relocations should go, creating it if
1077 // necessary. These follow the JUMP_SLOT relocations.
1078
1079 Output_data_plt_x86_64::Reloc_section*
1080 Output_data_plt_x86_64::rela_tlsdesc(Layout* layout)
1081 {
1082 if (this->tlsdesc_rel_ == NULL)
1083 {
1084 this->tlsdesc_rel_ = new Reloc_section(false);
1085 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1086 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1087 ORDER_DYNAMIC_PLT_RELOCS, false);
1088 gold_assert(this->tlsdesc_rel_->output_section()
1089 == this->rel_->output_section());
1090 }
1091 return this->tlsdesc_rel_;
1092 }
1093
1094 // Return where the IRELATIVE relocations should go in the PLT. These
1095 // follow the JUMP_SLOT and the TLSDESC relocations.
1096
1097 Output_data_plt_x86_64::Reloc_section*
1098 Output_data_plt_x86_64::rela_irelative(Symbol_table* symtab, Layout* layout)
1099 {
1100 if (this->irelative_rel_ == NULL)
1101 {
1102 // Make sure we have a place for the TLSDESC relocations, in
1103 // case we see any later on.
1104 this->rela_tlsdesc(layout);
1105 this->irelative_rel_ = new Reloc_section(false);
1106 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1107 elfcpp::SHF_ALLOC, this->irelative_rel_,
1108 ORDER_DYNAMIC_PLT_RELOCS, false);
1109 gold_assert(this->irelative_rel_->output_section()
1110 == this->rel_->output_section());
1111
1112 if (parameters->doing_static_link())
1113 {
1114 // A statically linked executable will only have a .rela.plt
1115 // section to hold R_X86_64_IRELATIVE relocs for
1116 // STT_GNU_IFUNC symbols. The library will use these
1117 // symbols to locate the IRELATIVE relocs at program startup
1118 // time.
1119 symtab->define_in_output_data("__rela_iplt_start", NULL,
1120 Symbol_table::PREDEFINED,
1121 this->irelative_rel_, 0, 0,
1122 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1123 elfcpp::STV_HIDDEN, 0, false, true);
1124 symtab->define_in_output_data("__rela_iplt_end", NULL,
1125 Symbol_table::PREDEFINED,
1126 this->irelative_rel_, 0, 0,
1127 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1128 elfcpp::STV_HIDDEN, 0, true, true);
1129 }
1130 }
1131 return this->irelative_rel_;
1132 }
1133
1134 // Return the PLT address to use for a global symbol.
1135
1136 uint64_t
1137 Output_data_plt_x86_64::address_for_global(const Symbol* gsym)
1138 {
1139 uint64_t offset = 0;
1140 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1141 && gsym->can_use_relative_reloc(false))
1142 offset = (this->count_ + 1) * plt_entry_size;
1143 return this->address() + offset;
1144 }
1145
1146 // Return the PLT address to use for a local symbol. These are always
1147 // IRELATIVE relocs.
1148
1149 uint64_t
1150 Output_data_plt_x86_64::address_for_local(const Relobj*, unsigned int)
1151 {
1152 return this->address() + (this->count_ + 1) * plt_entry_size;
1153 }
1154
1155 // Set the final size.
1156 void
1157 Output_data_plt_x86_64::set_final_data_size()
1158 {
1159 unsigned int count = this->count_ + this->irelative_count_;
1160 if (this->has_tlsdesc_entry())
1161 ++count;
1162 this->set_data_size((count + 1) * plt_entry_size);
1163 }
1164
1165 // The first entry in the PLT for an executable.
1166
1167 const unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
1168 {
1169 // From AMD64 ABI Draft 0.98, page 76
1170 0xff, 0x35, // pushq contents of memory address
1171 0, 0, 0, 0, // replaced with address of .got + 8
1172 0xff, 0x25, // jmp indirect
1173 0, 0, 0, 0, // replaced with address of .got + 16
1174 0x90, 0x90, 0x90, 0x90 // noop (x4)
1175 };
1176
1177 // Subsequent entries in the PLT for an executable.
1178
1179 const unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
1180 {
1181 // From AMD64 ABI Draft 0.98, page 76
1182 0xff, 0x25, // jmpq indirect
1183 0, 0, 0, 0, // replaced with address of symbol in .got
1184 0x68, // pushq immediate
1185 0, 0, 0, 0, // replaced with offset into relocation table
1186 0xe9, // jmpq relative
1187 0, 0, 0, 0 // replaced with offset to start of .plt
1188 };
1189
1190 // The reserved TLSDESC entry in the PLT for an executable.
1191
1192 const unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
1193 {
1194 // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1195 // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1196 0xff, 0x35, // pushq x(%rip)
1197 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1198 0xff, 0x25, // jmpq *y(%rip)
1199 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
1200 0x0f, 0x1f, // nop
1201 0x40, 0
1202 };
1203
1204 // The .eh_frame unwind information for the PLT.
1205
1206 const unsigned char
1207 Output_data_plt_x86_64::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1208 {
1209 1, // CIE version.
1210 'z', // Augmentation: augmentation size included.
1211 'R', // Augmentation: FDE encoding included.
1212 '\0', // End of augmentation string.
1213 1, // Code alignment factor.
1214 0x78, // Data alignment factor.
1215 16, // Return address column.
1216 1, // Augmentation size.
1217 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1218 | elfcpp::DW_EH_PE_sdata4),
1219 elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1220 elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1221 elfcpp::DW_CFA_nop, // Align to 16 bytes.
1222 elfcpp::DW_CFA_nop
1223 };
1224
1225 const unsigned char
1226 Output_data_plt_x86_64::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1227 {
1228 0, 0, 0, 0, // Replaced with offset to .plt.
1229 0, 0, 0, 0, // Replaced with size of .plt.
1230 0, // Augmentation size.
1231 elfcpp::DW_CFA_def_cfa_offset, 16, // DW_CFA_def_cfa_offset: 16.
1232 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
1233 elfcpp::DW_CFA_def_cfa_offset, 24, // DW_CFA_def_cfa_offset: 24.
1234 elfcpp::DW_CFA_advance_loc + 10, // Advance 10 to __PLT__ + 16.
1235 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
1236 11, // Block length.
1237 elfcpp::DW_OP_breg7, 8, // Push %rsp + 8.
1238 elfcpp::DW_OP_breg16, 0, // Push %rip.
1239 elfcpp::DW_OP_lit15, // Push 0xf.
1240 elfcpp::DW_OP_and, // & (%rip & 0xf).
1241 elfcpp::DW_OP_lit11, // Push 0xb.
1242 elfcpp::DW_OP_ge, // >= ((%rip & 0xf) >= 0xb)
1243 elfcpp::DW_OP_lit3, // Push 3.
1244 elfcpp::DW_OP_shl, // << (((%rip & 0xf) >= 0xb) << 3)
1245 elfcpp::DW_OP_plus, // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1246 elfcpp::DW_CFA_nop, // Align to 32 bytes.
1247 elfcpp::DW_CFA_nop,
1248 elfcpp::DW_CFA_nop,
1249 elfcpp::DW_CFA_nop
1250 };
1251
1252 // Write out the PLT. This uses the hand-coded instructions above,
1253 // and adjusts them as needed. This is specified by the AMD64 ABI.
1254
1255 void
1256 Output_data_plt_x86_64::do_write(Output_file* of)
1257 {
1258 const off_t offset = this->offset();
1259 const section_size_type oview_size =
1260 convert_to_section_size_type(this->data_size());
1261 unsigned char* const oview = of->get_output_view(offset, oview_size);
1262
1263 const off_t got_file_offset = this->got_plt_->offset();
1264 gold_assert(parameters->incremental_update()
1265 || (got_file_offset + this->got_plt_->data_size()
1266 == this->got_irelative_->offset()));
1267 const section_size_type got_size =
1268 convert_to_section_size_type(this->got_plt_->data_size()
1269 + this->got_irelative_->data_size());
1270 unsigned char* const got_view = of->get_output_view(got_file_offset,
1271 got_size);
1272
1273 unsigned char* pov = oview;
1274
1275 // The base address of the .plt section.
1276 elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
1277 // The base address of the .got section.
1278 elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
1279 // The base address of the PLT portion of the .got section,
1280 // which is where the GOT pointer will point, and where the
1281 // three reserved GOT entries are located.
1282 elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
1283
1284 memcpy(pov, first_plt_entry, plt_entry_size);
1285 // We do a jmp relative to the PC at the end of this instruction.
1286 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1287 (got_address + 8
1288 - (plt_address + 6)));
1289 elfcpp::Swap<32, false>::writeval(pov + 8,
1290 (got_address + 16
1291 - (plt_address + 12)));
1292 pov += plt_entry_size;
1293
1294 unsigned char* got_pov = got_view;
1295
1296 memset(got_pov, 0, 24);
1297 got_pov += 24;
1298
1299 unsigned int plt_offset = plt_entry_size;
1300 unsigned int got_offset = 24;
1301 const unsigned int count = this->count_ + this->irelative_count_;
1302 for (unsigned int plt_index = 0;
1303 plt_index < count;
1304 ++plt_index,
1305 pov += plt_entry_size,
1306 got_pov += 8,
1307 plt_offset += plt_entry_size,
1308 got_offset += 8)
1309 {
1310 // Set and adjust the PLT entry itself.
1311 memcpy(pov, plt_entry, plt_entry_size);
1312 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1313 (got_address + got_offset
1314 - (plt_address + plt_offset
1315 + 6)));
1316
1317 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1318 elfcpp::Swap<32, false>::writeval(pov + 12,
1319 - (plt_offset + plt_entry_size));
1320
1321 // Set the entry in the GOT.
1322 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
1323 }
1324
1325 if (this->has_tlsdesc_entry())
1326 {
1327 // Set and adjust the reserved TLSDESC PLT entry.
1328 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1329 memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1330 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1331 (got_address + 8
1332 - (plt_address + plt_offset
1333 + 6)));
1334 elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1335 (got_base
1336 + tlsdesc_got_offset
1337 - (plt_address + plt_offset
1338 + 12)));
1339 pov += plt_entry_size;
1340 }
1341
1342 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1343 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1344
1345 of->write_output_view(offset, oview_size, oview);
1346 of->write_output_view(got_file_offset, got_size, got_view);
1347 }
1348
1349 // Create the PLT section.
1350
1351 void
1352 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
1353 {
1354 if (this->plt_ == NULL)
1355 {
1356 // Create the GOT sections first.
1357 this->got_section(symtab, layout);
1358
1359 this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
1360 this->got_plt_,
1361 this->got_irelative_);
1362 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1363 (elfcpp::SHF_ALLOC
1364 | elfcpp::SHF_EXECINSTR),
1365 this->plt_, ORDER_PLT, false);
1366
1367 // Make the sh_info field of .rela.plt point to .plt.
1368 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1369 rela_plt_os->set_info_section(this->plt_->output_section());
1370 }
1371 }
1372
1373 // Return the section for TLSDESC relocations.
1374
1375 Target_x86_64::Reloc_section*
1376 Target_x86_64::rela_tlsdesc_section(Layout* layout) const
1377 {
1378 return this->plt_section()->rela_tlsdesc(layout);
1379 }
1380
1381 // Create a PLT entry for a global symbol.
1382
1383 void
1384 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
1385 Symbol* gsym)
1386 {
1387 if (gsym->has_plt_offset())
1388 return;
1389
1390 if (this->plt_ == NULL)
1391 this->make_plt_section(symtab, layout);
1392
1393 this->plt_->add_entry(symtab, layout, gsym);
1394 }
1395
1396 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1397
1398 void
1399 Target_x86_64::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
1400 Sized_relobj_file<64, false>* relobj,
1401 unsigned int local_sym_index)
1402 {
1403 if (relobj->local_has_plt_offset(local_sym_index))
1404 return;
1405 if (this->plt_ == NULL)
1406 this->make_plt_section(symtab, layout);
1407 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1408 relobj,
1409 local_sym_index);
1410 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1411 }
1412
1413 // Return the number of entries in the PLT.
1414
1415 unsigned int
1416 Target_x86_64::plt_entry_count() const
1417 {
1418 if (this->plt_ == NULL)
1419 return 0;
1420 return this->plt_->entry_count();
1421 }
1422
1423 // Return the offset of the first non-reserved PLT entry.
1424
1425 unsigned int
1426 Target_x86_64::first_plt_entry_offset() const
1427 {
1428 return Output_data_plt_x86_64::first_plt_entry_offset();
1429 }
1430
1431 // Return the size of each PLT entry.
1432
1433 unsigned int
1434 Target_x86_64::plt_entry_size() const
1435 {
1436 return Output_data_plt_x86_64::get_plt_entry_size();
1437 }
1438
1439 // Create the GOT and PLT sections for an incremental update.
1440
1441 Output_data_got<64, false>*
1442 Target_x86_64::init_got_plt_for_update(Symbol_table* symtab,
1443 Layout* layout,
1444 unsigned int got_count,
1445 unsigned int plt_count)
1446 {
1447 gold_assert(this->got_ == NULL);
1448
1449 this->got_ = new Output_data_got<64, false>(got_count * 8);
1450 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1451 (elfcpp::SHF_ALLOC
1452 | elfcpp::SHF_WRITE),
1453 this->got_, ORDER_RELRO_LAST,
1454 true);
1455
1456 // Add the three reserved entries.
1457 this->got_plt_ = new Output_data_space((plt_count + 3) * 8, 8, "** GOT PLT");
1458 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1459 (elfcpp::SHF_ALLOC
1460 | elfcpp::SHF_WRITE),
1461 this->got_plt_, ORDER_NON_RELRO_FIRST,
1462 false);
1463
1464 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1465 this->global_offset_table_ =
1466 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1467 Symbol_table::PREDEFINED,
1468 this->got_plt_,
1469 0, 0, elfcpp::STT_OBJECT,
1470 elfcpp::STB_LOCAL,
1471 elfcpp::STV_HIDDEN, 0,
1472 false, false);
1473
1474 // If there are any TLSDESC relocations, they get GOT entries in
1475 // .got.plt after the jump slot entries.
1476 // FIXME: Get the count for TLSDESC entries.
1477 this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1478 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1479 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1480 this->got_tlsdesc_,
1481 ORDER_NON_RELRO_FIRST, false);
1482
1483 // If there are any IRELATIVE relocations, they get GOT entries in
1484 // .got.plt after the jump slot and TLSDESC entries.
1485 this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1486 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1487 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1488 this->got_irelative_,
1489 ORDER_NON_RELRO_FIRST, false);
1490
1491 // Create the PLT section.
1492 this->plt_ = new Output_data_plt_x86_64(layout, this->got_, this->got_plt_,
1493 this->got_irelative_, plt_count);
1494 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1495 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1496 this->plt_, ORDER_PLT, false);
1497
1498 // Make the sh_info field of .rela.plt point to .plt.
1499 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1500 rela_plt_os->set_info_section(this->plt_->output_section());
1501
1502 // Create the rela_dyn section.
1503 this->rela_dyn_section(layout);
1504
1505 return this->got_;
1506 }
1507
1508 // Reserve a GOT entry for a local symbol, and regenerate any
1509 // necessary dynamic relocations.
1510
1511 void
1512 Target_x86_64::reserve_local_got_entry(
1513 unsigned int got_index,
1514 Sized_relobj<64, false>* obj,
1515 unsigned int r_sym,
1516 unsigned int got_type)
1517 {
1518 unsigned int got_offset = got_index * 8;
1519 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1520
1521 this->got_->reserve_local(got_index, obj, r_sym, got_type);
1522 switch (got_type)
1523 {
1524 case GOT_TYPE_STANDARD:
1525 if (parameters->options().output_is_position_independent())
1526 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
1527 this->got_, got_offset, 0);
1528 break;
1529 case GOT_TYPE_TLS_OFFSET:
1530 rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
1531 this->got_, got_offset, 0);
1532 break;
1533 case GOT_TYPE_TLS_PAIR:
1534 this->got_->reserve_slot(got_index + 1);
1535 rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
1536 this->got_, got_offset, 0);
1537 break;
1538 case GOT_TYPE_TLS_DESC:
1539 gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
1540 // this->got_->reserve_slot(got_index + 1);
1541 // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
1542 // this->got_, got_offset, 0);
1543 break;
1544 default:
1545 gold_unreachable();
1546 }
1547 }
1548
1549 // Reserve a GOT entry for a global symbol, and regenerate any
1550 // necessary dynamic relocations.
1551
1552 void
1553 Target_x86_64::reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
1554 unsigned int got_type)
1555 {
1556 unsigned int got_offset = got_index * 8;
1557 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1558
1559 this->got_->reserve_global(got_index, gsym, got_type);
1560 switch (got_type)
1561 {
1562 case GOT_TYPE_STANDARD:
1563 if (!gsym->final_value_is_known())
1564 {
1565 if (gsym->is_from_dynobj()
1566 || gsym->is_undefined()
1567 || gsym->is_preemptible()
1568 || gsym->type() == elfcpp::STT_GNU_IFUNC)
1569 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
1570 this->got_, got_offset, 0);
1571 else
1572 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1573 this->got_, got_offset, 0);
1574 }
1575 break;
1576 case GOT_TYPE_TLS_OFFSET:
1577 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
1578 this->got_, got_offset, 0);
1579 break;
1580 case GOT_TYPE_TLS_PAIR:
1581 this->got_->reserve_slot(got_index + 1);
1582 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
1583 this->got_, got_offset, 0);
1584 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
1585 this->got_, got_offset + 8, 0);
1586 break;
1587 case GOT_TYPE_TLS_DESC:
1588 this->got_->reserve_slot(got_index + 1);
1589 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
1590 this->got_, got_offset, 0);
1591 break;
1592 default:
1593 gold_unreachable();
1594 }
1595 }
1596
1597 // Register an existing PLT entry for a global symbol.
1598
1599 void
1600 Target_x86_64::register_global_plt_entry(Symbol_table* symtab,
1601 Layout* layout,
1602 unsigned int plt_index,
1603 Symbol* gsym)
1604 {
1605 gold_assert(this->plt_ != NULL);
1606 gold_assert(!gsym->has_plt_offset());
1607
1608 this->plt_->reserve_slot(plt_index);
1609
1610 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1611
1612 unsigned int got_offset = (plt_index + 3) * 8;
1613 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1614 }
1615
1616 // Force a COPY relocation for a given symbol.
1617
1618 void
1619 Target_x86_64::emit_copy_reloc(
1620 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1621 {
1622 this->copy_relocs_.emit_copy_reloc(symtab,
1623 symtab->get_sized_symbol<64>(sym),
1624 os,
1625 offset,
1626 this->rela_dyn_section(NULL));
1627 }
1628
1629 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1630
1631 void
1632 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
1633 {
1634 if (this->tls_base_symbol_defined_)
1635 return;
1636
1637 Output_segment* tls_segment = layout->tls_segment();
1638 if (tls_segment != NULL)
1639 {
1640 bool is_exec = parameters->options().output_is_executable();
1641 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
1642 Symbol_table::PREDEFINED,
1643 tls_segment, 0, 0,
1644 elfcpp::STT_TLS,
1645 elfcpp::STB_LOCAL,
1646 elfcpp::STV_HIDDEN, 0,
1647 (is_exec
1648 ? Symbol::SEGMENT_END
1649 : Symbol::SEGMENT_START),
1650 true);
1651 }
1652 this->tls_base_symbol_defined_ = true;
1653 }
1654
1655 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1656
1657 void
1658 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
1659 Layout* layout)
1660 {
1661 if (this->plt_ == NULL)
1662 this->make_plt_section(symtab, layout);
1663
1664 if (!this->plt_->has_tlsdesc_entry())
1665 {
1666 // Allocate the TLSDESC_GOT entry.
1667 Output_data_got<64, false>* got = this->got_section(symtab, layout);
1668 unsigned int got_offset = got->add_constant(0);
1669
1670 // Allocate the TLSDESC_PLT entry.
1671 this->plt_->reserve_tlsdesc_entry(got_offset);
1672 }
1673 }
1674
1675 // Create a GOT entry for the TLS module index.
1676
1677 unsigned int
1678 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1679 Sized_relobj_file<64, false>* object)
1680 {
1681 if (this->got_mod_index_offset_ == -1U)
1682 {
1683 gold_assert(symtab != NULL && layout != NULL && object != NULL);
1684 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1685 Output_data_got<64, false>* got = this->got_section(symtab, layout);
1686 unsigned int got_offset = got->add_constant(0);
1687 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
1688 got_offset, 0);
1689 got->add_constant(0);
1690 this->got_mod_index_offset_ = got_offset;
1691 }
1692 return this->got_mod_index_offset_;
1693 }
1694
1695 // Optimize the TLS relocation type based on what we know about the
1696 // symbol. IS_FINAL is true if the final address of this symbol is
1697 // known at link time.
1698
1699 tls::Tls_optimization
1700 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
1701 {
1702 // If we are generating a shared library, then we can't do anything
1703 // in the linker.
1704 if (parameters->options().shared())
1705 return tls::TLSOPT_NONE;
1706
1707 switch (r_type)
1708 {
1709 case elfcpp::R_X86_64_TLSGD:
1710 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1711 case elfcpp::R_X86_64_TLSDESC_CALL:
1712 // These are General-Dynamic which permits fully general TLS
1713 // access. Since we know that we are generating an executable,
1714 // we can convert this to Initial-Exec. If we also know that
1715 // this is a local symbol, we can further switch to Local-Exec.
1716 if (is_final)
1717 return tls::TLSOPT_TO_LE;
1718 return tls::TLSOPT_TO_IE;
1719
1720 case elfcpp::R_X86_64_TLSLD:
1721 // This is Local-Dynamic, which refers to a local symbol in the
1722 // dynamic TLS block. Since we know that we generating an
1723 // executable, we can switch to Local-Exec.
1724 return tls::TLSOPT_TO_LE;
1725
1726 case elfcpp::R_X86_64_DTPOFF32:
1727 case elfcpp::R_X86_64_DTPOFF64:
1728 // Another Local-Dynamic reloc.
1729 return tls::TLSOPT_TO_LE;
1730
1731 case elfcpp::R_X86_64_GOTTPOFF:
1732 // These are Initial-Exec relocs which get the thread offset
1733 // from the GOT. If we know that we are linking against the
1734 // local symbol, we can switch to Local-Exec, which links the
1735 // thread offset into the instruction.
1736 if (is_final)
1737 return tls::TLSOPT_TO_LE;
1738 return tls::TLSOPT_NONE;
1739
1740 case elfcpp::R_X86_64_TPOFF32:
1741 // When we already have Local-Exec, there is nothing further we
1742 // can do.
1743 return tls::TLSOPT_NONE;
1744
1745 default:
1746 gold_unreachable();
1747 }
1748 }
1749
1750 // Get the Reference_flags for a particular relocation.
1751
1752 int
1753 Target_x86_64::Scan::get_reference_flags(unsigned int r_type)
1754 {
1755 switch (r_type)
1756 {
1757 case elfcpp::R_X86_64_NONE:
1758 case elfcpp::R_X86_64_GNU_VTINHERIT:
1759 case elfcpp::R_X86_64_GNU_VTENTRY:
1760 case elfcpp::R_X86_64_GOTPC32:
1761 case elfcpp::R_X86_64_GOTPC64:
1762 // No symbol reference.
1763 return 0;
1764
1765 case elfcpp::R_X86_64_64:
1766 case elfcpp::R_X86_64_32:
1767 case elfcpp::R_X86_64_32S:
1768 case elfcpp::R_X86_64_16:
1769 case elfcpp::R_X86_64_8:
1770 return Symbol::ABSOLUTE_REF;
1771
1772 case elfcpp::R_X86_64_PC64:
1773 case elfcpp::R_X86_64_PC32:
1774 case elfcpp::R_X86_64_PC16:
1775 case elfcpp::R_X86_64_PC8:
1776 case elfcpp::R_X86_64_GOTOFF64:
1777 return Symbol::RELATIVE_REF;
1778
1779 case elfcpp::R_X86_64_PLT32:
1780 case elfcpp::R_X86_64_PLTOFF64:
1781 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
1782
1783 case elfcpp::R_X86_64_GOT64:
1784 case elfcpp::R_X86_64_GOT32:
1785 case elfcpp::R_X86_64_GOTPCREL64:
1786 case elfcpp::R_X86_64_GOTPCREL:
1787 case elfcpp::R_X86_64_GOTPLT64:
1788 // Absolute in GOT.
1789 return Symbol::ABSOLUTE_REF;
1790
1791 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1792 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1793 case elfcpp::R_X86_64_TLSDESC_CALL:
1794 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1795 case elfcpp::R_X86_64_DTPOFF32:
1796 case elfcpp::R_X86_64_DTPOFF64:
1797 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1798 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1799 return Symbol::TLS_REF;
1800
1801 case elfcpp::R_X86_64_COPY:
1802 case elfcpp::R_X86_64_GLOB_DAT:
1803 case elfcpp::R_X86_64_JUMP_SLOT:
1804 case elfcpp::R_X86_64_RELATIVE:
1805 case elfcpp::R_X86_64_IRELATIVE:
1806 case elfcpp::R_X86_64_TPOFF64:
1807 case elfcpp::R_X86_64_DTPMOD64:
1808 case elfcpp::R_X86_64_TLSDESC:
1809 case elfcpp::R_X86_64_SIZE32:
1810 case elfcpp::R_X86_64_SIZE64:
1811 default:
1812 // Not expected. We will give an error later.
1813 return 0;
1814 }
1815 }
1816
1817 // Report an unsupported relocation against a local symbol.
1818
1819 void
1820 Target_x86_64::Scan::unsupported_reloc_local(
1821 Sized_relobj_file<64, false>* object,
1822 unsigned int r_type)
1823 {
1824 gold_error(_("%s: unsupported reloc %u against local symbol"),
1825 object->name().c_str(), r_type);
1826 }
1827
1828 // We are about to emit a dynamic relocation of type R_TYPE. If the
1829 // dynamic linker does not support it, issue an error. The GNU linker
1830 // only issues a non-PIC error for an allocated read-only section.
1831 // Here we know the section is allocated, but we don't know that it is
1832 // read-only. But we check for all the relocation types which the
1833 // glibc dynamic linker supports, so it seems appropriate to issue an
1834 // error even if the section is not read-only. If GSYM is not NULL,
1835 // it is the symbol the relocation is against; if it is NULL, the
1836 // relocation is against a local symbol.
1837
1838 void
1839 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type,
1840 Symbol* gsym)
1841 {
1842 switch (r_type)
1843 {
1844 // These are the relocation types supported by glibc for x86_64
1845 // which should always work.
1846 case elfcpp::R_X86_64_RELATIVE:
1847 case elfcpp::R_X86_64_IRELATIVE:
1848 case elfcpp::R_X86_64_GLOB_DAT:
1849 case elfcpp::R_X86_64_JUMP_SLOT:
1850 case elfcpp::R_X86_64_DTPMOD64:
1851 case elfcpp::R_X86_64_DTPOFF64:
1852 case elfcpp::R_X86_64_TPOFF64:
1853 case elfcpp::R_X86_64_64:
1854 case elfcpp::R_X86_64_COPY:
1855 return;
1856
1857 // glibc supports these reloc types, but they can overflow.
1858 case elfcpp::R_X86_64_PC32:
1859 // A PC relative reference is OK against a local symbol or if
1860 // the symbol is defined locally.
1861 if (gsym == NULL
1862 || (!gsym->is_from_dynobj()
1863 && !gsym->is_undefined()
1864 && !gsym->is_preemptible()))
1865 return;
1866 /* Fall through. */
1867 case elfcpp::R_X86_64_32:
1868 if (this->issued_non_pic_error_)
1869 return;
1870 gold_assert(parameters->options().output_is_position_independent());
1871 if (gsym == NULL)
1872 object->error(_("requires dynamic R_X86_64_32 reloc which may "
1873 "overflow at runtime; recompile with -fPIC"));
1874 else
1875 object->error(_("requires dynamic %s reloc against '%s' which may "
1876 "overflow at runtime; recompile with -fPIC"),
1877 (r_type == elfcpp::R_X86_64_32
1878 ? "R_X86_64_32"
1879 : "R_X86_64_PC32"),
1880 gsym->name());
1881 this->issued_non_pic_error_ = true;
1882 return;
1883
1884 default:
1885 // This prevents us from issuing more than one error per reloc
1886 // section. But we can still wind up issuing more than one
1887 // error per object file.
1888 if (this->issued_non_pic_error_)
1889 return;
1890 gold_assert(parameters->options().output_is_position_independent());
1891 object->error(_("requires unsupported dynamic reloc %u; "
1892 "recompile with -fPIC"),
1893 r_type);
1894 this->issued_non_pic_error_ = true;
1895 return;
1896
1897 case elfcpp::R_X86_64_NONE:
1898 gold_unreachable();
1899 }
1900 }
1901
1902 // Return whether we need to make a PLT entry for a relocation of the
1903 // given type against a STT_GNU_IFUNC symbol.
1904
1905 bool
1906 Target_x86_64::Scan::reloc_needs_plt_for_ifunc(
1907 Sized_relobj_file<64, false>* object,
1908 unsigned int r_type)
1909 {
1910 int flags = Scan::get_reference_flags(r_type);
1911 if (flags & Symbol::TLS_REF)
1912 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
1913 object->name().c_str(), r_type);
1914 return flags != 0;
1915 }
1916
1917 // Scan a relocation for a local symbol.
1918
1919 inline void
1920 Target_x86_64::Scan::local(Symbol_table* symtab,
1921 Layout* layout,
1922 Target_x86_64* target,
1923 Sized_relobj_file<64, false>* object,
1924 unsigned int data_shndx,
1925 Output_section* output_section,
1926 const elfcpp::Rela<64, false>& reloc,
1927 unsigned int r_type,
1928 const elfcpp::Sym<64, false>& lsym)
1929 {
1930 // A local STT_GNU_IFUNC symbol may require a PLT entry.
1931 if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
1932 && this->reloc_needs_plt_for_ifunc(object, r_type))
1933 {
1934 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1935 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
1936 }
1937
1938 switch (r_type)
1939 {
1940 case elfcpp::R_X86_64_NONE:
1941 case elfcpp::R_X86_64_GNU_VTINHERIT:
1942 case elfcpp::R_X86_64_GNU_VTENTRY:
1943 break;
1944
1945 case elfcpp::R_X86_64_64:
1946 // If building a shared library (or a position-independent
1947 // executable), we need to create a dynamic relocation for this
1948 // location. The relocation applied at link time will apply the
1949 // link-time value, so we flag the location with an
1950 // R_X86_64_RELATIVE relocation so the dynamic loader can
1951 // relocate it easily.
1952 if (parameters->options().output_is_position_independent())
1953 {
1954 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1955 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1956 rela_dyn->add_local_relative(object, r_sym,
1957 elfcpp::R_X86_64_RELATIVE,
1958 output_section, data_shndx,
1959 reloc.get_r_offset(),
1960 reloc.get_r_addend());
1961 }
1962 break;
1963
1964 case elfcpp::R_X86_64_32:
1965 case elfcpp::R_X86_64_32S:
1966 case elfcpp::R_X86_64_16:
1967 case elfcpp::R_X86_64_8:
1968 // If building a shared library (or a position-independent
1969 // executable), we need to create a dynamic relocation for this
1970 // location. We can't use an R_X86_64_RELATIVE relocation
1971 // because that is always a 64-bit relocation.
1972 if (parameters->options().output_is_position_independent())
1973 {
1974 this->check_non_pic(object, r_type, NULL);
1975
1976 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1977 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1978 if (lsym.get_st_type() != elfcpp::STT_SECTION)
1979 rela_dyn->add_local(object, r_sym, r_type, output_section,
1980 data_shndx, reloc.get_r_offset(),
1981 reloc.get_r_addend());
1982 else
1983 {
1984 gold_assert(lsym.get_st_value() == 0);
1985 unsigned int shndx = lsym.get_st_shndx();
1986 bool is_ordinary;
1987 shndx = object->adjust_sym_shndx(r_sym, shndx,
1988 &is_ordinary);
1989 if (!is_ordinary)
1990 object->error(_("section symbol %u has bad shndx %u"),
1991 r_sym, shndx);
1992 else
1993 rela_dyn->add_local_section(object, shndx,
1994 r_type, output_section,
1995 data_shndx, reloc.get_r_offset(),
1996 reloc.get_r_addend());
1997 }
1998 }
1999 break;
2000
2001 case elfcpp::R_X86_64_PC64:
2002 case elfcpp::R_X86_64_PC32:
2003 case elfcpp::R_X86_64_PC16:
2004 case elfcpp::R_X86_64_PC8:
2005 break;
2006
2007 case elfcpp::R_X86_64_PLT32:
2008 // Since we know this is a local symbol, we can handle this as a
2009 // PC32 reloc.
2010 break;
2011
2012 case elfcpp::R_X86_64_GOTPC32:
2013 case elfcpp::R_X86_64_GOTOFF64:
2014 case elfcpp::R_X86_64_GOTPC64:
2015 case elfcpp::R_X86_64_PLTOFF64:
2016 // We need a GOT section.
2017 target->got_section(symtab, layout);
2018 // For PLTOFF64, we'd normally want a PLT section, but since we
2019 // know this is a local symbol, no PLT is needed.
2020 break;
2021
2022 case elfcpp::R_X86_64_GOT64:
2023 case elfcpp::R_X86_64_GOT32:
2024 case elfcpp::R_X86_64_GOTPCREL64:
2025 case elfcpp::R_X86_64_GOTPCREL:
2026 case elfcpp::R_X86_64_GOTPLT64:
2027 {
2028 // The symbol requires a GOT entry.
2029 Output_data_got<64, false>* got = target->got_section(symtab, layout);
2030 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
2031
2032 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
2033 // lets function pointers compare correctly with shared
2034 // libraries. Otherwise we would need an IRELATIVE reloc.
2035 bool is_new;
2036 if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2037 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2038 else
2039 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2040 if (is_new)
2041 {
2042 // If we are generating a shared object, we need to add a
2043 // dynamic relocation for this symbol's GOT entry.
2044 if (parameters->options().output_is_position_independent())
2045 {
2046 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2047 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2048 if (r_type != elfcpp::R_X86_64_GOT32)
2049 {
2050 unsigned int got_offset =
2051 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2052 rela_dyn->add_local_relative(object, r_sym,
2053 elfcpp::R_X86_64_RELATIVE,
2054 got, got_offset, 0);
2055 }
2056 else
2057 {
2058 this->check_non_pic(object, r_type, NULL);
2059
2060 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2061 rela_dyn->add_local(
2062 object, r_sym, r_type, got,
2063 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
2064 }
2065 }
2066 }
2067 // For GOTPLT64, we'd normally want a PLT section, but since
2068 // we know this is a local symbol, no PLT is needed.
2069 }
2070 break;
2071
2072 case elfcpp::R_X86_64_COPY:
2073 case elfcpp::R_X86_64_GLOB_DAT:
2074 case elfcpp::R_X86_64_JUMP_SLOT:
2075 case elfcpp::R_X86_64_RELATIVE:
2076 case elfcpp::R_X86_64_IRELATIVE:
2077 // These are outstanding tls relocs, which are unexpected when linking
2078 case elfcpp::R_X86_64_TPOFF64:
2079 case elfcpp::R_X86_64_DTPMOD64:
2080 case elfcpp::R_X86_64_TLSDESC:
2081 gold_error(_("%s: unexpected reloc %u in object file"),
2082 object->name().c_str(), r_type);
2083 break;
2084
2085 // These are initial tls relocs, which are expected when linking
2086 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2087 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2088 case elfcpp::R_X86_64_TLSDESC_CALL:
2089 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2090 case elfcpp::R_X86_64_DTPOFF32:
2091 case elfcpp::R_X86_64_DTPOFF64:
2092 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2093 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2094 {
2095 bool output_is_shared = parameters->options().shared();
2096 const tls::Tls_optimization optimized_type
2097 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
2098 switch (r_type)
2099 {
2100 case elfcpp::R_X86_64_TLSGD: // General-dynamic
2101 if (optimized_type == tls::TLSOPT_NONE)
2102 {
2103 // Create a pair of GOT entries for the module index and
2104 // dtv-relative offset.
2105 Output_data_got<64, false>* got
2106 = target->got_section(symtab, layout);
2107 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
2108 unsigned int shndx = lsym.get_st_shndx();
2109 bool is_ordinary;
2110 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2111 if (!is_ordinary)
2112 object->error(_("local symbol %u has bad shndx %u"),
2113 r_sym, shndx);
2114 else
2115 got->add_local_pair_with_rela(object, r_sym,
2116 shndx,
2117 GOT_TYPE_TLS_PAIR,
2118 target->rela_dyn_section(layout),
2119 elfcpp::R_X86_64_DTPMOD64, 0);
2120 }
2121 else if (optimized_type != tls::TLSOPT_TO_LE)
2122 unsupported_reloc_local(object, r_type);
2123 break;
2124
2125 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2126 target->define_tls_base_symbol(symtab, layout);
2127 if (optimized_type == tls::TLSOPT_NONE)
2128 {
2129 // Create reserved PLT and GOT entries for the resolver.
2130 target->reserve_tlsdesc_entries(symtab, layout);
2131
2132 // Generate a double GOT entry with an
2133 // R_X86_64_TLSDESC reloc. The R_X86_64_TLSDESC reloc
2134 // is resolved lazily, so the GOT entry needs to be in
2135 // an area in .got.plt, not .got. Call got_section to
2136 // make sure the section has been created.
2137 target->got_section(symtab, layout);
2138 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2139 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
2140 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2141 {
2142 unsigned int got_offset = got->add_constant(0);
2143 got->add_constant(0);
2144 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2145 got_offset);
2146 Reloc_section* rt = target->rela_tlsdesc_section(layout);
2147 // We store the arguments we need in a vector, and
2148 // use the index into the vector as the parameter
2149 // to pass to the target specific routines.
2150 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
2151 void* arg = reinterpret_cast<void*>(intarg);
2152 rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2153 got, got_offset, 0);
2154 }
2155 }
2156 else if (optimized_type != tls::TLSOPT_TO_LE)
2157 unsupported_reloc_local(object, r_type);
2158 break;
2159
2160 case elfcpp::R_X86_64_TLSDESC_CALL:
2161 break;
2162
2163 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2164 if (optimized_type == tls::TLSOPT_NONE)
2165 {
2166 // Create a GOT entry for the module index.
2167 target->got_mod_index_entry(symtab, layout, object);
2168 }
2169 else if (optimized_type != tls::TLSOPT_TO_LE)
2170 unsupported_reloc_local(object, r_type);
2171 break;
2172
2173 case elfcpp::R_X86_64_DTPOFF32:
2174 case elfcpp::R_X86_64_DTPOFF64:
2175 break;
2176
2177 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2178 layout->set_has_static_tls();
2179 if (optimized_type == tls::TLSOPT_NONE)
2180 {
2181 // Create a GOT entry for the tp-relative offset.
2182 Output_data_got<64, false>* got
2183 = target->got_section(symtab, layout);
2184 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
2185 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
2186 target->rela_dyn_section(layout),
2187 elfcpp::R_X86_64_TPOFF64);
2188 }
2189 else if (optimized_type != tls::TLSOPT_TO_LE)
2190 unsupported_reloc_local(object, r_type);
2191 break;
2192
2193 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2194 layout->set_has_static_tls();
2195 if (output_is_shared)
2196 unsupported_reloc_local(object, r_type);
2197 break;
2198
2199 default:
2200 gold_unreachable();
2201 }
2202 }
2203 break;
2204
2205 case elfcpp::R_X86_64_SIZE32:
2206 case elfcpp::R_X86_64_SIZE64:
2207 default:
2208 gold_error(_("%s: unsupported reloc %u against local symbol"),
2209 object->name().c_str(), r_type);
2210 break;
2211 }
2212 }
2213
2214
2215 // Report an unsupported relocation against a global symbol.
2216
2217 void
2218 Target_x86_64::Scan::unsupported_reloc_global(
2219 Sized_relobj_file<64, false>* object,
2220 unsigned int r_type,
2221 Symbol* gsym)
2222 {
2223 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2224 object->name().c_str(), r_type, gsym->demangled_name().c_str());
2225 }
2226
2227 // Returns true if this relocation type could be that of a function pointer.
2228 inline bool
2229 Target_x86_64::Scan::possible_function_pointer_reloc(unsigned int r_type)
2230 {
2231 switch (r_type)
2232 {
2233 case elfcpp::R_X86_64_64:
2234 case elfcpp::R_X86_64_32:
2235 case elfcpp::R_X86_64_32S:
2236 case elfcpp::R_X86_64_16:
2237 case elfcpp::R_X86_64_8:
2238 case elfcpp::R_X86_64_GOT64:
2239 case elfcpp::R_X86_64_GOT32:
2240 case elfcpp::R_X86_64_GOTPCREL64:
2241 case elfcpp::R_X86_64_GOTPCREL:
2242 case elfcpp::R_X86_64_GOTPLT64:
2243 {
2244 return true;
2245 }
2246 }
2247 return false;
2248 }
2249
2250 // For safe ICF, scan a relocation for a local symbol to check if it
2251 // corresponds to a function pointer being taken. In that case mark
2252 // the function whose pointer was taken as not foldable.
2253
2254 inline bool
2255 Target_x86_64::Scan::local_reloc_may_be_function_pointer(
2256 Symbol_table* ,
2257 Layout* ,
2258 Target_x86_64* ,
2259 Sized_relobj_file<64, false>* ,
2260 unsigned int ,
2261 Output_section* ,
2262 const elfcpp::Rela<64, false>& ,
2263 unsigned int r_type,
2264 const elfcpp::Sym<64, false>&)
2265 {
2266 // When building a shared library, do not fold any local symbols as it is
2267 // not possible to distinguish pointer taken versus a call by looking at
2268 // the relocation types.
2269 return (parameters->options().shared()
2270 || possible_function_pointer_reloc(r_type));
2271 }
2272
2273 // For safe ICF, scan a relocation for a global symbol to check if it
2274 // corresponds to a function pointer being taken. In that case mark
2275 // the function whose pointer was taken as not foldable.
2276
2277 inline bool
2278 Target_x86_64::Scan::global_reloc_may_be_function_pointer(
2279 Symbol_table*,
2280 Layout* ,
2281 Target_x86_64* ,
2282 Sized_relobj_file<64, false>* ,
2283 unsigned int ,
2284 Output_section* ,
2285 const elfcpp::Rela<64, false>& ,
2286 unsigned int r_type,
2287 Symbol* gsym)
2288 {
2289 // When building a shared library, do not fold symbols whose visibility
2290 // is hidden, internal or protected.
2291 return ((parameters->options().shared()
2292 && (gsym->visibility() == elfcpp::STV_INTERNAL
2293 || gsym->visibility() == elfcpp::STV_PROTECTED
2294 || gsym->visibility() == elfcpp::STV_HIDDEN))
2295 || possible_function_pointer_reloc(r_type));
2296 }
2297
2298 // Scan a relocation for a global symbol.
2299
2300 inline void
2301 Target_x86_64::Scan::global(Symbol_table* symtab,
2302 Layout* layout,
2303 Target_x86_64* target,
2304 Sized_relobj_file<64, false>* object,
2305 unsigned int data_shndx,
2306 Output_section* output_section,
2307 const elfcpp::Rela<64, false>& reloc,
2308 unsigned int r_type,
2309 Symbol* gsym)
2310 {
2311 // A STT_GNU_IFUNC symbol may require a PLT entry.
2312 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2313 && this->reloc_needs_plt_for_ifunc(object, r_type))
2314 target->make_plt_entry(symtab, layout, gsym);
2315
2316 switch (r_type)
2317 {
2318 case elfcpp::R_X86_64_NONE:
2319 case elfcpp::R_X86_64_GNU_VTINHERIT:
2320 case elfcpp::R_X86_64_GNU_VTENTRY:
2321 break;
2322
2323 case elfcpp::R_X86_64_64:
2324 case elfcpp::R_X86_64_32:
2325 case elfcpp::R_X86_64_32S:
2326 case elfcpp::R_X86_64_16:
2327 case elfcpp::R_X86_64_8:
2328 {
2329 // Make a PLT entry if necessary.
2330 if (gsym->needs_plt_entry())
2331 {
2332 target->make_plt_entry(symtab, layout, gsym);
2333 // Since this is not a PC-relative relocation, we may be
2334 // taking the address of a function. In that case we need to
2335 // set the entry in the dynamic symbol table to the address of
2336 // the PLT entry.
2337 if (gsym->is_from_dynobj() && !parameters->options().shared())
2338 gsym->set_needs_dynsym_value();
2339 }
2340 // Make a dynamic relocation if necessary.
2341 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2342 {
2343 if (gsym->may_need_copy_reloc())
2344 {
2345 target->copy_reloc(symtab, layout, object,
2346 data_shndx, output_section, gsym, reloc);
2347 }
2348 else if (r_type == elfcpp::R_X86_64_64
2349 && gsym->type() == elfcpp::STT_GNU_IFUNC
2350 && gsym->can_use_relative_reloc(false)
2351 && !gsym->is_from_dynobj()
2352 && !gsym->is_undefined()
2353 && !gsym->is_preemptible())
2354 {
2355 // Use an IRELATIVE reloc for a locally defined
2356 // STT_GNU_IFUNC symbol. This makes a function
2357 // address in a PIE executable match the address in a
2358 // shared library that it links against.
2359 Reloc_section* rela_dyn =
2360 target->rela_irelative_section(layout);
2361 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2362 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2363 output_section, object,
2364 data_shndx,
2365 reloc.get_r_offset(),
2366 reloc.get_r_addend());
2367 }
2368 else if (r_type == elfcpp::R_X86_64_64
2369 && gsym->can_use_relative_reloc(false))
2370 {
2371 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2372 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2373 output_section, object,
2374 data_shndx,
2375 reloc.get_r_offset(),
2376 reloc.get_r_addend());
2377 }
2378 else
2379 {
2380 this->check_non_pic(object, r_type, gsym);
2381 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2382 rela_dyn->add_global(gsym, r_type, output_section, object,
2383 data_shndx, reloc.get_r_offset(),
2384 reloc.get_r_addend());
2385 }
2386 }
2387 }
2388 break;
2389
2390 case elfcpp::R_X86_64_PC64:
2391 case elfcpp::R_X86_64_PC32:
2392 case elfcpp::R_X86_64_PC16:
2393 case elfcpp::R_X86_64_PC8:
2394 {
2395 // Make a PLT entry if necessary.
2396 if (gsym->needs_plt_entry())
2397 target->make_plt_entry(symtab, layout, gsym);
2398 // Make a dynamic relocation if necessary.
2399 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2400 {
2401 if (gsym->may_need_copy_reloc())
2402 {
2403 target->copy_reloc(symtab, layout, object,
2404 data_shndx, output_section, gsym, reloc);
2405 }
2406 else
2407 {
2408 this->check_non_pic(object, r_type, gsym);
2409 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2410 rela_dyn->add_global(gsym, r_type, output_section, object,
2411 data_shndx, reloc.get_r_offset(),
2412 reloc.get_r_addend());
2413 }
2414 }
2415 }
2416 break;
2417
2418 case elfcpp::R_X86_64_GOT64:
2419 case elfcpp::R_X86_64_GOT32:
2420 case elfcpp::R_X86_64_GOTPCREL64:
2421 case elfcpp::R_X86_64_GOTPCREL:
2422 case elfcpp::R_X86_64_GOTPLT64:
2423 {
2424 // The symbol requires a GOT entry.
2425 Output_data_got<64, false>* got = target->got_section(symtab, layout);
2426 if (gsym->final_value_is_known())
2427 {
2428 // For a STT_GNU_IFUNC symbol we want the PLT address.
2429 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2430 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2431 else
2432 got->add_global(gsym, GOT_TYPE_STANDARD);
2433 }
2434 else
2435 {
2436 // If this symbol is not fully resolved, we need to add a
2437 // dynamic relocation for it.
2438 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2439
2440 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2441 //
2442 // 1) The symbol may be defined in some other module.
2443 //
2444 // 2) We are building a shared library and this is a
2445 // protected symbol; using GLOB_DAT means that the dynamic
2446 // linker can use the address of the PLT in the main
2447 // executable when appropriate so that function address
2448 // comparisons work.
2449 //
2450 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2451 // code, again so that function address comparisons work.
2452 if (gsym->is_from_dynobj()
2453 || gsym->is_undefined()
2454 || gsym->is_preemptible()
2455 || (gsym->visibility() == elfcpp::STV_PROTECTED
2456 && parameters->options().shared())
2457 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2458 && parameters->options().output_is_position_independent()))
2459 got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
2460 elfcpp::R_X86_64_GLOB_DAT);
2461 else
2462 {
2463 // For a STT_GNU_IFUNC symbol we want to write the PLT
2464 // offset into the GOT, so that function pointer
2465 // comparisons work correctly.
2466 bool is_new;
2467 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2468 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2469 else
2470 {
2471 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2472 // Tell the dynamic linker to use the PLT address
2473 // when resolving relocations.
2474 if (gsym->is_from_dynobj()
2475 && !parameters->options().shared())
2476 gsym->set_needs_dynsym_value();
2477 }
2478 if (is_new)
2479 {
2480 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2481 rela_dyn->add_global_relative(gsym,
2482 elfcpp::R_X86_64_RELATIVE,
2483 got, got_off, 0);
2484 }
2485 }
2486 }
2487 // For GOTPLT64, we also need a PLT entry (but only if the
2488 // symbol is not fully resolved).
2489 if (r_type == elfcpp::R_X86_64_GOTPLT64
2490 && !gsym->final_value_is_known())
2491 target->make_plt_entry(symtab, layout, gsym);
2492 }
2493 break;
2494
2495 case elfcpp::R_X86_64_PLT32:
2496 // If the symbol is fully resolved, this is just a PC32 reloc.
2497 // Otherwise we need a PLT entry.
2498 if (gsym->final_value_is_known())
2499 break;
2500 // If building a shared library, we can also skip the PLT entry
2501 // if the symbol is defined in the output file and is protected
2502 // or hidden.
2503 if (gsym->is_defined()
2504 && !gsym->is_from_dynobj()
2505 && !gsym->is_preemptible())
2506 break;
2507 target->make_plt_entry(symtab, layout, gsym);
2508 break;
2509
2510 case elfcpp::R_X86_64_GOTPC32:
2511 case elfcpp::R_X86_64_GOTOFF64:
2512 case elfcpp::R_X86_64_GOTPC64:
2513 case elfcpp::R_X86_64_PLTOFF64:
2514 // We need a GOT section.
2515 target->got_section(symtab, layout);
2516 // For PLTOFF64, we also need a PLT entry (but only if the
2517 // symbol is not fully resolved).
2518 if (r_type == elfcpp::R_X86_64_PLTOFF64
2519 && !gsym->final_value_is_known())
2520 target->make_plt_entry(symtab, layout, gsym);
2521 break;
2522
2523 case elfcpp::R_X86_64_COPY:
2524 case elfcpp::R_X86_64_GLOB_DAT:
2525 case elfcpp::R_X86_64_JUMP_SLOT:
2526 case elfcpp::R_X86_64_RELATIVE:
2527 case elfcpp::R_X86_64_IRELATIVE:
2528 // These are outstanding tls relocs, which are unexpected when linking
2529 case elfcpp::R_X86_64_TPOFF64:
2530 case elfcpp::R_X86_64_DTPMOD64:
2531 case elfcpp::R_X86_64_TLSDESC:
2532 gold_error(_("%s: unexpected reloc %u in object file"),
2533 object->name().c_str(), r_type);
2534 break;
2535
2536 // These are initial tls relocs, which are expected for global()
2537 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2538 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2539 case elfcpp::R_X86_64_TLSDESC_CALL:
2540 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2541 case elfcpp::R_X86_64_DTPOFF32:
2542 case elfcpp::R_X86_64_DTPOFF64:
2543 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2544 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2545 {
2546 const bool is_final = gsym->final_value_is_known();
2547 const tls::Tls_optimization optimized_type
2548 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2549 switch (r_type)
2550 {
2551 case elfcpp::R_X86_64_TLSGD: // General-dynamic
2552 if (optimized_type == tls::TLSOPT_NONE)
2553 {
2554 // Create a pair of GOT entries for the module index and
2555 // dtv-relative offset.
2556 Output_data_got<64, false>* got
2557 = target->got_section(symtab, layout);
2558 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
2559 target->rela_dyn_section(layout),
2560 elfcpp::R_X86_64_DTPMOD64,
2561 elfcpp::R_X86_64_DTPOFF64);
2562 }
2563 else if (optimized_type == tls::TLSOPT_TO_IE)
2564 {
2565 // Create a GOT entry for the tp-relative offset.
2566 Output_data_got<64, false>* got
2567 = target->got_section(symtab, layout);
2568 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2569 target->rela_dyn_section(layout),
2570 elfcpp::R_X86_64_TPOFF64);
2571 }
2572 else if (optimized_type != tls::TLSOPT_TO_LE)
2573 unsupported_reloc_global(object, r_type, gsym);
2574 break;
2575
2576 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2577 target->define_tls_base_symbol(symtab, layout);
2578 if (optimized_type == tls::TLSOPT_NONE)
2579 {
2580 // Create reserved PLT and GOT entries for the resolver.
2581 target->reserve_tlsdesc_entries(symtab, layout);
2582
2583 // Create a double GOT entry with an R_X86_64_TLSDESC
2584 // reloc. The R_X86_64_TLSDESC reloc is resolved
2585 // lazily, so the GOT entry needs to be in an area in
2586 // .got.plt, not .got. Call got_section to make sure
2587 // the section has been created.
2588 target->got_section(symtab, layout);
2589 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2590 Reloc_section* rt = target->rela_tlsdesc_section(layout);
2591 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC, rt,
2592 elfcpp::R_X86_64_TLSDESC, 0);
2593 }
2594 else if (optimized_type == tls::TLSOPT_TO_IE)
2595 {
2596 // Create a GOT entry for the tp-relative offset.
2597 Output_data_got<64, false>* got
2598 = target->got_section(symtab, layout);
2599 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2600 target->rela_dyn_section(layout),
2601 elfcpp::R_X86_64_TPOFF64);
2602 }
2603 else if (optimized_type != tls::TLSOPT_TO_LE)
2604 unsupported_reloc_global(object, r_type, gsym);
2605 break;
2606
2607 case elfcpp::R_X86_64_TLSDESC_CALL:
2608 break;
2609
2610 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2611 if (optimized_type == tls::TLSOPT_NONE)
2612 {
2613 // Create a GOT entry for the module index.
2614 target->got_mod_index_entry(symtab, layout, object);
2615 }
2616 else if (optimized_type != tls::TLSOPT_TO_LE)
2617 unsupported_reloc_global(object, r_type, gsym);
2618 break;
2619
2620 case elfcpp::R_X86_64_DTPOFF32:
2621 case elfcpp::R_X86_64_DTPOFF64:
2622 break;
2623
2624 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2625 layout->set_has_static_tls();
2626 if (optimized_type == tls::TLSOPT_NONE)
2627 {
2628 // Create a GOT entry for the tp-relative offset.
2629 Output_data_got<64, false>* got
2630 = target->got_section(symtab, layout);
2631 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
2632 target->rela_dyn_section(layout),
2633 elfcpp::R_X86_64_TPOFF64);
2634 }
2635 else if (optimized_type != tls::TLSOPT_TO_LE)
2636 unsupported_reloc_global(object, r_type, gsym);
2637 break;
2638
2639 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2640 layout->set_has_static_tls();
2641 if (parameters->options().shared())
2642 unsupported_reloc_local(object, r_type);
2643 break;
2644
2645 default:
2646 gold_unreachable();
2647 }
2648 }
2649 break;
2650
2651 case elfcpp::R_X86_64_SIZE32:
2652 case elfcpp::R_X86_64_SIZE64:
2653 default:
2654 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2655 object->name().c_str(), r_type,
2656 gsym->demangled_name().c_str());
2657 break;
2658 }
2659 }
2660
2661 void
2662 Target_x86_64::gc_process_relocs(Symbol_table* symtab,
2663 Layout* layout,
2664 Sized_relobj_file<64, false>* object,
2665 unsigned int data_shndx,
2666 unsigned int sh_type,
2667 const unsigned char* prelocs,
2668 size_t reloc_count,
2669 Output_section* output_section,
2670 bool needs_special_offset_handling,
2671 size_t local_symbol_count,
2672 const unsigned char* plocal_symbols)
2673 {
2674
2675 if (sh_type == elfcpp::SHT_REL)
2676 {
2677 return;
2678 }
2679
2680 gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2681 Target_x86_64::Scan,
2682 Target_x86_64::Relocatable_size_for_reloc>(
2683 symtab,
2684 layout,
2685 this,
2686 object,
2687 data_shndx,
2688 prelocs,
2689 reloc_count,
2690 output_section,
2691 needs_special_offset_handling,
2692 local_symbol_count,
2693 plocal_symbols);
2694
2695 }
2696 // Scan relocations for a section.
2697
2698 void
2699 Target_x86_64::scan_relocs(Symbol_table* symtab,
2700 Layout* layout,
2701 Sized_relobj_file<64, false>* object,
2702 unsigned int data_shndx,
2703 unsigned int sh_type,
2704 const unsigned char* prelocs,
2705 size_t reloc_count,
2706 Output_section* output_section,
2707 bool needs_special_offset_handling,
2708 size_t local_symbol_count,
2709 const unsigned char* plocal_symbols)
2710 {
2711 if (sh_type == elfcpp::SHT_REL)
2712 {
2713 gold_error(_("%s: unsupported REL reloc section"),
2714 object->name().c_str());
2715 return;
2716 }
2717
2718 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2719 Target_x86_64::Scan>(
2720 symtab,
2721 layout,
2722 this,
2723 object,
2724 data_shndx,
2725 prelocs,
2726 reloc_count,
2727 output_section,
2728 needs_special_offset_handling,
2729 local_symbol_count,
2730 plocal_symbols);
2731 }
2732
2733 // Finalize the sections.
2734
2735 void
2736 Target_x86_64::do_finalize_sections(
2737 Layout* layout,
2738 const Input_objects*,
2739 Symbol_table* symtab)
2740 {
2741 const Reloc_section* rel_plt = (this->plt_ == NULL
2742 ? NULL
2743 : this->plt_->rela_plt());
2744 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
2745 this->rela_dyn_, true, false);
2746
2747 // Fill in some more dynamic tags.
2748 Output_data_dynamic* const odyn = layout->dynamic_data();
2749 if (odyn != NULL)
2750 {
2751 if (this->plt_ != NULL
2752 && this->plt_->output_section() != NULL
2753 && this->plt_->has_tlsdesc_entry())
2754 {
2755 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
2756 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
2757 this->got_->finalize_data_size();
2758 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
2759 this->plt_, plt_offset);
2760 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
2761 this->got_, got_offset);
2762 }
2763 }
2764
2765 // Emit any relocs we saved in an attempt to avoid generating COPY
2766 // relocs.
2767 if (this->copy_relocs_.any_saved_relocs())
2768 this->copy_relocs_.emit(this->rela_dyn_section(layout));
2769
2770 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
2771 // the .got.plt section.
2772 Symbol* sym = this->global_offset_table_;
2773 if (sym != NULL)
2774 {
2775 uint64_t data_size = this->got_plt_->current_data_size();
2776 symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
2777 }
2778
2779 if (parameters->doing_static_link()
2780 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
2781 {
2782 // If linking statically, make sure that the __rela_iplt symbols
2783 // were defined if necessary, even if we didn't create a PLT.
2784 static const Define_symbol_in_segment syms[] =
2785 {
2786 {
2787 "__rela_iplt_start", // name
2788 elfcpp::PT_LOAD, // segment_type
2789 elfcpp::PF_W, // segment_flags_set
2790 elfcpp::PF(0), // segment_flags_clear
2791 0, // value
2792 0, // size
2793 elfcpp::STT_NOTYPE, // type
2794 elfcpp::STB_GLOBAL, // binding
2795 elfcpp::STV_HIDDEN, // visibility
2796 0, // nonvis
2797 Symbol::SEGMENT_START, // offset_from_base
2798 true // only_if_ref
2799 },
2800 {
2801 "__rela_iplt_end", // name
2802 elfcpp::PT_LOAD, // segment_type
2803 elfcpp::PF_W, // segment_flags_set
2804 elfcpp::PF(0), // segment_flags_clear
2805 0, // value
2806 0, // size
2807 elfcpp::STT_NOTYPE, // type
2808 elfcpp::STB_GLOBAL, // binding
2809 elfcpp::STV_HIDDEN, // visibility
2810 0, // nonvis
2811 Symbol::SEGMENT_START, // offset_from_base
2812 true // only_if_ref
2813 }
2814 };
2815
2816 symtab->define_symbols(layout, 2, syms,
2817 layout->script_options()->saw_sections_clause());
2818 }
2819 }
2820
2821 // Perform a relocation.
2822
2823 inline bool
2824 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
2825 Target_x86_64* target,
2826 Output_section*,
2827 size_t relnum,
2828 const elfcpp::Rela<64, false>& rela,
2829 unsigned int r_type,
2830 const Sized_symbol<64>* gsym,
2831 const Symbol_value<64>* psymval,
2832 unsigned char* view,
2833 elfcpp::Elf_types<64>::Elf_Addr address,
2834 section_size_type view_size)
2835 {
2836 if (this->skip_call_tls_get_addr_)
2837 {
2838 if ((r_type != elfcpp::R_X86_64_PLT32
2839 && r_type != elfcpp::R_X86_64_PC32)
2840 || gsym == NULL
2841 || strcmp(gsym->name(), "__tls_get_addr") != 0)
2842 {
2843 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2844 _("missing expected TLS relocation"));
2845 }
2846 else
2847 {
2848 this->skip_call_tls_get_addr_ = false;
2849 return false;
2850 }
2851 }
2852
2853 const Sized_relobj_file<64, false>* object = relinfo->object;
2854
2855 // Pick the value to use for symbols defined in the PLT.
2856 Symbol_value<64> symval;
2857 if (gsym != NULL
2858 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2859 {
2860 symval.set_output_value(target->plt_address_for_global(gsym)
2861 + gsym->plt_offset());
2862 psymval = &symval;
2863 }
2864 else if (gsym == NULL && psymval->is_ifunc_symbol())
2865 {
2866 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2867 if (object->local_has_plt_offset(r_sym))
2868 {
2869 symval.set_output_value(target->plt_address_for_local(object, r_sym)
2870 + object->local_plt_offset(r_sym));
2871 psymval = &symval;
2872 }
2873 }
2874
2875 const elfcpp::Elf_Xword addend = rela.get_r_addend();
2876
2877 // Get the GOT offset if needed.
2878 // The GOT pointer points to the end of the GOT section.
2879 // We need to subtract the size of the GOT section to get
2880 // the actual offset to use in the relocation.
2881 bool have_got_offset = false;
2882 unsigned int got_offset = 0;
2883 switch (r_type)
2884 {
2885 case elfcpp::R_X86_64_GOT32:
2886 case elfcpp::R_X86_64_GOT64:
2887 case elfcpp::R_X86_64_GOTPLT64:
2888 case elfcpp::R_X86_64_GOTPCREL:
2889 case elfcpp::R_X86_64_GOTPCREL64:
2890 if (gsym != NULL)
2891 {
2892 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
2893 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
2894 }
2895 else
2896 {
2897 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2898 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
2899 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
2900 - target->got_size());
2901 }
2902 have_got_offset = true;
2903 break;
2904
2905 default:
2906 break;
2907 }
2908
2909 switch (r_type)
2910 {
2911 case elfcpp::R_X86_64_NONE:
2912 case elfcpp::R_X86_64_GNU_VTINHERIT:
2913 case elfcpp::R_X86_64_GNU_VTENTRY:
2914 break;
2915
2916 case elfcpp::R_X86_64_64:
2917 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
2918 break;
2919
2920 case elfcpp::R_X86_64_PC64:
2921 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
2922 address);
2923 break;
2924
2925 case elfcpp::R_X86_64_32:
2926 // FIXME: we need to verify that value + addend fits into 32 bits:
2927 // uint64_t x = value + addend;
2928 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
2929 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2930 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
2931 break;
2932
2933 case elfcpp::R_X86_64_32S:
2934 // FIXME: we need to verify that value + addend fits into 32 bits:
2935 // int64_t x = value + addend; // note this quantity is signed!
2936 // x == static_cast<int64_t>(static_cast<int32_t>(x))
2937 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
2938 break;
2939
2940 case elfcpp::R_X86_64_PC32:
2941 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2942 address);
2943 break;
2944
2945 case elfcpp::R_X86_64_16:
2946 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
2947 break;
2948
2949 case elfcpp::R_X86_64_PC16:
2950 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
2951 address);
2952 break;
2953
2954 case elfcpp::R_X86_64_8:
2955 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
2956 break;
2957
2958 case elfcpp::R_X86_64_PC8:
2959 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
2960 address);
2961 break;
2962
2963 case elfcpp::R_X86_64_PLT32:
2964 gold_assert(gsym == NULL
2965 || gsym->has_plt_offset()
2966 || gsym->final_value_is_known()
2967 || (gsym->is_defined()
2968 && !gsym->is_from_dynobj()
2969 && !gsym->is_preemptible()));
2970 // Note: while this code looks the same as for R_X86_64_PC32, it
2971 // behaves differently because psymval was set to point to
2972 // the PLT entry, rather than the symbol, in Scan::global().
2973 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
2974 address);
2975 break;
2976
2977 case elfcpp::R_X86_64_PLTOFF64:
2978 {
2979 gold_assert(gsym);
2980 gold_assert(gsym->has_plt_offset()
2981 || gsym->final_value_is_known());
2982 elfcpp::Elf_types<64>::Elf_Addr got_address;
2983 got_address = target->got_section(NULL, NULL)->address();
2984 Relocate_functions<64, false>::rela64(view, object, psymval,
2985 addend - got_address);
2986 }
2987
2988 case elfcpp::R_X86_64_GOT32:
2989 gold_assert(have_got_offset);
2990 Relocate_functions<64, false>::rela32(view, got_offset, addend);
2991 break;
2992
2993 case elfcpp::R_X86_64_GOTPC32:
2994 {
2995 gold_assert(gsym);
2996 elfcpp::Elf_types<64>::Elf_Addr value;
2997 value = target->got_plt_section()->address();
2998 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2999 }
3000 break;
3001
3002 case elfcpp::R_X86_64_GOT64:
3003 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
3004 // Since we always add a PLT entry, this is equivalent.
3005 case elfcpp::R_X86_64_GOTPLT64:
3006 gold_assert(have_got_offset);
3007 Relocate_functions<64, false>::rela64(view, got_offset, addend);
3008 break;
3009
3010 case elfcpp::R_X86_64_GOTPC64:
3011 {
3012 gold_assert(gsym);
3013 elfcpp::Elf_types<64>::Elf_Addr value;
3014 value = target->got_plt_section()->address();
3015 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
3016 }
3017 break;
3018
3019 case elfcpp::R_X86_64_GOTOFF64:
3020 {
3021 elfcpp::Elf_types<64>::Elf_Addr value;
3022 value = (psymval->value(object, 0)
3023 - target->got_plt_section()->address());
3024 Relocate_functions<64, false>::rela64(view, value, addend);
3025 }
3026 break;
3027
3028 case elfcpp::R_X86_64_GOTPCREL:
3029 {
3030 gold_assert(have_got_offset);
3031 elfcpp::Elf_types<64>::Elf_Addr value;
3032 value = target->got_plt_section()->address() + got_offset;
3033 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
3034 }
3035 break;
3036
3037 case elfcpp::R_X86_64_GOTPCREL64:
3038 {
3039 gold_assert(have_got_offset);
3040 elfcpp::Elf_types<64>::Elf_Addr value;
3041 value = target->got_plt_section()->address() + got_offset;
3042 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
3043 }
3044 break;
3045
3046 case elfcpp::R_X86_64_COPY:
3047 case elfcpp::R_X86_64_GLOB_DAT:
3048 case elfcpp::R_X86_64_JUMP_SLOT:
3049 case elfcpp::R_X86_64_RELATIVE:
3050 case elfcpp::R_X86_64_IRELATIVE:
3051 // These are outstanding tls relocs, which are unexpected when linking
3052 case elfcpp::R_X86_64_TPOFF64:
3053 case elfcpp::R_X86_64_DTPMOD64:
3054 case elfcpp::R_X86_64_TLSDESC:
3055 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3056 _("unexpected reloc %u in object file"),
3057 r_type);
3058 break;
3059
3060 // These are initial tls relocs, which are expected when linking
3061 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
3062 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
3063 case elfcpp::R_X86_64_TLSDESC_CALL:
3064 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
3065 case elfcpp::R_X86_64_DTPOFF32:
3066 case elfcpp::R_X86_64_DTPOFF64:
3067 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
3068 case elfcpp::R_X86_64_TPOFF32: // Local-exec
3069 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3070 view, address, view_size);
3071 break;
3072
3073 case elfcpp::R_X86_64_SIZE32:
3074 case elfcpp::R_X86_64_SIZE64:
3075 default:
3076 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3077 _("unsupported reloc %u"),
3078 r_type);
3079 break;
3080 }
3081
3082 return true;
3083 }
3084
3085 // Perform a TLS relocation.
3086
3087 inline void
3088 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
3089 Target_x86_64* target,
3090 size_t relnum,
3091 const elfcpp::Rela<64, false>& rela,
3092 unsigned int r_type,
3093 const Sized_symbol<64>* gsym,
3094 const Symbol_value<64>* psymval,
3095 unsigned char* view,
3096 elfcpp::Elf_types<64>::Elf_Addr address,
3097 section_size_type view_size)
3098 {
3099 Output_segment* tls_segment = relinfo->layout->tls_segment();
3100
3101 const Sized_relobj_file<64, false>* object = relinfo->object;
3102 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3103 elfcpp::Shdr<64, false> data_shdr(relinfo->data_shdr);
3104 bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
3105
3106 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
3107
3108 const bool is_final = (gsym == NULL
3109 ? !parameters->options().shared()
3110 : gsym->final_value_is_known());
3111 tls::Tls_optimization optimized_type
3112 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
3113 switch (r_type)
3114 {
3115 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
3116 if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3117 {
3118 // If this code sequence is used in a non-executable section,
3119 // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3120 // on the assumption that it's being used by itself in a debug
3121 // section. Therefore, in the unlikely event that the code
3122 // sequence appears in a non-executable section, we simply
3123 // leave it unoptimized.
3124 optimized_type = tls::TLSOPT_NONE;
3125 }
3126 if (optimized_type == tls::TLSOPT_TO_LE)
3127 {
3128 if (tls_segment == NULL)
3129 {
3130 gold_assert(parameters->errors()->error_count() > 0
3131 || issue_undefined_symbol_error(gsym));
3132 return;
3133 }
3134 this->tls_gd_to_le(relinfo, relnum, tls_segment,
3135 rela, r_type, value, view,
3136 view_size);
3137 break;
3138 }
3139 else
3140 {
3141 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3142 ? GOT_TYPE_TLS_OFFSET
3143 : GOT_TYPE_TLS_PAIR);
3144 unsigned int got_offset;
3145 if (gsym != NULL)
3146 {
3147 gold_assert(gsym->has_got_offset(got_type));
3148 got_offset = gsym->got_offset(got_type) - target->got_size();
3149 }
3150 else
3151 {
3152 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
3153 gold_assert(object->local_has_got_offset(r_sym, got_type));
3154 got_offset = (object->local_got_offset(r_sym, got_type)
3155 - target->got_size());
3156 }
3157 if (optimized_type == tls::TLSOPT_TO_IE)
3158 {
3159 if (tls_segment == NULL)
3160 {
3161 gold_assert(parameters->errors()->error_count() > 0
3162 || issue_undefined_symbol_error(gsym));
3163 return;
3164 }
3165 value = target->got_plt_section()->address() + got_offset;
3166 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
3167 value, view, address, view_size);
3168 break;
3169 }
3170 else if (optimized_type == tls::TLSOPT_NONE)
3171 {
3172 // Relocate the field with the offset of the pair of GOT
3173 // entries.
3174 value = target->got_plt_section()->address() + got_offset;
3175 Relocate_functions<64, false>::pcrela32(view, value, addend,
3176 address);
3177 break;
3178 }
3179 }
3180 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3181 _("unsupported reloc %u"), r_type);
3182 break;
3183
3184 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
3185 case elfcpp::R_X86_64_TLSDESC_CALL:
3186 if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3187 {
3188 // See above comment for R_X86_64_TLSGD.
3189 optimized_type = tls::TLSOPT_NONE;
3190 }
3191 if (optimized_type == tls::TLSOPT_TO_LE)
3192 {
3193 if (tls_segment == NULL)
3194 {
3195 gold_assert(parameters->errors()->error_count() > 0
3196 || issue_undefined_symbol_error(gsym));
3197 return;
3198 }
3199 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3200 rela, r_type, value, view,
3201 view_size);
3202 break;
3203 }
3204 else
3205 {
3206 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3207 ? GOT_TYPE_TLS_OFFSET
3208 : GOT_TYPE_TLS_DESC);
3209 unsigned int got_offset = 0;
3210 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
3211 && optimized_type == tls::TLSOPT_NONE)
3212 {
3213 // We created GOT entries in the .got.tlsdesc portion of
3214 // the .got.plt section, but the offset stored in the
3215 // symbol is the offset within .got.tlsdesc.
3216 got_offset = (target->got_size()
3217 + target->got_plt_section()->data_size());
3218 }
3219 if (gsym != NULL)
3220 {
3221 gold_assert(gsym->has_got_offset(got_type));
3222 got_offset += gsym->got_offset(got_type) - target->got_size();
3223 }
3224 else
3225 {
3226 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
3227 gold_assert(object->local_has_got_offset(r_sym, got_type));
3228 got_offset += (object->local_got_offset(r_sym, got_type)
3229 - target->got_size());
3230 }
3231 if (optimized_type == tls::TLSOPT_TO_IE)
3232 {
3233 if (tls_segment == NULL)
3234 {
3235 gold_assert(parameters->errors()->error_count() > 0
3236 || issue_undefined_symbol_error(gsym));
3237 return;
3238 }
3239 value = target->got_plt_section()->address() + got_offset;
3240 this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
3241 rela, r_type, value, view, address,
3242 view_size);
3243 break;
3244 }
3245 else if (optimized_type == tls::TLSOPT_NONE)
3246 {
3247 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3248 {
3249 // Relocate the field with the offset of the pair of GOT
3250 // entries.
3251 value = target->got_plt_section()->address() + got_offset;
3252 Relocate_functions<64, false>::pcrela32(view, value, addend,
3253 address);
3254 }
3255 break;
3256 }
3257 }
3258 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3259 _("unsupported reloc %u"), r_type);
3260 break;
3261
3262 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
3263 if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3264 {
3265 // See above comment for R_X86_64_TLSGD.
3266 optimized_type = tls::TLSOPT_NONE;
3267 }
3268 if (optimized_type == tls::TLSOPT_TO_LE)
3269 {
3270 if (tls_segment == NULL)
3271 {
3272 gold_assert(parameters->errors()->error_count() > 0
3273 || issue_undefined_symbol_error(gsym));
3274 return;
3275 }
3276 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
3277 value, view, view_size);
3278 break;
3279 }
3280 else if (optimized_type == tls::TLSOPT_NONE)
3281 {
3282 // Relocate the field with the offset of the GOT entry for
3283 // the module index.
3284 unsigned int got_offset;
3285 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
3286 - target->got_size());
3287 value = target->got_plt_section()->address() + got_offset;
3288 Relocate_functions<64, false>::pcrela32(view, value, addend,
3289 address);
3290 break;
3291 }
3292 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3293 _("unsupported reloc %u"), r_type);
3294 break;
3295
3296 case elfcpp::R_X86_64_DTPOFF32:
3297 // This relocation type is used in debugging information.
3298 // In that case we need to not optimize the value. If the
3299 // section is not executable, then we assume we should not
3300 // optimize this reloc. See comments above for R_X86_64_TLSGD,
3301 // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
3302 // R_X86_64_TLSLD.
3303 if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3304 {
3305 if (tls_segment == NULL)
3306 {
3307 gold_assert(parameters->errors()->error_count() > 0
3308 || issue_undefined_symbol_error(gsym));
3309 return;
3310 }
3311 value -= tls_segment->memsz();
3312 }
3313 Relocate_functions<64, false>::rela32(view, value, addend);
3314 break;
3315
3316 case elfcpp::R_X86_64_DTPOFF64:
3317 // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
3318 if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
3319 {
3320 if (tls_segment == NULL)
3321 {
3322 gold_assert(parameters->errors()->error_count() > 0
3323 || issue_undefined_symbol_error(gsym));
3324 return;
3325 }
3326 value -= tls_segment->memsz();
3327 }
3328 Relocate_functions<64, false>::rela64(view, value, addend);
3329 break;
3330
3331 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
3332 if (optimized_type == tls::TLSOPT_TO_LE)
3333 {
3334 if (tls_segment == NULL)
3335 {
3336 gold_assert(parameters->errors()->error_count() > 0
3337 || issue_undefined_symbol_error(gsym));
3338 return;
3339 }
3340 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
3341 rela, r_type, value, view,
3342 view_size);
3343 break;
3344 }
3345 else if (optimized_type == tls::TLSOPT_NONE)
3346 {
3347 // Relocate the field with the offset of the GOT entry for
3348 // the tp-relative offset of the symbol.
3349 unsigned int got_offset;
3350 if (gsym != NULL)
3351 {
3352 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3353 got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
3354 - target->got_size());
3355 }
3356 else
3357 {
3358 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
3359 gold_assert(object->local_has_got_offset(r_sym,
3360 GOT_TYPE_TLS_OFFSET));
3361 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
3362 - target->got_size());
3363 }
3364 value = target->got_plt_section()->address() + got_offset;
3365 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
3366 break;
3367 }
3368 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3369 _("unsupported reloc type %u"),
3370 r_type);
3371 break;
3372
3373 case elfcpp::R_X86_64_TPOFF32: // Local-exec
3374 if (tls_segment == NULL)
3375 {
3376 gold_assert(parameters->errors()->error_count() > 0
3377 || issue_undefined_symbol_error(gsym));
3378 return;
3379 }
3380 value -= tls_segment->memsz();
3381 Relocate_functions<64, false>::rela32(view, value, addend);
3382 break;
3383 }
3384 }
3385
3386 // Do a relocation in which we convert a TLS General-Dynamic to an
3387 // Initial-Exec.
3388
3389 inline void
3390 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
3391 size_t relnum,
3392 Output_segment*,
3393 const elfcpp::Rela<64, false>& rela,
3394 unsigned int,
3395 elfcpp::Elf_types<64>::Elf_Addr value,
3396 unsigned char* view,
3397 elfcpp::Elf_types<64>::Elf_Addr address,
3398 section_size_type view_size)
3399 {
3400 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3401 // .word 0x6666; rex64; call __tls_get_addr
3402 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
3403
3404 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
3405 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3406
3407 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3408 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3409 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3410 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3411
3412 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
3413
3414 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3415 Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
3416
3417 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3418 // We can skip it.
3419 this->skip_call_tls_get_addr_ = true;
3420 }
3421
3422 // Do a relocation in which we convert a TLS General-Dynamic to a
3423 // Local-Exec.
3424
3425 inline void
3426 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
3427 size_t relnum,
3428 Output_segment* tls_segment,
3429 const elfcpp::Rela<64, false>& rela,
3430 unsigned int,
3431 elfcpp::Elf_types<64>::Elf_Addr value,
3432 unsigned char* view,
3433 section_size_type view_size)
3434 {
3435 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
3436 // .word 0x6666; rex64; call __tls_get_addr
3437 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
3438
3439 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
3440 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
3441
3442 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3443 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
3444 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3445 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
3446
3447 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
3448
3449 value -= tls_segment->memsz();
3450 Relocate_functions<64, false>::rela32(view + 8, value, 0);
3451
3452 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3453 // We can skip it.
3454 this->skip_call_tls_get_addr_ = true;
3455 }
3456
3457 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
3458
3459 inline void
3460 Target_x86_64::Relocate::tls_desc_gd_to_ie(
3461 const Relocate_info<64, false>* relinfo,
3462 size_t relnum,
3463 Output_segment*,
3464 const elfcpp::Rela<64, false>& rela,
3465 unsigned int r_type,
3466 elfcpp::Elf_types<64>::Elf_Addr value,
3467 unsigned char* view,
3468 elfcpp::Elf_types<64>::Elf_Addr address,
3469 section_size_type view_size)
3470 {
3471 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3472 {
3473 // leaq foo@tlsdesc(%rip), %rax
3474 // ==> movq foo@gottpoff(%rip), %rax
3475 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3476 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3477 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3478 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3479 view[-2] = 0x8b;
3480 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3481 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
3482 }
3483 else
3484 {
3485 // call *foo@tlscall(%rax)
3486 // ==> nop; nop
3487 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3488 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3489 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3490 view[0] == 0xff && view[1] == 0x10);
3491 view[0] = 0x66;
3492 view[1] = 0x90;
3493 }
3494 }
3495
3496 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
3497
3498 inline void
3499 Target_x86_64::Relocate::tls_desc_gd_to_le(
3500 const Relocate_info<64, false>* relinfo,
3501 size_t relnum,
3502 Output_segment* tls_segment,
3503 const elfcpp::Rela<64, false>& rela,
3504 unsigned int r_type,
3505 elfcpp::Elf_types<64>::Elf_Addr value,
3506 unsigned char* view,
3507 section_size_type view_size)
3508 {
3509 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
3510 {
3511 // leaq foo@tlsdesc(%rip), %rax
3512 // ==> movq foo@tpoff, %rax
3513 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3514 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3515 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3516 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
3517 view[-2] = 0xc7;
3518 view[-1] = 0xc0;
3519 value -= tls_segment->memsz();
3520 Relocate_functions<64, false>::rela32(view, value, 0);
3521 }
3522 else
3523 {
3524 // call *foo@tlscall(%rax)
3525 // ==> nop; nop
3526 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
3527 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3528 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3529 view[0] == 0xff && view[1] == 0x10);
3530 view[0] = 0x66;
3531 view[1] = 0x90;
3532 }
3533 }
3534
3535 inline void
3536 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
3537 size_t relnum,
3538 Output_segment*,
3539 const elfcpp::Rela<64, false>& rela,
3540 unsigned int,
3541 elfcpp::Elf_types<64>::Elf_Addr,
3542 unsigned char* view,
3543 section_size_type view_size)
3544 {
3545 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
3546 // ... leq foo@dtpoff(%rax),%reg
3547 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
3548
3549 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3550 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
3551
3552 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
3553 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
3554
3555 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
3556
3557 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
3558
3559 // The next reloc should be a PLT32 reloc against __tls_get_addr.
3560 // We can skip it.
3561 this->skip_call_tls_get_addr_ = true;
3562 }
3563
3564 // Do a relocation in which we convert a TLS Initial-Exec to a
3565 // Local-Exec.
3566
3567 inline void
3568 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
3569 size_t relnum,
3570 Output_segment* tls_segment,
3571 const elfcpp::Rela<64, false>& rela,
3572 unsigned int,
3573 elfcpp::Elf_types<64>::Elf_Addr value,
3574 unsigned char* view,
3575 section_size_type view_size)
3576 {
3577 // We need to examine the opcodes to figure out which instruction we
3578 // are looking at.
3579
3580 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
3581 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
3582
3583 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
3584 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3585
3586 unsigned char op1 = view[-3];
3587 unsigned char op2 = view[-2];
3588 unsigned char op3 = view[-1];
3589 unsigned char reg = op3 >> 3;
3590
3591 if (op2 == 0x8b)
3592 {
3593 // movq
3594 if (op1 == 0x4c)
3595 view[-3] = 0x49;
3596 view[-2] = 0xc7;
3597 view[-1] = 0xc0 | reg;
3598 }
3599 else if (reg == 4)
3600 {
3601 // Special handling for %rsp.
3602 if (op1 == 0x4c)
3603 view[-3] = 0x49;
3604 view[-2] = 0x81;
3605 view[-1] = 0xc0 | reg;
3606 }
3607 else
3608 {
3609 // addq
3610 if (op1 == 0x4c)
3611 view[-3] = 0x4d;
3612 view[-2] = 0x8d;
3613 view[-1] = 0x80 | reg | (reg << 3);
3614 }
3615
3616 value -= tls_segment->memsz();
3617 Relocate_functions<64, false>::rela32(view, value, 0);
3618 }
3619
3620 // Relocate section data.
3621
3622 void
3623 Target_x86_64::relocate_section(
3624 const Relocate_info<64, false>* relinfo,
3625 unsigned int sh_type,
3626 const unsigned char* prelocs,
3627 size_t reloc_count,
3628 Output_section* output_section,
3629 bool needs_special_offset_handling,
3630 unsigned char* view,
3631 elfcpp::Elf_types<64>::Elf_Addr address,
3632 section_size_type view_size,
3633 const Reloc_symbol_changes* reloc_symbol_changes)
3634 {
3635 gold_assert(sh_type == elfcpp::SHT_RELA);
3636
3637 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
3638 Target_x86_64::Relocate>(
3639 relinfo,
3640 this,
3641 prelocs,
3642 reloc_count,
3643 output_section,
3644 needs_special_offset_handling,
3645 view,
3646 address,
3647 view_size,
3648 reloc_symbol_changes);
3649 }
3650
3651 // Apply an incremental relocation. Incremental relocations always refer
3652 // to global symbols.
3653
3654 void
3655 Target_x86_64::apply_relocation(
3656 const Relocate_info<64, false>* relinfo,
3657 elfcpp::Elf_types<64>::Elf_Addr r_offset,
3658 unsigned int r_type,
3659 elfcpp::Elf_types<64>::Elf_Swxword r_addend,
3660 const Symbol* gsym,
3661 unsigned char* view,
3662 elfcpp::Elf_types<64>::Elf_Addr address,
3663 section_size_type view_size)
3664 {
3665 gold::apply_relocation<64, false, Target_x86_64, Target_x86_64::Relocate>(
3666 relinfo,
3667 this,
3668 r_offset,
3669 r_type,
3670 r_addend,
3671 gsym,
3672 view,
3673 address,
3674 view_size);
3675 }
3676
3677 // Return the size of a relocation while scanning during a relocatable
3678 // link.
3679
3680 unsigned int
3681 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
3682 unsigned int r_type,
3683 Relobj* object)
3684 {
3685 switch (r_type)
3686 {
3687 case elfcpp::R_X86_64_NONE:
3688 case elfcpp::R_X86_64_GNU_VTINHERIT:
3689 case elfcpp::R_X86_64_GNU_VTENTRY:
3690 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
3691 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
3692 case elfcpp::R_X86_64_TLSDESC_CALL:
3693 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
3694 case elfcpp::R_X86_64_DTPOFF32:
3695 case elfcpp::R_X86_64_DTPOFF64:
3696 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
3697 case elfcpp::R_X86_64_TPOFF32: // Local-exec
3698 return 0;
3699
3700 case elfcpp::R_X86_64_64:
3701 case elfcpp::R_X86_64_PC64:
3702 case elfcpp::R_X86_64_GOTOFF64:
3703 case elfcpp::R_X86_64_GOTPC64:
3704 case elfcpp::R_X86_64_PLTOFF64:
3705 case elfcpp::R_X86_64_GOT64:
3706 case elfcpp::R_X86_64_GOTPCREL64:
3707 case elfcpp::R_X86_64_GOTPCREL:
3708 case elfcpp::R_X86_64_GOTPLT64:
3709 return 8;
3710
3711 case elfcpp::R_X86_64_32:
3712 case elfcpp::R_X86_64_32S:
3713 case elfcpp::R_X86_64_PC32:
3714 case elfcpp::R_X86_64_PLT32:
3715 case elfcpp::R_X86_64_GOTPC32:
3716 case elfcpp::R_X86_64_GOT32:
3717 return 4;
3718
3719 case elfcpp::R_X86_64_16:
3720 case elfcpp::R_X86_64_PC16:
3721 return 2;
3722
3723 case elfcpp::R_X86_64_8:
3724 case elfcpp::R_X86_64_PC8:
3725 return 1;
3726
3727 case elfcpp::R_X86_64_COPY:
3728 case elfcpp::R_X86_64_GLOB_DAT:
3729 case elfcpp::R_X86_64_JUMP_SLOT:
3730 case elfcpp::R_X86_64_RELATIVE:
3731 case elfcpp::R_X86_64_IRELATIVE:
3732 // These are outstanding tls relocs, which are unexpected when linking
3733 case elfcpp::R_X86_64_TPOFF64:
3734 case elfcpp::R_X86_64_DTPMOD64:
3735 case elfcpp::R_X86_64_TLSDESC:
3736 object->error(_("unexpected reloc %u in object file"), r_type);
3737 return 0;
3738
3739 case elfcpp::R_X86_64_SIZE32:
3740 case elfcpp::R_X86_64_SIZE64:
3741 default:
3742 object->error(_("unsupported reloc %u against local symbol"), r_type);
3743 return 0;
3744 }
3745 }
3746
3747 // Scan the relocs during a relocatable link.
3748
3749 void
3750 Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
3751 Layout* layout,
3752 Sized_relobj_file<64, false>* object,
3753 unsigned int data_shndx,
3754 unsigned int sh_type,
3755 const unsigned char* prelocs,
3756 size_t reloc_count,
3757 Output_section* output_section,
3758 bool needs_special_offset_handling,
3759 size_t local_symbol_count,
3760 const unsigned char* plocal_symbols,
3761 Relocatable_relocs* rr)
3762 {
3763 gold_assert(sh_type == elfcpp::SHT_RELA);
3764
3765 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
3766 Relocatable_size_for_reloc> Scan_relocatable_relocs;
3767
3768 gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
3769 Scan_relocatable_relocs>(
3770 symtab,
3771 layout,
3772 object,
3773 data_shndx,
3774 prelocs,
3775 reloc_count,
3776 output_section,
3777 needs_special_offset_handling,
3778 local_symbol_count,
3779 plocal_symbols,
3780 rr);
3781 }
3782
3783 // Relocate a section during a relocatable link.
3784
3785 void
3786 Target_x86_64::relocate_for_relocatable(
3787 const Relocate_info<64, false>* relinfo,
3788 unsigned int sh_type,
3789 const unsigned char* prelocs,
3790 size_t reloc_count,
3791 Output_section* output_section,
3792 off_t offset_in_output_section,
3793 const Relocatable_relocs* rr,
3794 unsigned char* view,
3795 elfcpp::Elf_types<64>::Elf_Addr view_address,
3796 section_size_type view_size,
3797 unsigned char* reloc_view,
3798 section_size_type reloc_view_size)
3799 {
3800 gold_assert(sh_type == elfcpp::SHT_RELA);
3801
3802 gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
3803 relinfo,
3804 prelocs,
3805 reloc_count,
3806 output_section,
3807 offset_in_output_section,
3808 rr,
3809 view,
3810 view_address,
3811 view_size,
3812 reloc_view,
3813 reloc_view_size);
3814 }
3815
3816 // Return the value to use for a dynamic which requires special
3817 // treatment. This is how we support equality comparisons of function
3818 // pointers across shared library boundaries, as described in the
3819 // processor specific ABI supplement.
3820
3821 uint64_t
3822 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
3823 {
3824 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
3825 return this->plt_address_for_global(gsym) + gsym->plt_offset();
3826 }
3827
3828 // Return a string used to fill a code section with nops to take up
3829 // the specified length.
3830
3831 std::string
3832 Target_x86_64::do_code_fill(section_size_type length) const
3833 {
3834 if (length >= 16)
3835 {
3836 // Build a jmpq instruction to skip over the bytes.
3837 unsigned char jmp[5];
3838 jmp[0] = 0xe9;
3839 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
3840 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
3841 + std::string(length - 5, '\0'));
3842 }
3843
3844 // Nop sequences of various lengths.
3845 const char nop1[1] = { 0x90 }; // nop
3846 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
3847 const char nop3[3] = { 0x0f, 0x1f, 0x00 }; // nop (%rax)
3848 const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00}; // nop 0(%rax)
3849 const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00, // nop 0(%rax,%rax,1)
3850 0x00 };
3851 const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44, // nopw 0(%rax,%rax,1)
3852 0x00, 0x00 };
3853 const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00, // nopl 0L(%rax)
3854 0x00, 0x00, 0x00 };
3855 const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00, // nopl 0L(%rax,%rax,1)
3856 0x00, 0x00, 0x00, 0x00 };
3857 const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84, // nopw 0L(%rax,%rax,1)
3858 0x00, 0x00, 0x00, 0x00,
3859 0x00 };
3860 const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
3861 0x84, 0x00, 0x00, 0x00,
3862 0x00, 0x00 };
3863 const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
3864 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3865 0x00, 0x00, 0x00 };
3866 const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
3867 0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
3868 0x00, 0x00, 0x00, 0x00 };
3869 const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3870 0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
3871 0x00, 0x00, 0x00, 0x00,
3872 0x00 };
3873 const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3874 0x66, 0x2e, 0x0f, 0x1f, // data16
3875 0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3876 0x00, 0x00 };
3877 const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
3878 0x66, 0x66, 0x2e, 0x0f, // data16; data16
3879 0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
3880 0x00, 0x00, 0x00 };
3881
3882 const char* nops[16] = {
3883 NULL,
3884 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
3885 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
3886 };
3887
3888 return std::string(nops[length], length);
3889 }
3890
3891 // Return the addend to use for a target specific relocation. The
3892 // only target specific relocation is R_X86_64_TLSDESC for a local
3893 // symbol. We want to set the addend is the offset of the local
3894 // symbol in the TLS segment.
3895
3896 uint64_t
3897 Target_x86_64::do_reloc_addend(void* arg, unsigned int r_type,
3898 uint64_t) const
3899 {
3900 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
3901 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
3902 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
3903 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
3904 const Symbol_value<64>* psymval = ti.object->local_symbol(ti.r_sym);
3905 gold_assert(psymval->is_tls_symbol());
3906 // The value of a TLS symbol is the offset in the TLS segment.
3907 return psymval->value(ti.object, 0);
3908 }
3909
3910 // Return the value to use for the base of a DW_EH_PE_datarel offset
3911 // in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
3912 // assembler can not write out the difference between two labels in
3913 // different sections, so instead of using a pc-relative value they
3914 // use an offset from the GOT.
3915
3916 uint64_t
3917 Target_x86_64::do_ehframe_datarel_base() const
3918 {
3919 gold_assert(this->global_offset_table_ != NULL);
3920 Symbol* sym = this->global_offset_table_;
3921 Sized_symbol<64>* ssym = static_cast<Sized_symbol<64>*>(sym);
3922 return ssym->value();
3923 }
3924
3925 // FNOFFSET in section SHNDX in OBJECT is the start of a function
3926 // compiled with -fsplit-stack. The function calls non-split-stack
3927 // code. We have to change the function so that it always ensures
3928 // that it has enough stack space to run some random function.
3929
3930 void
3931 Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
3932 section_offset_type fnoffset,
3933 section_size_type fnsize,
3934 unsigned char* view,
3935 section_size_type view_size,
3936 std::string* from,
3937 std::string* to) const
3938 {
3939 // The function starts with a comparison of the stack pointer and a
3940 // field in the TCB. This is followed by a jump.
3941
3942 // cmp %fs:NN,%rsp
3943 if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
3944 && fnsize > 9)
3945 {
3946 // We will call __morestack if the carry flag is set after this
3947 // comparison. We turn the comparison into an stc instruction
3948 // and some nops.
3949 view[fnoffset] = '\xf9';
3950 this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
3951 }
3952 // lea NN(%rsp),%r10
3953 // lea NN(%rsp),%r11
3954 else if ((this->match_view(view, view_size, fnoffset,
3955 "\x4c\x8d\x94\x24", 4)
3956 || this->match_view(view, view_size, fnoffset,
3957 "\x4c\x8d\x9c\x24", 4))
3958 && fnsize > 8)
3959 {
3960 // This is loading an offset from the stack pointer for a
3961 // comparison. The offset is negative, so we decrease the
3962 // offset by the amount of space we need for the stack. This
3963 // means we will avoid calling __morestack if there happens to
3964 // be plenty of space on the stack already.
3965 unsigned char* pval = view + fnoffset + 4;
3966 uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
3967 val -= parameters->options().split_stack_adjust_size();
3968 elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
3969 }
3970 else
3971 {
3972 if (!object->has_no_split_stack())
3973 object->error(_("failed to match split-stack sequence at "
3974 "section %u offset %0zx"),
3975 shndx, static_cast<size_t>(fnoffset));
3976 return;
3977 }
3978
3979 // We have to change the function so that it calls
3980 // __morestack_non_split instead of __morestack. The former will
3981 // allocate additional stack space.
3982 *from = "__morestack";
3983 *to = "__morestack_non_split";
3984 }
3985
3986 // The selector for x86_64 object files.
3987
3988 class Target_selector_x86_64 : public Target_selector_freebsd
3989 {
3990 public:
3991 Target_selector_x86_64()
3992 : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
3993 "elf64-x86-64-freebsd", "elf_x86_64")
3994 { }
3995
3996 Target*
3997 do_instantiate_target()
3998 { return new Target_x86_64(); }
3999
4000 };
4001
4002 Target_selector_x86_64 target_selector_x86_64;
4003
4004 } // End anonymous namespace.
This page took 0.122619 seconds and 4 git commands to generate.