Merge ../torvalds-2.6/
[deliverable/linux.git] / include / asm-arm / bitops.h
1 /*
2 * Copyright 1995, Russell King.
3 * Various bits and pieces copyrights include:
4 * Linus Torvalds (test_bit).
5 * Big endian support: Copyright 2001, Nicolas Pitre
6 * reworked by rmk.
7 *
8 * bit 0 is the LSB of an "unsigned long" quantity.
9 *
10 * Please note that the code in this file should never be included
11 * from user space. Many of these are not implemented in assembler
12 * since they would be too costly. Also, they require privileged
13 * instructions (which are not available from user mode) to ensure
14 * that they are atomic.
15 */
16
17 #ifndef __ASM_ARM_BITOPS_H
18 #define __ASM_ARM_BITOPS_H
19
20 #ifdef __KERNEL__
21
22 #include <asm/system.h>
23
24 #define smp_mb__before_clear_bit() mb()
25 #define smp_mb__after_clear_bit() mb()
26
27 /*
28 * These functions are the basis of our bit ops.
29 *
30 * First, the atomic bitops. These use native endian.
31 */
32 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
33 {
34 unsigned long flags;
35 unsigned long mask = 1UL << (bit & 31);
36
37 p += bit >> 5;
38
39 local_irq_save(flags);
40 *p |= mask;
41 local_irq_restore(flags);
42 }
43
44 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
45 {
46 unsigned long flags;
47 unsigned long mask = 1UL << (bit & 31);
48
49 p += bit >> 5;
50
51 local_irq_save(flags);
52 *p &= ~mask;
53 local_irq_restore(flags);
54 }
55
56 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
57 {
58 unsigned long flags;
59 unsigned long mask = 1UL << (bit & 31);
60
61 p += bit >> 5;
62
63 local_irq_save(flags);
64 *p ^= mask;
65 local_irq_restore(flags);
66 }
67
68 static inline int
69 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
70 {
71 unsigned long flags;
72 unsigned int res;
73 unsigned long mask = 1UL << (bit & 31);
74
75 p += bit >> 5;
76
77 local_irq_save(flags);
78 res = *p;
79 *p = res | mask;
80 local_irq_restore(flags);
81
82 return res & mask;
83 }
84
85 static inline int
86 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
87 {
88 unsigned long flags;
89 unsigned int res;
90 unsigned long mask = 1UL << (bit & 31);
91
92 p += bit >> 5;
93
94 local_irq_save(flags);
95 res = *p;
96 *p = res & ~mask;
97 local_irq_restore(flags);
98
99 return res & mask;
100 }
101
102 static inline int
103 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
104 {
105 unsigned long flags;
106 unsigned int res;
107 unsigned long mask = 1UL << (bit & 31);
108
109 p += bit >> 5;
110
111 local_irq_save(flags);
112 res = *p;
113 *p = res ^ mask;
114 local_irq_restore(flags);
115
116 return res & mask;
117 }
118
119 /*
120 * Now the non-atomic variants. We let the compiler handle all
121 * optimisations for these. These are all _native_ endian.
122 */
123 static inline void __set_bit(int nr, volatile unsigned long *p)
124 {
125 p[nr >> 5] |= (1UL << (nr & 31));
126 }
127
128 static inline void __clear_bit(int nr, volatile unsigned long *p)
129 {
130 p[nr >> 5] &= ~(1UL << (nr & 31));
131 }
132
133 static inline void __change_bit(int nr, volatile unsigned long *p)
134 {
135 p[nr >> 5] ^= (1UL << (nr & 31));
136 }
137
138 static inline int __test_and_set_bit(int nr, volatile unsigned long *p)
139 {
140 unsigned long oldval, mask = 1UL << (nr & 31);
141
142 p += nr >> 5;
143
144 oldval = *p;
145 *p = oldval | mask;
146 return oldval & mask;
147 }
148
149 static inline int __test_and_clear_bit(int nr, volatile unsigned long *p)
150 {
151 unsigned long oldval, mask = 1UL << (nr & 31);
152
153 p += nr >> 5;
154
155 oldval = *p;
156 *p = oldval & ~mask;
157 return oldval & mask;
158 }
159
160 static inline int __test_and_change_bit(int nr, volatile unsigned long *p)
161 {
162 unsigned long oldval, mask = 1UL << (nr & 31);
163
164 p += nr >> 5;
165
166 oldval = *p;
167 *p = oldval ^ mask;
168 return oldval & mask;
169 }
170
171 /*
172 * This routine doesn't need to be atomic.
173 */
174 static inline int __test_bit(int nr, const volatile unsigned long * p)
175 {
176 return (p[nr >> 5] >> (nr & 31)) & 1UL;
177 }
178
179 /*
180 * A note about Endian-ness.
181 * -------------------------
182 *
183 * When the ARM is put into big endian mode via CR15, the processor
184 * merely swaps the order of bytes within words, thus:
185 *
186 * ------------ physical data bus bits -----------
187 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
188 * little byte 3 byte 2 byte 1 byte 0
189 * big byte 0 byte 1 byte 2 byte 3
190 *
191 * This means that reading a 32-bit word at address 0 returns the same
192 * value irrespective of the endian mode bit.
193 *
194 * Peripheral devices should be connected with the data bus reversed in
195 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
196 * available from http://www.arm.com/.
197 *
198 * The following assumes that the data bus connectivity for big endian
199 * mode has been followed.
200 *
201 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
202 */
203
204 /*
205 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
206 */
207 extern void _set_bit_le(int nr, volatile unsigned long * p);
208 extern void _clear_bit_le(int nr, volatile unsigned long * p);
209 extern void _change_bit_le(int nr, volatile unsigned long * p);
210 extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
211 extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
212 extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
213 extern int _find_first_zero_bit_le(const void * p, unsigned size);
214 extern int _find_next_zero_bit_le(const void * p, int size, int offset);
215 extern int _find_first_bit_le(const unsigned long *p, unsigned size);
216 extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
217
218 /*
219 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
220 */
221 extern void _set_bit_be(int nr, volatile unsigned long * p);
222 extern void _clear_bit_be(int nr, volatile unsigned long * p);
223 extern void _change_bit_be(int nr, volatile unsigned long * p);
224 extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
225 extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
226 extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
227 extern int _find_first_zero_bit_be(const void * p, unsigned size);
228 extern int _find_next_zero_bit_be(const void * p, int size, int offset);
229 extern int _find_first_bit_be(const unsigned long *p, unsigned size);
230 extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
231
232 #ifndef CONFIG_SMP
233 /*
234 * The __* form of bitops are non-atomic and may be reordered.
235 */
236 #define ATOMIC_BITOP_LE(name,nr,p) \
237 (__builtin_constant_p(nr) ? \
238 ____atomic_##name(nr, p) : \
239 _##name##_le(nr,p))
240
241 #define ATOMIC_BITOP_BE(name,nr,p) \
242 (__builtin_constant_p(nr) ? \
243 ____atomic_##name(nr, p) : \
244 _##name##_be(nr,p))
245 #else
246 #define ATOMIC_BITOP_LE(name,nr,p) _##name##_le(nr,p)
247 #define ATOMIC_BITOP_BE(name,nr,p) _##name##_be(nr,p)
248 #endif
249
250 #define NONATOMIC_BITOP(name,nr,p) \
251 (____nonatomic_##name(nr, p))
252
253 #ifndef __ARMEB__
254 /*
255 * These are the little endian, atomic definitions.
256 */
257 #define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p)
258 #define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p)
259 #define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p)
260 #define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
261 #define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
262 #define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
263 #define test_bit(nr,p) __test_bit(nr,p)
264 #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
265 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
266 #define find_first_bit(p,sz) _find_first_bit_le(p,sz)
267 #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
268
269 #define WORD_BITOFF_TO_LE(x) ((x))
270
271 #else
272
273 /*
274 * These are the big endian, atomic definitions.
275 */
276 #define set_bit(nr,p) ATOMIC_BITOP_BE(set_bit,nr,p)
277 #define clear_bit(nr,p) ATOMIC_BITOP_BE(clear_bit,nr,p)
278 #define change_bit(nr,p) ATOMIC_BITOP_BE(change_bit,nr,p)
279 #define test_and_set_bit(nr,p) ATOMIC_BITOP_BE(test_and_set_bit,nr,p)
280 #define test_and_clear_bit(nr,p) ATOMIC_BITOP_BE(test_and_clear_bit,nr,p)
281 #define test_and_change_bit(nr,p) ATOMIC_BITOP_BE(test_and_change_bit,nr,p)
282 #define test_bit(nr,p) __test_bit(nr,p)
283 #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
284 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
285 #define find_first_bit(p,sz) _find_first_bit_be(p,sz)
286 #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
287
288 #define WORD_BITOFF_TO_LE(x) ((x) ^ 0x18)
289
290 #endif
291
292 #if __LINUX_ARM_ARCH__ < 5
293
294 /*
295 * ffz = Find First Zero in word. Undefined if no zero exists,
296 * so code should check against ~0UL first..
297 */
298 static inline unsigned long ffz(unsigned long word)
299 {
300 int k;
301
302 word = ~word;
303 k = 31;
304 if (word & 0x0000ffff) { k -= 16; word <<= 16; }
305 if (word & 0x00ff0000) { k -= 8; word <<= 8; }
306 if (word & 0x0f000000) { k -= 4; word <<= 4; }
307 if (word & 0x30000000) { k -= 2; word <<= 2; }
308 if (word & 0x40000000) { k -= 1; }
309 return k;
310 }
311
312 /*
313 * ffz = Find First Zero in word. Undefined if no zero exists,
314 * so code should check against ~0UL first..
315 */
316 static inline unsigned long __ffs(unsigned long word)
317 {
318 int k;
319
320 k = 31;
321 if (word & 0x0000ffff) { k -= 16; word <<= 16; }
322 if (word & 0x00ff0000) { k -= 8; word <<= 8; }
323 if (word & 0x0f000000) { k -= 4; word <<= 4; }
324 if (word & 0x30000000) { k -= 2; word <<= 2; }
325 if (word & 0x40000000) { k -= 1; }
326 return k;
327 }
328
329 /*
330 * fls: find last bit set.
331 */
332
333 #define fls(x) generic_fls(x)
334
335 /*
336 * ffs: find first bit set. This is defined the same way as
337 * the libc and compiler builtin ffs routines, therefore
338 * differs in spirit from the above ffz (man ffs).
339 */
340
341 #define ffs(x) generic_ffs(x)
342
343 #else
344
345 /*
346 * On ARMv5 and above those functions can be implemented around
347 * the clz instruction for much better code efficiency.
348 */
349
350 static __inline__ int generic_fls(int x);
351 #define fls(x) \
352 ( __builtin_constant_p(x) ? generic_fls(x) : \
353 ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) )
354 #define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); })
355 #define __ffs(x) (ffs(x) - 1)
356 #define ffz(x) __ffs( ~(x) )
357
358 #endif
359
360 /*
361 * Find first bit set in a 168-bit bitmap, where the first
362 * 128 bits are unlikely to be set.
363 */
364 static inline int sched_find_first_bit(const unsigned long *b)
365 {
366 unsigned long v;
367 unsigned int off;
368
369 for (off = 0; v = b[off], off < 4; off++) {
370 if (unlikely(v))
371 break;
372 }
373 return __ffs(v) + off * 32;
374 }
375
376 /*
377 * hweightN: returns the hamming weight (i.e. the number
378 * of bits set) of a N-bit word
379 */
380
381 #define hweight32(x) generic_hweight32(x)
382 #define hweight16(x) generic_hweight16(x)
383 #define hweight8(x) generic_hweight8(x)
384
385 /*
386 * Ext2 is defined to use little-endian byte ordering.
387 * These do not need to be atomic.
388 */
389 #define ext2_set_bit(nr,p) \
390 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
391 #define ext2_set_bit_atomic(lock,nr,p) \
392 test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
393 #define ext2_clear_bit(nr,p) \
394 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
395 #define ext2_clear_bit_atomic(lock,nr,p) \
396 test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
397 #define ext2_test_bit(nr,p) \
398 __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
399 #define ext2_find_first_zero_bit(p,sz) \
400 _find_first_zero_bit_le(p,sz)
401 #define ext2_find_next_zero_bit(p,sz,off) \
402 _find_next_zero_bit_le(p,sz,off)
403
404 /*
405 * Minix is defined to use little-endian byte ordering.
406 * These do not need to be atomic.
407 */
408 #define minix_set_bit(nr,p) \
409 __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
410 #define minix_test_bit(nr,p) \
411 __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
412 #define minix_test_and_set_bit(nr,p) \
413 __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
414 #define minix_test_and_clear_bit(nr,p) \
415 __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p))
416 #define minix_find_first_zero_bit(p,sz) \
417 _find_first_zero_bit_le(p,sz)
418
419 #endif /* __KERNEL__ */
420
421 #endif /* _ARM_BITOPS_H */
This page took 0.042304 seconds and 5 git commands to generate.