Merge ath-current from ath.git
[deliverable/linux.git] / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9 #include <linux/errno.h>
10
11 #if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
12 CONFIG_PGTABLE_LEVELS
13 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
14 #endif
15
16 /*
17 * On almost all architectures and configurations, 0 can be used as the
18 * upper ceiling to free_pgtables(): on many architectures it has the same
19 * effect as using TASK_SIZE. However, there is one configuration which
20 * must impose a more careful limit, to avoid freeing kernel pgtables.
21 */
22 #ifndef USER_PGTABLES_CEILING
23 #define USER_PGTABLES_CEILING 0UL
24 #endif
25
26 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
27 extern int ptep_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pte_t *ptep,
29 pte_t entry, int dirty);
30 #endif
31
32 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
33 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
34 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
35 unsigned long address, pmd_t *pmdp,
36 pmd_t entry, int dirty);
37 #else
38 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
39 unsigned long address, pmd_t *pmdp,
40 pmd_t entry, int dirty)
41 {
42 BUILD_BUG();
43 return 0;
44 }
45 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
46 #endif
47
48 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
49 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
50 unsigned long address,
51 pte_t *ptep)
52 {
53 pte_t pte = *ptep;
54 int r = 1;
55 if (!pte_young(pte))
56 r = 0;
57 else
58 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
59 return r;
60 }
61 #endif
62
63 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
65 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
66 unsigned long address,
67 pmd_t *pmdp)
68 {
69 pmd_t pmd = *pmdp;
70 int r = 1;
71 if (!pmd_young(pmd))
72 r = 0;
73 else
74 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
75 return r;
76 }
77 #else
78 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
79 unsigned long address,
80 pmd_t *pmdp)
81 {
82 BUILD_BUG();
83 return 0;
84 }
85 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
86 #endif
87
88 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
89 int ptep_clear_flush_young(struct vm_area_struct *vma,
90 unsigned long address, pte_t *ptep);
91 #endif
92
93 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
94 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
95 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
96 unsigned long address, pmd_t *pmdp);
97 #else
98 /*
99 * Despite relevant to THP only, this API is called from generic rmap code
100 * under PageTransHuge(), hence needs a dummy implementation for !THP
101 */
102 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
103 unsigned long address, pmd_t *pmdp)
104 {
105 BUILD_BUG();
106 return 0;
107 }
108 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
109 #endif
110
111 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
112 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
113 unsigned long address,
114 pte_t *ptep)
115 {
116 pte_t pte = *ptep;
117 pte_clear(mm, address, ptep);
118 return pte;
119 }
120 #endif
121
122 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
123 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
124 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
125 unsigned long address,
126 pmd_t *pmdp)
127 {
128 pmd_t pmd = *pmdp;
129 pmd_clear(pmdp);
130 return pmd;
131 }
132 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
133 #endif
134
135 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
137 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
138 unsigned long address, pmd_t *pmdp,
139 int full)
140 {
141 return pmdp_huge_get_and_clear(mm, address, pmdp);
142 }
143 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
144 #endif
145
146 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
147 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
148 unsigned long address, pte_t *ptep,
149 int full)
150 {
151 pte_t pte;
152 pte = ptep_get_and_clear(mm, address, ptep);
153 return pte;
154 }
155 #endif
156
157 /*
158 * Some architectures may be able to avoid expensive synchronization
159 * primitives when modifications are made to PTE's which are already
160 * not present, or in the process of an address space destruction.
161 */
162 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
163 static inline void pte_clear_not_present_full(struct mm_struct *mm,
164 unsigned long address,
165 pte_t *ptep,
166 int full)
167 {
168 pte_clear(mm, address, ptep);
169 }
170 #endif
171
172 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
173 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
174 unsigned long address,
175 pte_t *ptep);
176 #endif
177
178 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
179 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
180 unsigned long address,
181 pmd_t *pmdp);
182 #endif
183
184 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
185 struct mm_struct;
186 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
187 {
188 pte_t old_pte = *ptep;
189 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
190 }
191 #endif
192
193 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
194 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
195 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
196 unsigned long address, pmd_t *pmdp)
197 {
198 pmd_t old_pmd = *pmdp;
199 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
200 }
201 #else
202 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
203 unsigned long address, pmd_t *pmdp)
204 {
205 BUILD_BUG();
206 }
207 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
208 #endif
209
210 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
211 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
212 unsigned long address, pmd_t *pmdp);
213 #endif
214
215 #ifndef pmdp_collapse_flush
216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
217 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
218 unsigned long address, pmd_t *pmdp);
219 #else
220 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
221 unsigned long address,
222 pmd_t *pmdp)
223 {
224 BUILD_BUG();
225 return *pmdp;
226 }
227 #define pmdp_collapse_flush pmdp_collapse_flush
228 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
229 #endif
230
231 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
232 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
233 pgtable_t pgtable);
234 #endif
235
236 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
237 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
238 #endif
239
240 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
241 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
242 pmd_t *pmdp);
243 #endif
244
245 #ifndef __HAVE_ARCH_PTE_SAME
246 static inline int pte_same(pte_t pte_a, pte_t pte_b)
247 {
248 return pte_val(pte_a) == pte_val(pte_b);
249 }
250 #endif
251
252 #ifndef __HAVE_ARCH_PTE_UNUSED
253 /*
254 * Some architectures provide facilities to virtualization guests
255 * so that they can flag allocated pages as unused. This allows the
256 * host to transparently reclaim unused pages. This function returns
257 * whether the pte's page is unused.
258 */
259 static inline int pte_unused(pte_t pte)
260 {
261 return 0;
262 }
263 #endif
264
265 #ifndef __HAVE_ARCH_PMD_SAME
266 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
267 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
268 {
269 return pmd_val(pmd_a) == pmd_val(pmd_b);
270 }
271 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
272 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
273 {
274 BUILD_BUG();
275 return 0;
276 }
277 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
278 #endif
279
280 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
281 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
282 #endif
283
284 #ifndef __HAVE_ARCH_MOVE_PTE
285 #define move_pte(pte, prot, old_addr, new_addr) (pte)
286 #endif
287
288 #ifndef pte_accessible
289 # define pte_accessible(mm, pte) ((void)(pte), 1)
290 #endif
291
292 #ifndef flush_tlb_fix_spurious_fault
293 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
294 #endif
295
296 #ifndef pgprot_noncached
297 #define pgprot_noncached(prot) (prot)
298 #endif
299
300 #ifndef pgprot_writecombine
301 #define pgprot_writecombine pgprot_noncached
302 #endif
303
304 #ifndef pgprot_writethrough
305 #define pgprot_writethrough pgprot_noncached
306 #endif
307
308 #ifndef pgprot_device
309 #define pgprot_device pgprot_noncached
310 #endif
311
312 #ifndef pgprot_modify
313 #define pgprot_modify pgprot_modify
314 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
315 {
316 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
317 newprot = pgprot_noncached(newprot);
318 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
319 newprot = pgprot_writecombine(newprot);
320 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
321 newprot = pgprot_device(newprot);
322 return newprot;
323 }
324 #endif
325
326 /*
327 * When walking page tables, get the address of the next boundary,
328 * or the end address of the range if that comes earlier. Although no
329 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
330 */
331
332 #define pgd_addr_end(addr, end) \
333 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
334 (__boundary - 1 < (end) - 1)? __boundary: (end); \
335 })
336
337 #ifndef pud_addr_end
338 #define pud_addr_end(addr, end) \
339 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
340 (__boundary - 1 < (end) - 1)? __boundary: (end); \
341 })
342 #endif
343
344 #ifndef pmd_addr_end
345 #define pmd_addr_end(addr, end) \
346 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
347 (__boundary - 1 < (end) - 1)? __boundary: (end); \
348 })
349 #endif
350
351 /*
352 * When walking page tables, we usually want to skip any p?d_none entries;
353 * and any p?d_bad entries - reporting the error before resetting to none.
354 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
355 */
356 void pgd_clear_bad(pgd_t *);
357 void pud_clear_bad(pud_t *);
358 void pmd_clear_bad(pmd_t *);
359
360 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
361 {
362 if (pgd_none(*pgd))
363 return 1;
364 if (unlikely(pgd_bad(*pgd))) {
365 pgd_clear_bad(pgd);
366 return 1;
367 }
368 return 0;
369 }
370
371 static inline int pud_none_or_clear_bad(pud_t *pud)
372 {
373 if (pud_none(*pud))
374 return 1;
375 if (unlikely(pud_bad(*pud))) {
376 pud_clear_bad(pud);
377 return 1;
378 }
379 return 0;
380 }
381
382 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
383 {
384 if (pmd_none(*pmd))
385 return 1;
386 if (unlikely(pmd_bad(*pmd))) {
387 pmd_clear_bad(pmd);
388 return 1;
389 }
390 return 0;
391 }
392
393 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
394 unsigned long addr,
395 pte_t *ptep)
396 {
397 /*
398 * Get the current pte state, but zero it out to make it
399 * non-present, preventing the hardware from asynchronously
400 * updating it.
401 */
402 return ptep_get_and_clear(mm, addr, ptep);
403 }
404
405 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
406 unsigned long addr,
407 pte_t *ptep, pte_t pte)
408 {
409 /*
410 * The pte is non-present, so there's no hardware state to
411 * preserve.
412 */
413 set_pte_at(mm, addr, ptep, pte);
414 }
415
416 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
417 /*
418 * Start a pte protection read-modify-write transaction, which
419 * protects against asynchronous hardware modifications to the pte.
420 * The intention is not to prevent the hardware from making pte
421 * updates, but to prevent any updates it may make from being lost.
422 *
423 * This does not protect against other software modifications of the
424 * pte; the appropriate pte lock must be held over the transation.
425 *
426 * Note that this interface is intended to be batchable, meaning that
427 * ptep_modify_prot_commit may not actually update the pte, but merely
428 * queue the update to be done at some later time. The update must be
429 * actually committed before the pte lock is released, however.
430 */
431 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
432 unsigned long addr,
433 pte_t *ptep)
434 {
435 return __ptep_modify_prot_start(mm, addr, ptep);
436 }
437
438 /*
439 * Commit an update to a pte, leaving any hardware-controlled bits in
440 * the PTE unmodified.
441 */
442 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
443 unsigned long addr,
444 pte_t *ptep, pte_t pte)
445 {
446 __ptep_modify_prot_commit(mm, addr, ptep, pte);
447 }
448 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
449 #endif /* CONFIG_MMU */
450
451 /*
452 * A facility to provide lazy MMU batching. This allows PTE updates and
453 * page invalidations to be delayed until a call to leave lazy MMU mode
454 * is issued. Some architectures may benefit from doing this, and it is
455 * beneficial for both shadow and direct mode hypervisors, which may batch
456 * the PTE updates which happen during this window. Note that using this
457 * interface requires that read hazards be removed from the code. A read
458 * hazard could result in the direct mode hypervisor case, since the actual
459 * write to the page tables may not yet have taken place, so reads though
460 * a raw PTE pointer after it has been modified are not guaranteed to be
461 * up to date. This mode can only be entered and left under the protection of
462 * the page table locks for all page tables which may be modified. In the UP
463 * case, this is required so that preemption is disabled, and in the SMP case,
464 * it must synchronize the delayed page table writes properly on other CPUs.
465 */
466 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
467 #define arch_enter_lazy_mmu_mode() do {} while (0)
468 #define arch_leave_lazy_mmu_mode() do {} while (0)
469 #define arch_flush_lazy_mmu_mode() do {} while (0)
470 #endif
471
472 /*
473 * A facility to provide batching of the reload of page tables and
474 * other process state with the actual context switch code for
475 * paravirtualized guests. By convention, only one of the batched
476 * update (lazy) modes (CPU, MMU) should be active at any given time,
477 * entry should never be nested, and entry and exits should always be
478 * paired. This is for sanity of maintaining and reasoning about the
479 * kernel code. In this case, the exit (end of the context switch) is
480 * in architecture-specific code, and so doesn't need a generic
481 * definition.
482 */
483 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
484 #define arch_start_context_switch(prev) do {} while (0)
485 #endif
486
487 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
488 static inline int pte_soft_dirty(pte_t pte)
489 {
490 return 0;
491 }
492
493 static inline int pmd_soft_dirty(pmd_t pmd)
494 {
495 return 0;
496 }
497
498 static inline pte_t pte_mksoft_dirty(pte_t pte)
499 {
500 return pte;
501 }
502
503 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
504 {
505 return pmd;
506 }
507
508 static inline pte_t pte_clear_soft_dirty(pte_t pte)
509 {
510 return pte;
511 }
512
513 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
514 {
515 return pmd;
516 }
517
518 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
519 {
520 return pte;
521 }
522
523 static inline int pte_swp_soft_dirty(pte_t pte)
524 {
525 return 0;
526 }
527
528 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
529 {
530 return pte;
531 }
532 #endif
533
534 #ifndef __HAVE_PFNMAP_TRACKING
535 /*
536 * Interfaces that can be used by architecture code to keep track of
537 * memory type of pfn mappings specified by the remap_pfn_range,
538 * vm_insert_pfn.
539 */
540
541 /*
542 * track_pfn_remap is called when a _new_ pfn mapping is being established
543 * by remap_pfn_range() for physical range indicated by pfn and size.
544 */
545 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
546 unsigned long pfn, unsigned long addr,
547 unsigned long size)
548 {
549 return 0;
550 }
551
552 /*
553 * track_pfn_insert is called when a _new_ single pfn is established
554 * by vm_insert_pfn().
555 */
556 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
557 unsigned long pfn)
558 {
559 return 0;
560 }
561
562 /*
563 * track_pfn_copy is called when vma that is covering the pfnmap gets
564 * copied through copy_page_range().
565 */
566 static inline int track_pfn_copy(struct vm_area_struct *vma)
567 {
568 return 0;
569 }
570
571 /*
572 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
573 * untrack can be called for a specific region indicated by pfn and size or
574 * can be for the entire vma (in which case pfn, size are zero).
575 */
576 static inline void untrack_pfn(struct vm_area_struct *vma,
577 unsigned long pfn, unsigned long size)
578 {
579 }
580 #else
581 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
582 unsigned long pfn, unsigned long addr,
583 unsigned long size);
584 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
585 unsigned long pfn);
586 extern int track_pfn_copy(struct vm_area_struct *vma);
587 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
588 unsigned long size);
589 #endif
590
591 #ifdef __HAVE_COLOR_ZERO_PAGE
592 static inline int is_zero_pfn(unsigned long pfn)
593 {
594 extern unsigned long zero_pfn;
595 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
596 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
597 }
598
599 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
600
601 #else
602 static inline int is_zero_pfn(unsigned long pfn)
603 {
604 extern unsigned long zero_pfn;
605 return pfn == zero_pfn;
606 }
607
608 static inline unsigned long my_zero_pfn(unsigned long addr)
609 {
610 extern unsigned long zero_pfn;
611 return zero_pfn;
612 }
613 #endif
614
615 #ifdef CONFIG_MMU
616
617 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
618 static inline int pmd_trans_huge(pmd_t pmd)
619 {
620 return 0;
621 }
622 static inline int pmd_trans_splitting(pmd_t pmd)
623 {
624 return 0;
625 }
626 #ifndef __HAVE_ARCH_PMD_WRITE
627 static inline int pmd_write(pmd_t pmd)
628 {
629 BUG();
630 return 0;
631 }
632 #endif /* __HAVE_ARCH_PMD_WRITE */
633 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
634
635 #ifndef pmd_read_atomic
636 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
637 {
638 /*
639 * Depend on compiler for an atomic pmd read. NOTE: this is
640 * only going to work, if the pmdval_t isn't larger than
641 * an unsigned long.
642 */
643 return *pmdp;
644 }
645 #endif
646
647 #ifndef pmd_move_must_withdraw
648 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
649 spinlock_t *old_pmd_ptl)
650 {
651 /*
652 * With split pmd lock we also need to move preallocated
653 * PTE page table if new_pmd is on different PMD page table.
654 */
655 return new_pmd_ptl != old_pmd_ptl;
656 }
657 #endif
658
659 /*
660 * This function is meant to be used by sites walking pagetables with
661 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
662 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
663 * into a null pmd and the transhuge page fault can convert a null pmd
664 * into an hugepmd or into a regular pmd (if the hugepage allocation
665 * fails). While holding the mmap_sem in read mode the pmd becomes
666 * stable and stops changing under us only if it's not null and not a
667 * transhuge pmd. When those races occurs and this function makes a
668 * difference vs the standard pmd_none_or_clear_bad, the result is
669 * undefined so behaving like if the pmd was none is safe (because it
670 * can return none anyway). The compiler level barrier() is critically
671 * important to compute the two checks atomically on the same pmdval.
672 *
673 * For 32bit kernels with a 64bit large pmd_t this automatically takes
674 * care of reading the pmd atomically to avoid SMP race conditions
675 * against pmd_populate() when the mmap_sem is hold for reading by the
676 * caller (a special atomic read not done by "gcc" as in the generic
677 * version above, is also needed when THP is disabled because the page
678 * fault can populate the pmd from under us).
679 */
680 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
681 {
682 pmd_t pmdval = pmd_read_atomic(pmd);
683 /*
684 * The barrier will stabilize the pmdval in a register or on
685 * the stack so that it will stop changing under the code.
686 *
687 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
688 * pmd_read_atomic is allowed to return a not atomic pmdval
689 * (for example pointing to an hugepage that has never been
690 * mapped in the pmd). The below checks will only care about
691 * the low part of the pmd with 32bit PAE x86 anyway, with the
692 * exception of pmd_none(). So the important thing is that if
693 * the low part of the pmd is found null, the high part will
694 * be also null or the pmd_none() check below would be
695 * confused.
696 */
697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
698 barrier();
699 #endif
700 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
701 return 1;
702 if (unlikely(pmd_bad(pmdval))) {
703 pmd_clear_bad(pmd);
704 return 1;
705 }
706 return 0;
707 }
708
709 /*
710 * This is a noop if Transparent Hugepage Support is not built into
711 * the kernel. Otherwise it is equivalent to
712 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
713 * places that already verified the pmd is not none and they want to
714 * walk ptes while holding the mmap sem in read mode (write mode don't
715 * need this). If THP is not enabled, the pmd can't go away under the
716 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
717 * run a pmd_trans_unstable before walking the ptes after
718 * split_huge_page_pmd returns (because it may have run when the pmd
719 * become null, but then a page fault can map in a THP and not a
720 * regular page).
721 */
722 static inline int pmd_trans_unstable(pmd_t *pmd)
723 {
724 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
725 return pmd_none_or_trans_huge_or_clear_bad(pmd);
726 #else
727 return 0;
728 #endif
729 }
730
731 #ifndef CONFIG_NUMA_BALANCING
732 /*
733 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
734 * the only case the kernel cares is for NUMA balancing and is only ever set
735 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
736 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
737 * is the responsibility of the caller to distinguish between PROT_NONE
738 * protections and NUMA hinting fault protections.
739 */
740 static inline int pte_protnone(pte_t pte)
741 {
742 return 0;
743 }
744
745 static inline int pmd_protnone(pmd_t pmd)
746 {
747 return 0;
748 }
749 #endif /* CONFIG_NUMA_BALANCING */
750
751 #endif /* CONFIG_MMU */
752
753 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
754 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
755 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
756 int pud_clear_huge(pud_t *pud);
757 int pmd_clear_huge(pmd_t *pmd);
758 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
759 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
760 {
761 return 0;
762 }
763 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
764 {
765 return 0;
766 }
767 static inline int pud_clear_huge(pud_t *pud)
768 {
769 return 0;
770 }
771 static inline int pmd_clear_huge(pmd_t *pmd)
772 {
773 return 0;
774 }
775 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
776
777 #endif /* !__ASSEMBLY__ */
778
779 #ifndef io_remap_pfn_range
780 #define io_remap_pfn_range remap_pfn_range
781 #endif
782
783 #endif /* _ASM_GENERIC_PGTABLE_H */
This page took 0.065522 seconds and 5 git commands to generate.